
A robot manipulator is a movable chain of links interconnected by joints. One end is fixed
to the ground, and a hand or end effector that can move freely in space is attached at the
other end.

This book begins with an introduction to the subject of robot manipulators. Next,
it describes in detail a forward and reverse analysis for serial robot arms. Most of the
text focuses on closed-form solution techniques applied to a broad range of manipulator
geometries, from typical industrial robot designs (relatively simple geometries) to the most
complicated case of seven general links serially connected by six revolute joints. A unique
feature of this text is its detailed analysis of 6R-P and 7R mechanisms. Case studies show
how the techniques described in the book are used in real engineering applications.

The book meets the need for a thorough, up-to-date analysis of the structure and mobility
of serial manipulators and will be useful to both graduate students and engineers working
in the field of robotics.
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Preface

This text provides a first-level understanding of the structure, mobility, and analysis
of serial manipulators. A serial manipulator is an unclosed or open movable polygon
consisting of a series of links and joints. One end is fixed to ground, and attached to the
open end is a hand or end effector that can move freely in space.

The structure of a serial manipulator is established by labeling the skeletal form (the
sequence of joints and links) with appropriate twist angles and perpendicular distances that
define the relative positions of sequences of pairs of skew lines. In this way the geometry
of the manipulator is defined, and subsequently it is possible to apply various coordinate
transformations for points located on the links. Such transformations readily provide a
so-called forward analysis, that is, they can be used to provide the position of some point
on the end effector together with the orientation of the end effector measured relative to a
coordinate system fixed to ground for a specified set of joint variables.

A more difficult problem is the solution of the so-called reverse or inverse analysis.
Here, the position of a point on the end effector together with the end effector's orientation
is specified. It is required to determine a corresponding set of six joint variables that will
position and orient the end effector as desired. There are multiple solution sets of the
six joint variables, in contrast to the forward analysis, where only one solution exists.
The method of solution presented in this text is to join the end effector to ground by a
hypothetical link. The six parameters that specify the position and orientation of the end
effector can easily be transformed into the corresponding six parameters that model the
hypothetical link. In this way, the reverse analysis of the manipulator is transformed into
the analysis of a corresponding closed-loop spatial mechanism, that is, the computation
of multiple solution sets of the joint variables of the closed-loop spatial mechanism. The
analysis of closed-loop spatial mechanisms with more than four links has proved to be a
difficult subject. A brief history is now presented.

As far as the authors are aware, the first attempt to analyze spatial mechanisms was
by Dimentberg (1948), who applied screw algebra. Following this, various works on the
subject were published by Weckert (1952); Denavit (1958); Worle (1962); Yang (1963);
Yang and Freudenstein (1964); Uicker, Denavit, and Hartenberg (1964); and Pelecudi
(1972).

In the late 1960s and early 1970s much attention was focused on the analysis of five-link
3R-2C* spatial mechanisms. All such mechanisms were successfully analyzed; see Yang
(1969), Yuan (1970, 1971), Soni and Pamidi (1971), and Duffy and Habib-Olahi (1971,

* Throughout this text R, C, P, E, and S denote respectively revolute, cylindric, prismatic, planar, and spherical
(ball and socket) kinematic pairs.
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1971a, 1972). However, the results highlighted the difficulties in the analysis of spatial
mechanisms. Wallace (1968), Wallace and Freudenstein (1970, 1975), and Tor Fason and
Sharma (1973) had also experienced major difficulties in the analysis of five-link RRERR
and RRSRR spatial mechanisms.

It had become clear to the second author of this text that some form of shorthand or
concise notation was required to write down the lengthy loop equations for spatial five-,
six-, and seven-link mechanisms. This was accomplished by Rooney (1974), Keen (1974),
and Duffy and Rooney (1975). The last provided the foundation for Duffy (1980). Various
six-link 4R-P-C and seven-link 5R-2P spatial mechanisms were analyzed by Duffy and
Rooney (1974) and by Duffy (1977). The remaining linkages were analyzed in Duffy
(1980).

A significant result was the analysis of the spatial six-link 5R-C mechanism by Duffy
and Rooney (1974a). The difficulty was of an order of magnitude two times greater than
the analysis of spatial six-link 4R-P-C and seven-link 5R-2P mechanisms. A sixteenth
degree polynomial in the tan-half-angle of an output angular displacement was determined
by eliminating a pair of variables in a single operation from a set of four equations.

Duffy and Crane (1980) obtained a thirty-second-degree polynomial for the general
seven-link 7R spatial mechanism, "the Mount Everest" (Freudenstein [1973]). Recently,
Lee and Liang (1987,1988) obtained sixteenth degree polynomials for the seven-link 6R-P
and 7R spatial mechanisms by using and extending the unified notation developed by Duffy
(1980), which was translated into the Chinese language by Professor Liang. More recently,
the 7R spatial mechanism was solved by Raghavan and Roth (1993) using matrix notation.
All these results demonstrate the high degree of difficulty in the solution of closed-loop
spatial mechanisms, and Lee, Liang, Raghavan, and Roth are to be congratulated on their
results.

An analysis of seven-link 6R-P and 7R mechanisms is given in this text using the
unified and extended notation in collaboration with Lee and Liang. Detailed derivations
are presented that we hope will greatly assist any reader who wishes to analyze seven-link
6R-P and 7R spatial mechanisms.

Finally, the shorthand recursive notation presented in Duffy (1980) using spherical
trigonometry is developed in this text using rotation matrices. The results throughout the
text are highlighted by examples.

Acknowledgments
The authors wish to thank P. Adsit, D. Armstrong, W. Abbasi, S. Ridgeway, D. Novick,

and J. Wit for their valuable comments and for their assistance in proof reading the text.
The authors are indebted to Ms. Florence Padgett, Editor, Cambridge University Press for
her patience, advice, and guidance in the preparation of the text.



J
Introduction

This book stems from a first graduate course taught at the University of Florida on robot
geometry. It describes in detail a forward and reverse analysis for serial robot manipulators,
and a displacement analysis for closed-loop spatial mechanisms.

In the forward analysis, the variable joint angles are given, together with the constant
parameters that describe the geometry of the manipulator. The goal is to determine the
location (position and orientation) of the robot's end effector. This problem is relatively
simple. A single solution for the location of the end effector exists for a given set of joint
angle parameters.

The reverse analysis is more difficult because multiple solution sets exist. Here, the
desired location of the robot's end effector is specified, and the goal is to obtain all the
sets of joint variables for the specified location. In other words, the manipulator has a
multiple of distinct configurations for a specified location of the end effector. Here, it is
required to compute all these multiple sets of joint variables that determine each distinct
configuration.

One method of performing a reverse analysis is to use an iterative technique. In this
approach, a multidimensional search is performed employing a minimization of some
specified error function. Often, one component of the error function is the square of the
distance between the end effector location for the current set of joint parameters and the
desired end effector location. The other component of the error function will usually
measure the difference in orientation of the end effector from the desired orientation. Two
problems arise with the use of an iterative technique. The first is that only one set of joint
variables will be calculated. There is no guarantee that the iterative solutions for a pair of
neighboring end effector locations will yield the same robot configuration. For example,
a planar three-link revolute manipulator has in general two distinct configurations for a
specified location of the end effector. When the end effector is in the first quadrant, these
two configurations are referred to as elbow up and elbow down. A problem occurs when
the manipulator performing a task is in an elbow-down position and the iterative technique
yields an elbow-up configuration. The second problem is that the objective function to be
minimized in an iterative approach often has mixed units such as (length)2 + (radians)2,
which stems from an error equation that is a combination of position and orientation errors.
Such functions are devoid of any geometrical meaning and they are not invariant with a
change of units.

The majority of the book will focus on closed-form techniques for solving the reverse
analysis problem. In this closed-form approach, all the possible sets of joint parameters
that locate (position and orient) the robot's end effector as desired will be found by firstly
solving a polynomial in the tan-half-angle of one of the joint variables. Admittedly it
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is necessary to iterate to solve for the roots of a polynomial of degree greater than four.
This is, however, clearly different from performing the multidimensional search. The
remaining joint variables are solved for sequentially using appropriate loop equations.

Chapter 2 begins with a definition of position and orientation. Coordinate systems are
attached to each of a series of rigid bodies. Following this, transformations are derived
that relate the coordinates of a point in one coordinate system to another.

Chapter 3 proceeds to define a link and to describe the different types of joints that
can interconnect these links. A coordinate system is attached to each link of a serial robot
manipulator, and the transformation that relates these coordinate systems is derived.

The forward analysis is discussed in Chapter 4. The transformations developed in
Chapter 3 are used to determine the overall transformation that relates the coordinate
system of the last link, the end effector link, to ground. This overall transformation will
be used to transform the coordinates of a point in the end effector coordinate system (i.e.,
a tool point) to its coordinates in the ground coordinate system. The transformation will
also define the orientation of the robot's end effector relative to ground.

Chapter 5 presents the detailed problem statement for the reverse analysis, and initially,
iterative solution techniques are discussed. Following this discussion, a framework for
obtaining a closed-form solution is established by adding a hypothetical link to the free
end of the manipulator. This hypothetical link acts to connect the free end to ground and
effectively converts the open or unclosed serial manipulator into a closed-loop spatial
mechanism.

Chapter 6 introduces spherical closed-loop mechanisms. It is shown that an equivalent
corresponding spherical mechanism can be constructed for a serial robot manipulator
with a hypothetical closure link. The angular relationships for the equivalent spherical
mechanism and the actual spatial manipulator are the same.

After closing the loop, the reverse analysis problem is converted to that of solving for
the joint angles for the closed-loop mechanism when one of the joint angles is known. If
the newly formed closed-loop mechanism has one degree of freedom, then this problem is
solvable. The angular values that solve the closed-loop mechanism will also position and
orient the original robot's end effector as desired. The solutions of virtually all closed-loop
spatial mechanisms of one degree of freedom are presented in Chapters 7 through 10.

Chapter 11 presents useful reverse analyses for 6R manipulators with special geometry
that can be analyzed directly rather than by simplifying the general 7R mechanism anal-
ysis. Five examples are given: the Puma 560, Cincinnati Milacron T3-776, and GE P60
industrial robots and two conceptualized by NASA, that is, the space station remote ma-
nipulator system and the modified flight telerobotic servicer manipulator system. These
five examples demonstrate how the techniques developed in Chapters 5 through 10 are
applied to solve real manipulators.

At the conclusion of Chapter 11, the reader should understand the forward and reverse
position analyses of serial robot manipulators. These two analyses constitute the first step
required for robot control.

Quaternions are introduced in Chapter 12 as an alternative (or supplement) to the
coordinate transformation methods discussed in Chapter 2. This material is presented
for completeness (it is not required for a basic understanding of the forward and reverse
analysis procedure). Many papers have been published describing various applications of
quaternions. These papers are difficult to understand without a knowledge of the basics
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that are presented in this chapter, and the development follows Brand (1947). A more
recent and advanced text on rotation operators has been published by Altmann (1986).

Summarizing, this text provides a first-level understanding of the structure and analysis
of serial manipulators. It is clear that a manipulator is an unclosed or open movable
polygon consisting of a series of joints and links. A geometric description of joints and
links is presented that provides a proper means of analysis using appropriate coordinate
transformations for points and orientations. It is also clear that any open serial manipulator
can be intimately related to a corresponding closed-loop spatial mechanism simply by
joining the free end to ground by a hypothetical link. In this way, the reverse position
analysis of the serial manipulator is essentially obtained from the solution of the input-
output equation of this corresponding closed-loop spatial mechanism.



Coordinate transformations

This chapter relates the position and orientation of a coordinate system B in three-
dimensional space to a reference coordinate system A. Once this has been accomplished,
it is possible to transform the coordinates of any point in coordinate system B to coordinate
system A.

2.1 Relative position and orientation of two coordinate systems
Figure 2.1 shows the pair of coordinate systems A and B. The position and orientation

of system B relative to A are defined by the vector VAO^BO> which gives the position of
the origin of the B coordinate system relative to the origin of the A system, and the three
unit vectors xB, VB, and zB, which point along the coordinate axes of the B coordinate
system. Knowledge of these four vectors as measured in the A coordinate system (written
as AVAO^BO> AXB, AVB, AZB) completely defines the position and orientation of the B
coordinate system measured with respect to the A coordinate system.

The three unit vectors AxB, AVB, AZB> each of which has three scalar components,
represent a total of nine scalar quantities. However, these are not independent because
the vectors are unit vectors and they are also mutually perpendicular. Thus, the following
constraint equations may be written:

|AxB| = 1, (2.1)

|AyB| = i, (2.2)

eB| = l, (2.3)
AxB •  AyB = 0, (2.4)
AxB •  AzB - 0, (2.5)
A y B - A z B = 0 . (2.6)

The unit vectors AxB, AyB, A Z B thus represent 9 —  6 = 3 independent scalar quantities that
specify the orientation of the coordinate system B relative to A.

Consider now that the coordinate system B is attached to a rigid body. The vectors
AVAO^BO> A * B , AyB> and AzB, which define the position and orientation of the B coordinate
system with respect to the A system and which consist of six independent parameters, can
be used to locate the rigid body in space with respect to the A reference frame. Because
six independent parameters must be specified to define position and orientation, it is said
that a rigid body in space possesses six degrees of freedom.
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Figure 2.1. Two coordinate systems.

Figure 2.2. Depiction of point transforma-
tion problem.

2.2 Point transformations
From here on, the notation !Pj is used to indicate the coordinates of a point j as measured

in a coordinate system I. As such, xPj is a vector that begins at the origin of the I coordinate
system and ends at point j and is thus equivalent to IVio-^j.

In many kinematic problems, the position of a point is known in terms of one coordinate
system, and it is necessary to determine the position of the same point measured in another
coordinate system. The problem statement is presented as follows (see Figure 2.2):

given: BPi, the coordinates of point 1 measured in the B coordinate system (i.e.,B VBo-» 1 )>
APBo, the location of the origin of the B coordinate system measured with respect

to the A coordinate system (i.e., AVAO^BOX
AXB, AVB> AZB, the orientation of the B coordinate system measured with respect

to the A coordinate system,
APi, the coordinates of point 1 measured in the A coordinate system (i.e.,A VAo-+ I )•find:

From triangle A0-B0-l in Figure 2.2, it may be written that

BO +

Evaluating all the vectors in terms of the A coordinate system gives

(2.7)

i. (2.8)

It is thus necessary to solve Eq. (2.8) for AVAo^i (= APi). The first term on the right side
of Eq. (2.8) is a given quantity, that is, the coordinates of the origin of the B coordinate
system as measured with respect to the A system. The second term on the right side of
Eq. (2.8) is yet to be obtained.
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Figure 2.3. Point 1 projected onto the
B coordinate system.

Figure 2.3 shows the vector VBo^ I projected onto the coordinate axes of the B coordinate
system. The directions of the coordinate axes of the A coordinate system are also shown as
intermittent lines. The vector VBo-+i may be written in terms of the B coordinate system
as

BVB0-+i = b i B x B + b2
ByB + b 3

B z B , (2.9)

where the components of BxB, ByB, and BzB are respectively [1, 0, 0]T, [0, 1, 0]T, and
[0, 0, 1]T. Because the vector BVBo^i is a given quantity, the values of the scalars bi,
b2, and b3 are known. Further, the vector VB0^i can now be expressed in terms of the A
coordinate system, and thus

= bi xB + b2 yB + b3 zB. (2.10)

(2.11)

Finally, substituting Eq. (2.10) into Eq. (2.8) gives

AVA 0^i = A V A O ^BO + biAxB + b2
AyB + b3

AzB,

which can be further arranged in matrix form as

A y B
 A z B ] b2

L°3j

(2.12)

where [AxB
 AyB

 AzB] represents a 3 x 3 matrix that will be designated as

A R = [ A x B
 AyB

 A z B ] .

Substituting BPi = [bu b2, b3]T, APi = AVA 0^i , and APB 0 = AVAO->BO yields

(2.13)

(2.14)

All terms on the right-hand side of Eq. (2.14) were given directly in the problem statement,
where the vectors AxB, AyB, and AzB are the columns of the matrix AR.
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2.3 4 x 4 transformation matrices

Equation (2.14) expresses the transformation of any point in one coordinate system
to a reference coordinate system when the relative position and orientation of the pair
of coordinate systems are known. The notation will be slightly modified, however, by
introducing homogeneous coordinates.

In homogeneous coordinates, a three-dimensional point given by X, Y, and Z is repre-
sented by four scalar values, that is, x, y, z, and w. The three-dimensional and homogeneous
coordinates are related by

X = x/w,

Y = y/w,

Z = z/w.

(2.15)

(2.16)

(2.17)

Thus, when w = 1, the first three components of the homogeneous coordinates of a point
are the same as the three-dimensional coordinates of the point. Points at infinity occur
when w equals zero, but these will not be encountered in this book.

By using homogeneous coordinates, Eq. (2.14) may be written as

AP,
1

A n A D
B K *B0

0 0 0 1

BP1

1
(2.18)

where the matrix gR and the vector APBo form the first three rows of a 4 x 4 matrix. The
equivalency of Eqs. (2.14) and (2.18) is most easily seen by representing the components
of AR, APBO> and BPi symbolically and then performing the indicated multiplications and
additions. The results will be the same for both equations.

The notation AT will be used to represent the 4 x 4 matrix as

B K "BO

0 0 0 1

The point transformation problem can now be written as

An Ar rBn
^ 1 — B 1 * ! •

(2.19)

(2.20)

It should be noted that in Eq. (2.14) all the vectors such as APi are three dimensional,
whereas in Eq. (2.20) each vector is expressed in homogeneous coordinates with w = 1.

2.4 Inverse of a transformation
Quite often during robot analyses, it will be necessary to obtain the inverse of a 4 x 4

transformation. In other words, given AT it will be necessary to obtain JT. The definition
of AT was presented in Eq. (2.19). The matrix AR is a 3 x 3 matrix whose columns are
AXB, AyB, AZB, that is, the coordinates of the unit axis vectors of the B coordinate system
measured in the A coordinate system. The vector APBo represents the coordinates of the
origin of the B coordinate system measured with respect to the A coordinate system.

It should be clear that the inverse of AT can be obtained from Eq. (2.19) by interchanging
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the letters A and B and that
Bp

BT = A*
0 0 0 1

(2.21)

The inverse will be defined once the matrix BR and the coordinates of the point BPAo are
determined.

The matrix AR can be written in the form

R =

A x B • A x A
 Ay B • A x A

 A z B • A x A
A x B • Ay A

 AyB • AyA A z B • AyA
zA

AyB • A z A
 A z B • A z A

(2.22)

where the components of AxA, AyA, and AzA are respectively [1, 0, 0]T, [0, 0, 1]T, and
[0, 0, 1]T. Each of the nine scalar terms of the 3 x 3 matrix AR has been expressed in
terms of a scalar product. A scalar product is an invariant operator that can be physically
interpreted as being the cosine of the angle between the two unit vectors. The value of the
scalar product will remain constant no matter what coordinate system the two vectors are
expressed in. Thus,

A v A _ B B
X B • X A — X B '

7 A _ B
Z B * Z A —

(2.23)

Applying this to all the terms of B R yields

B V _ . B-V . B,r . B v _ B™_  _ B

B

B v

B * X A

B x B •  B y A

B x B •  B z A

B y B - B x A

B y B •  B y A

X A

B . (2.24)

It can be seen that the rows of the 3 x 3 matrix A R are B x A , ByA, BZA by recognizing that
B x B = [1 ,0 , 0 ] T , B y B = [0, 1, 0 ] T , and B z B = [0, 0, 1]T. Thus, A R can be written as

zB = B y A
T

B z A
T

(2.25)

The transpose of Eq. (2.25) is

B . , B™ 1AnT
B K = B_,

xA
(2.26)

The columns of the 3 x 3 matrix in Eq. (2.26) are the unit vectors of the A coordinate
system measured in terms of the B coordinate system. This is precisely the definition of
B R. Thus, it can be concluded that

Bn _ AT»T
AK —  B K . (2.27)

The remaining term to be determined is BPAO- This term can readily be calculated from
APBo now thatB R is known. First, the vector APBo will be transformed to the B coordinate
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system by utilizing Eq. (2.14) as

Bn AT
K

I
T (2.28)

Now BPBo = [0, 0, 0]T, which are the coordinates of the origin of the B coordinate system
measured in the B system. Substituting this result into Eq. (2.28) and rearranging yields

AijTA

Substituting Eqs. (2.27) and (2.29) into Eq. (2.21) yields the final result

T =
ApT
B1*

AijT Ai— B K J

0 0 0

(2.29)

(2.30)

2.5 Compound transformations
In Figure 2.4, the coordinates of point 1 are known in terms of the C coordinate

system. The position and orientation of the C coordinate system is known relative to the
B coordinate system. The position and orientation of the B coordinate system is known in
terms of the A coordinate system. The objective is to determine the coordinates of point
1 in terms of the A coordinate system.

From this problem description, it should be apparent that the transformations j^T and
gT are known. Thus, the problem can be solved in two steps. First, the coordinates of
point 1 in the B coordinate system can be found from

Then, the final answer can be obtained from

Combining these two equations yields

> A B
l = B 1 C

(2.31)

(2.32)

(2.33)

Figure 2.4. Compound transformation.
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The term gT ®T transfers a point directly from the C coordinate system to the A coordinate
system. Thus, it can be inferred that

Ann ArpBr
C 1 — B 1 C

(2.34)

The ability to perform matrix multiplication to yield compound transformations is the
primary reason why the 4 x 4 transformation notation is used.

2.6 Standard transformations
In many problems, the relationship between coordinate systems will be defined in terms

of rotations about the X, Y, or Z axes. A typical problem statement would be as follows:

given: (1) Coordinate system B is initially aligned with coordinate system A.
(2) Coordinate system B is then rotated a degrees about the X axis,

find: gR (often written as Rx>a).

Figure 2.5 shows the A and B coordinate systems. By projection, it can be seen that

1"

xB = (2.35)

o
COS Of

sin a

(2.36)

Thus,

0
—sin  a
cos a

1 0 0
0 cos or —sin  a
0 sin a cos a

(2.37)

(2.38)

Figure 2.5. Rotation about the X
axis.
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The problem will now be repeated for rotations about the Y and Z axes.

given: (1) Coordinate system B is initially aligned with coordinate system A.
(2) Coordinate system B is then rotated fi degrees about the Y axis,

find: gR (often written as Ry,^).

Again by projection it can be shown that
cos fi 0 sin fi "

0 1 0 . (2.39)
—sin/? 0 cos/J_

Lastly,

given: (1) Coordinate system B is initially aligned with coordinate system A.
(2) Coordinate system B is then rotated y degrees about the Z axis,

find: gR (often written as Rz,y).

By projection it can be shown that
"cosy — siny 0
siny cosy 0 . (2.40)

0 0 1

2.7 Example problem

Coordinate system B is initially aligned with coordinate system A. It is translated to the
point [5,4,1]T and then rotated 30 degrees about its X axis. Lastly, the coordinate system
is rotated 60 degrees about an axis that passes through the point [2, 0, 2]T, measured in
the current coordinate system, which is parallel to the Y axis. Find gT.

Figure 2.6 shows the A coordinate system and the B coordinate system after all the
operations have been performed. Figure 2.7 also shows four other intermediate coordinate
systems labeled C, D, E, and F.

Coordinate system C was initially aligned with coordinate system A and was then
translated to the point [5, 4, 1]T. Thus,

c 1 —

1 0 0 5
0 1 0 4
0 0 1 1
0 0 0 1

(2.41)

Figure 2.6. Initial and final coordinate
systems.
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Figure 2.7. Intermediate coordinate systems.

Coordinate system D was initially aligned with coordinate system C and was then
rotated 30 degrees about the X axis. Thus,

c T _
D 1 —

" 1 0 0 0
0 cos 30 -sin 30 0
0 sin 30 cos 30 0
0 0 0 1

(2.42)

The last modification to the coordinate system was a rotation of 60 degrees about an
axis parallel to the Y axis, which passes through the point [2, 0, 2]T, measured in terms of
the D coordinate system. The point that the axis of rotation passes through will be called
point M. From observation (see Figure 2.7), it is apparent that DPM = BPM = [2, 0, 2]T.
Because of this fact, the transformation that relates coordinate system D and coordinate
system B will be formed by translating to the point [2, 0, 2]T (see coordinate system E),
rotating 60 degrees about the current Y axis (see coordinate system F), and then translating
[—2, 0, —  2]T to obtain coordinate system B. The transformations that accomplish this
are

1 0 0 2
0 1 0 0
0 0 1 2
0 0 0 1

(2.43)

cos 60 0 sin 60 0
0 1 0 0

-sin 60 0 cos 60 0
0 0 0 1

(2.44)

1 0 0 - 2

0 1 0 0

0 0 1 - 2

0 0 0 1

(2.45)
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The overall transformation gT can be calculated as

Arp A
B 1 — C

rr»  Cnp Dnr
1 D 1 E 1

Enn Fnn
F 1 B 1 -

e numerical value of g T

A T _
B 1 —

0.5
0.433
-0.75

0

0
0.866

0.5
0

is

0.866
-0.25
0.433

0

4
2
3

.268'

.634

.366
1

(2.46)

(2.47)

2.8 General transformations

Two types of additional problems dealing with transformations often occur. In the first,
coordinate system B is initially aligned with coordinate system A. An axis and angle of
rotation are given about which coordinate system B will be rotated. The objective is to
determine gR. The second problem is the opposite. A rotation matrix gR is given, and
it is desired to determine the axis and angle of rotation that is represented by the matrix.
Solutions to both problems will be presented in this section.

2.8.1 Determination of equivalent rotation matrix

In this problem, it is assumed that an axis of rotation represented by the unit vector
m = [mx, my, mz]T and an angle of rotation, 0, are known. A coordinate system B is
initially aligned with a coordinate system A. It is then rotated by an angle 0 about the axis m
which passes through the origin (see Figure 2.8). It is desired to find the rotation matrix, g R.

The problem will be solved by first introducing a coordinate system C whose Z axis is
parallel to the vector m. The relationship between the A and C coordinate systems can be
written as

C K -

ax bx

ay by

_az bz

mx

mv

m7

(2.48)

Figure 2.8. Rotation of
angle 0 about axis m.
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Only the terms mx, my, and mz are known in this equation. A second coordinate system,
D, is now aligned with coordinate system C. It is then rotated by an angle 0 about its Z
axis. The relationship between coordinate systems C and D is

(2.49)

It should be noted that the A and C coordinate systems are essentially rotated together
as a single rigid body. In this way the A coordinate system is transformed into the B
coordinate system while the C coordinate system is transformed into the D coordinate
system. Hence, £R = ^R and therefore BR = £RT. The rotation matrix that relates the
A and B coordinate system may now be written as

D K —

cos6>
sin#

0

-sin#
cos#

0

0
0
1

Expanding the right side of Eq. (2.50) yields

Ap _
B K —

ax bx

ay by

a7 b7

mx

mv

m7

cos# — si

sin 0 cos 0
0 0

ax

bx

mx mv

az

bz

m7

(2.50)

(2.51)

Performing the matrix multiplication and substituting s = sin 6 and c = cos 0 yields

axc + bxs —a xs + bxc mx ax av

bys —a ys byc
azc + bzs - a z s + bzc

mx

my

m7

ax

bx

mx mv

az

bz

m7

(2.52)

c ( a x+ b x)+ m x c(ayax+bybx)+s(aybx c(azax+bzbx)+s(azbx

- byax)+mxmy - bzax)+mxmz

c(axay+bxby)+s(axby c(a^+b^)+m^ c(azay+bzby)+s(azby

—  bxay)+mxmy —  bzay)+mymz

c(axaz+bxbz)+s(axbzc(ayaz+bybz)+s(aybz c(a^+
—  bxaz)+mxmz —  byaz)+mymz

(2.53)

It must be pointed out that the terms in Eq. (2.53) are not all known. The terms ax, ay,
az, bx, by, and bz have not been specified. Three facts should be remembered, however.
First, the columns (and rows) of £R are unit vectors. Second, the columns (and rows) of
£R are orthogonal to one another. Third, the last column of £R can be calculated as the
cross product of the first two columns. These facts will be used to simplify Eq. (2.53) and
eliminate the unknown terms.

A R i i represents the element in the first row and first column of Eq. (2.53). This term
is written as

(2.54)
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Because the first row of the matrix in Eq. (2.48) is a unit vector,

â  + b;| + n£ = l. (2.55)

Substituting for (a^ + b^) reduces Eq. (2.54) to the following

A R U = c(l - m£) + m2
x = c + m^(l - c). (2.56)

The element in the second row, first column of the matrix in Eq. (2.53) is written as

AR2,i = c(axay + bxby) + s(axby - bxay) + mxmy. (2.57)

Because the first two rows of the matrix in Eq. (2.48) are orthogonal, the following equation
may be written

axay + bxby + mxmy = 0. (2.58)

Further, because the third column of the matrix in Eq. (2.48) can be generated as the cross
product of the first two columns, the following expression can be written

mz = axby —  bxay. (2.59)

Regrouping Eq. (2.58) and then substituting it and Eq. (2.59) into Eq. (2.57) yields

AR2,i = c(—m xmy) + s(mz) + mxmy = mxmy(l —  c) + mzs. (2.60)

Similar substitutions may be made on the remaining elements of the matrix AR to eliminate
the unknown terms. The final result for the matrix AR is

mxmxv + c mxmyv —  mzs mxmzv + mys
mxmyv + mzs mymyv + c mymzv —  mxs
mxmzv —  mys mymzv + mxs mzmzv + c

(2.61)

where s and c represent the sine and cosine of 0, and v represents (1 — cos 6). It  is interesting
to note that Eq. (2.61) reduces to the matrices expressed in Eqs. (2.38), (2.39), and (2.40)
when the axis vector m is aligned with the X, Y, and Z coordinate axes respectively.

2.8.2 Determination of axis and angle of rotation

For this problem, it is assumed that a rotation matrix, AR, is given, and it is desired
to calculate the axis vector, m, and the angle of rotation about this axis that would rotate
coordinate system A so as to align it with coordinate system B. The rotation matrix may
be written as

I'll 1*12 r.13

r2i r22 r23

T31 r32 1*33

(2.62)

Eq. (2.61) shows how the elements of the rotation matrix can be written in terms of the
axis vector m and the rotational angle 6. Summing the diagonal elements of the matrices
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in Eqs. (2.61) and (2.62) and equating the results gives

rn + r 2 2 + r 3 3 = (1 - cos6>)(m^ + m^ + m^) + 3cos0. (2.63)

Because the axis vector m can be considered to be a unit vector, Eq. (2.63) reduces to

rn + r22 + r33 = 1 + 2 cos 0. (2.64)

Solving for cos 0 gives

n rn +r22 + r33 - 1
cos0 = . (2.65)

The angle 0 is not uniquely defined by Eq. (2.65). Two distinct values of 0 in the range
of —n to +7T exist that will satisfy this equation. The value of 0 that lies in the range of
0 to 7r will be selected, however, and the unique corresponding axis of rotation will be
computed. (Had the value of 0 in the range of — n to 0 been selected, the resulting rotation
axis would point in the opposite direction to the one that will be computed.)

Subtracting the off-diagonal elements of the matrices of Eqs. (2.61) and (2.62) and
equating the results yields

i"2i —  rn = 2mz sin0, (2.66)

r13 - r31 = 2my sin0, (2.67)

1*32 - r23 = 2mx sin0. (2.68)

The components of the axis vector m can be readily computed from these equations.
When the rotation angle 0 is very small, the axis vector m is not well defined, because

the ratios used to compute the vector components all approach jj. When the rotation angle
approaches 7r, the ratios again approach jj. In this case, however, the axis vector is well
defined and the problem can be reformulated to obtain an accurate solution.

Equating the diagonal elements of the matrices of Eqs. (2.61) and (2.62) yields

r n = m^(l - cos0) + cos0, (2.69)

r22 = m^(l - cos0) + cos0, (2.70)

r33 = m£(l - c o s 0 ) + cos0. (2.71)

Solving these equations for mx, my, and mz gives

(2.72)

(2.73)

i a ' ( 2 ' 7 4 )

1 - cos 0

mx

my

m

V i
1

— COS0

—  cos 0

— COS0

—  cos 0

— COS0
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Because the angle 9 has been determined, the remaining issue for each term is whether
the positive or negative sign should be used in the equations. Equations (2.66) through
(2.68) will be used to determine this information. Because the angle 9 was selected to be
in the range of 0 to n, sin 0 will be greater than zero. From Eq. (2.68), it is now obvious
that mx will be positive if the term r32 —  r23 is positive. The sign for the terms my and mz

can be deduced in a similar fashion from Eqs. (2.67) and (2.66).
In theory, the axis vector m has been determined for the case when 9 approaches

n. Experience has shown, however, that a numerically more accurate answer results if
only the largest-magnitude component of m is calculated from Eqs. (2.72) through (2.74).
The remaining components can be determined from the following equations, which are
obtained by summing the off-diagonal elements of the matrices in Eqs. (2.61) and (2.62)
and equating them:

r12 + r21 = 2mxmy(l - cos#), (2.75)

r13 + r31 = 2mxmz(l - cos#), (2.76)

*23 + r32 = 2mymz(l - cos0). (2.77)

Thus, if the absolute value of mx as calculated in Eq. (2.72) is larger than the absolute
values of my and mz as calculated in Eqs. (2.73) and (2.74), then a more accurate answer
for my can be obtained by using Eq. (2.75), and a more accurate answer for mz can be
obtained by using Eq. (2.76).

2.9 Summary
This chapter addressed the problem of how to describe the position and orientation of

one coordinate system relative to another. It was shown that a convenient representation
for position is the specification of the location of the origin of the second coordinate
system relative to the first. Orientation can be defined by specifying the coordinates of
the unit axis vectors of the second coordinate system measured in the first coordinate
system.

It was also shown that the selected method of describing relative position and orientation
could be used to easily transform a point between coordinate systems. Homogeneous
coordinates were introduced, and the point transformation matrix was expressed as a
compact 4 x 4 matrix.

The point transformation methods introduced in this chapter will be used extensively
in the analysis of robot manipulators that follows. Thus, the material presented in this
chapter will form the foundation on which the forthcoming three-dimensional kinematic
analyses will be based.

2.10 Problems
1. Under what conditions will gR equal ^R?

2. A coordinate system {B} is initially coincident with coordinate system {A}. It is ro-
tated by an angle 0 about the X axis and then subsequently rotated by an angle f$
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about its new Y axis. Determine the orientational relationship of {B} with respect
to {A}, AR.

3. The following transformation definitions are given:

T =

2
0

0.5

0

- 1

0

0.5

0
V3
2

20

0

0

0 0

V2
2

V2
2
0
0

V2
2
V2
2

0
0

0

0

- 1
0

0

0

10
1

Drr _
B 1 —

1 0 0 0

0 ^- 0.5 10

0 -0.5 ^ 0

0 0 0 1

(a) Determine the transformation £T.

(b) The coordinates of point number 1 are [20, —30,5] T measured in the D coordinate
system. Determine the coordinates of this point as measured in the A, B, and C
coordinate systems.

4. Coordinate systems A and B are initially coincident. Coordinate system B is then ro-
tated sixty degrees about a vector parallel to [2,4, 7]T, which passes through the point
[3, 4, —2] T. Determine the transformation gT.

5. The origins of coordinate systems A and B are coincident. You are given the coordinates
of three points in the A and B coordinate systems, that is, APi, A?2, A?3, BPi, B?2,
BP3. Determine the rotation matrix gR.

6. The coordinates of point 1 as seen from the A coordinate system are

ordinates of the same point as seen from the B coordinate system are
12
20

. The co-

. TheB

coordinate system can be obtained by initially aligning it with the A system, translating
to a point, and then rotating forty degrees about the Z axis.

(a) Determine the coordinates of the origin of the B coordinate system measured in
the A coordinate system on the basis of the given information.

(b) Determine the coordinates of the origin of the A coordinate system measured in
the B coordinate system.
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7. The transformation that relates the A and B coordinate systems is given as

"0.866025 0 0.5 0.26795"
0 1 0 0

-0.5 0 0.866025 1
0 0 0 1

Coordinate system B can be obtained from coordinate system A by initially aligning
it with A and then rotating coordinate system B about an axis m by an angle y where
the rotation axis passes through a point p. Determine m, y, and p.

8. Coordinate system B is initially aligned with coordinate system A. It is then rotated
thirty degrees about an axis that is parallel to the X axis but that passes through the
point [10, 20, 10]T.

Coordinate system C is initially aligned with coordinate system A. It is then rotated
sixty degrees about an axis [2, 4, 6]T that passes through the origin.

Determine the transformation that relates the C and B coordinate systems, that is,
cT-

9. Coordinate systems A and B are initially aligned and coincident. Coordinate system
B is then rotated by an angle of thirty-five degrees about its X axis. It is then rotated
120 degrees about its new Y axis. You wish to return coordinate system B to its origin
orientation (aligned with coordinate system A) by performing one rotation. About
what axis and by what angle should B be rotated?

10. Write two computer functions named matmult and vecmult that will perform matrix
multiplication and matrix and vector multiplication. The C language prototypes for
these functions are as follows:

void matmult (double ans [4] [4], double matrix 1 [4] [4], double matrix2[4][4]);
void vecmult (double ans [4], double matrix 1 [4] [4], double vector 1 [4]);

The function matmult will accept as input two 4 x 4 matrices, that is, matrix 1 and
matrix2. The product of matrix 1 times matrix2 will be calculated, and the resulting
4 x 4 matrix will be returned by the function via the parameter ans.

The function vecmult will accept as input one 4 x 4 matrix and one 4x1 vector, that
is, matrix 1 and vector 1. The product of the matrix times the vector will be calculated,
and the resulting 4x1 vector will be returned by the function via the parameter ans.
Test your functions by calling them from a main program.

11. Write a computer function named invert-transform that will calculate the inverse
of a 4 x 4 transformation matrix. The C language prototype for this function is as
follows:

void invert-transform (double result[4][4], double tran[4][4]);

The parameter tran will be a 4 x 4 transformation matrix that is input to the function.
The inverse of tran will be calculated and returned via the parameter result. Test your
function by calling it from a main program.



Manipulator kinematics

3.1 Introduction
The previous chapter introduced point-to-point transformations, that is, the coordinates

for a point expressed in some coordinate system were expressed in a second coordinate
system. These transformations will now be applied to serial robot manipulators. In this
chapter, a spatial link will be defined. Then, different types of joints that can interconnect
these spatial links will be discussed. Finally, a standard method of specifying a coordinate
system for each link will be introduced together with the transformations that relate these
coordinate systems.

3.2 Spatial link

In this text, the term "robot manipulator" will be defined as a serial assemblage (or
chain) of links and joints. One end is connected to ground, and at the free end is attached
an end effector or gripping device. It will be assumed that a link is a rigid body. Figure 3.1
illustrates a link connecting a pair of consecutive joint axes that are in general skew, labeled
with unit directional vectors Si and Sj. Two scalar parameters, the link length ay and the
twist angle a?y, define the relative position of this pair of skew axes. The link length is the
mutual perpendicular distance between the axes, and the twist angle is the angle between
the vectors Si and Sj. The unit vector ay is defined by Si x Sj = ay sin ay as shown in
Figure 3.1. Clearly, the choice of the directions of the unit vectors Si and Sj is arbitrary,
that is, either Si or Sj can be drawn in the opposite direction. However the cross product
Si x Sj (or Sj x Si) will always determine the direction of ay, and then ay is measured in
a right-hand sense about ay.

A kinematic model of a serial manipulator is made by replacing each physical link of
the robot with a link drawn along the vector ay. This is because the physical shape of the
actual link is of no geometrical importance. Rather, the geometry of a link is defined by
the directions of the vectors ay, Si, and Sj together with the link length ay and the twist
angle ay. Figure 3.2 shows the kinematically equivalent link for the physical link shown
in Figure 3.1.

Figures 3.3 and 3.4 show two special cases. The first occurs when the perpendicular
distance between the vectors Si and Sj is zero, that is, Si and Sj intersect at a finite point.
This is called a spherical link. The second occurs when the twist angle, ay, is zero or n.
In this case the link is planar and the vectors Si and Sj are parallel or antiparallel, that is,
Si and Sj intersect at a point at infinity.
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Figure 3.1. Two views of a spatial link.

Physical Link

Kinematic
Equivalent Link

Figure 3.2. Kinematic link.

Figure 3.3. Spherical link.

In summary, a link is defined by two scalar parameters, the link length, a ,̂ and the twist
angle, otXy The direction for the unit vector a^ is determined by Si x Sj = a^ sin c^, which
automatically defines the twist angle.

3.3 Joints

The nature of the relative motion between a pair of successive links is determined by
the type of connecting joint.

3.3.1 Revolute joint (R)

One of the simplest and most common joints is the revolute joint, denoted by the letter
R. This joint connects two links as shown in Figure 3.5. Link jk is able to rotate relative
to link ij about the vector Sj (it is assumed that the vector Sj of link ij and the vector Sj
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Figure 3.4. Planar link.

fs,

Figure 3.5. Revolute joint.

Figure 3.6. Prismatic joint.

of link jk will always be selected so as to be parallel and not antiparallel when the joint
is assembled). Link jk thus has one degree of freedom with respect to link ij. The joint
angle 6} measures the relative rotation of the two links and is defined as the angle between
the unit vectors ay and ajk, measured in a right-hand sense with respect to the unit vector
Sj, i.e., ay x ajk = Sj sin#j.

Because link jk can rotate only relative to link ij, the distance Sj is a constant. This
parameter is called the joint offset distance. It is the mutual perpendicular distance between
the vectors a^ and ajk. In summary, a revolute joint can be completely described by the
variable joint angle 0} and the constant offset value Sj.

3.3.2 Prismatic joint (P)

A prismatic joint, which is denoted by the letter P, allows link jk to translate parallel to
the vector Sj with one degree of freedom relative to link ij (see Figure 3.6). The angle 0j



3.3 Joints 23

is a constant, and it is measured in the same way as for the revolute joint, that is, it is the
angle between the vectors a^ and ajk measured in a right-hand sense about the vector Sj.
The offset distance Sj is a variable for the prismatic joint.

3.3.3 Cylindric joint (C)

A cylindric joint, represented by the letter C, allows link jk to rotate about and translate
parallel to the vector Sj relative to link ij as shown in Figure 3.7. Link jk thus has two
independent degrees of freedom relative to link ij. The joint angle 0-} and the offset distance
Sj are both variables.

3.3.4 Screw joint (H)

The screw joint, which is denoted by the letter H, is shown in Figure 3.8. For this joint,
the offset distance Sj is related to the joint angle 0-} by the linear equation

Sj=pj6>j, (3.1)

where pj is the pitch of the screw. Clearly, pj is a constant; it has units of length/radian, and
it may be positive or negative accordingly as the screw has a right- or left-handed thread.

Because the offset distance is a function of the joint angle, link jk has one degree of
freedom relative to link ij.

Figure 3.7. Cylindric joint.

Figure 3.8. Screw joint.
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3.3.5 Plane joint (E)

The plane pair (E), which is illustrated in Figure 3.9, permits three independent degrees
of freedom between links hi and ij. These freedoms can be considered as a pair of linear
displacements in the plane of motion together with a rotation perpendicular to the plane of
motion. The three freedoms can be measured, for example, by the pair of coordinates for
the origin of the second coordinate system measured in terms of the first coordinate system
together with the orientation angle y, which measures the angle between the direction of
X! and x2 measured in a right-hand sense about the direction z\.

It is not possible to actuate the planar pair in this form in an open loop. However, the
plane pair is kinematically equivalent to a combination of two prismatic joints and one
revolute joint. The axis of the revolute joint must be perpendicular to the plane formed
by the two prismatic joints. Figures 3.10 and 3.11 illustrate such cases. It is important
to note that for the plane joint simulated by the PRP shown in Figure 3.10, the following
special geometry exists:

«ij =  TT/2, ay = 0,
ajk = 7T/2, ajk = 0,
Sj = 0 , 0{ = 0, 0k = 0.

Figure 3.9. Plane joint.

Figure 3.10. Simulation of plane
pair (PRP).
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Figure 3.11. Simulation of plane pair (PPR).

Figure 3.12. Simulation of plane
pair (RPR).

Figure 3.13. Simulation of plane pair (RRP).

For the PPR combination shown in Figure 3.11, the special geometry is as follows:

«ij = 7T/2, ay = 0,
ajk = 7r/2, ajk = 0,

Sk = 0, 0{= 0, 0j = 3TT/2.

The plane pair is kinematically equivalent to a combination of two revolute joints and
one prismatic joint as illustrated in Figures 3.12 and 3.13. Lastly, Figure 3.14 illustrates
the most practical form of the plane joint. In this case three revolute joints whose axes are
parallel will simulate the plane pair. It is left to the reader to deduce the special geometry
for these cases.
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ahi

Figure 3.14. Simulation of plane pair
(RRR).

Figure 3.15. Hooke joint.

Linkjk

Link ij

Figure 3.16. Spherical joint (S).

3.3.6 Hooke joint (T)

The Hooke joint is simply two revolute joints whose axes Sj and Sk intersect. It should
be apparent that link kl possesses two degrees of freedom relative to link ij. In Figure 3.15,
the axes are mutually perpendicular. They can, however, be drawn at any angle.

3.3.7 Spherical joint (S)

The spherical joint, or ball and socket joint, is illustrated in Figure 3.16. Linkjk has
three degrees of freedom relative to link ij. These three freedoms can be considered as
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Figure 3.17. Simulation of spherical
joint.

three rotations that align a coordinate system attached to link ij with a coordinate system
attached to link jk. In Figure 3.16, the origins of the coordinate systems that are attached
to each of the links are both located at the center of the spherical joint.

Coordinate system 2, which is attached to link jk, can be obtained from coordinate
system 1, which is attached to link ij, by performing the following three rotations:

• a rotation of a about the Z axis
• a rotation of  f5 about the modified X axis
• a rotation of 0 about the modified Z axis.

The transformation that converts a point known in the second coordinate system to the
first coordinate system is simply given by

? R — RzcfRxtfRzi (3.2)

where
COS Of

sin a
0

COS0

sin0
0

—  sin or
cos a

0

-sin0
COS0

0

0
0
1

0"
0
1

, Rx£ =

1
0
0

0
cos/3
sin/?

0
—  sin/3
cos/?

(3.3)

The relationship between the first and second coordinate system could be defined in many
different ways, that is, the order and corresponding angles of rotation could be changed.

The design and implementation of a spherical joint can be a complicated process. It
is especially involved because one needs to actuate the three freedoms of the joint. The
spherical joint, however, can be modeled by three noncoplanar cointersecting revolute
joints as shown in Figures 3.17 and 3.18. This method of modeling a spherical joint is
commonly used in industrial manipulators.

3.4 Labeling of a kinematic chain
A kinematic chain is shown in Figure 3.19. One body is attached to ground. The

present objective is to

(1) select the directions for the joint axis vectors,
(2) select the directions for the link vectors,
(3) label the joint angles and twist angles,
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Figure 3.18. Simulation of spherical
joint.

Figure 3.19. Kinematic chain.

R

Figure 3.20. Joint vectors labeled.

(4) label the offset and link length distances, and
(5) compile the mechanism parameters in a table listing the constant values and iden-

tifying which parameters are variable.

These five steps will be carried out for the kinematic chain shown in Figure 3.19.

Step 1: Label the joint axis vectors.
The first step is to label the joint axes. This is shown in Figure 3.20. One may draw the

vector in either direction along the joint axis. However, once directions are selected it is
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Figure 3.21. Link vectors labeled.

important that they be documented for use in all future analyses. The simplest means of
labeling the joint axes is to remember that for a revolute, cylindric, or screw pair, the joint
axis is along the line of rotation. A prismatic joint has no particular axis because all points
in one body undergo the same relative parallel sliding motion. It is, however, convenient
to label this sliding motion by a unit vector drawn on the centerline of the joint.

Step 2: Label the link vectors.
Once the joint axis vectors are specified, the link vectors can be labeled. The link

vectors lie along the line that is perpendicular to both of the joint axis vectors that the link
connects (see Figure 3.21). The line perpendicular to two joint axes will be unique unless
the two joint axes are parallel. If the two joint axes are parallel, then the location but not
the direction of the link vector is arbitrarily selected.

The selection of the direction of the vector a67 is somewhat arbitrary because a seventh
joint axis, that is, S7, does not physically exist in this example. The direction of a67 must be
selected so that it is perpendicular to S6, and it must pass through a point on the line of the
sixth joint axis. We will later show that the selection of a67 will define a coordinate system
attached to the last link of the manipulator and that tool points (points to be positioned in
the work space) will be defined in terms of this coordinate system.

Step 3: Label the joint angles and twist angles.
Once the joint axis vectors and the link vectors are specified, the joint angles and

twist angles are uniquely defined. For example, in Figure 3.22, 03 is defined as the angle
between a23 and 334 measured in a right-hand sense about S3, that is, a23 x a34 = S3 sin 03.
Similarly, in Figure 3.23 a23 is defined as the angle between S2 and S3 measured in a
right-hand sense about a23, that is, S2 x S3 = a23 sino?23.

The joint angle values that are defined in this manner may not be the same joint pa-
rameters that have been defined by the robot manufacturer. The relationship between the
kinematic joint angles and the robot manufacturer's joint angles will be linear, as shown
by the following equation:

(̂manufacturer) = Ki#i + K2. (3.4)

The values for Ki and K2 can be easily determined by moving each joint of the robot to two
positions and recording the kinematic joint angles and the manufacturer's joint angles. Ki
and K2 can then be obtained by solving two equations with two unknowns.
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Figure 3.22. Joint angles labeled.

Figure 3.23. Twist angles labeled.

Figure 3.24. Offset lengths labeled.

Step 4: Label the offset and the link length distances.
The offset lengths and link lengths are uniquely defined. For example, S3 is the distance

between the vectors a23 and a34, and a23 is the distance between the vectors S2 and S3. The
offset and link lengths are shown in Figures 3.24 and 3.25. The offset and link lengths may
have negative values. For example, the offset distance S3 will be positive if the direction
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Table 3.1. Mechanism parameters for kinematic chain shown
in Figure 3.21.

Link length, in.

al2 = 3.25

a23 = 2.25
a34 = 2.125

345 = 3.5

a56 = 3.25

Twist angle, deg.

an = 30
<*23 = 30

a34 = 270

a45 = 210

«56 = 40

Joint offset, in.

S2 = 2.75
S3 = variable

S4 = variable

S5 = 3.75
S6 - 4.75

Joint angle, deg.

0i = variable
02 —  variable

03 = variable

04 = 270
#5 = variable

06 = variable

Figure 3.25. Link lengths labeled.

of travel from a23 to 334 is along the direction of S3. The offset distance £3 will be negative
if moving from a23 to a34 is opposite to the direction of vector S3.

It is important to note that offset distance Si is not defined. According to the labeling
convention being used, Si would be the distance between the vectors aOi and ai2. Because
aOi is not defined, the offset distance Si is not defined either.

Step 5: Compile the mechanism parameters.
The values for the constant parameters for the kinematic chain must be recorded. The

mechanism parameters for the kinematic chain shown in Figure 3.21 are listed in Table 3.1.
The first joint angle must be measured with respect to ground and not relative to another

link, as is the case for all the other joint angles. A coordinate system, named the fixed
coordinate system, is attached to ground. Its origin is located at the intersection of the
vectors Si and ai2. The Z axis of the fixed coordinate system is along Si (see Figure 3.26).
The first joint angle, labeled 0i, is defined as the angle between the X axis of the fixed
coordinate system and the ai2 vector, measured in a right-hand sense about the vector Si.

The Puma robot is used as a second example of labeling a kinematic chain. Figure 3.27
shows the Puma robot, and Figure 3.28 shows its kinematic drawing. The joint axis vectors
are labeled in Figure 3.29, and the link vectors are labeled in Figure 3.30. The twist angles
and joint angles as well as the offset lengths and link lengths are now uniquely defined.
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Figure 3.26. Definition of fixed coordinate system.

Figure 3.27. Puma robot.

Figure 3.28. Kinematic diagram of Puma robot.
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Table 3.2.

Link length,

a,2 = 0

a23 = 17

a34 = 0.8

a45 = 0

a56 = 0

Mechanism parameters for Puma robot.

in. Twist angle, deg. Joint offset, in.

an = 90
<*23 = 0 S 2 =

a34 = 270 S3 =

a45 = 90 S4 =

«56 = 90 S 5 =

= 5.9

- 0

= 17

= 0

Joint angle, deg.

0i = variable

02 = variable
03 = variable

64 = variable
#5 = variable

06 = variable

S3

Figure 3.29. Joint vectors labeled.

Figure 3.30. Link vectors labeled.

Labeling of these terms is left as an exercise for the reader. Table 3.2 lists the mechanism
dimensions for the Puma robot.

3.5 Standard link coordinate systems
For the analysis of manipulator links it is necessary to attach a coordinate system

to each rigid body. The selection of the coordinate system for each link will be done
systematically. The coordinate system attached to a link ij (see Figure 3.31) will have its
origin located at the intersection of Si and a^. The Z axis of the coordinate system will
be parallel to Sj. The X axis will be parallel to ay.

For a serial manipulator, the coordinate system attached to link 12 will be called the
first coordinate system. Similarly, the coordinate system attached to link 23 will be called
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Figure 3.31. Standard link coordi-
nate system.

Figure 3.32. First and second coordinate sys-
tems.

the second coordinate system, and the coordinate system attached to link mn (n = m + 1)
will be called the mth coordinate system.

Most industrial robots, such as the Puma shown in Figure 3.27, have a tool mounting
plate. The axis of the sixth joint passes through the center of this plate. In this case, the
location and the direction of the vector a67, which is the X axis of the sixth coordinate
system, can be arbitrarily selected. Typically, the vector a67 will be placed in the plane
of the tool mounting plate. A line will be drawn on the tool mounting plate to signify
the a67 vector. Once the vector a67 is specified, the sixth coordinate system as well as the
parameters S6 and 66 are defined.

3.6 Transformations between standard coordinate systems
Figure 3.32 shows link ai2 and link a23 of a serial manipulator together with the first

and second coordinate systems. It is desired to determine the transformation that relates
these two coordinate systems.

The second coordinate system can be obtained by starting with a coordinate system
that is initially aligned with the first coordinate system. This new coordinate system is
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Figure 3.33. First coordinate system trans-
lated along ai2.

Figure 3.34. Coordinate system rotated
about a]2 by the angle an.

then translated by the distance ai2 along the X axis (see Figure 3.33). Next, it is rotated
by the angle an about the X axis (see Figure 3.34). Following this, the coordinate system
is translated along the Z axis by a distance S2. Lastly, the coordinate system is rotated by
the angle 02 to align it with the second coordinate system. The transformation that relates
the second and first coordinate system can be written as

1 0 0 an
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 C12 -S12 0
0 S12 C12 0
0 0 0 1

1
0
0
0

0
1
0
0

0
0
1
0

0"
0
s2
1 _

c2 - s 2 0 0
s2
0
0

c2
0
0

0
1
0

0
0
1

or

2 X —

c2

S2Ci2

S2S12

0

- s 2

C2Cl2

C2S12

0

0
- S l 2

Cl2

0

ai2

- S i 2 S 2

C12S2

1

(3.5)

(3.6)

where s2 and c2 represent the sine and cosine of 02, and S12 and ci2 represent the sine and
cosine of a 12. In general, the relationship between the jth and the ith coordinate systems
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is given by

!T =

Ci - S

SjCjj

0 0 0 1

(3.7)

The inverse of this transformation will often be used and is given by

CJ
- S j

0
0

SJCiJ
CjCij

— Sij

0

SjSij

CjSij

Cij

0 1

(3.8)

One additional transformation will be presented for completeness. This is the relationship
between the first coordinate system and the fixed system. The transformation is simply a
rotation about the Z axis by the angle <j>\ because the origins of the fixed coordinate system
and the first coordinate system are coincident. The transformation is given by

cos 0i —  sin 0i 0 0
sin 0i cos 0i 0 0

0 0 1 0
0 0 0 1

(3.9)

3.7 Summary
In this chapter, the rigid body link was defined and quantified by the link length a^

and the twist angle o^. Seven types of joints that can interconnect these links were then
defined, the most common of which were the revolute joint, R, and the prismatic joint, P.
Compound joints such as the Hooke joint, the planar pair, and the ball and socket joint
must be simulated by an appropriate series of R and P pairs for actuation in a serial robot
manipulator.

The steps for labeling a kinematic chain and defining the mechanism parameters were
discussed. Finally, a standard coordinate system was attached to each link and the trans-
formation between coordinate systems was developed.

In the next chapter, the forward kinematic analysis of a robot manipulator will be
presented. For this analysis, it is assumed that the constant mechanism parameters and
the variable mechanism parameters are all specified. It is necessary to determine the
position and orientation of the robot end effector. This analysis will be developed by
using the general transformation between standard coordinate systems that was developed
in Section 3.6.

3.8 Problems
1. An open chain of links shown in Figure 3.35. Label the joint vectors, link vectors, joint

angles, and twist angles on the figure.
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Figure 3.35. Kinematic diagram.

D

Figure 3.36. RRR manipulator.

2.

(a) Draw a sketch of four general links connected by three revolute joints. Label the
twist angles, link lengths, offset lengths, and joint angles.

(b) Specify the special mechanism dimensions necessary to make this mechanism equiv-
alent to a planar pair.

(c) Specify the special mechanism dimensions necessary to make this mechanism equiv-
alent to a ball and socket joint.

3. A 3R manipulator is shown in the Figure 3.36. The vectors Si, S2, and S3 are shown
together with a fixed coordinate system. The following information is also known:

Distance between the origin of the fixed coordinate system and point A is ninety-five
inches.

Distance between point A and point B is twenty-five inches.
Distance between point B and point C is thirty-five inches.
Distance between point C and point D is thirty inches.
Distance between point D and point E is sixty inches.

(a) Draw the vectors ai2 and SL23 on the figure, assuming that the twist angles a\2 and
c*23 are equal to ninety degrees.

(b) Tabulate the mechanism dimensions and give their values.
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Figure 3.37. RRP manipulator.

(c) Write down the coordinates of point E in terms of the third coordinate system.

(d) At the instant shown in the figure, the joint angle parameters are known to be

0i = 240° 02 = 120° 03 = 160°.

Determine the coordinates of point E in terms of the fixed coordinate system. Also
determine the direction cosines of vectors S3 and 334 in terms of the fixed coordinate
system.

4. An RRP kinematic chain is shown in Figure 3.37. Label all joint and link axes. Label
all joint angles and twist angles. What are the variable parameters for this manipulator?

5. The following information is given for a robot manipulator:

an = 50°
Qf23 = 90°

an
a23

= 0
= 20cm

s2s3

= 50cm
= 35 cm

0! = 70°
02 = 120

<93 = 90°

The coordinates of a point measured in terms of the third standard coordinate system
are [8, 2, 0]T cm. Determine the coordinates of this point in terms of the standard fixed
coordinate system.
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4.1 Problem statement

A forward analysis of a serial manipulator determines the unique location (position
and orientation) for a specified set of joint variables. In practice, the joint variables are
monitored continuously as the end effector performs a task. A forward analysis thus
monitors continuously the actual location of the end effector, which may of course not be
precisely the desired location. The difference is used for location control.

Specifically, for a manipulator comprising six revolute joints, the variable parameters
0i, 02, #3, 04, 05, and 06 would be known. The goal of the analysis is to determine the
coordinates of a tool point that is attached to the last link of the manipulator, that is, link
67 for this case, together with its orientation. Specifically, the forward analysis problem
statement for a 6R manipulator is

given: (1) the constant mechanism parameters (link lengths ai2 through a56, twist angles
ot\2 through a56, and joint offsets S2 through S5),

(2) the joint offset distance S6 and the direction of the vector a67 relative to the
vector S6 (to establish the sixth coordinate system),

(3) the variable mechanism parameters (0i, 02, 03, 04, 05, and 06), and
(4) the location of a tool point measured in the last coordinate system, 6Pt00b

find: (1) the location of the tool point in the fixed coordinate system, FPt00b and
(2) the orientation of the last coordinate system measured with respect to the fixed

system (^R for a six-axis robot).

4.2 Forward analysis

The forward analysis is a relatively straightforward problem. Clearly, there is a unique
pose for a specified set of six joint variables. The first step of the solution is to obtain the
transformation that relates the end effector coordinate system with the fixed coordinate
system. Assuming that we have a six-axis robot and using the transformations developed
in Section 3.6, the transformation FT can be obtained from

FT1 Frp lrp 2rp 3rp 4rp 5 rp /A 1 \
6 1 - 1 1 2 1 3 1 4 1 5 1 6 1 * v1"*1'

The orientation of the sixth coordinate system with respect to the fixed system is given by
£R, the upper left 3 x 3 matrix of £T. AS a reminder, the first column of FR is the vector
Fa67, and the third column is the vector FS6 by Eq. (2.13) and Section 3.5.
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Table 4.1. Mechanism parameters for Puma robot

Link length, in.

a,2
a23

a34

a45

a56

= 0

= 17

= 0.8

= 0

= 0

Twist angle, deg.

<*12

<*23

<*34

<*45

<*56

= 90

= 0

= 270

= 90

= 90

Joint offset, in.

S2 = 5.9
S3 = 0

S4 = 17

S 5 = 0

Joint angle, deg.

0i = variable
02 = variable

03 = variable
04 = variable

05 = variable

06 = variable

Figure 4.1. Kinematic model of Puma
robot.

With the transformation £T now known, the position of the tool point in the fixed
coordinate system can be simply found from

tool — 6

Frp 6"|>
A 1 I |tool • (4.2)

The Puma robot, described in detail in Section 3.4, will be used as an example, and
Figure 3.28 and Table 3.2 are repeated as Figure 4.1 and Table 4.1. The numerical
values listed in Table 4.1 represent all the constant mechanism parameters for the Puma
manipulator. It is important to note, however, that the location of the origin of the sixth
coordinate system is not yet defined. A value for the offset distance S6 must be specified in
order for the origin of the sixth coordinate system to be defined. The offset S6 represents
the distance between the vectors a56 and a67 measured along the S6 axis (see Figure 4.1).
The vector a67, however, does not physically exist, and thus a unique constant value for
S6 is not automatically defined. This problem is addressed by having the user arbitrarily
select a value for S6. Once this value is chosen, the origin of the sixth coordinate system
is uniquely defined. A value of S6 equal to four inches will be used in this case for the
Puma robot.

The next problem is to select a direction of the vector a67. It is known that the vector
a67 will pass through the origin of the sixth coordinate system and that a67 must be
perpendicular to S6. However, a planar pencil of lines passes through the origin of the
sixth coordinate system and is perpendicular to S6. The user must align a67 with one of
these lines. In a typical application, the value of S6 may be chosen so that the origin of the
sixth coordinate system is located at the center of the tool mounting plate for the robot. A
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line is then drawn on the face of the tool mounting plate. This line will represent the vector
a67. The sixth coordinate system is now completely defined because its origin has been
determined by the selection of S6 and the orientation vectors S6 and a67 are physically
defined. The user would then measure the coordinates of the tool point in terms of this
sixth coordinate system, and the forward analysis problem can be completed.

The following numerical data were given for the forward analysis of the Puma robot:

S6 = 4.0 in.,

01 = 57T/4,
04 = 7T/4,

"5
6P 1 -

rtool —

02 = 5TT/6, 03 =

05 = TT/3 , 06 = -7T/6,

in.

where the joint angles are given in units of radians. The transformation ^T is given as

0.997 -0.002 0.079 18.577
0.064 0.614 -0.787 23.457

-0.047 0.789 0.612 11.750
0 0 0 1

and thus the orientation of the sixth coordinate system is known.
The location of the tool point in the fixed coordinate system is calculated from

(4.3)

Fp Frp 6p
* tool — 6  tool* (4.4)

Therefore,

Fp
*tool =

and hence

Fp _
* tool —

0.997
0.064

-0.047
0

24.112
20.113
18.167

1

-0.002
0.614
0.789

0

0.079

0.787

0.612

0

18.577"

23.457

11.750
1

"5"

3

7
1

(4.5)

in. (4.6)

4.3 Problems

1. Write a computer function that will perform a forward kinematic analysis of the GE P60
robot. Write a second function that will perform the forward analysis of the Cincin-
nati Milacron T3-776 robot. Use the kinematic diagrams and mechanism dimensions
presented in Sections 11.3 and 11.4 respectively.
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The value for the offset S6 must be selected in order to define the location of the
sixth coordinate system of the robot. Use a value of 6.0 cm for the GE P60 robot and
8.0 inches for the Cincinnati Milacron robot.

For both cases, assume that the coordinates of the tool point as measured in the sixth
coordinate system are [12, 8, 5]T . Also, the values for the joint angles of the robot are

01 = 50°,
02 = 120°,
03 = 295°,
04 = 30°,
05 = 190°,
06 = 100°.

Determine the position of the tool point in terms of the fixed coordinate system. Also
determine the orientation of the end effector in terms of the fixed coordinate system,
that is, Fa6 7 and F S 6 .

A prototype for the function may be written as

void forward_ge (double phil , double th2, double th3,
double th4, double th5, double th6,
double S6, double P_tool_6[3],
double P_tool_F[3], double S6_F[3], double a67_F[3]);

2. A three-axis robot is shown in Figure 4.2.

(a) Label all vectors along the links and joint offsets on the accompanying diagram.
Label all joint angles and twist angles.

(b) Tabulate the mechanism dimensions and give their values.

(c) Assume you are given the following angular data:

fx = 30°, 02 = 90°, 03 = 40°

where in this case, the angle \f/\ is measured between the fixed Y axis and the link
vector that is perpendicular to the first two joint axes.

Figure 4.2. RRR manipulator.
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Determine the coordinates of point A and the direction cosines of vector v in terms
of the fixed coordinate system shown in the figure.

3. Suppose you are given an RP manipulator with the following dimensions:

ai2 = 5 in., an = 270°,
02 = 135°.

(a) Draw the manipulator and label the vectors ai2, a23, Si, and S2. Label the fixed
coordinate system and the second coordinate system.

(b) A tool point is given as [3.0, 1.0, 2.0]T measured in terms of the second coordinate
system. Determine the location of the tool point in terms of the fixed coordinate
system when 4>\ = 45° and S2 = six inches. In addition, determine the direction
of the vectors S2 and a23 in terms of the fixed coordinate system.



Reverse kinematic analysis problem
statement

A reverse analysis for a 6R serial manipulator determines all possible sets of the six
joint variables for any specified end effector location. Each set of six joint variables
defines a particular pose for the given end effector location. This analysis is especially
important when the end effector must move through a number of finite locations when
performing some specified task. This analysis is clearly more difficult than the forward
analysis described in Chapter 4. The analysis begins in this chapter by introducing the
concept of closing the loop, where a hypothetical link is inserted between the end effector
and ground to form a closed-loop spatial mechanism. The analyses of these closed-loop
mechanisms are presented in detail in Chapters 7 through 10.

5.1 Problem statement
The problem statement for the reverse analysis of a 6R manipulator is as follows (see

Figure 5.1):

given: (1) the constant mechanism parameters (link lengths ai2 through a56, twist angles
a 12 through a?56, and joint offsets S2 through S5),

(2) the joint offset distance S6 and the direction of the vector a67 relative to the
vector S6 (to establish the sixth coordinate system),

(3) the desired position and orientation of the end effector, that is, FPt00b FS6,
Fa67, and

(4) the location of the tool point in the sixth coordinate system, that is, 6Pt00b
find: 01,02,03,04,05,06-

It is assumed that FS6 and Fa67 are unit vectors. From this information, the transformation
that relates the sixth coordinate system to ground is given by

(5.1)

F R = [ F a 6 7 , F S 6 x F a 6 7 , F S 6 ] (5.2)

and

FP6or ig = FPtool - (6ptool. i)Fa67 - (6Ptool • j )FS6x Fa67 - (6Ptool • k)FS6. (5.3)
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Figure 5.1. Reverse analysis known information.

The 3 x 3 matrix £R is easily determined because Fa67 and FS6 are the X and Z axes of
the sixth coordinate system measured with respect to the fixed coordinate system. The
location of the origin of the sixth system is determined by projection.

5.2 Iterative solution techniques
Iterative techniques represent one method of solution for the reverse-analysis problem.

In these techniques, an initial guess for the joint parameters (</>i through 66 for a 6R robot)
is made. A forward analysis is performed to determine the position and orientation of
the tool point for the selected joint parameters. The difference between the position and
orientation calculated with the forward analysis and the desired position and orientation
represent an error that is to be minimized.

In typical iterative techniques, the error must be reduced to or represented by a single
scalar value. An objective function, F(0i, 92, #3, 64,65,65), is formulated, and search
techniques are used to obtain the set of design parameters (01? 62,63, 64,65, 06) that will
minimize F. A typical objective function would be the sum of the squares of the position
errors in the X , Y, and Z directions, plus the sum of the squares of the orientation errors
measured by X-Y-Z fixed angles or some other orientation measurement system. Thus,
the objective function could be written as

, 02, 63, 04, 65, 66) = (Xf - Xd)2 + (Yf - Yd)2 + (Zf - Zd)2 + (af - adf
(5.4)

where the subscript f refers to a position or orientation value calculated by performing a
forward analysis using the current design parameters, and the subscript d refers to a desired
value specified at the start of the reverse analysis problem. The optimal solution for this
problem is to obtain a set of values for the design parameters that cause the objective
function to equal zero.

A problem exists with Eq. (5.4). It contains terms with different units. The first three
terms have units of dimension length2, whereas the last three terms are dimensionless
(radians2). Such an objective function is without any geometrical meaning. Many times
this problem is simply incorrectly ignored or some arbitrary constants that have units of
length2 are used to multiply the orientation differences. Any such multiplication destroys
the geometric meaning of orientation. If the specified end effector position and orientation
is in the reachable work space of the robot, however, the iterative solution can yield correct
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results because sets of joint angles will exist that will position and orient the end effector
as desired. The objective function will thereby attain its optimal value of zero.

A second problem with the iterative solution is that only one set of joint parameters
will be calculated that position and orient the end effector as desired. It will be shown
later that up to sixteen sets of joint parameters may exist that will position and orient the
end effector of a 6R manipulator as desired.

Some texts might point out that there are two "advantages" to an iterative solution
technique. Firstly, a single computer program can be used for virtually any manipulator
geometry. Only the values of the mechanism dimensions need be changed for application
to a different robot. Secondly, the iterative solution will normally converge with only
a few iterations. Usually, a desired position and orientation for the end effector will be
very close to the current position and orientation. The current joint parameter values can
be used as the initial guess for the design parameters, and the iterative technique should
converge to a solution rapidly.

Using the iterative solution technique has serious disadvantages. The problem of mixed
units is significant, and if the end effector is commanded to move to a pose that is not
within its reachable work space, different "optimal" solutions will result for different units
used in the problem. Further, it can be argued that the objective function with mixed units
is meaningless. Aside from this argument, the iterative solution cannot guarantee that
all solution sets will be determined. If it is important to compute all the sets of joint
parameters that can position and orient the robot's end effector as desired (as is often the
case), then a closed-form analytical solution must be obtained. This closed-form solution
will be the subject of the remainder of this text.

5.3 Closed-form solution technique - hypothetical closure link
A hypothetical closure link will now be added that connects an imaginary joint axis

labeled S7 to the first joint axis, labeled Si. The direction and location of the vector
S7 must be selected first, where by definition the vector S7 must be perpendicular to
a67. The direction of S7 will be defined by selecting a value for the angle a6j, which
will be arbitrarily chosen as 90 degrees. With this selection of a67, S7 can be calculated
from

% - Fa67 x FS6. (5.5)

The vector S7 will be located so that it passes through the point O6, the origin of the
sixth coordinate system. Thus, the distance a67 = 0.

Figure 5.2 shows the hypothetical joint axis S7 and the hypothetical link 71. It will be
shown that unique values can be found for the following parameters, which are shown in
the figure

It is interesting to note that the offset distance Si is now defined for the new closed-loop
mechanism. Si is the distance between the vectors a7i and ai2, measured along Si.
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Figure 5.2. Hypothetical closure link.

5.4 General solutions for c^ and 9]

Expressions for the twist angles ay and joint angles 0j will now be presented. The twist
angle ay is defined as the angle between the vectors Si and Sj measured in a right-hand
sense about ay. Because it is assumed that Si and Sj are unit vectors, cos ay = Si • Sj,
where (•) denotes the usual scalar product of a pair of vectors. Knowledge of the cosine
ofay is not sufficient, however, to uniquely determine ay. There are two distinct angles
between 0 and 2n that will have the same cosine value. To uniquely determine ay, it is
also necessary to determine sin ay. Now, Si x Sj = ay sin ay, where (x) denotes the usual
vector or cross product of the pair of vectors Si and Sj. Further, (Si x Sj) • ay = sin ay. In
summary, the expressions for the cosine and sine of ay are

cij = Si - Sj,

sij = ( S i x S j ) . a i j ,

where Sy and Cy represent the sine and cosine of ay respectively.
Similarly, it can be shown that the cosine and sine of 0j can be expressed as

Cj = ay • a j k ,

Sj = (ay x a j k ) . S j ,

where Sj and Cj represent the sine and cosine of 0j respectively.

(5.6)

(5.7)

(5.8)

(5.9)

5.5 Determination of the close-the-loop parameters
The solution for the parameters a7i, S7, Si, « 71, 07, and y\ begins by determining a

direction for the vector a7i measured with respect to the fixed coordinate system. Because
a7i must, by definition, be perpendicular to S7 and Si, then

FS7 x
|FS7 x

(5.10)
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The vector FS7 is given by Eq. (5.5), and because Si is parallel to the Z axis of the fixed
coordinate system, FSi = [0, 0, 1]T. It should be noted that the denominator of Eq. (5.10)
will equal zero if the vectors Si and S7 are parallel. This special case is identified if
FSi •  FS7 = ±1 and is discussed in Section 5.6.

The twist angle otj\ can now be calculated by using Eqs. (5.6) and (5.7) and

c 7 i= F S 7 . F Si ,

s7i = (FS7xFSi Fa7i.

The joint angle 07 can be found by applying Eqs. (5.8) and (5.9) as

c7 = F a 6 7 - F a 7 i ,

s7 = (Fa67 x F a 7 i ) - F S 7 .

(5.11)

(5.12)

(5.13)

(5.14)

The angle y\ is t n e angle between the vector a7i and the X axis of the fixed coordinate
system (see Figure 5.2). The sine and cosine of y\ can be determined in a manner similar
to that for 0}\ see Eqs. (5.8) and (5.9). It can be shown that

(5.15)

sin/i = ra7i x (5.16)

At this point, the values for a71, #7, and y\ have been determined. The remaining
parameters to be solved for are the distances S7, a7i, and Si. These distances will be
determined by first writing the vector loop equation

S7
 F S 7 + a71

Fa71 = 0. (5.17)

Because all the vectors in Eq. (5.17) are known, the vector equation represents three scalar
equations in the three unknowns S7, a7i, and Si.

The distance S7 is obtained by forming a cross product of the left and right sides of
Eq. (5.17) with FSi and recognizing that Si x Si = 0. This gives

(FP6 (5.18)T6orig x FS,) + S7(FS7 x F S0 + a71 (Fa71 x F S0 = 0.

Because (FS7 x FSi) = s7iFa7i, Eq. (5.18) reduces to

(FP6orig x FS,) + S7s71
Fa71 + a71 (Fa71 x FSi) = 0. (5.19)

Forming the scalar product of the left and right sides of Eq. (5.19) with Fa7) yields

• 6orig
FSi)-^71+87871=0. (5.20)
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Clearly, (Fa7i x FSi) -Fa7i —  0 and Fa7i -Fa7i = 1, so Eq. (5.20) can be rearranged to
yield

(FSi x FP6orig) •  Fa71

s7i

Similarly, it can be shown that the distances a7i and Si are given by

(FP6origXFSi).FS7
a7i =

S71

S, =
(FP6origXFS7).Fa71

S71

(5.21)

(5.22)

(5.23)

5.6 Special cases

5.6.1 Si and S7 parallel

Equations (5.10) and (5.21) through (5.23) yield infinite values when s7i = 0 . This
occurs when S7 and Si are parallel or antiparallel and when there is no unique vector
a7ia7i that is mutually perpendicular to S7 and Si. This condition is easily identified
because from Eq. (5.11), c7i = dbl. It is possible to obtain a solution by selecting S7 = 0,
for which Eq. (5.17) reduces to (see also Figure 5.3)

a7iFa7i i = 0.

Forming a scalar product of Eq. (5.24) with FSi and solving for Si yields

Si = — P6orig  * Si .

Rearranging Eq. (5.24) gives

(5.24)

(5.25)

(5.26)

The right side of Eq. (5.26) is known. However, both a7i and Fa7i are unknown. The

Figure 5.3. Special case where S7 and Sj are parallel.
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distance a7i is easily computed because from (5.26)

Dividing Eq. (5.26) by a7i yields the unknown vector

a71 =
a71

(5.27)

(5.28)

Finally, Q1 and y\ are computed using Eqs. (5.13) through (5.16).

5.6.2 Si and S7 collinear

A second special case occurs when S7 and Si are collinear (see Figure 5.4). This is
identified when Eq. (5.27) yields a7i = 0. The direction of the vector a7i in the plane
normal to Si is now arbitrary. In this case, the angle d1 will be chosen as zero, thereby
making a7i parallel to a67. The angle y\ can now be calculated from Eqs. (5.15) and (5.16)
as before.

5.7 Example

The close-the-loop parameters will be calculated for the case of the Puma robot. At the
start of the problem, one must select a value for the link offset distance S6. Following this
selection, the location of the origin of the sixth coordinate system on the robot is defined.
The position of the tool point in terms of this sixth coordinate system, 6Pt00h must next be
specified.

At this point, the reverse kinematic analysis proceeds by the user's specifying the
desired position and orientation for the tool point in terms of the fixed coordinate system,
that is, FPtOob FS6, and Fa67. The close-the-loop parameters are then calculated as described
in Sections 5.5 and 5.6.

y6

Figure 5.4. Special case
where S7 and S i are collinear.
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As a numerical example, the following specifications are made:

6p _
^tool — in.,

25
23
24

in., FS6 =
0.177
0.884

-0.433
, F a 6 7 =

-0.153
0.459
0.875

FPtoo. =

The following values were calculated by using the close-the-loop procedure and are drawn
in Figure 5.5:

a71 = -16.68 in., a7l = 102.50°,
S7 = 20.67 in., 07 = 63.69°,
Sj = -17.53 in., Y\ = -84.79°.

The hypothetical closure link has in effect transformed the open-loop Puma manipulator
into a closed-loop spatial mechanism. The parameters for this closed-loop mechanism are
listed in Table 5.1. The next chapter will show that this closed-loop spatial mechanism
has one degree of freedom. Thus, if one of the variable joint angles of the closed-loop
mechanism is known, then the remaining joint variables can be calculated. The angle 07

was determined during the close-the-loop process and will serve as the input angle for the
one-degree-of-freedom spatial mechanism.

Chapters 7 through 11 will detail how to solve for the variable joint parameters for
the vast majority of closed-loop spatial mechanisms. These joint parameters will be the
values that are required to position and orient the end effector of corresponding robot
manipulators as desired and thus constitute the solution for the reverse kinematic analysis
problem.

Table 5.1. Mechanism parameters for the closed-loop
Puma mechanism.

Link length, in.

ai2 = 0
a23 = 17
a34 = 0.8
045 = 0
a56 = 0
a67 = 0
a71 = -16.68

Robot
parameter

Twist angle, deg.

ari2 = 90
« 2 3 = 0
QJ34 = 270
<*45 = 90

otse = 90
«67 = 90
an = 102.50

User-specified
value

Joint offset, in.

Si = - 1 7 . 5 3
S 2 - 5 . 9
S3 = 0
S4 = 17
s5 = 0
S6 = 2.0
S7 = 20.67

Close-the-loop
variable

Joint angle, deg.

0i = variable
02 = variable
#3 = variable
64 —  variable
Q5 = variable
Q6 = variable
#7=63.69
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s7

Figure 5.5. Close-the-loop parameters.

5.8 Problems
1. Write a computer function that will perform the close-the-loop analysis. Your program

should solve the standard case as well as the two special cases, that is, when S7 and
Si are parallel and when S7 and Si are collinear. The C language prototype for your
subroutine may be written as

void close_loop (double P_tool_6[3], double P_tool_f[3], double S6_f[3], double
a67_f[3], double *a71, double *S7, double *S1, double *al71, double *th7, double
*gaml).

Test your subroutine by passing in the values for 6PtOoh FPtooi> FS6, Fa67 listed in
Section 5.7.

2. The origin of the standard coordinate system attached to an end effector of a robot
manipulator is located at the position r = Oi + Oj + Ok. The orientation vector S6 is
parallel to the direction —j + k, and the vector a^ is parallel to —j  —  k. Determine the
six close-the-loop parameters for this case.

3. The origin of the standard coordinate system attached to an end effector of a robot
manipulator is located at the position r = 3j. The orientation of the vectors S6 and a^i
as measured in the fixed coordinate system are respectively [0, 0, —  1]T and [1, 0, 0]T.

(a) For the case described, determine the six close-the-loop parameters. Show the angle
Y\ on a drawing, and also indicate the direction of vector 371.

(b) Determine the close-the-loop parameters if the end effector was moved to the origin
of the fixed coordinate system while the orientation remained the same.



Spherical closed-loop mechanisms

6.1 Equivalent closed-loop spherical mechanism
In the previous chapter, it was shown that any serial manipulator can be transformed

into a closed-loop spatial mechanism by constructing a hypothetical closure link. This
chapter will focus on the geometry of the new closed-loop mechanism.

A new closed-loop mechanism called the equivalent spherical mechanism will be
formed from the original spatial closed-loop mechanism. The first step in creating the
equivalent spherical mechanism is to give all the unit joint vectors, Si, which label revolute
or cylindric joint axes, self-parallel translations so that they all meet in a common point O
and so that they all point outward from O (see Figure 6.1). Thus the directions of the Si
vectors are the same for the original spatial mechanism and the cointersecting arrangement.

Consider now that a unit sphere is drawn, centered at point O. The unit vectors Si will
meet this sphere at a sequence of points, i = 1, 2, 3, . . . , and so forth, as shown in Figure
6.2. Links (arcs of great circles) can be drawn on the unit sphere joining adjacent points,
12, 23, 34, . . . , and so forth. For example, Figure 6.2 illustrates a spherical link joining
points 1 and 2 such that the angle between Si and S2 is an, that is, the same angle as
between Si and S2 in the original spatial mechanism. It should be noted that the length of
the link connecting points 1 and 2 is l n = rai2, where a is measured in radians and r is
the radius of the unit sphere. For example, if r = 1 ft., then in = ot\i ft.

Finally, the equivalent spherical mechanism is formed by connecting adjacent links
(<*i2, CK23), (a23» ^34),  • • • >  and so forth, with joints. If the joint connecting a pair of
adjacent links, for example ay and ajk, of the original spatial mechanism is a revolute
or cylindric joint, then the corresponding adjacent links, ay and Ojk, of the spherical
mechanism are joined by a revolute joint. A spherical mechanism can permit relative
rotation only between adjacent links. The linear displacement of a cylindric joint is not
reflected in the equivalent spherical mechanism. A prismatic joint joining links ay and ajk

in the original spatial mechanism is modeled by a unit vector drawn from point O parallel
to the prismatic joint displacement and a solid connection between links ay and Ojk, which
preserves the constant angle 0} between these links. Following this method for connecting
adjacent links, the angles ay and 0j are defined so as to be the same for the equivalent
spherical mechanism and the original spatial mechanism. Thus, any equations that relate
the twist angles and joint angles of the equivalent spherical mechanism will also be valid
for the corresponding spatial mechanism. Figure 6.3 shows a spatial closed-loop five-link
mechanism together with its equivalent spherical mechanism.
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S,

Figure 6.1. Joint axis vectors translated to intersect at a point.

Figure 6.2. Spherical link ayi placed between Si
and S2.

s,

Figure 6.3. Spatial closed-loop mechanism and equivalent spher-
ical mechanism.

6.2 Degrees of freedom

Before generating expressions that contain the twist angles and joint angles of the equiv-
alent spherical mechanism, a method for calculating the number of degrees of freedom of
spatial and spherical mechanisms will be presented.
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6.2.1 Spatial manipulators and closed-loop mechanisms

In Chapter 2, it was shown that a body in three-dimensional space has six degrees
of freedom. Six independent quantities, three related to position and three related to
orientation, are needed to completely describe the position and orientation of an object
in space. Consider now that there are n unconnected rigid body links. The number of
degrees of freedom measured relative to a fixed body or ground, or mobility M, of this set
of links is given by

M = 6n. (6.1)

Consider, for example, a system of two unconnected links. This system possesses
twelve degrees of freedom. When the pair of links is connected by a revolute joint, the
number of degrees of freedom of the system is reduced to seven. Although one of the
links possesses six degrees of freedom measured relative to ground, the second link is
constrained to rotate about an axis relative to the first link and thus possesses only one
additional degree of freedom. The net mobility M of the system of two links is seven.
The revolute joint, which allows one relative degree of freedom, has in effect reduced the
total mobility of the system by five.

In general, a joint i that connects two links hi and ij will reduce the total mobility of
the system by (6 —  £), where £ is the number of relative degrees of freedom permitted
by joint i. Thus, the net mobility of a system of n links, one of which is connected to
ground, is 6(n - 1). Further, when they are interconnected by j joints (no two bodies are
connected by more than one joint), the net mobility, M, is*

j

M = 6(n - 1) - J ] (6 - fi). (6.2)
i = l

For a single-chain closed-loop spatial mechanism, the number of links will equal the
number of joints. Eq. (6.2) reduces to

- 6 . (6.3)

For a serial robot manipulator, the number of joints is one less than the number of links.
Eq. (6.2) reduces to

. (6.4)

If the resulting mobility of a system of links is equal to zero, then the system is a
simple structure. If the mobility is less than zero, the system is a redundant structure. If
the mobility is equal to one, the overall system has one degree of freedom. Specification
of one variable is all that is required to completely position all the links of the system.
From Eq. (6.3), a single-chain closed-loop spatial mechanism will have one degree of
freedom (M = 1) when JX=i ft = 7> that is, the sum of the relative freedoms of the joints
equals seven. The spatial mechanism shown in Figure 6.3 has three revolute joints and
two cylindric joints and thus has one degree of freedom. In other words, a single input
angular displacement will constrain the loop.

* This is the general mobility equation. Special geometry may exist that increases the mobility of the system.
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Figure 6.4. Positioning of a spherical link.

6.2.2 Spherical mechanisms

A link of a spherical mechanism has three degrees of freedom. It is shown in Figure 6.4
that the angles /3, X, and x// completely specify where a link is positioned and oriented on
the sphere. By analogy with Eq. (6.2), the mobility of n spherical links, one of which is
connected to ground, that are interconnected by j joints may be written as

(6.5)

where again £ represents the relative degrees of freedom of the ith joint.
The number of links for a single-chain closed loop spherical mechanism will equal the

number of joints, and for this case Eq. (6.5) reduces to

(6.6)

Clearly, when j = 3, the mobility for a spherical 3R triangle is zero, M = 0. Further, for
j = 4, 5, 6, and 7 the mobility for a spherical 4R quadrilateral, 5R pentagon, 6R hexagon,
and 7R heptagon are respectively M = 1, 2, 3, and 4. As an example, the spherical
mechanism shown in Figure 6.3, for which Y^= i ft = 5 thus possesses (5 —  3) —  2 degrees
of freedom.

6.3 Classification of spatial mechanisms
The current objective of this text is to perform a closed-form reverse kinematic analysis

for a spatial manipulator. In Chapter 5 it was shown how a hypothetical link could be
added to a spatial manipulator to obtain a single-chain closed-loop spatial mechanism.
The joint angle for the hypothetical joint (07 for a 6R manipulator) was calculated during
the close-the-loop procedure. When the resulting closed loop mechanism has one degree
of freedom, a value of B1 is sufficient to define the system. In other words, it is possible
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Table 6.1. Classification of spatial
kinematic chains.

Group

1

2

3

4

Number of links

4
5

6
7

5
6
7

6

7

7

Mechanism

R-3C
2R-P-2C

3R-2P-C
4R-3P

3R-2C
4R-P-C
5R-2P

5R-C

6R-P

7R

to develop a procedure to compute all the joint parameters of the manipulator, and the
reverse analysis will be complete.

Table 6.1 lists all the single closed-loop spatial polygons or closed spatial kinematic
chains of links and joints that possess an overall mobility M = 1, assuming one link in the
chain is held fixed. The various loops are labeled by the numbers of revolute R, prismatic
P, and cylindric C kinematic pairs. The listing does not specify the order or sequence of
joints.

Reuleaux (1876) stated: "In itself a kinematic chain does not postulate any definite
absolute [displacement*]. One must hold fast or fix in position one link of the chain
relatively to the portion of surrounding space assumed to be stationary. The relative
displacement of links then becomes absolute. A closed kinematic chain of which one link
is made stationary is called a mechanism."

The link that is held fixed is called the frame. A change in the selection of a reference
frame is known as kinematic inversion. Here we are concerned only with relative dis-
placements, and the relative displacement between any pair of links is independent of the
choice of the frame, that is, the kinematic inversion.

In order to identify kinematic inversions it is necessary to firstly specify the sequence
of joints. Clearly for four links there is only a single sequence of the four joints R-3C
(see Table 6.1). Inversions can be easily identified by drawing planar polygons, and
an R-3C chain can be represented by the planar quadrilateral shown in Figure 6.5. An
obvious inversion is the spatial four-link RCCC^ mechanism with frame a4i, an input

* The term "displacement" has been substituted for the term "motion" used in Reuleaux's original text. The
motion of a rigid body relative to a reference frame implies not only displacement but velocity, acceleration,
and so on (see Hunt (1978)).

t The terminology "R-3C" identifies the types and number of each type of joint that is in a kinematic chain.
The terminology "RCCC," however, identifies a specific inversion of an R-3C chain. The input angle is a
revolute joint, identifid by the first letter of the sequence. The frame is located between the revolute joint
and the cylindric joint represented by the last letter of the sequence. The terminology, where the first letter
indicates the type of input joint and the frame is located between the input joint and the joint identified by
the last letter of the sequence, will be used throughout the text.
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4
input angle

frame 1
output angle

Figure 6.5. Planar representation of an
RCCC spatial mechanism.

Figure 6.6. Planar representation of two 3R-2C kinematic
chains.

joint R, and the output joint C. An electric motor could be used to drive the input joint
at constant angular speed. Other inversions are of no practical interest, and from here on
only inversions with revolute input joints will be considered.*

A pair of distinct 3R-2C loops is illustrated in Figure 6.6 with kinematic inversions
RCRCR, RRCRC, RCRRC, and RCCRR, RRCCR, RRRCC. The process can be continued
to identify all inversions of all single-degree-of-freedom closed-loop spatial mechanisms.

Table 6.1 classifies the various kinematic spatial chains, and hence the various inver-
sions, according to group numbers. Each group number is simply the mobility of the
equivalent spherical mechanism. For example, the mobility of the equivalent 4R spherical
mechanism of the four-link RCCC mechanism is M = 1 (see Eq. (6.6)) as are equivalent
4R spherical mechanisms of inversions of the five-link 2R-P-2C, six-link 3R-2P-C, and
seven-link 4R-3P kinematic chains. Clearly, all of the inversions of the spatial five-link
3R-2C chains have equivalent 5R spherical mechanisms with mobility M = 2.

The grouping of spatial mechanisms according to the mobility M of equivalent spherical
mechanisms is important because it can be used to provide a method for the closed-form
analysis or the derivation of input-output equations for a given kinematic inversion. This
essentially solves the reverse kinematic analysis for serial manipulators. Solutions for the
joint parameters of group 1, 2, 3, and 4 mechanisms are presented in detail in Chapters 7,
8, 9, and 10 respectively.

* For a serial manipulator, a hypothetical link is connected between the end link and ground. This hypothetical
link is connected to the end link by a revolute joint whose joint angle value is computed. A closed-loop spatial
mechanism results where the hypothetical link is the frame and the value of the revolute joint is the input
angle. Because closed-loop spatial mechanisms are being analyzed as a means of performing the reverse
analysis for a serial manipulator, only closed-loop mechanisms whose input joint is a revolute joint will be
considered.
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This chapter will continue by providing basic equations that will be used to analyze the
various closed-loop mechanisms in Chapters 7 through 10. Specifically, the joint vectors
and link vectors will be written in the standard link coordinate systems as defined in
Section 3.5 together with other additional coordinate systems. Further equations will be
generated that relate the twist angles and joint angles for a spherical triangle, quadrilateral,
pentagon, hexagon, and heptagon.

6.4 Generation of expressions for the joint vectors
Expressions for the direction cosines of each of the unit joint vectors (Si through S7)

and the unit link vectors (ai2 through a67) in each of the standard link coordinate systems
are important in the analysis of spherical and spatial mechanisms and manipulators. The
derivation of these expressions will begin with the joint vectors expressed in terms of the
first standard coordinate system, which has its Z axis along Si and its X axis along ai2. It
should be clear that

> 1 = (6.7)

Analogously, the vector S2 in the second coordinate system is given by

0
0
1

(6.8)

It is important to recognize that all the vectors Si and a^ are drawn from the center of a
unit radius sphere and represent the points of penetration on the sphere by the vectors.
The coordinates of the point of penetration of the unit vector 2S2 will now be transformed
to the first coordinate system by application of the rotational part of the transformation
defined by Eq. (3.6). Thus, 2S2 will now be transformed to the first coordinate system by
application of the rotational part of the transformation defined by Eq. (3.6). Thus,

'82 =
c2

S2C12

S2Si2

- s 2
C2C12

C2S12

0
- S 1 2

C12 .

0
0
1

=
0

- S 1 2

. C12

(6.9)

The process will be extended to obtain the vector S3 in the first coordinate system as

»3 = S3. (6.10)

The calculations involved in the matrix multiplication can be reduced by recognizing
that 2R3S3 = 2S3. The term 2S3 can be obtained simply by an exchange of subscripts
(1 -> 2, 2 ->• 3) in the right side of Eq. (6.9). Thus, the expression for the direction cosines
of S3 in terms of the first coordinate system can be written as

c2 - s 2 0
S2C12 C2C12 - S 1 2

S2S12 C2S12 C12 J

0
- S 2 3

C23

S23S2

- ( S 1 2 C 2 3 + C12S23C2)

C12C23 - S12S23C2

(6.11)

The right-hand side of Eq. (6.11) is somewhat lengthy, and expressions for ^ 4 , lSs,
*S6, and !S7 are more lengthy and complicated. For convenience a recursive shorthand
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notation is introduced. This is possible because patterns of combinations of sines and
cosines of the twist and joint angles reoccur. The terms X2, Y2, and Z2 are introduced into
the right side of Eq. (6.11) and hence

x2
Y2

Z2

where X2, Y2, and Z2 are defined as

Y2 = -(s i 2c2 3 + ci2s23c2),

Z2 = c12c23 - Si2s23c2.

In general, the notation introduced in Eqs. (6.13) to (6.15) can be written as

Z j = CijCjk ~ SijSjkcj>

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

where the subscript j = i + 1 and k = j + 1.
Single subscript terms with a different combination of twist angles and joint angles will

appear repeatedly. These terms will be defined by Xj, Yj, and Zj, where

Yj = -(SjkCy + cjkSijCj),

j — jk^ij  ^jk^ij^j*

(6.19)

(6.20)

(6.21)

The definitions Xj, Yj, Zj and Xj, Yj, Zj can be related to the geometry of the spherical
dyad shown in Figure 6.7 by first writing

Y = —(sc + esc) ,

Z = cc —  ssc .

(6.22)

(6.23)

(6.24)

Figure 6.7. Spherical dyad.
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The subscript j is an indicator that the expressions contain the joint angle 0y Hence,

yvi =Z S Si , yVi = = S Si ,

Y. — (o  r _i_ r c p.\ V- — ^r-l-pQp' 1! (f\ 9S"i

Zj = C C — SSCj, Zj = C C - SSCj.

Now, Xj = SjkSj indicates an approach along arc a?jk to vertex j , whereas Xj = SySj indicates
an approach along arc ofy to vertex j . Hence, one can write

Yj = -(sCjk + csjkCj), Yj = — (scy  + csy Cj), (6.26)
Zj = C Cjk - S Sjk Cj, Zj = C Cij - S Sy Cj.

The remaining unlabeled angle in each of these expressions is simply the other angle
completing the dyad, which is respectively ofy and a^.

Because the vector *S3 is a unit vector, the sum of the squares of the elements of the
vector as expressed in Eqs. (6.13) through (6.15) will equal one. In general, from Eq.
(6.16) through Eq. (6.21)

X2 + Y2 + Z2 = 1

and

(6.27)

(6.28)

Further, a comparison of Eqs. (6.16) through (6.18) and Eqs. (6.19) through (6.21) yields
Xj ^ Xj and Yj ^ Yj. However,

Z j=Zj . (6.29)

The procedure now continues by determining expressions for the vector S4 in terms of
the first coordinate system. The vector ^4 can be expressed as

S4 = 2R S4. (6.30)

The term 2S4 can be obtained by an exchange of the coefficients of Eq. (6.12). Thus, ^ 4
can be written as

c2 - s 2 0
2Ci2 C2C12 -S12

_S2Si2 C2Si2 C12

X3
Y3

X3c2 - Y3s2

Ci2(X3s2 + Y3c2) - S12Z3 (6.31)

where X3 = s34s3, Y3 = —(s 23c34 + c23s34c3), and Z3 = (c23c34 —  s23s34c3). The terms,
"X32," "Y32," and "Z3 2" will now be defined as

X32 = X3c2 - Y3s2,

Y32 = c12(X3s2 + Y3c2) - s12Z3,

Z32 = s12(X3s2 + Y3c2) + c12Z3

(6.32)

(6.33)

(6.34)
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so that (6.31) can be written as

X32

Y32

LZ32J

In general, the terms Xkj, Ykj, and Zkj, and a new term, XL, will be defined as

Xkj = XkCj - YkSj,

(6.35)

Ykj = Cij

Zkj = Sy

YkCj) - Sij

YkCj) + Cij

(6.36)

(6.37)

(6.38)

(6.39)

where j = i + 1 andk = j + 1 and where Xk, Yk, andZk are defined in Eqs. (6.16) through
(6.18). Further, the terms Xy, Yy, Zy, and X-j will be defined for future use as

Xy —  X;Cj —  YjSj,

X^XiS j+YiCj ,

Yij=cjk(Xisj + YiCj)-sjkZi,

Zij = sjk(XiSj + YiCj) + cjkZi,

(6.40)

(6.41)

(6.42)

(6.43)

where XA, Yi? and ZA are defined in Eqs. (6.19) through (6.21).
Again, it can be shown that the following equations are true for the double subscripted

terms

kj + Ykj + Z^ —  1,

Ai = Ai*

(6.44)

(6.45)

(6.46)

The procedure now continues by determining expressions for the vector S5 in terms of
the first coordinate system. The vector lSs can be expressed as

^ i R 2 ^ . (6.47)

The term 2Ss can be obtained by an exchange (1 —>• 2,  2 —• 3,  3 —>  4,4 - » 5) of  the
coefficients of Eq. (6.35). Thus, lSs can be written as

e terms

X432 =

Y432 =

z 4 3 2 =

C2 — S2  0

s2ci2 c2ci2 -S12

_s2si2 c2si2 C12 .

X43
Y43

_Z43 _

X432, Y432, and Z4 3 2 will now

X4 3c2 - Y4 3s2 ,

Cl2(X43S2 + Y43C2) -

Si2(X43s2 + Y43c2) +
s 12^43.

Cl2Z43

=

X4 3c2 - Y4 3s2

Ci2(X43s2 + Y43c2) - Si2Z43

_Si2(X43S2 + Y43C2) + Ci2Z43 _

be defined as

(6.48)

(6.49)

(6.50)

(6.51)
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so that the vector lS$ can be expressed as

X432

Y432

^432 .

(6.52)

It should be clear at this point that the expressions for X, Y, and Z with three subscripts
are recursive. The definitions for expressions with three subscripts in increasing order are
written as

Xijk = XijCk - YijSk,

Zijk =

and the definitions for expressions with three subscripts in decreasing order are

Xkji = XkjCi - YkjSi,

X*^ = XkjSi + YkjCi,

Ykji = chi(XkjSi + YkjCi) - shiZkj,

Zkji = shi(XkjSi + YkjCi) + chiZkj,

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

where i = h + 1, j = i + 1 and k = j + 1. Further, for a mechanism with n joints, joint
n + 1 (the joint after joint n) is joint 1.

The process could be repeated two more times to obtain expressions for the vectors S6
and S7 in terms of the first coordinate system. However, the notation is recursive and the
results are

1s f i =

and

X5432

Y5432

Z5432

^65432

Y65432

^65432

(6.61)

(6.62)

where

X5432 = X543C2 — Y543S2,

Y5432 = Ci2(X543S2 + Y543C2) — S12Z543,

Z5432 = Si2(X543S2 + Y543C2) + C12Z543

(6.63)

(6.64)

(6.65)
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and

^65432 = X6543C2 ~ Y6543S2, (6.66)

Y65432 = Ci2(X6543S2 + Y6543C2) - Si2Z6543, (6.67)

Z65432 = Si2(X6543S2 + Y6543C2) + C12Z6543. (6.68)

The definitions for expressions with four subscripts in increasing order are written as

Xhijk = Xhi jck - Yhi jsk,

X*ijk = Xhi jsk + Yhi jck,

Yhijk = cki(Xhijsk + Yhijck) - sklZhij,

Zhijk = ski(Xhijsk + Yhijck) + ckiZhij,

and the definitions for expressions with four subscripts in decreasing order are

Xkjih = Xkj ich - Ykj ish,

Ykjih = cgh(XkjiSh + Ykjich) - sghZkji,

Zkjih = sgh(XkjiSh + Ykjich) + cghZkji.

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

The definitions for expressions with five subscripts in increasing order are written as

Xhijki = Xhijkci —

Xhijki = XhijkS l +

Yhijki = Cim(XhijkSi + Yhijkci) - SimZhijk,

Zhijki = sim(Xhijks1 + Yhijkci) + clmZhijk,

and the definitions for expressions with five subscripts in decreasing order are

X*kjih — Yikjich,

h + YikjiCh) - sghZlkji,

ih = sgh(XlkjiSh + YlkjiCh) + cghZlkji,

(6.77)

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)

(6.83)

(6.84)

where h = g + l , i = h + l , j = i + l , k = j + l , £ ,
As before, the sum of the squares of the multisubscripted X, Y, and Z terms will equal

one. Also it is true that

Zij...mn = Znm. ji. (6.85)

In summary, expressions have been found for the joint vectors Si through S7 in terms
of the first coordinate system. The results can be summarized as follows:

•s,=
0
0
1

, % =
0

-Sl2

Cl2

x2
Y2

z2

Xn-l,n-2,...,2

Yn-l,n-2,...,2

^n-l,n-2,...,2

(6.86)

for n = 4, 5, 6, or 7. A similar procedure could be used to obtain the direction cosines for
the joint vectors in terms of other standard link coordinate systems.
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6.5 Generation of expressions for the link vectors
The direction cosines for the link vectors will be determined in terms of the first

coordinate system in a manner similar to that used in the previous section for the joint
vectors. The components of the vector ai2 measured in the first coordinate system are
given by

(6.87)

The components of the vector a23 in terms of the second coordinate system are given by

a23 = (6.88)

Transforming this vector to the first coordinate system via application of the rotation
matrix part of Eq. (3.6) gives

a23 =
c2

S2C12

S2S12

- s 2

C2C12

C2Si2

0 "
- S 1 2

C12 .

"1"
0
0_

=
c2

S2C12

S2Si2

(6.89)

The vector 334 can be transformed from the third coordinate system to the first system by
the following two successive rotations

ln 1T> 2IJ 3 O ((i nn\
«34 — 2 ^ 3 ^  **34«  \yj.y\j)

The term 3R3a34 is equivalent to 2a34, and this term can be obtained by matrix multiplication
or by an exchange of subscripts (1 -> 2, 2 -> 3, 3 -» 4) of  Eq. (6.89). The vector *a34

is then given by

^ 3 4 =

" c2 - s 2 0
S2Ci2 C2Ci2 -S12

_S2Si2 C2Si2 C12 _

S3C23

.S3S23.

C2C3 - S2S3C23

" C2S3C23)

+ C2S3C23) .

(6.91)

A shorthand notation for the right-hand side of Eq. (6.91) is introduced using the following
definitions

U32 = S3S23,

V 3 2 = - (S2C3+C2S3C23) ,

W 3 2 = C2C3 - S2S3C23.

In general, the notation introduced by Eqs. (6.92) through (6.94) can be written as

ji = - ( s i C j + CiSjCij)

(6.92)

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)
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where j = i + 1. Analogously, the terms Uy, Vy, and Wy are defined as

Uy = sjSij, (6.98)

Vij = -(SjCi + cjsiCij), (6.99)

Wy = CjCi - SjSiCij. (6.100)

Finally, further abbreviations are introduced as follows

U321 = U32C12 - V3 2s1 2 , (6.101)
(6.102)

so that Eq. (6.91) can now be written in the abbreviated form

a34 =
W

-u*
32

321

L u3 2 i J
(6.103)

Before proceeding with the determination of the direction cosines of the vector a45 in
the first coordinate system, it is instructive to introduce all the definitions for the terms
U, U*, V, and W with multiple subscripts. Eqs. (6.95) through (6.100) have defined the
expressions for U, V, and W terms with double subscripts in both ascending and descending
order. Eqs. (6.101) and (6.102) have introduced some of the triple-subscript terms. All
the triple-subscript expressions are defined as follows:

Uijk = UyCjk - VySjk, (6.104)

U1̂ k = UijSjk + Vijcjk, (6.105)

Vijk = ck(UijSjk + VijCjk) - skWy, (6.106)

Wijk = sk(UijSjk + VijCjk) + ckWy. (6.107)

Expressions for U, U*, V, and W with three or more subscripts are recursive and are valid
for both ascending and descending order.

Expressions for four subscripts for U, U*, V, and W are

Uhijk = Uhijcjk - Vhijsjk, (6.108)

Uhijk = Uhijsjk + Vhijcjk, (6.109)

Vhijk = ck(Uhijsjk + Vhijcjk) - skWhij, (6.110)

Whijk = sk(Uhijsjk + Vhijcjk) + ckWhij, (6.111)

expressions for five subscripts for U, U*, V, and W are

Ughijk = UghijCjk - VghijSjk, (6.112)

U*hijk = UghijSjk + Vghijcjk, (6.113)

Vghijk = ck(UghijSjk + VghijCjk) - skWghij, (6.114)

Wghijk = sk(UghijSjk + Vghijcjk) + ckWghij, (6.115)
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and expressions for six subscripts for U, U*, V, and W are

Ufghijk —  UfghijSjk -

Wfghijk —  Sk(UfghijSjk H~ VfghijCjk) T~ CkWfghij.

It can be shown for any number of subscripts that

Wj- m n = W n m i

and

U? mn + V2j mn + W? mn = 1.

(6.116)

(6.117)

(6.118)

(6.119)

(6.120)

(6.121)

Returning now to the problem of transforming the link vectors to the first coordinate
system, the vector a45 can be transformed to the first coordinate system as follows

a45 = 2K a45. (o.lzz)

The term 2a45 may be obtained by an exchange of subscripts in Eq. (6.103), and thus
Eq. (6.122) may be written as

a45 =
c2 - s 2 0

- S 1 2

S2Si2 C2Si2 C12

W.43

U432

- s i2U432 - c12(c2U^32 - s2W43)
. Ci2U432-Si2(c2U^32-s2W43) _

(6.123)

or

a45 =
w 4 3 2

; 3 2 1 (6.124)
U432i

The vector la56 may be written as

(6.125)

The term 2a56 may be obtained by the exchange ( l ->2, 2—•3,3-»4, 4->5, 5
from Eq. (6.124). Eq. (6.125) now becomes

c2 - s 2 0
S2Ci2 C2Ci2 -S12

_S2Si 2 C2Si2 C12 .

543w
- u

. u5432 _
5432

52 + c2W543

-S i 2 U 5 4 3 2 - Ci2(c2U;432 - s2W543)

or

W
5432

(6.126)

(6.127)
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Table 6.2. Direction cosines expressed in the 1st standard
coordinate system.

s,
s2
S3

s4
s5
s6
s7

(0, 0, 1)

(0, —s, 2,c12)

(X 2 ,Y 2 ,Z 2 )

(X32, Y32, Z32)

(X432, Y432, Z432)

(X5432, Y5432, Z5432)

0^65432 > Y65432, Z65432)

a23

a34

a45

a56

a6?

(1 ,0 ,0 )

(C2,S2Ci2,U2l )

(W32,-U3*21,U32l)

(W432,-UJ321,U4321)

(W5432, —  U5 4 3 2 1 , U54321)

(W65432, —  U65 432 1 , U65432l)

Lastly, the vector la61 may be written as

The term la61 may be obtained by the exchange (1 —>  2, 2 —•  3, 3 —•  4,
6 - ^ 7 ) from Eq. (6.127). Equation (6.128) now becomes

(6.128)

c2 - s 2 0
S2Ci2 C2Ci2 - S 1 2

S2Si2 C2Si2 C12 J

W6 5 43

^65432

U65432

- S2W6543)

6543)

(6.129)

or

w 6 5 4 3 2
" ^ 6 5 4 3 2 !

U654321

(6.130)

Expressions have now been found for the direction cosines of the unit joint vectors Si
through S6 and for the unit link vectors ai2 through a67 in terms of the first coordinate
system. The results are summarized in Table 6.2. The process may be repeated to
determine the direction cosines of the point vectors and the link vectors in any of the
standard coordinate systems.

6.6 Spherical triangle

6.6.1 Derivation of fundamental sine, sine-cosine, and cosine laws

The spherical triangle shown in Figure 6.8 has mobility M = 0 (see Eq. (6.6)) and is
therefore a structure. The objective here is to generate a series of equations that relate the
twist angles, a^, and joint angles, 0[.

It has been shown that the direction cosines of the vector S3 in terms of the first coordi-
nate system can be obtained by transforming the vector from the third coordinate system
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Figure 6.8. Spherical triangle.

to the second and finally to the first coordinate system. The result of the transformations is

x2
Y2

(6.131)

Because the spherical triangle is a closed-loop structure, the vector S3 can be transformed
directly to the first coordinate system. This transformation, ^R, can be obtained by start-
ing with a coordinate system B initially coincident with the third coordinate system. B
is rotated about the vector a3i (the X axis of the third coordinate system) by the angle
«3i.  The Z axis of the B coordinate system is now aligned with the Z axis of the first
coordinate system. The B system is now rotated about the Z axis by the angle #i. The B
coordinate system is now coincident with the first coordinate system. Thus, the rotational
transformation that relates the third and first coordinate systems can be written as

(6.132)
l
0
0

0
C31

S31

0
- S 3 1

C31

Cl

Si

0

- s i
Cl

0

0
0
1

=
Cl

C31S1

S31S1

- s i
C31C1

S31C1

0
- S 3 1

C31

Using the inverse of this transformation to obtain the vector lSi gives

S3 = 3R S3 =
Ci C31S1 S31S1

- S i C31C1 S31C1

_ 0 -S31 c3i _

0
0
1

=
S31S1

S31C1

_ C31 _

Equating Eqs. (6.131) and (6.133) gives

X 2 = S31S1,

Y 2 = S31C1,

(6.133)

(6.134)

(6.135)

(6.136)

Equations (6.134) through (6.136) are respectively the sine, sine-cosine, and cosine laws
for a spherical triangle.
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Table 6.3. Fundamental sine, sine—cosine,
and cosine laws for a spherical triangle.

X l —•  S23S2

Yi = s23c2

Zi = c23

Xi = S23S3

Yi = S23C3

Zi = c23

X2 —  S31S3

Y 2 = S31C3

Z2 = c3i

X 2 = S31S1

Y 2 = S31C1

Z2 = C31

X 3 = S12S1

Y 3 = S12C1

Z 3 = C12

X3 = Si2s2

Y 3 = S12C2

Z 3 = C12

A second set of laws can be generated by rotating the vector 2S2 to the third coordinate
system in two directions, that is, directly from the second to the third coordinate system
and from the second to the first and then to the third. Equating the results of the two
transformations yields the second set of sine, sine-cosine, and cosine laws. This result
can be obtained simply by exchanging the subscripts in Eqs. (6.134) through (6.136) as
follows:

1 2 3
| | ; . (6.137)
3 1 2

According to this exchange of subscripts, 6\ is replaced by 03, 02 is replaced by 0\, 03 is
replaced by 02, ^12 is replaced by a3i, a23 is replaced by an, and a?>\ is replaced by a23.
This yields

Xi = s23s3, (6.138)

Yi=s 2 3 c 3 , (6.139)

Z i = c 2 3 . (6.140)

A total of six sets of sine, sine-cosine, and cosine laws can be generated for a spherical
triangle (see Table 6.3). This equates to the six possible ways of reordering the three
subscripts. Note that the subscripts appear in increasing order in Eq. (6.137), the same
as the original subscripts 1, 2, and 3. For three of the six possible permutations, however,
the new subscripts will be in decreasing order. An example of this is the exchange

1 2 3
i i i. (6.141)
3 2 1

Whenever an exchange of subscripts occurs, any resulting angle a^ (where j = i + 1)
should be rewritten as o^.

6.6.2 Sample problem

Suppose that you have three spherical links. You measure the twist angles and find that
an = 120°, a23 = 80°, and a3\ = 135° (see Figure 6.9). You wish to determine the joint
angles 0i, 02, and 03 for the assembled spherical triangle.
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Figure 6.9. Three spherical links.

The solution will begin by examining the equations listed in Table 6.3 in order to find an
equation that has only one unknown. Upon examination, it is seen that all the cosine law
equations have a single unknown, whereas the sine and sine-cosine law equations have
two unknowns. The cosine law Zi = c23 will be arbitrarily selected. Expanding Zi gives

C12C31 - S12S31C1 = c 2 3 .

Solving for Ci gives

Cl =
C12C31 -

S12S3I

(6.142)

(6.143)

Substituting numerical values gives Ci = 0.2938. There are two distinct angles whose
cosines will equal this value. These two angles will be designated as 0\A and 01B. Thus
01A = 72.92° and 0iB = 287.08°. In general, if only cosine 0 is known, or only sine 0 is
known, then two distinct values for 0, where 0 < 0 <2n9 exist. However, if both the sine
and the cosine of an angle are known, then only one angle is defined that satisfies both
the specifications. For the current problem, only ci is known. Therefore, two values of 0\
exist, which will be labeled 0iA and 0iB. This should be expected for this problem because
the three links can be assembled in either a clockwise or counterclockwise fashion.

Corresponding values for 02 can be computed from the sine and sine-cosine laws (see
Table 6.3):

S23S2,

s23c2.

(6.144)

(6.145)

Expanding Xi and Yi gives

S31S1 = S23S2, (6.146)

-(S12C31 + C12S31C1) = s23c2. (6.147)

For the A case, where 01A = 72.92 degrees, the corresponding values for s2 and c2 are

s2A = 0.6864, (6.148)
c2A = 0.7273. (6.149)
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The unique value for 02A is 43.34 degrees. For the B case, where 0iB = 287.08 degrees,
the corresponding values for s2 and c2 are

s2B = -0.6864, (6.150)
c2B =0.7273. (6.151)

The unique value for 02B is 316.66 degrees.
Corresponding values for 03 are computed from the following sine and sine-cosine

laws:

Xi = s23s3, (6.152)

Yi = s23c3. (6.153)

Expansion of the left sides of Eqs. (6.152) and (6.153) gives

S12S1 = S23S3, (6.154)
- (S31C12 + C31S12C1) = S23C3. (6.155)

The terms s3 and c3 are the only unknowns in Eqs. (6.154) and (6.155). For the A case,
where 0iA equals 72.92 degrees, the corresponding values for s3 and C3 are

s3A = 0.8406, (6.156)
c3A = 0.5416. (6.157)

The unique value for 03A is 57.20 degrees. For the B case, where 0iB = 287.08 degrees,
the corresponding values for s3 and C3 are

s3B = -0.8406, (6.158)
c3B = 0.5416. (6.159)

The unique value for 03B is 302.79 degrees.
Thus, two solution sets have been determined for the three given links. The two

assemblies are shown in Figure 6.10.

Figure 6.10. Two assemblies of the
spherical triangle.
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c2

S2C12

S2S12

- s 2

C2C12

C2S12

0
- S 1 2

C12 .

c3

S2C23

.S3S23

- S 3

C3C23

C3S23

0
- S 2 3

C23 .

1
0
0_

=
W32

- U 3 2 1
U321

Cl

- s i
0

C31S1

C31C1

- S 3 1

S31S1

S31C1

C31 _

1
0
0_

=
Cl

- s i
0

6.6.3 Direction cosines of joint vectors and link vectors for a spherical
triangle

The direction cosines for the vectors Si, S2, S3, ai2, and a23 expressed in terms of the
first coordinate system were determined in Sections 6.4 and 6.5 of this chapter. The vector
a3i is yet to be determined. It is known that 3a3i = [1,0, 0]T. Transforming this vector to
the second and then to the first coordinate system yields

(6.160)

The vector 3a3i can be rotated directly to the first coordinate system using the transpose
of the transformation in Eq. (6.127) as follows:

(6.161)

At this point, the direction cosines of all the link vectors and joint vectors have been
calculated in terms of the first coordinate system. The process can be repeated, or an
exchange of subscripts can be used to express all the vectors in the second and third
coordinate systems. The results of these calculations are presented in the appendix as sets
1 through 3 of the direction cosine table.

The appendix also shows the results of projecting the link and joint vectors onto three
additional coordinate systems. For example, set 4 in the appendix projects the vectors
onto a coordinate system whose X axis is along the vector 331 and whose Z axis is along
Si. These additional three sets of projections result from performing an exchange of
subscripts, where the order of the subscripts is changed from increasing to decreasing.

6.6.4 Polar sine, sine-cosine, and cosine laws for
a spherical triangle

In Figure 6.11, the link vectors ai2, a23, and a3i have been extended to intersect the unit
sphere in three points which can be joined by great circular arcs to form a second triangle

Figure 6.11. Link vectors intersect unit sphere.
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Figure 6.12. Polar triangle.

called the polar triangle. The points of penetration of the unit vectors a^, a23, and a^
are the poles of the planes formed by the pairs of vectors (Si, S2), (S2, S3), and (S3, Si)
respectively.

Sets of sine, sine-cosine, and cosine laws can be generated for this polar triangle just
as for the spherical triangle. The approach could be similar to that used for the spher-
ical triangle. For example, the vector 3a3i could be transformed to the first coordinate
system by premultiplying it by 2^3^- This result would be equated with the vector 3a3i
premultiplied by 3R.

A comparison of Figure 6.8 and Figure 6.12 reveals a simpler method of generating
the laws for the polar triangle. The link vectors and joint vectors have switched roles. For
example, the link vector a3i of the spherical triangle is always perpendicular to the plane
containing link a3i, which connects the joint vectors S3 and Si. The joint vector S3 of the
polar triangle is always perpendicular to the plane containing link 03, which connects the
link vectors a23 and a3i.

Because of the similarity of the spherical triangle and the polar triangle, the laws for
the polar triangle can be generated directly by a substitution of variables in the spherical
triangle laws. Substituting the definitions of X2, Y2, and Z2 into Eqs. (6.134) through
(6.136) yields

S23S2 = S31S1,

- (S12C23 + C12S23C2) = S31C1,

C12C23 - S12S23C2 = C31.

(6.162)

(6.163)

(6.164)

A set of polar sine, sine-cosine, and cosine laws will now be generated by substituting
the angles a 12, a23, and a^\ respectively for 0i, 02, and 03 and the angles 02, 03, and 0i
respectively for a\2, a23, and a^. This yields

S3S23 = S1S12,

- (S2C3 + C2S3C23) = S1C12,

C2C3 - S2S3C23 = C i .

(6.165)

(6.166)

(6.167)

The left side of Eqs. (6.165) through (6.167) can be replaced by the notation U32, V32,
and W32 based upon the definition of these terms presented in Eqs. (6.92) through (6.94).
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Thus, a set of sine, sine-cosine, and cosine laws for a polar triangle may be written as

U32 = S1S12,

V 3 2 = S1C12,

(6.168)
(6.169)
(6.170)

The substitution of parameters may be applied to each of the six sets of sine, sine-cosine,
and cosine laws for the spherical triangle. However, it is simpler to exchange the subscripts
1, 2, 3 in the right and left sides of Eqs. (6.168) through (6.170). Either way, this will
result in six sets of polar laws. These six sets are listed in the appendix.

6.7 Spherical quadrilateral

6.7.1 Derivation of fundamental sine, sine-cosine, and cosine laws

A spherical quadrilateral is shown in Figure 6.13. Assuming that one link is attached
to ground, the number of degrees of freedom of the mechanism is one. The objective
here is to generate a series of equations that relate the twist angles and joint angles of the
quadrilateral.

In Section 6.4, it was shown that the vector 4S4 could be rotated from the fourth
coordinate system to the third, second, and then first coordinate systems. The result of
these transformations (see Eq. (6.35)) was

X32
Y 3 2

Z32J
(6.171)

Because the spherical quadrilateral is a closed-loop mechanism, the vector 4S4 can be
rotated directly to the first coordinate system via a transformation 4R. This transformation
can be generated in the same manner as was the transformation 3R for the spherical triangle,

Figure 6.13. Spherical quadrilateral.
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that is, by a rotation of t&u about the X axis of the fourth coordinate system followed by
a rotation of 6\ about the modified Z axis. The resulting transformation is

ci - s i 0
C41S1 C41C1 - S 4 1

S41S1 S41C1 C41

The vector ^ 4 can now be calculated as

(6.172)

S4 —  4R S4 —
Ci C41S1 S41S1

- S i C41C1 S41C1
0 - S 4 1 c4 i

"0"
0
1

=
S41S1

S41C1
C41

Equating Eqs. (6.171) and (6.173) yields

X 3 2 = S41S1,

Y 3 2 = S41C1,

Z32 = C41.

(6.173)

(6.174)

(6.175)

(6.176)

Equations (6.174) through (6.176) are respectively fundamental sine, sine-cosine, and
cosine laws for a spherical quadrilateral. A total of eight fundamental sets of laws can be
generated for the quadrilateral by performing an exchange of subscripts. The eight sets
of laws are listed in the appendix.

6.7.2 Sample problem

A spherical quadrilateral is formed from four links an = 40°, a23 = 70°, #34 = 85°,
and «4i = 70°, where link a41 is attached to ground. Because a spherical quadrilateral
with revolute joints on the axes S\, S2, S3, and S4 is a one-degree-of-freedom mechanism,
a single joint parameter or input angle must be specified. The angle 04 = 75° is selected as
the input angle. The objective of the problem is to obtain values for the joint angles 0\, 02,
and 03.

(a) Identification of Input/Output Equation

The solution begins by selecting the joint angle to be solved for first, which is typically
called the output angle. The angle 6\ is the output angle for this example because link a$\ is
the frame or ground. The fundamental sine, sine-cosine, and cosine laws in the appendix
are then examined in order to identify one equation that contains only one unknown. An
advantage of the notation used in this book is that the subscripts of the X, Y, and Z terms
identify the joint angles that are contained in the expanded definitions. For example, the
term X32 contains the angles 03 and 02. The subscripts 2 or 3 cannot appear in an equation
that contains 0\ as the only unknown. There are apparently two such equations

Z41 = c23 (6.177)

and

Z14 = C2 3, (6.178)
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which are of course identical because Z41 = Zi 4. Expanding the left side of Eq. (6.177)
yields

-Y4c1) + c 1 2 Z 4 - c 2 3 . (6.179)

Equation (6.179) can be regrouped and written as

Ci(s12Y4) + S!(s12X4) + (c12Z4 - c23) = 0. (6.180)

It should be recalled that the definitions of the terms X4, Y4, and Z4 are

X4 = s34s4, (6.181)
Y4 = - (s4i c34 + c4i s34c4), (6.182)

Z4 = c4ic34 —  S4is34c4. (6.183)

The right-hand sides of Eqs. (6.181) through (6.183) are all expressed in terms of known
parameters. Thus, it can be observed that the terms in parentheses in Eq. (6.180) can be
numerically evaluated. The task at hand, therefore, is to solve the equation

Aci + B s ! + D = 0 (6.184)

where

A = s12Y4, (6.185)

B = si2X4, (6.186)

D = c 1 2 Z 4 - c 2 3 (6.187)

for all values of 6\. Two solution techniques for this equation will be introduced.

(b) Tan-Half-Angle Solution of Act + Bst + D = 0

In the first solution, the term xi will be defined as tan(0i/2). The following trigono-
metric identities will be employed

si = — * ^ , (6.188)
1+x?

ci = — ^ .  (6.189)
1+xf

Substituting Eqs. (6.188) and (6.189) into Eq. (6.184) yields

A ^ ^ | + B — * ^ + D = 0. (6.190)

Multiplying Eq. (6.190) by (1 + xf) and regrouping gives
(D - A)x^ + (2B)xi + (D + A) = 0. (6.191)
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B

Figure 6.14. Definition of angle
Y>

Solving Eq. (6.191) for xi yields

_ - B ± VB2 - (D - A)(D + A)
X l " ( D - A ) *

(6.192)

Two real values of xi satisfy Eq. (6.191) provided B2 - (D - A)(D + A) > 0. For each
of the values of xi, a unique value for 6\ can be calculated from the equation

= 2tan-1(xi). (6.193)

This is because xi = tan(0i/2) is single-valued in the range 0 < 6\ < 2TT, whereas tan(#i)
is double-valued in the same range.

(c) Trigonometric Solution of Aci + Bsj + D = 0

A second technique for solving the equation Aci+Bsi+D = 0 will begin by dividing
Eq. (6.184) by the term VA2 + B2 to yield

D = 0.
VA2 + B2 VA2 + B2 VA2 + B2

Using the right-angled triangle shown in Figure 6.14 it is possible to substitute
B

= siny,

= cos y.

(6.194)

(6.195)

(6.196)

Because the sine and cosine of y are expressed in terms of all known quantities, a unique
value for the angle y can be determined. Substituting Eqs. (6.195) and (6.196) into Eq.
(6.194) gives

CyCl = 0.
VA2 + B2

Using the trigonometric identity

cos(a —  ft) —  cos(a) cos(/3) + sin

in Eq. (6.197) and regrouping yields

- D
cos(#i —  y) = -

sin()8)

(6.197)

(6.198)

(6.199)
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Two values for the quantity (0\ —  y) can be found that satisfy Eq. (6.199) as long as the
quantity on the right side of Eq. (6.199) is between —1  and 1. Because a unique value for
y has already been determined, two values for 0\ are now known.

(d) Comparison of Solution Techniques

Three special conditions may occur that will cause one or both of the solution techniques
for the equation A c i + B s i + D = Oto yield indeterminate results.

(i) Casel: A = D ^ 0, B ^ 0.

For this first case, the tan-half-angle solution, Eq. (6.192), reduces to

- B ± B
(6.200)

Thus, the two solutions for xi are ^jp and []. The first value for xi that equals infinity
corresponds to a value of 0\ equal to n. The second value for 0\ cannot be determined.

Two values for 6\ can be determined by using the trigonometric solution technique for
this case. The sine and cosine of y were previously defined in Eqs. (6.195) and (6.196).
The cosine of the difference between 0\ and y as expressed in Eq. (6.199) can be written
as

c o s ( e i - y ) = ~ ^ . (6.201)

It is apparent from Eqs. (6.196) and (6.201) that for this case, cos(y) = — cos(#i  —  y).
One solution is obviously 0\ = n. The second solution for 0\ is dependent on the val-
ues of the coefficients A and B and can be determined as before by first determining the
unique value of the angle y from Eqs. (6.195) and (6.196) and then obtaining the two
values for the quantity (0\ —  y) that satisfy Eq. (6.201). The sum of (0\ —  y) and y will
yield 0i.

(ii) Case 2: A = D / 0, B = 0.

For this case, both solutions of Eq. (6.192) for xi will equal jj.
In the trigonometric solution, the sine and cosine of y will equal 0 and 1 respectively.

Thus, the angle y equals 0. Eq. (6.199) now reduces to

^ - l . (6.202)

The two values of 0\ that satisfy this equation are a repeated value of it.

(iii) Case 3: A = D = 0, B / 0.

For the third and final special case, the values for xi as determined by the tan-half-angle
solution, Eq. (6.192), are ^jp and []. The first value corresponds to a value for 9\ of it.
The second value for B\ cannot be determined.

In the trigonometric solution, the values for the sine and cosine of y are respectively
1 and 0. Thus, the angle y equals | . The value for the cosine of {0\ —  y) as defined by
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Eq. (6.199) is 0 for this case. Thus, the two values for the angle {0\ — y) are | and ^f.
Finally, the two values for 9\ are 0 and n.

(iv) Summary

Three special cases have been introduced in which two values for 0\ were not obtained
when the tan-half-angle technique was used to solve the equation Aci + Bsi + D = 0.
Proper solutions were obtained, however, when the trigonometric solution technique was
used. For this reason, the trigonometric solution is the preferred method for solving this
type of equation.

(e) Numerical Solution for 6\

Upon substituting the numerical values for the twist angles a\2, a23, a34, and a4\ and
the input angle 64 into Eqs. (6.181) through (6.183), Eq. (6.180) can be written as

-0.1093c! + 0.6185s! - 0.5048 = 0. (6.203)

The trigonometric solution technique was used to solve this equation for 0\. The sine
and cosine of the angle y were evaluated from Eqs. (6.195) and (6.196) as 0.9847 and
-0.1741. The unique value for y is 100.02 degrees.

The cosine of (0\ — y) was evaluated from Eq. (6.199) as 0.8037. The two values for
(#1 —  y) are therefore 36.52 degrees and 323.48 degrees.

The two values for 9\ can be obtained by summing each value of (6\ —  y) with y . The
two values for 6\ are 136.54 degrees and 63.50 degrees. These two values will be referred
to as 0iA and01B.

(f) Solution for 02

The value for the angle 02 may be determined in many ways. However, it is pre-
ferred to use the following fundamental sine, sine-cosine, and cosine laws for a spherical
quadrilateral:

X41 = S23S2, (6.204)

Y41 = s23c2. (6.205)

The left-hand sides of Eqs. (6.204) and (6.205) will be evaluated by substituting 04 and 0\A

into the definitions of X4i and Y41. The value for 02 that is associated with 04 and 0\A can
be uniquely determined because the sine and cosine of 02 are computed from Eqs. (6.204)
and (6.205). This value for 02 will be called 02A.

Next, 04 and 0iB will be substituted into the definitions for X41 and Y41. The sine and
cosine for 02B are then determined.

It is important to recognize that 02A will be the correct value for 02 when 0\ = 0\A.
Similarly, 02 will equal 02B when 0\ — 0i B.

The values for 02A and 02B for this problem are —38.23 degrees and 38.23 degrees
respectively.

(g) Solution for 03

As was the case with 02, many different equations can be used to calculate 03. However,
it is preferred to use the following fundamental sine, sine-cosine, and cosine laws for a
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Table 6.4. Solution to spherical
quadrilateral sample problem (units in
degrees).

= 75

136.54

-38.23

135.76

0IB = 63.50

02B = 38.23
03B = SI.12

01A 91B

62A 62B

63A 63B

Figure 6.15.
Solution tree.

spherical quadrilateral

X14 = S23S3,

Y14 = S23C3.

(6.206)

(6.207)

The definitions of X14 and Yi4 can be determined by substituting the numerical values of
04 and 0iA. The corresponding value for 03, called 03A , is then known because the sine
and cosine of 03 are known.

The process is repeated by substituting 04 and 0iB into Eqs. (6.206) and (6.207). The
calculated values of s3 and C3 determine the corresponding value for the angle 03B.

For this problem, the values for 03A and 03B are 135.76 degrees and 87.72 degrees. The
solution is complete, and the results are listed in Table 6.4.

It is often helpful to visualize the solution process by drawing a solution tree (see
Figure 6.15). At the top of the tree is the given input angle 04. The angles 0iA and 0iB were
the first joint angles to be calculated, and therefore they are listed in the tree directly below
04. The next angle that was calculated was 02. The tree indicates that the angle 02A was
calculated using the values for 04 and 0\A in the appropriate equations. The angle 02B was
calculated using 04 and 0iB in the same equations. Lastly, the angle 03A was determined
based upon the values of the angles 04, 0iA, and 02A. The value of 03B was calculated by
using 04, 0iB, and 02B in the same equations. The solution tree pictorially shows that there
are two solution sets to this problem. For the given input angle, 04, the two solution sets are
(#IA»  #2A, #3A) and (01B, 02B, 03B). It is important to remember that a solution comprises
an entire set of angles and that care must be taken to correctly organize the angles into the
appropriate solution sets.

Figure 6.16 shows the two solutions to the problem. Link 41 is attached to ground.
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Solution A Solution B
Figure 6.16. Two solutions of a spherical quadrilateral (64 input
angle).

The angle 64 is the same for both configurations, and thus the position of link 34 is the
same for both solutions. Links 12 and 23 are shown in the two solution configurations.

6.7.3 Derivation of subsidiary sine, sine-cosine, and cosine laws

It is possible to generate equations for the spherical quadrilateral in addition to the
sine, sine-cosine, and cosine laws derived in Section 6.7.1. These new equations will be
referred to as subsidiary sine, sine-cosine, and cosine laws.

One set of subsidiary equations will be generated here by projecting the vector S4 onto
the second coordinate system. This can be done in two ways. Firstly, the vector 4S4
can be rotated to the third and then to the second coordinate sytem. The result of these
transformations (see set 2 of the direction cosine table in appendix) is

x3
Y3

(6.208)

The vector 4 S 4 can also be rotated directly to the first coordinate system and then to the
second coordinate system. Using the results from Eq. (6.173), where S4 has been rotated
directly to the first coordinate system,

2c _ 2T> l o _
04 — j lv 134 —

C2 S2C12 S2S12

- S 2 C2C12 C2S12

. 0 - S 1 2 C12 .

S41S1

S41C1 (6.209)

After performing the matrix multiplication and regrouping terms, Eq. (6.209) may be
written as

• Xn

-x*2
L z ,

(6.210)
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Equating Eqs. (6.208) and (6.210) yields the following set of subsidiary sine, sine-cosine,
and cosine laws

X3 = X12,

% = -x;2>

(6.211)

(6.212)

(6.213)

A total of eight sets of subsidiary laws can be generated by performing each of the eight
possible exchanges of subscripts. The resulting sets of subsidiary laws for the quadrilateral
are listed in the appendix.

With regard to the previous sample problem, had the angle 62 been selected as the first
joint angle to be solved, the following subsidiary cosine law would have been used:

Z4 = Z2.

The remainder of the solution is left as an exercise for the reader.

(6.214)

6.7.4 Direction cosines of joint vectors and link vectors for a spherical
quadrilateral

The direction cosines for all the vectors of the spherical quadrilateral except for 341
were determined with respect to the first coordinate system in Section 6.5. The vector
!a4i can be determined by rotating the vector 4a4i, which equals [1,0, 0]T, directly to the
first coordinate system as follows:

—  4R a41 =
Cl

- s i
0

C41S1

C41C1

—S41

S41S1

S41C1

C41

1
0
0

Cl

- s i
0

(6.215)

All the vectors of the spherical quadrilateral have now been determined in terms of the
first standard coordinate system. The process can be repeated to express all the vectors
in the second, third, and fourth coordinate systems. The results of this are listed in the
appendix as sets 1 through 4 of the direction cosine table.

The appendix also shows the results of projecting the vectors onto four additional
coordinate systems. These results were obtained by performing the four exchanges of
subscripts where the order of the indices was changed from increasing to decreasing. The
results are listed in the appendix and will be used in future analyses.

6.7.5 Polar sine, sine-cosine, and cosine laws for
a spherical quadrilateral

A polar quadrilateral may be formed by extending the link vectors a^ so that they
intersect the unit sphere. New spherical links are placed between the a^ vectors to maintain
their relative orientation. As with the spherical and polar triangle, the roles of the twist
angles and joint angles have been interchanged. For example, in the spherical quadrilateral
the length of the link that separates the vectors S2 and S3 is #23. In the polar quadrilateral,
the length of the link that separates the vectors a23 and a34 is 03.
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Because of the interchange of the roles of the twist angles and the joint angles, polar
sine, sine-cosine, and cosine laws and subsidiary polar sine, sine-cosine, and cosine laws
can be generated by an appropriate exchange of variables. The results of this variable
exchange are presented in the appendix.

6.8 Spherical pentagon

6.8.1 Generation of fundamental, subsidiary, and polar sine,
sine-cosine, and cosine laws

A spherical pentagon is shown in Figure 6.17. Link 51 is attached to ground, and the
mechanism has two degrees of freedom. Thus, when all the twist angles, o^, are specified
together with two of the joint angles, 6i9 it is possible to solve for the remaining joint
angles.

As with the spherical triangle and the spherical quadrilateral, fundamental sine, sine-
cosine, and cosine laws can be generated by transforming the vector 5Ss to the first
coordinate system in two directions, that is, via the fourth, third, and second coordinate
systems, and directly from the fifth to the first coordinate system. A total of ten sets of
fundamental laws can be determined by an exchange of subscripts. The resulting ten sets
of fundamental laws for the spherical pentagon are listed in the appendix.

Subsidiary formulas can be generated by rotating the vector 5Ss to the second coor-
dinate system via the fourth and third coordinate systems and then equating the result
to 5S5 as it is rotated to the second coordinate system via the first coordinate system.
Another set of subsidiary laws can be generated by rotating the vector 5Ss to the third co-
ordinate system in two directions. All the resulting subsidiary equations are listed in the
appendix.

Similar to the polar triangle and quadrilateral, a polar pentagon can be formed by allow-
ing the link vectors to intersect the unit sphere and then placing spherical links between
adjacent link vectors to maintain their relative orientation. An appropriate exchange of
variables in the fundamental and subsidiary laws results in the polar fundamental and
subsidiary laws. All the polar sine, sine-cosine, and cosine laws for the polar pentagon
are listed in the appendix.

Figure 6.17. Spherical pentagon.
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Table 6.5.
parameters

a 1 2 = 4 0

a34 = 80

a45 = 60

e*51=90

Spherical pentagon
(units in degrees).

02= ?

03 = 100

04= ?

0 5 = 65

6.8.2 Sample problem

Table 6.5 shows the specified angular values for a spherical pentagon where it is assumed
that link 51 is attached to ground. Because two joint angles are given, and the spherical
pentagon is a two-degree-of-freedom mechanism, it should be possible to determine values
for the remaining joint angles.

At the outset, it is necessary to decide which joint angle to solve for first. For this
example, the angle 0\ will be chosen, and it is named the output angle because it connects
link 12 to the frame. The task at hand is to obtain the input/output equation, that is, an
equation that contains the angle 0\ as its only unknown. After reviewing all the fundamental
and subsidiary sine, sine-cosine, and cosine laws for a spherical pentagon, the following
equation was identified:

Z51 = Z3. (6.216)

The definition of the right-hand side is expanded as

Z3 = C23C34 - S23S34C3. (6.217)

Substituting the given mechanism parameters into Eq. (6.217) yields

Z3 = 0.2403. (6.218)

Substituting the definition of Z51 into Eq. (6.216) yields

Si2(X5S! + Y5Cl) + c12Z5 - Z3 = 0. (6.219)

The only unknown in Eq. (6.219) is 0\. Regrouping this equation gives

(si2Y5)c! + (si2X5)si + (c12Z5 - Z3) = 0. (6.220)

This equation is of the form Aci + Bsi + D —  0, where

A = s12Y5, (6.221)
B = S12X5, (6.222)

D = c 1 2 Z 5 - Z 3 . (6.223)

Using the trigonometric solution technique developed in Section 6.7.2, the two values of
0x are 6lA = 93.01° and 0lB = 151.99°.
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Solution A Solution B
Figure 6.18. Two solutions of a spherical pentagon (#5
and #3 input angles).

The following two subsidiary equations will be used to determine corresponding values
for02:

X51 = X32,

Y51 = - X32*

(6.224)
(6.225)

The given value of 05 and the calculated value 0iA will be substituted into the left-hand
sides of Eqs. (6.224) and (6.225) to yield numerical values. Substituting the definitions
for X32 and X^2 yields

X3C2-Y3s2 = X 5 1 ,
-(X3S2 + Y3C2)=Y5 1 .

(6.226)
(6.227)

Equations (6.226) and (6.227) represent two equations in the two unknowns s2 and c2.
Substituting 65,63, and 6\A into these equations and solving for s2 and c2 yields a unique
value for 02, called 02A. The angle 02B will be determined by substituting 65 and 0iB into
Eqs. (6.226) and (6.227) and then solving for the sine and cosine of 02B. The calculated
values for the angles 02A and 02B are —64.23 degrees and —120.55 degrees respectively.

The last variable to be determined is 04. This angle will be obtained from the following
fundamental sine and sine-cosine laws:

Xi 2 3 = S45S4,

Y i 2 3 = S45C4.

(6.228)
(6.229)

Numerical values for the left-hand sides of these equations will be obtained by substituting
the values for 03, 01A, and 02A. The sine and cosine for the corresponding angle 04A is
readily calculated. Next, the values of 03, 01B, and 02B are substituted into the equations,
and the angle 04B is determined. The calculated values for the angles 04A and 04B are 48.52
degrees and 86.56 degrees respectively. The two solution configurations for the spherical
pentagon are shown in Figure 6.18.

6.9 Spherical hexagon and spherical heptagon

6.9.1 Generation of fundamental, subsidiary, and polar sine,
sine-cosine, and cosine laws

A spherical hexagon and a spherical heptagon are comprised respectively of six and
seven spherical links (see Figures 6.19 and 6.20). The spherical hexagon is a three-degree-
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Figure 6.19. Spherical hexagon.

s,

Figure 6.20. Spherical heptagon.

of-freedom mechanism, whereas the spherical heptagon is a four-degree-of-freedom mech-
anism.

For both of these spherical mechanisms, it is possible to generate fundamental sine,
sine—cosine, and cosine laws by transforming the last joint vector to the first coordinate
system in two directions. A total of twelve sets can be generated for the spherical hexagon
and fourteen sets for the spherical heptagon by applying an exchange of subscripts. All
the fundamental laws for the hexagon and the heptagon are listed in the appendix.

Subsidiary laws can be generated by rotating the last joint vector to the second,
third, . . . , and (n —  2) coordinate systems, where n is six for the hexagon and seven
for the heptagon. All the resulting subsidiary laws are listed in the appendix.

As was the case with the spherical triangle, quadrilateral, and pentagon, a polar hexagon
and a polar heptagon can be formed by allowing the link vectors to intersect the unit sphere
and then placing spherical links between adjacent link vectors to maintain their relative
orientation. An appropriate exchange of variables in the fundamental and subsidiary laws
results in the polar fundamental and subsidiary laws. All the polar sine, sine-cosine, and
cosine laws for the polar hexagon and the polar heptagon are listed in the appendix.

6.9.2 Sample problem

Table 6.6 shows the specified angular values for a spherical heptagon. Four joint angles
are given because the mechanism is a four-degree-of-freedom device. The objective is to
calculate the remaining three joint angles.
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Table 6.6. Spherical heptagon
parameters (units in degrees).

(x34 = 35 03= ?

a45 = 30 04 = 330

c*56 = 80 <95= ?

a 6 7 = 4 5 06 = 115

a 7 1 = 6 5 07 = 340

0i is selected as the angle to be solved for first. The fundamental and subsidiary sine,
sine-cosine, and cosine laws for a spherical heptagon will be examined in order to find
an equation in which 0i is the only unknown. The following subsidiary cosine law was
identified:

Z6712 = Z4. (6.230)

The right-hand side of this equation can be evaluated because all the angles that comprise
the term Z4 are known. Expanding the left-hand side and regrouping yields

s23(Xg7iS2 + Yg7ic2) + c23Z67i —  Z4 = 0. (6.231)

Substituting the definitions of the terms X67i, Y67i, and Z67i and then grouping the sine
and cosine of 0i terms gives

Ci(s23s2X67 + s23c2Ci2Y67 + c23Si2Y67)

+ S i ( - s 2 3 s 2 Y 6 7 + s23c2Ci2X67 + c23Si2X67)

+ ( -s2 3c 2Si 2Z 6 7 + c23Ci2Z67 - Z4) = 0. (6.232)

Equation (6.232) is of the form Aci + Bsi + D = 0. Substituting the given values, Eq.
(6.232) numerically evaluates to

ci (-0.1039) + si (0.8082) + (-0.4346) = 0. (6.233)

Using the trigonometric solution technique developed in Section 6.7.2, the two values of
0i are 01A = 39.56° and 0iB = 155.09°.

The following subsidiary sine and sine-cosine laws are used to solve for corresponding
values of 03

X67i2 —  X43, (6.234)

Y67i2 = - X ; 3 . (6.235)

The given values of 06, 07, and 02 together with the angle 0iA are substituted into the
left-hand sides of the equations to yield numerical values. Substituting the definitions of
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Solution A Solution B

Figure 6.21. Two solutions of a spherical heptagon (#7, 65, 64, #2
input angles).

X43 and X43 into the right-hand sides yields

X6712 = X4C3 —  Y4S3, (6.236)

(6.237)

Equations (6.236) and (6.237) represent two equations in the two unknowns S3 and C3.
Solving for these parameters, a unique value of 03 can be determined that corresponds to
0iA. This value will be called 03A. The angle 03B is determined by substituting 0iB into
Eqs. (6.236) and (6.237) and then solving for the sine and cosine of 03B. The calculated
values for the angles 03A and 03B are 51.45 degrees and —92.99 degrees respectively.

Finally, corresponding values of 05 are determined from the following fundamental sine
and sine—cosine laws:

X71234 = S56S5,

Y71234 = S56C5.

(6.238)

(6.239)

Numerical values for the left-hand sides of these equations will be obtained by substituting
the given values for 07, 06, 64, and 02 and the calculated values 9\A and 03A. The sine and
cosine for the corresponding angle 05A is then determined. Next, the given values and
the calculated values 0iB and 03B are substituted into the equations, and the angle 05B

is determined. The calculated values for the angles 05A and 05B are 39.38 degrees and
141.44 degrees. The two solution configurations for the spherical heptagon are shown in
Figure 6.21.

6.10 Summary
Chapter 5 showed how an open-loop robot manipulator could be converted to a closed-

loop spatial mechanism by solving for the parameters of an imaginary link that closes
the loop. In this chapter, the equivalent spherical mechanism for a given spatial mecha-
nism was introduced. All single-degree-of-freedom spatial mechanisms were classified
according to the number of degrees of freedom of their equivalent spherical mechanism.

All equations that relate the joint and twist angles of an equivalent spherical mechanism
will also be valid for the original spatial mechanism. For this reason, sets of fundamental
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and subsidiary sine, sine-cosine, and cosine laws were generated for a spherical triangle,
quadrilateral.. .heptagon. Polar polygons and corresponding and laws were also generated
for each case. The spherical and polar equations are fully listed in the appendix. These
equations will serve as a toolbox to be used in future analyses of robot manipulators.

6.11 Problems

1. Completely expand the definitions of the following terms:

(a) X6543, Y6543, Z6543

(b) U3456, V3456, W3456

2. Write a computer function that will use the trigonometric approach to solve an equation
of the form Ac + Bs + D = 0. A C language prototype for this function is written as
follows:

int solveJxig (double A, double B, double D, double *ang_a, double *ang_b);

The subroutine should return one if two real solutions were calculated and zero otherwise.
Test your subroutine using data that you have checked by hand (or with a program such
as MathCad, Mathematica, Maple, etc.)

3. A spherical quadrilateral is to be formed from the following four links:

al2 = 75°, cx23 = 110°, Qf34 = 60°, a4l = 80°.

The value of 0\, the input angle for this case, is 120 degrees. Determine the two sets of
solutions for the remaining joint angles of the quadrilateral.

4. Assume that the twist angles (as) of a spherical pentagon are all known. Further, values
for the angles #4 and 0\ are known. Explain how you would obtain values for the
remaining joint angles. How many solution sets exist?

5. Write a computer subroutine that will solve two linear equations in two unknowns. The
pair of equations may be written as

A2x + B2y = D2,

where the coefficients Ai, A2, Bi, B2, Di, and D2 are known and the parameters x and
y are unknown. The C language prototype for your program may be written as

int solve.pair (double *x, double *y, double Al, double Bl, double Dl,
double A2, double B2, double D2);

The function will return a value of one if values of x and y could be obtained. It will
return zero if the two equations are linearly dependent and thus unique values of x and
y could not be obtained.
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R R

5(R

Figure 6.22. Planar representa-
tion of a spatial hexagon.

Test your subroutine using data that you have checked by hand (or with a program
such as MathCad, Mathematica, Maple, etc.).

6. Assume that the twist angles (as) of a spherical hexagon are all known. Further, values
for the angles #6, #4, and 03 are known. Explain how you would obtain values for the
remaining joint angles. How many solution sets exist?

7. Write a computer program that will solve a spherical quadrilateral. In particular, your
program will ask the user to enter values for the angles an, 0123, #34, and «4i. Next, the
user will be prompted to enter a value for the input angle 64. With these inputs, your
program must print the two set of values for the remaining joint angles.

Your program must identify the case where no solution exists. In other words, no
solution for the angles 61,62, and #3 may exist for the given values of the inputs.

8. You are trying to build a spherical triangle whose angles are 6\ = 120°, 62 = 80°, and
03 = 140°. What values should a 12, «23»  a nd 0̂ 31 have so you can build your triangle?

9. Assume that you are given numerical values for the angles 65,65, and 63 for the planar
represented of a closed-loop spherical mechanism shown in Figure 6.22 (all the a angles
are assumed to be known also).

(a) Write an equation that can be used to solve for 6\. Factor this equation into the form

A(ci) + B(s i )+D = 0.

(b) Show how to solve an equation of the form

for the angle 6\. How many values of 6\ may satisfy this equation?

(c) Assuming that 6\ is known, describe how to solve for 04.
(d) Assuming that 6\ and 64 are now known, describe how to solve for 02.



Displacement analysis of
group 1 spatial mechanisms

7.1 Introduction
A group 1 spatial mechanism was defined in Chapter 6 as a one-degree-of-freedom

closed-loop kinematic chain with one link, the frame, fixed to the ground and whose
equivalent spherical mechanism also has one degree of freedom. All the mechanism
dimensions, the link lengths and twist angles, are assumed to be known at the outset.
Also, the offset (joint angle) of each revolute (prismatic) joint connecting a pair of links
that in general are skew is assumed to be known. The joint angle of a revolute pair (the
input pair) connecting a link (the input link) to the frame is assumed to be known.

It will be seen in this chapter that the analysis of all group 1 spatial mechanisms
can proceed by first determining the unknown joint parameters from sine, sine-cosine,
and cosine laws for the equivalent spherical mechanism, which is essentially a spherical
four-link mechanism because there can be no relative motion on a sphere of a pair of
links connected by a prismatic joint. The remaining unknown displacements will then be
determined from writing the vector loop equation for the mechanism and projecting this
equation onto three linearly independent directions, which yields three scalar equations in
three unknown displacement values. Two example mechanisms will be presented in this
chapter followed by an analysis of the CCC spatial robot manipulator.

7.2 RCPCR mechanism

Figure 7.1 shows an RCPCR group 1 spatial mechanism and its equivalent spherical
mechanism. Figure 7.2 shows a planar representation of the same mechanism. Link a5i
is attached to ground. The specific problem statement is presented as follows:

given: ai2, a23, a34, a45, a5i,
<Xn, 0123, OI34, a45,Ot5u
Si ,S5 ,03 , and
#5 (input angle),

find: 0i,02,04,S2,S3, and S4.

It was mentioned in the previous section that the analysis can be decoupled in that the
three unknown joint angles can be solved for first from analyzing the equivalent spherical
mechanism. The angle 6\ is identified as the output angle because it is connected to the
frame, and this angle will be calculated first.
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Figure 7.1. RCPCR spatial mechanism and its equivalent spherical mecha-
nism.

input
angle

1
output
angle

Figure 7.2. Planar representation of
RCPCR spatial mechanism.

The objective now is to find a spherical equation that contains only the input angle, 05,
the output angle, 6\9 and the constant angle, 03. All cosine laws for a spherical pentagon
contain three joint parameters, and there is a unique subsidiary cosine law that contains
05, 0\, and 03. This subsidiary cosine law is

Z51 = Z3.

Expanding the left side gives

s12(X5Sl + Y5C1) + c12Z5 - Z3 = 0.

(7.1)

(7.2)

This equation can be factored into the form o f A c i + B s i + D = 0 and can be solved for
two values of 0\ by using the solution technique presented in Section 6.7.2(c). These two
solutions will be called 01A and 01B.

Unique corresponding values for the angle 02 can be obtained from the following two
spherical equations:

X51 = X32,

Y51 = - X32-

(7.3)
(7.4)
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The given value of 05 and the calculated value 0iA will be substituted into the left sides of
Eqs. (7.3) and (7.4) to yield numerical values. Expanding X32 and X^2 yields

X 3 C 2 -Y 3 S 2 = X51, (7.5)

Y51. (7.6)

Equations (7.5) and (7.6) represent two equations in the two unknowns s2 and c2. Solving
for these parameters, a unique value for 02 can be determined that corresponds to the angle
0iA. This value will be called 02A. The angle 02B is found by substituting 05 and 0iB into
Eqs. (7.5) and (7.6) and then solving for the sine and cosine of 02B.

The last joint angle to be determined is 04. This angle will be determined from the
following fundamental sine and sine-cosine laws:

Xi2 3 = S45S4, (7.7)

Yi2 3 = S45C4. (7.8)

Numerical values can be obtained for the left sides of these equations by substituting the
constant joint angle #3 and the previously calculated values of 01A and 02A. The sine and
cosine of the corresponding angle 04A is readily calculated. The procedure is repeated by
substituting 03, 01B, and 02B into Eqs. (7.7) and (7.8) and then solving for the sine and
cosine of 04B.

The remaining parameters to be determined are the three variable offset distances S2,
S3, and S4. These will be determined by first writing the vector loop equation for the
mechanism as

S1S1 + ai2ai2 + S2S2 + a23a23 + S3S3 + a34a34 + S4S4 + a45a45 + S5S5 + a5ia5i = 0.

(7.9)

Because all the joint angles are now known for each of the two configurations of the
mechanism, the joint and offset vectors can be calculated in terms of any desired coordinate
system. Thus, projecting the vector loop equation onto any three linearly independent
vectors will yield three scalar equations in the unknowns S2, S3, and S4.

Quite often, a judicious selection of a projection vector will simplify the solution for
the three unknowns. For example, projecting Eq. (7.9) onto the vector a34 yields

a34 • (S1S1 + ai2ai2 + S2S2 + a23a23 + S3S3 + a34a34 + S4S4

+ a45a45 + S5S5 + a5ia5i) = 0. (7.10)

Using the sets of direction cosines for a spatial pentagon that are listed in the appendix to
evaluate the scalar products yields

S1X54 + ai2W23 + S2X3 + a23c3 + a34 + a45c4 + S5X4 + a5iW54 = 0. (7.11)

This equation contains the parameter S2 as its only unknown. The calculated values for
#IA»  #2A> and 04A are substituted into Eq. (7.11) to find the corresponding value for S2,
that is, S2A. The process is repeated by substituting values for 01B, 02B, and 04B to find the
corresponding value for S2B.
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Table 7.1. RCPCR mechanism parameters.

Link length, cm.

a12 = 20
a23 = 40
a34 = 30
845 = 20
a5, = 30

Twist angle, deg.

an = 45
«23 = 60
a34 = 25
a45 = 30
asi = 70

Joint offset, cm.

Si = 15
S2 = variable
S3 = variable
S4 = variable
S5 = 35

Joint angle, deg.

0\ = variable
02 = variable
6>3 = 6 5
04 = variable
05 = 60 (input)

Table 7.2. Calculated configurations for
the RCPCR spatial mechanism.

0i, degrees
02, degrees
04, degrees
S2, cm
S3, cm
S4, cm

Solution A

223.10
-100.84

113.75
-49.13

35.94
-58.83

Solution B

85.48
-112.84

26.37
-112.84

197.38
-223.36

The parameter S4 can be determined by projecting the vector loop equation onto the
vector a23. Expansion of the scalar products yields

SiX2 + ai2c2 + a23 + a34c3 + S4X3 S5X43 + a5iW12 = 0. (7.12)

The distance S4 is the only unknown in Eq. (7.12). The calculated values of 0iA, 02A,
04A are substituted into the equation to yield S4A. The values 0iB, 02B, and 04B are then
input to determine S4B.

The final parameter, S3, will be obtained by projecting the vector loop equation onto
the vector S3. Expanding the scalar products yields

SiZ2 + a12U23 + S2c23 + S3 + S4c34 + a45U43 + S5Z4 + a5iU543 = 0. (7.13)

The corresponding value for S3, that is, S3A, is obtained by substituting S2A, S4A, 01A, 02A,
and 04A into Eq. (7.13). Similarly, S3B is obtained by substituting S2B, S4B, 0iB, 02B, and
04B into the equation.

At this point the analysis of the group 1 RCPCR mechanism is complete. Two solution
configurations were determined. Table 7.1 shows data that were used for a numerical
example. The calculated values for the two configurations are listed in Table 7.2.

7.3 RRPRPPR mechanism

Figure 7.3 shows an RRPRPPR group 1 spatial mechanism with its equivalent spherical
mechanism. Figure 7.4 shows a planar representation of the same mechanism. Link a7i
is attached to ground. The specific problem statement is listed as follows:
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Figure 7.3. RRPRPPR spatial mechanism and its equivalent
spherical mechanism.

input
angle

i-t / / / / / / /

output
angle

Figure 7.4. Planar representation
of RRPRPPR spatial mechanism.

given: ai2 , a23, a34, a45, a56, a67, a7i,
«12,  «23, «34, «45, <*56,  Qf67, Of7i,
S i ,S4 ,S6 ,S7 ,02 ,03 ,05 ,and
07 (input angle),

find: 0 i ,0 4 ,0 6 ,S 2 ,S 3 ,andS 5 .

The analysis will proceed as in the previous section, where the three unknown joint
angles are obtained first followed by the three unknown joint offsets. The angle 9\ is
identified as the output angle because it is connected to the frame, and 0\ will be calculated
first.

The objective now is to find a spherical equation that contains only the input angle, 07,
the output angle, 0\, and the constant angles, 02, #3> and 9s. All cosine laws for a spherical
heptagon contain five joint parameters, and a unique subsidiary cosine law contains #7, 0\,
62, 63, and 05. This subsidiary cosine law is

Z3217 = Z 5 . (7.14)
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Expanding the left side of Eq. (7.14) and rearranging gives

S67(X32lS7 + Y321C7) + C67Z321 - Z5 = 0. (7.15)

Expanding the definitions of X32i, Y32i, and Z32i and then grouping all the terms containing
the sine and cosine of 0\ yields

Cl[X7X32 - Y7Y321 + S![-X7Y32 - Y7X32] + [Z7Z32 - Z5] = 0. (7.16)

Because all the terms in brackets are defined in terms of the given constants, this equation
can be solved for two values of 0i, that is, 01A and 0iB, by using the technique described
in Section 6.7.2(c).

The angle 06 will be solved for next. One solution technique starts by writing the
following subsidiary sine and sine-cosine laws for a spherical heptagon:

X 3 2 1 7 =X 5 6 , (7.17)

Y32n = -X5*6. (7.18)

Expanding the definitions for the terms on the right-hand side of these equations gives

X3217 = X5c6 - Y5s6, (7.19)
(7.20)

Equations (7.19) and (7.20) represent two linear equations in the two unknowns s6 and c6.
A unique corresponding value for 06, called 06A, can be found by substituting the given
joint and twist angle parameters and 0\A into the two equations and then solving for S6A
and C6A- Similarly, the given joint and twist angle parameters and 0iB are substituted into
the two equations to yield s6B and c6B.

The last remaining joint angle to be computed is O4. This angle can be obtained by
writing the following two fundamental sine and sine-cosine laws for a spherical heptagon:

X67i23 = S45S4, (7.21)

Y67i23 = S45C4. (7.22)

Substituting the given joint and twist angles and the previously calculated values for
0IA and 06A into the pair of equations will yield the corresponding values for the sine
and cosine of 04A. The corresponding value for 04B will be determined in a similar
fashion.

At this point, two solution sets exist for the joint angles of the spatial mechanism.
Corresponding values for the offset parameters S2, S3, and S5 must yet be determined.
These parameters can be calculated as in the previous section by writing the vector loop
equation for the spatial mechanism as

S1S1 + ai2a12 + S2S2 + a23a23 + S3S3 + a34a34 + S4S4

+ S5S5 + a56a56 + S6S6 + a67a67 + S7S7 + a71a7i = 0. (7.23)

All joint parameters are known for each of the two solution sets. Thus, the vector loop
equation can be projected onto any three linearly independent directions to yield three



98 Displacement analysis of group 1 spatial mechanisms

scalar equations in the three unknowns S2, S3, and S5. For example, projecting the vector
loop equation onto the vector a23 yields

S2S2 + a23a23 + S3S3 + a34a34 + S4S4

+ S5S5 + a56a56 + S6S6 + a67a67 + S7S7 + a7ia7i) = 0.x (7.24)

Evaluating the scalar products using the sets of direction cosines for a heptagon listed in
the appendix gives

SiX2 + ai2c2 + a23 + a34c3 + S4X3 + a45W43 + S5X43 + a56W543 + S6X543

+ a67W712 + S7X12 + a71 W12 = 0. (7.25)

Upon substituting the constant mechanism parameters and the calculated values for 0iA,
04A, and 06A into this equation, the corresponding value for the joint offset S5 can be
determined, as this is the only unknown in Eq. (7.25). The value for S5 corresponding to
#IB> #4B> and #6B can be found in a similar fashion.

Projecting the vector loop equation onto the vector ai2 and expanding the scalar products
using the sets of direction cosines in the appendix yields

an + a23c2 + S3X2 + a34W32 + S4X32 + a45W432 + S5X432

+ a56W67i + S6X71 + a67W71 + S ^ + a7iCi = 0. (7.26)

This equation can be used to solve for S3 for the A case by substituting values for the
constant mechanism parameters and the calculated values of 0JA, 04A, 06A, and S5A into
this equation. The offset value for S3 for the B case can be found by substituting the
corresponding values of 0iB, 04B, #6B, and S5B into Eq. (7.26).

The last joint offset to be calculated is S2. This parameter may be determined by
obtaining a scalar equation by projecting the vector loop equation onto any arbitrary
direction independent of a23 and aJ2. Projecting the vector loop equation onto the direction
of S2 and expanding the scalar products yields

S1C12 + S2 + S3C23 + a34U32 + S4Z3 + a45U432 + S5Z43 + a56U67i2

+ S6Z71 + a67U7i2 + S7Zi + a71U12 = 0. (7.27)

This equation can be used to determine values for S2 for the two solution sets by substituting
the constant mechanism parameters and each set of previous solutions for 0i, 04, 06, S3,
and S5.

At this point, the solution of the RRPRPPR mechanism is complete. It was shown
that the three unknown joint angles could be determined first by analyzing the equivalent
spherical mechanism. The three corresponding unknown joint displacements could then
be determined by projecting the vector loop equation onto any three linearly independent
directions to yield three scalar equations in the three unknown joint offset variables. Data
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Table 7.3. RRPRPPR mechanism parameters.

Link length, cm.

a12 = 20
a23 = 40
a34 = 30
a45 = 20
a56 = 20
a67 = 10
a71 = 30

Twist angle, deg.

c*i2 = 45
«23 = 60
a34 = 25
a45 = 30
a56 = 70
a61 = 20
of7i = 40

Joint offset, cm.

Si = 15
S2 = variable
S3 = variable
S4 = 35
S5 = variable
S6 = 25
S7 = 50

Joint angle, deg.

0] = variable
02 = 80
<93 = 65
04 = variable
05 = 2O
06 = variable
07 = 300 (input)

Table 7.4. Calculated configurations for
the RRPRPPR spatial mechanism.

0i, degrees
04, degrees
06, degrees
S2, cm
S3,cm
S5, cm

Solution A

235.43
101.77

-91.17
-53.98
104.23

-134.30

Solution B

-5.15
14.25

160.51
-110.15

110.12
-208.09

used in a numerical example are listed in Table 7.3, and the two solution configurations
are listed in Table 7.4.

All group 1 spatial mechanisms follow the pattern demonstrated in this and the previous
section. In other words, group 1 spatial mechanisms can always be solved by decoupling
the problem. The unknown joint displacements can be calculated first by analyzing the
equivalent spherical mechanism, which is, of course, a spherical 4R mechanism with
mobility M = 1. The unknown joint offsets can then be determined by projecting the vector
loop equation onto three linearly independent directions. Group 1 spatial mechanisms thus
represent the simplest form of a spatial closed-loop device, and as such further examples
will not be developed in this chapter. The next section, however, will present a solution
for the simplest spatial manipulator, that is, the CCC manipulator.

7.4 CCC spatial manipulator

Figure 7.5 shows a CCC spatial manipulator. The fixed coordinate system has been
attached so that the Z axis is parallel with the vector S\. It is important to note that the
origin of the fixed coordinate system does not always coincide with the origin of the first
coordinate system, that is, the intersection of the vectors Si and a^, because the first joint
of the manipulator is a cylindric joint. The distance from the origin of the fixed coordinate
system to the origin of the first coordinate system is defined in the figure as Li.

The specific problem statement for the reverse analysis of the CCC spatial manipulator
is stated as follows:
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Figure 7.5. CCC spatial manipulator.

given:

find:

constant mechanism parameters:
ai2, a23,

ai2,«23,
position and orientation of end effector:

FPtooi,FS3,Fa34,and
location of tool point in the 3rd coordinate system:

3Ptool,
0i,02,03,Li,S2,andS3.

The location of the third coordinate system can be obtained using Figure 7.5. Its origin
is located at the intersection of the vectors S3 and a34. Its Z axis is parallel to the vector
S3, and its X axis is parallel to the vector a34. The location of the tool point in terms of
this third coordinate system is given together with the desired position of the tool point
and orientation of the vectors S3 and a34 in the fixed coordinate system. The objective is
to determine the values for the variable parameters that will position and orient the end
effector as desired.

The first step of the analysis will be to determine the location of the origin of the
third coordinate system as measured in the fixed coordinate system. Using the results
of Eq. (5.3), the location of the origin of the third coordinate system may be calculated
from

P3orig — Ptool ~~  ( Ptool * V a34 ~~ ( Ptool * j ) S 3 X a 3 4 —  ( P to o l (7.28)

The second step of the analysis will be to form a closed-loop mechanism by calculating
the parameters of a hypothetical fourth link as described in Chapter 5. Arbitrary values
may be selected for the parameters a34 and a34. For this analysis, the link length a34 will be
selected as zero and the twist angle a34 will be selected as ninety degrees. With these two
selections, the direction of the vector S4 is known in terms of the fixed coordinate system.
Further, it is known that the vector S4 passes through the origin of the third coordinate
system because the link length a34 was chosen as zero.
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Table 7.5. Constant mechanism parameters for the CCC manipulator.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.

ai2 = 12 a12 = 27 L j = variable <f>\ = variable
a23 = 23 a23 = 4 5 S2 = variable 02 = variable

S3 = variable 6>3 = variable

J1CL

Figure 7.6. Hypothetical closure link for CCC manip-
ulator.

Figure 7.6 shows the hypothetical closure link for the CCC manipulator. The analysis
presented in Chapter 5 will be used to determine the close-the-loop parameters, that is, the
three distances SICL, S4, and a4i and the three angles 04, a4i, and y\. It should be noted
that the close-the-loop parameter SICL (see Figure 7.6) is the distance along the vector Si
from the intersection of the vectors Si and a4i to the origin of the fixed coordinate system.
The desired output value Li (see Figure 7.5) will equal the difference between the distance
Si (defined in the traditional way as the perpendicular distance between the vectors a4i
and ai2) and the distance SICL-

Upon completing the close-the-loop procedure, the CCC manipulator can be analyzed
as a closed-loop RCCC spatial mechanism. The equivalent RRRR spherical mechanism
is analyzed first as discussed in Section 6.7.2 to yield two solution sets for the joint
angles 0i, 02, and O3. The two corresponding values for 0i are then found from the
equation

01 =01 - Y\> (7.29)

The corresponding values for the three displacements Si, S2, and S3 are then determined
by projecting the vector loop equation onto any three linearly independent directions and
then solving the three scalar equations for the three unknown displacements. Finally, the
value of the parameter Li is found as the difference between the calculated value of Si
and the close-the-loop parameter SICL-

At this point the analysis of the CCC manipulator is complete, and a numerical ex-
ample is now presented. Table 7.5 shows the constant mechanism parameters of a CCC
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Table 7.6. RCCC mechanism parameters.

Link length, cm.

an = 12
a23 - 23
a34 = 0
a*? = -38.6996

Twist angle, deg.

an = 27
<*23 = 45
«3* 4 = 9 0

a%\ = 1 0 2 - 7 7

Joint offset, cm.

S j = variable
S2 = variable
S3 = variable
S** = -34.3735

Joint angle, deg.

0] = variable
#2 = variable
#3 = variable
#;* = 112.10
(input angle)

* = arbitrary selection
** = close-the-loop parameter

manipulator. The desired position and orientation for the manipulator are given as

F p _
'tool —

45.529"
-11.355 cm,

0.6672'
-0.6482

0.3671

-0.0900'
0.4188
0.9036

(7.30)
50.125_

and the position of the tool point in terms of the third coordinate system is given as

T6"
Ptool — cm. (7.31)

The objective is to calculate sets of values for the parameters Li, S2, S3, 0i, 02, and #3
that will position and orient the end effector as desired. The solution begins by determining
the location of the origin of the third coordinate system by using Eq. (7.28). The calculated
value was determined to be

F p _
* 3orig —

50.6499"
-7.4845
42.2003

cm. (7.32)

Values for the parameters 0̂ 34 and a34 were arbitrarily selected as ninety degrees and zero
respectively, and the close-the-loop parameters were calculated to be

S1CL = -49.8007cm, a4i= - 38.6996cm, S4 = -34.3735 cm, 04 = 112.10°,

c*4i = 102.77°, Y\ = 49.31°. (7.33)

Table 7.6 shows the mechanism parameters for the newly formed closed-loop RCCC
spatial mechanism. All parameters of the mechanism are known, and the three unknown
joint angles can be determined as presented in Section 6.7.2. The three joint offset values
are calculated by projecting the vector loop equation onto three different directions.

Table 7.7 shows the resulting two configurations of the manipulator that will position
and orient the end effector as desired.

7.5 Summary
Group 1 spatial mechanisms can always be solved by first analyzing the correspond-

ing equivalent spherical mechanism to determine the two configuration sets of the three
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Table 7.7. Calculated configurations for
the CCC manipulator.

0i, degrees
02, degrees
03, degrees
Li, cm
S2, cm
S3, cm

Solution A

71.63
-34.94

92.48
41.59

-14.97
54.31

Solution B

20.02
34.94
60.02
10.04
14.97
35.00

variable joint angles. The corresponding values for the three variable joint offsets can
next be determined by projecting the vector loop equation for the mechanism onto any
three arbitrary directions. This will yield three scalar equations in the three unknown joint
offset distances. It was shown in the example problems that a judicious selection of the
projection directions can simplify the solution.

A complete example of the reverse analysis of the simplest spatial manipulator, the
CCC manipulator, was also presented. This example illustrated the concept of closing the
loop with a hypothetical link in order to form a new closed-loop spatial mechanism. The
resulting group 1 spatial mechanism was then analyzed using the techniques presented in
this chapter.

7.6 Problems
1. A CCC robot has the following dimensions:

a 12 = 60° ai2 = 30in.
a23 = - 3 0 a23 = 12.

The tool point in terms of the third coordinate system is given as [6, 8, 2]T. Determine
the values for the parameters Li, S2, S3, <p\, #2, and #3 that will position the tool point
at [45, —11,  50]T measured in terms of the fixed coordinate system. The orientation of
the end effector is to be specified by

S3 = [1,2,2]T and a34 = [2, - 2 , 1]T.

2. A planar representation of a spatial RPRPRPR mechanism with link &JI fixed to ground
is illustrated in Figure 7.7. The link a7i is fixed to ground.

(a) What group mechanism is this? Why?

(b) Assuming that the input angle d1 is specified together with all constant mechanism
dimensions, obtain an input/output equation of the form

Aci +Bs ! + D = 0.

Obtain expressions for A, B, and D.
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7//////////// j

Figure 7.7. RPRPRPR mechanism.

7 //////////// Y
Figure 7.8. RPRRPPR mechanism.

(c) Show how to solve the equation from part (b) for all values of 0\ in terms of the
parameters A, B, and D.

(d) Explain how to solve for corresponding values of #3 and #5.

(e) Explain how to solve for the three slider displacements S2, S4, and S6.

3. A planar representation of a group 1 spatial closed-loop mechanism with link a7i fixed
to ground is shown in Figure 7.8.

(a) Assuming that all constant mechanism parameters are known and that the angle #7
is given as an input angle, explain how to solve for the angle 9\. How many values
for 9\ can be found?

(b) Assuming that you have successfully solved for 6\, explain how you would solve
for the angle 64.

(c) Assuming that you have successfully solved for 0\ and #4, explain how you would
solve for the angle #5.

(d) Finally, assuming that you have successfully solved for 6\, 04, and #5, explain how
you would solve for the slider displacements S2, S3, and S6.
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Figure 7.9. RRPCRP mechanism.

4. Shown in Figure 7.9 is a planar representation of a six-link RRPCRP group 1 spatial
mechanism with link a6i fixed to ground. The input parameter is #6, and the parameter
to be solved for first is #2-

(a) Assuming that all constant mechanism dimensions are known, what link lengths,
offsets, twist angles, and joint angles are still unknown?

(b) Write an equation that contains only the input angle and the output angle. Expand
the equation into the format:

Ac2 + Bs2 + D = 0.

(c) Describe how you would solve an equation of the form Ac2 + Bs2 + D = 0. How
many values of 02 would satisfy this equation?

(d) Assuming that 62 is now known, explain how you would determine the remaining
angles 63 and #5.

(e) Assuming that all joint angles are now known, explain how you would solve for the
slider displacements S4, S3 and Si.



8
Group 2 spatial mechanisms

8.1 Problem statement
A group 2 spatial mechanism is defined as a one-degree-of-freedom single-loop spatial

mechanism whose equivalent spherical mechanism has two degrees of freedom. The
simplest group 2 mechanism consists of five links that are interconnected by three revolute
joints and two cylindric joints.

Figure 8.1 shows an RCRCR spatial mechanism and its equivalent spherical mechanism
(note that the distance S4 is negative in the drawing). Link asi is fixed to ground, the input
angle is 05, and it is assumed that all constant mechanism parameters are known, that
is, the constant twist angles, link lengths, and joint offset distances. The objective is to
determine values for the unknown output angle, 0ls together with values for 02, #3> and 04

and the unknown joint offset distances S2 and S4. The angle 6\ is the output angle (the
unknown parameter to be solved for first).

Because the RCRCR mechanism is a one-degree-of-freedom device, specification of
the angle 05 is sufficient to calculate values for all the unknown parameters. Examination
of the fundamental and subsidiary cosine laws yields that each cosine law contains three
joint variables (sine and sine-cosine laws contain four joint variables). Hence, it is possible
to write down only a spherical equation containing the input angle 05, the output angle
0i, together with a third joint angle. The equations that contain 02, 03, and 04 as the third
angle are respectively

Z5i2 = c34, (8.1)
Z 5 i = Z 3 , (8.2)

and

Z451 = c23. (8.3)

The solution to the problem will be accomplished by deriving a second equation in the
input angle 05, the output angle 6\, and the unwanted angle 03. It is necessary to eliminate
03 from this equation and Eq. (8.2).

The next section describes alternative solutions for a pair of trigonometric equations.
Following this, methods for generating additional equations are derived using vector loop
equations and dual numbers. Finally, the second equation in 03 for the RCRCR mechanism
is derived, and a numerical example is presented.
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S,

Figure 8.1. Spatial RCRCR group 2 mechanism and
its equivalent spherical mechanism.

8.2 Solution of two trigonometric equations in two unknowns
In the example of the RCRCR spatial mechanism, it will be assumed that a second

equation can be found that contains #3 as the extra unknown. This new equation will be
paired with Eq. (8.2), which can be expanded in the form

Y5C1) + Ci 2 Z 5 = C23C34 - (8.4)

Equation (8.4) and the yet-to-be-determined second equation can be regrouped into the
general form

c3(AiCi + Bisi + Di) + s3(EiCi + FiSi + Q ) + + IiSi + JO = 0, i = 1,2,
(8.5)

where the coefficients Ai through Ji can be numerically evaluated as they are all in terms
of the given mechanism parameters.

The sine and cosine of an angle, #k, can be written in terms of the tan-half-angle, xk,
where xk = tan(#k/2) using the following trigonometric identities

2xk

ck =

(8.6)

(8.7)

Substituting for the sine and cosine of 0\ and O3 and then multiplying throughout by
(1 + x2)(l + x2) in the pair of equations represented by Eq. (8.5) gives

(1 - x2) [Ai(l - x2) + Bi(2xi) + Di(l + x2)]
(2x3) - x2) + Fi(2xi) 2)]

Regrouping Eq. (8.8) gives

x* [x?(Ai - D; - Hi + Ji) + x,(2Ii - 2Bi) + (-Aj - D; + Hj + Ji)
+ x3 [x](-2Ei + 2Gi) + xi(4Fj) + (2Ej + 2Gj)] + [x?(-A; +

Ji)] = 0 , i = 1,2. (8.9)
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Equation (8.9) may be written as

x\ [a{x\ + feiXi + d{] + x3 [e{x\ + f{xx + &] [h{x\ + ^ + 7i] = 0, i = 1, 2,

(8.10)

where the coefficients ax through j \ are readily expressed in terms of the coefficients Ai
through Ji and are therefore known quantities. These expressions are as follows:

ax = Ai - Di - Hi + Ji b{ = 2(Ii - Bi) d{ = -A{ - D{ + Hi + J{

e{ = 2(Gi - Ei) /i - 4Fi gi = 2(Gi + Ej) (8.11)
/ii = -A i + Di - Hi + Ji ii = 2(Ii + Bi) yi = Ai + Di + Hi + Ji.

The problem of solving for values of 6\ and 63 that satisfy the two equations represented
by Eq. (8.5) has now been reduced to determining values for xi and x3 that satisfy the two
biquadratic equations represented by Eq. (8.10). Two solution techniques for this problem
will be introduced.

8.2.1 Sylvester's solution method

The equations represented by Eq. (8.10) can be written as

L ix f+ M i x 3 + N ! = 0 , (8.12)

L2x2
3 + M2x3 + N2 = 0, (8.13)

where

Li = dix] + b{xi + d{, i = 1, 2 (8.14)
Mi = eix2

l + f(xl+gi, i = 1,2 (8.15)
Ni = h{x\ + ijxi + ji, i = 1, 2. (8.16)

The coefficients Li through Ni are quadratic expressions in the variable xi.
Equations (8.12) and (8.13) are a pair of quadratic equations in the variable x3. A

quadratic equation clearly has two solutions. The question, however, is what conditions
must the coefficients Lj through Ni satisfy in order for one value of x3 to solve both
Eqs. (8.12) and (8.13) simultaneously.

In Sylvester's solution method, Eqs. (8.12) and (8.13) will be rewritten as

0, (8.17)
L2t + M2u + N2v = 0, (8.18)

where t = X3, u = x3, and v = 1. Equations (8.17) and (8.18) represent two linear homo-
geneous equations in the three unknowns t, u, and v.

Equations (8.12) and (8.13) are now multiplied by x3 to yield

+ M ^ + Nix3 = 0, (8.19)
^ N2x3 = 0. (8.20)
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Letting s = X3, and using the definitions for t and u, Eqs. (8.19) and (8.20) may be written
as

(8.21)

(8.22)
= 0,

L2s + M2t + N2u = 0.

Equations (8.17), (8.18), (8.21), and (8.22) represent four linear homogeneous equa-
tions in the four unknowns s, t, u, and v. These four equations can be written in matrix
form as

0 L! Mi
0 L2 M2 N2

Li Mi Ni 0
U M2 N2 0

s
t
u
V

0
0
0
0

(8.23)

The four linear homogeneous equations must be linearly dependent if there is to be any
solution set other than the trivial solution where all the unknowns equal zero. The equations
will be linearly dependent if the following determinant equals zero:

0
0

L,
L2

Li

L2

M,
M2

Mi

M2

Ni

N2

Ni

N2

0
0

= 0. (8.24)

The terms L, through Nj are quadratic in the variable xi. Expansion of the determinant
will thus yield in general an eighth-degree polynomial in the variable xj.

8.2.2 Bezout's solution method

Equations (8.12) and (8.13) can be thought of as two quadratic equations in the variable
x3. Bezout's solution method proceeds by rewriting these equations as

x3(Lix3 + Mi) + Ni = 0, (8.25)

x 3 ( L 2 x 3 + M 2 ) + N 2 = 0. (8.26)

These two new "linear" equations must be linearly dependent if there is to be a common
solution. Equations (8.25) and (8.26) will be linearly dependent if

N2(Lix3 + MO - Ni(L2x3 + M2) = 0.

This equation can be written as

Li N
L2 N2 M2 N2

= 0.

Equations (8.12) and (8.13) can now be written as

(8.27)

(8.28)

(8.29)

(8.30)
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These two new "linear" equations (linear in the term X3) must be linearly dependent if
there is to be a common solution. The equations will be linearly dependent if

Li(M2x3 + N2) - L2(Mix3 + N3) = 0.

Equation (8.31) can be written as

Li
L2 M2

Li Ni
L2 N2

= 0.

(8.31)

(8.32)

Equations (8.28) and (8.32) are two linear equations in the variable x3. In order for a
common solution for x3 to exist that simultaneously satisfies Eqs. (8.28) and (8.32), the
equations must be linearly dependent and the following expression may be written:

L,

U
Mi

M2

Mx

M2

Ni

N2

Li

U
N,
N2

= 0. (8.33)

The coefficients Li through N2 are quadratic in the variable xi. Thus, Eq. (8.33) can be
expanded, and in general it will yield an eighth-degree polynomial in the variable xi, which
is the same eighth-degree polynomial obtained by Sylvester's method. The reader may
well prefer Bezout's method because the expansion of Eq. (8.33) is simpler than that for
Eq. (8.24) and also Eqs. (8.28) and (8.32) give alternate expressions for x3 = tan(03/2).
However, special relationships between the coefficients Li through N2 may reduce the
degree of this polynomial, and for the RCRCR mechanism it in fact reduces directly to
fourth degree.

The corresponding value for x3 for each value of Xi can be found from Eq. (8.28) as

(8.34)x3

Mi

M2

L,
L2

or from (8.32)

x3

Li

u
u
u

Ni

N2

N,
N2

as

N,
N2

Mi

M2

(8.35)

In summary, it has been shown in this section how two biquadratic equations in two
unknowns can be solved. The result is in general an eighth-degree polynomial in one of
the variables. Corresponding values for the second variable are readily obtained.

8.3 Generation of additional equations
The previous section showed how two equations, such as Eq. (8.5), that are linear

in terms of the sines and cosines of two unknown angles may be solved. The result
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is, in general, an eighth-degree polynomial in terms of the tan-half-angle of one of the
unknowns.

This section will focus on techniques for obtaining the second equation that will be
paired with a spherical cosine law to obtain a mechanism's input/output equation. Three
types of equations will be introduced and discussed in general terms. After this, specific
examples such as the RCRCR mechanism shown in Figure 8.1 will be presented.

8.3.1 Projection of vector loop equation

The vector loop equation for a spatial closed-loop mechanism is formed by summing
all the products of the link lengths times the unit link vectors plus the offset distances times
the unit joint axis vectors. This summation will equal the zero vector. For the RCRCR
mechanism, the vector loop equation is written as

SiSi + a^a^ + S2S2 + a23&23 + S3S3 + a34a34 + S4S4 + a45a45 + S5S5 + a5ia5i = 0.

(8.36)

This vector loop equation can be projected onto any vector, b, to yield a scalar equation.
This projection is accomplished by performing a scalar product of each vector in the loop
equation with the vector b.

Typically, the vector loop equation is projected onto one of the link vectors or joint
axis vectors. This is done because the scalar product can be easily evaluated by use of the
direction cosine tables listed in the appendix. For example, for the RCRCR mechanism,
the projection of the vector loop equation onto the direction a34 can be written as

Si (Si • a34) + ai2(ai2 • a34) + S2(S2 • a34) + a23(a23 • a34) + S3(S3 • a34)
+ a34(a34 • a34) + S4(S4 • a34) + a45(a45 • a34) + S5(S5 • a34) + a5i(a5i • a34) = 0.

(8.37)

The result of a scalar product is independent of the coordinate system that the two
vectors are measured in. Thus, each scalar product in Eq. (8.37) may be evaluated using
a different set from the direction cosine table for a spherical pentagon, if so desired. For
example, using set 8 for the direction cosine table for the first six scalar products and set
3 for the remainder yields the scalar equation

SiX23 + a12W23 + S2X3 + a23c3 + a34 + a45c4 + S5X4 + a5iW54 = 0. (8.38)

It will be seen in Chapter 11 that the projection of the vector loop equation will be used
often in the reverse-analysis solution of industrial robot manipulators.

8.3.2 Self-scalar product of vector loop equation

A scalar equation can be generated by performing a scalar product of the vector loop
equation with itself. For the RCRCR mechanism the self-scalar product may be written as

[S1S1 + ai2ai2 + S2S2 + a23a23 + S3S3 + a34a34 + S4S4 + a45a45 + S5S5

• [S1S1 + ai2ai2 + S2S2 + a23a23 + S3S3 + a34a34 + S4S4

+ a45a45 + S5S5 + a5ia5i] = 0. (8.39)
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Expanding this equation, dividing by 2, and then regrouping gives

[
+ SiSi- [ ai2ai2 + S2S2 + a23323 + S3S3 + a34a34 + S4S4 + a45a45 + S5S5

- [ S2S2 + a23a23 + S3S3 + a34a34 -f S4S4 -f 345345 4- S5S5
+ S2S2-

+ S3S3-

+ 8484-

+ S3S3 -h a34a34 + S4S4 -f 345345 + S5S5
S3 S3 + a34a34 + S4S4 + 345345 + S5S5

+ S4S4 + a45a45 + S5S5
S4S4 + a45a45 + S5S5

+ a 5 i a 5 i ]

+ s5s5-
(8.40)

Each of the remaining scalar products can be evaluated in terms of any desired coor-
dinate system to yield a scalar equation. In most applications of the self-scalar product,
certain terms of the vector loop equation are moved to the right-hand side of the equal
sign. A self-scalar product is then performed for the remaining vectors on the left side
of the equation. This is equated to the self-scalar product of the vectors on the right side
of the equation. This procedure is used to obtain a scalar equation that does not contain
certain unwanted joint angles.

8.3.3 Secondary cosine laws

Secondary cosine laws are scalar equations that have proved to be most useful in the
analysis of spatial mechanisms. They can be derived by employing various scalar triple
products of vector loop equations for closed polygons.

It is, however, easier and more instructive to derive secondary cosine laws from existing
spherical cosine laws, and this is precisely why they have proved to be most useful. They
contain the very same joint angles as their corresponding spherical cosine laws, which
themselves contain the minimum number of joint variables. Further, this derivation crys-
tallizes the concepts of equivalent spherical and spatial mechanisms (see Section 6.1 and
Figure 8.1). Any spherical cosine law that contains certain o^'s and 0j's is valid for
equivalent spherical and spatial polygons. Dualizing the spherical cosine law provides an
additional secondary cosine law for the spatial polygon that contains the same «y's and
0j's together with corresponding a^'s and Sj's. In order to accomplish this, it is necessary
to understand the definitions and various operations of dual numbers and dual angles that
were first introduced by Study (1901).

(a) Dual Numbers

A dual number is defined as a pair of real numbers, one of which is associated with the
real unit +1 and the other of which is associated with the unit e where e2 — € 3 = - - • = 0.
For example, a dual number may be written as 5 + 7e.
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The definition of addition, multiplication, and division of dual numbers is straightfor-
ward. The sum of two dual numbers a and b that are defined as

(8.41)

b = b + 6b0 (8.42)

is

a + b = (a + b) + 6(ao + b0). (8.43)

The product of a and b is defined as

ab = (ab) + 6(ab0 + ba0). (8.44)

The division of dual numbers such as

a y- • - - » .  ( 8 4 5 )

b (b + ebo) l '

is accomplished by multiplying the numerator and denominator by (b —  eb0) which
gives

a _ (a + cap) (b - eb0) _ (ab) + 6(apb - boa)
b " (b + eb0) (b - 6b0) b2 ( * }

Division by a "pure dual number" for which the denominator has no real part is not
defined.

Dual numbers may be substituted into functions. For example, suppose that f(x) is
defined as

f(x) = 3x2 + 2x + 7. (8.47)

Substituting the dual number (5 + 26) into the function gives

f(5 + 26) = 3(5 + 26)2 + 2(5 + 26) + 7 = 92 + 646. (8.48)

The function can also be evaluated by a different manner. The Taylor's series expansion
of a function is given by the infinite series

f(x + Ax) = f(x) + A x - ^ + ( A x ) 2 ^ p + • •  •. (8.49)

Substituting the dual number a into Eq. (8.49) gives

f(a + 6ao) = f(a) + <-aof(a). (8.50)

Equation (8.50) is not an approximation because the remaining terms of the Taylor's series
expansion vanish because 62 = 63 = 6n = 0, n > 2. Using Eq. (8.50) for the function
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f(x) when x = (5 + 26) gives

f(5 + 2e) = f(5) + 2ef (5) = 92 + 26(32) = 92 + 646. (8.51)

The Taylor's series expansion will be used extensively when evaluating functions with
dual numbers. As a second example, consider the function

g(x) = cos(x) + 3 sin(x). (8.52)

Evaluating this function when x = (2 + 56) radians gives

g(2 + 56) = g(2) + 56g'(2) = cos(2) + 3 sin(2)
+ 56(-sin(2) + 3 cos(2)) = 2.31 - 10.796. (8.53)

Taylor's series expansion may also be used for a function with more than one variable. For
example, if f is a function of three variables, that is, f(x, y, z), then f (a+6ao, b+6b0, c+6C0)
is defined by

df
f(a + 6a0, b + 6b0, c + 6C0) = f(a, b, c) + 6ao—dx X = i —

dy
z = c z = c z = c

(8.54)

Equation (8.54) can be easily extended by the reader for a function with more than three
variables.

As an example, consider the function

f(x, y) = 4x2 cos(y) + 3x sin(y). (8.55)

Evaluating this function at x = 4 + 26 and y = 3 + 56 yields

f(4 + 26, 3 + 56) = 4(4)2 cos(3) + 3(4) sin(3)
+ 26[8(4)cos(3) + 3sin(3)]
+ 56[_4(4)2 sin(3) + 3(4) cos(3)]

= -61.67-167.076. (8.56)

(b) Dual Angles

A dual angle can be used to measure the relative position of two skew lines in space.
For example, the dual angle a\2 = ot\i + eai2 completely describes the relative position
of the lines $i and $2 (the notation $i represents the line in space that passes through the
ith joint axis of the mechanism). Similarly, the dual angle 02 = 02 + 6S2 completely
describes the relative position of the lines $12 and $23, where $12 represents the line along
link ai2 and $23 represents the line along link a23-

It can be shown that all the trigonometric identities will be valid for dual numbers. For
example, it can be shown that sin2 02 + cos2 02 = 1 as follows:

sin 02 = sin6>2 + 6S2cos6>2, (8.57)
cos<92 = cos6>2 - 6S2sin6>2. (8.58)
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Squaring and adding the left and right sides of Eqs. (8.57) and (8.58) gives

sin2 §2 + cos2 62 = (sin2 02 + cos2 62) + € [2S2 sin 92 cos 62 - 2S2 sin 02 cos 02] = 1.

(8.59)

Dual angles will now be inserted into the spherical and polar sine, sine-cosine, and
cosine laws, resulting in new equations. These equations were proven to be valid by
Kotelnikov (1895) in his Principle of Transference.

(c) Secondary Cosine Laws

Dual angles are most often substituted into spherical cosine laws because these laws
have one less joint variable than sine or sine-cosine laws and the objective of most problems
is to obtain equations with as few unknowns as possible. The phrase "secondary cosine
law" refers to the equation that is formed by equating the dual parts of a spherical cosine
law whose twist and joint angles have been replaced by dual angles.

As an example, consider the spherical cosine law

Z41 = c23 (8.60)

for an RCCC spatial mechanism. The left-hand side of Eq. (8.60) contains the angles 04,
0\, CU34, «4i, and  otyi. The right-hand side contains only the angle #23. Dual angles will now
be substituted for all of these angles. Dual angle substitutions will now be made by writing

Z 4 i=c 2 3 . (8.61)

The right-hand side of Eq. (8.61) is clearly

C23 = c23 -ea 2 3 s 2 3 . (8.62)

The left-hand side of Eq. (8.61) can be written as

Z41 = Z 4 1 + e Z 0 4 i , (8.63)

where

Z41 = Si2(X4Sl + Y4C1) + Ci2Z4 (8.64)

and

<7 O ^ 4 1 , O ^ 4 1 . ^ 4 1 . ^ 4 1 9Z41

Z04i = S4——  + Si——  + a34-—  + a 4 i - ha 1 2 -— . (8.65)
0&4 60\ da?,4 oa^i oot\2

Each of the partial derivatives of Eq. (8.65) must now be evaluated. The partial derivative
of Z41 with respect to 0\ is readily evaluated as

= s,2(X4C, - Y4s,) = s12X4i. (8.66)
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Similarly, the partial derivative of Z4i with respect to an is readily evaluated as

^ = c12(X4Sl + Y4Cl) - s12Z4 = Y41. (8.67)

The partial derivatives of Z4i with respect to 04 and a34 can more easily be determined
by taking a partial derivative Zi4, which equals Z4i. This is equivalent to performing the
following exchange of subscripts on Eqs. (8.66) and (8.67):

4 1 2 3

1 I 1 I- (8-68)
1 4 3 2

The exchange yields the following two partial derivatives:

-TZT = S34xi4, (8-69)
OU4

= Y14. (8.70)
da 34

The partial derivative of Z41 with respect to a4\ remains to be evaluated. This partial
derivative can be written as

az4i fdx4 dY4 \ dz4
-— = S12 - — s i + - — c i + C12-—. (8.71)
oor4i \0a41 00141 J aa4\

Now,

X4 = s34s4, (8.72)

Y4 = - (s 4 ic 3 4 + c4is34c4), (8.73)

Z4 = c4ic34 - s4is34c4. (8.74)

Taking a partial derivative of each of these terms with respect to c&u yields

—  \J, —  ^-t\ 1 —  ^ 4 • ^ o. / 3 J

Substituting these derivatives into Eq. (8.71) yields

= -Si2CiZ4 + c12Y4. (8.76)
oa4\

All the partial derivatives in Eq. (8.64) have been expanded. The secondary cosine law
that corresponds to the spherical cosine law Z41 = c23 may now be written as

S4(s34Xi4) + Si(si2X4i) + a34(Y14) + a4i(-Si2CiZ4 + Ci2Y4) + ai2(Y41) = -a 2 3 s 2 3 .

(8.77)

The procedure for generating secondary cosine laws is straightforward. The task of
evaluating the partial derivatives can be simplified, however, by use of a computer software
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package that can perform symbolic manipulations. Several of these types of packages are
commercially available.

One example of evaluating a secondary cosine law has been presented in this section.
The subsequent sections of this and the next chapter will show how secondary cosine laws
can contribute to the determination of the input/output equation for a spatial mechanism.

8.4 Five-link group 2 spatial mechanisms

Five-link group 2 mechanisms will contain three revolute joints and two cylindric joints.
These mechanisms are the simplest group 2 mechanisms and will result, in general, in an
eighth-degree input/output equation. One exception, however, is the RCRCR mechanism,
which will have only a fourth-degree input/output equation because of special reductions
in the determinants |LM|, |MN|, and |LN| (see Eq. (8.33)).

Two cases of five-link group 2 mechanisms whose input is a revolute joint will be
presented in this section. The two cases represent the situations where the two cylindrical
joints are adjacent in the mechanism or they are separated by a revolute joint. All five-link
group 2 mechanisms (whose input is one of the revolute joints) may be solved using one
of these cases.

8.4.1 Case I: RCRCR spatial mechanism (C joints separated by
one R joint)

The RCRCR mechanism is shown in Figure 8.1. A planar representation of the mech-
anism is shown in Figure 8.2. The problem statement is as follows:

given: constant mechanism parameters, that is,
&12? 3.23, a34, a45, a 5 i ,

0t\2, Q?23> ^34* ̂ 45? #51>

Si, S3, andS5 and
input angle, 05,

find: 0i,02,03,04,S2,andS4.

R/
input 5 /////////// 1 0 U tpU t
angle angle
Figure 8.2. Planar representation
of RCRCR group 2 spatial mech-
anism.
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The angle 9\ will be solved for first and is called the output angle. The present objective
is to obtain an equation that does not contain the variable joint offsets S2 or S4 and that
has 9\ and any one of 02, #3> or 04 as its only unknowns. This equation will be paired with
the appropriate spherical cosine law, and the input/output equation will then be obtained
as described in Section 8.2.

The necessary equation can be obtained by focusing on the fact that the variable joint
offset distances S2 and S4 must not appear in the equation. One approach would be to
project the vector loop equation onto a vector that is perpendicular to S2 and S4, that is,
S2 x S4. Although this may yield the desired result, the procedure will be complex. As
an alternative, dual angles will be substituted into the spherical cosine law

Z 5 i = Z 3 . (8.78)

This spherical equation was selected because it does not contain 02 or 04 and as such its
corresponding secondary cosine law will not contain S2 or S4.

The secondary cosine law associated with Eq. (8.78) will be written as

Zo5i=ZO3. (8.79)

Now,

Z3 = c23c34 - s23S34c3. (8.80)

The dual part of this equation, after the dual angles a23, ($34, and 03 have been substituted,
can be written as

Z03 - a 2 3 — -  + a 3 4 - ^ + S 3 —^ . (8.81)
3a 2 3 a«34 0O3

Evaluating the partial derivatives yields

Z03 = a23Y3 + a34Y3 + S3s34X3. (8.82)

The left side of Eq. (8.79) must now be evaluated. The term Z051 can be written as

3Z5i 3Z51 3Z5i 3Z5i 3Z5i
Z051 = a 4 5 - —  + a 5 i - — + a n - — + S 5 - — + S i - — . (8.83)

OQf45 OQ?5i 00^12 065 dO\

After expanding the partial derivatives for the ai2 andSi terms, Eq. (8.83) may be expressed
as

Z051 = a12Y5i + SlSl2X5i + Si2(X05Si + Y05Ci) + c12Z05, (8.84)

where

X05 = a45c45s5 + S5s45c5, (8.85)

Y05 = a45(s5is45 - c5ic45c5) - a5iZ5 + S5C5iS45s5, (8.86)

Z05 = a45Y5 + a5iY5 + S5S5iS45S5. (8.87)
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Substituting the results of Eqs. (8.82) and (8.84) into Eq. (8.79) and moving all terms to
the left-hand side results in the equation

S1S12X51 + Si2(X05Si + Yo 5ci) + C12Z05 - a23Y3 - a34Y3 - S3s34X3 = 0.

(8.88)

Equation (8.88) contains the unknown joint angles 0\ and #3, which together with Eq. (8.78)
can be used to eliminate 03 in order to obtain the input/output equation that contains
only 0\.

Equations (8.88) and (8.78) must be regrouped into the form of Eq. (8.5). Equation (8.78)
will be referred to as the first equation, and Eq. (8.88) will be the second equation.

The first equation, is expanded as follows:

Y5C1) + c12Z5 - (c23c34 - s23s34c3) = 0. (8.89)

Regrouping this equation yields

c3[s23s34] + s3[0] + [ci(si2Y5) + si(si2X5) + (c12Z5 - c23c34)] = 0. (8.90)

Thus, the coefficients for the first equation, when regrouped into the form of Eq. (8.5),
are

Ai = 0 , Bi = 0, Di = s23s34,
Ei = 0 , Fi = 0, Gi = 0, (8.91)
Hi = Si2Y5, Ii = s12X5, Ji = Ci2Z5 - c23c34.

The second equation, is expanded by substituting

(8.92)

Y5i = Ci2(X5Si + Y5ci) - Si2Z5, (8.93)

Y3 = - ( s 3 4 c 2 3 + c3 4s2 3c3), (8.94)

Y3 = - ( s 2 3 c 3 4 + c2 3s3 4c3), (8.95)

X3 - s23s3 (8.96)

and regrouping to yield

c3[a23c23s34 + a34c34s23] + s 3 [ -S 3 s 3 4 s 2 3 ]

+ [ci(ai2c12Y5 + SiSi2X5 + Si2Y05) + Si(ai2Ci2X5 - SiSi2Y5 + Si2X05)

+ (-ai2s12Z5 + c12Z05 + a23s23c34 + a34s34c23)] = 0. (8.97)

Thus, the coefficients for the second equation, when regrouped into the form of Eq. (8.5),
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are

A2 = 0, B2 = 0, D2 =
E2 = 0 , F2 = 0, G2 = -S3s3 4s2 3,
H2 = a12c12Y5 + SlSi2X5 + s12Y05, (8.98)
h = ai2Ci2X5 - SiSi2Y5 + Si2X05,

J2 = - a i 2 S i 2 Z 5 + Ci2Z05

Equations (8.90) and (8.97) represent two equations of the form

c3[AiCi + BiSi + Di] + S3[EiC! + FiSi + G{] + [HjCi + IiSi + JJ = 0 i = 1, 2.

(8.99)

Letting x3 equal tan(#3/2), the sine and cosine of #3 can be replaced by the following
trigonometric identities:

s3 = ^ (8.100)

c, = i ^ | . (8.101)

Multiplying Eq. (8.99) throughout by (1 + X3) and regrouping gives

x^[(Hi - Ai)ci + (Ii - Bi)si + (Ji - Di)] + x3[2(EiCl + FiS l + GO]

+ [(Hi + Ai)ci + ft + BOsi + (Ji + Di)] = 0 i = 1, 2. (8.102)

Substituting the coefficients for the first equation, Eq. set (8.91), into Eq. (8.102) yields

3 (Si2X5)Si + (C1 2Z5 - C23C34 - S23S34)]

+ [(si2Y5)ci + (si2X5)si + (ci2Z5 - c23c34 + s23s34)] = 0.
(8.103)

Introducing the shorthand notation

c23±34 = cos(a23 ± a34), (8.104)

Eq. (8.103) may be written as

+ (Si2X5)Si + (Ci2Z5 - C23_34)]

+ [(si2Y5)ci + (s12X5)si + (ci2Z5 - c23+34)] = 0. (8.105)

Substituting the zero-valued coefficients for the second equation, Eq. set (8.98), into
Eq. (8.102) yields

I2Sl + (J2 - D2)] + x3[2G2] + [H2ci + I2si + (J2 + D2)] = 0. (8.106)

Equations (8.105) and (8.106) represent two equations that are quadratic in the variable x3.
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These two equations may be written as

L1X3 + MiX3 + Ni = 0 i = 1, 2,

where the coefficients are given as

Li = (si2Y5)ci + (si2X5)si + (ci2Z5 - c23_34),
M i = 0 ,
Ni = (si2Y5)ci + (si2X5)si + (ci2Z5 - C23+34)

and

(8.107)

(8.108)

= 2G2, (8.109)

The condition that must exist on the coefficients Li through Mi of these equations in order
for there to be a common root of x3 was shown in Section 8.2.2 to be

U
Mi

M2

Mi

M2

N,
N2

Li

u
N,
N2

= 0.

The determinant notation |S T| is defined as

51 Ti
IS T| =

52 T2

The determinants |L M|, |M N|, and |L N| are expanded as

(8.110)

(8.111)

|L M| = LiM2 = 2G2[(s12Y5)c, + (s12X5)s, + (c,2Z5 - C23-34)], (8-112)

|M N| = -M 2 Ni = -2G2[(si2Y5)c1 + (sI2X5)Sl + (c12Z5 - c23+34)], (8.113)

|L N| = 2D2[(si2Y5)c1 + (si2X5)si + Ci2Z5] + [H2Ci + I2si + J2][c23+34 - c23_34]

- D2[c23+34 + c23_34]. (8.114)

Equation (8.114) is simplified by recognizing that c23+34 —  c23_34 = —  2s23s34 and that
C23+34 + c23-34 = 2c23C34 to yield

|L N| = 2D2[(si2Y5)c, + (s12Xs)si + Ci2Z5]

+ [H2ci + I2si + J2](-2s23s34) - D2(2c23c34). (8.115)

Equations (8.112), (8.113), and (8.115) can be regrouped into the following forms

|L M|=ci(Pi)

|M N|=c,(P2) + s,(Q2) + (R2),
|L N | =

(8.116)
(8.117)
(8.118)
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where

P, = 2G2s12Y5, Qi = 2G2s12X5, R{ = 2G2(c12Z5 - c23_34),
P2 = -2G2s1 2Y5, Q2 = -2G2s12X5, R2 = -2G2(c12Z5 - c23+34),
P3 = 2D2Si2Y5 - 2s23s34H2,
Q3 = 2D2s12X5 - 2s23s34I2,
R3 = 2D2c12Z5 - 2s23s34J2 - 2D2c23c34. (8-! 1 9)

Each of the three determinants defined in Eqs. (8.16) through (8.18) will be reevaluated
by substituting the tan-half-angle trigonometric identities for the sine and cosine of 9\.
Multiplying throughout by (1 + x2) and regrouping yields

x?), (8.120)
|M N| = [x2(R2-P2) + Xl(2Q2) + (R2 + P 2 ) ] / ( l+x 2 ) , (8.121)
|L N| = [x2(R3-P3) + Xl(2Q3) + (R3 + P3)]/(l + x2). (8.122)

The product |L M||M N| can now be evaluated as

|L M||M N| = {[x?(R1-P,) + xi(2Q1) + (R,+Pi)]

x[x2(R2-P2) + Xl(2Q2) + (R2 + P2)]}/(l+x2)2. (8.123)

This equation is expanded to yield

|LM||MN| = {x?[(Ri - P0(R2 - P2)] + x?[(Ri - Pi)(2Q2) + (R2 - P2)(2Qi)]
+ x2[(R, - Pi)(R2 + P2) + (R2 - P2)(Ri + Pi) + 4QiQ2]
+ x,[(2Q1)(R2 + P2) + (2Q2)(Rj +P,)]
+ [(R1+P1)(R2 + P2)]}/(l+x?)2. (8.124)

The product |LN|2 is evaluated as

|L N|2 = {x? [(R3 - P3)2] + x?[(R3 - P3)(4Q3)] + x2 [2(R3 - P3)(R3 + P3) + 4Q2]

+ xi[(4Q3)(R3 + P3)]+ [(R3 + P3)2]}/(l + x2)2. (8.125)

A fourth-order input/output equation for the spatial mechanism is finally obtained by
substituting Eqs. (8.124) and (8.125) into Eq. (8.110) and multiplying throughout by
(1 + x2)2, which yields the following equation that contains 9\ as its only unknown:

x?[(R,-P,)(R2-P2)-(R3-P3)2]
+ x\[(R1 - P0(2Q2) + (R2 - P2)(2Q0 - (R3 - P3)(4Q3)]
+ x2[(R, - Pi)(R2 + P2) + (R2 - P2)(Ri +Pi) + 4Q1Q2

- 2(R3 - P3)(R3 + P3) - 4Q2] + xi[(2Q!)(R2 + P2) + (2Q2)(R! + P,)
- (4Q3)(R3 + P3)l + [(Ri + Pi)(R2 + P2) - (R3 + P3)2] = 0. (8.126)

Equation (8.126) can be solved for up to four distinct values of xi and thereby four
corresponding values of 9\. All the coefficients Pi through R3 are defined in terms of the
constant mechanism dimensions and the given input angle, 9*,.



8.4 Five-link group 2 spatial mechanisms 123

Corresponding values for the tan-half-angle of 03 can be calculated from either Eq. (8.34)
or Eq. (8.35). Quite often it is useful when debugging a computer program to compare
the two solutions to see if they are the same. Numerical round-off error on the computer
may be improved if the two calculated values are averaged together.

The joint angle #4 can be obtained by writing the following subsidiary sine and sine-
cosine laws for a spherical pentagon:

X 1 5 = X 3 4 , (8.127)

Y15 = - X ; 4 . (8.128)

Expanding the right sides of Eqs. (8.127) and (8.128) gives

X15 = X3c4 - Y3S4, (8.129)

(8.130)

Equations (8.129) and (8.130) represent two equations in the two unknowns s4 and C4.
Corresponding values of 0\ and #3 can be substituted into these equations to calculate a
unique corresponding value for #3.

The remaining joint angle, #2, can be determined from the following two fundamental
sine and sine-cosine laws for a spherical pentagon:

X543 = S12S2, (8.131)

(8.132)

Corresponding values for the angles #1, #3, and #4 can be substituted into these equations
to calculate the corresponding value for 62.

The offset distances S2 and S4 are the last variables to be determined. These two
values will be found by projecting the vector loop equation for the mechanism onto two
different directions. Earlier, in Section 8.3.1, the vector loop equation was projected onto
the direction a34. The resulting scalar equation was listed as Eq. (8.38) and is repeated
here as

SiX23 + a12W23 + S2X3 + a23c3 + a34 + a45c4 + S5X4 + a5iW54 = 0. (8.133)

The offset distance S2 is the only unknown in this equation. The distance S4 will be
determined by projecting the vector loop equation onto the direction a23- This can be
written as

Si (Si • a23) + ai2(ai2 • a23) + S2(S2 • a23) + a23(a23 • a23) + S3(S3 • a23)

+ a34(a34 • a23) + S4(S4 • a23) + a45(a45 • a23) + S5(S5 • a23) + a5i(a5i • a23) = 0.
(8.134)

Evaluating the scalar products by using the sets of direction cosines listed in the appendix
gives

SiX2 + a12c2 + a23 + a34c3 + S4X3 + a45W43 + S5X43 + a51W12 = 0. (8.135)

This equation contains the variable S4 as its only unknown.
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Table 8.1. RCRCR mechanism parameters.

Link length,
cm.

a12 = 25
a23 = 30
a34 = 40
a45 = 10
351 = 32

Twist angle,
deg.

an = 60
C<23 = 4 5

a34 = 35
a45 = 30
«51 = 12

Joint offset,
cm.

Si =
S2 =

s3 =
S4 =
S5 =

-30
= variable
= 25
= variable
= 10

Joint angle,
deg.

0i = variable
02 = variable
03 = variable
04 = variable
05 = 260 (input)

Table 8.2. Calculated configurations for the RCRCR
spatial mechanism.

02,
03,
04,

s2,
s4,

degrees
degrees
degrees
degrees
cm.
cm.

A

-104.75
121.97
134.98

-59.73
46.12

-92.28

Solution

B

-78.85
-105.96
-129.10

73.62
101.88

-106.34

C

3.38
-120.86

-51.22
-57.70

-1.60
-13.25

D

22.84
-164.64

16.89
-120.81

-40.59
-26.16

5 111111 in \
input output
angle angle

Figure 8.3. Planar representa-
tion of RRCCR group 2 spatial
mechanism.

This completes the analysis of the RCRCR group 2 spatial mechanism. Four solution
configurations were determined. Table 8.1 shows data that were used for a numerical
example. The calculated values for the four configurations are listed in Table 8.2.

8.4.2 Case II: RRCCR spatial mechanism (C joints adjacent)

Figure 8.3 shows a planar representation of the RRCCR spatial mechanism. The prob-
lem statement for this mechanism is as follows:
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given:
constant mechanism parameters, that is,

Si, S4, and S5 and
input angle, 05,

find: 0i,02,03,04,S2,andS3.

Because this is a group 2 mechanism, it will be necessary to obtain two equations that
contain the input angle, 05, the output angle, 9\, and one additional joint angle. One of these
equations will be a spherical cosine law (whether fundamental or subsidiary), and the other
will be an equation that contains the constant link length and joint offset parameters. This
second equation must not contain the variable offsets S2 and S3. One means of obtaining
such an equation is to project the vector loop equation onto the direction a23.

The vector loop equation for the mechanism is written as

SiSi + ai2ai2 + S2S2 + a23a23 + S3S3 + a34a34 + S4S4 + a45a45 + S5S5 + a5ia5i = 0.

(8.136)

Projecting this equation onto the direction a23 yields

Si (Si • a23) + ai2(a12 • a23) + S2(S2 • a23) + a23(a23 • a23) + S3(S3 • a23)
+ a34(a34 • a23) + S4(S4 • a23) + a45(a45 • a23) + S5(S5 • a23) + a5i(a5i • a23) = 0.

(8.137)

The individual scalar products can be evaluated by using the sets of direction cosines listed
in the appendix as follows:

SiX2 + ai2c2 + a23 + a34c3 + S4X5i2 + a45W5i2 + S5Xi2 + a51W12 = 0. (8.138)

The fundamental sine-cosine law

Y5i2 = s34c3 (8.139)

can be used to eliminate C3 from Eq. (8.138) provided s34 does not equal zero.* Equation
(8.138) can thus be written as

SiX2 + ai2c2 + a23 + a34Y5i2/s34 + S4X5i2 + a45W5i2 + S5Xi2 + a51W12 = 0.
(8.140)

Equation (8.140) contains the input angle, 05, the output angle, 0\9 and the extra angle, 02.
This equation will be paired with the fundamental cosine law

c34 (8.141)

to generate the input/output equation for the mechanism.

* If S34 equals zero, then S3 and S4 would be parallel or antiparallel. The equivalent spherical mechanism
would reduce to a quadrilateral. Spherical equations could then be used to obtain the input/output equation.
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Expanding the left side of Eq. (8.141) and regrouping terms yields

c2[s23Y5i] + s2[s23X51] + [c23Z5i - c34] = 0. (8.142)

Expanding X51, Y51, and Z51 and then regrouping gives

c2[ci(s23ci2Y5) + Si(s23c12X5) + (-s23Si2Z5)] + s2[ci(s23X5) + Si(-s23Y5)]

+ [ci(c23s12Y5) + Si(c23Si2X5) + (c23Ci2Z5 - C34)] = 0. (8.143)

Expressing Eq. (8.141) in the form of Eq. (8.5) yields^

Ai = s23ci2Y5, Bi = s23Ci2X5, Di = -s23s12Z5,
E ! = s 2 3 X 5 , F1 = -s2 3Y5, G i = 0 , (8.144)
Hi = c23Si2Y5, Ii = c23Si2X5, Ji = c23Ci2Z5 - c34.

Expanding X2, Y5i2, X5i2, W5i2, Xi2, and Wi2 in Eq. (8.140) and regrouping terms
yields

c2[ai2 + a34c23Y5i/s34 + S4X51 + a45W51 + S5X!

+ s2[SiSi2 + a34c23X51/s34 - S4Y51 + a ^ l ^ s ^ + V51C12) - S5Yi -

+ [a23 - a34s23Z5i/s34] = 0. (8.145)

Finally, expanding X51, Y51, Z51, Xi, Yi, U51, V51, and W51 and expressing in the form of
Eq. (8.5) yields

A2 = a34c23Ci2Y5/s34 + S4X5 + a45c5 + a5i,

B2 = a34c23Ci2X5/s34 - S4Y5 - a45s5c5i + S5s51,

D2 = ai2 - a34c23si2Z5/s34,

E2 = a34c23X5/s34 - S4Ci2Y5 - a45ci2s5c5i + S5Ci2s5i,

F2 = -a3 4c2 3Y5/s3 4 - S4Ci2X5 - a45ci2c5 - a51ci2, (8.146)

G2 = S1S12 + S4Si2Z5 + a45U5iSi2 + S5S12C51,

H2 = -a34s23Si2Y5/s34,

h = -a34s23Si2X5/s34,

J2 = a23 - a34s23Ci2Z5/s34.

Finally tan-half-angle identities for 0\ and 02 can be used and the pair of equations expressed
in the form of Eq. (8.10), for which the coefficients are expressed by Eq. (8.11).

The two equations of the form of Eq. (8.10) are quadratic in the variables x2 and Xi.
These equations can be solved using Bezout's method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable xi. Thus, a maximum of eight values of G\ exist for the
mechanism for a given value of the input angle 05.

t Note that the extra variable in the current equations is 02 as opposed to 63 as written in Eq. (8.5).
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The corresponding value for the parameter x2 can be found from either

x2 =
M 2 N2

Li Ni
U N2

(8.147)

or

x2 =

Li

L2

Li

U

Ni

N2

Mi

M2

(8.148)

where Li ,Mi , and Ni are defined in Eqs. (8.14) through (8.16) and Eq. set (8.11).
Equations (8.147) and (8.148) can be derived in a manner similar to that in which
Eqs. (8.34) and (8.35) were derived.

A unique corresponding value of #4 can be obtained from the following fundamental
sine and sine-cosine laws:

X 2i5 = S34S4,

Y215 = S34C4.

(8.149)

(8.150)

Similarly, a unique corresponding value of 63 can then be obtained from the following
fundamental sine and sine-cosine laws:

X5i 2 = S34S3,

Y 5 i 2 = S34C3.

(8.151)

(8.152)

The offset distances S2 and S3 are the remaining parameters to be determined. These
two values will be found by projecting the vector loop equation for the mechanism onto
two different directions. Projecting the vector loop equation onto a34 (see Section 8.3.1)
yielded Eq. (8.38), which is repeated here as

SiX23 + ai2W23 + S2X3 + a23c3 + a34 + a45c4 + S5X4 + a5iW54 = 0. (8.153)

The offset distance S2 is the only unknown in this equation.
The offset distance S3 is determined by projecting the vector loop equation onto the

direction ai2. This can be written as

Si (Si

S4(S4 • ai2) + a45(a45 S5(S5 • a12) + a5i(a5i • ai2) = 0. (8.154)

Evaluating the scalar products by using the sets of direction cosines listed in the appendix
gives

(8.155)ai2 + a23c2 + S3X2 + a34W32 + S4X32 + a45W5i + S5X1 + a5iCi = 0.

This equation contains the variable S3 as its only unknown.
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Table 8.3. RRCCR mechanism parameters.

Link length,
cm.

Twist angle,
deg.

Joint offset,
cm.

Joint angle,
deg.

aj2 = 12
a23 = 34
a34 = 40
a45 = 41
a5i = 44

a12 = 62
<*23 = 67
a34 = 73
Qf45 = 127

<*5i = 80

Si = 8 0
S2 = variable
S3 = variable
S4 = 26
S5 = 87

0\ —  variable
02 = variable
#3 = variable
04 = variable
#5 = 222 (input)

Table 8.4. Calculated configurations for the RRCCR spatial mechanism.

Solution

D

Ou
02,
#3,

0A,
s2.
S3:

deg.
deg.
deg.
deg.

, cm.
, cm.

-112.27
29.06

110.96
85.99

-135.77
99.96

-55.92
-154.37
-163.98
-153.67

52.99
-115.49

-11.80
3.24

-156.77
25.02
-2.51
106.68

-4.36
-3.07

-149.63
25.04

3.18
105.67

14.84
167.77
131.56

-127.84
37.36

-104.68

99.08
159.13
59.12

-148.26
-46.10
-84.69

104.92
-86.11
-55.15
-40.49
-54.83

79.56

150.19
-138.75
-41.78
-92.55
-64.34
-10.82

This completes the analysis of the RRCCR group 2 spatial mechanism. Eight solution
configurations were determined. Table 8.3 shows data that were used for a numerical
example. The calculated values for the eight configurations are listed in Table 8.4.

It is interesting to plot the calculated joint angles and offsets as the input angle varies in
increments between zero and 2n. Figure 8.4 shows the calculated outputs for the RRCCR
mechanism whose dimensions are given in Table 8.3 as the angle 05 is varied.

8.5 Six-link group 2 spatial mechanisms
All six-link group 2 mechanisms consist of four revolute joints, one cylindric joint,

and one prismatic joint, that is, 4R-C-P. The only difference between the various six-link
group 2 mechanisms is the order of the types of joints.

The solution method for all the six-link mechanisms is identical to that for the five-link
mechanisms of the previous section. That is, two equations will be derived that contain the
input angle, the output angle, and one extra joint angle. Elimination of the extra joint angle
from the two equations will result in an eighth-degree polynomial in terms of the tan-half-
angle of the output angle. One of the two equations will be a subsidiary or fundamental
cosine law for a spherical hexagon. The other equation will be either a secondary cosine
law (if the C and P joint are not adjacent in the mechanism) or a projection of the vector
loop equation onto a link direction vector.

Two examples will be presented in this section, one where the C and P joints are adjacent,
and one where they are not. These two examples should be sufficient to demonstrate the
solution technique. After completing these examples, the reader should then be able to
apply the technique to all other cases.
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Figure 8.4. Output vs. input for RRCCR spatial mechanism.

8.5.1 RRRPCR spatial mechanism (C and P joints adjacent)

A planar representation of the RRRPCR spatial mechanism is shown in Figure 8.5. The
problem statement for this mechanism is as follows:

given: constant mechanism parameters:
an, a23,a34, a45,a56, a6i,
«12,  <*23, <*34, «45 ,^56 , <*61,
S i ,S 4 ,S 5 ,S 6 , and
#3 and

input angle:

find: 0i, 02, 04, 05, S2, andS3.



130 Group 2 spatial mechanisms

777777T7
input ° L output
angle angle
Figure 8.5. Planar representa-
tion of RRRPCR spatial mech-
anism.

The equation that contains the link lengths and offsets must not contain the unknown
parameters S2 and S3. One way of obtaining such an equation is to project the vector loop
equation onto the vector a23. The vector loop equation is written as

S1S1 + ai2ai2 + S2S2 + a23H23 + S3S3

+ S4S4 + a45a45 + S5S5 + a56a56 + S6S6 + a61a6i = 0. (8.156)

Projecting this equation onto a23 yields

Si(Si • a23) + a12(ai2 • a23) + S2(S2 • a23) + a23(a23 • a23) + S3(S3 • a23)

a23) + S4(S4 • a23) + a45(a45 • a23) + S5(S5 • a23)

• a23)+S6(S6 • a23)+a61(a6i • a23) = 0. (8.157)

The sets of direction cosines for a spherical hexagon that are listed in the appendix are
used to evaluate the scalar products of the above equation. The resulting equation is

SiX2 + ai2c2 + a23 + a34c3 + S4X3

S5X612 + a56W612 + S6X12 + a61W12 = 0. (8.158)

All the terms in this equation, with the exception of W43, contain only the constant
mechanism parameters, the input angle, 06, the output angle, 6\, and the extra angle, 02.
The exception, W43, is defined as follows:

W43 = C3C4 —  S3S4C34. (8.159)

This equation may be modified to yield

43 =
S45

(0.I0U)

provided s45 does not equal zero. Fundamental sine and sine-cosine laws for a spherical
hexagon may be used to replace the two terms in parentheses in Eq. (8.160). Thus, this
equation may be written as

w (Y6i23)c3 C34(X6123)s3 c3 4Y6i2 - s34Z6i2c3
W43 = = . (8.161)

S45 S45
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This expression is now defined in terms of the given parameters, the output angle, and the
extra angle, 02.

Substituting Eq. (8.161) into Eq. (8.158) yields

SiX2 + ai2c2 + a23 + a34c3 + S4X3 + a
S45

+ S5X612 + a56W6i2 + S6X12 + a6iW12 = 0. (8.162)

This equation contains the output angle, 0\, and the extra angle, 02»  a s its o n ly unknowns.
It will be paired with the fundamental cosine law

Z 6 1 2 3 = c 4 5 (8.163)

to yield the appropriate input/output equation for the mechanism.
Both Eqs. (8.162) and (8.163) will be expanded and regrouped into the format of

Eq. (8.5). The tan-half-angle substitutions for 6\ and 02 will then be used to yield two
biquadratic equations that can be solved for the output angle by using Bezout's method.

Equation (8.163) will be designated as the first equation, and it can be written as

s34(X6i2s3 + Y612c3) + c34Z612 - c45 = 0. (8.164)

Expanding X6i2, Y6i2, and Z6i2 and regrouping yields

c2[X3X61 - Y3Y61] + s2[-X3Y61 - Y3X61] + [Z3Z61 - c45] - 0. (8.165)

Expanding X6i, Y6i, and Z6i and regrouping yields

c2[Cl(X3X6 - Y3c12Y6) + S l ( -X 3 Y 6 - Y3c12X6) + (Y3s12Z6)]

+ s2[Cl(-X3c12Y6 - Y3X6) + S l ( -X3c1 2X6 + Y3Y6) + (X3s12Z6)]

+ [Cl(Z3s12Y6) + Sl(Z3s12X6) + (Z3Ci2Z6 - c45)] = 0. (8.166)

The coefficients for the first equation (see Eq. (8.5)) are thus

A! = X3X6 - Y3c12Y6, Bx - -X 3 Y 6 - Y3c12X6, Di = Y3s12Z6,

(8.167)
Hi =Z3Si2Y6, h =Z3Si2X6, Ji =Z3c1 2Z6 - c45.

The second equation, Eq. (8.162), is expanded and regrouped as follows by substituting
for the terms X2, X6123, Y6i23, X612, W6i2, X12, and Wi2:

[ 7 Y
an + S5X61 + a56W6i + S6Xi + a6!ci + a45

s45
S1S12 - S5Y61 + a56U*12 - S6Y! - a6iSiCi2 + a45

S J[ S45 J

a23 + a34c3 + S4X3 + a 4 5 ^ ^ l = 0. (8.168)
s 4 5 J
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This equation is next regrouped into the format of Eq. (8.5) as follows:

c2 ci (S5X6 + a56c6 + a6i + a45
 3 )

L V s4 5 /
QV ^ Q ^ Z3Ci2X6\ /

- S 5 Y 6 - a56s6c6i + S6s6i + a45 I + I aX2 - a45

s / V
I + I aX2 a4 5

s45 / V s45 ) \
ci ( - S 5 c 1 2 Y 6 - a56ci2s6c61 + S6Ci2s6i + £145——- )V s45 /

7 Y
- S 5 C i 2 X 6 - a56ci2c6 - a6iCi2 - a45

S45

S1S12 + S5s12Z6 + a56U6iSi2 + S6si2c61

Y3Si2Y6\ / Y3s12X6\
a45 + s i a45s45 / V s45 /

a23 + a34c3 + S4X3 + a 4 5
Y 3 C l 2 Z 6 ) l = 0. (8.169)

s45 / J
The coefficients for the second equation (see the format of Eq. (8.5)) are thus

A2 = S5X6 + a56c6 + a6i + a45Z3ci2Y6/s45,

B2 = -S 5 Y 6 - a56s6c6i + S6s6i + a45Z3Ci2X6/s45,

D2 = an - a45Z3si2Z6/s45,

E2 = -S5ci2Y6 - a56ci2s6c6i + S6ci2s6i + a45Z3X6/s45,

F2 = -S5c1 2X6 - a56ci2c6 - a6ici2 - a45Z3Y6/s45, (8.170)

G2 = S1S12 + S5Si2Z6 + a56U6is12 + S6si2c6i,

H2 = a45Y3Si2Y6/s45,

J2 = a23 + a34c3 + S4X3 + a45Y3c12Z6/s45.

Now that both equations have been regrouped into the format of Eq. (8.5), the tan-half-
angle identities for the sine and cosine of 6\ and 02 are inserted. The two equations can
then be regrouped into the format of Eq. (8.10), where the coefficients of this equation are
defined in Eq. set (8.11).

The two equations of the form of Eq. (8.10) are quadratic in the variables xi and x2.
These equations can be solved via Bezout's method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable xi.

The corresponding value for the parameter x2 can be found from either

x2 =

Mi Ni
M 2 N 2

Li Ni
L2 N2

(8.171)
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or
Li

U
Li

L2

N,
N2

M,
M2

(8.172)

where Li, Mi, and Ni are defined in Eqs. (8.14) through (8.16) and Eq. set (8.11). Equa-
tions (8.171) and (8.172) can be derived in a manner similar to that in which Eqs. (8.34)
and (8.35) were derived.

Two joint angles remained to be solved, that is, #4 and 05. A unique corresponding
value of #5 can be obtained from the following fundamental sine and sine-cosine laws:

X3216 = S45S5, (8.173)

Y3216 = S45C5. (8.174)

Similarly, a unique corresponding value of #4 can then be obtained from the following
fundamental sine and sine-cosine laws:

X6i23 = S45S4, (8.175)

Y6i23 = s45c4. (8.176)

The offset distances S2 and S3 are the remaining parameters to be determined. These
two values will be found by projecting the vector loop equation for the mechanism onto two
different directions. Projecting the vector loop equation onto the direction 334 and evaluat-
ing the scalar products using the sets of direction cosines provided in the appendix yields

SiX23 + a12W23 + S2X3 + a23c3 + a34 + a45c4 + S5X4

0. (8.177)

The offset distance S2 is the only unknown in this equation.
The distance S3 will be determined by projecting the vector loop equation onto the

direction ai2. Evaluating the scalar products by using the sets of direction cosines listed
in the appendix gives

ai2 + a23c2 + S3X2 + a34W32 + S4X32 + a45W56i + S5X6i

+ a56W61 + S6Xi + a6id - 0. (8.178)

This equation contains the variable S3 as its only unknown.
At this point, the analysis of the RRRPCR group 2 spatial mechanism is complete.

Eight solution configurations were determined. Table 8.5 shows data that were used for
a numerical example. The calculated values for the eight configurations are listed in
Table 8.6.

8.5.2 RRPRCR spatial mechanism (C and P joints separated)

A planar representation of the RRPRCR spatial mechanism is shown in Figure 8.6. The
problem statement for this mechanism is as follows:
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Table 8.5. RRRPCR mechanism parameters.

Link length,
cm.

Twist angle,
deg.

Joint offset,
cm.

Joint angle,
deg.

a,2 = 35
a23 = 19
a34 = 19
a 4 5 = 9
a56 = 22
a6i = 10

a12 = 82
<*23 = 78

«34 = 34

C*45 = 9 3

<*56 = 5 0

e*6i = 7 7

Si = 6 7 0i = variable
52 = variable 62 = variable
53 = variable 03 = 320
54 = 62 64 = variable
S 5 = 7 1 65= variable
S6 = 61 66 = 322 (input)

Table 8.6. Calculated configurations for the RRRPCR spatial mechanism.

Solution

Ou
02,
04,
05,
s2,
S3,

deg.
deg.
deg.
deg.
cm.
cm.

-107.96
-108.08

168.94
170.53

3.24
-140.58

4

-118.51
62.38

-95.54
13.46

-35.43
15.60

3

-63.47
51.38

-49.91
46.78
71.46
26.95

-22.40
-145.85

92.56
-148.55

143.61
-114.68

21.05
138.65
28.47

156.88
165.13

-149.83

47.48
-76.66

56.74
-53.32

89.03
63.81

-163.33
-31.45

-175.62
87.08

-87.61
-36.81

-173.31
134.67

-98.45
-68.65
-68.78
-89.69

/ 7 / 7 / / / /

input
angle

R

output
angle

Figure 8.6. Planar representation
of the RRPRCR group 2 spatial
mechanism.

given:
constant mechanism parameters:

S i ,S 3 ,S 5 ,S 6 , and
#4 and

input angle:
06,

find:

Because this is a group 2 mechanism, two equations must be generated that contain
only the output angle and one additional angle as unknowns. One of the two equations will
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be a spherical cosine law. The other equation will contain the link lengths and offsets and
must not contain the unknown parameters S2 and S4. One way of obtaining this second
equation is to write the secondary equation of a cosine law that does not contain the angles
#2 or O4. The equation

Z 3 (8.179)

will be dualized to yield

ZO3. (8.180)

The term on the right side of Eq. (8.180) contains the parameters #3, Q?23, and a34. Thus,
the right-hand side may be written as

(8.181)Zo3 S 3 + a23 + a 3 4 A
O&3 OQ?23 O&34

Evaluating the partial derivatives yields

Z0 3 = S3(S23S34S3) + a23(Y3) + a3 4(Y3). (8.182)

The term on the left side of Eq. (8.180) contains the parameters #5, 06, 0\, a45, a56,
and a 12 and may be written as

Evaluating the partial derivatives gives

(8.183)

= S5(s45X165) + S6(-X!X5*6 - Y!X56) + Si(s12X56i) + a45(Y165)
+ a56(-s45C5Zi6 + c45Y16) + a61(-Si2CiZ56 + c12Y56) + ai2(Y56i). (8.184)

Equating the results of Eqs. (8.182) and (8.184) yields the equation

S5(s45X165) + S6(-X!X5*6 - Y!X56) + S1(s12X56i) + a45(Y165)

+ a56(-s45C5Zi6 + c45Yi6) + a61 (-Si2CiZ56 + c12Y56) + ai2(Y561)

+ S3(-s23S34s3) + a2 3(-Y3) + a3 4(-Y3) - 0. (8.185)

All terms in Eq. (8.185) are expressed in terms of the constant mechanism parameters,
the input angle 96, the output angle 0u and the extra angle 05, with the exception of
the S3, a23, and a34 terms. The notation C(S3), C(a23), and C(a34) is now introduced to
represent the coefficients of the S3, a23, and a34 terms. For this case these coefficients are
defined as

C(S3) = -S23S34S3, (8.186)

C(a23) = - Y 3 , (8.187)

C(a34) = - Y 3 . (8.188)
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The coefficient for the S3 term may be written as

C(S3) = -S34X3. (8.189)

A subsidiary sine law may be used to write this term as follows:

C(S3) = -s34X1654. (8.190)

The coefficient for the a34 term may be modified by using a subsidiary sine-cosine law to
give

C(a34) = X?654. (8.191)

The coefficient for the a23 term may be written as

C(a23) = s23c34 + c23s34c3. (8.192)

Multiplying the right-hand side of Eq. (8.192) by g- yields

C(a23) = s23C34 + c23s23s34c3>

s23

Adding and subtracting the term C23c34 from the numerator of Eq. (8.193) and then re-
grouping terms gives

- c23(c23c34 - s23s34c3) (

s23

Substituting for the definition of Z3 gives

C(a23) = CJ1^*1. (8.195)
s23

A subsidiary cosine law is used to replace the term Z3 to give

C(a23) = C 3 4 ~ C 2 3 Z l 6 5 . (8.196)
S23

All the terms in Eq. (8.185) have now been expressed in terms of the constant mechanism
parameters, the input angle 06, the output angle 0\, and the extra angle 65. This equation
is written as

S5(s45X165) + S6(-X!X5*6 - YiX56) + S1(s12X56i) + a45(Y165)

+ a56(-s45c5Zi6 + c45Yi6) + a6i(-Si2CiZ56 + ci2Y56) + ai2(Y56i)

+ S3(-s34X1654) + a23(c34 - c23Z165)/s23 + a34(Xt654) = 0. (8.197)

This equation will be paired with the fundamental spherical cosine law

Z 4 5 6 i = c 2 3 (8.198)

to yield an eighth-degree input/output equation in the tan-half-angle of #1. Both Eqs. (8.197)
and (8.198) will be expanded and regrouped into the format of Eq. (8.5) (where the extra
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angle is now 05 instead of 62). The tan-half-angle substitutions for 6\ and 05 will then be
used to yield two biquadratic equations that can be solved for the output angle by using
Bezout's method.

Equations (8.198) and (8.197) will be referred to as the first and second equations for
this problem, respectively. These two equations will be regrouped into the format

c5(AiC! + Bisi + Di) + s5(EiCi + Fisi + GO + (HiCi + IiSj + JO = 0 i = 1, 2.

(8.199)

The coefficients of the two equations are listed as follows:

Ai = Si2(c6iS6X4 + Y4(-s6iS56 + c6ic56c6)),

Bi = Si2(c6X4 - s6c56Y4),

D 1 = c 1 2 ( X 6 X 4 - Y 6 Y 4 ) ,

c6ic56c6) - c6iS6Y4),

- C6Y4),

G ! = c 1 2 ( - X 6 Y 4 - Y 6 X 4 ) ,

Hi =

Ii =

Ji = c 1 2 Z 6 Z 4 -c 2 3 , (8.200)

A2 = S5(s45c6iSi2s6) + a6i(-Si2s45Y6) + S3S34Si2[s4c45(s56s6i - c56c6ic6) - c4c6is6]

+ a34si2[c45C4(s56s6i - c56c6ic6) + s4s6c6i] + ai2ci2s45(s6is56 - c6ic56c6)

S56S6i + C56C6iC6) + S6(c6iSi2C56S45S6) + Si(Si2C56S45S6)

a45si2c45(s56s6i - c56c6ic6),

B2 = S3s34si2(-c4c6 + c45c56s4s6) + S5(s45si2c6) + a34si2(s4c6 + c45c56c4s6)

+ a23(-c23s45c56si2s6/s23) + SiSi2s45(-s6iS56 + c6ic56c6) + a45(c45C56S12s6)

+ a56(-s45S56Si2s6) + S6(si2c56s45c6) + ai2(ci2c56s45s6),

E>2 = S3s34Ci2(s4c45Y6 - c4X6) + a23(-c23s45ci2Y6/s23) + a6iCi2s45(s6iS56 - c6ic56c6)

+ a34Ci2(c4c45Y6 + s4X6) + a45(c45Ci2Y6) + S5(s45s6iCi2s6) + ai2(-si2s45Y6)

+ S6(s6iCi2c56s45s6) + a56(-s45Ci2Z6),

E2 = a6i(-si2s6is45s6) + Si(si2s45c6) + ai2(ci2c6is45s6) + S6(c6iSi2s45c6)

+ a34si2[c4c45c6is6 + s4(-s56s6i + c56c6ic6)] + a23(-c23s45c6iSi2s6/s23)

+a45(c45c6isi2s6) + S3s12s34[c45c6is4s6 + c4(s56s6i - c56c6ic6)]

+ S5Si2S45(-S6iS56 + C6iC56C6),

F2 = a23(-c23s45si2c6/s23) + S6(-Si2s45s6) + a12(ci2s45c6) + a45(c45si2c6)

+ S3Si2s34(c45s4c6 + c56c4s6) + S5(-s45C56Si2s6) + a34si2(c45c4c6 - c56s4s6)

+ Si(-si2c6is45s6),
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G2 = a34Ci2(-S4Y6 + C45C4X6)
+ S3Ci2S34(s4c45X6 + c4Y6)
S5(-Ci2s45Y6),

H2 = a6i(-Si2c45Z6) + a45(-Si2s45Y6)
+ S3(-S34Si2S45S4Y6)
+ a34(-Si2S45c4Y6) +

ai2(ci2c45Y6)

+ a34(-s45S56si2c4s6)

- c5 6c6ic6),

S6(Si2S56C45C6)

Si(-Si2c45Y6)

h = S3(- a6i (c12c45Y6)

+ a34(-s45Ci2c4Z6)
+ a45(-s45c12Z6) + S6(s61c12s56c45s6). (8.201)

Now that both equations have been regrouped into the format of Eq. (8.199), the tan-
half-angle identities for the sine and cosine of 6\ and 05 are inserted. The two equations
can then be regrouped into the format similar to Eq. (8.10), that is,

x5 [e{ [h{x\ = 0, i = 1,2,

(8.202)

where the coefficients of this equation are defined in Eq. set (8.11).
The two equations of the form of Eq. (8.202) are quadratic in the variables xi and x5.

These equations can be solved via Bezout's method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable Xi.

The corresponding value for the parameter x5 can be found from either

(8.203)

or

x5 =

Mi

M2

L2

Li

" u
Li

L2

Ni

N2

N,
N2

N,
N2

Mi

M2

(8.204)

where Li, Mi, and Ni are defined in Eqs. (8.14) through (8.16) and Eq. set (8.11). Equa-
tions (8.203) and (8.204) can be derived in a manner similar to that in which Eqs. (8.34)
and (8.35) were derived.

Two joint angles remain to be solved, that is, 02 and 03. A unique corresponding value
of 02 can be obtained from the following fundamental sine and sine-cosine laws:

= s23s2, (8.205)
= s23c2. (8.206)
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Table 8.7. RRPRCR mechanism parameters.

Link length,
cm.

a w = 35
a23 = 19
a34 = 19
a45 = 9
a56 = 22
a6i = 10

Twist angle,
deg.

al2 = 82
C*23 = 78
Qf34 = 34

a45 = 93
a56 = 50
« 6i = 77

Joint offset,
cm.

Si = 61
S2 = variable
S3 = 15
S4 = variable
S5 = 7 1
S6 = 61

Joint angle,
deg.

0{ = variable
02 = variable
03 —  variable
04 = - 96
05 = variable
06 = 322 (input)

Similarly, a unique corresponding value of #3 can then be obtained from the following
fundamental sine and sine-cosine laws:

X1654 = s23s3, (8.207)

= s23c3. (8.208)

The offset distances S2 and S4 are the remaining parameters to be determined. These
two values will be found by projecting the vector loop equation for the mechanism onto
two different directions. Projecting the vector loop equation onto the direction a34 and
evaluating the scalar products using the sets of direction cosines provided in the appendix
yields

a12W23 + S2X3 + a23c3 + a34

+ a45c4 + S5X4 + a56W54 + S6X54 + a^ W654 = 0. (8.209)

The offset distance S2 is the only unknown in this equation.
The distance S4 will be determined by projecting the vector loop equation onto the

direction ai2. Evaluating the scalar products by using the sets of direction cosines listed
in the appendix gives

a12 + a23c2 + S3X2 + a34W32 + S4X32

+ a45W56i + S5X61 + a56W61 + S ^ + a ^ = 0. (8.210)

This equation contains the variable S4 as its only unknown.
At this point, the analysis of the RRPRCR group 2 spatial mechanism is complete.

Eight solution configurations were determined. Table 8.7 shows data that were used for
a numerical example. The calculated values for the eight configurations are listed in
Table 8.8. The eight configurations are shown in Figure 8.7.

8.6 Seven-link group 2 spatial mechanisms
All seven-link group 2 mechanisms comprise five revolute joints and two prismatic

joints, that is, 5R-2P. The solution method for these mechanisms is identical to that for
the five- and six-link group 2 mechanisms.
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Solution A Solution B

Solution C Solution D

s4

Solution E
s4

Solution F

Solution G Solution H
Figure 8.7. Eight configurations of an RRPRCR group 2 spatial mechanism.



8.6 Seven-link group 2 spatial mechanisms 141

Table £

01, deg.
02, deg.
03, deg.
05, deg.
S2, cm.
S4, cm.

>.8. Calculated configurations for the

A

-118.75
62.27

-39.69
13.40

-35.60
62.35

B

-59.12
24.74

9.66
56.19
73.80
61.79

C

-38.23
-149.05

164.51
-89.36
138.13

-100.10

• RRPRCR spatial mechanism.

Solution

D

17.13
-92.70
115.85

-19.39
56.12
72.67

E

45.28
89.61
78.19

167.66
71.33

-143.30

F

-154.88
-95.70

-116.73
174.27

-88.82
-30.80

G

169.62
-49.48

-136.00
124.31

-150.49
67.11

H

164.59
148.25
-26.77
-87.70

-125.81
-74.25

output
angle

Figure 8.8. Planar repre-
sentation of the RRPRRPR
group 2 spatial mechanism.

Two equations are generated in terms of the input angle, the output angle, one extra
joint angle, and the constant mechanism parameters. These two equations are solved
simultaneously using Bezout's method to yield an eighth-degree input/output equation.

One seven-link group 2 mechanism will be solved as an example. Figure 8.8 shows
a planar representation of an RRPRRPR mechanism. The problem statement for this
mechanism is as follows:

given: constant mechanism parameters:
ai2, a2 3, a3 4 , a4 5 , a5 6 , a6 7 , a 7 i ,

«12,  «23» «34, <*45, ^56, «67, «71
Si, S3, S4, S6, S7, and
02, 05 and

input angle:
07,

find: 0i, 03, 04, 06, S2, and S5.

One equation that will contain the constant link lengths and offsets (but not the un-
knowns S2 and S5) is the secondary cosine law

(8.211)

The term on the right side of this equation contains the parameters 03, 04, a23, a34, and a45
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and can thus be written as

3z4 3 3Z43 9Z43 3z4 3 3Z43 / Q O I O \
Z °4 3 = S 3 ^ ~ + S 4 ^ ^ ~ + a 2 3 ^ h a34^ 1" a45~ . (8.212)

3# dO 3tf 3tf 3tf
Expanding the partial derivatives gives

Z043 = S3(S23X43) + 84(845X34) + a23(Y43) + a34(C23Y4 - S23C3Z4)

(8.213)

The term on the left side of Eq. (8.211) contains the parameters S6, S7, Si, a56, a67, a7i,
and an. It can thus be written as follows:

3Z67i 3Z67i 3Z6

+ S + S
7 i

-f a 1 2 f^ . (8.214)

Expanding the partial derivatives for this equation yields

= S6(s56X176) + S7( - XiX*7 - Y!X67) + SdsnXtn) + a56(Y176)
+ a67(c56Y17 - s56c6Z17) + a71(c12Y67 - Si2CiZ67) + a12(Y671). (8.215)

Substituting the results of Eqs. (8.213) and (8.215) into Eq. (8.211) and moving all terms
to the left side of the equation gives

S6(s56X176) + S7(-X!X*7 - Y!X67) + S!(s12X671) + a56(Y176)

+ a67(c56Yi7 - s56c6Z17) + a71(ci2Y67 - Si2ciZ67) + ai2(Y671) + S3(-s23X43)

a2 3(-Y4 3) + a3 4(-c2 3Y4 + s23c3Z4) + a4 5(-Y3 4) = 0. (8.216)

The angle 06 is selected as the extra joint angle in this equation. Thus, each of the terms
in Eq. (8.216) must now be written in terms of the input angle, 07, the output angle, 0\,
the extra angle, 06, and the two constant angles, 02 and 05. In other words, the angles #3

and 04 that appear in the S3, S4, a23, a34, and a45 terms in Eq. (8.216) must be replaced.
The S3 term may be written as

C(S3) = -s 2 3 X 4 3 . (8.217)

A subsidiary sine law for a spherical heptagon can be used to rewrite this term as

C(S3) = -s2 3X6 7 1 2 . (8.218)

Similarly, a subsidiary sine law can be used to rewrite the S4 term as

C(S4) = -s4 5X1 7 6 5 . (8.219)

Subsidiary sine-cosine laws are utilized to rewrite the a23 and a45 terms as

C(a23) = X*712 (8.220)
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and

C(a45) = Xt765. (8.221)

The last remaining term is a34. This term appears in Eq. (8.216) as

C(a34) = -c 2 3 Y 4 + s23c3Z4. (8.222)

Expanding Y4 yields

Y4 = -(s3 4c4 5 + c34s45c4). (8.223)

Multiplying the right side of Eq. (8.223) by fg- and regrouping gives

4
s34

Adding (C34c45 —  c?>4c45) to the numerator of Eq. (8.224) and regrouping gives

Y4 = ~(s 3 4 + c^4)c45 + c34(c34c45 - s34s45c4)
s34

This equation can be simplified to yield

Y4 = C45 + C M 2 4 . (8.226)
S34

Equation (8.222) can now be written as

~( v C23(C45 ~ C 3 4 Z 4 ) - /Q>W7\
C(a34) = V s23c3Z4. (8.227)

s34

Regrouping this equation gives

C(a34) = C 2 3 C 4 5 2 4 Z 3 . (8.228)
S34

Subsidiary cosine laws are used to replace the Z4 and Z3 terms in Eq. (8.228) to give

() Z 2 1 7 6 Z l 7 6 5 . (8.229)
S34

The coefficient of the a34 term has been expressed in terms of the constant mechanism
parameters, the input angle, the output angle, and the extra angle, 06. However, Eq. (8.229)
appears to be of second order in the sines and cosines of the variable joint angles, 9$ and
0i. The product X2\i^\i65 must be expanded and regrouped in order to reduce it to a linear
expression.

The term Zi765 is written as follows:

= s45(X176s5 + Y176c5) + c45Zi76. (8.230)
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Expanding Y176 and Z1 7 6 gives

Zn65 = s45S5X176 + s45C5(c56X*76 - s56Zi7) + c45 (s56Xi76 + c5 6Zi7) . (8.231)

Regrouping this equation yields

Zi765 = X 5 Xi 7 6 —  Y5X*76 + Z 5 Zi 7 . (8.232)

The term Z2i76 is written as

Z2i76 - s56X*176 + c56Z217. (8.233)

The results of Eqs. (8.232) and (8.233) may now be used to express the product Z2i76Zi765

as

Z2i76Zi765 = [X 5 Xn 6 —  Y5X*76 + Z5Zi7] [s56X2176 + c 5 6Z 2 i 7 ] . (8.234)

This equation can also be written as

^2176^1765 = S56{X5Xi76X2176 —  Y5X*mXlll6 + Z5Zi7X21 7 6} + C56{Zi765Z2i7}.

(8.235)

Two new terms, A5 6 7i2 and B5 6 7i2, will be defined to represent the expressions in the braces
of Eq. (8.235). Thus, the following two definitions are introduced

A56712 = X5Xi7 6X21 7 6 —  Y5Xj76X2176 + Z5Zi7X2176, (8.236)

B56712 = Zi765Z2n, (8.237)

and the product Z2i76Zi765 may be written as

C56B56712. (8.238)

Equation (8.236) will be simplified by first expanding the following fundamental cosine
law for a spherical heptagon:

- c34. (8.239)

Expanding Z2i765 gives

S45(X2176S5 + Y2176C5) + C45Z2i76 = C34. (8.240)

Expanding Y 2 n 6 and Z2i76 gives

S34S5X2n6 + S45C5 (C56X2176 - S56Z217) + C45 (s56X2176 + C56Z217) = C34. (8.241)

Regrouping this equation gives

X5X2176 —  ^5X21 7 6 + Z5Z217 = C34. (8.242)

The middle term, Y5X|176 (which also appears in Eq. (8.236)), may thus be expressed
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as

Y5X*176 = X5X2176 + Z5Z217 - c34. (8.243)

This result is now substituted into Eq. (8.237) to give

A56712 = X5Xi7 6X21 7 6 —  Xi76[X5X2i76 + Z5Z217 —  C34] + Z5Zi7X2176. (8.244)

This equation is regrouped as

A56712 = X5 [Xi76X2176 —  X*76X2i76] + Z5 [Zi7X2176 —  X*76Z2n] + c34Xj76. (8.245)

The terms Xi76, X*76, X2i76, and X2176 are substituted into this equation to give

A567i2 = X5[(X17c6 - Y17s6)(X217s6 + Y217c6) - (X17s6 + Y17c6)(X217c6 - Y2i7s6)]

+ Z5[Z17(X217s6 + Y2i7c6) - (X17s6 + Yi7c6)Z217] + c34Xt76. (8.246)

Performing the multiplication and substituting for ŝ  + c\ = 1 gives

A56712 = X5[Xi7Y2i7 —  Yi7X2i7] + Z5[s6(X2i7Zi7 —  Z217X17)

+ c6(Z17Y217 - Z217Y17)] + c34Xt76. (8.247)

The first term in brackets is written as

X17Y217 - Y17X217 = [XlC7 - Y1s7][c67(X21s7 + Y21c7) - s67Z21]

- [c67(XlS7 + Y1C7) - s67Z1][X21c7 - Y21S7]. (8.248)

Performing the multiplication and recognizing that s7 + c7 = 1 gives

Xi7Y2n —  Y17X217 = c7s67(X2iZi —  Z21X0
+ s7s67(Z21Y1 - Y21Z1) + c67(Y21X! - X21YO. (8.249)

Substituting for X2i, Y2i, Z2i, Xi, Yi, and Zi, regrouping terms, and recognizing that
ŝ  + Cj = 1 and s71 + c71 = 1 gives

X17Y217 - Y17X217 = C l [-c1 2Y7X2 + X7(-c1 2Y2 - s12Z2)]

+ S l [-c1 2X7X2 + c12Y7Y2 + s12Y7Z2] + [s12Z7X2]. (8.250)

This term is linear in the sines and cosines of 0\, 02, and 07. Equation (8.250) will be
simplified by firstly expanding the terms X2, Y2, and Z2 and recognizing that s\2 -\-c\2 = 1.
The result of this step is

- Y17X217 = s23(ciC2X7 - S!C2Y7 - Ci2SiS2X7 - Ci2C!S2Y7 + Si2s2Z7).

(8.251)

Regrouping this equation and introducing the terms U2i, V2i, and W2i gives

X l 7Y2 1 7 - Y17X217 = s23(W21X7 + V21Y7 + U21Z7). (8.252)
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Expanding the terms X7, Y7, and Z7 in this equation and regrouping gives

X17Y217 - Y17X217 = S23[C67(U2lC7i - V21S71) - S67(C7(U2lS7l + V21C71) - S7W21)].

(8.253)

Equation (8.253) can now be written as the simplified expression

X17Y217 - Y17X217 = s23U2176. (8.254)

The second term of Eq. (8.247) is written as

X217Z17 - Z217X17 = [X21c7 - Y2iS7][s67(XiS7 + Y1O7) + c67Zi]
- [S67(X21S7 + Y21c7) + c67Z21][XlC7 - Yl S 7] . (8.255)

Multiplying the terms and recognizing that S7 + dy = 1 gives

X217Z17 - Z217X17 = c7c67(X21Zi - Z21X1) + S7C67(Z21Y! - Y21Z1)
+ s6 7(X2 1Y1-Y2 1X1) . (8.256)

Substituting for X21, Y21, Z2 i , Xi, Yi, and Zi, regrouping terms, and recognizing that
ŝ  + c\ = 1 and s^ + c^ = 1 gives

X217Zi7 - Z 2 1 7 Xn = Ci[Ci2X2(-S67S7i + C67C7iC7) - Ci2C67S7Y2 - Si2C67S7Z2]

+ Si[-ci2c67s7X2 + Ci2Y2(s67s7i - c67c7ic7)

+ s12Z2(s67s7i - c67c7ic7)] + [si2X2Y7]. (8.257)

This term is linear in the sines and cosines of 0\, 92, and 07. Equation (8.257) will be
simplified by first introducing the terms X2, Y2, and Z2 and recognizing that s\2 + c\2 = 1
to give

= S23[Si2S2Y7 + C67C2(s7Ci + C7S1C71) - S67S7iSiC2

+ ci2s2(-s67s7ici + c67c7iCiC7 - c67s1s7)]. (8.258)

This equation may be regrouped as

X217Z17 - Z217X17 - s23[U21Y7 + s67s7iV21 - c67c7iC7V21 + c67s7W21]. (8.259)

Expanding Y7 and regrouping terms gives

X2 1 7Z1 7 - Z2 i 7Xi7 = S23[-S67(U2iC71 - V21S71) - C67(C7(U2lS71 + V21C71) - S7W21)].

(8.260)

The first term in parentheses in Eq. (8.260) is U217, and the second term in parentheses is
V217. Thus, Eq. (8.260) may be written simply as

X2i7Zi7 - Z2i7X]7 = -s23U2176. (8.261)
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The third expression in Eq. (8.247) is written as

Z17Y2i7 - Z2i7Y17 = [s67(XlS7 + Yic7) + c67Zi][c67(X2iS7 + Y2ic7) - s67Z21]

- [s67(X2iS7 + Y21c7) + c67Z21][c67(XlS7 + YlC7) - s67Zi].

(8.262)

Multiplying the terms on the right side of this equation, regrouping, and recognizing that
S67 + C67 = ! g i v e S

Z1 7Y2 1 7 - Z2 1 7Y1 7 = c7(Z!Y2 1 - Y1Z21) + s7(Z!X2 1 - XiZzi) . (8.263)

Substituting for X2i, Y2i, Z2i, Xi, Yi, and Zi, regrouping terms, and recognizing that
ŝ  + c\ = 1 and s71 + c71 = 1 gives

- Z2 1 7Y1 7 = Ci[ci2c7iS7X2 + c1 2c7Y2 + s12c7Z2] + Si[c12c7X2

- Ci2c7iS7Y2 - Si2c7iS7Z2] + [-S12S71S7X2]. (8.264)

This equation can be regrouped to give

Zi7Y217 - Z217Y17 = c12(W7iY2 - V71X2) + s12(W71Z2 - U71X2). (8.265)

This term is also linear in the sines and cosines of 0\, 02, and 07. Equation (8.265) may
be simplified by introducing the terms X2, Y2, and Z2 and recognizing that s\2 + c\2 = 1
to give

ZnY2 1 7 - Z217Y17 = -s23[s2(U71s12 + V71c12) + c2W71]. (8.266)

The term in brackets in this equation is W7i2, which equals W217, and therefore

Zi7Y217 - Z217Y17 = -s2 3W2 1 7. (8.267)

Substituting the results of Eqs. (8.254), (8.261), and (8.267) into (8.247) yields

A567i2 - X5[s23U2176] + Z5 [s6(-s23U*176) + c6(-s23W217)] + c34X*m. (8.268)

Rearranging this equation gives

A567i2 - s23(X5U2176 - Z5W2176) + c34Xt76. (8.269)

All that remains to be accomplished is to expand the term B567i2 as defined in Eq. (8.237)
so that it is linear in the sines and cosines of the unknown joint parameters. Expanding
Z567i = Z1765 in Eq. (8.237) gives

B567i2 = [si2(X567s1 + Y567Cl) + c12Z567]Z217. (8.270)

Expanding Y567 and Z567 gives

B567i2 - [si2(X567Si + (c7iX5*67 - s71Z56)Cl) + c12(s71X5*67 + c71Z56)]Z217. (8.271)
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Regrouping terms yields

B56712 = XiX567Z2i7 —  YiX567Z2n + Z1Z56Z2n. (8.272)

The current objective is to express B56712 as an expression that is linear in the unknown
values 6\ and 06. This task will begin by writing the products X561Z2n and X567Z2i7 from
Eq. (8.272) as

X567Z217 = S67(X2lX567S7 + Y2iX567C7) + C67Z2iX567 (8.273)

and

X5*67Z2i7 = s67 (X21X5*67s7 + Y2iX5*67c7) + c67Z2iX5*67. (8.274)

Next, a fundamental cosine law for a spherical heptagon (Z21765 = C34) is expanded as

S45(X2176S5 + Y2176C5) + C45Z2i76 = C34. (8.275)

Expanding Y2i76 and Z2i76 and regrouping this equation gives

X5X2176 - Y5X2176 + Z5Z217 = c34. (8.276)

Expanding X2i76 and Xlm gives

X5(X217c6 - Y217s6) - Y5(X2i7S6 + Y217c6) + Z5Z217 = c34. (8.277)

Rearranging this equation yields

X56X2i7 —  X56Y2i7 + Z5Z2i7 = c34. (8.278)

Substituting for X217, Y 2 n , and Z 2 n gives

X56(X2iC7 - Y21s7) - X5*6(c67(X2iS7 + Y21c7) - s67Z21)

+ Z5(s67(X21S7 + Y21C7) + c67Z21) = c34. (8.279)

Regrouping this equation yields

X2i(X56C7 - (c67X5*6 - s67Z5)s7) - Y21(X56S7

+ (c67X5*6 - s67Z5)c7) + Z2i (s67X5*6 + c67Z5) = c34. (8.280)

This equation may be written as

X2iX567 —  Y2iX567 + Z2iZ56 = C34. (8.281)

Multiplying this equation by s7 and then c7 and rearranging yields

X21X567S7 = Y21X5*67s7 + (c34 - Z21Z56)s7 (8.282)

and

Y21X5*67c7 = X21X567C7 - (c34 - Z21Z56)c7. (8.283)
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Substituting Eq. (8.282) into Eqs. (8.273) and (8.283) into Eq. (8.274) gives

X567Z217 - s67 [Y21X5*67s7 + (c34 - Z21Z56)s7 + Y21X567C7] + c67Z21X567 (8.284)

and

X*561Z2n = s67 [X2iX567s7 + X2iX567c7 - (c34 - Z2iZ56)c7] + c67Z2iX567. (8.285)

Expanding the terms X567 and X ^ in these two equations yields

X567Z2l7 = S67[Y2i(X56S7 + Y56C7)S7

+ (c34 - Z21Z56)s7 + Y2i (X56c7 - Y56s7)c7] + c67Z21X567 (8.286)

and

X;67Z217 = s67[X2i(X56S7 + Y56c7)s7 + X2i(X56c7 - Y56s7)c7

- (c34 - Z21Z56)c7] + c67Z21X5*67. (8.287)

Multiplying and rearranging terms and then recognizing that s7 + c7 = 1 gives

X567Z217 = s67[Y2iX56 + (c34 - Z2iZ56)s7] + c67Z2\X567 (8.288)

and

X5*67Z217 - s67[X21X56 - (c34 - Z21Z56)c7] + c67Z21X5*67. (8.289)

Substituting Eqs. (8.288) and (8.289) into Eq. (8.272) and expanding Z 2 n gives

B56712 = X1[s67(Y2iX56 + (c34 - Z2iZ56)s7) + c67Z21X567]
- Yi [s67(X21X56 - (c34 - Z2iZ56)c7) + c67Z2iX;67]

+ Z1Z56[s67(X21s7 + Y21c7) + c67Z21]. (8.290)

This equation is linear in the sines and cosines of the input angle, 07*, but is not yet
linear in the sines and cosines of the output angle, 6\. Regrouping this equation gives

B56712 — S6 7X56(Xi Y21 —  Y1X21) + c67Z2i (ZiZ5 6 + XiX5 6 7 —  YiX567)

+ s67Z56[s7(Z1X21 - X1Z21) + c7(ZiY21 - Y1Z21)] + c34s67Xt7. (8.291)

The second term in parentheses in Eq. (8.291) may be rewritten as

ZiZ56 + XiX567 - Y i X ^ = (C71C12 - s7iSi2Ci)Z56

+ (si2Si)X567 + (S71C12 + c71Si2C!)X;67. (8.292)

This equation may be regrouped as

ZiZ56 + X!X567 - YiX;67 = Si2SiX567 + Si2ci(c71x;67 - s71Z56)
+ Ci2(s71X5*67 + c71Z56). (8.293)

It is not important that the equation be linear in the sines and cosines of the given joint parameters. It is only
important that it be linear in the sines and cosines of the unknown joint parameters.
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Introducing the terms Y567 and Z567 in the right side of Eq. (8.293) yields

Z!Z56 + XiX567 - Y!X5*67 = s12(X567Sl + Y567ci) + c12Z567. (8.294)

Finally, this term may be simplified by recognizing that the right side of Eq. (8.294) is
simply Z567i. Thus,

Z!Z56 + X1X567 - YXX*561 = Z567L (8.295)

Equation (8.295) is substituted into Eq. (8.291) to yield

B56712 = S67X56(XiY2i —  Y1X21) + C67Z21Z5671

+ s67Z56[s7(Z1X21 - XjZzi) + c7(Z1Y21 - Y A i ) ] + c34S67Xt7. (8.296)

Equation (8.296) is still not linear in the sines and cosines of 0\. The first term in paren-
theses in this equation may be written as

^ Y2c0 - s71Z2]

c7iS12c1][X2c1 - Y2si]. (8.297)

Performing the multiplication of terms, regrouping, and recognizing that sj + c\ = 1
yields

XiY21 - Y!X2i = c1(c12s71X2) + S ls7 1(-c1 2Y2 - s12Z2) + (s12c71X2). (8.298)

Expanding the terms X2, Y2, and Z2 and recognizing that s2
l2 + c\2 = 1 gives

X1Y21 - Y1X21 = s23[(s12s2)c71 + (sic2 + clS2c12)s71]. (8.299)

The term in brackets on the right side of Eq. (8.299) is U 2 n . Thus, Eq. (8.299) may be
written as

XlY2l-YlX2l=s23U2ll. (8.300)

The second term in parentheses in Eq. (8.296) may be expanded as

Z1X21 - X1Z21 = [C71C12 - s71Si2Ci][X2ci - Y2si]

- [si2Si][s7i(X2si + Y2ci) + C71Z2]. (8.301)

Multiplying the terms together, regrouping, and recognizing that s2
{ + c\ = 1 yields

Z1X21 - X!Z21 = Cl(c12c71X2) + slC71(-c12Y2 - s12Z2) + (-S12S71X2). (8.302)

Expanding the terms X2, Y2, and Z2 and recognizing that s2
l2 + c\2 = 1 gives

Z1X21 - X1Z21 = -s23[(si2s2)s7i - (sic2 + cis2ci2)c7i]. (8.303)

The term in brackets on the right side of Eq. (8.303) is U ^ . Thus, Eq. (8.303) may be
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written as

Z{X2l - %Z2X = -s23U*17. (8.304)

The third term in parentheses in Eq. (8.296) may be expanded as

Z1Y21 - Y1Z21 = [C71C12 - S7lSi2Ci][C7i(X2Si + Y2Ci) - S71Z2]

+ [S71C12 + c7iSi2Ci][s7i(X2si + Y2ci) + C71Z2]. (8.305)

Multiplying the terms together, regrouping, and recognizing that s71 + c71 = 1 yields

Z!Y2i - Y!Z21 = Cl(c12Y2 + s12Z2) + si(ci2X2). (8.306)

Expanding the terms X2, Y2, and Z2 and recognizing that s\2 + Cj2 = 1 gives

ZiYzi - YiZ21 = -s 2 3 [c l C 2 - S1S2C12]. (8.307)

This equation may be rewritten as

= -s2 3W2 1. (8.308)

The only term in Eq. (8.296) that has not yet been expressed linearly in the sines and
cosines of the joint angles is Z2iZ567i. This term may be written as

Z2iZ567i = [syiX^ + c71Z2] [s12X5*671 + c12Z567]. (8.309)

Performing the multiplication gives

Z2iZ567i = Si2s7iX5671X21 4- Cn^nZsei^i + c7iZ2Z567i. (8.310)

Expanding X21 in the first term gives

Z21Z5671 = s12s71X5*671(X2Sl + Y2ci) + c12s71Z567X*1 + C71Z2Z5671. (8.311)

The first term of this equation is the only term that is not linear in the sines and cosines
of the joint angles. This term will be modified by first expanding the fundamental cosine
law, Z567i2 = C34, as follows:

Y5671C2) + C23Z567i = C34. (8.312)

Expanding Y567i and Z567i gives

s23s2X567i + s23c2(ci2x;671 - Si2Z567) + c23(si2x;671 + Ci2Z567) = c34. (8.313)

Rearranging this equation yields

X2X5671 - Y2X5*671 + Z2Z567 = c34. (8.314)
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Multiplying Eq. (8.314) by Ci and rearranging gives

Y2X5*67lCl - X2X567lCl - (C34 - Z2Z567)Cl. (8.315)

Equation (8.315) is now substituted into Eq. (8.311) to yield

= S12S71 [X5671X2Si + X2X567iCi - (c34 - Z2Z5 6 7)ci]

+ c12s71Z567X*1 + c71Z2Z5671. (8.316)

Substituting X ^ andX567i into this equation, regrouping, and recognizing that s\+c\ = 1
gives

Z2lZ5671 = Sl2S7i[X567X2 - (C34 - Z 2 Z 5 6 7 ) C l ] + C12S7lZ567X*1 + C7lZ2Z5671. (8.317)

This term is linear in the sines and cosines of the joint angles. Equation (8.317) can now
be regrouped as follows:

Z2iZ5 6 7 1 = s7i [si2X567X2 + Z567(ci2X2
<

1 + S12C1Z2)] + c7iZ2Z5 6 7i - S12C34S71C1.

(8.318)

The term in parentheses in this equation will be expanded and simplified. This term may
be written as

! + Si2ClZ2 = c12(X2Sl + Y2ci) + Si2ClZ2. (8.319)

Expanding X2, Y2, and Z2 and recognizing that s2
l2 + c\2 = 1 yields

Ci2X*! + Si2CiZ2 = - s 2 3 ( c i c 2 - S1S2C12). (8.320)

Equation (8.320) may now be written as

Ci2X*! + s12ClZ2 = -S23W21. (8.321)

Substituting Eq. (8.321) into (8.318) and expanding X2 gives

Z2iZ5 6 7i = s23S7i(X567U2i - Z5 6 7W2i) + c7iZ2Z5 6 7i - S12C34S71C1. (8.322)

Substituting the results of Eqs. (8.300), (8.304), (8.308), and (8.322) into Eq. (8.296)
gives the following expression for B567i2:

B56712 = S67X56[S23U2i7] + C67[S23S71 (X567U2i - Z5 6 7W2i) + C7iZ2Z567l

~ Sl2C34S7iCi] + S67Z56[S7(-S23U217) + C7(-S2 3W2 1)] + C34S67Xi7. (8.323)

Now that the terms A567i2 and B56712 have been expressed linearly in terms of the joint
angle variables, Eqs. (8.269) and (8.323) may be substituted into Eq. (8.238) to yield an
expression for the product Z2i76Zi765. This product may then be substituted into Eq. (8.229)
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to yield the following complicated, but linear, expression for C(a34):

C(a34) = {-S56[S23(X5U2176 ~ Z5W2i76) + C34X*76] ~ C56 [

2l - Z567W2i) + C7iZ2Z567i -

) +c 7 ( -s 2 3 W 2 i ) ) + c34s67X*7] + c23c45}/s34.

(8.324)

The results of Eqs. (8.218) through (8.221) are now substituted into Eq. (8.216) to give
the following result:

Si(si2X67i) + S3(-s23X67i2) + S4(-s45Xi765) + S6(s56Xi76)

+ S7(-XiX*7 - YXX61) + a12(Y671) + a23(X*712)

+ a45(X*765) + a56(Yn6) + a67(c56Yi7 - s56c6Zi7)

+ a7i(c12Y67 - s12CiZ67) + a34[C(a34)] = 0, (8.325)

where C(a34) is defined in Eq. (8.324).
This equation contains the constant mechanism parameters, the input angle, #7, the

output angle, 0\, and the extra angle, 06. This equation will be paired with the fundamental
cosine law

Z56712 = C34, (8.326)

which also contains the output angle, 0\, and the extra angle, 06, as its only unknowns.
Equation (8.326) will now be referred to as the first equation, and Eq. (8.325) will be

now referred to as the second equation for this problem. Both equations will be regrouped
into the following format:

c6(AiCi + Bisi + Di) + s6(EiCi + Fisi + GO + (HiCi + IiSi + JO = 0, i = 1, 2.

(8.327)

The coefficients of the two equations are listed as follows:

Ai = X5(c7X2 - c7iS7Y2) + Y5(-c6 7s7X2 + Y2(s67s7i -

B{ = X5(-c7iS7X2 - c7Y2) + Y5(C67S7Y2 + X2(s67s7i -

= X 5 ( - c 6 7 s 7 X 2 + Y2(s67s7i - c67C71c7)) + Y5(c7iS7Y2 - c7X2),

= X5(c67s7Y2 + X2(s6 7s7i - c67C7iC7)) + Y5(c7Y2 + c7iS7X2),

H! =Z5(X7X2-Y7Y2),

Ii =Z 5 ( -X 7 Y 2 -Y 7 X 2 ) ,

J! =Z 5(Z 7Z 2)-c 3 4 , (8.328)
A2 = Si(Si2S56C67S7) + S3S23S56(-C2S7C67 + Ci2S2(s67S7i - C67C7iC7))
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C67C7iC7)) +

i - C67C71C7)

C67C7iC7)

S23S71C2) - C12S23S67S71S2)

Y 5 C 5 6 (-S23C67S71C2Y7

C7 - S2S7C12C71))] / s 3 4

B 2 = SiSi2S56(-S67S7i + C67C7iC7) + S3S23S56(C2(S67S71 ~ C67C71C7)

C67C71C7)

~ Ci2S2C7) + X 5 C 5 6 (

S S - S23S67S71C2) + Y 5 C 5 6 (C12S23S2 ( s 7 iC 6 7 Y 7 - S

S7C71 (Si2C67Z2 - S67S23C2))]/S34,

S5C56Y7) +

E2 =

+ a45Cl2(S5X7 + C5C56Y7) + a56(Ci2C56Y7) + a67l

+ a7iCi2S56(S67S7i — C67C71C7)  + a34 [—C12C34S56Y

+ X5C56(S23U2iY7 —  Ci2C67C7iS7iS7Z2) + Y5C560

Sl(Si2S56C7) + S3S23S56(—C 2C7 + Ci2C7iS2S7) + Si

+ S5C56C71S7) + S6Si2S56(-S67S7i + C67C7iC7) + S

H~ a23S56(S2C7 + C12C71C2S7) + a45Si2(S5(—S67S71  -\

1-C12S56Z7)

7 +Z5U21S23S56S71S7

^2lS23S7lS7

|S12S45(C5(S67S71 ~ C67C71C7)

•7(Sl2S56C7lC7) + ai2(Ci2S56C

h C67C7iC7) + C5C56C71S7)

7 i (-S12S56S71S7) + a34 [ - S12C34S56C71S7

71 ~ C67C71C7) -

~ S67C12S2S7))

C7iC2S7) + S4Si2S45(c67C5S7 + C56S5C7)

+ S 7 ( -S i 2 S5 6 S 7 ) + ai2(Ci2S5 6C7) + a23S56(Ci2C2C7 - C7iS2S7)

C67S5S7) + a56(Si2C56C7) + a34[

~ C67C71C7) + Ci2C67S2S7)
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- C12S23C67S7JC7S2 + +

S4Ci2S45(C5Y7 + 05585X7)

+ a 4 5 Ci 2 ( - s 5 Y 7 + c56S7iC5S7) + a56(ci2C56s71s7) + a7i(c12s56c71s7)

+ a34[ - Ci2C34S56S7iS7 - Z5S23S56U21Y7 + X5C56(S23S7lS7U2i + C12C67C71Z2Y7)

+ Y5C56(Ci2C67S7iC7iS7Z2 - S2 3U2iY7)] /s3 4 ,

H2 = Si(s12C56S67S7) + S3S23C56(-X7C2 + Ci2S2Y7) + S4(-Si2S45S56S5Y7)

+ S7(si2c5 6s6 7c7is7) + a1 2(ci2c5 6Y7) + a23C56(s2X7 + Ci2c2Y7)

+ a56(-Si2s5 6Y7) + a67si2c56(s67s7i - c67c7ic7)

a34[-Si2C34C56Y7 +X5S23S56(Cl2S2Y7 - C2X7)

C7C2 - S7S2C12C71)))]/s34,

= Si(-S1 2C5 6Y7) + S3S23C56(S2Ci2X7 + C2Y7) + S4(-Si2S45S56S67S5S7)

+ S7(si2c5 6s6 7c7) + a12(ci2C56s67s7) + a23C56(ci2C2X7 - s2Y7)

+ a56(-si2s56s67s7) + a67(si2c56c67s7)

+ X5S23S56(C2Y7 + S2Ci2X7)

S7iZ7 - S67C7) + S67C7i ( -Si2S7Z2 - S23S7C2))] / s 3 4 ,

S4(-Ci2S45S56S5Z7) + S7(Ci2C56S67S7iS7) + ai2(-S12C56Z7)

a56(-Ci2S56Z7) + a67(ci2c56Y7)

- U21X5Z7S23S56

(8.329)

As in the previous solutions, the tan-half-angle identities for the sine and cosine of 6\
and #6 are now inserted into Eq. set (8.327). These two equations can then be regrouped
into the form

j + biXi + di] + x6 [^x^ + /jxi + ft] + [hix\ + hxx + j j = 0, i = 1, 2,

(8.330)

where the coefficients of this equation are defined in Eq. set (8.11).
The two equations of the form of Eq. (8.330) are quadratic in the variables xi and x6.

These equations can be solved via Bezout's method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable xi.

The corresponding value for the parameter x6 can be found from either

Mi Ni

M2 N2

Li N!

U N2

(8.331)
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or

u
u

Li

L2

Ni

N2

Mi

M2

(8.332)

where Li, Mi, and Ni are defined in Eqs. (8.14) through (8.16) and Eq. set (8.11). Equa-
tions (8.331) and (8.332) can be derived in a manner similar to that in which Eqs. (8.34)
and (8.35) were derived.

Two joint angles remain to be solved, that is, 03 and 04. A unique corresponding value
of 93 can be obtained from the following fundamental sine and sine-cosine laws:

X56712 = S34S3,

Y56712 = S34C3.

(8.333)

(8.334)

Similarly, a unique corresponding value of #4 can then be obtained from the following
fundamental sine and sine-cosine laws:

^21765 = S34S4,

Y21765 = S34C4.

(8.335)

(8.336)

The offset distances S2 and S5 are the remaining parameters to be determined. These
two values will be found be projecting the vector loop equation for the mechanism onto two
different directions. Projecting the vector loop equation onto the direction a45 and evaluat-
ing the scalar products using the sets of direction cosines provided in the appendix yields

(8.337)

S1X234 + ai2W234 + S2X34 + a23W34 + S3X4 + a34c4

+ a45 + a56c5 + S6X5 + a67W65 + S7X65 + a71 W765 = 0.

The offset distance S2 is the only unknown in this equation.
The distance S5 will be determined by projecting the vector loop equation onto the

direction ai2. Evaluating the scalar products by using the sets of direction cosines listed
in the appendix gives

n + a23c2 + S3X2 + a34W32 + S4X32 + a45W432

+ S5X432 + a56W67i + S6X?i + a67W71 + S7X! + a7lCl = 0. (8.338)

This equation contains the variable S5 as its only unknown.
At this point, the analysis of the RRPRRPR group 2 spatial mechanism is com-

plete. Eight solution configurations were determined. Table 8.9 shows data that were
used for a numerical example. The calculated values for the eight configurations are listed
in Table 8.10. These eight configurations are shown in Figure 8.9.
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Table 8.9. RRPRRPR mechanism parameters.

Link length,
cm.

ai2 = 23
a23 - 13
a34 = 40
a45 = 17
a56 = 20
a67 = 38
a71 = 24

Twist angle,
deg.

a12 = 120
«23 = 4 3

<*34 = 75
a45 = 120
a56 = 92

a67 = H l
Qf7i = 67

Joint offset,
cm.

S, = 16
S2 = variable
S3 = 65
S4 = 38
S5 = variable
S6 = 79
S7 = 83

Joint angle,
deg.

0\ = variable
02 = 265
Q3 = variable
04 = variable
(95 = 307
06 = variable
#7 = 256 (input)

Table 8.10. Calculated configurations for the RRPRRPR
spatial mechanism.

Ou
03,
04,
06,

s2,
s5,

8.7

deg.
deg.
deg.
deg.
cm.
cm.

A

-78.01
-2.91

-23.85
-53.67

5.22
138.83

Summary

B

25.62
158.25

-46.06
155.97
33.44
36.60

C

56.45
-109.73
-133.56

55.51
50.99

6.50

Solution

D

143.96
-73.07
129.29

12.40
-51.36

41.94

E

165.75
-39.09
114.33
36.28

-80.35
28.63

F

-164.32
65.70

149.71
149.22

-66.98
-47.96

G

57.78
142.42

0.19
-174.72

-73.80
-63.86

H

-150.92
76.72

164.22
163.68

-86.20
-35.09

The method of solution for group 2 mechanisms should at this point be apparent. Two
equations are generated, each of which contains the input angle, the output angle, the
constant mechanism parameters, and one extra joint angle. The two equations are solved
simultaneously using Bezout's method to yield, in general, an eighth-degree polynomial
in the tan-half-angle of the output variable.

One of the two equations will be either a projection of the vector loop equation or a
secondary cosine law. The selection of this equation is guided by the fact that it may
not contain either of the unknown joint offsets. Quite often, however, one term of this
equation requires additional manipulation in order to be expressed in terms of the required
variables (see, for example, Eqs. (8.187) and (8.222)).

Once the equation containing the link lengths and offsets is selected, the extra joint
angle is identified. An appropriate cosine law can then be selected that contains the output
angle and the extra angle as its only unknowns. The two equations are then factored into
the format of Eq. (8.5), and the solution continues as per Bezout's method.

Examples of five-link, six-link, and seven-link group 2 mechanisms have been presented
in detail in this chapter. Although a solution for every group 2 mechanism has not been
presented, it is hoped that the reader has grasped the solution technique and will be able
to solve any group 2 mechanism.
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Solution A

Solution C

S7

S4

Solution E

s,
Solution B

s,

Solution D

S,
Solution F

Solution G Solution H
Figure 8.9. Eight configurations of an RRPRCR group 2 spatial mechanism.
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8.8 Problems
1. Insert dual angles into the following spherical cosine laws and derive the corresponding

secondary cosine laws:

(a) Spherical pentagon: Z43 = Zi

(b) Spherical hexagon: Z5432 = C6i

(c) Spherical hexagon: Zi2 = Z54

2. Shown in Figure 8.10 is a planar representation of a five-link RCCRR spatial mechanism.
The input parameter is 05, and the output parameter is 6\.

(a) Assuming that all constant mechanism dimensions are known, what link lengths,
offsets, twist angles, and joint angles are still unknown?

(b) What group mechanism is this? Why?

(c) Write a secondary cosine law that contains the input angle, the output angle, and
only one additional unknown. Expand the secondary law.

(d) Describe how you would use the equation in part (c) to solve for the output angle 0\.

3. A spatial six-link RCRPRR mechanism is represented in Figure 8.11. The input parame-
ter is 06, and the output parameter is 6\. It is necessary to obtain an input/output equation
for this mechanism. In order to do this it will be necessary to obtain two equations that
each have #2 as an extra unknown parameter.

(a) Write a spherical equation that contains the output angle and #2 as its only unknowns.

(b) Write a secondary cosine law that contains the output angle and #2 as its only
unknowns. Expand your equation as necessary to show that these are the only
unknowns in the equation.

(c) Describe how you would use the equations in parts (a) and (b) in order to solve for
0\. How many values for 9\ can be found for each given value of 0^1

1
Figure 8.10. RCCRR spatial mecha-
nism.



160 Group 2 spatial mechanisms

6 / / 7 / /

Figure 8.11. RCRPRR spatial mecha-
nism.

R

R
Figure 8.12. RRRCC spatial mecha-
nism.

(d) Assuming that values for 0\ are now known, describe how you would solve for
corresponding values of #2.

(e) Describe how you would solve for the remaining unknown mechanism parameters.

4. Evaluate the function
/ ( x , y ) = e x ( x 2 y

when x = 2 + 3e and y = 1 —  5e.

5. Completely expand a secondary cosine law for a spatial quadrilateral that will not contain
the offsets S2 or S4.

6. A planar representation of a spatial closed-loop mechanism is shown in Figure 8.12.

(a) What group mechanism is this?
(b) Assuming that all constant mechanism parameters are known and that the angle #5

is given as an input angle, explain how to solve for the angle O4.
(c) Assuming that you have successfully solved for 04, explain how you would solve

for the angle 0\.
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(d) Assuming that you have successfully solved for 64 and 0\, explain how you would
solve for the angle 63.

(e) Assuming that you have successfully solved for 64, 6\, and 63, explain how you
would solve for the angle 62.

(f) Assuming that you have successfully solved for 64, 61,63, and 62, explain how you
would solve for the slider displacements Si and S2.
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9.1 Introduction
Group 3 mechanisms, namely the six-link 5R-C and seven-link 6R-P mechanisms, all

have equivalent spherical mechanisms with mobility three. This means that it is possible to
select an appropriate spherical cosine law for the equivalent six-link, six-revolute spherical
mechanisms that contains the input angle, the output angle, and two additional angular
displacements. The spherical cosine law can be expressed in the form

bxm fxm + g)xn + (hx2
m + ixm + j) = 0, (9.1)

where xm and xn are the tangents of the half angles (tan-half-angles) of the two additional
angles 6m and 6n. The coefficients a through j are themselves quadratic in the tan-half-
angle of the output angular displacement. It is becoming apparent that it is necessary to
eliminate a pair of tan-half-angles in a single operation from a set of equations. This is
much more difficult than the elimination problem encountered with group 2 mechanisms,
which was the elimination of a single tan-half-angle from a pair of simultaneous equations.

At the outset it appears that it is necessary to form a further two or possibly three
equations of the form of Eq. (9.1) and to attempt to apply Sylvester's dialytic method to
eliminate xm and xn in a single operation. This procedure yields a polynomial in the output
tan-half-angle that is of thirty-second degree (or higher). However, it will be shown here
that the input-output polynomials for group 3 mechanisms are of sixteenth degree, and
they can be derived by generating four simultaneous equations of the form

+ biXm + di)xn + (e{x2
m + fixm + g i) = 0, i = 1 . . . 4, (9.2)

where the coefficients aA through gi are again quadratic in the tan-half-angle of the output
angle. Multiplying these four equations by xm will yield eight "linear" homogeneous
equations in the eight "variables" x^xn, x^xn, xmxn, x^, x^, xm, xn, and 1. These equations
will have a solution only if the equations are linearly dependent. The eight equations will
be linearly dependent if the determinant of the coefficient matrix equals zero, and thus

0 0 f{

0 0 = 0. (9.3)

Expanding this 8 x 8 determinant will yield a sixteenth-degree input-output equation
because the coefficients a* through gi are quadratic in the tan-half-angle of the output
angle.
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In the next section it will be shown how to generate tan-half-angle laws for spherical
mechanisms that can be regrouped into the format shown in Eq. (9.2). After this is
completed, the analysis of six-link and seven-link group 3 mechanisms will be presented.

9.2 Tan-half-angle laws

It was shown in Section 6.4 (see Eq. (6.55)) that for an n-sided spherical mechanism,
the direction cosines of the vector along the nth joint axis measured in terms of the first
coordinate system could be written as

Xn-l,n-2,...,2

Yn-l,n-2,...,2 (9.4)

The direction of this vector was also calculated by rotating the vector directly from the nth

coordinate system to the first coordinate system as

(9.5)

Equating the components of Eqs. (9.4) and (9.5) resulted in the following fundamental
sine, sine—cosine, and cosine laws for a spherical mechanism with n links:

Xn-l,n-2,...,2 = SniSi,

Yn-l,n-2,...,2 —  snlcl>

Substituting the half-angle expressions Si =
Eqs. (9.6) and (9.7) gives

Xn-l,n-2,...,2 =
2xt

1 - 7 2 '
Yn-l,n-2,...,2 = S

These two equations may be written as

(Xn-l,n-2 2)*i + (—2Sni)Xi + (X n_

(9.6)

(9.7)

(9.8)

and ci = T—T  where xi = tan(^), into

(9.9)

(9.10)

= 0,

n_i,n-2,...,2 ~ Sn!) = 0.

(9.11)

(9.12)

The necessary condition that two quadratic equations of the form aAx2 + fyx + di = 0
(i = 1,2) have a common root (see Section 8.2.2) is

ai

a2
bi

b2

bi

b2
di

d2

ai

a2
di

d2
= 0, (9.13)
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where the common root is evaluated as

ai

a2
ai

a2

di

d2
bi

b2

bi

b2
ai

a2

di

d2
di

d2

(9.14)

Applying the condition of Eq. (9.13) to Eqs. (9.11) and (9.12) gives

y2 _|_ Y 2 — o 2

^n-l,n-2,...,2 "•" x n-l,n-2,...,2 ~ bnl'
Replacing s^ by (1 - c^) gives

X2 -I- Y2 _i_ r
2 — 1

^Si-l,n-2,...,2 ^ 1n-l,n-2,...,2 ^ Lnl ~ *•
Using a fundamental cosine law to substitute for c2^ yields

v2
^n-l,n-2,...,2 = 1.

(9.15)

(9.16)

(9.17)

This relationship was shown to be true in Section 6.4. Therefore, Eqs (9.11) and (9.12)
always have a common root. The value of this common root can be obtained by applying
Eq. (9.14), which yields a pair of alternative expressions,

Xn-l,n-2,...,2 Yn_i?n_2,...,2 —  Snl
Yn-l,n-2,...,2 s n l

(9.18)
Xn-l,n-2,...,2

These equations represent two new relationships for an n-sided spherical mechanism.
These will be called half-angle laws for a spherical n-gon.

Further sets of half-angle laws can be generated from the other fundamental sine and
sine-cosine laws. Additionally, more half-angle laws can be generated from pairs of sub-
sidiary sine and sine-cosine laws by following the same procedure. Sets of half-angle laws
are presented in the appendix for the spherical quadrilateral through the spherical heptagon.

9.3 Six-link group 3 spatial mechanisms
All six-link group 3 mechanisms contain five revolute joints and one cylindric joint,

that is, 5R-C. The only difference between the various six-link group 3 mechanisms is the
selection of the frame or fixed link. One example mechanism will be presented in this
section. The solution technique developed here is applicable to the various inversions.

Shown in Figure 9.1 is a planar representation of an RCRRRR spatial mechanism.
Here, link a6i is attached to ground and all the constant mechanism parameters are known
together with the input angle, 06. The objective is to determine corresponding values for
the remaining unknown joint displacements and joint offsets. In particular, the problem
statement is as follows:

given: a12, a23, a34, a45, a56, «6i,
ai2, a23,a34, a45,a56, a61,
Si ,S2 , S3,S4, S6, and
06 (input angle),

find: 0!, 02, 03, 04, and 05, S5.
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Figure 9.1. Planar representation
of an RCRRRR spatial mecha-
nism.

The angle 6\ is identified as the output angle because it is connected to the frame, and it
will be solved for first.

9.3.1 Development of input-output equation (solution for 6\)

It will be shown that the input-output equation for this mechanism will be generated
from four equations of the form of Eq. (9.2). The first pair of equations is derived from
the following subsidiary tan-half-angle laws for a spherical hexagon:

X 4 - X 6 1 2 = (Y 4 -Y 6 1 2 )x 3 , (9.19)

(X4 + X612)x3 = - ( Y 4 + Y612). (9.20)

It can readily be shown by expanding Y4 and Z4 that

s34Y4 = c34Z4 —  c45. (9.21)

Using a subsidiary cosine law to substitute for Z4 gives

s34Y4 = c 3 4 Z 6 1 2 -c 4 5 . (9.22)

Multiplying Eqs. (9.19) and (9.20) by s34 and then using Eq. (9.22) to substitute for the
quantity s34Y4 gives

s34(X4 - X6i2) = (c34Z6i2 - s34Y612 - c45)x3, (9.23)

s34(X4 + X612)x3 = -(c3 4Z6i2 + s34Y6i2 - c45). (9.24)

Corresponding secondary tan-half-angle laws can now be generated by substituting dual
angles into Eqs. (9.23) and (9.24). The expansion of the necessary partial derivatives has
been demonstrated in Chapter 8 with the exception of the derivative ^ , where x3 = tan ^ .
Hence,

1 / /A,\\ 1 +x2

= - ^ - 1 . (9.25)
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Using this result, the dual of Eq. (9.23) may be written as

— X 6 i 2 ) + s 3 4 ( X 0 4 — X0612) =

(I +X2)
+ C34Z0612 - S34Y06i2]x3 + S3(C34Z612 - s34Y612 - c4 5)V

 2
 3J. (9.26)

(I +X2

V 3

It remains to reduce Eq. (9.26) to an equation that is linear in x3.
Several of the terms of this equation may be substituted by expressions formed from

Eqs. (9.23) and (9.24). Multiplying Eq. (9.23) by x3 and then subtracting the result from
Eq. (9.24) gives

2s34 X612x3 - -c3 4Z6 1 2 (x* + 1) + s34Y612 (xl - 1) + c45 (x| + 1), (9.27)

which can be rearranged in the form

6i2 - s34Y6i2 - c45)x3 = -2s34X6i2x3 + (-c34Z6i2 - s34Y6i2 + c45). (9.28)

After multiplying Eq. (9.26) throughout by s34 and substituting Eqs. (9.28) and (9.23) into
Eq. (9.26) yields

- S 3 4 Y 6 i 2 - C45)X3 + S34(X04 - Xo612) = [a45S45 + a 3 4 ( - S 3 4 Z 6 i 2

C34Z06I2 - S34Y0612]S34X3 + -S 3 S 3 4 (C3 4 Z 6 i2 - S34Y6i2 - C45)

+ S3S34 (-S34X612X3 + - ( - c 3 4 Z 6 1 2 - s34Y612 + c45) J . (9.29)

This equation reduces to

— C 4 5)x3 + S3 4(X04 — X06I2)

C34Z0612 ~ S34Y0612]S34X3

(9.30)

and is finally expressed in the form

[ a 3 4 ( Z 6 i 2 - C34C45) - a45S34S45 - S34C34Z0612 + S

+ [s^4(X04 - X0612) + S3s^4Y612] = 0. (9.31)

Analogously, taking partial derivatives, the dual of Eq. (9.24) can be expressed as

X6i2)x3 + S3s34(X4 + X 6 1 2 r 2 + s34(X04

= -a 4 5 s 4 5 + a34(s34Z6i2 - c34Y6i2) - (c34Z06i2 + s34Y06i2), (9.32)

which can be rearranged in the form

x3(X4 + X6i2) ( a34c34 + S 3 s 3 4 y j + -S3s34(X4 + X6i2) + s34(X04 + X06i2)x3

= -a 4 5 s 4 5 + a34(s34Z6i2 - c34Y6i2) - (c34ZO6i2 + s34YO6i2). (9.33)
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Multiplying by s34 and substituting Eq. (9.24) into Eq. (9.33) gives

(-C34Z6i2 - S34Y6i2 + C45)fa34C34 + S3S3 4yJ + -S3S34(X4 + X612)

= -a4 5s4 5s3 4 + a34s34(s34Z6i2 - c34Y612) - s34(c34Z06i2 + s34Y06i2). (9.34)

Equation (9.23) can be rearranged to solve for the product s34X4, and

s34X4 = (c34Z6i2 - s34Y6i2 - c45)x3 + s34X6i2. (9.35)

This expression may be substituted into Eq. (9.34) to yield

(-c34Z6i2 - s34Y6i2 + c45) f a34c34 + S3s34—  j + -

+ -S3S34[(C34Z612 - S34Y612 - C45)X3 + S34X612] 3

= -a4 5s4 5s3 4 + a34s34(s34Z6i2 - c34Y6i2) - s34(c34Z06i2 + s34YO6i2)- (9.36)

Rearranging this equation gives

[-S3S34Y612 + S34(X04 + X06i2)]x3 + [a34c34(-c34Z612 - s34Y6i2 + c45) + S3S34X612

+ a45s34s45 - a34s34(s34Z6i2 - c34Y6i2) + s34(c34Z06i2 + s34Y06i2)] = 0. (9.37)

Equations (9.31) and (9.37) contain the input angle 06, the output angle 0i, the extra
angle 02, and the tan-half-angle of 03. However, each of these equations also contains the
expression X04, where by definition

X04 = a45C45S4 + S4s45C4. (9.38)

This term clearly contains a further unwanted angle 04. However, both s4 and c4 can be
expressed in terms of the angles 06, 0i, and 02 using spherical equations. Firstly, multiply-
ing Eq. (9.38) by S34s45 and substituting X4 = s4ss4 gives

+ S4s34s45(s34s45c4). (9.39)

Equation (9.23) may be solved for the product s34X4, and the result then substituted into
Eq. (9.39). This yields

s34s45X04 = a45S34c45[(c34Z6i2 - s34Y6i2 - c45)x3 + s34X6i2] + S4s34s45(s34s45c4).

(9.40)

Expanding the left side of the subsidiary cosine law Z4 = Z6i2 gives

c34c45 - s34s45c4 = Z6i2. (9.41)

This equation may be rearranged to solve for the expression (s34s45c4), which is then
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substituted into Eq. (9.40) and yields

S34S45X04 = a45S34C45[(C34Z612 ~ S34Y612 ~ C4 5)x3 + S3 4X6i 2 ] + 84834845(034045 - Z 6 i 2 ) .

(9.42)

Substituting Eq. (9.42) into s45 times Eq. (9.31) gives

[a 3 4 (Z 6 i2 - C34C45) - a45S34S45 - S34C34Z06I2 + S34Y06I2 + S3S34X612]S45X3

- S34Y612 - C4 5)x3 + S34X6i2] + 84834845(034045 - Z 6 i 2 )

- S45S34X0612 + S3S45S^4Y612 = 0. (9.43)

This equation may be rearranged as

{ [a 3 4 (Z 6 i2 - C34C45) - S34C34Z06I2 + S34

84834845(034045

- Z 6 1 2 ) - S45S^4Xo612 + S3S45S^4Y6i2 = 0. (9 .44)

The term X3X04 will now be eliminated linearly from Eq. (9.37). Multiplying Eq. (9.39)
by x3 gives

S34S45X04X3 = a45S34C45X4X3 + S4S34S45(S34S45C4)X3. (9.45)

Equation (9.24) can be rearranged in the form

S34X4X3 = - ( c 3 4 Z 6 1 2 + s34Y6i2 - c45) - s34X6i2X3. (9.46)

Substituting Eq. (9.46) into Eq. (9.45) gives

S34S45X04X3 = -a45S34C45(C34Z612 + S34Y612 ~ C45 + 834X512X3) + S4S34S45(S34S45C4)X3.

(9.47)

Equation (9.47) may now be substituted into S45 times Eq. (9.37) to give

12j S45X3 ~~ a45S34C45(C34Z6i2 + S34Y612 — C45  + 834X512X3)

S45 [a34C34(-C34Z6i2 - S34Y6i2 + C45) + S3S34X6i 2

12 + S34Y06I2)] = 0, (9.48)

which can be rearranged in the form

6 l 2

~ S34Y612 + C45)

- C34Y6i2) + S34(C34Zo612 + S34Y06I2)] = 0. (9.49)
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The product (S34S45C4) can be eliminated using Eq. (9.41), and thus

834X0612] S45 - a45S34C45X6i2 + 84834845^34 C45 - Z6 1 2)}x3

S34Y6i2) + a45S34 + S45 [a34C34(-C34Z6i2 - S34Y6i2 + C45)

(S34Z6i2 - C34Y6i2) + S34(C34Zo612 + S34Y06I2)] = 0. (9.50)

Simplifying Eq. (9.50) yields

834X0612] S45 - a45S34C45X6i2 + S4S34S45(C34C45 - Z6i2)}x3

S34Y6i2) + a45S34 + S45 [-a34Z6i2 + a34C34C45

6 i 2 + S34(C34Zo612 + S34Y06I2)] = 0. (9.51)

Equations (9.44) and (9.51) are a pair of equations that can be expressed in the format of
Eq. (9.2). Two additional equations are now derived from the following secondary cosine
law:

Z04 = Z06i2. (9.52)

Expanding the left side of Eq. (9.52) gives

S4S34X4 + a34Y4 + a45Y4 = Z06i2. (9.53)

The term Y4 may be expressed in terms of Z4 as follows:

S45Y4 = C45Z4 - c34. (9.54)

A subsidiary cosine law can be used to substitute for Z4 to yield

S45Y4 = C45Z612 - c34. (9.55)

Equations (9.55) and (9.22) may now be substituted into S34S45 times Eq. (9.53) to give

S4S34S45X4 + a34S45(C34Z6i2 - C45) + a45S34(C45Z6i2 ~ C34) = S34S45Z06I2. (9.56)

Using Eq. (9.23) to substitute for the term X4 gives

S4S34S45IXC34Z612 - S34Y6I2 - C45)X3 + S34X612] + a34S45(C34Z6i2 —  C45)

~ C34) = S34S45Z06I2. (9.57)

This equation can be rearranged as

S34Y612 ~ C45)]x3 + [84834S45X6i2 + a34S45(C34Z6i2 ~ C45)

- C34) - S34S45Z06I2] = 0. (9.58)

Equation (9.24) may be used to substitute for the term S34X4X3 in the product of x3 times
Eq. (9.56). The result can be written as

- C45) - S34X612X3] + [a34S45(C34Z6i2 —  C45)

~ C34) ~ S34S45Z0612]X3 = 0. (9.59)
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This equation can be rearranged as

- C45) + a45S34(C45Z6l2 — C34)  -

+ [-S4S34S45(C34Z612 + S34Y6i2 - C45)] = 0. (9.60)

Equations (9.58) and (9.60) can be expressed in the form of Eq. (9.2) and these together
with (9.44) and (9.50) can be used to obtain a sixteenth degree input/output equation in
terms of xi, the tan-half-angle of the output angle. The four equations can be rewritten in
the form

- Mi - M5C34Z06I2 + M2Yo6

M3a45X612 + M5S4(C34C45 - Z612) + M 2 (-X O 6 i2 + S3Y612) = 0, (9.61)

{-M 2 S 3 Y 6 i 2 + M2Xo612 - M3a45X612 + M5S4(C34C45 - Z612)}X3

- M4a45(c34Z6i2 + s34Y612) + Mi + M2S3X6i 2 - a34S45Z6i2

+ M6ZO6i2 + M 2 Y0612 = 0, (9.62)

i2 - S34Y6i2 - C45)}X3 + M2S4X6i2 + M7Z6i2 -

- a45S34C34 - M5ZO6i2 = 0, (9.63)

{-M2S4X6 1 2 + M7Z6i2 - a34S45C45 - a45S34C34 - M5Zo612}x3

s34Y612 - c45) = 0, (9.64)

where Mi through M7 are constants defined as

M i = a34C34C45S45 + a4 5S34, M 5 = S34S45,

M 2 = s^4s4 5 , M 6 = S34C34S45,
(9.65)

M 3 = S34 C45, M 7 = a34C34S45 + a45S34C45,

M 4 = S34C45.

Equations (9.61) through (9.64) must be expanded into the format of Eq. (9.2). As a
first step the terms X06i2> Y06i2, and Z06i2 are expanded as follows:

X0612 = ~S2X<312 + X061C2 — Y061S2,

Y0612 = -a23Z6i2 + S2c23X612 + c23(Xo6iS2 + Yo 6ic2) - S23Z061, (9.66)

I ,

(9.67)

Z()612 = a23^

where

X06I = " S i

Yo6i = — ai

Z061 = ai2^

and where

X()6 = a56C5

Y06 = a56(s

^612 + S2S23X612 + S23(Xo6lS2 + Y061C2) + C23Z(

X^j + X06C1 —  Y06S1,

2^61 + S1C12X61 + CI2(XQ6SI + Y06C1) — S12Z06,

'61 + SiSi2X6l + Si2(X06Si + Y06C1) + C12Z06,

6S6 + S6S56C6,

61S56 - c6ic5 6c6) - a 6 i Z 6 + S6c6is5 6s6, (9.68)

Z0 6 = a56Y6 + a6iY6 + S6s6iS56s6.
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Equations (9.61) through (9.64) may now be regrouped into the form

(AiC2 + BiS2 + Di)x3 + (EiC2 + FiS2 + GO = 0, i = 1 . . . 4, (9.69)

where

At = A u ci + Aii2 si + Ai,3,

: (9.70)

Gi = G u ci + Git2 Si + Gi>3.

The coefficients Ai ,i through G4i3 are now defined as

- a23ci2c23) + M4a45Ci2(s23C34 - c23s34)

- M2(a1 2si2c2 3 + a23ci2s23) + a34c12s23S45]Y6 + [M2(S3 + S2c23 + SiCi2c23)

- M5s23c34(S1Ci2 + S2)]X6 + Ci2[M2c23 - M5s23c34]Y06,

u = [M5c3 4(ai2si2s2 3 - a23ci2c23) + M4a45ci2(s23c34 - c23s34)

- M2(ai2s1 2c2 3 + a2 3c! 2s2 3) + a34Ci2s23s45]X6 - [M2(S3 + S2c23 + Sic1 2c2 3)

- M5s2 3c3 4(SiCi2 + S2)]Y6 + Ci2[M2c23 - M5s23c34]Xo6,

i,3 = [M2(a2 3si2s2 3 - ai2ci2c2 3) + M4a45Si2(c23s34 - s23c34)

+ M5c3 4(ai 2ci 2s2 3 + a23si2c23) - a34Si2s23s45]Z6 + Si2[M5s23c34 - M2c2 3]Z0 6,

1.1 = [M4a45(s23c34 - c23s34) —  M2a2 3s2 3 - M5a2 3c2 3c3 4 + a34s23s45]X6

- [M 2 (S l C 2 3 + S3c12 + S2c12c23) - M5c3 4(S1s2 3 + S2c12s23)]Y6

+ (M2c2 3 - M5s2 3c3 4)X06,

1.2 = - [M 4 a 4 5 ( s 2 3 c 3 4 - c23s34) - M2a2 3s2 3 - M5a2 3c2 3c3 4 + a34s23S45]Y6

- [M2(SiC23 + S3ci2 + S2ci 2c2 3) - M5c3 4(S!S2 3 + S2c12s23)]X6

+ (M5s2 3c3 4 - M2c2 3)Y0 6 ,

1.3 = Si2[M2(S3 + S2c23) - M5S2s2 3c3 4]Z6,

1.1 = [M5c3 4(a2 3si2s2 3 - a i 2ci2c2 3) + M4a45Si2(s23s34 + c23c34)

- M2(a1 2c1 2s2 3 + a23si2c23) + a34Si2c23s45]Y6 - Si2[M2S!S23 + M5SiC23c34]X6

- Si 2 [M 2 s 2 3 +M 5 c 2 3 c 3 4 ]Yo6,

1.2 = [M5c3 4(a2 3si2s2 3 - ai2ci2c2 3) + M4a45Si2(s23s34 + c23c34)

- M2(a1 2ci2s2 3 + a23si2c23) + a34Si2c23s45]X6 + Si2[M2SiS23 + M5SiC23c34]Y6

- Si 2 [M2s2 3 +M 5c 2 3 c 3 4 ]Xo6,

1.3 = [M2(ai2s i 2s2 3 - a2 3c i 2c2 3) + M4a45Ci2(s23s34 + c23c34)

+ M5c3 4(ai2s1 2c2 3 + a23ci2s23) + a34Ci2c23s45]Z6

- Ci2(M2s23 + M5c23c34)Z06 - Mi ,

1.1 = [M2(Si + S2c12 + S3c12c23) - M5S4c1 2s2 3]Y6 + M3a4 5X6 - M2X0 6,

1.2 = [M2(Si + S2c12 + S3c12c23) - M5S4Ci2s23]X6 - M3a4 5Y6 + M2Y0 6,
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- M 2 (S 2 + S3c2 3)]Z6,

Fi,i = [M2(S2 + S l C l 2 + S3c23) - M5S4s2 3]X6 - [M2a12s12 + M3a4 5c1 2]Y6

+ M2c1 2Y0 6 ,

Fi,2 = - [ M 2 ( S 2 + S1C12 + S3c23) - M5S4s2 3]Y6 - [M2ai2si2 + M3a4 5c1 2]X6

+ M2Ci2X06,

Fi,3 = [M3a4 5s1 2 - M2ai2Ci2]Z6 - M2s1 2Z0 6 ,

Gi.i - -S i 2 [M 2 S 3 s 2 3 + M5S4c2 3]Y6,

Gi i 2 = - s 1 2 [ M 2 S 3 s 2 3 + M 5 S 4 c 2 3 ] X 6 ,

Gi,3 = -Ci 2 [M 2 S 3 s 2 3 + M5S4c2 3]Z6 + M5S4c3 4c4 5 , (9.71)

A2,i = [ - M 2 ( S i + S2c12 + S3c12c23) - M5S4 ci2s2 3]Y6 - M3a4 5X6 + M2X0 6 ,

A2,2 = [ - M 2 ( S i + S2c12 + S3ci2c23) - Ci2s23]X6 + M3a4 5Y6 - M2Y0 6,

A2,3 = Si2[M2(S2 + S3c23) + M5S4s2 3]Z6,

B2fi = - [ M 2 ( S 2 + S1C12 + S3c23) + M5S4s2 3]X6 + [M2a12s12 + M3a4 5c1 2]Y6

- M2c12Y06,

B2,2 = [M2ai2si2 + M3a45Ci2]X6 + [M2(S2 + S1C12 + S3c23) + M5S4s2 3]Y6

- M2Ci2X06,

B2,3 = [M2ai2ci2 - M3a45Si2]Z6 + M2Si2Z06,

D2,i = Si2[M2S3s23 - M5S4c2 3]Y6,

D2>2 = Si2[M2S3s23 - M5S4c2 3]X6,

D2,3 = Ci2[M2S3s23 - M5S4c2 3]Z6 + M5S4c3 4c4 5 ,

E2,i = [M6(a2 3ci2c2 3 - ai2si2s2 3) - M2(ai2Si2c2 3 + a23ci2s23)

- M4a4 5ci2(s2 3c3 4 + c23s34) - a34Ci2s23s45]Y6

+ [M2(S3 + S2c23 + Sic1 2c2 3) + M 6s2 3 (S2 + SiCi2)]X6

+ Ci2[M6s23 + M2c2 3]Y0 6,

E2,2 = [M6(a2 3ci2c2 3 - ai2si2s2 3) - M2(ai2Si2c2 3 + a23ci2s23)

- M4a4 5ci2(s2 3c3 4 + c23s34) - a34Ci2s23s45]X6

- [M2(S3 + S2c23 + S!C12c23) + M6s2 3(S2 + SiC12)]Y6

+ Ci2[M6s23 + M2c2 3]X0 6,

E2,3 = [M2(a2 3si2s2 3 - ai2ci2c2 3) + M4a45Si2(s23c34 + c23s34)

- M6(ai2ci 2s2 3 + a23si2c23) + a34Si2s23s45]Z6 - Si2[M2c23 + M6s2 3]Z0 6,

F2,i = [M6a2 3c2 3 - M4a4 5(s2 3c3 4 + c23s34) - M2a2 3s2 3 - a34s23s45]X6

- [M 2 (S l C 2 3 + S2c12c23 + S3ci2) + M 6 s 2 3 (S! + S2Ci2)]Y6

+ [M2c23+M6s23]X06,
F2,2 = -[M6a23c23 - M4a45(s23c34 + c23s34) - M2a23s23 - a34s23s45]Y6

- [M2(SlC23 + S2c12c23 + S3c12) + M6s23(S! + S2c12)]X6

- [M2c23+M6s23]Y06,
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F2,3 = Si2[M2(S3 + S2c23) + M6S2s2 3]Z6,

G2,i = [M6(ai2ci2c2 3 - a23si2s23) + M4a45Si2(s23s34 - c23c34)

- M2(ai2ci2s2 3 + a23si2c23) - a34Si2c23s45]Y6

+ Si2[M6SiC23 - M2SiS23]X6 + Si2[M6c23 - M2s23]Y06,

G 2 2 = [M6(ai2ci2c2 3 - a23si2s23) + M4a4 5si2(s2 3s3 4 - c23c34)

- M2(ai2ci2s2 3 + a23si2c23) - a34si2c23s45]X6

- Si2[M6SiC23 - M2S!S23]Y6 + s12[M6c23 - M2s23]X06,

G2,3 = [M2(ai2si2s23 - a23ci2c23) + M4a4 5ci2(s2 3s3 4 - c23c34)

- M6(ai2si2c2 3 + a23ci2s23) - a34Ci2c23s45]Z6 + Ci2[M6c23 - M2s23]Z06 + Mi ,

A3,i = M5S4c1 2Y6(s2 3c3 4 - c23s34), (9.72)

A3,2 = M5S4Ci2X6(s23c34 - c23s34),

A3,3 = -M 5S4Si 2Z 6(s2 3c 3 4 - c23s34),

B3,i = M5S4X6(s2 3c3 4 - c23s34),

B3,2 = -M 5 S 4 Y 6 ( s 2 3 c 3 4 - c23s34),

B 3 , 3 = 0 ,

D 3 1 =M5S4Si2Y6(s2 3s3 4 + c23c34),

E>3,2 =M 5S4Si2X6(s2 3s3 4 + c23c34),

D3 i 3 = M5S4Ci2Z6(s23s34 + c23c34) - M5S4c4 5,

E3,i = [M5(ai2si2s23 - a23c12c23) + M7c12s23]Y6 + [M2S4 - M5s2 3(S2 + SiCi2)]X6

- M5Ci2s23Y06,

E3,2 = - [ M 2 S 4 - M5s2 3(S2 + SiCi2)]Y6 + [M5(ai2si2s23 - a23ci2c23) + M7Ci2s23]X6

- M5Ci2s23X06,

E3,3 = [M5(ai2ci2s2 3 + a23si2c23) - M7si2s2 3]Z6 + M5Si2s23Z06,

F3,i = [M5s2 3(S! + S2ci2) - M2S4Ci2]Y6 + [M7s23 - M5a23c23]X6 - M5s23X06,

F3,2 = - [ M 7 s 2 3 - M5a23c23]Y6 + [M5s23(Si + S2c12) - M2S4c1 2]X6 + M5s23Y06,

F3,3 = [M2S4s12 - M5S2s1 2s2 3]Z6,

G3,i = [M5(a23si2s23 - ai2ci2c23) + M7si2c2 3]Y6 - M5SiSi2c23X6 - M5si2c23Y06,

G3,2 = [M5(a23si2s23 - ai2ci2c23) + M7Si2c23]X6 + M5SiSi2c23Y6 - M5Si2c23X06,

G 3 3 = [M5(a23ci2s23 + ai2si2c23) + M7ci2c2 3]Z6 - a34s45c45 - a45s34c34

- M5c1 2c2 3Z0 6, (9.73)

A4,i = - [ M 5 s 2 3 ( S 2 + S1C12) + M2S4]X6 + [M5(a12si2s23 - a23c12c23) + M7Ci2s23]Y6

- M5Ci2s23Yo6,

A4,2 = [M5(ai2si2s23 -a 2 3 Ci 2 c 2 3 ) + M7ci2s23]X6 + [M5s23(S2 + SiCi2) + M2S4]Y6

- M5Ci2S23Xo6,
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A4,3 = [-M7S12S23 + M5(a12Ci2S23 + a23Si2C23)]Z6 + M5S12S23Z06,

B4,i = [M5s23(Si + S2ci2) + M2S4c1 2]Y6 + [M7s23 - M5a23C23]X6 - M5s23Xo6,

B4,2 = - [ M 7 s 2 3 - M5a23c23]Y6 + [M5s23(Si + S2c12) + M2S4c1 2]X6 + M5s23Yo6,

B4,3 = - [ M 2 S 4 s 1 2 + M5S2Si2s2 3]Z6,

D4fi = [M5(a23Si2S23 - ai2ci2c23) + M7si2c2 3]Y6 - M5SiSi2c2 3X6 - M5si2c2 3Y06,

E>4,2 = [M5(a23Si2S23 - ai2Ci2C23) + M7Si2C23]X6 + M5SiSi2C23Y6 - M5S12C23X06,

E>4,3 =

E 4 j = -

E4,2 = -M5S4Ci2X6(c23S34 + S23C34),

F4)i = -M5S4X6(C23S34 + S23C34),

F4,2 = M5S4Y6(C23S34 + S23C34),

F4,3 - 0,

G4,l = M5S4Si2Y6(S23S34 - C23C34),

M5S4c45. (9.74)

The coefficients defined in Eq. sets (9.71) through (9.74) can all be evaluated numerically
because they are expressed in terms of given parameters.

The four equations that are now expressed in the format of (9.69) are next modified
by substituting the tan-half-angle expressions for the sines and cosines of 0\ and #2-
The equations may be written as follows after multiplying each by the product (1 + x^)

(aAx^ + bix2 + di)x3 + ( e ^ + ftx2 + g i) = 0, i = 1 . . . 4, (9.75)

where

xi+a i > 2xi +a i t 3 ,

Xi +gi,2Xi

(9.76)

The coefficients a^i through gi>3 are defined in terms of Aiti through Gi 3 as follows:

a u = Dii3 - Aii3 - D u + A u ,

ai,3 = Di>3 - Aif3 + D u - A u ,

b u = 2 ( B i i 3 - B i f i ) ,

bi>2=4Bi,2,
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- D u - A
u u ,

ei,3 = Gij3 - Ei,3 + Gifi - E u ,
f u = 2 ( F i f 3 - F u ) ,
fi,2 = 4Fi?2,
fif3=2(Fi,3+Fifl),
&,i =Gi>3+Ei,3 - G u - E u ,

gi,3 = G u + Eif3 + G u + E u . (9.77)

Equation set (9.76) represents four equations that are expressed in the format of
Eq. (9.2). A sixteenth-degree input/output equation may be obtained from these equations
by expanding the 8 x 8 determinant of Eq. (9.3). This equation is written as

0
0
0
0

a2 b2 d2 e2 f2
a3 b3 d3 e3 f3

a2 e2 b2 d2 0 f2 g2

a3 e3 b3 d3 0
0

f3 g3

g2

= 0. (9.78)

This determinant may be expanded by using Laplace's theorem, which states that
a determinant can be evaluated by taking any m rows of the determinant and forming
every possible minor of the mth order from these rows. Each minor is multiplied by its
complement, that is, a determinant formed by deleting the rows and columns of the minor
from the original matrix. Each product is then given a sign based on whether the sum of
the numbers indicating the rows and columns from which the minor is formed is even or
odd. The value of the original determinant will equal the sum of the individual products.

As an example, consider the 5 x 5 matrix

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 C4 d4 e4

a5 b5 c5 d5 e5

(9.79)
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Laplace's theorem may be applied to evaluate the determinant by forming the product of
every 2 x 2 determinant from the first two rows of the matrix times its corresponding 3 x 3
complement determinant. The determinant can thus be evaluated as

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3
a4 b4 c4 d4 e4

a5 bs C5 ds e5

ai bi
a2 b 2

c3
c4
C5

d3
d4
d5

e3
e4
e5

- ai ci

a2 c2

b3 d3 e3

b4 d4 e4

b5 d5 e5

ai
a2

bi
b2

Cl

c2

di
d2

d,
d2

ei
e2

b3
b4
b5

a3
a4
as
a3
a4
a5

c3
c4
c5

c3
c4
c5
b3
b4
b5

e3
e4
e5

e3
e4
5̂

d3
d4
d5

— 1

a2

bi
b2

rL
**i

d2

1

e2

e

e2

1

e2

b3
b 4

b5

a3
a4
a5
a3
a4
a5

c3
c4

c3
c4
c5
b3
b4
b5

d3
d4

d5

d3
d4
d5
c3
c4
c5

+

•1

Di Ci

b 2 c2

C9 d2

a3 d3 e3

a4 d4 e4

a5 d5 e5

a3 b3 e3

a4 b 4 e4

a5 b5 e5

(9.80)

By using Laplace's theorem, Eq. (9.78) may be written as the summation of products
of 4 x 4 determinants as

|aebd||defg| + |aebf||bdfg| - |aebg||bdeg| - |aedf||adfg|

+ |aedg||adeg| + |aefg||abdg| = 0,

where the determinant notation |xyzw| is defined by

(9.81)

|xyzw| =
x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

(9.82)

Equation (9.81) represents the sixteenth-degree input/output equation for the mechanism,
as each of the 4 x 4 determinants can be evaluated as an eighth-degree polynomial in
terms of the tan-half-angle of G\. Although it is possible to generate this equation sym-
bolically, it is far easier to expand the determinants of Eq. (9.81) numerically to produce
the input/output equation for the case at hand. This equation can then be solved for the
sixteen possible values of 0\, not all of which may be real-valued.

9.3.2 Determination of #2 and 03

Expressions for x2 and x3 can be obtained by rearranging Eq. set (9.75) as follows:

(ai)x^x3 + (bi)x2x3 + (eOx^ + (fAx2 + diX3 + a) = 0, i = 1... 4. (9.83)
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Equation set (9.83) represents four homogeneous equations in the four unknowns
x2x3, x\, and 1. A solution will exist only if the equations are linearly dependent. This
occurs if the determinant of the coefficients equals zero, that is,

= 0. (9.84)
a2 b2 e2 (f2x2 + d2x3 + g2)
a3 b3 e3 (f3x2 + d3x3 + g3)
a4 b4 e4 (f4x2 + d4x3 + g4)

This determinant may be expressed in the form

|abef|x2 + |abed|x3 + |abeg| = 0. (9.85)

Equation set (9.75) may next be rearranged as

^ + (di)x3 + (gi) + (biX3 + eix2 + fi)x2 = 0, i = 1 . . . 4. (9.86)

This represents four homogeneous equations in the unknowns x^x3, x3, 1, and x2. A
solution to these equations will exist only if the equations are linearly dependent. Thus,
it must be the case that

= 0. (9.87)
a2 d2 g2 (b2x3 + e2x2 + f2)
a3 d3 g3 (b3x3 + e3x2 + f3)
a4 d4 g4 (b4x3 + e4x2 + f4)

This determinant may be expressed in the form

|adgb|x3 + |adge|x2 + |adgf| = 0. (9.88)

Solving Eqs. (9.85) and (9.88) for x2 and x3 gives

-|abeg||adgbl + |adgfHabedl
X |abef| |adgb|- |adge| |abedr

-|abef|ladgfl + ladgellabegl
|abef| |adgb|- |adge| |abedr

9Q

Equations (9.89) and (9.90) may be used to calculate unique corresponding values for 02

and #3 for each previously calculated value for 0\.

9.3.3 Determination of #4 and 6$

Corresponding values for 04 and #5 may be obtained from the following pairs of fun-
damental sine and sine-cosine laws for a spherical hexagon:

X6123 = s45s4, (9.91)

Y6i23 = s45c4, (9.92)

X3216 = s45s5, (9.93)

Y3216 = s45c5. (9.94)
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Table 9.1. RCRRRR mechanism parameters.

Link length,
cm.

a12 = 7.2

a23 = 0

a34 = 3.6

a45 = 0.8

a56 = 2.3

861 = 9.2

Twist angle,
deg.

a12 = 90

«23 = 90

Qf34 = 90

a45 = 90

«56 = 90

«6i = 90

Joint offset,
cm.

S 1 = 2
S2 = 2.6

S 3 = 0

S4 = 0

S5 = variable

S6 = 0.8

Joint angle,
deg.

0i = variable

02 = variable
03 = variable

04 = variable

05 = variable

06 = 273 (input)

input 7
angle

ouput
angle

Figure 9.2. Planar representa-
tion of an RRPRRRR spatial
mechanism.

9.3.4 Determination of S5

The last parameter to be determined is the offset distance S5. This may be determined
by projecting the vector loop equation onto any direction, resulting in one equation in one
unknown. Projecting onto the vector S5 gives

SiZ6 S3Z4S2Zi6

a 6 1 U 6 5 = 0 .

This equation can readily be solved for the parameter S5.

S4c45 + S5

(9.95)

9.3.5 Numerical example

Table 9.1 shows the data that were used as input for a numerical example. The calculated
values for the sixteen configurations are listed in Table 9.2.

9.4 Seven-link group 3 spatial mechanisms
All seven-link group 3 mechanisms comprise six revolute joints and one prismatic

joint, that is, 6R-P. Shown in Figure 9.2 is the planar representation of the closed loop
RRPRRRR spatial mechanism.
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Table 9.2.

Solution

A

B

C
D

E

F

G

H

I

J

K

L

M

N

O

P

Calculated configurations for the RCRRRR spatial mechanism.

0i, deg.

-19.33
13.74

14.22

-139.62

28.09

-154.06

-129.76

-5.93

12.62

39.05

-153.71

-174.96

172.26

-154.71

15.70

-154.38

02, deg.

87.68

176.81
9.41

79.75

-103.89

4.01

-98.16

-89.70

-31.49

79.77

18.29
87.74

-93.73

155.20

-141.46

169.36

03, deg.

-74.71

-13.80

14.28

82.62

119.16

-153.91

92.90

-114.52

-164.81

73.26

27.94

-81.58

-95.18

-26.88

160.99

154.24

04, deg.

-20.04

83.90

-83.88

139.28
-147.42

-96.60

50.23

-173.49

123.61

-41.07

109.31

-174.91

7.76

-109.35

-123.92

96.59

05, deg.

105.18

179.24

-177.69

-77.75

58.09
178.24

98.13

-65.65

-7.88

-109.32

-8.47

81.81

-95.64

10.95

11.73

-175.39

S5, cm.

16.45

13.31

20.48
-0.22

18.80

5.27

-0.07

16.58

13.88

18.88

-1.70

2.22

2.03

5.08

19.90

-1.89

There are three distinct inversions of this mechanism,

Input Output

RRPRRRR Oi 0]

RRRPRRR

RRRRRPR 0i

02

06,
and a detailed analysis of the first of these three inversions will be given here.

It is assumed that all the mechanism dimensions are known together with the input
angle 07 and that it is required to compute the remaining unknown joint displacements. In
particular, the problem statement is as follows:

given: ai2, «23,  « 3 4 , a4 5, a56, a67, alu

ai2, a23, a34, a45, a56, a67, a7i,
Si , S2, S3, S4, #5, S6, S7, and
(07 input angle),

find: 0 i , 0 2 , 0 3 , 0 4 , 0 6 , a n d S 5 .

9.4.1 Development of the input-output equation
(solution for 0-i)

It will be shown that the input-output equation for this mechanism will be gener-
ated from four equations of the form of Eq. (9.2). Firstly, a pair of equations of this
form is generated from projecting the vector loop equation onto two directions that are
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perpendicular to the direction of S5, that is, the x and y components of set 5 from the
table of direction cosines. Following this, a second pair of equations is generated from
secondary tan-half-angle laws.

The projections of the vector loop equation onto the x and y directions of set 5 from
the direction cosine table are

SiX76 + ai2Wi76 + S2X176 + a23W2i76 + S3X2i76 + a34W32i76 + S4X32i76

+ a45c5 + a56 + a67c6 + S7X6 + a71 W76 = 0, (9.96)

SiY7 6 —  ai 2Uj7 6 5 + S2Yi7 6 —  a23U21765 + S3Y2n6 —  a34U321765 + S4Y32i76

- a45s5 - S6s56 + a67s6c56 + S7Y6 - a71U;65 = 0. (9.97)

These equations can be modified by using fundamental and subsidiary spherical and polar
laws to substitute for the terms X32i76, Y3 2 n 6 , U321765, and W32i76 to give

SiX76 + a12W176 + S2X176 + a23W2176 + S3X2176 + a34W45 + S4X5 + a45c5

+ a56 + a67c6 + S7X6 + a71W76 = 0, (9.98)

SiY76 - ai2Ut765 + S2Yi76 - a23U21765 + S3Y2176 + a34V45 + S4s45c5 - a45s5

- S6s56 + a67s6c56 + S7Y6 - a71U;65 = 0. (9.99)

All terms that contain the angle 06 are now expanded, and these two equations can be
expressed in the forms

M = 0, (9.100)

c56H2c6 + c56HlS6 + N = 0, (9.101)

where

Hi = SiX7 + S2X17 + S3X217 + ai2W17 + a23W217 + a67 + a71c7,

H2 = Si Y7 + S2Y17 + S3Y217 - S7s67 - a12Ut76 - a23U*176 + a7ic67s7,

M = S4X5 + a34W45 + a45c5 + a56, (9.102)

N = S4s45c5 + a34V45 - a45s5 - H3s56,

H3 = S!Z7 + S2Z17 + S3Z217 + S6 + S7c67 + a12U176 + a23U2176 + a71U76.

The last equation in Eq. set (9.102) can be modified by reversing the order of the subscripts
on the Zij...m terms and by substituting for the terms Ui76, U2i76, and U76 respectively by
the equivalent expressions X7i, X7i2, and X7. Also, it is noted that the angle #4 is contained
only in the terms M and N and because of this these terms will be expanded. The Eq. set
(9.102) can thus be rewritten in the form

Hi = SiX7 + S2X17 + S3X217 + a12W17 + a23W2i7 + a67 + a7ic7,

H2 = SiY7 + S2Y17 + S3Y217 - S7s67 - a12Ut76 - a23U*176 + a71c67s7,

M = Ji +K11C4 + K12S4,

N = J2 + K21c4 + K22s4,

H3 = S!Z7 + S2Z71 + S3Z712 + S6 + S7c67 + a12X71 + a23X712 + a71X7, (9.103)
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where

Jl = = a56 H~ a45C5 + S4S45S5, K41 = a34C5, K j 2 = —a34C45S5,

h = —S56H3 + S4S45C5 — a 4 5 s 5 , K21 = — a 3 4 s 5 , K 2 2 = —a34C4 5c5. (9 .104)

The solution proceeds by generating two new equations. The first is obtained by
subtracting the product of c56X6 times Eq. (9.100) from Eq. (9.101), where x6 = tan(#6/2).
The second equation is generated by adding the product of c56 times Eq. (9.100) to the
product of x6 times Eq. (9.101). These two equations may now be written as

c56[Hi(s6 - c6x6) + H2(c6 + s6x6)] + (N - c56x6M) - 0, (9.105)

C56[Hi(s6x6 + c6) + H2(c6x6 - s6)] + x6N + c56M. (9.106)

The terms (s6—C6X 6) and (c6+s6x6) will next be expanded by introducing the trigonometric
identities of Eqs. (6.157) and (6.158). Firstly,

2x* 1 - x2

s6 - c6x6 = — - ^ - — — | x 6 . (9.107)
1 + x2

6 l+x2
6

Simplifying this expression yields

S6 - C6X6 = ^ ^ = X6' (9 '1°8)

Secondly,

1 —  x2 2XA
C6 + S6X6 = ^ — I + Y ^ 2 X 6 = I' (9-l°9)

Simplifying Eqs. (9.105) and (9.106) using Eqs. (9.108) and (9.109) gives

c56[HiX6 + H2] + (N - c56x6M) = 0, (9.110)

c56[Hi - H2x6] + x6N + c56M, (9.111)

which can be rearranged as

c56(H! - M)x6 + (c56H2 + N) = 0, (9.112)

(c56H2 - N)x6 - c56(H! + M) = 0. (9.113)

Equations (9.112) and (9.113) are not quite in the form of Eq. (9.2). They contain the
input angle 07, the output angle 6\, and the two extra angles 02 and 06 (note that they are
linear in x6). However, they also contain the variable 64 in the terms M and N, which has
to be eliminated. This final elimination will be performed after the next pair of equations
is developed.

A further two equations of the form of Eq. (9.2) are derived from the following subsidiary
laws for a spherical heptagon:

X2176 = X45, (9.114)

X2176 = -Y 4 5 . (9-115)
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The following pair of corresponding secondary equations can be obtained by introducing
dual angles into Eqs. (9.114) and (9.115):

Xo2176=XO45, (9.H6)

(9.H7)

The left side of these equations may be expanded as

-S6(X217S6 + Y217C6) + X02i7C6 - Yo217S6 = X045, (9.118)

S6(X2i7C6 - Y2i7s6) + X0217S6 + Y0217C6 = -Y045, (9.119)

and regrouping gives

(X02i7 - S6Y217)c6 - (Y0217 + S6X2i7)s6 = X045, (9.120)

(X0217 - S6Y217)s6 + (Y02i7 + S6X217)c6 = -Y 0 4 5 . (9.121)

The previous two equations have common terms and may be rewritten as

a c 6 - j 8 s 6 = A.i, (9.122)

as 6 + £c6 = A2, (9.123)

where

of = X0217 —  S6Y2n, A.i = X045,
P —  YQ2I7 + S6X2i7, A. 2 = —  Yo45-

Subtracting x6 times Eq. (9.122) from Eq. (9.123) yields

«(S6  - c6x6) + /3(c6 + s6x6) = A* - A.iX6. (9.125)

Adding Eq. (9.122) to x6 times Eq. (9.123) yields

a(c6 + s6x6) + P(c6x6 - s6) = M + A2x6. (9.126)

Equations (9.125) and (9.126) may be simplified using Eqs. (9.108) and (9.109), and
thus

ax6 + 0 = X2 - Aix6, (9.127)

a - fix6 = X{+X2x6. (9.128)

Regrouping terms gives

(a + \l)x6 + (l3-X2) = 0, (9.129)

- ( a - A i ) = 0, (9.130)



9.4 Seven-link group 3 spatial mechanisms 183

and expanding a and /3 using Eq. (9.124) gives

(X0217 - S6Y217 + Xo45)x6 + (Y0217 + S6X217 + Y045) = 0, (9.131)

(Y()217 + ^5X217 —  YQ45)X6 —  (X()217 "" S6Y217 —  X045) = 0. (9.132)

It is important to note that each of these equations contains the unwanted slider displace-
ment S5 in the terms X045 and Y045. This displacement will be eliminated by first expanding
the definitions of the terms X045 and Z045 as

X045 = -S5(X4s5 + Y4C5) + (X04C5 - Y04s5), (9.133)

Z045 = S5S56(X4C5 - Y4S5) + a56Y45 + S56(X04S5 + Y04C5) + C56Zo4. (9.134)

Part of the unwanted S5 term can be eliminated by adding S56C5 times Eq. (9.133) to s5

times Eq. (9.134) and by making the substitution Z045 = Z0217. This yields

S56C5Xo45 = -S5Z0217 - S5S56Y4 + a56S5Y45 + S56X04 + C56S5Z04. (9.135)

It remains to eliminate — S 5s56Y4 from this equation. It can readily be shown upon
expanding Y4 and Z4 that

Y4 = - —(C45Z4-C34) (9.136)
S45

and hence

-S5S56Y4 = -S5—C45Z4 +  S5—c 34. (9.137)
S45 s 4 5

Now, by projecting the vector loop equation onto the direction of S3 (using sets 3 and 13
from the table of direction cosines), the following equation may be written:

—S5Z4 = SiZ 2 + S2c23 + S3 + S4C34 + S6Z7i2 + S7Z12

a67U7123 + a71U123. (9.138)

This equation may be modified by substituting for the terms U23, U43, U543, U7i23, and
U123 respectively with X2, X4, X45, X2n, and X2i to give

- S 5 Z 4 - H 4 , (9.139)

where

H4 = SiZ2 + S2c23 + S3 + S4C34 + S6Z7i2 + S7ZJ2 + ai2X2 + a45X4 + a56X45

+ a67X217 + a71X21. (9.140)

Further, by projecting the vector loop equation onto the direction of S6 (using sets 6
and 10 from the table of direction cosines), the following equation may be written:

—S5C56 = SiZ 7 + S2Z7i + S3Z7i2 + S4Z5 + S6 + S7c67 + ai2Ui76 + a23U2i76

a45U56 + a71U76. (9.141)
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This equation may be modified by substituting for the terms Un6, U2i76, U456, U56, and
U76 respectively with X7i, X7i2, X54, X5, and X7 to give

-S 5 c 5 6 = H5, (9.142)

where

H5 = SiZ7 + S2Z7i + SsZ7i2 + S4Z5 + S6 + S7c67 + ai2X7i + a23X7i2

+ a34X54 + a45X5 + a7iX7. (9.143)

The expression for H5 may also be written as

H5 = H3 + S4Z5 + a34X54 + a45X5, (9.144)

where H3 is defined in Eq. set (9.103).
Substituting Eqs. (9.139) and (9.142) into Eq. (9.137) and then this result into Eq. (9.135)

gives the following expression for X045 with the slider displacement S5 completely elimi-
nated:

- c34s56H5 + s45c56s5 (a56Y45

S45S56C56C5

(9.145)

The elimination of the slider displacement S5 from the term Y045 is relatively simple.
By definition

Y045 = S5c56(X4c5 - Y4s5) - a56(s56X*5 + c56Z4) + c56(Xo4S5 + Y04c5) - s56Z04.

(9.146)

The unwanted S5 term can be eliminated by simply subtracting c56 times Eq. (9.134) from
s56 times Eq. (9.146) and by making the substitution Z045 —  Zo2i7. This yields

Y045 = (
S56

Substituting the expressions for X045 and Y045 (Eqs. (9.145) and (9.147)) in Eqs. (9.131)
and (9.132) gives two equations that are of the same format as Eqs. (9.112) and (9.113).
In other words, these four equations contain the input angle 07, the output angle 9\, the
two extra angles 02 and 06 (note that they are all linear in x6), and the angle 04. It remains
to eliminate 04 to obtain the format of Eq. (9.2).

All terms in Eqs. (9.131) and (9.132) that contain the angle 04 will next be expanded
so that the sine and cosine of this angle may be expressed separately. By inspecting these
two equations it is apparent that the angle 64 is present only in the terms X045 and Y045.
By inspection of Eqs. (9.145) and (9.147) it is necessary to expand the terms X4, X45, X^,
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X5 4, Y4 5, X04, and Z04, and

X 4 5 = X4C5 - Y4C5,

XJ5 = X4S5 + Y4C5,

Y45 = C56(X4S5 + Y4C5) - S56Z4,

X 4 =•  S34S4,

Y 4 = -(S45C34 + C45S34C4), (9 .148)

Z 4 = C45C34 - S45S34C4,

X54 = X5C4 - Y5S4,

X04 = a34C34S4 + S4S34C4,

Z04 = -a34(C45S34 + S45C34C4) - a45(S45C34 + C45S34C4) + S4S45S34S4.

After substituting these expansions into Eqs. (9.145) and (9.147), they may be written
in the form

X045 = J3 + K31C4 + K32S4, (9.149)

Y045 =h + K4ic4 + K42S4, (9.150)

where

J 3 = [ _ s 4 5 C 5 6 S 5 Z o 2 1 7 - C 3 4 S 5 6 H 5 + C 4 5 S 5 6 C 5 6 H 4 - a 3 4 8 3 4 8 4 5 0 4 5 ( ^ 8 5 - a C S C

JV31 —  1^4^34^45^56^56 — a34C34\S56X5  ~\~ 84505^85) — a458348450450*^85

+ a56S34(s45C56S5(S45S56 - C45C56C5) + C ^ S s ^ S s ) ] /(S45S56C56C5),

K32 == [848348450^^85 — a34C34C45S5^C5  + a45S34C45S56C56

+ a56S34C56(s45C56S5 + C45S56C5)] /(S45S56C56C5),

u =
S56

-S4S34S45 -

S56
K42 =

41
S56

and where

H4 = H4 —  a45X4 —  a56X45 = S1Z2 + S2C23 + S3 + S4C34 + S6Z712 + S7Z12

a7 1X2i,
(9.152)

5 = H5 —  a34X54 = S1Z7 + S2Z71 + S3Z712 + S4Z5 + S6 + S7C67

a45X5 + a7iX7.
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Substituting the expressions for M and N in Eq. set (9.103) into Eqs. (9.112) and
(9.113) and then substituting Eqs. (9.149) and (9.150) into Eqs. (9.131) and (9.132) yields
the following four equations:

- J! - Knc4 - Ki2s4)x6 + (c56H2 + h +

(c56H2 - J2 - K21c4 - K22s4)x6 - c56(Hi + Ji +

(X0217 - S6Y2i7 + J3 + K31C4 + K32s4)x6

+ (Y0217 + S6X217 + J4 + K41C4 + K42s4) = 0,

(Y()217 + S6X2n —  J4 —  K41C4 —  K42S4)X6

- (X02i7 - S6Y217 - J3 - K31c4 - K32s4) = 0.

K2ic4

K n c 4

K22S4) = 0,

Ki2s4) = 0,

(9.153)

(9.154)

(9.155)

(9.156)

It is important to recognize that the coefficients in these equations, that is, Hi, Ji, Ky,
contain the sines and cosines of the angles 6\ and 02 as their only variables. It now remains
to eliminate 64 from these four equations without increasing the degree in the sines and
cosines of the angles 0\ and #2. This is accomplished by eliminating the four terms c4x6,
s4x6, c4, and s4 in a single operation. This operation is derived from the following four
spherical equations:

(9.157)

(9.158)

(9.159)

(9.160)

( Y 4 5 - Y 2 1 7 ) x 6 - ( X 4 5 - X 2 1 7 ) =

Z45 —  Z2n = 0,

Z45x6 - Z 2 n x 6 = 0.

X45

- Y 4 5

0
Z45

x6

Y45

X45

z 4 5
0

- X 2 1 7 "

- Y 2 1 7

0

Z217

X6

" - Y 2 1 7 "

X217

Z2n
0

Note that Eq. (9.160) is equal to the product of x6 times Eq. (9.159). These four equations
can be written in the matrix form

(9.161)

All terms that contain the variable angle 04, that is, X45, Y45, and Z45, will next be expanded
as

X45 = X 4 c 5 - Y4s5,
Y45 = c56(X4s5 + Y4c5) - s56Z4,
Z45 = s56(X4s5 + Y4c5) + c56Z4,
X4 = s34s4,
Y4 = -(s4 5c3 4 + c45s34c4),
Z4 = c45c34 - s45s34c4.

(9.162)

The expression for X45 may be expanded as

X 4 5 = (S34S4)C5 + (S45C34 + C45S34C4)S5 (9.163)
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and then rearranged as

X45 = s3 4(x;c4 + C5S4) + C34X5.

The new term X'5 is defined by

X5 = C45S5

The expression for Y45 may be expanded as

Y45 = C56((S34S4)S5 ~ (S45C34 + c45S34C4)Cs) — 856^45034 - S45S34C4).

This can be rearranged as

Y45 = s34(Z^c4 + X^s4) + C34Y5,

where X'5 and 7J5 are defined here as

Z5 = s 4 5 s 5 6 - C45C56C5.

Now, Z45 = Z54 and

Z5 4 = s34(X5S4 + Y5C4) + C34Z5.

(9.164)

(9.165)

(9.166)

(9.167)

(9.168)

(9.169)

(9.170)

Substituting Eqs. (9.164), (9.166), and (9.170) into Eq. (9.161) and rearranging gives

X^c4 + c5s4

s34 0
X5S4 + Y5C4

X6 + C34

X5

- Y 5

0

z5

x6 + s34

Z5C4

X^c4

X5S4

+ X5s4"
+ C5S4

+ Y5C4

0

+ C34

"Y5"

x5
z5
0

—X217

—Y217

0
Z217

x6

— I 217

X-217

Z217

0

(9.171)

This equation can be rearranged as

X5C4 + C5S4

S34 0
X5S4 + Y5C4

X6 + S34

Z5C4

X^c4

X5S4

+ X5S4

+ C5S4

+ Y5C4

0

—X217

—Y217

0

Z217

• -Y 2 1 7 "

X217

Z217

0

— C34

' x5 '
- Y 5

0
X6 - C34

rY5"

x5
z5

. 0 .

(9.172)
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The left side of Eq. (9.172) may be regrouped to yield

s34M

c4x6"
S4X6

c4
=

— X217

- Y 2 1 7

0
Z217

X6 +

•-Y217"

X217

Z217

0

- C 3 4

" x5 "
- Y 5

0
x6 - c34

Y5-
x5
z5

. 0 .

(9.173)

where

M =
0

Y5

- x 5
0

X5

Y5

0
X5

0

(9.174)

It is important to note that the matrix M contains only the given constant mechanism
parameters. The terms c4X6, S4X6, c4, and s4 can be solved for by inverting M to obtain
the result

(9.175)

C4X6

S4X6

c4

S 4

M 1

S34

/

\

—X217

-Y217

0
Z217

X6 +

-Y217

X217

Z217

0

- c 3 4

x5
- Y 5

0
X6 - C 3 4

"Y5"

x5
z5

. 0 .

\

/

The inverse of M may be obtained from the equation

M - 1 = AdjM
(9.176)

where Adj M is the adjoint matrix of M. In review, Adj M is the transpose of the matrix
of cofactors, that is, the ith row and j t h column element of Adj M is the determinant of the
original matrix M with its j t h row and ith column removed. Adj M is thus calculated as

adj M =

X5

- Y 5

X5

Y5

- C5Y5) - X 5 (z^X5 - X ; Y S )

5 - c 5 Y 5 ) Y5 (Z'5X5 - X;Y 5 )

- Y5X^) X5 (x^X 5 - Y 5 c 5 ) - X 5

- Z'5X5) Y5 (Y5C5 - X^X5) X5 (

X5 (

-Y 5

+ Z^X;) + Y5

Z^2) - Y5 (x^c

-X5 (c5X^ + Z^X^) + Y5

X5 ( x ^ + Z^) - Y5 (c5X

X5 (x^X^ - Z^c5

Y5 (z^c5 - X^X^

(9.177)
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This equation can be simplified by expanding the terms in parentheses to yield the inter-
mediate results

(9.178)

(9.179)

(9.180)

(9.181)

(9.182)

Z5X5 —  Y5X5 = X5,

Z5C5 ~ ^ 5 X 5 = -Z5>

Using these results, Eq. (9.177) may be rewritten as

adj M =

—X5Y5 —X5X5 —X5Z5 Y 5

Y5Y5 Y5X5 Y5Z5 X5

X5X5 —X5Y5 Y 5 X5Z5

- Y 5 X 5 Y5Y5 X5 - Y 5 Z 5

(9.183)

The determinant of M is expanded as

11VJLI = A 5 ^A5A^ — ^ ^ 5 ^ 5^5 T" ^ 5 ^ 5 ) 1  X 5 ^ x 5C5 -+- I 5A5 —

This can be regrouped as

Y2c2.

(9.184)

(9.185)

The term in parentheses in this equation can be replaced by using Eq. (9.181) to give

|M| = X;2X2 + x;2Y2 - 2X5Y5(-X5Y5) + X2Z^2 + Y2c2. (9.186)

This equation is next regrouped as

|M | = X^2X2 + X^2Y2 + X2(2Y2 + Z^2) + Y2c2. (9.187)

Equation (9.182) can be rearranged so that the quantity (Y2, + Z52) can be replaced by
(1 —  X52) in the previous equation to yield

X2(Y2 Y2c2.

This equation is now rearranged as

|M| = X^2Y2 + X2(Y2 + 1

Regrouping this equation again yields

Y2c2.

(9.188)

(9.189)

(9.190)

After substituting the definitions for X5 and X5, and recognizing that (Sj6 + c]6) = 1 and
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(S5 + C5) = 1, the determinant of the matrix M can be written as

\M\=X2
5 + Y2

5. (9.191)

Now that the adjoint and determinant of M have been expressed in terms of the constant
mechanism parameters, the matrix M"1 as defined in Eq. (9.176) can be substituted into
Eq. (9.175) to solve for the terms c4x6, s4x6, C4, and s4. These four terms may be written
as

= PllX6+Pl2,

S4 = P41X6 + P42,

where

Pll = K(X5Y5X2n + X5X5Y217 + Y5Z217 —  C34Y5Z5),

P12 = K(X5Y5Y2i7 —  X5X5X217 —  X5Z5Z217 + C34X5),

P21 = K(—Y5Y5X217  —  Y5X5Y217 + X5Z217 —  C34X5Z5),

P22 = K(Y5X5X2i7 —  Y5Y5Y217 + Y5Z5Z217 —  C34Y5),

P31 = K(—X5X5X217 + X5Y5Y217 + X5Z5Z217  —  C34X5),

P3 2 = K ( - X 5 Y 5 X 2 i 7 - X5X5Y2 1 7 + Y5Z2i7 - C34Y5Z5),

P41 = KXY5X5X217 —  Y5Y5Y217 —  Y5Z5Z217 + C34Y5),

P42 = K(Y5Y5X2i7 + Y5X5Y217 + X5Z217 —  C34X5Z5),

W <9-193)
Substituting Eq. (9.192) into Eqs. (9.153) through (9.156) and regrouping gives

[cS6(Hi - K12P2i - KnPi, - JO + K21P3i + K22P4i]x6

+ [c56(-K12P22 + H2 - KnP1 2) + K21P32 + h + K22P42] = 0, (9.194)

[c56(H2 - KnP3i - K12P41) - K22P21 - K21P11 - J2]x6

+ [c5 6(-Hi - KUP32 - J, - K12P42) - K22P22 - K21P12] = 0, (9.195)

[—SeY 2I7 + J3 + K32P2i + K4!P3i + K31P11 + K42P4i + Xo2n]x6

+ [K42P42 + J4 + K32P22 + Y0217 + K31P12 + ^Pn + S6X217] = 0, (9.196)

[S6X217 - J4 - K42P21 + K31P31 - K41PH + K32P41 + Y02n]x6

+ [K32P42 + J3 - K42P22 - X0217 - K41P12 + K3iP32 + S6Y217] = 0. (9.197)
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The variable parameters in these four equations are the angles 0\, 02» and # 6. Because
these four equations are linear in the tan-half-angle of 06, they may be written in the form

(AiC2 + BiS2 + Di)x6 + (EiC2 + FiS2 + GO = 0, i = 1 . . . 4, (9.198)

where

Ai = Ai,iCi +A i ) 2 s i +A i t 3 ,

: (9.199)

Gi = G u ci + Gi,2 si + Gi 3.

The following definitions are provided that are used to expand the terms in the four
equations that contain the angles 0\ and 02:

X 2 n = X21c7 - Y21s7, Yn = c67(XiS7 + Yic7) - s67Zi,
Y217 = c67(X2iS7 + Y2!c7) - s67Z2i, Zn = Z71,
Z217 = s67(X2iS7 + Y21c7) + c67Z21, U2i76 = U2 nc6 7 - V2i7s67,
X2i = X2ci - Y2si, W2X16 = U217S67 + V2i7c67,
Y2i = c7i(X2Si + Y2Ci) - s7i22, U 2 n = U2ic7i - V21S71,
Z21 = S7i(X2Si + Y2ci) + c7iZ2, V217 = c7(U2 1s7 1+V2 1c7i)-s7W2 1,
X2 = s23s2, W217 = s7(U2iS7i + V21C71) + C7W21,
Y2 = -(s i 2c2 3 + ci2s23c2), U2i = si2s2,
Z 2 = Ci2C23 - Si2S23C2, U17 = S71S1,

X712 = X7 1c2 - Y7is2 , V2i = - ( s i c 2 + C1S2C12),
Y7i2 = c23(X7iS2 + Y7 1c2) - S23Z71, W2i = cic 2 - S!S2Ci2,
Z7i2 = Z217, Ui7 6 = Ui7c6 7 —  Vi7s6 7 ,
X71 = X7ci - Y7S1, U*76 = U n s 6 7 + V n c 6 7 ,
Y71 = C12(X7Si + Y7C1) - S12Z7, V17 = -(S7C1 + C7S1C71),
Z71 = Si2(X7Si + Y7C1) + Ci2Z7, W n = C7Ci - S7S1C71.
X17 = X1C7 - Y1S7, (9.200)

The terms X02n, Y02i7, and Z02n are expanded as follows:

X0217 = - S 7 ( X 2 i S 7 + Y2ic7) + X02iC7 - Y02iS7,

Yo2n = —a 67Z2i7 + S7c6 7X2i7 + c67(X02iS7 + Y02iC7) —  s67Z02i,

Z 0 2 n = a 6 7 Y 2 n + S7S67X217 + s67(X02iS7 + Y02iC7) + c67Z02i,

X02i = - S i ( X 2 s i + Y2ci) + X02C! - Y02S1,

Y02i = - a 7 i Z 2 1 + SiC7iX2i + c7i(X02Si + Y02Ci) - s7iZ02,

Z021 = a7iY2i + SiS7iX2i + s7i(X02Si + Y02Ci) + c7iZ0 2,

X02 = a23c23s2 + S2s23c2,

Y02 = S2ci2s23s2 - a!2Z2 + a23(s12s23 - ci2c23c2),

Z02 = S2s12s23s2 + a12Y2 + a23Y2. (9.201)
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Using these definitions, the coefficients of Eqs. (9.194) through (9.197) may be written
as

Ai.i = Xsci2S23K[K,1cS6(-Y5X^ - X5Z7) - K12c56Y7

+ K2, ( -X5X7 + Y5Z7 + Z5Y7)] + Y5c12S23K[-K11c56Y7

+ K22(X5X7 - Y5Z7 - Z5Y7) + c56K12(X5Z7 + Y5X7)]

+ c56(a23C7 + S3C12S23C71S7),

A,,2 = X5c12S23K[-K11c56(X5X7 + Y5c7) - K12c56X7

+ K21 (-X5c7 + Y5X7 + Z5X7)] + Y5c12S23K[-K11C56X7

+ K12c56(X5X7 + Y5C7) + K22(X5c7 - Y5X7 - Z5X7)]

+ C56 ( -a 2 3X 7 + S3Ci2S23C7),

A,,3 = X5s12S23K[K11c56(X5Y7 + Y5X7) + K12c56Z7 + K21(X5X7 - Y5Y7 - Z5Z7)]

+ YsSizs^KtKuCjfiZ, + K12c56(-X5Y7 - Y5X7)

+ K2 2(-X5X7 + Y5Y7 + Z5Z7)] - S3s12s23C56X7,

B,,, = X5s23K[-K11C56(X5X7 + Y5c7) - K12c56X7 + K21 (-X5c7 + Y5X7 + Z5X7)]

+ Y5s23K[-Knc5 6X7 + K12c56(X5X7 + Y5c7) + K22(X5C7 - Y5X7 - Z5X7)]

+ c56(-a23c12X7 + S3S23C7),

Bi,2 = X5S23K[KnC56(X5Z7 + Y5X7) + K12c56Y7 + K21 (X5X7 - Y5Z7 - Z5Y7)]

+ Y5s23K[K11C56Y7 + K1 2c5 6(-X5Z; - Y5X7)

+ K 2 2 ( -X 5 X; + Y5Z7 + Z5Y7)] - c56(a23c12c7 + S3s23X7),

Bi,3 = a23Si2c56X7,

D u = X5s12c23K[K11c56(-X5Z7 - Y5X7) - K12c56Y7

+ K2, (-X5X7 + Y5Z7 + Z5Y7)] + Y5s12c23K[-Kuc56Y7

+ K12c56(X5Z7 + Y5X7) + K22(X5X; - Y5Z7 - Z5Y7)]

+ c56(a12c7 + S2Si2X7 + S3Si2C23X7),

Di,2 = X5s12c23K[-K11C56(X5X7 + Y5C7) - K12c56X7

+ K 2 , ( -X 5 c 7 + Y5X7 +Z5X7)] + Y5s12C23K[-K11C56X7

+ K12c56(X5X7 + Y5c7) + K22(X5c7 - Y5X7 - Z5X7)]

+ c5 6(-ai2X7 + S2si2c7 + S3si2c23c7),

Dlj3 = X5K[K11c12c23C56(-X5Y7 - Y5X7) + K12c56(c34Z5 - c12c23Z7)

+ K21(-C34 + C12C23(-X5X7 + Y5Y7 + Z5Z7))]
+ Y5K[KiiC56(c34Z5 - c12c23Z7) + Ki2c12c23c56(X5Y7 + Y5X7)

+ K22(c34 + c12c23(X5X7 - Y5Y7 - Z5Z7))]

+ C56(-Ji + S1X7 + S2Ci2X7 + S3Ci2c23X7 + a67 + a7ic7),

E M = X5c12s23K[KnC56(X5X7 - Y5Z7 + Z5Y7) + K21 ( - X5Z7 - Y5X7) + K22Y7]

+ Y5c12s23K[K12c56 (-X5X7 + Y5Z7 - Z5Y7) + K21Y7 + K22 (X5Z7 + Y5X7)]

+ c56(S3Ci2s23Z7 + a23X7) - s56(a23X7 + S3c12s23Y7),
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E,,2 = X5c12s23K[K11c56(X5c7 - Y5X7 + Z5X7) - K21 (X5X7 + Y5c7) + K22X7]
+ Y5c12s23K[K12C56(-X5c7 + Y5X7 - Z5X7)
+ K21X7 + K22(X5X7 + Y5c7)] + c5 6(-a2 3Z7 + S3c12s23X7)
+ s56(a23Y7 - S3c12s23X7),

Ei,3 = X5si2s23K[K11c56(-X5X7 + Y5Y7 - Z5Z7) + K21(X5Y7 + Y5X7) - K22Z7]
+ Y5s12s23K[K12c56(X5X7 - Y5Y7 + Z5Z7) - K21Z7 - K22(X5Y7 + Y5X7)]
+ S3Si2s23(s56Z7 - c56Y7),

Fi,i = X5s23K[KnC56(X5c7 - Y5X7 + Z5X7) - K21 (X5X7 + Y5c7) + K22X7]
+ Y5s23K[K12C56(-X5c7 + Y5X7 - Z5X7) + K21X7 + K22(X5X7 + Y5c7)]
+ a23Ci2(s56Y7 - c56Z7) + S3s23(-s56X7 + c56X7),

Fl i 2 = X5s23K[K11c56(-X5X7 + Y5Z7 - Z5Y7) + K21 (X5Z7 + Y5X7) - K22Y7]
+ Y5s23K[K12c56(X5X7 - Y5Z7 + Z5Y7) - K21Y7 - K22(X5Z7 + Y5X7)]
+ a23Ci2(s56X7 - c56X7) + S3s23(s56Y7 - c56Z7),

Fi,3 = a23Si2(c56Y7 - s56Z7),
G,,, = X5s12c23K[Knc56(X5X7 - Y5Z7 + Z5Y7) - K21 (X5Z7 + Y5X7) + K22Y7]

+ Y5s12c23K[K12c56(-X5X7 + Y5Z7 - Z5Y7) + K21Y7 + K22(X5Z7 + Y5X7)]
+ S2Si2(-s56Y7 + c56Z7) + S3s12(-c23s56Y7 + c23c56Z7)
+ a1 2(-s5 6X7 + c56X7),

Gi,2 = X5snC23K[Knc56(X5Cl - Y5X7 + Z5X7) - K21 (X5X7 + Y5c7) + K22X7]
+ Y5s12c23K[K12c56(-X5c7 + Y5X; - Z5X7) + K21X7 + K22(X5X7 + Y5c7)]
+ S2si2 (-s5 6X7 + c56X7) + S3s12c23 (-s56X7 + c56X7) + aw (s56Y7 - c56Z7),

G,.3 = X5K[Kiic56(-C34 + c12c23(X5X7 - Y5Y7 + Z5Z7)) - K21c12c23(X5Y7

+ Y5X7) + K2 2(-c3 4Z5 + c12c23Z7)] + Y5K[K12c56(c34 + c12c23(-X5X7

+ Y5Y7 - Z5Z7)) + K2 1(-c3 4Z5 + c12c23Z7) + K22c12c23(X5Y7 + Y5X7)]
+ Si(c56Y7 - s56Z7) + S2c12(-s56Z7 + c56Y7) + S3c12c23(-s56Z7 + c56Y7)
+ S4S45C5 - S6s56 - S7(s56c67 + c56s67) - a45s5 + a7i(-s56X7 + c56X7),

(9.202)
A2.1 = X5c12s23K[KllC56(X5X7 - Y5Z7 - Z5Y7) - K21 (X5Z7 + Y5X7) - K22Y7]

+ Y5c12s23K [K12c56 (-X5X7 + Y5Z7 + Z5Y7) - K2IY7 + K22 (X5Z7 + Y5X7)]
+a23(s56X7 + c56X7) + S3c12s23(s56Y7 + c56Z7),

A2,2 = X5Ci2S23K[Ki,C56(X5C7 - Y5X? - Z5X7) - K21 (X5X7 + Y5C7) - K22X7]
+ Y5c12s23K[K12c56(-X5c7 + Y5X7 + Z5X7) - K21X7 + K22(X5X7 + Y5c7)]
- a23(s56Y7 + c56Z7) + S3Ci2s23(s56X7 + c56X7),

A2,3 = X5s12s23K[KllC56(-X5X7 + Y5Y7 + Z5Z7) + K21(X5Y7 + Y5X7) + K22Z7]
+ Y5s12s23K[K12c56(X5X7 - Y5Y7 - Z5Z7) + K21Z7 - K22(X5Y7 + Y5X7)]
- S3Si2s23(s56Z7 + c56Y7),
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B2,i = X5S23K[K11cS6(X5c7 - Y5X7 - Z5X7) - K21 (X5X7 + Y5c7) - K22X7]

+ Y5s23K[K12c56(-X5c7 + Y5X7 + Z5X7) - K21X7 + K22(X5X7 + Y5c7)]

- a23ci2 (s56Y7 + c^) + S3s23 (s56X7 + c56X7),

B2,2 = X5s23K[K11c56(-X5X7 + Y5Z7 + Z5Y7) + K21 (X5Z7 + Y5X7) + K22Y7]

+ Y5s23K[K12c56(X5X7 - Y5Z7 - Z5Y7) + K21Y7 - K22(X5Z7 + Y5X7)]

- a23Ci2(s56X7 + c56X7) - S3s23(s56Y7 + c56Z7),

B2,3 = a23s12(s56Z7 + c56Y7),

D2,i = X5s12c23K[KnC56(X5X7 - Y5Z7 - Z5Y7) - K21 (X5Z7 + Y5X7) - K22Y7]

+ Y5s12c23K[K12c56(-X5X7 + Y5Z7 + Z5Y7) - K21Y7 + K22(X5Z7 + Y5X7)]

+ a12 (s56X7 + c56X7) + S2s12 (s56Y7 + c56Z7) + S3s12c23 (s56Y7 + c ^ ) ,

D2,2 = XsSiaCasK^nCseCXsCy - Y5X7 - Z5X7) - K21 (X5X7 + Y5c7) - K22X7]

+ Y5s12c23K[K12C56(-X5C7 + Y5X7 + Z5X7) - K21X7 + K22(X5X7 + Y5c7)]

- ai2(s56Y7 + c56Z7) + S2s12(s56X7 + c56X7) + S3s12c23(s56X7 + c56X7),

D2j3 = X5K[Kuc56(c34 + c12c23(X5X7 - Y5Y7 - Z5Z7)) - K21c12C23(X5Y7 + Y5X7)

+ K22(c34Z5 - c12c23Z7)] + Y5K[K12c56(-C34 + c12c23(-X5X7 + Y5Y7

+ Z5Z7)) + K21(c34Z5 - Ci2c23Z7) + K22c12c23(X5Y7 + Y5X7)]

+ Si(s56Z7 + c56Y7) + S2Ci2(s56Z7 + c56Y7) + S3c12c23(s56Z7 + c56Y7)

- S4S45C5 + S6s56 + S7(s56c67 - c56s67) + a45s5 + a7i(s56X7 + c56X7),

E2,i = Xsc,2S23K[Knc56(XsZ^ + Y5X;) - K12c56Y7 + K21(X5X7 - Y5Z7 + Z5Y7)]

+ Y5c12s23K[-Knc56Y7 - K12c56(X5Z7 + Y5X7)

+ K2 2(-X5X7 + Y5Z7 - Z5Y7)] - c56(a23C7 + S3c12s23X7),

E2,2 = X5c12s23K[K11c56(Y5c7 + X5X;) - K12c56X7 + K21 (X5c7 - Y5X7 + Z5X7)]

+ Y5c12s23K[-KllC56X7 - K12c56(X5X7 + Y5c7)

+ K2 2(-X5c7 + Y5X7 - Z5X7)] + c56(a23X7 - S3c12s23c7),

E2,3 = X5s12s23K[-Knc56(X5Y7 + Y5X7) + K12c56Z7

+ K2 1(-X5X7 + Y5Y7 - Z5Z7)] + Y5s12S23K[K11c56Z7

+ K12c56(X5Y7 + Y5X7) + K22(X5X7 - Y5Y7 + Z5Z7)] + S3c56X7,

F2,, = X5S23K[KllC56(X5X7 + Y5c7) - K12c56X7 + K21 (X5c7 - Y5X7 + Z5X7)]

7 - S3S23C7),

F2,2 = X5s23K[-K11c56(X5Z7 + Y5X7) + K12c56Y7 + K21 (-X5X7 + Y5Z7 - Z5Y7)]

fiYv + K12c56(X5Z7 + Y5X7) + K22(X5X7 - Y5Z7 + Z5Y7)]

(a23ci2c7 + S3s23X7),

F23 = -a23Si2c5 6X7,

G2.1 = X5s12c23K[KnC56(X5z; + Y5X7) - K12c56Y7 + K21 (X5X7 - Y5Z7 + Z5Y7)]
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+ Y5s1 2c2 3K[- KnC56Y7 - K12c56(X5Z7 + Y5X7) + K 2 2 ( - X5X7

+ Y5Z7 - Z5Y7)] - c56(a12c7 + S2s12X7 + S3s12c23X7),

G2,2 = X5s12c23K[KllC56(X5X7 + Y5c7) - K12c56X7 + K21 (X5c7 - Y5X7 + Z5X7)]

+ Y5s12c23K[-KIlC56X7 - K12c56(X5X7 + Y5c7) + K2 2(-X5c7

+ Y5X7 - Z5X7)] + c56(a12X7 - S2s12c7 - S3s12c23c7),

G2j3 = X5K[Ki1Ci2C23C56(X5Y7 + Y5X7) + K12C56(C34Z5 - C12C23Z7)

+ K 2 i ( -c 3 4 + c12c23(X5X7 - Y5Y7 + Z5Z7))] +Y5K[K11c36(c34Z5 -C12C23Z7)

+ K12c12c23c56(-X5 Y7 - Y5X7) + K22(c34 + c,2c23(-X5X7 + Y5 Y7 - Z5Z7))]

- c56(Ji + ae7 + a71c7 + SiX7 + S2c12X7 + S3c12c23X7), (9.203)

A3,i = X5c12s23K[K31 (X5Z7 + Y5X7) + K32Y7 + K41 (-X5X7 + Y5Z7 + Z5Y7)]

+ Y5c12s23K[K31Y7 - K32(X5Z7 + Y5X7) + K42(X5X7 - Y5Z7 - Z5Y7)]

+ S5 [s23(ai2Si2Y7 - a67Ci2Z7 + a7iC12Z7 — SiCi 2X7 —  S2X7 - S7Ci2s67X7)

-a23Ci2c23Y7]/(s56C5) + Ci2s23c45 [a67X7 + S6Y7 - S7s71]/(s45c5)

- c34[a23X7 + S3Ci2s23Y7]/(s45c56c5) + SiCi2s23c7 + S2s23c7 — S 6Ci2s23Z7

+ S7ci2s23c7ic7 - ai2Si2s23X7 + a23Ci2c23X7 - a7iCi2s23X7,

A3,2 = X5c12s23K[K31 (X5X7 + Y5c7) + K32X7 + K41 (-X5c7 + Y5X7 + Z5X7)]

+ Y5c12s23K[K31X7 - K32(X5X7 + Y5c7) + K42(X5c7 - Y5X7 - Z5X7)]

+ s5 [ai2Si2s23X7 - a23c12c23X7 - a67c12s23X7 + S!C12s23Y7 + S2s23Y7

- S7Ci2s23S67c7]/(s56C5) + Ci2s23 [a67c45c7 + a7ic45 + S6c45X7]/(s45c5)

+ c34[a23Y7 - S3Ci2s23X7]/(s45c56c5) - SiCi2s23X7 - S2s23X7 - S6Ci2s23X7

- S7c12s23s7 - ai2si2s23c7 + a23ci2c23c7,

A3,3 = X5s12s23K[-K31(X5Y7 + Y5X7) - K32Z7 + K4i(X5X7 - Y5Y7 - Z5Z7)]

+ Y5s12s23K[-K31Z7 + K32(X5Y7 + Y5X7) + K42(-X5X7 + Y5Y7 + Z5Z7)]

+ S5 [ai2Ci2s23Z7 + a23Si2c23Z7 + a67Si2s23Y7 + a7iSi2s23Y7

+ S7Si2s23s67X7]/(s56c5) - s12s23c45 [a67X7 + Si + S6Z7 + S7c7i]/(s45c5)

+ [S3Si2s23c34Z7]/(s45c56c5) + S6Si2s23Y7 - S7Si2s23s71c7 - ai2c12s23X7

- a23Si2c23X7 - a7iSi2s23X7,

B3,i = X5s23K[K31 (X5X7 + Y5c7) + K32X7 + K41 (-X5c7 + Y5X7 + Z5X7)]

+ Y5s23K[K31X7 - K32(X5X7 + Y5c7) + K42(X5c7 - Y5X7 - Z5X7)]

+ s5[SiS23Y7 + S2Ci2s23Y7 - S7s23s67c7 - a23c23X7 - a67s23X7]/(s56c5)

+ s23c45[S6X7 + ae7c7 + a71]/(s45c5) + c34[-S3s23X7 + a23Ci2Y7]/(s45c56c5)

- SiS23X7 - S2Ci2s23X7 - S6s23X7 - S7s23s7 + a23c23c7,
B3,2 = X5s23K[-K31 (X5Z7 + Y5X7) - K32Y7 + K41 (X5X7 - Y5Z7 - Z5Y7)]

+ Y5s23K[-K31Y7 + K32(X5Z7 + Y5X7) + K42(-X5X7 + Y5Z7 + Z5Y7)]
+ s5 [SiS23X7 + S2c12s23X7 + S7s23c71X7 + a23c23Y7 + a67s23Z7

- a7iS23Z7]/(s56c5) + s23c45 [-S6Y7 + S7s71 - a67X7]/(s45c5)
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+ C34IS3S23Y7 + a23C12X7]/(s45C56C5) - SiS23C7 - S2C12S23C7 + S6S23Z7

- S7S23C71C7 - a23c23X7 + a7iS23X7,

B3,3 = [ai2S23C45]/(S45C5) ~ [S2Si2S23S5Z7]/(S56C5)

- [a23Sl2C34Z7]/(S45C56C5) + S2S12S23X7,

D3,i - X5s12C23K[K31 {X5Zf
7 + Y5X7) + K32Y7 + K4i (-X5X7 + Y5Z7 + Z5Y7)]

+ Y5s12C23K[K31Y7 - K32(X5Z7 + Y5X7) + K42(X5X7 - Y5Z7 - Z5Y7)]
+ S5 [-S1S12C23X7 - S7S12C23S67X7 - ai2Ci2C23Y7 + a23Si2S23Y7 - a67Si2C23Z7

+ a7iSi2C23Z7]/(s56C5) + Si2c23C45 [S6Y7 - S7s71 + a67X7]/(s4 5c5)

-C34[S2Si2Y7 + S3S12C23Y7 + ai2X7]/(s45C56C5) + S1S12C23C7 - S6Si2C23Z7

+ S7S12C23C71C7 + ai2Ci2C23X7 - a23Si2S23X7 - a7iSi2C23X7,

D3,2 = X5s12c23K[K31 (X5X7 + Y5c7) + K32X7 + K41 (-X5c7 + Y5X7 + Z5X7)]
+ Y5s12c23K[K31X7 - K32(X5X7 + Y5C7) + K42(X5c7 - Y5X7 - Z5X7)]
+ S5 [S1S12C23Y7 - S7S12C23S67C7 - ai2Ci2C23X7 + a23Si2S23X7

(s56c5) + s12c23C45 [S6X7 + a67c7 + a7i]/(s45c5)
[ - S3S12C23X7

- S7S12C23S7 + ai2Ci2C23C7

D3,3 = X5K[K31c12C23(X5Y7 + Y5X7) + K3 2(-c3 4Z5

+ K41 (-C34 + c12c23(-X5X7 + Y5 Y7 + Z5Z7))]
+ Y5K[K31(-c34Z5 + c12c23Z7) - K32Ci2C23(X5Y7 + Y5X7)

- Y5Y7 - Z5Z7))] + S5 [-

7] /(S56C5) + C45 [S1C12C23 + S2C23 + S3 + S4C34

+ S6C12C23Z7 + S7C12C23C71 + a67Ci2C23X7]/(s45C5) + C 3 4 [ -S iZ 7 - S2C12Z7

- S3C12C23Z7 - S4Z5 - S6 - S7c67 - a45X5 - a7iX7]/(s45C56c5) - S6C12C23Y7

+ S7C12C23S71C7 - ai2Si2C23X7 - a23Ci2S23X7 + a7iCi2C23X7 - a56C34C56X5/S56,

E3,i = X5c12S23K[K31 (-X5X7 + Y5Z7 - Z5Y7) - K41 (X5Z7 + Y5X7) + K42Y7]
+ Y5c12s23K[K32(X5X7 - Y5Z7 + Z5Y7) + K41Y7 + K42(X5Z^ + Y5X7)]
+ c56[SiCi2s23X7 + S2s23X7 + S7Ci2s23s67X7 - ai2Si2s23Y7 + a23Ci2c23Y7

s56 + SiCi2s23X7 + S2s23X7 + S6Ci2s23X7

7 - ai2Si2s23Z7 + a23Ci2c23Z7 - a67Ci2S23Y7 - a7iCi2S23Y7,

E3,2 = X5c12s23K[K31 (-X5C7 + Y5X7 - Z5X7) - K41 (X5X7 + Y5c7) + K42X7]
+ Y5c12s23K[K32(X5c7 - Y5X7 + Z5X7) + K41X7 + K42(X5X7 + Y5c7)]
+ c56[-SiCi2s23Y7 - S2s23Y7 + S7Ci2s23s67C7 - ai2si2

3Z7 - S2S23Z7 + S6Ci2S23C7

7 + a23Ci2c23X7 - a67Ci2s23X7,

E3,3 = X5s12s23K[K31(X5X7 - Y5Y7 + Z5Z7) + K4i(X5Y7 + Y5X7) - K42Z7]
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+ Y5s12s23K[K32(-X5X7 + Y5Y7 - Z5Z7) - K4iZ7 - K42(X5Y7 + Y5X7)]

X7 - ai2Ci2S23Z7 - a23Si2C23Z7 -

- S6S12S23X7 - S7S12S23C67X7 -

F3,i = X5S23K[K31 ( -X5c7 + Y5X7 - Z5X7) - K41 (X5X7 + Y5c7) + K42X7]
+ Y5S23K[K32(X5c7 - Y5X7 + Z5X7) + K41X7 + K42(X5X7 + Y5c7)]

a23C23X7 + a67s23X7]/s56

S7s23c67c7 + a23c23X7 - a67s23X7,
F3,2 = X5s23K[K3i (X5X7 - Y5Z7 + Z5Y7) + K41 (X5Z7 + Y5X7) - K42Y7]

(-X5X7 + Y5Z7 - Z5Y7) - K41Y7 - K42(X5Z7 + Y5X7)]

7 - S7s23C6 7X7 -

F3,3 = S 2 Si 2 S 2 3 Y 7

G3,i - X5s12c23K[K3i (-X5X7 + Y5Z7 - Z5Y7) - K41 (X5Z7 + Y5X7) + K42Y7]
X5X7 - Y5Z7 + Z5Y7) + K4iY7 + K42(X5Z7 + Y5X7)]

S7Si2c23s67X7 + ai2Ci2c23Y7 - a23Si2s23Y7 + a67Si2c23Z7

- a71Si2C23Z7]/s56

G3,2 = X5s12c23K[K3i ( -X5c7 + Y5X7 - Z5X7) - K41 (X5X7 + Y5c7) + K42X7]
- Y5X7 + Z5X7) + K41X7 + K42(X5X7 + Y5c7)]

S7S12C23S67C7 + ai2Ci2C23X7 - a23Si2S23X7

SiSi2C23Z7 + S6Si2C23C7 + S7Si2C23C67C7 + ai2Ci2C23X7

7 - a 6 7 S i 2 c 2 3 X 7 ,

G3,3 = X5K[K31(c34 + c12c23(-X5X7 + Y5Y7 - Z5Z7)) - K41c12c23(X5Y7 + Y5X7)
+ K4 2(-c3 4Z5 + c12C23Z7)] + Y5K[K3 2(-c3 4 + c12C23(X5X7 - Y5Y7 + Z5Z7))
+ K4 1(-c3 4Z5 + c12c23Z7) + K42c12C23(X5Y7 + Y5X7)]
+ [C56(S7C12C23S67X7 - ai2S1 2C23Z7 - a23Ci2S23Z7 + a6 7Ci2C23Y7 + a7iC1 2C23Y7)

+ a34s34c45 + a45c34s45 + a56C34s45c5] / s 5 6 + S6Ci2c23X7 + S7Ci2c23C67X7

- ai2Si2c23Y7 - a23Ci2S23Y7 - a67Ci2C23Z7 + a7iCi2c23Z7, (9.204)

A4 4 = X5c12s23K[K31 (-X5X7 + Y5Z7 + Z5Y7) - K41 (X5Z7 + Y5X7) - K42Y7]

+ Y5c12s23K[K32(X5X7 - Y5Z7 - Z5Y7) - K41Y7 + K42(X5Z7 + Y5X7)

[ - S2s23X7 -

+ S7Ci2s23C6 7X7 -

A4,2 = X5c12S23K[K31 ( -X5c7 + Y5X7 + Z5X7) - K41 (X5X7 + Y5c7) - K42X7]
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^ - Z5X7) - K4iX7 + K4 2(X5X^ + Y5c7)]

S2s23Y7 - S7ci2s23s67c7 + ai2Si2s23X7 - a23c12c23X7

S2s23Z7 + S6Ci2s23c7 + S7Ci2s23c67c7

7 - a 6 7 Ci 2 s 2 3 X 7 ,

A43 = X5Si2s23K[K3i(X5X7 — Y5Y 7 — ZsZ-j) + K 4i(X5Y7 + Y5X7) + K42Z7J

+ Y 5 s 1 2 s 2 3 K[K 3 2 ( -X 5 X 7 + Y5Y7 + Z5Z7) + K4iZ7 - K42(X5Y7 + Y5X7)]

+ c56[S7Si2s23s67X7 + ai2Ci2s23Z7 + a23Si2c23Z7 + a67si2s23Y7

+ a7 iSi2s2 3Y7] /s5 6 - S6Si2s23X7 - S7Si2s23c67X7 - ai2Ci2s23Y7 - a23Si2c23Y7

+ a67Si2s23Z7 - a7iSi2s23Z7,

B4,i = X5s2 3K[K3 1 ( - X 5 c 7 + Y 5 X; + Z5X7) - K41 (X5X^ + Y5c7) - K4 2X7]

+ Y 5 s 2 3 K[K 3 2 (X 5 c 7 - Y5X^ - Z5X7) - K4 1X7 + K42(X5X^ + Y5c7)]

+ c56 [SiS23Y7 + S2Ci2s23Y7 - S7s23s67c7 - a23c23X7 - a67s23X7J / s 5 6 -

- S2Ci2s23Z7 + S6s23c7 + S7s23c67c7 + a23c23X7 - a67s23X7,

B4,2 = X5s2 3K[K3 1 (X5X^ - Y5Z^ - Z5Y7) + K41 (X5Z^ + Y5X^) + K4 2Y7]

+ Y 5 s 2 3 K[K 3 2 ( -X 5 X^ + Y5Z^ + Z5Y7) + K4 1Y7 -

+ c56 [SiS23X7 + S2ci2s2 3X7 + S7s23s67X7 + a23c23Y7

- a7 iS2 3Z7] /s5 6 -

B4,3 = S2s12s23Y7 - S2Si2s2 3c5 6Z7/s5 6,

D4fi = X5s1 2c2 3K[K3 1 ( - X 5 X ; + Y5Z^ + Z5Y7) - K41 (X5Z^ + Y 5 X;) - K4 2Y7]

+ Y5s1 2c2 3K[K3 2(X5X^ - Y5Z^ - Z5Y7) - K4 1Y7

+ c 5 6[-SiSi 2 c 2 3 X 7 - S7si2c23s67X7 - ai2Ci2c23Y7 + a23si2s23Y7 -

+ a7iSi2c23Z7] / s 5 6 + S!Si2c23X7

- a23Si2s23Z7 - a67Si2c23Y7 - a7iSi2c23Y7,

D4,2 = X5s1 2c2 3K[K3 1 ( - X 5 c 7 + Y5X^ + Z5X7) - K41 (X5X^ + Y5c7) - K4 2X7]

+ Y5s1 2c2 3K[K3 2(X5c7 - Y5X^ - Z5X7) - K4 1X7 + K4 2(X5X^ + Y5c7)]

+ c5 6[SiSi2c2 3Y7 - S7si2c23s67c7 - ai2Ci2c23X7 + a23Si2s23X7

] / s 5 6 - SiS12c23Z7 + S6si2c23c7 + S7Si2c23c67c7 + ai2Ci2c23X7

7 - a6 7si2c2 3X7,

D4,3 = X 5 K [ K 3 1 ( - c 3 4 + c 1 2 c 2 3 ( - X 5 X 7 + Y5Y7 + Z5Z7)) - K4 1c1 2c2 3(X5Y7 + Y5X7)

+ K42(c34Z5 - c12c23Z7)] + Y5K[K3 2(c3 4 + c1 2c2 3(X5X7 - Y5Y7 - Z5Z7))

+ K41(C34Z5 - C12C23Z7) + K42Ci2C23(X5Y7 + Y5X7)] + [c56(-S7Ci2C23S67X7

+ ai2Si2c23Z7 + a2 3ci2s2 3Z7 - a67Ci2c23Y7 - a7iCi2c23Y7) - a34s34c45

- a45c34s45 - a56c34s45C5]/s56 + S6Ci2c23X7 + S7Ci2c23c67X7 -

- a23Ci2s23Y7 - a67Ci2c23Z7
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E4,i = X5c12S23K[-K31 (X5Z7 + Y5X7) + K32Y7 + K41 (X5X7 - Y5Z7 + Z5Y7)]

+ Y5c12S23K[K31Y7 + K32(X5Z7 + Y5X7) + K4 2(-X5X7 + Y5Z7 - Z5Y7)]

+ s5 [-SiCi2s2 3X7 - S2s23X7 - S7Ci2S23s67X7 + ai2Si2S23Y7 - a23Ci2C23Y7

- a67Ci2S23Z7 + a7iCi2S23Z7] /(S56C5) + Ci2S23C45 [S6Y7

- S7S71 + a67X7]/(s45C5) - C34 [S3Ci2S23Y7 + a23X7]/(s45C56C5) - S1C12S23C7

- S2s23c7 + S6Ci2s23Z7 - S7Ci2S23C7iC7 + ai2Si2s23X7

- a23Ci2c23X7 + a7iCi2S23X7,

E4,2 = X5c12s23K[-K31 (X5X7 + Y5C7) + K32X7 + K41 (X5c7 - Y5X7 + Z5X7)]

+ Y5c12S23K[K31X7 + K32(X5X7 + Y5c7) + K42(-X5C7 + Y5X7 - Z5X7)]

+ S5 [SiCi 2 S 2 3 Y 7 + S 2 S 2 3 Y 7 - S7Ci2S23S67C7

C12S23C45 [S 6 X 7 + a 6 7 c 7

7 + S7C12S23S7

E4,3 = X5s12S23K[K3i(X5Y7 + Y5X7) - K32Z7 + K4i(-X5X7 + Y5Y7 - Z5Z7)]

+ Y5s12S23K[ - K31Z7 - K32(X5Y7 + Y5X7) + K42(X5X7 - Y5Y7 + Z5Z7)]

[Si + S6Z7 + S7C71 + a67X7] /(S45C5)

+ a71Si2s23X7,

F4,i = X5s23K[-K31 (X5X7 + Y5c7) + K32X7 + K4i (X5c7 - Y5X7 + Z5X7)]

+ Y5s23K[K31X7 + K32(X5X7 + Y5c7) + K42(-X5C7 + Y5X7 - Z5X7)]

+ s5 [SiS23Y7 + S2Ci2S23Y7 - S7s23s67C7 - a23c23X7 - a67S23X7]/(s56c5)

+ S23C45 [S6X7 + a67c7 + a7i] /(s45c5) + c34 [-S3S23X7 + a23Ci2Y7] /(S45C56C5)

+ SiS23X7 + S2Ci2C23X7 + S6S23X7 + S7S23S7 — a 23C23C7,

F4,2 = X5s23K[K3i (X5Z7 + Y5X7) - K32Y7 + K41 (-X5X7 + Y5Z7 - Z5Y7)]

+ Y5S23K[-K31Y7 - K32(X5Z7 + Y5X7) + K42(X5X7 - Y5Z7 + Z5Y7)]

+ s5 [SiS23X7 + S2Ci2S23X7 + S7S23s67X7 + a23c23Y7 + a67s23Z7

- a7iS23Z7]/(s56c5) + s23c45 [-S6Y7 + S7s7i - a67X7]/(s45C5)

+ C34[S3S23Y7 + a23Ci2X7]/(s45C56C5) + S1S23C7 + S2C12S23C7 - S6S23Z7

+ S7S23C71C7 + a23c23X7

F4?3 = -S2Si2S23[X7 + S5Z7/(S56C5)]

G4,i - X5s12c23K[-K31 (X5Z7 + Y5X7) + K32Y7 + K4i (X5X7 - Y5Z7 + Z5Y7)]

+ Y5s12C23K[K31Y7 + K32(X5Z7 + Y5X7) + K4 2(-X5X7 + Y5Z7 - Z5Y7)]

+ s5 [-SiSi2c2 3X7 - S7Si2C23S67X7 - ai2Ci2C23Y7 + a23Si2S23Y7 - a67Si2C23Z7

Si2C23C45 [S6Y7 - S7S71
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+ S6s12c23Z7 - S7si2c23c7ic7 - ai2ci2c23X7 + a23Si2s23X7 + a7iSi2c23X7,

G4,2 - X5s12c23K[-K31 (X5X7 + Y5c7) + K32X7 + K41 (X5c7 - Y5X7 + Z5X7)]

+ Y5s12c23K[K31X7 + K32(X5X7 + Y5c7) + K4 2(-X5c7 + Y5X7 - Z5X7)]

+ s5 [SiSi2c23Y7 - S7Si2c23s67c7 - ai2Ci2c23X7 + a23Si2s23X7

- a67Si2c23X7]/(s56c5) + si2c23c45 [S6X7 + a67c7 + a7i]/(s45c5)

+ c34[-S2Si2X7 - S3Si2c23X7 + ai2Y7]/(s45C56c5) + SiSi2c23X7 + S6Si2c23X7

+ S7Si2c23s7 - ai2ci2c23c7 + a23si2s23c7,

G4,3 = X5K[-K31c12c23(X5Y7 + Y5X7) + K3 2(-c3 4Z5 + c12c23Z7)

+ K41 (-C34 + c12c23(X5X7 - Y5Y7 + Z5Z7))] + Y5K[K31 (-c3 4Z5 + c12c23Z7)

+ K32c12c23(X5Y7 + Y5X7) + K42(c34 + c12c23(-X5X7 + Y5Y7 - Z5Z7))]

+ s5 [-S7ci2c23s67X7 + ai2Si2c23Z7 + a23ci2s23Z7 - a34s34c45c56 - a45c34s45C56

- a67Ci2c23Y7 - a71Ci2c23Y7]/(s56c5) + c45 [Sici2c23 + S2c23 + S3 + S4c34

+ S6Ci2c23Z7 + S7ci2c23c7i + a67Ci2c23X7]/(s45c5) - c34[a45X5 + SiZ7

+ S2ci2Z7 + S3Ci2c23Z7 + S4Z5 + S6 + S7c67 + a7iX7] /(s45C56c5)

+ S6Ci2c23Y7 - S7Ci2c23s7ic7 + ai2Si2c23X7 + a23Ci2s23X7

- a71ci2c23X7 - a56c34C56X5/s56. (9.205)

The following definitions were used in the coefficients:

X7 - c67s7, (9.206)

X7 = c71s7, (9.207)

Z7 = s67s71 - c67c7ic7. (9.208)

At this point there are four equations of the form of Eq. (9.198) whose coefficients are
listed in Eq. (9.199). These coefficients have been expanded in terms of the given mech-
anism parameters in Eqs. (9.202) through (9.205). The solution can proceed in a manner
identical to that for the 5R-C mechanism in the previous section with the exception that
the four equations are linear in the tan-half-angle of 06 rather than the tan-half-angle of #3.

The four equations of Eq. set (9.198) are next modified by substituting the tan-half-
angle expressions for the sines and cosines of 0\ and 02. The equations may be written as
follows after multiplying each by the product (1 + xf)(l + x^):

(aiX^ + biX2 + di)x6 + (eiX^ + fiX2 + a ) = 0, i = 1 . . . 4, (9.209)

where

: (9.210)

The coefficients ai;i through g i 3 are defined in terms of Ai5i through Gi?3 in Eq. set (9.77).
The input/output equation for this mechanism is then obtained as described in Section 9.1.
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An 8 x 8 determinant is expanded to yield a sixteenth-degree polynomial in the tan-half-
angle of the output angle, 0\. Equation (9.81) is this input/output equation.

9.4.2 Determination of 02 and 6$

Section 9.3.2 describes how to determine the corresponding values for the tan-half-
angle of the angles 02 and #3 from the four equations of Eq. set (9.75) for each calculated
value of the tan-half-angle of the output angle 0\. The procedure for solving for the tan-
half-angle of 02 and 66 for this mechanism is identical with the exception that x3 in Eq.
set (9.75) is replaced by x6 in Eq. set (9.209). Following the solution method outlined in
Section 9.3.2, expressions for the tan-half-angle for the corresponding values of 02 and 06

may be written as

|abef||adgb| - |adge||abed| '

_ —  |abef||adgf| + |adge|labeg|
X 6 ~ |abef| |adgb|-|adge||abed| *

9.4.3 Determination of 03 and 0A

Corresponding values for 63 and O4 may be obtained from the following fundamental
sine and sine-cosine laws for a spherical heptagon:

X5 6 7i2 = S34S3, (9.213)

Y56712 = S34C3, (9.214)

X 2 i 7 6 5 = S34S4, (9.215)

Y21765 = S34C4. (9.216)

9.4.4 Determination of S5

The last parameter to be determined is the offset distance S5. This may be determined
by projecting the vector loop equation onto any direction, resulting in one equation in one
unknown. Projecting onto the vector S5 gives

SiZ76 + S2Z34 + S3Z4 + S4C45 + S5 + S6c56 + S7Z6

a34s45S4 + a67U65 + a7iU765 = 0. (9.217)

This equation can readily be solved for the parameter S5.

9.4.5 Numerical example

Table 9.3 shows data that were used as input for a numerical example. The calculated
values for the sixteen configurations are listed in Table 9.4.
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Table 9.3.

Link length
cm.

a12 = 2.9

a23 = 13.2

a34 = l . l

a45 = 16.7

a56 = 12.7

a67 = 19.4
a7] = 6.0

Table 9.4.

Solution

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

RRPRRRR mechanism parameters.

Twist angle,
deg.

«12  =

<*23 =

«34  =

<*45 =

«56  =

«67  =

«71  =

90

90

90

90

89

90
90

Joint offset,
err

Si

s2
s3
s4
s5
s6
s7

1.

= 12.7

= 1.1
= 3.1

= 6.8

= variable

= 11.8
= 6.9

Joint angle,
deg.

ft =
02 =

03 =

04 =

e5 =
"6 —

ft =

variable

variable

variable

variable

252

variable
83 (input)

Calculated configurations for the RRPRRRR spatial mechanism.

ft, deg.

-104.45

-92.69

-81.74

-77.36

-22.26

-12.82

16.21

22.23
69.34

74.42

106.03

134.51

159.46

-164.56

-163.88

143.01

6>2, deg.

-15.64

-17.54

-147.90

-151.93

-106.57

119.26

-107.69

121.09

-172.85

-175.21

-36.04

-52.30

107.73

115.68

-73.99

-58.22

<93, deg.

-83.75

71.40

68.43

-79.48

18.84

-9.09

-167.05

173.63

127.94

-93.24

-99.73

138.26

-168.75

9.06

-20.16

144.98

04, deg.

-169.89
-8.92

9.80

166.21

73.16

-56.65

95.41

-131.49

168.99
7.64

-16.90

-139.97
74.84

104.77

-88.53

-130.15

06, deg.

-108.56

75.10

-60.75

122.33

-72.93

-83.58

105.76

98.41

86.65

-97.05

131.19

-58.47

-80.65

101.29

113.33

-61.19

S5, cm.

26.57

-26.82

32.15

-33.78

20.52

46.60

-22.59

-45.17

-34.41

34.26

-28.89

24.60

45.47
-47.82

-19.20

23.42

9.5 Summary
It has been shown that it is possible to solve group 3 spatial mechanisms by obtaining

four equations of the form

aixj* + biXj + d i ) x k + (eiXj2 + fiXj + g i ) = 0, i - 1 . . . 4 , (9.218)

where the coefficients aA through gi are quadratic in the tan-half-angle of the output angle.
Eliminating Xj and xk from the set of equations results in a sixteenth-degree input/output
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Table 9.5. RRPRRRR mechanism parameters.

Link length,
cm.

a]2 = 9.8

a23 = 2.9

a34 = 2.1

a45 = 4.6

a56 = 4.5

a67 = 3.3
a7i = 1.4

Twist angle,
deg.

axl = 291

a23 = 263
a34 = 147

a45 = 184

a56 = 268

<*67 = 73
« 7i = 153

Joint offset,
cm.

Si = 5.7

S2 = 0.8

S3 = 3.6

S4 = 9.4
S5 = variable

S6 = 4.4
S7 = 0.8

Joint angle,
deg.

Qx = variable

62 = variable
#3 = variable

04 = variable
<95=97

06 = variable
#7 = 279 (input)

equation that can be expressed as

|aebd||defg| + |aebf||bdfg| - |aebg||bdeg|

- |aedf||adfg| + |aedg||adeg| + |aefg||abdg| = 0,

where the determinant notation |xyzw| is defined by

(9.219)

|xyzw| =
x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

(9.220)

Examples of six-link 5R-C and seven-link 6R-P mechanisms have been presented in
this chapter. Alternate inversions of these mechanisms, that is, the location of the C or
P joint changes in the serial chain, can be solved in a manner similar to that described in
the examples. It should be noted also that several inversions may be solved by simply
changing (or cycling) the number of the joints in the example problems so that the example
mechanism matches the case to be analyzed.

The symbolic expansion of the coefficients of the four equations can be a tedious process
(see Eqs. (9.71) through (9.74) and (9.202) through (9.205)). C language computer code
that numerically evaluates these coefficients can, however, be obtained from the authors.
Once these coefficients are evaluated for a specific mechanism, the remainder of the
analysis is straightforward.

9.6 Problems
1. The mechanism parameters of a group 3 RRPRRRR spatial mechanism are given in

Table 9.5. Using the available computer code that expands the coefficients of Eqs. (9.202)
through (9.205), write a computer program to determine all the real solutions for the
variable parameters 61,62, 03,64, 06, and S5.



Group 4 spatial mechanisms

10.1 Introduction
The solution of the group 4 general 7R spatial mechanism (with seven joint axes that

are arbitrarily skew) was described by Ferdinand Freudenstein as the "Mount Everest of
kinematic problems." This complicated analysis is presented solely for reference purposes
and could be omitted by the vast majority of readers. The derivation given contains much
more detail than that presented by Lee and Liang (1988). The intention is to assist any
researcher who wishes to develop a computer program for the 7R mechanism analysis.
Further, an in-depth study may well lead to a simpler derivation.

It will be shown in this chapter that the input/output equation for the general 7R mech-
anism can be obtained from four equations of the form

(aiX^ + biXj + di)xk + (erf + fiXj + a ) = 0, i - 1 . . . 4, (10.1)

where the coefficients aA through gi are quadratic in the tan-half-angle of the output param-
eter. Eliminating the variables Xj and xk from this set of equations will yield a sixteenth-
degree input/output equation in the tan-half-angle of the output angle.

Because the format of (10.1) is identical to that of (9.2), the generation of the in-
put/output equation will be identical to that developed for the group 3 mechanisms once
the quadratic coefficients ai through gi are obtained. Further, the solution for the parame-
ters Xj and xk will be the same as presented in Section 9.3.2.

The majority of industrial manipulators in use today consist of an end effector link free
to move in space connected serially by six revolute joints to ground. The end effector
link, together with the five intermediate links plus ground comprise seven links. Thus,
when the close-the-loop process is performed as part of the reverse analysis procedure,
a group 4 7R spatial mechanism results where one angle, 07, is known. It will be seen
that obtaining the coefficients ai through gi in Eq. set (10.1) is a lengthy undertaking.
The numerical evaluation of these coefficients and the subsequent solution of a sixteenth-
degree input/output equation can require a significant computational time. Precise real-
time control of industrial manipulators requires that the reverse-analysis calculations be
performed as rapidly as possible.

At the outset it appears that a manipulator design that can be modeled by a group 1
spatial mechanism would be preferred to a manipulator that is modeled by a group 4
spatial mechanism, simply because the reverse-analysis procedure is easier. However,
the vast majority of industrial manipulators do in fact incorporate six revolute joints with
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"specialized" geometry. For example, certain link lengths may be set equal to zero, which
allows pairs of successive joint axes to intersect. This produces the mechanical design
of wrist and shoulder-type joints. It is also common to set to zero or n radians certain
twist angles for which adjacent joint axes are parallel. All such special geometry greatly
simplifies the reverse analysis and avoids any problems associated with the actuation of
slider displacements, which is necessary for a manipulator design modeled by a group 1
mechanism.

This chapter will first present the solution of the general 7R spatial mechanism with
arbitrary dimensions. This complicated analysis is presented for reference purposes.
Following this, six 7R mechanisms with special geometries will be presented to show how
the reverse-analysis procedure can be greatly simplified for such special cases.

10.2 General 7R group 4 spatial mechanism

Shown in Figure 10.1 is a planar representation of the 7R spatial mechanism. It is
assumed that all the constant mechanism parameters are known together with the input
angle, 07. The objective is to obtain corresponding values for the remaining unknown
joint displacements. In particular, the problem statement is as follows:

given: a12, a23, a34, ^45, ̂ 56, a67, alu

ai2, a23, a34, a45, a56, a67, a7i,
Si, S2, S3, S4, S5, S$, S7, and
#7 (input angle),

find: 0i,e2,93,e4,65, and<96.

The angle 0\ is the output angle because it is attached to the frame a7i, and it will be
solved for first. The solution will proceed by first obtaining two pairs of equations that
are linear in the tan-half-angle of 06 and that also contain the variables 61,62,64, and 65 .
Once these are obtained, it will be shown how to eliminate the angles 64 and 65 from these
equations in order to obtain four equations of the form of Eq. (10.1).

input 7 """" i output
angle angle
Figure 10.1. Planar representation
of 7R spatial mechanism.
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10.2.1 Derivation of the first pair of equations

The vector loop equation for the 7R spatial mechanism may be written as

R = R6'23 + R3'56 = 0, (10.2)

where

R6'23 = S6S6 + a67a67 + S7S7 + a71a7i + SiSi + ai2ai2 + S2S2 + a23a23, (10.3)

R3'56 = S3S3 + a34a34 + S4S4 + a45a45 + S5S5 + a56a56. (10.4)

In general, the notation Rljk will represent the sum of the terms of the vector loop equation
beginning with SiSi and ending with ajkajk.

Projecting Eq. (10.2) onto the direction of the vector a56 and then onto the direction
(S6 x a56) gives

R6'23. a56 - -R3 ' 5 6 • a56, (10.5)

R6'23 • (S 6 x a56) = -R3 ' 5 6 • (S 6 x a56). (10.6)

The scalar products on the right side of these equations will be evaluated by using set 10
of the sets of direction cosines for a spherical heptagon. This yields

Jj = -R3 ' 5 6 . a56 = -(S3X45 + a34W45 + S4X5 + a45c5 + a56), (10.7)

J2 = -R3 ' 5 6 . (S6 x a56) = S3Y45 - a34U*56 + S4Y5 + a45S5C56 - S5s56. (10.8)

The scalar products on the left side of Eq. (10.5) will be evaluated by using set 5 from the
direction cosine table, and the left side of Eq. (10.6) will be evaluated with set 10. This
yields

R6'23 • (S 6 x a56) = a67s6 - S7Y12345 + a71U*

R6'23 • a56 - a67c6 + S7X6 + a71W76 + SiX76 + a12W176 + S2X176 + a23W2176,

(10.9)
}123456

ai2U*3456 - S2Y345 + a23U;456. (10.10)

Fundamental and subsidiary spherical and polar sine-cosine laws may be used to substitute
for the coefficients of S7, a7i, Si, ai2, S2, and a23 in Eq. (10.10) to give

R6'23 • (S 6 x a56) = a67s6 - S7s67c6 - a7iV76 + SiX;6 - ai2Vi76 + S2X*76 - a23V2176.

(10.11)

Expanding Eqs. (10.9) and (10.11) and regrouping terms using the expansions

X6 = S67S6, X76 = X7C6 — Y7S6, X176 = X17C6 — Y17S6,

X7*6 = X7s6 + Y7c6, XJ76 = X17s6 + Y17c6,

W76 = c6c7 - s6s7c67, W176 = s6UJ76 + c6W17, W2i76 = s6U*176 + c6W217,

V76 = - ( s 6 c 7 + c 6 s 7 c 6 7 ) , V176 = c 6 U * 7 6 - s 6 W 1 7 , V2176 = c6U*176 - s6W217,
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yields

R6,23

R6,23

where

H , =
H2 =

• a 56 = Hic6 •

• (S 6 x a56) =

ae7 + a71c7 -+

- H2s6,

-- H 2 C 6 ^

-S ,X 7 4

-S 7 s 6 7 + a7ic67s7 +

-Hisg,

- a i 2 W n H

SiY7 - a.

h S2X17 + a23W217,

i2U* + S2Y17 - a23U* .

(10.13)

(10.14)

(10.15)

(10.16)

Substituting Eqs. (10.7), (10.8), (10.13), and (10.14) into Eqs. (10.5) and (10.6) and
rearranging gives

H 1 c 6 - H 2 s 6 - J 1 = 0 , (10.17)
H l S 6 - J 2 = 0. (10.18)

Adding Eq. (10.17) to x6 times Eq. (10.18) yields

Hi(c6 + s6x6) + H2(c6x6 - s6) - J2x6 - Jx = 0. (10.19)

Subtracting x6 times Eq. (10.17) from Eq. (10.18) gives

Hi(s6 - c6x6) + H2(c6 + s6x6) + Jix6 - J2 = 0. (10.20)

The following trigonometric identities were introduced in Eqs. (9.108) and (9.109):

s6 - c6x6 = x6, (10.21)
1. (10.22)

Equations (10.19) and (10.20) can be simplified by using these identities and rearranged
to give

(H2 + J 2 ) x 6 - ( H 1 - J 1 ) = 0 , (10.23)
(H! + J0x6 + (H2 - h) = 0. (10.24)

These two equations are linear in the tan-half-angle of 9e and contain the variable
parameters 0i, 62,64, and 65. It will be necessary to eliminate the angles 64 and #5 from
these equations so that the result may be expressed in the format of Eq. (10.1). Two
additional equations will first be generated before the angles 64 and 65 are eliminated.

10.2.2 Some important vector expressions

Prior to developing the next pair of equations that will be linear in the tan-half-angle
of 66, four new expressions will be obtained. These expressions will be used later.

Using set 6 of the table of direction cosines for a spherical heptagon, it is apparent that

R6'23.a67 = Hl5 (10.25)
R6'23 • (S6 x a67) = H2, (10.26)
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where Hi and H2 are given by Eqs. (10.15) and (10.16). Substituting for Hi and H2 in
Eqs. (10.13) and (10.14) gives

R6'23 • a56 = [R6'23 • a67]c6 - [R6'23 • (S 6 x a67)]s6, (10.27)

R6'23 • (S 6 x a56) - [R6'23 • (S 6 x a67)]c6 + [R6'23 • a67]s6. (10.28)

Also from set 6 of the direction cosine table, the scalar product of S3 and 356 may be
written as

S3 • a56 = X 2 n c 6 - Y 2 n s 6 . (10.29)

This equation may also be written as

S3 • a56 = [S3 • a67]c6 - [S3 • (S 6 x a67)]s6. (10.30)

Lastly, set 6 of the direction cosine table may be used to evaluate the scalar product of
S3 with the vector (S6 x a56) as

S3 • (S6 x a56) =
X2n Y2i7 Z2i7

0 0 1
c6 - s 6 0

(10.31)

Expanding this determinant gives

S3 • (S 6 x a56) - X217s6 + Y2i7c6. (10.32)

This may also be written as

S3 • (S 6 x a56) = [S3 • a67]s6 + [S3 • (S 6 x a67)]c6. (10.33)

The four expressions listed in Eqs. (10.27), (10.28), (10.30), and (10.33) will be used
in the next section to derive a further pair of equations that are linear in x6 and that also
contain the variable joint angles 61,62,04, and 05.

10.2.3 Derivation of the second pair of equations

Using Eq. (10.2), we can form the following pair of equations:

1 (R6,23 . R 6 , 2 3 ) ( S 3 . a j 6 ) _ (R6,23 623

i(R3-56 • R3'56)(S3 • a56) - (R3-56 • S3)(R3-56 • a56) (10.34)

and

11(R6.23 . R 6 , 2 3 ) ( S 3 . Sf i x a s 6 ) _ (R6,23 .

= i(R3-56 • R3-56)(S3 • S6 x a56) - (R3'56 • S3)(R3-56 • S6 x a*) . (10.35)
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Substituting Eqs. (10.27) and (10.30) into Eq. (10.34) gives

1 (R6,23 . R6,23) [ ( S 3 . a 6 ? ) c 6 _ (S,3 . § 6 x a 6 ? ) s 6 ] _ (R6,23 . S3)[(R6,23 . ^ ^

- (R6'23 . S6 x a67)s6] = i(R3'5 6 • R3'56)(S3 • a56) - (R3'56 • S3)(R3'56 • a56).

(10.36)

Regrouping terms gives

H3c6 - H4s6 - J3 = 0, (10.37)

where

H3 = ^(R6'23 • R6'23)(S3 • a67) - (R6'23 • S3)(R6'23. a67), (10.38)

H4 = ^(R6'23 • R6'23)(S3 • S6 x a67) - (R6'23 • S3)(R6'23 • S6 x a67), (10.39)

J3 = I(R3'5 6 . R3'56)(S3 • a56) - (R3'56 • S3)(R3'56 • a56). (10.40)

Similarly, substituting Eqs. (10.28) and (10.33) into Eq. (10.35) yields

1 (R6,23 . R 6 , 2 3 ) [ ( S 3 . ^ ^ ^ + ( § 3 . § 6 x a 6 v ) c 6 ] _ (R6,23 . S3)[(R6,23 . ^ x ^ ^

+ (R6'23 • a67)s6] = i(R3'5 6 • R3'56)(S3 • S6 x a56) - (R3'56 • S3)(R3'56 • S6 x a56).

(10.41)

Rearranging terms gives

H3s6 + H4c6 - J4 = 0, (10.42)

where

J4 = I(R3'5 6 . R3'56)(S3 • S6 x a56) - (R3'56 • S3)(R3'56 • S6 x a56). (10.43)

By analogy with Eqs. (10.17) and (10.18), Eqs. (10.37) and (10.42) yield the following
pair of equations:

(H4 + J4)x6 - (H3 - J3) = 0, (10.44)

(H3 + J3)x6 + (H4 - J4) = 0, (10.45)

which are analogous to Eqs. (10.23) and (10.24).

10.2.4 Expansion of terms H3, H4, J3/ and J4

In order to avoid massive tedious expansions, it is necessary to expand vectors such
as R3'56 and R623 and to regroup terms. Further, in order to avoid repeating expansions
unnecessarily, it is preferable to expand R3'56 in a sequence and to use these results to
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expand the larger vector R6'23 using as far as possible appropriate exchanges of subscripts
and superscripts.

Firstly, substituting

R3,56 = R3,45+R5,565 (10.46)

where

R3'45 = S3S3 + a34a34 + S4S4 + a45a45 (10.47)

and

R556 = S5S5 + a56a56, (10.48)

intoEq. (10.40) gives

J3 = i (R 3 ' 4 5 •  R3'45)(S3 •  a56) + (R3'45 •  R5'56)(S3 •  a56) + ^(R5'56 •  R5'56)(S3 •  a56)

-(R3 ' 5 6 • S3)(R5'56 • a56) - (R3'45 • S3)(R3'45. a56) - (R5'56 • S3)(R3'45 . a56).
(10.49)

The expansion of J3 continues by writing*

(R3'45 x S3) • (R 5'56 x a56) = (R3'45 • R5'56)(S3 • a56) - (R3'45 • a56)(R5'56 • S3).
(10.50)

Substituting this expression into Eq. (10.49) and rearranging gives

J3 = i(R3 '4 5 • R3'45)(S3 • a56) - (R3'45 • S3)(R3'45. a56) + ^(R5'56 • R5'56)(S3 • a56)

- (R3'56 • S3)(R5'56 • a56) + (R3'45 x S3) • (R5'56 x a56). (10.51)

The term R345 is now written as

R3'45 = R3'34 + R4'45, (10.52)

where

R3'34 = S3S3 + a34a34, (10.53)

R4'45 = S4S4 + a45a45. (10.54)

The first two terms of Eq. (10.51) are of the same format as the terms on the right side
of Eq. (10.40), which was expanded to give Eq. (10.51). Thus, these two terms can be
expanded by substituting the superscripts (3,34), (4,45), and (3,45) for the superscripts
(3,45), (5,56), and (3,56) everywhere in Eq. (10.51) and substituting the result in for the

* This is simply the expression for the scalar product of four vectors a, b, c, and d and (a x b) • (c x d) =
(a c)(b d ) - ( a d)(b c).
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first two terms of Eq. (10.51). This gives

J3 = ^ ( R " 4 • R 3'34)(S3 • a 56) - (R3-34 • S3)(R3'34 • a 56) + ^(R4-45 • R 4'45)(S3 • a 56)

- (R3-45 • S3)(R4-45 • a 56) + (R3-34 x S3) • (R4-45 x a56) + ^(R5'56 • R 5'56)

x (S3 • a 56) - (R3-56 • S3)(R5-56 • a 56) + (R3-45 x S3) • (R5-56 x a56). (10.55)

This equation may be rearranged in the form

J3 = i(R3-34 • R3'34 + R4-45 • R445 + R5-56 • R 5-56)(S3 • a 56)

- (R3-34 • S3)(R3-34 • a 56) - (R3-45 • S3)(R4-45 • a 56) - (R3'56 • S3)(R5-56 • a 56)

+ (R3-34 x S3) • (R4-45 x a56) + (R3'45 x S3) • (R5-56 x a56). (10.56)

The expression for J4 can be obtained directly from Eq. (10.56) by substituting (S6 x a56)
everywhere for 856- Thus,

J4 = I(R3'3 4 • R3-34 + R445 • R4-45 + R5-56 • R 5-56)(S3 • S6 x a56)

- (R3-34 • S3)(R3-34 • S 6 x a56) - (R3-45 • S3)(R4-45 • S 6 x a56)

- (R3-56 • S3)(R5-56 • S6 x a56) + (R3-34 x S3) • (R4-45 x (S6 x a56))

+ (R3-45 x S3) • (R5-56 x (S6 x a56)). (10.57)

The terms H3 and H4 will now be expanded. Firstly, it is observed that the form of the
term H3 is very similar to that of J3. (This is based upon a comparison of Eqs. (10.38)
and (10.40).) Thus, it is possible to write the term H3 by introducing the expression

where

R6-12 = S6S6 + a67a67 + S7S7 + a7ia7i + SiS, + ai2a12 (10.59)

and

R2 2 3 = S2S2 + a23a23, (10.60)

and then substituting the superscripts (6,12), (2,23), and (6,23) for the superscripts (3,45),
(5,56), and (3,56) and the vector 867 for asg in Eq. (10.51). This yields

H3 = i(R6-12 • R 6'12)(S3 • a67) - (R6-12 • S3)(R6-12 • a67) + i(R2'23 • R 2'23)(S3 • a67)

- (R6-23 • S3)(R2-23 • a67) + (R6-12 x S3) • (R2-23 x a67). (10.61)

The last term of this equation may be expanded as

(R6-12 x S3) • (R2-23 x a67) = (R6-12 • R 2'23)(S3 • a 67) - (R2-23 • S3)(R6-12 • a 67).
(10.62)
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An additional expression may now be written in the form

(R6'12 x a67) • (R2'23 x S3) = (R6'12 • R 2'23)(S3 • a67) - (R2'23. a67)(R6'12 • S 3).

(10.63)

The first term on the right side of Eq. (10.63) appears in Eq. (10.62). Upon substitution,
Eq. (10.62) may be written as

(R6'12 x S3) • (R 2'23 x a67) - (R6'12 x a67) • (R2'23 x S3) + (R2'23 • a 67)(R6'12 • S3)

- (R 2 ' 2 3 .S 3 ) (R 6 ' 1 2 -a 6 7 ) . (10.64)

Substituting this result into Eq. (10.61) yields

H3 = ^(R6'12 • R 6'12)(S3 • a 67) - (R6'12 • S3)(R6'12 • a 67) + ^(R2'23 • R2<23)(S3 • a 67)

- (R6'23 • S3)(R2'23 • a 67) + (R6'12 x a67) • (R2'23 x S3)

+ (R2'23 . a67)(R6'12 • S3) - (R2'23 • S3)(R6'12 . a67). (10.65)

Now, the terms - ( R 6 2 3 • S3)(R223 • a 67) + (R612 • S3)(R223 • a 67) are equivalent to
-[(R6'2 3 - R6 1 2) • S3](R2'23 • a 67). This term may be written as - ( R 2 2 3 • S3)(R2'23 • a 67),
and hence

H3 = i(R6 '1 2 • R 6'12)(S3 • a 67) - (R6'12 • S3)(R6<12. a67) + i(R2'2 3 • R 2'23)(S3. a67)

- (R2'23 • S3)(R2'23 • a 67) + (R6'12 x a6 7) . (R2'23 x S3)-(R2'23 • S3)(R6'12 • a 67).

(10.66)

Now,

R6-12 = R6-71 +R1-12, (10.67)

where

R6'71 = S6S6 + a67a67 + S7S7 + a71a71 (10.68)

and

R112 = S1S1 +a1 2a1 2 . (10.69)

The first two terms of Eq. (10.66) are of the same format as the terms on the right side
of Eq. (10.38). Thus, these two terms can be expanded by substituting the superscripts
(6,71), (1,12), and (6,12) for the superscripts (6,12), (2,23), and (6,23) in Eq. (10.66).



10.2 General 7R group 4 spatial mechanism 213

This gives

H3 = ^(R6-71 • R 6'71)(S3 • a67) - (R6-71 • S3)(R6'71 • a67) + i ( R U 2 • R U 2 ) (S 3 • a67)

- ( R U 2 • S3)(RM 2 • a 67) + (R6-71 x a67) • ( R U 2 x S3) - ( R u 2 • S3)(R6'71 • a67)

+ i(R2-23 • R 2'23)(S3 • a67) - (R2-23-S3)(R2-23 • a67) + (R6-12 x a67)

• (R2-23 x S3)-(R2'23-S3)(R6'12 • ae 7). (10.70)

Finally, the term R671 is defined as

R6,71 = R 6 , 6 7 + R7,71> (10.71)

where

R6'67 = S6S6 + a67a67 (10.72)

and

R 7 - 7 1 =S 7 S 7 + a71a71. (10.73)

The first two terms of Eq. (10.70) are of the same form as the terms on the right side of Eq.
(10.38). Thus, these two terms can be expanded by substituting the superscripts (6,67),
(7,71), and (6,71) for the superscripts (6,12), (2,23), and (6,23) in Eq. (10.66). This gives

H3 = 1(R6-67 • R 6'67)(S3 • a67) - (R6'67 • S3)(R6-67 • a67) + ^(R7'71 • R 7'71)(S3 • a67)

- (R7-71 • S3)(R7-71 • a 67) + (R6-67 x a67) • (R7'71 x S3) - (R7-71 • S3)(R6'67 • a67)

+ I ( R U 2 . R U 2 ) ( S 3 . a 6 7 ) _ ( R U2 . S3)(R1,12 . a 6 ? ) + (R6,71 x a e 7 ) . (R1,12 x § 3 )

- (R1-12 • S3)(R6-71 • a67) + i(R2-23 • R 2'23)(S3 • a67) - (R2-23 • S3)(R2-23 • a67)

+ (R6-12 x a67)-(R2'23 x S3)-(R2-23 • S3)(R6-12 • a 67). (10.74)

This equation can be rearranged as

H3 = l-(R6'61 • R6-67 + R7'71 • R7'71 + R U 2 • R U 2 + R2'23 • R 2'23)(S3 • a67)

- (R6-67 • S3)(R6-67 • a67) - (R7'71 • S3)(R7'71 • a67)

+ (R6-67 x a67) • (R7-71 x S3) - (R7-71 • S3)(R6-67 • a67)

- ( R U 2 • S3)(RU 2 • a67) + (R6-71 x a67) • ( R U 2 x S3)

- ( R U 2 • S3)(R6'71 • a67) - (R2-23 • S3)(R2-23 • a67)

+ (R6'12 x a67) • (R2-23 x S3) - (R2'23 • S3)(R6-12 • a 67). (10.75)

The expression for H4 can be obtained directly from Eq. (10.75) by substituting (S6 x
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a67)fora67. Thus,

H4 = ^(R6-67 • R6'67 + R7'71 • R7-71 + R U 2 • R U 2 + R2'23 • R2-23)(S3 • S6 x a67)

- (R6-67 • S3)(R6'67 • S6 x a67) - (R7-71 • S3)(R7-71 • S6 x a67)

+ (R6-67 x (S6 x a67)) • (R7-71 x S3) - (R7-71 • S3)(R6-67 • S6 x a67)

- ( R U 2 • S3)(RU 2 • S6 x a67) + (R6-71 x (S6 x a67)) • ( R U 2 x S3)

- ( R U 2 • S3)(R6'71 • S6 x a67) - (R2-23 • S3)(R2-23 • S6 x a67)

+ (R6-12 x (S6 x a67)) • (R 2'23 x S3) - (R2-23 • S3)(RM 2 • S6 x a67). (10.76)

Equations (10.75), (10.76), (10.56), and (10.57) provide expressions for the terms
H3, H4, J3, and J4 in terms of scalar products of various vectors. It is next necessary
to expand these scalar products in terms of the constant mechanism parameters and the
variable joint angles. This will be accomplished in the next sections.

10.2.5 Detailed expansion of J3 and J4

The following expressions that are contained in J3 must be expanded:

I(R3.34 . R3,34 + R4,45 . R4,45 + R5,56 . R5,56); ^ . ^

R3 5 6 • S3, R3'45 • S3, R3'34 • S3,

R5-56-a56, R4-45-a56, R3-34 • a56,

(R3'34 x S3) • (R4-45 x ase), (R3'45 x S3) • (R5-56 x a56).

Additionally, the following terms in J4 must also be expanded:

S3 • S6 x a56,

R5'56 • S6 x a56, R4'45 • S6 x a56, R3'34 • S6 x a56,

(R3'34 x S3) • (R4'45 x (S6 x a56)), (R3'45 x S3) • (R5'56 x (S6 x a56)).

Each of these terms will now be expanded individually, with the results substituted back
into Eqs. (10.56) and (10.57).

(i) i(R3'34 • R3'34 + R4'45 • R4'45 + R5'56 • R5'56)

These simple scalar products can be readily evaluated using the sets of direction cosines
listed in the appendix. The result can be written as

1 (R3,34 . R3,34 + R4,45 . R4,45 + R5,56 . R5,56} = ^ ( 1 0 J 7 )

where

K, = l- (S2 + a2
4 + S2 + a2

5 + S2 + a2
6). (10.78)



10.2 General 7R group 4 spatial mechanism 215

(ii) S3 • a56

From set 10 of the table of direction cosines

S3-a5 6 = X45. (10.79)

(iii) R 3 5 6 - S 3

This term may be written as

R3'56 • S3 = (S3S3 + a34a34 + S4S4 + a45a45 + S5S5 + a56a56) • S3. (10.80)

Evaluating the scalar products using sets from the table of direction cosines gives

R 3 5 6 - S 3 = J5, (10.81)

where

J5 = S3 + S4c34 + a45X4 + S5Z4 + a56X45. (10.82)

(iv) R3-4 5-S3

The individual scalar products evaluated in (iii) can be used here to obtain

R3-45 • S3 = S3 + S4c34 + a45X4. (10.83)

(v) R 3 ' 3 4 -S 3

The individual scalar products evaluated in (iii) can be used here to obtain

R3 3 4 • S3 = S3. (10.84)

(vi) R 5 5 6 - a 5 6

This term may be written as

R556 • a56 = (S5S5 + a56a56) • a56. (10.85)

Evaluating the scalar products gives

R556 . a56 = a56. (10.86)

(vii) R4-45 • a56

This term may be written as

R4-45 • a56 = (S4S4 + a45a45) • a56. (10.87)

Evaluating the scalar products gives

R4-45 • a56 = S4X5 + a45c5. (10.88)
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(viii) R3-34 • a56

This term may be written as

a56. (10.89)

Evaluating the scalar products gives

R3,34 c v i r» vx7 / i n o n \
• <i56 — 03A45 -\- CI34VV45.  yl\j.y\J)

(ix) (R3-34 x S3) • (R4-45 x a56)

Expanding the terms R3-34 and R445 and recognizing that S3 x S3 = 0 gives

(R3-34 x S3) • (R4-45 x a56) = a34(a34 x S3) • [(S4S4 + a ^ s ) x a56]. (10.91)

All the cross products must be performed in terms of the same coordinate system so that
each of the resulting terms of the final scalar product, that is, (a34 x S3) and [(S4S4 +
a45a45) x a56], will be evaluated in the same coordinate system. Using set 4 from the table
of direction cosines with the vector S3 given by [s34s4, s34c4, c34]T, the cross product terms
are evaluated as

a34 x S3 =
1 J

c4 - s 4

S34S4 S34C4 C34

- C 3 4 S 4

- C 3 4 C 4

S34

(10.92)

S4 x a56 =
i
0

j
0

C45S5

k
1

S45S5

=

- C 4 5 S 5

c5
0

(10.93)

i
1

c5

j
0

C45S5

k
0

S45S5

=

" 0 "
- S 4 5 S 5

C45S5
a5 6 =

Substituting these results into Eq. (10.91) gives

(R3'34 x S3) • (R4'45 x 356) = a34

Evaluating the scalar product gives

(R3'34 x S3) • (R4'45 x a56) -

- C 3 4 S 4

- C 3 4 C 4

s3 4

-S4C45S5
S4C5 -

(a34C34C4)(S4C5 - a45S45S5)

This equation may be regrouped as

(R3'34 x S3) • (R4'45 x a56) = -a34(S4C34W45 + a45s5Y4).

(10.94)

(10.95)

(10.96)

(10.97)
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(x) (R3'45 x S3) • (R 5'56 x a56)

The vectors R3'45 and R5'56 are expanded to give

(R3'45 x S3) • (R 5'56 x a56)

= [(S3S3 + a34a34 + S4S4 + a45a45) x S3] • [(S5S5 x a56]. (10.98)

The individual cross products will all be evaluated using set 11 of the table of direction
cosines. This gives

a34 x S3 =

S4 x S3 =

a45 x S3 =

S5 x a56 =

i j
C4 - C 4 5 S 4

X4 — Y4

i j
0 s45

X4 — Y4

i j
1 0

X4 — Y4

1 J K
0 0 1
c5 s5 0

k
s45s4

z4

k
c45

z4

k
0

z4

=

=

=

s4(s,15Y4 - c45Z4)
S45S4X4 —  C4Z4

C45S4X4 —  C4Y4

"s45Z4 + c45Y4"
c45X4

—  S45X4

' 0 '
- z 4

_ - Y 4 .

" - S 5 "

C5

_ 0

(10.99)

(10.100)

(10.101)

(10.102)

These results may be used to evaluate the terms (R 3 4 5 x S3) and (R5 5 6 x a56) as
follows:

(R3'45 x S3) =

(R5'56 x a56) =

a34s4(s45Y4 - c45Z4) + S4(s45Z4 + c45Y4)
4 —  c4Z4)

a34(c45s4X4 - c4Y4) - S4s45X4 - a45Y4

-S5C5
S5c5

0

The term (s45 Y4 —  c45Z4) may be expanded, and

s45Y4 - c45Z4 = -s4 5(s4 5c3 4 + c45s34c4) - c45(c45c34 - s45s34c4).

Regrouping and substituting s^ + c^ = 1 yields

S45Y4 —  C 4 5 Z 4 = —  C3 4 .

Analogously, the term (s45Z4 + c45 Y4) may be expanded, and

s45Z4 + c45Y4 = s45(c45c34 - s45s34c4) - c45(s45c34 + c45s34c4).

(10.103)

(10.104)

(10.105)

(10.106)

(10.107)
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Regrouping gives

S45Z4 + C45Y4 = -S34C4.

The term (S45S4X4 —  c4Z4) may be expanded, and

S45S4X4 - C4Z4 = S45S4(S34S4) - C4(C45C34 - S45S34C4),

which reduces to

S45S4X4 — C4Z4 = S34S45 — C34C45C4.

Lastly, the term (C45S4X4 —  C4Y4) may be expanded, and

C45S4X4 - C4Y4 = C45S4(S34S4) + C4(S45C34 + C45S34C4),

which reduces to

C45S4X4 — C4Y4 = —  Y4.

Substituting the results of Eqs. (10.106), (10.108), (10.110), and (10.112)
(10.103) gives

- S4S34C4
( R ' X S3) = a34(S34S45 — C34C45C4) + S4C45X4 — a4sZ4

— a34Y4 — S4S45X4 — a45Y4

Equation (10.113) can be written in the abbreviated form

(10.108)

(10.109)

(10.110)

(10.111)

(10.112)

into Eq.

(10.113)

(R3'45 x S3) -
_ —Z04  _

(10.114)

where

X04 = a34C34S4 + S4S34C4,

Y04 = S4C45X4 + a34(s45S34 - C45C34C4) - a45Z4,

Z04 = S4S45X4 + a34Y4 +

(10.115)

(10.116)

(10.117)

The scalar product of Eqs. (10.114) and (10.104) may now be written as

(R3'45 x S3) • (R5'56 x a56) = S5(s5Xo4 + c5Y04). (10.118)

(xi) S3 • S6 x a56

This term may be expanded by using set 5 from the table of direction cosines as follows:

S3 • S6 x a56 =
X2176 Y2i76

0 - s 5 6

1 0
C56
0

(10.119)
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Expanding this determinant gives

S 3 • S 6 X a 5 6 = C56Y2176

Substituting the definitions of the terms Y2i76 and Z2n6 gives

S3 • S6 x a56 = c56(c56X2176 - s56Z2i7) + S56(s56X2176 + c56Z217).

This equation may now be written as

S3 • S6 x a56 = X2176 = — Y 45,

where a subsidiary sine-cosine law was used to substitute for X2176.

(xii) R5'56 • S6 x a56

The vector R556 is expanded to give

R5'56 • S6 x a56 = (S5S5 + a56a56) • S6 x a56.

Recognizing that a56 • (S 6 x a56) —  0, the equation may be written as

R5'56 • S6 x a56 - S5S5 • S6 x a56.

(10.120)

(10.121)

(10.122)

(10.123)

(10.124)

Expanding this scalar triple product by using set 10 from the table of direction cosines
yields

S5 • S6 x a56 =
0 s56 c56

0 0 1
1 0 0

and therefore

R5'56 • S6 x a56 = S5s56.

(xiii) R4'45 • S6 x a56

Expanding the vector R445,

R4'45 • S6 x a56 = (S4S4 • S6 x a56.

(10.125)

(10.126)

(10.127)

The scalar triple products S4 • S6 x a56 and 345 • S6 x a56 can be evaluated using set 10
from the table of direction cosines, and

S4 • S6 x a56 =
X5 - Y 5 Z5

0 0 1
1 0 0

= - Y 5 , (10.128)

a 4 5 . S6 x a56 =
C5 - S 5 C 5 6

0
0

S5S56

1
0

= - C 5 6 S 5 .

Substituting these results into Eq. (10.127) gives

R4'45 • S6 x a56 = -(S4Y5 + a45C56S5).

(10.129)

(10.130)
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(xiv) R3'34 • S6 x a56

Expanding the vector R3'34,

R3'34 • S6 x a56 = (S3S3 S6 x a56. (10.131)

The scalar triple products S3 • S6 x a56 and a34 • S6 x a56 can be evaluated using set 10
from the table of direction cosines, and

s3-

a34

s6 X

, x a5e =

X45
0
1

w 4 5
0
1

- Y 4 5
0
0

u*,
0
0

Z45
1
0

U456
1
0

= - 1 4 5 ,

= U;456*

Substituting these results into Eq. (10.131) gives

R3'34 • S6 x a56 = -S3Y45 + a34U4\56.

(xv) (R3'34 x S3) • (R4'45 x (S6 x a56))

(10.132)

(10.133)

(10.134)

Set 4 from the table of direction cosines will be used to evaluate all the scalar and vector
products. First, the vector product S6 x a56 is evaluated as

(10.135)

This result will be expanded using the definitions for X5, Y5, and Z5. The term (S45Y5 —
C45Z5) may thus be written as

s6 x a56 =
1

x5

J
Y5

C45S5

k

z5
S45S5

=

S5(S45^

C5Z5

C45S5

^5 " C4 5Z5)

- S45S5X5

X 5 - C5Y5

S45Y5 - C45Z5 = -S4 5(S45C56 + C45S56C5) -

which reduces to

S45Y5 - C45Z5 = - C 5 6 .

The term (c5Z5 —  S45S5X5) may be written as

C5Z5 - S45S5X5 = C5(C45C56 -

which reduces to

C5Z5 - S45S5X5 = - ( S 4 5 S 5 6 - C45C56C5) = - Z 5 .

The term (C45S5X5 —  c5Y5) may be written as

C45S5X5 - C5Y5 =

~ S45S56C6), (10.136)

(10.137)

(10.138)

(10.139)

(10.140)
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which reduces to

C45S5X5 - C5Y5 = S56C45 + C56S45C5 = - Y 5 . (10.141)

Substituting Eqs. (10.137), (10.139), and (10.141) into Eq. (10.135) and recognizing that
c56s5 is the definition of the term X5 gives

a 5 6 =
- Y 5_

(10.142)

The vector triple product (R445 x (S6 x a56)) will next be evaluated by first expanding
the vector R4'45. This gives

R4'45 x (S6 x a56) = (S4S4 + a45a45) x (S6 x a56). (10.143)

The vector products S4 x (S6 x as6) and 345 x (S6 x a56) are evaluated by using set 4 from
the table of direction cosines as follows:

S4 x (S6 x a56) =
i j k
0 0 1

-X'5 -Z'5 - Y 5

7!

- X ' (10.144)

a45 x (S6 x a56) = 0
k
0

-X'5 -Z>5 - Y 5

0
Y 5

- Z i

Substituting Eqs. (10.144) and (10.145) into Eq. (10.143) gives

R4,45 x (S6 x a56) =
S4Z5

— 84X5 +
- a 4 5 z ;

(10.145)

(10.146)

The cross product (R334 x S3) is evaluated by expanding the vector R3'34. This gives

R3'34
 x S3 = (S3S3 + a34a34) x S3. (10.147)

Now, S3 x S3 = 0 and the vector product 334 x S3 is evaluated using set 4 from the table
of direction cosines as

a34 x S3 =
1

c4

X21765

J
- s 4

Y21765

k
0

^21765

=

1

C4

S34S4

J
- s 4

S34C4

k
0

C34.

=

- C 3 4 S 4

- C 3 4 C 4

s34

(10.148)

Note that fundamental sine, sine-cosine, and cosine laws for a spherical heptagon were
used in this equation to substitute for the terms X21765, Y21765, and Z21765- Substituting
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Eq. (10.148) into Eq. (10.147) gives

R3'34 (10.149)

Forming the scalar product of Eq. (10.146) with Eq. (10.149) gives the result

(R3'34 x S3) • (R4'45 x (S6 x a56))

(10.150)

The terms Zf
5 and X^ may be substituted into the expression (Z^c34S4 —  X^c34C4) to yield

Z5C34S4 - X5C34C4 = (S56S45 - C56C45C5)C34S4 - (C56S5)C34C4. (10 .151)

Regrouping the right side of Eq. (10.151) gives

Z5C34S4 - X5C254C4 = C34[S56(S45S4) ~ C56(S5C4 + C5S4C45)] = C ^ U ^ . (10.152)

Substituting this result into Eq. (10.150) yields

(R3'34 x S3) • (R4'45 x (S6 x a56)) - -a34[S4(c34U:56) + a45(Y5c34c4

(10.153)

(xvi) (R3'45 x S3) • (R5'56 x (S6 x a56))

Set 11 from the table of direction cosines will be used to evaluate all the scalar and
vector products in this expression. Firstly, the vector product S6 x a56 is evaluated as

a56 = X71234 —

c5

k
71234

0
=

1

S56S5

c5

J
-S56C5

S5

k
C56
0

=
-C56S5

C56C5
S56

(10.154)

Note that fundamental sine, sine-cosine, and cosine laws for a spherical heptagon were
used in this equation to substitute for the terms X71234, Y71234, and Z7i234.

The expression (R556 x (S6 x a56)) is next evaluated by expanding the term R556. This
gives

R5'56 x (S6 x a56) = (S5S5 + a56a56) x (S6 x a56).

The vector product (S5 x (S6 x a56)) is evaluated first, and

(10.155)

s5
x(S6 x a56) =

i
0

-C56S5

j
0

C56C5

k
1
S56

=

-C56C5

-C56S5

0
(10.156)
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The vector product (a56 x (S6 x a^)) *s evaluated, and

a56 x (S6 x a56) =
1

c5

- C 5 6 S 5

J
S5

C56C5

k
0

S56

S56S5

- S 5 6 C 5

_ c 5 6

(10.157)

Substituting Eqs. (10.156) and (10.157) into Eq. (10.155) gives

R5'56 x (S6 x a56) -
~-S5c56C5
-S5c5 6S5 - a56s56c5 (10.158)

The factor (R345 x S3) was previously expanded using set 11 from the table of direction
cosines in Eq. (10.117). Using this result, the scalar product (R345 x S3) • (R556 x (S6 x a56))
may now be written as

(R3'45 X S3) X ( S 6 X a 5 6 ) ) = Xo4(S5C56C5 - a56S56S5)

+ a56S56C5)

(10.159)

Now that the sixteen terms in Eqs. (10.56) and (10.57) have been expanded, the terms
J3 and J4 may be written in the abbreviated forms

J3 - K4X45 - S3(S3X45 + a34W45) - (S3 + S4c34 + a45X4)(S4X5 + a45c5)

- J5a56 - a34(S4c34W45 + a45s5Y4) + S5(s5X04 + c5Y04), (10.160)

J4 = -K!Y 4 5 + S3(S3Y45 - a34U*56) + (S3 + S4c34 + a45X4)(S4Y5 + a45c56S5)

- J5S5S56 - a34 [S4(c34U456) + a45 (Y5c34c4 + Z5S34)] + Xo4(S5c56C5 - a56S56s5)

- Yo4(S5c56S5 + a56S56c5) - Z04(a56C56), (10.161)

where Ki and J5 were defined in Eqs. (10.78) and (10.82).

10.2.6 Detailed expansion of H3 and H4

The following terms that are contained in H3 (see Eq. (10.75)) must be expanded:

- CR • • R 6'6 7

R6,67

R2.23

R7,71

•S3,

•S3,

•867,

+ R7,71

R7.71 .

R 2 23

R6,67 .

• R 7-71 -

S3,

a67,

867,

h R U 2

Rl,12

R U 2

R6,71

R 1 1 2

• S 3 ,

• 8 6 7 ,

• 8 6 7 ,

R 2,23 . R 2 ,2 3R 2 , 2 3 ) >

R6-12 • a67, (R6-67 x a67) • (R7-71 x S3), (R6-71 x a67) • (R 1-12 x S3),

(R6-12 x a67) • (R 2-23 x S3).
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Additionally, the following terms in H4 (see Eq. (10.76)) must also be expanded:

S3 • S6 x a67, R2 23 • S6 x a67, R U 2 • S6 x a67,

R7 71 • S6 x a67, R6-67 • S6 x a67, R6-71 • S6 x a67,

R6-12 • S6 x a67, (R6-67 x (S6 x a67)) • (R7-71 x S3),

(R6'71 X (S« X Be,)) • ( R U 2 X S3), (R6-12 X (S6 X 867)) • (R 2'23 X S3).

Each of these terms will now be expanded individually, and the results substituted back
into Eqs. (10.75) and (10.76) to yield H3 and H4.

(i) i(R6-67 • R6-67 + R7-71 • R7-71 + R U 2 • R U 2 + R2'23 • R2-23)

These simple scalar products are readily evaluated as

1 (R6,67 . R6,67 + R7,71 . R7,71 + Rl,12 . Rl,12 + R 2 23 . R2,23) = ^ ( 1 ( U 6 2 )

where

K2 = ^ ( S 2 + a2
7 + S2 + a?,, + S2 + a2

2 + S2 + a2
3). (10.163)

(ii) S3 • a67

Set 6 from the table of direction cosines can be used to evaluate this term as

S3-a6 7 = X217. (10.164)

(iii) R6-6 7-S3

This term may be written as

R6'67 • S3 = (S6S6 + a67a67) • S3. (10.165)

The scalar products in this equation may be evaluated using set 6 of the table of direction
cosines to give

R6-67 • S3 = S6Z217 + a67X217. (10.166)

(iv) R7-7 1-S3

This term may be written as

R7'71 . S3 = (S7S7 + a71a71) • S3. (10.167)

The scalar products in this equation may be evaluated using set 7 of the table of direction
cosines to give

R7'71 . S3 - S7Z2i + a7iX2i. (10.168)
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(v) R u 2 - S 3

Expanding the vector R112,

R112 • S3 = (SiSi + a12a12) • S3. (10.169)

The scalar products in this equation may be evaluated using set 1 of the table of direction
cosines to give

(10.170)

(vi) R2 '2 3-S
3

Expanding the vector R2'23,

R2 23 - S3 = (S2S2 + a23a23) • S3. (10.171)

The scalar products in this equation may be evaluated using set 2 of the table of direction
cosines to give

R2-23 • S3 = S2c23. (10.172)

(vii) R2 23 • a67

Expanding the vector R2'23,

R2 23 • a67 = (S2S2 + a23a23) • a67. (10.173)

Evaluating the scalar products using set 14 and then set 15 gives

R2-23 • a67 = S2U712 + a23W712. (10.174)

( v i i i ) R u 2 - a 6 7

Expanding the vector R112,

R M 2 • a67 = (SiS, + a12a12) • a67. (10.175)

Evaluating the scalar products using set 8 and then set 14 gives

R1 12 • a67 = S,U7i + a12W71. (10.176)

(ix) R7'7 1-a6 7

Expanding the vector R7-71,

R7 71 • a67 = (S7S7 + a71a71) • a67. (10.177)

Evaluating the scalar products using set 7 gives

R771 • a67 = a71c7. (10.178)
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(x) R6'6 7-a6 7

Expanding the vector R6'67,

Evaluating the scalar products using set 6 gives

R6 '6 7 .a6 7 = a67. (10.180)

(xi) R6'7 1-a6 7

Expanding the vector R6'71,

R6'71 • a67 = (R6'67 + S7S7 + a71a71) • a67. (10.181)

Using Eq. (10.180) and evaluating the last two scalar products using set 6 gives

R6'71 . a67 = a67 + a7ic7. (10.182)

(xii) R6'1 2-a6 7

Expanding the vector R612,

R6'12 • a67 = (R6'71 + SiSi + a12a12) • a67. (10.183)

Using Eq. (10.182) and evaluating the last two scalar products using set 6 gives

R6'12 • a67 = a67 + a71c7 + SXX7 + a12W17. (10.184)

(xiii) (R6'67 x a67) • (R7'71 x S3)

The vector and scalar products in this term are evaluated using set 7 from the table of
direction cosines. Expanding the vector R667 gives

R6'67 x a67 = (S6S6 + a67a67) x a67.

The vector product of S6 and a67 may be evaluated as

S6 x a67 = X54321 Y54321 Z54321

c7 - s 7 0

i
S67S7

c7

j
S67C7

- s 7

k
C67

0
=

C67S7

C67C7

- S 6 7

(10.185)

(10.186)

where fundamental sine, sine-cosine, and cosine laws for a spherical heptagon were used
to simplify the direction cosines of S6. Because a67 x a67 = 0, Eq. (10.185) may be
written as

R6,67
x a67 = S6c67c7

The factor (R771 x S3) may be expanded as

R7'71 x S 3 = (S7S7 + a7ia7i) x S3.

(10.187)

(10.188)
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The vector product of S7 and S3

S7 x S3 =
i j k
0 0 1

X-21 Y21 *-*7A

Further,

a71 x S3 = 1
X

1 j k
I 0 0
21 Y21 Z21

Equation (10.188) may now be

R7'71 X S3 :
" - S 7 Y 2 1

S7X2i - a71Z
a71Y2i

is written as

=
"-Y2r

X21
0

=
' 0 "
-Z21

. Y 2 1 .

written as

'21

(10.189)

(10.190)

Finally, the scalar product of Eqs. (10.187) and (10.191) yields

(R6'67 x a67) • (R 7'71 x S3) = S6S7c67X217 + S6a7 1(-s6 7Y2 1 - c67c7Z21).

(xiv) (R6'71 x a67) • ( R U 2 x S3)

(10.191)

(10.192)

The vector and scalar products in this expression are evaluated using set 1 from the
table of direction cosines. The first vector product may be written as

R6'71 x a67 = (S6S6 + a67a67 + S7S7 + a7ia7i) x a67.

The vector product of S6 and ag7 may be written as

k
Z5432

(10.193)

S6 x a67 = X 5432 Y5432

W65432 -

U V* \7 7

7 i A 7 1 —  V7iZ/7
W71Z7* - X7 1U7 1

X71
W71

j
X*t

V71
Z 7

U71

(10.194)

Here, subsidiary spherical and polar sine, sine-cosine, and cosine laws have been used to
simplify the direction cosines for S6 and a67. Expanding the right side of Eq. (10.194),
regrouping terms, and using the identities sf + cf = 1, s7 + c7 = 1, and s71 + c71 = 1
gives

S6 x a67 =
;176

- C l Z 7 - S lX7

where the terms X7 and Z7 were introduced in the previous chapter, and

X7 = c67s7,

Z7 = s7is67 - c7ic67c7.

(10.195)

(10.196)

(10.197)
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Now, a67 x 6̂7 = 0, and the vector product of S7 and a67 can be written as

S7 x a67 =
i j

X65432

w71 v71 u71

S71C1 c7i

W7 1 V71 U71

U7iS7iCi - V71C71
-U 7 iS 7 1 S! + W 7 i C 7 1

_V71s7iSi -
(10.198)

where fundamental sine, sine-cosine, and cosine laws were used to simplify the direction
cosines for S7. The last element of this expression may be expanded as

V7 1S7 iSi - W 7 iS 7 iC! = -(S1C7 + CiS7C7i)s71Si - (C1C7 - S1S7C7OS71C1.

Regrouping this expression and substituting s\ + c\ = 1 yields

V 7 1 s 7 1 s i - W71S71C1 = -S71C7.

Substituting Eq. (10.200) into Eq. (10.198) gives

(10.199)

(10.200)

S7 x a67 =
U 7 1 s 7 iC i - V71C71

-U71S71S1 (10.201)
-s 7 1 c 7

Similarly, the first two elements of Eq. (10.198) can be expanded and regrouped to yield

S7 x a67 =
- V 17

-S7S1 (10.202)
- S 7 i C 7

The vector product of a7i and a67 may be written as

a7i x a67 =
i

Cl

W71

j
- s i

V71

k
0

U71
=

-U71S1
-U71C1

LV71C1 + W71S1J

The last element of this expression may be written as

V71C1 + W71S1 = -(S1C7 + CiS7C71)Ci + (C1C7 - SiS7C7i)Si.

Regrouping this expression and substituting s\ + c\ = 1 yields

V71C1 + W 7 i S i = -C71S7.

Substituting this result into Eq. (10.203) gives

a7i x a67 = -U71C1
- c 7 1 s 7

(10.203)

(10.204)

(10.205)

(10.206)
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Substituting Eqs. (10.195), (10.202), and (10.206) into Eq. (10.193) gives

R6,71 x a67 = (—CjZ^  —  SiX7J + S7(—s 7si + C7C1C71) —  a7iU7iCi
S6Y7 - S7s7ic7 - a7ic71s7

Expanding the vector R112,

R l,12 ^ c ; / Q C _i_o o \ N / CX 1J3 — ^oi>3i ~r 3-12**127 X ^ 3 *

The vector product Si x S3 may be expressed as

S , x & =
1 J k
0 0 1

- Y 2

X2

0

(10.207)

(10.208)

(10.209)
X2 Y2 Z2

The vector product ai2 x S3 may be expressed as

a12 x S3 =
1 J k
1 0 0

0
- z 2
Y2

(10.210)

R1'12 x S3 =

_X2 Y2 Z2

Substituting the results of Eqs. (10.209) and (10.210) into Eq. (10.208) yields

- S i Y 2

ai2Y2

Evaluating the scalar product of the vectors (R671 x a67) and (R112 x S3) gives

(R6'71 x a67) • ( R U 2 x S3)

= [-S6Ut76 - S 7 V n - a7iU71Si](-S!Y2)

+ S7(—s 7si + c7cic7i) —  a7iU7iCi] (S1X2 —  ai2Z2)

+ [S6Y7 - S7s7ic7 - a7iC7iS7](a12Y2).

(xv) (R6'12 x a67) • (R 2'23 x S3)

(10.211)

(10.212)

Set 1 of the table of direction cosines will be used to evaluate all the scalar and vector
products of this term. Expanding the vector R612,

R6'12 x a67 = (R6'71 + + a12a12) x a67, (10.213)

where the vector product of R6'71 and a67 has been evaluated using set 1 of the table of
direction cosines in Eq. (10.207). The vector product of Si and a67 may be written as

Si x a67 =
i
0

w71

j
0

V71

k
1

U71
=

~-v7rw7i
0

(10.214)

where the substitutions W7i = W65432, V71 = —  Ug54321, and U7i = U65432i have been made.
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The vector product of a^ and a67 may be written as

12 x a67 =
i
1
hi

j
0

V7i

k
0

U71
=

0
-U71

. V71 .
(10.215)

Substituting the results of Eqs. (10.207), (10.214), and (10.215) into Eq. (10.213) gives

R6'12 x a67

-S6Ut7 6 - S7V17 - a71U7lSl - S!V7i

6(—CiZ 7 —  SiX7) + S7(—s 7Si + c7cic7i) —  a7iU7iCi + S1W71 —  ai2U7

S6Y7 - S7s7ic7 - a7ic7is7 + ai2V7i

(10.216)

Now,

R ' x S3 = (S2S2 + a23a23) x S3.

The vector product S2 x S3 is written as

S2 x S3 =

(10.217)

(10.218)

The first element of this vector can be simplified by introducing the definitions of Y2 and
Z2 and regrouping terms to give

i
0
^2

j
- S 1 2

Y2

k

z2
= C12X2

S2 x S, =
S23C2
C12X2
S12X2

(10.219)

The vector product a23 x S3 may be written as

X S3 =
i

C2

x2

j
S2C12
Y2

k
S2Si2

z2
=

S2C12Z2 _
S2S12X2 - c 2 Z 2

_ c2Y2 - s2c12X2 .
(10.220)

This expression can be simplified by substituting the definitions of X2, Y2, and Z2, sub-
stituting S2 + C2 = 1 and Sj2 + Cj2 = 1, and then regrouping terms to yield

a23 x S3 =
X2

(10.221)

w h e r e X 2 = C23S2 a n d Z 2 = S12S23 — C12C23C2.
Substituting Eqs. (10.219) and (10.221) into Eq. (10.217) yields

R 2 - 2 3 x S , =
S2S23C2 + a 2 3 X 2

S2c12X2 + a23Z2

S2S12X2 -
(10.222)
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Evaluating the scalar product of the vectors (R612 x a67) and (R223 x S3) gives

(R6'12 x a67) • (R2'23 x S3)

= [ -S 6 Ut 7 6 - S7V17 - a 7 1 U 7 l S l - Sx V7i] (S2s2 3c2 + a23X^) + [S

+ S7(-s7S! + c7C!C7i) - a71U71Ci + S1W71 - ai2U71](S2c12X2

+ [S6Y7 - S7s7ic7 - a71c71s7 + a12V71](S2s12X2 + a23Y2).

(xvi) S3 • S6 x a67

Set 6 of the table of direction cosines will be used to evaluate this term as

(10.223)

S 3 - S

(xvii)R2

Now,

R223

6 X

,23

• s 6

a6v =
>

S6 x a67

x a67

0
1

(S2

Y217

0
0

Z217
1
0

S2 + a23a23) •

=

(S6

Y217.

x a67).

(10.224)

(10.225)

The vector product S6 x a67 may be evaluated using set 6 from the table of direction
cosines as

S6 x a67 =
i
0
1

j
0
0

k
1
0

=
"0
1

. 0 .
(10.226)

Forming the scalar product of S2 and a23 with (S6 x a67), Eq. (10.225) can be expressed
in the form

R2'23 • S6 x a67 - S2Y17 - a23U*176.

(xviii) R1'12 • S6 x a67

Now,

R1'12 • S6 x a67 = ( S ^ i + a12a12) • (S 6 x a67).

Using set 6 of the table of direction cosines and Eq. (10.226),

R 1 ' 1 2 . S 6 x a 6 7 - S 1 Y 7 - a 1 2 U t 7 6 .

(xix) R7'71 • S6 x a67

Now,

R7'71 • S6 x a67 = (S7S7 + a71a71) • (S 6 x a67).

Using set 6 of the table of direction cosines and Eq. (10.226),

R7'71 • S6 x a67 = -S 7 s 6 7 + a7ic67s7.

(10.227)

(10.228)

(10.229)

(10.230)

(10.231)
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(xx) R6'67 . S6 x a67

Now,

R6'67 • S6 x a67 = (S6S6 + a67a67) • (S 6 x a67),

and clearly

R6'67 • S6 x a67 = 0

because S6 • S6 x a67 = 0 and a67 • S6 x a67 = 0.

(xxi) R6'71 • S6 x a67

Now,

R6'71 • S6 x a67 = R6'67 • S6 x a67 + R7'71 • S6 x a67.

From Eqs. (10.233) and (10.231),

R6'71 • S6 x a67 = -S 7 s 6 7 + a7ic67s7.

(xxii)R6'12 • S6 x a67

Now,

R6'12 • S6 x a67 - R6'71 • S6 x a67 + R1'12 • S6 x a67.

From Eqs. (10.235) and (10.229),

R6'12 • S6 x a67 = -S 7 s 6 7 + a7iC67S7 + SiY7

(Xxiii) (R6'67 X (S6 X 867)) • (R7'71 X S3)

(10.232)

(10.233)

(10.234)

(10.235)

(10.236)

(10.237)

Set 7 of the table of direction cosines will be used to evaluate the scalar and vector
products in this expression. The first term in the expression may be written as

R6'67 x (S6 x a67) = (S6S6 + a67a67) x (S6 x a67).

The vector product S6 x a67 can be evaluated as

Se x a67 =

(10.238)

i
X54321

c7

j
Y54321

- S 7

k
Z54321

0
=

i
S67S7

c7

j
S67C7

- s 7

k
C67

0
=

C67S7

C67C7

- S 6 7

(10.239)

where the fundamental sine, sine-cosine, and cosine laws X54321 = S67S7, Y54321 =
and Z54321 = c67 were used to simplify the direction cosines of S6-

The vector product S6 x (S6 x a67) may now be written as

S 6 x (S6 x a67) =
i

S67S7

C67S7

j
S67C7

C67C7

k
C67

- S 6 7

=

"—C

S7

0
(10.240)
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The vector product of a^ and (S6 x a^) may now be written as

a67 x (S6 x a67) = c7 - s 7 0
C 6 7 C 7 - S 6 7 L C67 J

Substituting Eqs. (10.240) and (10.241) into Eq. (10.238) yields

R6'67 x (S6 x a67) =
- S 6 c 7 + a67s67s7

S6s7 + a67s67c7

(10.241)

(10.242)

The factor (R771 x S3) has previously been evaluated using set 7 of the table of direction
cosines. The result is stated in Eq. (10.191). Forming the scalar product of (R667 x (S6 x
a67)) and (R771 x S3) yields the result

(R6'67 X (S6 X 867)) ' (R7'71 X S3)

= (-S 7 Y 2 i ) ( -S 6 c 7 + a67s67s7) + (S7X2i - a7iZ2i)(S6s7 + a67s67c7)

+ (a7iY2i)(a67c67). (10.243)

(xxiv) (R6-71 x (S6 x a67)) • ( R U 2 x S3)

Set 7 of the table of direction cosines will be used to evaluate all the vector and scalar
products in this expression. Expanding the vector R671,

R6'71 x (S6 x a67) = (R6'67 + S7S7 + a71a71) x (S6 x a67). (10.244)

The vector product S6 x a67 was previously calculated using set 7, and the results are
presented in Eq. (10.239). Also, the vector product R667 x (S6 x a67) is listed in Eq.
(10.242). The vector product S7 x (S6 x a67) may be written as

S7 x (S6 x a67) = 0
J
0

k
1

- c 6 7 c 7

C67S7

0c67s7 c67c7 - s 6 7

The vector product a7i x (S6 x a67) may be written as

(10.245)

a71 x (S6 x a67) = 1
J
0

k
0

0
S67 (10.246)

Substituting the results of Eqs. (10.242), (10.245), and (10.246) into Eq. (10.244) gives

R6'71 x (S6 x a67) =

Now,

-S 6 c 7 + a67s67s7 - S7c67c7

S6s7 + a67s67c7 + S7c67s7 + a7is67

a67c67 + a7ic67c7

(10.247)

a 1 2 a 1 2 )xS 3 . (10.248)
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The vector product Si x S3 may be written as

Si x S* =
1

0
X2i

J
-S71
Y21

k
C71

Z21
=

-S71Z21 - C71Y21
C71X21
S71X21

(10.249)

Expanding Y2i and Z2i and substituting s^ + c^ = 1 in the first component of Si x S3

gives

Si x S3 =
- A 2 1

C7 1X2 1

S71X21

(10.250)

The vector product a^ x S3 may be written as

S3 =
i

Cl

j
S1C71

Y21

k
U17
Z21

=

- U17Y21
U17X21 — C1Z21

C1Y21 - S1C71X21

(10.251)

Expanding the terms X2i, Y2i, Z2i, and Un, and substituting ŝ  + c\ = 1 and s2^ + c^ = 1
gives

(10.252)S3 = — Y2S71 —

C71Y2 - :

Substituting Eqs. (10.250) and (10.252) into Eq. (10.248) yields

R1,12
—S1X21

- ai2(Y2s_7i + C71C1Z2)
S1s71X2i + ai2(c7 1Y2 - S71C1Z2)

(10.252)

Evaluating a scalar product of Eqs. (10.252) and (10.247) yields

(R6'71 x (S6 x 857)) • ( R U 2 x S3) = [- SiX

+ [S1C71X21 - ai2(Y2s7i + C7iCiZ2)](S6s7 +

+ [S1S71X21 + ai2(c7iY2 - s71CiZ2)](a67C67

- S6c7 + a67s67S7 - S7c67c7)

a71s67)

(10.253)

(xxv) (R6'12 x (S6 x a67)) • (R2'23 x S3)

Set 1 of the table of direction cosines will be used to evaluate all the vector and scalar
products in this expression. The first factor may be written as

R6'12 x (S6 x a67) - (S6S6 + a67a67 + S7S7 + a71a7i + S1S1 + a12ai2) x (S6 x a67).
(10.254)

The vector product S6 x a67 was previously calculated using set 1, and the results are
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presented in Eq. (10.195). The vector product S6 x (S6 x a67) may be written as

S6 x (S6 x a67)

i

x71
"Ul76 - C

j

iZ'-j - s i X

k

z7
7 Y 7

=

" -X 7 1 Y 7 + (c
-X 7 1 Y 7

X71(-CiZ7-s

!Z7 + SiX7)Z7

- z 7 u t 7 6
iX^) - X^Ut76

(10.255)

where the subsidiary sine, sine-cosine, and cosine laws X5432 = X71, Y5432 = — X 71,
and Z5432 = Z7 were used to simplify the direction cosines of vector S6- Expanding and
regrouping terms and introducing the trigonometric identities s^7 + c\n = 1, s71 + c71 =
1, s7 + c7 == 1, and s\ + c\ = 1 yields

S6 x (S6 x a67) =
- W
-v

71

71 (10.256)

- u 7 1

The vector product a67 x (S6 x may be written as

a67 x

=

(S6 x a67)
i

w71
- U t 7 6 - C l

j
V71

Z 7 —  Si)

k

u71
C7 Y7

=

V7 1Y7+U7 1(c,Z7

-W 7 1 Y 7 - U71
+ SiX7)

U? 7 6
-f V7iU*76^

(10.257)

where the subsidiary polar sine, sine-cosine, and cosine laws U71 = U65432i, V7i =
—11̂ 5432!,  W71 = W65432 were used to simplify the direction cosines of vector a67. Ex-
panding and regrouping terms and introducing the trigonometric identities s71 + c71 =
1, s7 + c7 = 1, and s\ + c\ = 1 yields

a67 x (S6 x a67) =
X71

- X
z7

71 (10.258)

The vector product S7 x (S6 x a67) may be written as

S7 x (S6 x a67)

i j k
S71S1 S71C1 c7i

-UJ76 - C l Z 7 - S l X 7 Y7 -CiZ7 - SiX7) + s7iCiU
76

, (10.259)

where the fundamental sine, sine-cosine, and cosine laws X65432 = s7iSi, Y65432 = s7iCi,
and Z65432 = c7i were used to simplify the direction cosines of vector S7. Expanding and
regrouping terms and introducing the trigonometric identities s 71+c71 = lands^ + Cj = 1
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yields

r-c67w7r
S7 x (S6 x a67) = -c6 7V7i

_ -c6 7U7i _
The vector product a7i x (S6 x a67) may be written as

(10.260)

a7i x (S6 x a67) =
J

- s i 0
-Ut 7 6 - C i Z 7 - S i X 7 Y7

- s i Y 7

- C i Y 7

(10.261)

Expanding, regrouping, and substituting ŝ  + c\ = 1 in the last element of this vector
gives

a7i x (S6 x a67) = - C i Y 7 (10.262)

L - z 7 J
The vector product Si x (S6 x a67) may be written as

Si x (S6 x a67) = 0
-u

j
0 1

176 — ClZy — SlXy Y7

c,Z7 + SlX7

-u
0

176 (10.263)

The vector product ai2 x (S6 x a67) may be written as

a12 x (S6 x a67) = 1
j
0 0

-Uf76 - C l Z 7 - S l X 7 Y7

0
- Y 7

L-c,z7-Slx7J
(10.264)

The factor (R612 x (S6 x a67)) may now be expressed by substituting the results of
Eqs. (10.256), (10.258), (10.260), (10.262), (10.263), and (10.264) into Eq. (10.254) to
give

R6'12 x (S6 x a67)

—S6W 7i + a67X7i —  S7c67W7i —  a7iSi Y7 + Si (ciZ7 + SiX7)

= -S6V7i - a67X;i - S7c67V7i - a71CiY7 - SiUt76 - ai2Y7 . (10.265)

_—S6U 7i + a67Z7 —  S7C67U7i —  a7iZ7 —  ai2(ciZ7 + SiX7)

The term (R223 x S3) was previously expanded in terms of set 1 of the table of direction
cosines. The results are expressed in Eq. (10.222). The scalar product (R612 x (S6 x
a67)) • (R 2'23 x S3) may now be written as

( R M 2 x (S6 x a67)) • (R2'23 x S3)

= [-S6W7i + a67X7i - S7c67W7i - a7isiY7 + Si ( c ^ + SiX7)] [S2s23C2 + a23X2]

+ [-S6V7i - a67X;i - S7c67V7i - a?ici Y7 - SiU*76 - ai2Y7] [S2Ci2X2 + a23Z2]

+ [-S6U7i + a67Z7 - S7c67U7i - a 7 iZ 7 - a12(ciZ7 + SiX7)] [S2s12X2 + a23Y2].
(10.266)
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All twenty five-terms listed at the beginning of this section have now been expanded.
The results of these expansions will now be substituted into the expressions for the terms
H3 and H4 as defined in Eqs. (10.75) and (10.76), which gives

H3 = K2X2i7 - (S6Z2 n + a67X2i7)a67 - (S7Z2i

+ [S6S7c67X2i7 - S6a7i(s67Y2i + c67c7Z2i)] - (S7Z2i + a7iX2i)a67

- (SiZ, + a12X2)(S1U7i + a12W71) + [S6Ut76 + S7V17

+ a71U7iS1](S1Y2) + [S6( - C!Z7 - SlX7)

- a7iU7iCi] (SiX2 - ai2Z2) + [S6Y7 - S7s71c7 -

- (S1Z2 + a12X2)(a67 + a71c7) - S2c23(S2U712 + a23W712) + [-S6Ut76

- S7V17 - a7iU7iS1 - S1V71] x (S2s23c2 + a23X2) + [S6( - c ^

- S1X7) + S7(-s7Si + C7C1C71) - a7iU7iCi + S1W71 - ai2U7i] (S2Ci2X2

+ a23Z2) + [s6Y7 - S7S71C7 - a7ic7is7 + ai2V7i](S2Si2X2 + a23Y2)

- S2c23(a67 + a7ic7 + SiX7 + a12W17), (10.267)

H4 = K2Y217 - (S7Z12 + a7iX2i)(-S7s67 + a71c67s7) + (-S7Y2i)(-S6C7

+ a67S67S7) + (S7X21 - a71Z2i)(S6S7 + a67s67C7) + (a7iY2i)(a67C67)

- (S1Z2 + a12X2)(S1Y7 - a12Ut76) + [ - S ^ + a ^ s ^ ] (-S6c7 + a67s67S7

- S7C67C7) + [S1C71X21 - a12(Y2s71 + C71C1Z2)] (S6s7 + a67s67C7

+ S7C67S7 + a7is67) + [S1S71X21 + a12(c7iY2 - s7iCiZ2)] (a67c67 + a71c67C7)

- (S1Z2 + a12X2)(-S7s67 + a71c67s7) - S2c23(S2Y17 - a23U*176) + [ - S6W71

+ a67X7i - S7c67W7i - a7lSlY7 + Sx (c^ + SlX^)] [S2s23c2 + a23X2]

+ [-S6V71 - a6Vx;i - S7c67V7i - a7iciY7 - SiUJ76 - a12Y7] [S2c12X2 + a23Z2]

+ [-S6U7i + a67Z7 - S7c67U7i - aViZ^ - a12(dZ^ + siX^)] [S2s12X2 + a23Y2]

- S2c23 (-S7s6 7 + a7iC67S7 + SiY7 - a12Ut76). (10.268)

10.2.7 Regrouping of the terms H3, H4, J3, and J4

The terms H3,H4, J3, and J4 are defined respectively by Eqs. (10.267), (10.268),
(10.160), and (10.161). These equations can be regrouped as follows:

H3 = (Lid + L2Sl + L3)c2 + (L4C1 + L5Sl + L6)s2 + L8Sl + L9) = 0, (10.269)

H4 = (L10C1 + Lnsi + L!2)c2 + (LBCi + L14Si + Li5)s2

+ (Li6ci + L17si + L18) = 0, (10.270)

J3 = (L19C5 + L20S5 + L2i)c4 + (L22c5 + L23s5 + L24)s4 + (L25C5 + L26s5 + L27) = 0,

(10.271)

J4 = (L28C5 + L29S5 + L30)c4 + (L3ic5 + L32s5 + L33)s4

+ (L34c5 + L35s5 + L36) = 0, (10.272)
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where

Li 7 + S7C12S23S7

S7S23S7 - )

L2 =

(K2 -

S7C12S23C71C7

S7S23C71C7

(K2 - a^7 -

L3 =

L4 = S2 ( -

+ S7C12S23C71C7 -

L5 =

- S7C12S23S7 -

- a67a7iS23 + (K2 - a^2 -

S7S23S7 + a23C23C7) + S2 ( -

S6 (-S7S23C7iX7 -

- a7 1)s2 3c7,

L6 = - S i a i 2 s 2 3 X 7

L7 =

- S7S12S23S71C7 -

S7S12C23S7 -

(K2 - S^ -

L8 = S1(-S6Si2C23Z7 + S7S12C23C71C7

(K2 - Sj - a^7 - a7 1)si2c2 3c7,

L9 = S i ( - S2(-a67C23 - a71c23C7)

+ S7(ai2S12C23S71C7
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+ (K2 - S* - S* - a^7)c12c23X7, (10.273)

= S i ( S 2 S 2 3 Z 7 - S6Ci2S23C7 - S7C12S23C67C7

) ( - S7S23C67C7

a7iC12c23Y7) - a67a71Ci2S23Z7 + K2Ci2s23Z7 - S7Ci2s23s67s7i

+ S7Ci2S23C7lX7 - ai2Si2S23Z7

7) + S2(S6s23X7 + S7s23C7iX7

(K2 - a7 1)ci2s2 3X7,

L12 = Si (-S7S12S23S67 + a7lSi2S23X7) + S6(S7Si2S23S7lC7 + ai2Ci2S23X7 +

+ ( - K 2 + Si)s1 2s2 3Y7 - S7S12S23S67C71,

L13 = Si (

S6(S7s23S7 - a23c23C7) + S7(-a23C2 3c6 7c7

+ a7is23s67) + a23a67C23X7 + (K2 - a^2 - a7 1)s2 3X7,

L14 = Si (-S2Ci2s23Z7 + S6s23C7 + S7s23C67c7 + a23C23X7 - a67s23X7)

+ S6(S7s23c7iC7 + a23c23X7 - a7iS23X7) + S7(a23C23c71X7 - a67s23c7iX7

- a7iS23c67X7) + a 2 3 ( - a 6 7 c 2 3 Y 7 - a7iC23Y7) + a67a7iS23Z7

+ ( - K 2 + aj2)s2 3Z7 + S7S23S67S71,

L15 = - S i a i 2 s 2 3 Y 7 + S2(-S6Si2S2 3X7 - S7Si2s23c67X7 - ai2Ci2s23Y7 - a23Si2c23Y7

+ a67Si2s23Z7 - a7iSi2s23Z7) + S7ai2s23s67 - ai2a7iS23X7,

Li6 = Si(-S6Si2c23C7 - S7si2c2 3c6 7c7 - ai2Ci2c23X7 + a23Si2s23X7 + a67Si2C23X7)

- S2ai2C23X7 + S 6 ( -S 7 s i 2 c 2 3 c 7 i c 7 - ai2Ci2C23X7 + a23Si2S23X7 + a7iSi2c23X7)

+ S 7 ( -a i 2 Ci 2 c 2 3 c 7 iX 7 + a23Si2s23c7iX7 + a67Si2c23c7iX7 + a7iSi2c23C67X7)

+ ai2(a2 3Ci2s2 3Z7 + a67Ci2c23Y7 + a7iC12c23Y7) + a 2 3 ( -a 6 7 Si 2 s 2 3 Y 7

- a7iSi2s23Y7) - a67a71Si2c23Z7 + (K2 - S2)s12c23Z7 - S7S12C23S67S71,
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L17 = S1(S6S12C23X7

Li8 = S i ( -

7 + (K2 - Sj -

(K2 - S2
{ - S7c12c23s67c7i,

(10.274)

L19 = - S 3 a 3 4 -

L 2 0 = S4S5S34 +

L21 = S5a56S34S45,

L22 = S4S5S34C45 +

L24 =

L25 =

L26 =

L27 =

—83845 -

—S3S4S45 +

- S 3 a 5 6 -

+

S3 —

S3 - a56

+ —  S3 —  S4 —  a5

(10.275)

L28 =

L29 =

L30 =

L31 =

L32 =

L33 =

L34 =

L35 =

L36 =

S3

+ (—Ki + S3 +

- S5S5 6) -

(10.276)
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10.2.8 Grouping of the four equations

Equations (10.23), (10.24), (10.44), and (10.45) are linear in the tan-half-angle of 06

and linear in the sines and cosines of the angles 0\ and 02. They are also linear in the
sines and cosines of the angles #4 and 05. It is necessary to eliminate these last two angles
without increasing the degree of the sines and cosines of 0\ and 02 in order to obtain four
equations of the form of Eq. (10.1).

It is possible to express Eqs. (10.23), (10.24), (10.44), and (10.45) in the form

(MiC2 + NiS2 + Oi)x6 + (PiC2 + Qis2 + Ri)

= (M|c4 + N|s4 + O;)x6 + (P|c4 + Q|s4 + R|), (10.277)

where i = 1 . . . 4 and

Mi = M u c i + Mi>2si + Mi>3,

Pi=Pi,lCi+Pit2Si+Pi>3,

Q^QuCi+Qus^Qis ,

Ri = Ruci + Rif2si + Ru (10.278)

and

R; = R ; I C 5 + R-2S5. (10.279)

Note that all of the coefficients, that is, Mi?i through Rj 2, can be numerically evaluated in
terms of the given constant mechanism parameters.

The expansions of the coefficients are given as follows:

M u = a23X^, M I J 2 = - a 2 3 Z ^ , Mi>3 = 0,
N1>2 = -a2 3Ci2X^, Ni>3 = a23Si2Y7,

Oi,3 = SiY7 + S2Ci2Y7 - S3c34c45s56 - S4c45s56 - S5s56 - S7s67 + a7 iX7,

Pi,i = -a23c7_, P l t 2 = a23X7, P1>3 = 0,

Qi,i = a23c12X7, Qi,2 = a23c12c7, Qi,3 = -a 2 3 S i 2 X 7 ,

Ri,i = -S 2 S i 2 X 7 - ai2c7,

Ri,2 = -
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Rl,3 = ""^1X7 —  S2C12X7 — a56 — a67 —  a7iC7,

(10.280)

JVlj j —  ^3834045056,
XT/

INj j = —a34C45C56,
O'i 1 = S3C34S45C56 -h S4S45C56

Pj!i=a34,
Q11 = S3S34,
K u —  a45,

M2,i = a23C7, M2?:
N2J = —a23Ci2X 7, N2,:
O2,i = S2S12X7 + a12C7,
O2,2 = S2S12C7 - a1 2X7,
O23 — S1X7 + S2C12X7 — a56 -

P2!i = a23X7, P2,:
Q21 = -a 2 3Ci 2 Z 7 , Q2,:
R21 = S2si2Z7 + ai2X7,
R22 = S2Si2X7 — a i 2 Z 7 ,

R2,3-S1Y7+S2C12Y7+S3C3,

M 2 J = a34,

N 2 1 = S3S34,
Of

2X = a 4 5 ,

^2,1 = "^3834045056,

>c2 1 —  a34^45^565
R-2,1 = ""S3C34S45C56 —  S4S45C56
K.2 2 ~= a45C56,

M'i,
N ' i

Q'i!
R i ,

I =

fa e

1 =

1 =

1C45

M2

N2

O2

P2

2 = - a 3 4 C 5 6 ,

2 = -S3S34C
2 = - a 4 5 c 5 6 ,

2 = S3S34C45.
2 = - a 3 4 C 4 5 ,
2 = S3C34S45

- a 2 3 X 7 ,
- a 2 3 C 1 2 c 7 ,

,7 + a71c7,
- a 2 3 Z 7 ,
- a 2 3 c 1 2 X 7 ,

2 = S3S34C45

2 = -a 3 4 C45

2 = S3C34S45
' 2 = a34c56,

v^2 2 ~= ^3^34^56

M;

P'I
Q'i

+ S4S45,

M2,3 =
N2,3 =

P2,3 =
Q2,3 =

+ S4S45,

,3 = "^3834845

'3 = a34S45S56,

,3 '

0,
a23Si2X7,

0,
a23Si2Y7,

S7s67 + a71X7,

M2,3 = 0,
N2 3 = 0,

^2,3 = ^3S34
Q2 3 = —a 34

(10.281)

M3J = Lio,
N3,i = L i 3 ,
O 3 , i = L16,
P3 { = - L i ,

Qs!i = " L 4 ,
R3J = ~ L 7 ,

M'3 1 = - L 2 8 ,

N 3 1 = - L 3 i ,
O b = -L34,
P31 —  ~Li9,
Q b = ~L22,
R'3,1 = ~"L25,

M4,i = L ^
N4.1 =U,
O4.1 = L7,
P 4 . i = L i 0 ,
Q41 = L13,

M3)2 =
N3,2 =

O3,2 =
P3,2 =

(ha =
R3,2 =

M3,2 =
N3,2 =
O3 2 =
Pr

3 ' 2 =

Qb -
R3,3 =

M 4 , 2 :
N 4 , 2 :

O4,2 =
P4,2^
Q4,2

: L11,
: L14,
: L17,
= - L 2 ,

= - L 5 ,
1 - L 8 ,
1 - L 2 9 ,
= - L 3 2 ,
~- - L 3 5 ,

= —L20,
= - L 2 3 ,
= - L 2 6 ,

= L2,
= L5,
= L8,

= Ln ,

= L14,

M3,3 = L12,
N3,3 = Li5 ,

O33 = L18 + L36,

P3,3 = - L 3 ,
Q33 = —  L6,
R-3,3 ~ ~L9 + L27

M^ 3 = - L 3 o ,
N ^ 3 = -L33 ,

P3,3 = ~L2U
Q33 — ~~L 24,

M43 = L3,

N4,3 = L6,
O4 3 = L9 + L27

P4 3 = L12,
/^V T
W.4 3 "^ -•-'15?

(10.282)



10.2 General 7R group 4 spatial mechanism 243

R44 = Li6, R4 2 = L n , R4 3 = Li8 —  L36,
M4)1 = —  L19, ^4,2 = " ^20 , M43 = — L 2i ,
N 4 4 = - L 2 2 , N4>2 = - L 2 3 , N4 ) 3 = - L 2 4 ,

O4 j = —  L25, O 4 2 = —  L26,
P44 = L28, P 4 2 — L29, P 4>3 = L30>
Q41 —  L31, Q 4 2 = L32, Q4 3 = L33,
R4 J = L34, R4'2 = L35- ' (10.283)

The four equations represented by Eq. (10.277) may be written in matrix format as
follows:

= T2b, (10.284)

where

M u Mi,2 Mi,3 N u N,,2 N1>3 Ol f l O,,2 O,,3 P u Pi,2 Pi,3 Q1.1 Q u Q1.3 R1.1 Ri,2 R1.3
M2,i M2)2 M2;3 N2fi N2)2 N2>3 O2j l O 2 2 O2>3 P2>i P2,2 P2,3 Q2,i Q2,2 Q2,3 R2fi R2,2 R2,3
M3,i M3,2 M3,3 N3,i N3,2 N3,3 O3i l O3,2 O3,3 P3,l P3,2 P3,3 Q3.1 Q3,2 Q3,3 R3,l R3,2 R3)3

_M4,i M4,2 M4,3 N4,i N4,2 N4,3 O4fi O4,2 O4,3 P4 |1 P4,2 P4,3 Q4>1 Q4,2 Q4,3 FU,, R4,2 R4,3

(10.285)

6, SiC2X6, C2X6, CiS2X6, SiS2X6, S2X6, CiX6, SiX6, X6, CiC2,

s i c 2 , c 2 , c i s 2 , s i s 2 , s 2 , c i , s i , 1 ] T , (10 .286)

M ' u M>h2 M'1>3 N'M N'1>2 N'lt3 a u O>h2 P ' u P ' u P ' u Q'u Qi,2 Q ^ R'lfl R ' u "
M2>1 M^2 M^ 3 N2>1 N^ 2 N2fl a 2 t l O2,2 P 2 J P2)2 P 2 3 Q2(1 Q2>2 Q 2 3 R 2 J R2>2

M3 t l M3f2 M3t3 N3>1 N3>2 N3>3 O3;1 O3i2 P3?1 P3>2 P3)3 Q3>1 Q3>2 Q3)3 R3>1 R3>2

M;51 M;>2 M4,3 N4 I 1 N 4 ( 2 N ; I 3 O4>1 O4 ; 2 P ^ P4)2 P ; 3 Q4>1 Q;,2 Q ; 3 R4>1 R 4 ( 2 J

(10.287)

b = [C4C5X6, C4S5X6, C4X6, S4C5X6, S4S5X6, S4X6, C5X6, S5X6, C4C5, C4S5,

c 4 , S4C5, S4S5, S4, C5, s 5 ] T . (10 .288)

Note that all the elements of matrices Ti and T2 are known in terms of the given mechanism
parameters.

It is necessary to express vector b in terms of the constant mechanism parameters, the
output angle 6\, the angle 02, and the tan-half-angle of 06. Once this is accomplished, tan-
half-angle substitutions will be made for the sines and cosines of the variable joint param-
eters, and the matrix equation, Eq. (10.284), can be regrouped to represent four equations
of the form of Eq. (10.1). Such an expression for b will be obtained in the next section.

10.2.9 Elimination of 6>4 and 6>5 to obtain
input-output equation

An expression for b in Eq. (10.284) will be obtained by generating sixteen additional
equations that are (i) linear in the sines and cosine of 94 and 05, (ii) linear in the variable
x6, and (iii) linear in the sines and cosines of the variables 6\ and 92. The solution of these
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sixteen linear equations will then be substituted into Eq. (10.284), the result of which
will, upon regrouping, be four equations of the form of Eq. (10.1). The sixteen equations
are generated as follows:

(i) Half-Angle Law

The following subsidiary half-angle law may be written for a spherical heptagon:

x6(X217 + X45) + (Y217 + Y45) = 0. (10.289)

This equation is regrouped as

X45X6 + Y45 = -X2 1 7x6 - Y217. (10.290)

Expanding X45 and Y45 gives

(X4C5 - Y4s5)x6 + c56(X4S5 + Y4c5) - s56Z4 = -X2i7x6 - Y2i7. (10.291)

Expanding X4, Y4, and Z4 and regrouping terms gives

^34845)85X5 + (-S34

- Y217 + C34C45S56. (10.292)

(ii) Half-Angle Law

The following subsidiary half-angle law may be written for a spherical heptagon:

x6(Y217 - Y45) - (X217 - X45) = 0. (10.293)

This equation is regrouped as

-Y 4 5 x 6 + X45 = -Y2 1 7x6 + X217. (10.294)

Expanding X45 and Y45 gives

-[c56(X4s5 + Y4C5) - s56Z4]x6 + (X4C5 - Y4s5) = -Y2 1 7x6 + X217. (10.295)

Expanding X4, Y4, and Z4 and regrouping terms gives

—  (—A 217 — ^34C45S5g)X5 -|-  X 2 j 7 . (10 .296)

(iii) and (iv) Secondary Half-Angle Law

The following subsidiary sine and sine-cosine laws may be written for a spherical
heptagon:

X2176 = X45, (10.297)

X2176 = -Y 4 5 . (10.298)

Substituting dual angles into these equations gives

Xo2176=XO45, (10.299)

XS2176 = - y 045. (10.300)
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Equations (10.299) and (10.300) may be expanded as

- S 6 ( X 2 1 7 s 6 + Y2i7c6) + X0217C6 - Y0217S6 = X045, (10.301)

S6(X2i7C6 - Y217s6) + X0217S6 + Y0217C6 = - Y 0 4 5 . (10.302)

The following trigonometric identities were introduced in Eqs. (9.108) and (9.109):

s6 - c6x6 = x6, (10.303)
l. (10.304)

Adding Eq. (10.301) to x6 times Eq. (10.302) and using the above trigonometric identities
yields

-S6(X2 1 7x6 + Y217) + X 0 2 n - Y02i7x6 = X045 - Y045X6. (10.305)

Subtracting Eq. (10.301) times x6 from Eq. (10.302) and using the trigonometric identities
gives

S6(X2i7 - Y217x6) + X02i7x6 + Y0217 = -(X045X6 + Y045). (10.306)

Equations (10.305) and (10.306) may be rearranged as

X045 = (~"YQ217 ~~ S6X2i7)X6 + (XQ217 "" S6Y2i7), (10.307)

X045X6 + Y045 = (-X0217 + S6Y217)x6 - (Y02i7 + S6X217). (10.308)

The terms X045 and Y045 may be expanded as

X045 = -S5X*5 + X04C5 - Y04S5, (10.309)

Y045 = S5C56X45 - a56Z45 + C56(Xo4S5 + Y04C5) - S56Zo4, (10.310)

where

X04 = S4S34C4 + a34C34S4, (10.311)
Y04 = S4C45X4 - a45Z4 + a34(s45S34 - C45C34C4), (10.312)
Z04 = S4S45X4 + a34Y4 + a45Y4. (10.313)

Substituting these expressions into Eqs. (10.307) and (10.308) gives the third and fourth
of the sixteen equations as

K3c4c5x6 + K4c4s5x6 + K5c4x6 + K6s4c5x6 + K7s4s5x6 + K8s4x6 + K9c5x6

+ KiOs5x6 + K11C4C5 + K12c4s5 + Ki3s4c5 + Ki4s4s5 + Ki5c5

+ K16s5 = (-Yo217 - S6X217 + K17)x6 + (X0217 - S6Y217), (10.314)

Kiic4c5x6 + K12c4s5x6 + Ki3s4c5x6 + Ki4s4s5x6 + Ki5c5x6 + Ki6s5x6

—  K 3 c 4 c 5 —  K4C4S5 —  K5C4 —  K 6 s 4 c 5 — K 7S4S5 —  K8S4 — K 9 c 5

- K10S5 = (-X0217 + S6Y217)x6 - (Y02n + S6X217 + K n ) , (10.315)
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where

K3 =
K 4 = ( -S 4 S34C 5 6 - S5S34C45C56),

- S5S34C56),

K 7 = (-a34C34C5 6 + a56S34S56),

K8 = (
K9 = ( -
K 1 0 = (-S5C34S45C56), (10.316)

K n = (S4S34 + S5S34C45),

K12 = (a34C34C45 - a45S34S45),

K13 = (a34C34),
K44 = (—S4S34C45 — S5S34),

K15 = (S5C34S45),

K17 =

(v) Subsidiary Cosine Law

A subsidiary cosine law for a spherical heptagon is written as

Z 4 5 = Z 2 1 7 . (10.317)

Expanding Z45 gives

s56(X4s5 + Y4C5) + c56Z4 = Z 2 n . (10.318)

Expanding X4, Y4, and Z4 and rearranging terms gives

(-S34S45C5 6)C4

(10.319)

(vi) Secondary Cosine Law

Dual angles may be substituted into Eq. (10.317) to give

Z045 = Z0217. (10.320)

The term Z045 may be expanded as

Z045 = a56Y45 + S5s56X45 + a45(-S56c5Z4 + c56Y4) + S4S34X54 + a34Y54. (10.321)

Substituting this expression into Eq. (10.320) and then expanding the terms X45, Y45, X54,
Y54, X4, Y4, Z4, X4, and Y4 and rearranging gives

K18C4C5 + K1 9c4s5 + K2 0c4 + K21S4C5

+ K22S4s5 + K23S4 + K2 4c5 + K25S5 = Z0217 + K26, (10.322)
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where

K19 = (S4S34S56 + S5S34C45S56),

K20 = (-a34C34S45C56

K2l = (S4S34C45S56 + S5S34S56),

K22 = (a34C34S56 + a56S34C56), (10.323)

K23 =

K25 = (S5C34S45S56),

K26 = (a34S34C45C56

(vii) Projection of Vector Loop Equation

The vector loop equation can be written as the sum of the vectors R6'23 and R3'56.
Projecting these terms onto the vector S3 yields

R6'23 • S3 = -R3 ' 5 6 • S3. (10.324)

The left side of this equation may be written as

R6'23 • S3 = (S6S6 + a67a67 + S7S7 + a71a7i + S1S1 + a12ai2 + S2S2 + a23a23) • S3.

(10.325)

Evaluating the scalar products gives

R 6 ' 2 3 S 3 = H5, (10.326)

where

H5 = S6Z712 + a67U7123 + S7Z12 + a71U123 + S!Z2 + a12U23 + S2c23. (10.327)

The right side of Eq. (10.324) may be written as

-R3 ' 5 6 • S3 = -(S3S3 + a34a34 + S4S4 + a45a45 + S5S5 + a56a56) • S3. (10.328)

Evaluating the scalar products gives

-R3 ' 5 6 • S3 = - ( S 3 + S4C34 + a45U43 + S5Z4 + a56U543). (10.329)
Substituting Eqs. (10.326) and (10.329) into Eq. (10.324) and then expanding U43, Z4,
and U543 and rearranging gives

(85834845^4 + ( -

)S5 = H 5 + S3 + S4C34 + S5C34C45. (10.330)

(viii) Projection of Vector Loop Equation
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The vector loop equation can be written as the sum of the vectors R6'23 and R3'56.
Projecting these terms onto the vector S6 yields

R6'23 . S6 = -R3 ' 5 6 • S6. (10.331)

The left side of this equation may be written as

R6'23 • S6 = (S6S6 + a67a67 + S7S7 + a71a71 + SiSi + a12a12 + S2S2 + a23a23) • S6.

(10.332)

Evaluating the scalar products gives

R6'23 . S6 = H6, (10.333)

where

H6 = S6 + S7c67 + a71U76 + S!Z7 + a12U176 + S2Z17 + a23U2i76. (10.334)

The right side of Eq. (10.331) may be written as

-R3 ' 5 6 • S6 = - (S 3 S 3 + a34a34 + S4S4 + a45a45 + S5S5 + a56a56) • S6. (10.335)

Evaluating the scalar products gives

-R3 ' 5 6 • S6 = -(S3Z4 5 + a34U456 + S4Z5 + a45U56 + S5c56). (10.336)

Substituting Eqs. (10.333) and (10.336) into Eq. (10.331) and then expanding Z45, U456,
Z5, and U56 and rearranging gives

+ K27C5 + (-a45S56)S5

= H6 + S3c34C45C56 + S4C45C56 + S5c56, (10.337)

where

K27 = (S4S45S56 + S3c34S45S56). (10.338)

(ix) Self-Scalar Product

The vector loop equation can be written as the sum of the vectors R623 and R356. Thus,
it can be written that

R6,23 = _R3,56 (10.339)

Taking the self-scalar product of each side of this equation and dividing by two gives

-(R6'2 3 • R6'23) = -(R3'56 • R3'56). (10.340)

The left side of this equation can be evaluated as

- ( R 6 ' 2 3 . R 6 2 3 ) = H 7 , (10.341)
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where

H7 = K2 + S6(S7c67 + a71X7 + SiZ7 + ai2X7i + S2Z7i + a23X7i2) + a67(a7iC7 + S1X7

S2X17 + a23W2i7) + S7(SiC7i + ai2Xi + S2Z! + a23Xi2)

+ S2Xi + a23W2i) + Si(S2Ci2 + a23X2) + ai2(a23C2) (10.342)

and where K2 has been previously defined in Eq. (10.163).
The right side of Eq. (10.340) can be expanded as

_(R3,56 . R3,56) = K i + s3(S4C34 + a45X4 + S5Z4 + a56X45) + a34(a45C4 + S5X4

+ a56X5) + a45(a56C5), (10.343)

where Ki is defined in Eq. (10.78).
Substituting Eqs. (10.341) and (10.343) into Eq. (10.340) and then substituting the

definitions for the terms that contain #4 and 05 and regrouping gives

K28C4 + (S3a56S34)S4C5 + (-a34a56C45)S4S5 + K29S4

5 + K3Os5 = H7 - S3S4C34 - S3S5C34C45 - S4S5c45 - Ki , (10.344)

where

- S3S5S34S45),

K29 = (a34S5s45 + S3a45S34), (10.345)

K30 =

(x) Projection of Self-Scalar Product

Because R6'23 = —R 3'56, it is possible to construct the following expression:

I(R6,23 . R6,23)(S6 . g3) _ (R6,23 . S6)(R6,23 . g ^

= -(R3'56 • R3'56)(S6 • S3) - (R3'56 • S6)(R3'56 • S3). (10.346)

The left side of this equation will be designated as H8, and the right side will be named
J8. Thus, it may be written that

H 8 = J 8 , (10.347)

where

H8 = -(R6'23 • R6'23)(S6 • S3) - (R6'23 • S6)(R6'23 • S3) (10.348)

and

J8 = I(R3'5 6 . R3'56)(S6 • S3) - (R3'56 • S6)(R3'56 • S3). (10.349)
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The format of H8 is the same as that of H3 written in Eq. (10.38), with the term a67 now
replaced by S6. Thus, an expression for H8 may be obtained by rewriting Eq. (10.75),
replacing each occurrence of 367 with S^. This yields

H8 = 1(R6-67 • R6'67 + R7-71 • R7-71 + R1-12 • R1-12 + R2-23 • R 2-23)(S3 • S6)

- (R6-67 • S3)(R6'67 • S6) - (R7-71 • S3)(R7'71 • S6)

+ (R6'67 x S6) • (R7'71 x S3) - (R7-71 • S3)(R6-67 • S6)

- ( R U 2 • S3)(RU 2 • S6) + (R6'71 x S6) • (R1-12 x S3)

- ( R U 2 • S3)(R6-71 • S6) - (R2-23 • S3)(R2-23 • S6)

+ (R6-12 x S6) • (R2-23 x S3) - (R2-23 • S3)(R6'12 • S 6). (10.350)

The format of J8 as listed in Eq. (10.349) is similar to the format of J3 listed in Eq. (10.40)
with the vector S6 replacing a56. An expression for Jg may now be written based on Eq.
(10.56) as follows:

J8 = i(R3-34 • R3-34 + R4-45 • R4'45 + R5-56 • R 5-56)(S3 • S6) - (R3-34 • S3)(R3-34 • S6)

- (R3'45 • S3)(R4-45 • S6) - (R3-56 • S3)(R5'56 • S6) + (R3-34 x S3) • (R4-45 x S6)

+ (R345 x S3) • (R 556 x S6). (10.351)

The following terms that are contained in Hg and Jg must now be expanded:

S 3 -S 6 , R6-6 7-S6, R7 ' 7 1 -S6 , R U 2 - S 6 ,
R2-2 3-S6, R 6 ' 7 1 -S 6 , R6 ' 1 2 -S6 , R3-3 4-S6,
R4-45 • S 6, R5-56 • S 6,
(R6-67 x S6) • (R7-71 x S3),
(R6-71 x S6) • (R1-12 x S3),
(R6-12 x S6) • (R2-23 x S3),
(R3-34 x S3) • (R4-45 x S6),
(R3-45 x S3) • (R5-56 x S6).

(a) S3 • S 6

This term can be evaluated using set 13 of the table of direction cosines to give

S3 • S 6 = Z712. (10.352)

It may also be evaluated from set 3 as

S3 • S 6 = Z54. (10.353)
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The results of Eq. (10.352) will be substituted into H8, and Eq. (10.353) will be substituted
into J8.

(b) R667 • S6

This expression may be written as

R6-67 • S6 - (S6S6 + a67a67) • S6. (10.354)

Evaluating the scalar products gives

R6-67 • S6 = S6. (10.355)

(c) R 7 ' 7 1 -S 6

This expression may be written as

R7-71 • S6 = (S7S7 + a71a71) • S6. (10.356)

Evaluating the scalar products gives

R7'71 • S6 = S7c67 + a71X7. (10.357)

(d) R U 2 - S 6

This expression may be written as

R U 2 • S6 = (S,S, + a12a12) • S6. (10.358)

Evaluating the scalar products gives

R1 12 . S6 = S7Z7 + a12X71. (10.359)

(e) R 2 ' 2 3 -S 6

This expression may be written as

R2-23 • S6 = (S2S2 + a23a23) • S6. (10.360)

Evaluating the scalar products gives

R2 23 • S6 = S2Z71 + a23X712. (10.361)

(f) R6-71 • S6

This expression may be written as

R6 J 1 • S6 = (R6'67 + R7'71) • S6. (10.362)

Using the results of Eqs. (10.355) and (10.357) gives

R6-71 . S6 = S6 + S7c67 + a71X7. (10.363)
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(g) R M 2 - S 6

This expression may be written as

R6-12 • S6 = (R6'71 + R U 2 ) • S6. (10.364)

Using the results of Eqs. (10.363) and (10.359) gives

R6-12 • S6 = S6 + S7c67 + a71X7 + S , ^ + a12X71. (10.365)

(h) R 3 ' 3 4 -S 6

This expression may be written as

R3-34 • S6 = (S3S3 + a34a34) • S6. (10.366)

Evaluating the scalar products gives

R3'34 • S6 = S3Z54 + a34X54. (10.367)

(i) R4'45 • S6

This expression may be written as

R445 • S6 = (S4S4 + a45a45) • S6. (10.368)

Evaluating the scalar products gives

R4 45 • S6 = S4Z5 + a45X5. (10.369)

a) R 5 ' 5 6 •  s 6

This expression may be written as

R5'56 . S6 = (S5S5 + a56a56) • S6. (10.370)

Evaluating the scalar products gives

R5'56 . S6 = S5c56. (10.371)

(k) (R6'67 x S6) • (R7'71 x S3)

The scalar and vector products in this expression will all be evaluated using set 7 from
the table of direction cosines. The first term of this expression may be written as

R6'67 x S6 = (S6S6 + a67a67) x S6. (10.372)

The vector product of S6 with itself is zero. The vector product && x S6 — — S6 x a 61
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(seeEq. (10.186)). Thus Eq. (10.372) may be written as

' -a6 7c6 7s7"
R6'67 x S6 = -a 6 7 c 6 7 c7 (10.373)

The vector product of R771 and S3 was previously evaluated using set 7, and the results
are presented in Eq. (10.191). The scalar product of Eqs. (10.373) and (10.191) yields
the result

(R6'67 x S6) • (R7'71 x S3) = -a67S7c67X2i7 + a67a71(s67Y21 + c67c7Z2i). (10.374)

(1) (R6'71 x S6) • ( R U 2 x S3)

Set 1 from the table of direction cosines will be used to evaluate all the scalar and vector
products in this expression. The first term in this expression may be written as

R6'71
 x S6 = (S6S6 + a67a67 + S7S7 + a71a7i) x S6. (10.375)

Now, S6 x S6 = 0. The vector product S6 x a67 was evaluated in Eq. (10.195). Thus,

X S6 = ClZ7+_SlX7 (10.376)

The vector product S7 x S6 may be written as

S7 x S6 = S71S1 S71C1 C71

X71 —X; •71

S71C1Z7
(10.377)

where fundamental and subsidiary sine, sine-cosine, and cosine laws were used to simplify
the direction cosines of S6 and S7. Expanding and regrouping the elements of this vector
and recognizing that s\ + c\ = 1 gives

S7 x S6 =
- s 6 7 W 7 i
-S67V7i
-S67U7 1

(10.378)

The vector product a7i x S6 may be written as

a7i x S 6 =
1

Cl

x71

J
- s i

-X*

k
0

z7
=

- S i Z 7

-C1Z7

_ C l x * + <
(10.379)
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Expanding the last term of this vector gives

(10.380)

Substituting the results of Eqs. (10.376), (10.378), and (10.380) into Eq. (10.375) gives

a7i
-S1Z7

-C1Z7

L " Y 7 J

R6,71 a67(ciZ7 +_SiX7) - S7s67V7i -
-a6 7Y7 - S7s67U71 - a7iY7

(10.381)

The factor (R112 x S3) has been previously evaluated in terms of set 1 from the table
of direction cosines. The result is presented in Eq. (10.211). Performing a scalar product
of Eqs. (10.381) and (10.211) gives the result

(R6'71 x S6) • ( R U 2 x S3) =

[a67Ut76 - S7s67W71 - a71s1Z7](-S1Y2) + [a67(ClZ7 + siX7) - S7s67V71

- a7lClZ7] (S!X2 - a12Z2) + [ -a^Y, - S7s67U71 - a71 Y7](a12Y2). (10.382)

(m) (R6'12 x S6) • (R2'23 x S3)

Set 1 from the table of direction cosines will be used to evaluate all the scalar and vector
products in this expression. The left factor may be written as

(R6'12 x = (R6 J 1 + S,S, + a12a12) x S6. (10.383)

The vector product of R671 and S6 has been evaluated in set 1 (see Eq. (10.381)). The
vector product of Si and S6 may be written as

Si x S6 =
1

0
X7i

J
0
Y*~~A71

k
1

z7

Y*A7 1

x71
0

(10.384)

The vector product of ai2 and S6 may be written as

a12 x S6 =

Substituting Eqs. (10.381), (10.384), and (10.385) into Eq. (10.383) gives

6,12

i
1

x71

j
0

-X*

k
0

z7
=

" 0 "
- z 7

- - X 7 1 .

(10.385)

76 - S7s67W71 - a71SiZ7 + SiX;
a67(c,Z7 + SiX7) - S7s67V71 - a7idZ7 + S,X7i - a12Z7

- S7s67U7i - a7iY7 -
R

— a6 7 Y 7 — S 7S67U7i — 2q\ I 7 — aj 2yC7j

(10.386)

The factor (R223 x S3) was previously evaluated using set 1 in Eq. (10.222). The scalar
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product of Eqs. (10.386) and (10.222) gives the result

(R6'12 x S6) • (R 2'23 x S3) =

[a67Ut76 - S7s67W7i - a71SiZ7 + SiX^] (S2s23C2 + a23X2) + [a67(ciZ7 + SlX7)

- S7s67V71 - a7 idZ7 + S1X71 - a12Z7] (S2Ci2X2 + a23Z2) + [-a67Y7 - S7s67U71

- a71 Y7 - a^X^] (S2s12X2 + a23Y2). (10.387)

(n) (R3'34 x S3) • (R4'45 x S6)

Set 4 from the table of direction cosines will be used to evaluate all the scalar and vector
products in this term. The first term may be written as

R3'34
 x S3 = (S3S3 + a34a34) x S3. (10.388)

Now, S3 x S3 = 0. The vector product a34 x S3 was previously determined in Eq. (10.92).
Eq. (10.388) can thus be written as

R 3,34 x S3 =

The term (R445 x S^) may be written as

R4'45 x S 6 = (S4S4 + a45a45) x S6.

The vector product S4 x S6 may be written as

S4 x S6 =
i J k
0 0 1

- Y s

X5

0

(10.389)

(10.390)

(10.391)
X5 Y5 Z5

The vector product 845 x S6 may be written as

a45 x S6 = 1
j
0
~{5

k
0

z5
=

' 0 "
- Z 5

. Y5 .
(10.392)

X5

Substituting Eqs. (10.391) and (10.392) into Eq. (10.390) gives

R4,45
_-S4Y5 _

S4X5 — 345 Z5 (10.393)

Forming the scalar product of Eqs. (10.389) and (10.393) gives the result

(R3-34 x S3) • (R 4'45 x S6) = (-a34C34S4)(-S4Y5) + (-a34C34C4)(S4X5 - a45Z5)

+ (a34s34)(a45Y5). (10.394)

(o) (R3-45 x S3) • (R5-56 x S6)

Set 11 of the table of direction cosines will be used to evaluate all scalar and vector
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products in this expression. The first term has previously been expanded, and the results
are presented in Eq. (10.117). The second term may be written as

(10.395)

The vector product S5 x S6 may be written as

S5 x S6 -
i
0

S56S5

j
0

- S 5 6 C 5

k
1

c56

=
"S56C5

S56S5

0
(10.396)

where fundamental sine, sine-cosine, and cosine laws were used to simplify the direction
cosines of the vector S6.

The vector product a56 x S6 may be written as

(10.397)
j
S5

- S 5 6 C 5

k
0

C56

=

c56s5

- C 5 6 C 5

Substituting Eqs. (10.396) and (10.397) into Eq. (10.395) gives

R5,56
S5S56C5 +

S5S56S5 - (10.398)

Evaluating the scalar product of Eqs. (10.117) and (10.398) gives the result

(R3-45 x S3) • (R5-56 x S6) =

- X04[S5s56C5 + a56c56s5] + Y04[S5S56S5 - a56c56C5] + Z ^ ^ S s e ] - (10.399)

The terms H8 and Jg may now be expanded by using the previous results to yield

H8 = K2Z7i2 - S6(S6Z7i2 + ^7X217) - (S7Z21 + a7iX2i)(S7c67 + a7iX7)
+ c67c7Z2i)] - S6(S7Z2i + a7iX2i)

a12X2)(S1Z7 + a12X7i) + [ a ^ U ^ - S7s67W7i - a7iS1Z7](-S1Y2)

+ [a67(ClZ7 + siX;) - S7s67V71 - a7ic1Z7](S1X2 - a12Z2) + [ -a^Y,

- S7s67U7i - a71 Y7] (a12Y2) - (S1Z2 + a12X2)(S6 + S7c67 + a7iX7)

- S2c23(S2Z7i + a23X7i2) + [a67Ut76 - S7s67W71 - a^siZ? + S i ^ ]

x (S2s23c2 + a23X2) + [a67(c!Z7 + SlX7) - S7s67V71 - a7lClZ7 + SiX7i

- a12Z7] (S2c12X2+a23Z2) + [-a67Y7-S7s67U7i - a71Y7 - a^X^]

x (S2Si2X2 + a23Y2) - S2c23(S6 + S7c67 + a71X7 + S,Z7 + ai2X71), (10.400)
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J8 = K4Z54 - S3(S3Z54 + a34X54) - (S3 + S4C34 + a45X4)(S4Z5 + a45X5) -
a45Z5)

where Ki is defined in Eq. (10.78), K2 is defined in Eq. (10.163), and J5 is defined in Eq.
(10.82).

Equation (10.347) may be factored into the format

K31C4C5 + K32C4s5 + K33C4 + K34S4C5 + K35S4S5 + K3 6s4 + K37C5

+ K 3 8 S 5 = H 8 - K 3 9 , (10.402)

where

K31

K32

K33

K34

K35

= S56[(S34C45/:

+ C56a56[a34

= s56[-a34S4c

= s56a56t-a34l

—  S56 [~a34S4(

= s56s34[(~Sq

l\ f S 2 — S 2 — S 2 —Z / W 3 ^4 ^5

C34C45 - 345834845],

:3 4 - a34S5C34C45 -

C 3 4 S 4 5 - a4 5S34C45] •

+ s 2 - a 4̂ - a 5̂ -

:34C45 + a45S4S34S45

; + s2 + Ŝ  + a^ -

2 2 2 \

a3 4S3 + a45S5s3,

-t-C56[(S34S45/2)

- a^ ) + a34a45C3,

- a 3 4 S 3 c 4 5 - a 3 4

-al5 + a2
56)/2 +

— a34a45C34S45 >J4^5^34

1S45] + c56a56S34[-S4 - S5C45],

S5C34] + C56a56S34 [-S5 - S4C45]

S4S5C45 — O56a34a56C34,

K36 =

K37 = S56 [(C34S45/2) (S3 + S4 - S5 - a^4 - a45 - <i2
56) - a34a45S34C45 + S3S4S45]

+ C56a56[~a34S34S45 + 845034045],

K38 — S 56[-a45S4C34 - a45S5C34C45 + a34S5S34S45 - a45S3] - C56 D156S5C34S45] ,

K39 = s56a56[-a34S34C45 - a45c34S45] + c56 [(C34C45/2) ( - S ^ - S^ - S^ + a^4

+ a^6) - S3S5 - a34a45S34S45 - S3S4C45 - S4S5C34]. (10.403)

(xi) through (xvi)
The fifth through tenth equations that have been generated do not contain the tan-

half-angle of 06. Therefore, the final six equations can be obtained by multiplying these
equations by the term x6.

The sixteen equations may be written in matrix form as

Ab = c, (10.404)

where b was previously defined in Eq. (10.280) but is repeated here along with A and c
as



0

S34C45C56

K3

K n

0

0

0

0

0

0

-S34C45S56

K18

0

S3S34C45S56

a 3 4a 5 6

S34C45

0

K4

K12

0

0

0

0

0

0

0

K19

-a56S34C4<

- a 3 4 S 5 6

"^3a56^34C4:

K19

0

-S34S45S56

K5

0

0

0

0

0

0

0

-S34S45C56

K20

5 S5S34S45

S3S34S45C56

5 K28
K

S34

0
K6

K13

0

0

0

0

0

0

0

K2,

- a 5 6 S 3 4

-a34C45S56

S3&56S34
K

0

-S34C56

K7

K14

0

0

0

0

0

0

S34S56

K22

0

-S3S34S56

- a 3 4 a 5 6 c 4 5

K

0
0

Kg

0

0

0

0

0

0

0

0

K23

- a 4 5 S 3 4

-a 3 4S45C 5

K29

0

C34S45C56

K9

K i s

0

0

0

0

0

0

—C34S45S56

K24

0

6 K 2 7

a 4 5a 5 6

K .7

C34S45

0

Kio

K i 6

0

0

0

0

0

0

0

K25

- a 5 6 C 3 4 s 4 5

-a45S56

K30

-S34C45C56

0
Kn
-K3

—S34C45S56

Kis
0

S3S34C45S56

a34a56

K31

0

0

0

0

0

0

0

S34C45

K12

- K 4

0

K19

-a56S34C4;

- a 3 4 S 5 6

S3a56S34C4:

K32

0

0

0

0

0

0

S34S45S56

0

0

- K 5

-S34S45C56

K20

j S5S34S45

S3S34S45C56

5 K2g

K33

0

0

0

0

0

0

0

S34

K,3
-K6

0
K21

- a 5 6 s 3 4

-a34C45S56

S3a56S34

K34

0

0

0

0

0

0

S34C56

0
K14

-K7

S34S56

K22

0

-S3S34S56

-a 3 4 a 5 6C45

K35

0

0

0

0

0

0

0
0

0

- K g

0
K23

- a 4 5 s 3 4

-a34S45C5,

K29

K36

0

0

0

0

0

0

-C34S45C56

0
K15

-K9

-C34S45S56

K24

0
6 K27

a 4 5 a 5 6

K37

0

0

0

0

0

0

0

C34S45

K16

- K i o

0

K25

—a56C34l

—  a45S5

K30

K38

0

0

0

0

0

0

(10.405)
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b =

c4c5x6
C 4 S 5 X 6

C4X6

S4C5X6

s4S5x6

S4X6

C5X6

S5X6

C4C5

C4S5

c4

S4C5

S4S5

s4

c5

(10.406)

c =

[-X217]X6 - Y217
[-Y217 - C34C45S56]X6 + X217

[—Y0217  —  S6X2i7 + K n ] x 6 + X0217
[—X0217  + S6Y2n]x6 —  Y0217 —  S6X2i7 —

Z217 — C34C45C56

Z0217 + K26
H 5 + S 3 + S4C34 + S5C34C45

H 6 + S3C34C45C56 + S4C45C56 + S5C5 6

H 7 — S3S4C34 — S3S5C34C45 — S4S5C45 —

Ms —  K39

[Z217 -

[Z0217
[H 5 + S3 + S4C3 4 + S5C34C45]X6

[H 6 + S3C34C45C
[H7 — S3S4C34 — S3S5C34C45 — S4S5C45 —

(10.407)

Note that the matrix A is completely defined in terms of the constant mechanism param-
eters, whereas the elements of c are linear in the sines and cosines of 0\ and 62 and the
tan-half-angle of 06.

The vector c may now be factored into the format

c = T3a,

where a was previously defined in Eq.(10.278) and T3 is defined as

(10.408)

M£i M 2 ) 2 M ; > 3 Nj f l N 2 ; 2 N 2 ; 3 o2; t o2;2 o2>3 P2; ,

yi,2 P U Q'l',1 Ql',2 QT.3 R ' M Rl,2 R U

2,2 2,3 ^2 ,1 ^-2,2 ^<-2,J 2,1 2,2 2,3

(10.409)
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The terms in the matrix T3, which are all defined in terms of the constant mechanism

parameters,

Mr., =
N'i',i =

p u =
Q'l',! =

R'u =

M2',! =
i N 2 , l —

U 2 , l —
p" —
r2 , l —
Q2,i =
R 2 1 =

are written as

-C71C12S23S7,

- S 2 3 C 7 ,

-C71S12C23S7,

- C 1 2 S 2 3 Z 7 ,

- S 2 3 X ; ,

- S 1 2 C 2 3 Z ^

r\ir
Vl,l>
D"K l , l '

- M ' i ' , i '

-N'i',1-

Mr.2
Nl,2

O'/,2
pll
^1,2

Ql,2
Kl,2

M2,2
N"1N2,2

O2',2
P2,2

Qi2
R2',2

= -C12S23C7,

= C 7 l S 2 3 S 7 ,

= -S12C23C7,

~~ —C12S23X7,

== S23-Z-y,

~~ —$12^23X7,

p / /

= 07,2.
= R-l',2'

= - M ' l ' , 2 '

= - N ' i ' , 2 .

= - O " 2 ,

M'l',3

N'G
°1,3
P'l',3

Q'l',3

R'u

M2',3

N2,3

O2''3

P2',3

Q2,3
R 2 3

= S7lS12S23S7,

= 0,
= -S71C12C23S7

= S12S23Y7,

= 0,

= P?.3.
= 0,

= - C 1 2 C 2 3 Y 7 -

= - M r , 3 ,
= 0,

= - o r 3,

l£fl = -S l C l 2S2 3 X 7 - S2s23X7 - 7 - S7C71C12S23X7 +

M3,2 = SlCi2S23Z7 + S2S23Z7 - S6Ci2S23C7 - S7C12S23C67C7 +

I33 = S6Si2S23X7 •

N31 = SiS23Z7 + S2Ci2S23Z7 - - S7S23C67C7 -

N£ 3 = -S2s12S23Y7,

°3,1 = -SlSi2C23X7 - 7 - S7S12C23C71X7

Y7,

- S7S12C23C67C7 - a

^3,3 = -S6C12C23X7 - S7C12C23C67X7

P3 j = S1C12S23C7 + S2S23C7 - 7 + S7C12S23C71C7 -

P^2 = -S 1 c 1 2 s 2 3 X 7 -S 2 S23X 7 -

P33 = S6S12S23Y7 - S7S12S23S71C7

(10.410)

(10.411)
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Q3.1

Q3.2

Q33

R3.2

—- —^1^23^7 — ^2^12^23^7

= -S1S23C7 - S2C12S23C7 H

= S2S12S23X7,

= S1S12C23C7 — S6S12C23Z7

= -S1S12C23X7 - S6Si2C23

— 05823X7 — S7S23S7 -|- c

" $6S23Z7 — S7S23C71C7 —

+ S7S12C23C71C7 + a12ci2

X 7 —  S7S12C23S7 + a^Ci2

R3,3 = -S6C12C23Y7 + S7C12C23S71C7 - ;

(10.412)

M n — —V" M" — —V" M" — —V"
4,1 —  r 3 , l ' iV14,2 —  r 3 , 2 ' iV14,3 ~ r 3 , 3 '

XT" — — O " N " — — Cl" N " — — O "

4 1 — —^3 1' 4  2 — ^ 3 2' 4  3 — —^3 3'
W4,l — ^ 3 , 1 ' ^4,2 — ^3 ,2 ' ^4,3 — ^ 3 , 3 '

*4,1 —  M 3 , l ' M,2 —  M 3 , 2 ' M,3 ~ M 3 , 3 '
Q ff vr'' d'l XT" C\" XT"

4,1 - ^ 3 , 1 ' ^4,2 - ^ 3 , 2 ' V4,3 ~ ^ 3 , 3 ' (10.413)
4,1 —  U 3 1' K 4 2 —  U 3 2' K4,3 ~ U3,3 ~ ZJ<M7>
'"' = M | 3 = o, '"' = N | ' - o, '•' = o | 3 = o,

P5 1 = = C12S23Y7, P^ 2 = C12S23X7, P5 3 == —S12S23Z7,

5 j = S23^v7, V 5 2 = —^23  ^-7? V 5 3 = ^»
R e , = s1 2c23Y7, R i ' 2 = S12C23X7, R'l3 = C12C23Z7 - c34C45C56, (10.414)

M M = M6,2 = M6,3 = 0, N ^ = N;;2 = N;;3 = 0, o ^ = o;;2 = o£ 3 = o,

K 1 = S1C12S23X7 + S2S23X7 + S7C12S23C71X7 - ai2S12S23Y7 + a23

'6 2 = ~^iCi2S23Y7 — S2S23Y7 + S7C12S23S67C7 — ai2Si2S23X7 +

P6,3 = -S7S12S23S71X7 -

02,1 = -S1S23Y7 - S2C12S23Y7 + S7S23S67C7 + a23C23X7 +

Q6,2 = -S1S23X7 - S2C12S23X7 - S7S23C71X7 -

06,3 = S2Sl2S23Z7,

Rgt l = S1S12C23X7 + S7S12C23C71X7

R6,2 = -S1S12C23Y7 + S7S12C23S67C7
R 6 3 = = ^7^12^23^71X7 — ai2Si2C23Z7 — a23Ci2S23Z7 + a67Cj2C23Y7 + a7iCj2C23Y7 + K26?

(10.415)

P7 j = S6C12S23Y7 — S7C12S23S71 -
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P"
r7,2
p"
r7,3
Q?.i
Q7,2

Q7,3
R7,l

R^2

R7,3

M'g',,

P//

R"1

R?2
R8,3

M J i
P9,l
P"
r9,2
p"
r 9 .3

= O6C12S23X7 -f- a67Cj2S23C7 ~h a7iCi2S23?

= —S1S12S23 — S6S12S23Z7 — S7S12S23C71 — J

= S6S23X7 + a£7S23C7 + a7iS23,

= -S6S23Y7 + S7S23S71 - a 6 7 s 2 3X 7 ,

= a i 2 s 2 3 ,

= S6S12C23Y7 — S7S12C23S71 + a67Si2C23X 7,

= S6S12C23X7 + a67Sj2C23C7 + a7[Si2C23,

= S1C12C23 + S2C23 + S3 + S4C34 + S5C34C45

+ ^ 2 0 2 3 X 7 ,

= M8,2 N8,l = N8,2
= ML =0, = N'L = 0,
= a23X7, P'l2 = - a 2 3 Y 7 ,
= - a 2 3 c 1 2 Y 7 , Q2,2 = - a 2 3 c 1 2 X ,

= S2S12X7 —  aj2Y7,
= S1Z7 + S2C12Z7 + S3C34C45C56 + S4C45C5̂

= ^ = ^ 3 = 0 , ^ = ^ = ^ 3 =

— a23(SgX7 + a67C7 + a 7i) ,

= a23(—S6Y7 + S7S71  —  a6 7X7) ,

= ai2a23,

+ S6Ci2C23Z7 + S7C12C23C71

(10.416)

Wo 1 = = Wo 9
O,l o,Z

PB,3 = O , 8 ' 3

' ' ^ 8 3 ^ a23Si2Z7,

i + S5C56 + $6 + S7Cg7 + 871X7,

(10.417)

0,0^ , = ^ = 0^3=0,

S7ci2s71 - a6 7c1 2X7),

, S6Si2Z7 + S7S12C71

9,i = S6(S2s12Y7 + a12X7) + S2(-S7s1 2S7i + a67s12X7) + a12(a67c7 + a71),

7 - ai2Y7) + S2(a67s12C7 + a7is12) + a12(S7s7i - a67X7),

S2c1 2Z7 + S7c67 + a71X7) + S2(S!C12 + S7c12c7i

Si(S7c7i + a67X7) + S3(-S4C34 - S5C34C45)

+ S 3 ( -S 4 c 3 4 - S5C34C45) - S4S5c45 + a67a7iC7 - Ki + K2, (10.418)

iN10,l —  i>(10,2 —  iN10,3 —  u '
w i o , i — ^10,2 — ^10,3 —  u

P10,l = S i ( S 2

+ S2(
- S6C12S23Y7
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S7Ci2s23c67s7i + ai2 (a23Si2c23Y7 + a67s12s23Z7

- a7iS12s23Z7) + a 2 3 ( -a 6 7 Ci 2 c 2 3 Z 7 + a7iCi2c23Z7) + a67a71c12s23Y7

+ K2Ci2s23Y7,
pio,2 = S i (S 2 s 2 3 X 7 + S7Ci2s23c71X7 - a12s12s23Y7 + a23Ci2c23Y7 + a67c12s23Z7

- a7iCi2s23Z7) + S2(S7s2 3c7 1X7 + a23c23Y7 + a67s23Z7 - a71s23Z7)

+ S 6 (-a 6 7 Ci 2 s 2 3 c 7 - a7iCi2s23) - S^Ci2s23X7 + S7(ai2si2s2 3s6 7c7

- a2 3ci2c2 3s6 7c7 - a67ci2s23c67c7 - a7iCi2s23c67) + ai2(a23Si2c23X7

+ a6 7 Si 2 s 2 3 X 7 )- a23a67Ci2c23X7 - a71Ci2s23X7 + K2Ci2s23X7,
pio,3 = SiS12s23Z7 + Si(S6Si2s23 + S7s12s23c67 + a7iSi2s23X7) + S;?Si2s23Z7

+ S6(S7Si2s23c7i + a67Si2s23X7) + S7Si2s23c67c7i + S7(ai2Ci2s23s7iX7

+ a2 3si2c2 3s7iX7 + a67Si2s23c67X7 + a7iSi2s23c7iX7) + a

+ a6 7ci2s2 3Y7 + a7iCi2s23Y7) + a23(a67Si2c23Y7 + a7iSi2c23Y7)

Qi'o.i = S i (s2Ci2s23X7 + S7s23c7iX7 + a23c23Y7 + a67s23Z7 - a7iS23Z7)

+ S2(S7Ci2s2 3c7iX7 - a12Si2s23Y7 + a23Ci2c23Y7 + a67Ci2s23Z7

- a7iCi2s23Z7) - SgS23X7 + S 6 ( -a 6 7 s 2 3 c 7 - a7is23) +

- a67s23c67C7 - a 7 i s 2 3 c 6 7 ) - ai2s23X7 - a23a67C23X7 - a71s23X7 + K2s2 3X7,

Qio,2 ~ ^1 ( -S 2 Ci 2 s 2 3 Y 7 + S7S23S67C7 + a23C23X7 + a67s23X7) + S2(S7Ci2s23s67c7

- ai2Si2s23X7 + a23Ci2c23X7 + a67Ci2s23X7) + S^s^Y-/ + S6(-S7s23S7i

+ a67s23X7) - S7s23c67s7i + S7(a2 3c2 3c7iX7 + a67s23c71X7 - a7is2 3s7iX7)

+ ai2s2 3Y7 + a2 3(a6 7c2 3Z7 - a7iC23Z7) - a67a7iS23Y7 - K2s2 3Y7,

Qio,3 = - S i a i 2 s 2 3 Z 7 + S 2 ( -S 7 Si 2 s 2 3 s 7 iX 7 - ai2Ci2s23Z7 - a23Si2c23Z7 - a67Si2s23Y7

- a7iSi2s23Y7) - S6ai2s23 - S7ai2s23c67 - ai2a7iS23X7,
Rio,i = s i ( - s 7 S i 2 c 2 3 s 6 7 c 7 - ai2Ci2c23X7 + a23Si2s23X7 - a67Si2c23X7) - S2Si2c23Y7

- S2ai2c2 3X7 - S^Si2c23Y7 + S6(S7Si2c23s7i - a67Si2c23X7) + S7s12c23c67s7i

+ S 7 ( -a i 2 Ci 2 c 2 3 c 7 iX 7 + a23Si2s23c7iX7 - a6 7si2c2 3c7iX7 + a7iSi2c23s7iX7)

+ ai2(a23Ci2s23Y7 - a6 7ci2c2 3Z7 + a7iCi2c23Z7) + a23(a67Si2s23Z7

- a7iS12s23Z7) + a67a7iSi2c23Y7 + K2Si2c23Y7,
Rio,2 = S!(S7Si2c2 3c7iX7 + ai2Ci2c23Y7 - a23Si2s23Y7 + a67si2c23Z7 - a7iSi2c23Z7)

- S2Si2c23X7 + S2ai2c2 3Y7 - S6Si2c23X7 + S6(-a6 7Si2c2 3c7 - a7iSi2c23)

+ S 7(-a i 2Ci 2c 2 3s6 7c 7 + a23si2s23s67c7 - a67si2c23c67c7 - a71si2c23c67)

+ ai2(a23Ci2s23X7 - a67ci2c23X7) + a23a67si2s23c67s7 - a71si2c23X7

+ K2Si2c23X7,
Rio,3 = ~SiCi2c2 3Z7 + S i ( - S 2 c 2 3 Z 7 - S6ci2c23 - S7Ci2c23c67 - a7iCi2c23X7)

+ S 2 ( - S 6 c 2 3 - S7c23c67 - a7iC23X7) - ^
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- S7C12C23C67C71

- K39, (10.419)

1V1iJ - r ( i -6 ) , j ' iNi,j
p;;. = o, Q;̂  = o, R;̂  = o, (10.420)
i = 1 1 . . . 16, j = 1 . . . 3.

The vector b in Eq. (10.404) may be solved for by inverting the matrix A to yield

b = A ^ c . (10.421)

Using Eq. (10.408) to substitute for the vector c gives

b = A"1T3a. (10.422)

Substituting this result into Eq. (10.284) yields

Tia = T2A-1T3a. (10.423)

This equation can be rearranged as

Ta = 0, (10.424)

where

T = [ T 1 - T 2 A - 1 T 3 ] . (10.425)

The matrix T will have four rows and eighteen columns. All elements of this 4x18 matrix
are expressed in terms of the constant mechanism parameters and the input angle, 07.

Equation (10.424) represents four equations of the form

[(ti,ici + ti,2si + t u ) c 2 + (tif4ci + tii5si + ti,6)s2

+ (tijci + ti>8si + ti,9)]x6 + [(tuoci + tUiSi + tU2)c2

+ (tU3Ci + t u 4s i + tU5)s2 + (tu6ci + t u 7s i + tU8)] = 0 , i = 1 . . . 4, (10.426)

where ty represents the element from the ith row and j t h column of the matrix T. The
four equations of Eq. set (10.426) may be modified by substituting the tan-half-angle
expressions for the sines and cosines of 6\ and #2- The equations may be written as
follows after multiplying each by the product ( l + X j X l + x ^ ) :

[(aux^ + ai,2X! +ai)3)x^ + (bij4x? + bi>5xi +bi,6)x2 + (di>7xj + di>8xi +di,9)]x6

[ ( e U 2 ) x 2 + (fi,i3Xi + f U 4xi+f U 5)x2

gU8)] = 0 , i = 1...4, (10.427)
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where

&i,l = ti,9 —  ti,3 —  t[,l + ti, i,

ai,2 = 2( t i > 8 - t i ,2) ,

ai,3 = ti,9 - ti,3 + t i j - t U ,

bi,4 = 2(ti,6 - ti,4),

bi>5 = 4 t i 5 ,

bi,6 = 2(tii6+ti,4),
di,7 = ti,9 + ti,3 - t i ) 7 - t U ,
di,8 = 2(ti,8 + ti,2),

di,9 = t i , 9 + t i , 3 + t i , 7 + t U ,
ei,10 = ti,l8 ~~ ti,l2 ~ tij6 + tijo>

fi,13 = 2(^15 —  ti?i3),

fi,14 = 4tij4,

fi,15 = 2 ( t U 5 + t U 3 ) ,

gi,16 = ti,i8 + ti,l2 —  t i j 6 —  ti?io»
gi,17=2(tifi7+ti,ii),
gi,18 = ti,18 + tU 2 + ti,i6 + tU 0. (10.428)

Equation (10.427) represents four equations that are of the form of Eq. (10.1). The
input/output equation for the mechanism can be obtained from these equations as described
in Section 9.1. An 8 x 8 determinant is expanded to yield a sixteenth-degree polynomial
in the tan-half-angle of the output angle, 0\.

10.2.10 Determination of 02 and 06

Section 9.3.2 describes how to determine the corresponding values for the tan-half-
angle of the angles 02 and 03 from the four equations of Eq. set (9.75) for each calculated
value of the tan-half-angle of the output angle, 6\. The procedure for solving for the
tan-half-angle of 02 and 06 for this mechanism is identical with the exception that x3 in Eq.
set (9.75) is replaced by x6 in Eq. set (10.427). Following the solution method outlined
in Section 9.3.2, expressions for the tan-half-angle for the corresponding values of 92 and
#6 may be written as

-labegHadgb| + ladgfl|abed|
X2 |abef||adgb| - |adge||abed| '

= -|abef|ladgf| + ladge|labeg|
6 |abef| |adgb|-|adge||abed| '



266 Group 4 spatial mechanisms

10.2.11 Determination of #4 and 6$

At this point of the analysis, corresponding values for the angles 9\, 02, and 06 have
been determined. Thus, for each of these solution sets it is possible to determine numerical
values for the components of vector a as defined in Eq. (10.286). The vector a may then
be substituted into Eq. (10.422) to solve for the vector b. The sine and cosine of #4 and #5
are now known, as they are the eleventh, fourteenth, fifteenth, and sixteenth components
of vector b. Unique corresponding values for 64 and #5 can now be computed because the
sine and cosine of these angles are known.

10.2.12 Determination of 03

Fundamental sine and sine-cosine laws for a spherical heptagon may be written as

X56712 = S34S3, (10.431)

Y56712 = S34C3. (10.432)

The sine and cosine of the corresponding value of #3 may be obtained by evaluating the
left-hand sides of these equations using the previously calculated solution set of angles.

10.2.13 Numerical example

The analysis of the 7R group 4 spatial mechanism has been completed, and it was
shown that a maximum of sixteen solution configurations exist. Table 10.1 shows data
that were used as input for a numerical example. The calculated values for the sixteen
configurations are listed in Table 10.2. Figure 10.2 shows the sixteen configurations of
the mechanism.

10.3 RRRSR spatial mechanism

A significant simplification in the solution of group 4 spatial mechanisms occurs when
special geometric conditions exist in the mechanism. The first case to be considered is
the RRRSR spatial mechanism that is shown in Figure 10.3 with link a7i fixed to ground.

Table 10.1. 7R mechanism parameters.

Link length,
cm.

a12 = 8.7

a23 = 2.5
a34 = 9

045=0.1

a56 = 8.2
a67 = 7.1

a7i = 3.7

Twist angle,
deg.

ai2 = 90

«23 = 90

«34 = 90

a45 = 90

C*56 = 9 0

C*67 = 9 0

(*7i = 9 0

Joint offset,
cm.

Si =3 .0
S2 = 1.3

S3 = 0.7

S4 = 3.4
S5 = 0

S6 = 4.7

S7 = 1.8

Joint angle,
deg.

0i = variable
02 = variable

03 z= variable

04 = variable
05 = variable

06 = variable

07 = 278 (input)



10.3 RRRSR spatial mechanism 267

Table 10.2.

Solution

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

Calculated

0i, deg.

-97.56
-90.68
-63.36
-62.07
-31.38

1.35
5.37

34.22
117.34

-147.03
114.05

-167.58
146.06

-134.71
78.45
62.08

configurations for the 7R

<92, deg.

105.97
-166.91

22.39
-93.71
-44.61
179.15
164.37

-23.83
-70.97
157.60

13.31
165.47

-41.07
-29.64
119.63

-161.89

6>3, deg.

14.43
7.78

-151.65
179.09
155.20
73.01

-30.70
-122.82
-167.15

-58.82
-162.78

51.26
176.07

-102.22
3.05

29.35

spatial mechanism.

<94, deg.

-132.72
138.09
72.99

-71.14
-134.21
-30.02

154.33
28.51
78.65

-11.98
-71.40
166.27
30.20

-164.93
72.83

-59.19

05, deg.

-6.80
-11.94

-177.58
-151.34
-104.87

162.09
-67.30

106.28
-23.09

-115.06
-13.94

27.04
-59.81

59.33
-165.38
-179.21

6>6, deg.

30.15
-144.51

177.11
77.06

105.70
118.78

-102.08
-113.47

-77.78
107.32

-148.40
-99.17
-97.72
118.96

-43.64
165.13

The ball and socket joint, which is designated by the letter S, is modeled in the figure by
three cointersecting revolute joint axes, S2, S3, and S4. The special geometric values for
this case are

= ^34 = S 3 = 0. (10.433)

In this analysis the angle 07 will be the known input value. The angle 0i will be solved
for first and is the output angle. Specifically, the problem can be stated as

given:

Si , S2, S4, S5, S^, S7,
a23 = a34 = S3 = 0, and
On,

find: 0i,02,03,&h05, and06.

It will be shown that a maximum of eight solution configurations exist for this mechanism.

10.3.1 Determination of input-output equation

It will be shown that the input-soutput equation can be obtained from two equations
that contain the output angle, 0t, and an extra angle, 05. Eliminating the angle 05 from the
pair of equations will result in a fourth-degree input-output equation in the tan-half-angle
of 0i.

The first equation is obtained from a projection of the vector loop equation onto the
direction of the vector S6. Using set 10 from the table of direction cosines, this projection
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Figure 10.3. RRRSR spatial mechanism,

may be written as

S1Z2345 + S2Z345 + S4Z5 + S5C56 + S6 + S7Zi2345 + a12U23456
= 0. (10.434)

Subsidiary and fundamental cosine laws for a spherical heptagon may be used to substitute
for the terms Z2345, Z345, and Z12345. Also, subsidiary and fundamental polar sine laws
for a spherical heptagon may be used to substitute for the terms U23456 and U123456 to
give

S1Z7 + S2Z71 + S4Z5 + S5c56 + S6 + S7c67 + a12U176 a71U76 = 0.

(10.435)

Terms that contain the angle 05 are transferred to the right side of the equation to give

SiZ7 + S2Z7i + S5C56 + S^ + S7C67 + ai2Ui76 + a7iU76 = —S4Z5  —  a45U56.

(10.436)

Expanding Z5 and U56 and then regrouping terms gives

SiZ7 + S2Z7i + S4C45C56 + S5C56 + S6 + S7C67 + ai2Ui76 + a7iU76
== (v34S45S55)C5 —  (a45$56)S5. (10.437)

The left side of Eq. (10.437) contains 0\ as the only unknown parameter, whereas the
right side has #5 as the only unknown.

The second equation is obtained by taking a self-scalar product of the vector loop
equation. The vector loop equation may be written as

S6S6 + a67a67 + S7S7 + a7ia7i + S1S1 +

= -(S4S4 + a45a45 + S5S5 + a56a56).
S2S2

(10.438)
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The self-scalar product of both sides of Eq. (10.438) can be expressed in the form

L + S6S6 • (S7S7 + a7ia71 + SjS, + a12ai2 + S2S2) + a67a67 • (a71a71 + S1S1 + a12a12

+ S2S2) + S7S7 • ( S ^ i + a12a12 + S2S2) + a71a7i • (a 12ai2 + S2S2)

+SiS, • (S 2S2) = S4S4 • (S5S5 + a56a56) + a45a45 • (a 56a56), (10.439)

where L is defined as

L = (Sj + a2
67 + S7 + a?, + S\ + a2

l2 + S2
2-S2

4- a2
45 -S2

5- z2
56) / 2 . (10.440)

The scalar products of mutually perpendicular vectors, such as, for example, S6 and a^,
equal zero, and all these terms have been deleted from Eq. (10.439). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields

L + S6(S7c67 + a7iX7 + SiZ7 + a,2X71 + S2Z7i) + a67(a71c7 + S1X7 + a1 2Wn

+ S2X17) + S7(S!C71 + a12Xi + S2Zi) + a7i(a12d + S2X,)

+ S!(S2c12) = S4(S5c45 + a56X5) + a45a56C5. (10.441)

Expanding the definition of the term X5 and rearranging this equation gives

L + S6(S7c67 + a7iX7 + S1Z7 + a12X71 + S2Z71) + a67(a71c7 + SiX7

+ ai2W,7 + S2X17) + S7(SiC71 + ai2Xi + S2Zi) + a7i(a12c1 + S2Xi)

+ Si(S2ci2) - S4S5C45 = a56[(S4S45)s5 + (845)05]. (10.442)

Equations (10.437) and (10.442) may be written respectively as

Q71 = s56(S4S45c5 - a45s5), (10.443)

R7i = a56(S4S45S5 + a45c5), (10.444)

where

Qvi = SiZ7 + S2Z71 + S4c45C56 + S5c56 + S6 + S7c67 + a12U176 + a71U76,
(10.445)

R71 = L + S6(S7c67 + a71X7 + S1Z7 + a12X71 + S2Z7i) + a67(a7,c7

+ SiX, + a12W17 + S2X17) + S7(SlC71 + ai2Xi + S2Z0

+ a71(a12Cl + S2X,) + Si(S2ci2) - S4S5c45. (10.446)

The terms Q7i and R7) contain the angle 9\ as the only unknown parameter and can
thus be expressed in the form

Q71 = K , c 1 + K 2 s 1 + K3, (10.447)

R71 = K4C1 + K5S! + Ke, (10.448)
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where

Ki = S2S12Y7 + a^Xv,

K2 = S2S12X7 —  a^Yv,

K3 = S1Z7 + S2C12Z7 + S4C45C56 + S5c56 + S6 + S7c67 + a7iX7,

K4 = S2(S6Si2Y7 - S7S12S71 + a67Si2C7iS7) + S6ai2X7 + ai2(a67c7 + a7i),

K5 = S2(S6Si2X7 + a67si2c7 + a7iSi2) + ai2(-S6Y7 + S7s7i - a67C7iS7),

K6 = L + Si(S2ci2 + S6Z7 + S7C71 + a67X7) + S2(S6c12Z7 + S7Ci2c7i + a67C12X7)

- S4S5C45 + S6(S7c67 + a7iX7) + a67a7iC7. (10.449)

Subtracting a56x5 times Eq. (10.443) from s56 times Eq. (10.444), where x5 is the
tan-half-angle of 05, gives

s56R71 - a56X5Q71 = a56S56[S4S45(s5 - x5c5) + a45(c5 + x5s5)]. (10.450)

Using the trigonometric identities listed in Eqs. (9.108) and (9.109) gives

s56R71 - a56x5Q7i = a56S56(^4S45x5 + a45). (10.451)

Regrouping this equation gives

(-a56Q?i - S4a56S45S56)x5 + (s56R7i - a45a56S56) = 0. (10.452)

Adding a56 times Eq. (10.443) to s56x5 times Eq. (10.444) gives

+ S56X5R71 = a56S56[S4S45(s5X5 + c5) + a45(c5x5 - s5)]. (10.453)

Simplifying this equation by substituting the results of the trigonometric identities and
rearranging yields

(s56R7i + a45a56S56)x5 + (a56Qvi - S4a56S45S56) = 0. (10.454)

Equations (10.452) and (10.454) can be factored into the form

(Aid + BiSi + Di)x5 + (EiCi + FiSi + GO = 0, i = 1, 2, (10.455)

where the coefficients Aj through Gi are defined as

Ai = -a 5 6 Ki , Bi = -a5 6K2, Di = -a5 6K3 - S4a56s45S56,
Ei = s56K4, Fi = s56K5, Gi = s56K6 - a45a56S56, ^
A2 = s56K4, B2 = s56K5, D2 = s56K6 + a a S
E2 = &56Ki, F2 = a5sK2, G2 =

Substituting the tan-half-angle identities for the sine and cosine of 6\ in Eq. (10.455)
and then multiplying throughout by (1 + x^) and regrouping gives

( a ^ + biXi + di)x5 + ( e ^ + f{x{ + g i) = 0, i = 1, 2, (10.457)
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where

e ^ G i - E i , fi = 2Fi7 gi = Gi + Ei.

Equation (10.457) represents two equations that are linear in the variable x5. A common
solution for x5 will exist for these two equations only if they are linearly dependent (see
discussion in Section 8.2). Thus, for a common solution of x5 to exist, the coefficients of
Eq. set (10.457) must satisfy the condition

+ b1x1+d1) (erf + f.x.+g.) =()_ ( i a 4 5 9 )
- d2) (e2x1 + f2xi + g2)

Expanding this determinant will yield the following fourth-degree input-output equation:

(aie2 - a2ei)x{ + (aif2 - a2fi + bie2 - b2ei)x^ + (aig2 - a2gi + bif2 - b2fi

- d2ei)x? + (big2 - b 2 g l + dif2 - d2fi)xi + (dl g 2 - d2 g l) = 0. (10.460)

A corresponding value for 0\ can be obtained for each value of xi from

0! = 2tan"1(x1). (10.461)

10.3.2 Determination of 6b

The value of the x5 = tan(#5/2) that corresponds to each calculated value of 0\ can be
found from either of the linear equations of Eq. set (10.457). Thus, x5 may be calculated
from

-(ef + f.x.+g,)
d

or

f 2 X ' +
H

g 2 ) - ( 1 0 . 4 6 3 )

b2xi + d2

The value of 05 = 2tair1(x5) (see Eq. (10.461)).

10.3.3 Determination of 06

The corresponding value of 06 may be obtained from two projections of the vector loop
equation. Using set 6 from the table of direction cosines, the vector loop equation can be
projected onto the direction of the vectors a67 and (S6 x a67) to yield

SiX7 + S2X17 + S4X3217 + S5X43217 + ai2Wn + a45W432i7 + a56c6 + a67 + a7ic7 = 0,

(10.464)

S1Y7 + S2Y17 + S4Y32i7 + S5Y432i7 —  S7s67 —  ai2U*76

176 - a56s6 + a7ic67s7 = 0. (10.465)



274 Group 4 spatial mechanisms

Substituting fundamental and subsidiary spherical sine and sine-cosine laws for the terms
X3217, X43217, Y3217, and Y43217 and subsidiary polar sine-cosine and cosine laws for the
terms W43217 and U432176 gives

SXX7 + S2X17 + S4X56 + S5X6 + a12W17 + a45W56 + a56c6 + a^ + a7ic7 = 0,

(10.466)

SiY7 + S2Y17 - S4X;6 + S5s56c6 - S7s67 - ai2U*76 + a45V56 - a56s6 + a7ic67S7 = 0.

(10.467)

Each of these equations contains the sine and cosine of 06 as its only unknown parameter
and can be expressed in the form

[S4X5 + a45c5 + a56]c6 + [-S4Y5 + S5s56 - a45C56s5]s6

+ [SXX7 + S2X17 + a i 2 W n + a67 + a7ic7] = 0, (10.468)

[-S4Y5 + S5s56 - a45c56s5lc6 + [-S4X5 - a45c5 - a56]s6

+ [SiY7 + S2Yn - S7s67 - ai2Ut76 + a7ic67s7] = 0. (10.469)

The expressions in brackets can be numerically evaluated, as they are defined in terms of
the constant mechanism parameters, the input angle, and the previously calculated joint
parameters. Equations (10.468) and (10.469) thus represent two linear equations in the
two unknowns, s6 and c6. Solving for s6 and c6 will yield the unique corresponding value
for the angle 06.

10.3.4 Determination of 03

The following spherical cosine law may be written for a spatial heptagon:

Z i 7 6 5 = Z 3 . (10.470)

Expanding the definition of the term Z3 and solving for C3 gives

c3 = C 2 3 C 3 4 Z l 7 6 5 . (10.471)
S23S34

Because it is not possible to solve for a unique value for the sine of #3, two values of 03

will exist for each set of angles [6\, #5, 0^\. Thus, a total of eight solution configurations
will exist for the RRRSR spatial mechanism.

10.3.5 Determination of 92

The following sine and sine-cosine laws may be written for a spherical heptagon:

X5671 = X32, (10.472)

Y5671 = - X ; 2 . (10.473)
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Expanding X32 and X|2 and rearranging gives

(10.474)

(10.475)

All the terms in parentheses are defined in terms of the constant mechanism parameters
and the previously calculated joint angles. Thus, these two equations represent two lin-
ear equations in the unknowns s2 and c2. A unique corresponding value for 62 can be
determined from the sine and cosine values.

10.3.6 Determination of #4

The following fundamental sine and sine-cosine laws may be written for a spherical
heptagon:

X67123 — S45S4,

Y67123 = S45C4.

(10.476)

(10.477)

Upon solving for the sine and cosine of #4, a unique corresponding value for this angle
can be obtained.

10.3.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RRRSR
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
of having a23 = a34 = S3 = 0 greatly simplifies the analysis. A fourth-degree input/output
equation was obtained to solve for the angle 9\. Unique corresponding values were then
determined for the angles #5 and 06. Two values for the angles 02, #3, and #4 were obtained
for each of the four sets of angles [0\, #5, 06], thus giving a total of eight solutions.

The mechanism dimensions of a numerical example are listed in Table 10.3. The
resulting eight solution configurations are listed in Table 10.4 and are drawn in Figure 10.4.
It is apparent from the figure that there are four classes of solutions. For example, solution
B is the same as solution A except that 64 has been rotated an additional 180 degrees,

Table 10.3. RRRSR mechanism parameters.

Link length, cm.

a12 = 9.9

a23 = 0

a34 = 0

a45 = 7.6

a56 = 8.0

a67 = 3.2

a7i = 7.7

Twist angle, deg.

an = 60
<*23 = 9 0

a34 = 90

a45 = 90

a56 = 60

a61 = 75

alx = 90

Joint offset, cm.

Si =8 .5

S2 = 2.0

S 3 = 0

S4 = 8.3

S5 = 8.6

S6 = 4.9

S7 = 8.6

Joint angle, deg.

0i = variable

02 = variable

#3 = variable

04 z= variable

#5 — variable

06 = variable

07 = 21 (input)
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Table 10.4.

Solution

A
B
C
D
E
F
G
H

Calculated configurations for the RRRSR spatial

0i, deg.

-114.34
-114.34
-38.38
-38.38
134.78
134.78

-148.58
-148.58

02, deg.

-144.83
35.17

148.30
-31.70

80.24
-99.76
-79.59
100.41

03, deg.

106.86
-106.86

134.67
-134.67

63.10
-63.10
112.94

-112.94

04, deg.

-12.35
167.65

-52.23
127.77

-121.61
58.39

-75.77
104.23

mechanism.

05, deg.

-124.13
-124.13

10.29
10.29
11.94
11.94

-124.61
-124.61

06, deg.

-53.55
-53.55

-141.63
-141.63
-82.62
-82.62
-14.16
-14.16

causing the vector S3 to point in the opposite direction. The angle 03 is the negative of its
value for solution A, and 02 is advanced by 180 degrees.

10.4 RRSRR spatial mechanism

The RRSRR spatial mechanism is similar to the previous case in that the ball and socket
joint can be modeled by three intersecting revolute joint axes S3, S4, and S5 as shown in
Figure 10.5. The special geometric values for this case are

a34 = a45 = S4 = 0. (10.478)

In this analysis, the angle 07 will be the known input value. The angle 0\ will be solved
for first and will be referred to as the output angle. Specifically, the problem can be stated as

given: a 12, #23, a34, «45, a 5 6, ot67, a71,
ai2, a23, a56, a67, a7i,
Si , S2, S3, S5, S6, S7,
a34 = a45 = S4 = 0,
and 07,

find: 61,62,63,64,05, and06.

A maximum of eight solution configurations exist for this mechanism also.

10.4.1 Determination of input/output equation

It will be shown that the input/output equation can be obtained from two equations
that contain the input angle 07, the output angle 6\, and the extra angle 02. Elimination of
02 from this pair of equations will result in a fourth-degree input/output equation in the
tan-half-angle of 6\.

The first equation is obtained from a projection of the vector loop equation onto the
direction of the vector S6- Using set 6 of the table of direction cosines, this projection
may be written as

S1Z7 + S2Z17 + S3Z217 + S5Z43217 + S6 + S7c67 + ai2Ui7 6 + a23U2i76 + a7iU76 = 0.

(10.479)
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s7

B

s7

s ,s

• s 7

G H
Figure 10.4. Eight configurations of the RRRSR spatial mechanism.

The fundamental cosine law Z43217 = c56 is substituted to give

S1Z7 + S2Z17 + S3Z217 + S5c56 + S6 + S7c67 + a12U176 a7iU76 = 0.

(10.480)

The second equation is obtained by writing the vector loop equation as

a67a67 + S7S7 + a7ia7i + S1S1 + ai2ai2 + S2S2 + a23a23 + S3S3

= - (S 5 S 5 + a56a56 + S6S6) (10.481)
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Figure 10.5. RRSRR spatial mechanism.

and then taking the self-scalar product, which can be written as

L + a67a67 • (a 7ia7i + SiSi + a12ai2 + S2S2 + a23a23 + S3S3) + S7S7

+ ai2ai2 + S2S2 + a23a23 + S3S3) + a7ia7i • (a 12ai2 + S2S2 + a23a23 + S3S3)
+ SiSi • (S2S2 + a23a23 + S3S3) + a12a12 • (a23a23 + S3S3)
+ S2S2 • S3S3 = S5S5 • S6S6, (10.482)

where L is defined as

L = (a^7 + S* + a? (10.483)

The scalar product of mutually perpendicular vectors, such as, for example, a67 and
S7, equals zero, and all these terms have been deleted from Eq. (10.482). Evaluating the
scalar products using the sets of direction cosines listed in the appendix yields

(10.484)

(10.485)

L + a67(a7ic7 + S1X7 + a12W17 + S2X17 + a23W217 + S3X217)

+ S2Zi + a23Xi2 + S3Z12) + a7i(ai2ci + S2Xi + a23W2i + S3X21) +

+ a23X2 + S3Z2) + a12(a23c2 + S3X2) + S2S3c23 = S5S6c56.

Equations (10.482) and (10.484) may be factored into the form

(Aid + BiSi + Di)c2 + (Eid + Fjsi + Gi)s2 + (HiCl + IjSi + Ji) = 0,

where i = 1, 2 and

Ai = S3Ci2s23Y7 + a23X7,

B! = S3Ci2s23X7 - a23Y7,

Di = -S3Si2s23Z7,

Ei = S3s23X7 -a2 3Ci2Y7,

Fi = -S3s2 3Y7 - a23c12X7,

Gi = a23Si2Z7,

Hi = S2Si2Y7 + S3si2c23Y7 + ai2X7,
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Ii = S2Si2X7

Ji = S1Z7 + S2C12Z7 + S3C12C23Z7 + S5c56 + S6 + S7c67

+ a71U76, (10.486)

A2 = S3(-S7Ci2S23S7i + a67Ci2s23X7) + a23(a67c7 + a71),

B 2 = S3(a67ci2S23C7 + a7iCi2S23) + a23(S7s7i - a6 7X7) ,

D2 = S 3(-SiSi 2s23 - S7Si2s23C7i - a67si2s23X7) + ai2a23,

E2 = S3(a67s23c7 + a7is23) + a23(S7Ci2s7i - a67Ci2X7),

F2 = S3(S7s2 3s7i - a67s23X7) + a 2 3 ( - a 6 7 c i 2 c 7 - a7iCi2),

G2 = S3a12s23 + a23(SiSi2 + S7Si2c7i + a67Si2X7),

H2 = S3(-S7Si2c23S7i + a67Si2c23X7) + S 2 ( - S 7 S i 2 s 7 i + a67Si2X7) + ai2(a6 7c7 + a7i),

I2 = S3(a67Si2C23C7 + a7iSi2c23) + S2(a67Si2C7 + a7iSi2) + a12(S7s7i - a6 7X7) ,

J2 = S3(S1Ci2c23 + S2c23 + S7C12C23C71 + a67Ci2C23X7) + S2(SiCi2 + S7c12c71

+ a67Ci2X7) + S!(S7c71 + a67X7) - S5S6c56 + a67a7ic7 + L (10.487)

and where X7 = c7is7.
Substituting the tan-half-angle identities for the sine and cosine of 02 in Eq. set (10.485)

and then multiplying throughout by (1 + x\) gives the two quadratic equations

Ux2
2 + MiX2 + Ni = 0, (10.488)

where i = 1, 2 and

Li = (Hi - Ai)ci + (Ii - Bi)si + (Ji - Di),

Mi = (2Ei)ci + (2Fi)si + (2Gi), (10.489)

Ni = (Hi + Ai)ci + (Ii + Bi)Si + (Ji + Di).

The solution of two equations of the type represented by (10.488) was presented in
Section 8.2. According to Bezout's solution method, which is described in Section 8.2.2,
the coefficients Li5 Mi? and Nj must satisfy the following condition in order for the two
equations of Eq. set (10.488) to have a common solution for x2:

2

= 0. (10.490)

Typically, the tan-half-angle of the output angle, 0\, is substituted into Eq. set (10.488) so
that the coefficients Li, Mj, and Ni can be expressed as second-degree polynomials in xi.
Expansion of Eq. (10.490) would then result in an eighth-degree input/output equation.
In this case, however, the three determinants in Eq. (10.490) will be expanded in terms
of the sine and cosine of 6\, and it will be shown that each determinant expansion will
reduce to an expression that is linear in terms of the sine and cosine of 0\. Once these
linear expressions are obtained for each determinant, the tan-half-angle substitution will
be made for 0\ and the resulting input/output equation will be of degree four.

Li
L2

Mi
M2

Mi
M2

Ni
N2

Li
L2

Ni
N2
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The first determinant may be written as

Li Mi
L2 M2

(H, - Ax)Cl+ (I, - B , ) S l + (Ji - D,) (2E,)c,+ (2Fi)s, + (2Gi)
(H2 - A2)Cl+ (I2 - B2)Sl + (J2 - D2) (2E2)c, + (2F2)Sl+ (2G2)

(10.491)

Expanding the determinant gives

Li
U

Mi
M2

- AO - Ei(H2 - A2)] + 2s?[F2(Ii - BO - Fi(I2 - B2)]

+ 2s,c,[F2(Hi - AO + E2(Ii - BO - F,(H2 - A2) - Ei(I2 - B2)]

+ 2c,[E2(Ji - DO - E,(J2 - D2) + G2(H, - A,) - G,(H2 - A2)]

+ 2si[F2(Ji - DO - F,(J2 - D2) + G2(Ii - BO - d ( I 2 - B2)]

+ 2[G2(Ji - DO - Gi(J2 - D2)]. (10.492)

Substituting for the coefficients Ai through J2, regrouping, and using the trigonometric
identities Sj + c\ = 1 and ŝ  + c^ = 1 gives

Li

u
where

Pi =
Qi -•

R, =

Mi
M, = PiC+Q 1 Si+Ri , (10.493)

2[E 2 (J i -D, ) -E , ( J 2 -D 2 ) + G 2 ( H 1 - A 0 - G i ( H 2 - A 2 ) ] ,
2[F2(Ji - DO - F,(J2 - D2) + G2(Ii - B.) - G,(I2 - B2)],
2[G2(J, - DO - Gi(J2 - D2)] + 2S^(S7s23s7iX7 + a67s23Y7 + a7iS23Y7)
x (si2c23 - Ci2s23)] + 2S3S2[S7Si2s23s7iX7 + a67Si2s23Y7 + a7iSi2s23Y7]

^3[-S7Ci2s7iX7 - a67Ci2Y7 - a7iCi2Y7]
2a23a12[S7Ci2s71X7 + a^c^Y, + a7iCi2Y7]. (10.494)

The second determinant in Eq. (10.490) may be written as

Mi
M2

N,
N2

(2Ei)ci+ (2Fi)si + (2G0 (Hi + Ai)ci + di +Bi)s i + (J, + D , )
(2E2)ci+ (2F2)s, + (2G2) (H2 + A2)ci + (I2 + B2)s, + (J2 + D2)

(10.495)

Expanding the determinant gives

Mi Ni
M, N? 2CJ[EJ(H2 + A2) •- E2(Hi

+ 2s1c,[F1(H2 + A2) + E,

+ 2si[Fi(J2 + D2)

+ 2[Gi (J2 + D2) -
- F2(Ji

- G2(Ji

+ Ai)] +
(I2 + B2)

+ D0 +
+ D0].

2sfrF,(I2+B2)-F2(Ii-
-F2(H1+A1)-E2aH

Gi(l2 ~h B2) —  G2(Ii + B

fBi)]
-BO]

1)]

(10.496)
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Substituting for the coefficients Ai through J2, regrouping, and using the trigonometric
identity Sj + c\ = 1 and ŝ  + ĉ  = 1 gives

Mi Ni
M2 N2

where

= P2C1 + Q2S1 + R2, (10.497)

P2 = 2[E1(J2+D2)-E2(J1+Di)

Q2 = 2[F1(J2 + D 2 ) -F 2 (J 1 +D 1 )
R2 = 2[G1(J2 + D 2 )-G 2 (J 1 +D 1 )]

A 2 ) - G 2 ( H , + A 1 ) ] ,

B2)-G2(I1+B0L

+ 2S3
![(-S7s23s71X7 - a67s23Y7 - a71s23Y7) x (s12c23 + Ci2s23)]

+ 2S3S2[-S7s12s23s71X7 - a67s12s23Y7 - a71s12s23Y7] ^3

- a67c12Y7 - a7iC12Y7] + 2a23a12[-S7c12s7iX7 - a67c12Y7 - a7icnY7].

(10.498)

The third determinant in Eq. (10.490) may be written as

Li Ni
L2 N2

(H, - Ai)c, + (Ii - Bi)si + (Ji - DO (Hj + A,)c, + (I, + B^s , + (Ji +
(H2 - A2)ci + (I2 - B2)si + (J2 - D2) (H2 + A2)ci + (I2 + B2)Sl + (J2 + D2)

(10.499)

Expanding the determinant gives

x (I2 + B2) - (I2 - B2)(Ii + B0] + s1c,[(Ii - B,)(H2 + A2)

+ (Hi - A0(I2 + B2) - (I2 - B2)(Hi + A,) - (H2 - A2)(Ii + B,)]

+ c,[(Hi - A,)(J2 + D2) - (H2 - A2)(Ji + DO + (Ji - DO

x (H2 + A2) - (J2 - D2)(Hi + A,)] + SiWi - Bi)(J2 + D2)

- (I2 - B2)(J, + D,) + (h - Di)(I2 + B2) - (J2 - D2)(l! + B,)]

+ [(Ji - Di)(J2 + D2) - (J2 - D2)(J, + DO]. (10.500)

Substituting for the coefficients Ai through J2, regrouping, and using the trigonometric
identities ŝ  + c\ —  1 and ŝ  + c^ —  1 gives

=P3c1+Q3s1+R3, (10.501)



282 Group 4 spatial mechanisms

where

P3 = (Hi - A,)(J2 + D2) - (H2 - A2)(J, (J, - D0(H2 + A2)

(Ji - B2)Q3 = (I, - Bi)(J2 + D2) - (I2 - B2)(Ji

- ( J 2 - D 2 ) a i + B i ) ,

R3 = (Ji - D!)(J2 + D2) - (J2 - D2)(Ji + Di) + 2S3a23[S7s12c23S7iX7

+ a67s12c23Y7 + a7iS12c23Y7] + 2S3a12[-S7c12s23s7iX7 - a67c12s23Y7

- a7iC12s23Y7] + 2S2a23[S7s12s71X7 + a^s^Y? + a71s12Y7]. (10.502)

The tan-half-angle identities for the sine and cosine of 9\ can be substituted into Eqs.
(10.493), (10.497), and (10.501) to give

(10.503)

(10.504)

(10.505)

(10.506)

Li

u
Mi
M2

u
u

Mi
M2

Ni
N2

Ni
N2

P i x i H
1

2

P3X?4

hqixi -

- q3Xi H

-hf2

hr3

where

P i = Ri

1+x?

= 2Qi, ri = Ri + Pi, i = 1 . . . 3.

Substituting Eqs. (10.503) through (10.505) into Eq. (10.490) and multiplying by (1 +x\)2

gives the fourth-degree input/output equation

q2x2 + r2) - r3)2 = 0. (10.507)

Corresponding values of 0\ for each value of Xi that satisfies Eq. (10.507) can be obtained
from

(10.508)

10.4.2 Determination of 02

Corresponding values of 92 will be obtained for each value of 0\. As explained in
Section 8.2.2, the corresponding value for x2 may be calculated from either

X 2 =

Mi Ni
M2 N2

Li N2

L2 N2

(10.509)
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or

x2 =

Li Ni
L2 N2

Li
L2

Mi
M2

(10.510)

The angle 02 is obtained from x2 as follows:

02 = 2tan~1(x2).

10.4.3 Determination of 0&

(10.511)

A unique corresponding value of 06 can be obtained by projecting the vector loop
equation on the directions of vectors a67 and S6 x a67. Using set 6 from the table of
direction cosines gives the two equations

SiX7 + S2X17 + S3X217 + S5X432i7 + a12W17 + a23W217 + a56c6 + a67 + a7ic7 = 0,

(10.512)

SiY7 + S2Yn + S3Y2i7 + S5Y432i7 —  S7s67 —  ai2U*76 —  a23U2176

- a56s6 + a7ic67s7 = 0. (10.513)

Upon substituting the fundamental sine law X432n = s56s6 and sine-cosine law Y4 3 2 n =
s56c6 for a spherical heptagon, these two equations may be expressed in the form

K3 = 0, (10.514)

K6 = 0, (10.515)

where

Ki = a56,

K2 = S5S56,

K3 = S1X7 + S2Xn + S3X217 + ai2W17 + a23W217 + a67 + a7ic7,

K4 = S5S56,

K5 = -a 5 6 ,

K6 = S1Y7 + S2Y17 + S3Y217 - S7s67 - a12Ut76 - a23U*176 + a71c67s7. (10.516)

Equations (10.514) and (10.515) are two linear equations in the variables s6 and c6. Thus,
unique values for these parameters, and a unique value for 06, can be determined for each
set of solutions for the angles 6\ and 02-

10.4.4 Determination of #4

The following spherical cosine law may be written for a spherical heptagon:

(10.517)
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Expanding the definition of the term Z4 and solving for C4 gives

C34C45 — Z 2176 / I /A r i o \
c4 = . (10.518)

S34S45

Two distinct values of 64 exist that satisfy this equation for each set of angles [6\, 02> 66].
Thus, a total of eight solution configurations will exist for the RRSRR spatial mechanism.

10.4.5 Determination of #5

The following sine and sine-cosine laws may be written for a spherical heptagon:

X45, (10.519)

Y2176 = - X ; 5 . (10.520)

Expanding the definitions of X45 and X^5 and rearranging gives

(X4)c5 - (Y4)s5 + (-X2176) = 0, (10.521)

(Y4)c5 + (X4)s5 + (Y2176) = 0. (10.522)

All the terms in parentheses are defined in terms of the constant mechanism parameters
and the previously calculated joint angles. Thus, these two equations represent two lin-
ear equations in the unknowns s5 and c5. A unique corresponding value for #5 can be
determined from the sine and cosine values.

10.4.6 Determination of 63

The following fundamental sine and sine-cosine laws may be written for a spherical
heptagon:

Xn654 = S23S3, (10.523)

Y17654 = s23c3. (10.524)

A unique corresponding value for 63 can be found by solving these equations for s3 and c3.

10.4.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RRSRR
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
of having a34, a45, and S4 equal zero greatly simplifies the analysis. A fourth-degree
input/output equation was obtained to solve for the angle 6\. Unique corresponding
values were then determined for the angles 62 and 6$. Pairs of values for the angles 63,64,
and 65 were obtained for each of the four sets of angles [0\, 62, 66], thus giving a total of
eight solutions.

The mechanism dimensions of a numerical example are listed in Table 10.5. The
resulting eight solution configurations are listed in Table 10.6 and are drawn in Figure 10.6.
It is apparent from the figure that there are four classes of solutions. For example, solution
B is the same as solution A except that 65 has been rotated an additional 180 degrees,
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Table 10.5. RRSRR mechanism parameters.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.

a12 = 8.3

a23 = 6.8

a34 = 0

a45 = 0

a56 - 6.8

a67 = 8.3

a71 = 5.0

an = 60
a23 = 60
a34 - 90

(X45 = 9 0

a56 = 60

a61 = 60

c*7i = 9 0

S! = 5 . 8

S2 = 8.4

S3 = 9.0

S4 = 0

S5 = 9.0

S6 = 8.4

S7 = 5.8

0i = variable

02 = variable

03 = variable

Q4 —  variable

05 = variable

06 = variable

07 = 289 (input)

Table 10.6. Calculated configurations for the RRSRR spatial mechanism.

Solution i, deg. 02, deg. 03, deg. 04, deg. 05, deg. 06, deg.

-73.02 83.66 -161.30 65.57 -168.92 92.85
B
C
D
E
F
G
H

-73.02
-23.85
-23.85
-22.81
-22.81

-6.47
-6.47

83.66
155.71
155.71

-37.85
-37.85
164.44
164.44

18.70
84.16

-95.84
-137.80

42.20
53.06

-126.94

-65.57
49.81

-49.81
59.30

-59.30
53.78

-53.78

11.08
-154.55

25.45
89.73

-90.27
-164.45

15.55

92.85
19.38
19.38

-175.37
-175.37

12.20
12.20

causing the vector S4 to point in the opposite direction. The angle 04 is the negative of its
value for solution A, and 63 is advanced by 180 degrees.

10.5 RSTR spatial mechanism

The ball and socket joint of the RSTR spatial mechanism can be modeled by three
intersecting revolute joints, and the Hooke joint can be modeled by two intersecting
revolute joints as shown in Figure 10.7. The special geometric values for this case
are

= a45 = a56 = S5 = 0. (10.525)

In this analysis, the angle 01 will be the known input value. The angle 0\ will be solved for
first and will be referred to as the output angle. Specifically, the problem can be stated as

given: Q?I2, a?23, a?34, #45, (#56, 0^7, aq\,

Si, S2, S3, S4, S6, S7,
a23 = a45 = a56 = S5 = 0, and
07,

find: 0u92,03,04,05, and6>6 .

It will be shown that a maximum of eight solution configurations exist for this mechanism.
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Figure 10.6. Eight configurations of the RRSRR
spatial mechanism.

10.5.1 Determination of input/output equation

The vector loop equation for the RSTR mechanism may be written as

S6S6 + a67a67 + S7S7 + a7ia7i + S1S1 + ai2ai2 + S2S2 = -S3S3 - a34a34 - S4S4.

(10.526)

Evaluating the self-scalar product of each side of this equation yields

L + S6S6 • (S7S7 + a7ia7i + SxSi + ai2ai2 + S2S2) + a67a67 • (a 7ia7i + S1S1

+ ai2a12 + S2S2) + S7S7 • (S1S1 + a 12ai2 + S2S2) + a71a71 • (a 12ai2 + S2S2)

+ S^ i • (S 2S2) = S3S3 • S4S4, (10.527)
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Figure 10.7. RSTR spatial mechanism.

where L is defined as

(10.528)

The scalar products of mutually perpendicular vectors, such as, for example, S6 and a^,
equal zero, and all these terms have been omitted from Eq. (10.527). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields

LH
H
h S6(S7c67 H
h a67(a71c7 -

h a7i(ai2ci -

- a7iX7 H
1- SiX7 4

FS2Xi)-

- SiZ7 +
- a12W17

+- S!S2Ci

ai2X71 + S2

+ S2X17) +
2 = S3S4C34

•Z71)

S7(SiC7i S2Zi)
(10.529)

Expanding all terms that contain the parameter 0\ and rearranging the equation gives

[S2(S6Si2Y7 - S7s12s7i + a67Si2X7) + ai2(S6X7 + a67c7 + a7i)]ci

+ [S2(S6Si2X7 + a67si2c7 + a7is12) + a1 2(-S6Y7 + S7s71 - a67X7)] si

+ [S2(SiCi2 + S6c12Z7 + S7c12c71 + a67c12X7) + S6(S!Z7 + S7c67 + a71X7)

+ Si(S7c7i + a67X7) - S3S4C34 + a67a7ic7 + L] = 0. (10.530)

All the expressions in brackets are defined in terms of the given constant mechanism
parameters and the input angle. Thus, Eq. (10.530) is the input/ output equation for
this mechanism, and it can be solved for two values of 0\ via the technique described in
Section 6.7.2(c).

10.5.2 Determination of 63

Projecting the vector loop equation onto the direction of the vector S2 using set 14 from
the table of direction cosines gives

S1C12 + S2

+ S7Z1+a 7 iU1 2 = 0.

S4Z567i a67U7i2

(10.531)

Substituting the fundamental and subsidiary cosine laws Z4567i = c23 and Z567i = Z3 and
the fundamental polar sine law U4567i2 = s23s3 yields

S1C12 + S2 + S3c23 S4Z3 + S6Z7i + a67U7i2 + S7Zi = 0.

(10.532)
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Expanding Z3 and regrouping gives

S2 + S3C23 + S4C23C34 + S6Z7i + a67U7l2

+ S 7 Z 1 + a 7 1 U 1 2 ] = 0 . (10.533)

All expressions in brackets are defined in terms of the given mechanism parameters, the
input angle 0-j, and the output angle 6\. Thus, for each of the two previously calculated
output angles, two corresponding values of 63 can be determined from Eq. (10.533).

10.5.3 Determination of 02

Projecting the vector loop equation onto the direction of the vector ai2 and S2 x ai2

using set 14 from the table of direction cosines gives

ai2 + S3X4567i + a34W4567i + S4X567i + S6X71 + a67W71 + S ^ + a71ci = 0,
(10.534)

S1S12 —  S3Y4567i + a34U456712 —  S4Y567i —  S6Y7i + a61Ujl2 —  S7Yi —  a7iCi2Si = 0.

(10.535)

Substituting the fundamental and subsidiary sine and sine-cosine laws X4567i = s23s2,
X5671 —  X32, Y4567i = s23c2, and Y5671 = — X^ 2 and the subsidiary polar sine-cosine and
cosine laws U456712 = — V 32 and W4567i = W32 gives

SlSi2

S3S23S2 +

- S3s23c2

a34 W3 2 +

- a 3 4 V 3 2 •

Expanding the terms W32, X

Ac2-F

- B c 2

where

- Bs2 = D

+ As2 = D2,

s4

32,

X3 2 -

v3 2 ,

f s6x71 -
> — S6Y 7i

and XJ2 ;

h a67W71 +

+ a67U712

O7A4 -+" a7iCi

- S7Y! - a71

and regrouping yields

= 0, (10.536)

c12si = 0.

(10.537)

(10.538)

(10.539)

A = S4X3 + a34c3,

B = S3s23 - S4Y3 - a34X'3 (10.540)
D{ = -(S6X7 1 + S7X! + an + a67W71 + a7 l C l) ,

D2 = -S i s i 2 + S6Y71 + S7Y! - a67U;i2 + a71x;.

Adding B times Eq. (10.538) to A times Eq. (10.539) and solving for S2 yields

Subtracting B times Eq. (10.539) from A times Eq. (10.538) and solving for c2 yields

- BD2r ^ - (ia542)
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The coefficients A, B, Di, and D2 can be evaluated numerically for each of the four sets of
values of [61, 0\, #3]. A unique corresponding value for 62 for each set can be determined
from the calculated values of the sine and cosine of 62 of Eqs. (10.541) and (10.542).

10.5.4 Determination of #5

The following subsidiary cosine law may be written for a spherical heptagon:

Z 7 1 2 3 = Z 5 . (10.543)

Expanding Z5 and solving for c5 gives

c5 = C 4 5 C 5 6 " Z ? 1 2 3 . (10.544)
S45S56

Thus, the cosine of 65 can be evaluated for each of the four sets of values of [#7, 6\, 62, #3 ].
Therefore, two values of #5 correspond to each of the previous four solution sets, and a
total of eight sets of values of [67, #1, #2, #3, #5] exist.

10.5.5 Determination of 64

The following subsidiary sine and sine-cosine laws may be written for a spherical
heptagon:

X7123 - X54, (10.545)

Y7i23 - -X5*4. (10.546)

Expanding X54 and X^4 and rearranging yields

X5C4 - Y5S4 - X7123 = 0, (10.547)

X5S4 + Y5c4 + Y7123 = 0. (10.548)

These two equations may be solved for c4 and s4 for each of the solution sets [07, 6\,62,
63,65], and a unique corresponding value for 64 is thus determined.

10.5.6 Determination of 6Q

The following fundamental sine and sine-cosine laws may be written for a spherical
heptagon:

X43217 = s56s6, (10.549)

Y43217 = s56c6. (10.550)

Each of the eight solution sets [07, 6\, 62, 63, 64, 65] are substituted into these equations to
yield corresponding values for the sine and cosine of 06. A unique corresponding value
of 66 is thus determined.
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Table 10.7. RSTR mechanism parameters.

Link length, cm.

an = 2.3
a 2 3 = 0

a34 = 4.6

345=0

a 5 6 - 0
a67 = 6.8
a7,=9.1

Table 10.8

Solution

A
B
C
D
E
F
G
H

Twist angle, deg.

a,2 = 60

(*23 = 90

a34 = 65

a45 = 90

a56 = 90

a67 —  75

«7i = 65

Joint offset, cm.

Si =

S2 =

$3 =

S4 =

S5 =

s6 =
s7 =

= 7.6

= 8.7

= 9.6

= 4.8

= 0

= 9.1

= 6.2

Joint angle, deg.

0i = variable

02 = variable
03 = variable

04 = variable

05 = variable

06 = variable

07 = 322 (input)

. Calculated configurations for the RSTR spatial mechanism.

0i, deg.

256.38
256.38
256.38
256.38
-2.34
-2.34
-2.34
-2.34

02, deg.

93.99
93.99
49.62
49.62

-28.13
-28.13
-83.21
-83.21

03, deg.

264.91
264.91

1.90
1.90

206.68
206.68

60.12
60.12

04, deg.

-107.78
72.22

157.35
-22.65

42.14
-137.86

147.50
-32.50

05, deg.

125.36
-125.36

77.59
-77.59

77.26
-77.26
137.49

-137.49

06, deg.

-102.02
77.98

-45.16
134.84

-145.46
34.54

-66.79
113.21

10.5.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RSTR spatial
mechanism. Although this is a group 4 spatial mechanism, the special geometry of having
&23, a45, a56, and S5 equal zero greatly simplifies the analysis. An input/output equation
was obtained that was linear in the sines and cosines of the angle 9\. Two corresponding
values for the angle 03 were next determined, followed by unique corresponding values for
the angle 02. For each of the four solution sets of 0\, 02, and #3, two corresponding values
were computed for the angle 05. Lastly, for each of the eight solution sets of 0\, 02, #3,
and 05, unique corresponding values of 04 and 06 were computed.

The mechanism dimensions of a numerical example are listed in Table 10.7. The
resulting eight solution configurations are listed in Table 10.8 and are drawn in Figure 10.8.
It is apparent from the figure that there are four classes of solutions. For example, solution
B is the same as solution A except that 06 has been rotated by an additional 180 degrees,
causing the vector S5 to point in the opposite direction. The angle 05 is the negative of its
value for solution A, and 04 is advanced by 180 degrees.

10.6 RTTT spatial mechanism, case 1: a45 = 0

An RTTT spatial mechanism is shown in Figure 10.9 (see also Lin (1987)). In this
mechanism, the first and second, third and fourth, and fifth and sixth joint axes intersect
and the second through sixth joint offset distances equal zero. For the case to be analyzed
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Figure 10.8. Eight configurations of the RSTR spatial
mechanism.

here, the fourth and fifth joint axes will be assumed to be parallel. Also, the joint angles
of the Hooke joints, that is, a\2, a34, and a56, will be set equal to 90 degrees. Specifically,
the problem can be stated as

given: a23, a67, a71,
a23,a45,a67,a7i,
Si ,S7 ,
(X\2 = <*34 = <*56 = 7T/2 ,

a45 = 0,
£12 = ^34 = a56 = S2 = S3 = S4 = S5 = S6 = 0, and
01 (input angle),

find: 0i, 02, 03, 04, 05, and 06 .
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S7

Figure 10.9. RTTT spatial mechanism.

It will be shown that a maximum of sixteen solution configurations exist for this mech-
anism.

10.6.1 Determination of input/output equation

The vector loop equation for the RTTT mechanism may be written as

a67a67 + S7S7 + a7ia7i + S1S1 + a23a23 = -a4 5a45. (10.551)

Taking the self-scalar product of this equation gives

S7S7 • (S1S1 + a23a23) + a7ia7i • a23a23
(10.552)

L + a67a67 • (a 7ia7i + S1S1

+ S1S1 • a23a23 = 0,

where

L = S? (10.553)

The scalar products of mutually perpendicular vectors, such as, for example, a67 and S7,
equal zero, and all these terms have been omitted from Eq. (10.552). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields

L + a67(a7ic7 + S1X7 a2 3X1 2) SiX2) = 0.
(10.554)

Expanding all terms that contain the parameter 02 and rearranging yields

AiC2 + BiS2 + Di = 0 ,

where

(10.555)

•a 67W7i + a 7 i C i ) ,

Bi = a23(SlSl2 - S7Y! + a67U;i2 - a7iCi2si), (10.556)

Di = L + Si(a67X7 + S7C71) + a67a7iC7.

Expanding the terms that contain the parameter 9\ and substituting the value of 7r/2 for
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a 12 and regrouping gives

Ai =F2Ci +F3S1,

Bi = a23(S! + S7c71 + a67X7), (10.557)

D 1 = F ! ,

where

Fi = L + Si(a67X7 + S7c71) + a67a71c7,

F2 = a23(a67c7 + a71), (10.558)

F3 = a23(S7s7i - a67c71s7).

A second equation that contains the output angle 6\9 and the angle 02 can be obtained
from the secondary cosine law

(10.559)

The right side of this equation may be expanded as

Z045 = a56Y45 + S5s56X45 + a45(-s56C5Z4 + c56Y4) + a34Y54 + S4s34X54. (10.560)

Substituting 84 = 8 5 = a34 = a56 = 0 reduces this equation to

Z045 = a45(-S56c5Z4 + c56Y4). (10.561)

Substituting the value of a^ into this equation and the value of a?34 and #45 into Z4 yields

Z045 = 0. (10.562)

The left side of Eq. (10.559) may be expanded as

Z0712 = a23Y712 + S2s23X712 + a12(c23Y71 - s23c2Z71) + Si ( - X ^ - X71Y2)

S7s67X217 + a71(c67Y21 - s67c7Z21). (10.563)

Substituting ai2 = S2 = 0 into Eq. (10.563) and equating it to zero reduces this equation
to

a23Y712 + Si ( -X^Xz - X7iY2) + a67Y217 + S7s67X217 + a71(c67Y21 - s67c7Z21) = 0.
(10.564)

Expanding all terms that contain the parameter 02 and rearranging yields

A2c2 + B2s2 + D2 = 0, (10.565)

where

A2 = SiCi2s23X71 - S7s23s67U712 + a23c23Y7i + a67s23(-Si2Y7 + Ci2X7Xi

+ c n c ^ ^ ) +a7iS2 3(-s6 7c7Y1 +c67Z/
1),

B2 = -SiS^X^j + S7s23s67W7i + a23c23X7i - a67s23Ui76 + a7iS23SiZ7,

D2 = SiSi2c23X71 + S7c23s67Xi7 - a23s23Z71 + a67c23Y17

+ a71c23(-s67c7Z1 + c67Yi). (10.566)
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Substituting Si2 = 1 and C\2 = 0 into these coefficients yields

A2 = -S7s23s67U;i2 + a23C23Y7i - a67s23Y7 + a7iS23(-s67C7Yi + c67Z/
1),

B2 = - S i S ^ X ^ + S7s23s67W7i + a23c23X7i - a67s23U*76 + a71s23SiZ7, (10.567)

D2 = S!C23X71 + S7c23s67Xi7 - a23s23Z7i + a67c23Yi7 + a7iC23(-S67c7Zi + c67Yi).

Expanding the terms that contain the parameter 9\ and substituting the value of iz/2 for
a 12 and regrouping gives

B2 = G2Ci +G3S1, (10.568)

D2 = G4ci+G 5Si ,

where

Gi = -S7s23s67X7 ~ a23C23Z7 - a67s23Y7 - a7iS23Y7,

G2 = -SiS23Y7 + S7s23s67c7 + a23c23X7 + a^s^X^,

G3 = -SiS23X7 - S7s23s67X7 - a23c23Y7 - a^s^Z^ + a7iS23Z7,

G4 = SiC23X7 + S7c23s67X7 - a23s23Y7 + a^c^Z^ - a7ic23Z7,

G5 = -S!C23Y7 + S7c23s67c7 - a23s23X7 + a67c23x;. (10.569)

Equations (10.555) and (10.565) represent two equations in the two variables 0\ and #2.
Substituting the tan-half-angle relations c2 = (1 — x 2)/(l + x2) and s2 = 2x2/(l + x2),
where x2 = tan(#2/2), into these equations, multiplying throughout by (1 + x2), and
regrouping gives

2L{X\ + bix2 + di = 0, (10.570)

where i = 1, 2 and

ai = - F 2 c i - F 3 s 1 + F i , b i = 2 B ! ,
di = F2ci + F3si + Fi, a2 = G4C! + G5S! - Gi, (10.571)
b2 = 2G2Ci + 2G3Si, d2 = G4C1

The variable x2 can be eliminated from Eq. set (10.570) as discussed in Section 8.2.
According to Bezout's solution method, the coefficients ai5 bi, and di must satisfy the
following condition in order for the two equations of Eq. set (10.570) to have a common
solution for x2:

2

= 0. (10.572)ai
a2

bi
b2

bi

b2
d,
d2

ai
a2

di
d2

The notation |jk| will be used to represent a determinant . The determinants |ab|, |bd|,
and I ad I can be expanded using Eq. (10.571) as

|ab| =a(+\

|bd| =a(-\

|ad| = (-2F2G4)c^ + (-2F3G5)s? + (-2F2G5 - 2F3G4)slCl + 2F!Gi, (10.573)
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where

a(±> = (-2F2G2)c* + (-2F3G3)s* + (-2F3G2 - 2F2G3)slCl

± (2F,G2 - 2B!G4)ci ± (2F!G3 - 2B1G5)s1 + 2B,G,. (10.574)

Substituting the tan-half-angle identities for Si andci intoEq. (10.573) and then regrouping
gives

2 l + 2(F2G3 + F3G2 - B,G5, ,,2 [ (Bid(l+xf)
3)x^ + 2(BiGi - 2F3G3 + F2G2)x* + 2(-F3G2 - F2G3 - B1G5

FiG3)xi + (B,G, - F2G2 + F,G2 - B1G4)], (10.575)

lbdl = , 2 ^2 [(Bi°i + F i°2 - B i ° 4 - F2G2)x{ + 2(F2G3 + F3G2 + B,G5( l + x f )
+ 2(8 ,0 , - 2F3G3 + F2G2)x? + 2(-F3G2 - F2G3 + B,G5

- F,G3)x, + ( B i d - F2G2 - F,G2 + B1G4)], (10.576)

|ad| = 2 , [(F,G, - F2G4)x4 + 2(F2G5 + F3G4)x? + 2(F,G, + F2G4
( l + x ? )
-2F3G5)x* + 2(-F2G5 - F3G4)x, + (F,G, - F2G4)]. (10.577)

Substituting Eqs. (10.575) through (10.577) into Eq. (10.572) and then dividing through-
out by 4/(1 + x^)4 and regrouping gives the following skew reciprocal polynomial^:

m0Xj + niix] + m2x* + m3Xj + m4x4 —  m3Xj + m2Xj —  mix, + m0 = 0, (10.578)

where

m0 = Bfc^ + F^G^ - F^G^ - V\G\ - ¥ 2
2G2

A - B ^ + 2F,F2G1G4 - 2B,F2GiG2

+ 2F1B1G2G4,
m, = 4[-F2F3G^ + B?G4G5 + F^G.Gs + F2F3G^ - F^G2G3 + F^G2G3 + B,F2G,G3

- B1F1G2G5 + BiF3G,G2 - F,F3GiG4 - F,F2GiG5 - B,FiG3G4],

+ 2Bi(F,G3G5 -F3GiG 3) + 2F3(2F2G2G3 + F,GiG5 -2F2G4G5)],
m3 = 4[F2G2G3 + 3F^(G2G3 - G4G5) + 4F^(G4G5 - G2G3) + B^G4G5

+ F2F3 (3G^ - AG\ - 3G2
A + 4G^) + Fi(-B,G2G5 - B!G3G4

- F3G!G4) + G, (B!F2G3 - F ^ G s + B,F3G2)],
m4 = 2 [Bf (3G? + G^ - 4G^) + F?(-3G

+ F^ (3G | - 4G^- ?,G\+ AG2,) + F2 (-4
+ F,(8F3GiG5 + 8B,G3G5 - 2B,G2G4 - 2F2GtG4)

8B!GiG3 + 16F2G4G5 - 16F2G2G3) + 2F2B1G,G2]. (10.579)

This kind of polynomial was defined as skew reciprocal in Lin (1987) to distinguish it from an eighth-degree
polynomial ^ i = 0 mix' = 0 where rrij = mg-i (i = 0 . . . 3), which was defined as reciprocal by Todhunter
(1988).
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Dividing all terms in Eq. (10.578) by x | gives

mo ( x l + -4 ) + m i ( x i 3 ) + m2 ( Xi + — ) + m 3 (xi ) + m4 = 0.
V AJ V A ) V AJ V x i / (10.580)

This equation can be simplified by using the trigonometric identity

ti = T ^ , (10.581)

\-A
where ti = tan#i. Rearranging Eq. (10.581) gives

1 2
X! = . (10.582)

Xi ti

Squaring both sides of Eq. (10.582) gives

x? + -o - 2 = T . (10.583)
x? t?

Rearranging this equation gives

xi + K = T + 2 - (10.584)
x i li

Equating the product of the left sides of Eqs. (10.582) and (10.584) with the product of
the right sides of these equations gives

H)(H-
Expanding this equation gives

x^ - - , = - T - - + xi . (10.586)
A q ti X!

Substituting Eq. (10.582) into the right side of Eq. (10.587) gives

x'"i = "?"r (ia587)
xi h ti

Squaring both sides of Eq. (10.584) and rearranging gives

A + -A = l4+X4 + 1- (10.588)
xi H h

Substituting Eqs. (10.582), (10.584), (10.587), and (10.588) into Eq. (10.580) gives

16 \ / 8 6 \ /4 \ / 2\+ 2 ) + ~ ^ + m 2 U + 2 ) + m 3 r d + m 4 = o -
(10.589)
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Multiplying throughout by i\ gives

mo (16 + 16t? + 2tf) + m! (—8ti  - 6i\)

Rearranging this equation yields

(2m0 + 2m2 \ ^

+ (16mo) = O.

2tf) + m3(-2t]) + m4t{ = 0.
(10.590)

(16m0 (-8mi)ti

(10.591)

Equation (10.591) is a fourth-order input/output equation in terms of the tangent of the
output angle. Four values of ti may be determined from this equation. Two unique values
of 6\ (which differ by 180 degrees) correspond to each value of ti, and thus a total of eight
distinct values of 0\ exist.

10.6.2 Determination of 02

Corresponding values of 02 can be obtained for each of the eight values of 0\. As
explained in Section 8.2.2, the corresponding value for x2 may be calculated from either

bi di
b 2 d2

or

x2 =

ai di
a2 d2

a i di
a2 d2

(10.592)

ai bi
a2 b 2

(10.593)

The angle 02 is obtained from x2 as follows:

02 = 2tan~1(x2). (10.594)

10.6.3 Determination of 6>4

Using the direction cosines listed in the appendix for a spherical heptagon to project
the vector loop equation onto the direction of the vector S3 yields

(10.595)S7Z2i + a7iX2i + SiZ2 + a45X4 = 0.

Expanding the definition of the term X4 and solving for the sine of 64 gives

s4 = -(a67X217 + S7Z2i + a71X21 (10.596)

Two values of 04 exist that will satisfy this equation for each of the eight sets of values of
6\ and 62. Thus, a total of sixteen solution sets of the angles (6\, 02, O4) exist.
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10.6.4 Determination of 03

Using set 13 of the table of direction cosines to project the vector loop equation onto
the directions of the vectors a23 and (S3 x 323) gives

a67W712 + S7X12 + a71W12 + S ^ + a23 + a45W56712 = 0, (10.597)

a67U;i23 - S7Y12 + a71Ut23 - SiY2 + a45U5*67123 = 0. (10.598)

Substituting the subsidiary polar sine-cosine and cosine laws U567123 = — V 43andW567i2 =
W43 gives

S7X12 + a71W12 + SiX2 + a23 + a45W43 = 0, (10.599)
a67u;i23 - S7Y12 + a7lUt23 - SjY2 - a45V43 = 0. (10.600)

Expanding the definitions ofV43 and W43, substituting s34 = landc3 4 = 0, and regrouping
gives

c3 = -(a6 7W7i2 + S7X12 + a71Wi2 + SiX2 + a23)/(a45c4), (10.601)

s3 = -(a67U7*123 - S7Y12 + a71Ut23 - S!Y2)/(a45c4). (10.602)

Thus, for each of the sixteen sets of solutions of (0\, 02, #4) a unique corresponding value
of 63 can be determined.

10.6.5 Determination of 0b

The following fundamental sine and sine-cosine laws may be written for a spherical
heptagon:

X7i234 = s56s5, (10.603)

(10.604)

Substituting a56 = n/2 reduces these equations to

s5 = X71234, (10.605)

c5 = Y71234. (10.606)

Thus, a unique corresponding value of 05 can be computed for each of the sixteen solution
SetS Of (01,02,03,04).

10.6.6 Determination of <96

The following fundamental sine and sine-cosine laws may be written for a spherical
heptagon:

X43217 = S56S6, (10.607)

Y432i7 = s56c6. (10.608)
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Table 10.9. RTTT mechanism parameters

Link length, cm.

ai2 = 0

a23 - 8.3

a34 = 0

a45 = 8.6

a56 = 0

a67 - 4.9

a7i = 8.6

Twist angle, deg.

an = 90

a23 = 60

a34 = 90

<*45 = 0

<*56 - 9 0

«67 = 75

«7i = 65

, case 1.

Joint offset, cm.

S

S

S

S

S

S

S

, = 2 . 3

2 = 0

3 = 0

4 = 0

5 = 0

6 = 0

7 = 4.6

Joint angle, deg.

0x = variable

02 = variable

#3 = variable

04 = variable

#5 —  variable

06 = variable

#7 = 217 (input)

Substituting a56 = n/2 reduces these equations to

S6 = X43217,

C6 = ^43217-

(10.609)

(10.610)

Thus, a unique corresponding value of 66 can be computed for each of the sixteen solution
sets of (0i,02,03,ftO.

10.6.7 Numerical example

It has been shown that a total of sixteen solution configurations exist for the RTTT
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
greatly simplifies the analysis. An input/output equation was obtained which was fourth-
degree linear in the tangent of the angle 6\. Eight distinct values of 6\ correspond to these
four values of tan(#i). A unique corresponding value for the angle 62 was next determined
for each value of 0\. Two values of 64 were next calculated for each of the eight sets of
values (0i, 02). Unique corresponding values for 03, 05, and 06 were next determined for
each of the sixteen sets of values of (0i, 02, 64).

The mechanism dimensions of a numerical example are listed in Table 10.9. The result-
ing sixteen solution configurations are listed in Table 10.10 and are drawn in Figure 10.10.
It is apparent in the figure that there are four classes of solutions. Each class has four
cases, that is, two configurations for the Hooke joint and two configurations for the ball
and socket joint.

10.7 RTTT spatial mechanism, case 2: OL2Z = a45 = 90 deg.

An RTTT spatial mechanism is shown in Figure 10.11 (see also Lin (1987)). In this
mechanism, the first and second, third and fourth, and fifth and sixth joint axes intersect
and the second through sixth joint offset distances equal zero. For the case to be analyzed
here, the second and third joint axes and the fourth and fifth joint axes will be assumed to
be perpendicular. Also, the joint angles of the Hooke joints, that is, an, ^34, and a56, will
be set equal to 90 degrees. Specifically, the problem can be stated as
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Table 10

Solution

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

given:

find:

a23
Si-
oi\:
ai2
0i
Ox

.10. Calculated configurations for the

ft, deg. (

-61.29
-61.29
118.71
118.71

-20.09
-20.09
159.91
159.91
65.16
65.16

-114.84
-114.84

55.32
55.32

-124.68
-124.68

7 0Cn

„ a45, a67, a7 i ,

, s 7 ,
, = a23 = a34

: = a34 = a56 =
(input angle),
, 62, 0$, O4, #5,

h, deg.

-38.51
-38.51

-141.49
-141.49
-159.31
-159.31

-20.69
-20.69

-101.69
-101.69
-78.31
-78.31
126.17
126.17
53.83
53.83

= a45 =
- S2 = S

and 06 .

ft, deg.

131.93
-48.07

-131.93
48.07

131.42
-48.59

-131.42
48.59

-137.46
42.54

137.46
-42.54
153.56

-26.44
-153.56

26.44

a56 = 7T/2,
3 = S4 = S5 =

RTTT spatial mechanism,

ft, deg.

20.94
159.06

-20.94
-159.06

19.37
160.63

-19.37
-160.63

32.12
147.88

-32.12
-147.88

-45.82
-134.18

45.82
134.18

ft, deg. ft

59.64
120.36
120.36
59.64

177.83
2.17
2.17

177.83
67.94

112.06
112.06
67.94

-39.39
-140.61
-140.61

-39.39

: S6 = 0, and

case 1.

,deg.

-1.99
178.01
178.01
-1.99
55.41

-124.59
-124.59

55.41
-115.43

64.58
64.58

-115.43
-31.36
148.64
148.64

-31.36

It will be shown that a maximum of sixteen solution configurations exist for this mecha-
nism.

10.7.1 Determination of input/output equation

The input/output equation is obtained from a pair of equations of the form

aiX^ + biX2 + di = 0, (10.611)

where i = 1, 2 and the coefficients ai, bi, di are functions of the output parameter 0\. The
first equation is the same self-scalar product of the vector loop equation as was derived
in Section 10.6.1. This equation was expanded, and the coefficients ai, bi, and di are
defined in Eq. (10.571). The derivation of the second equation is more complicated, and
it is derived from three equations that contain the unknown joint variables 0\, 62, #3, and #4.

(i) Projection of the Vector Loop Equation Along (Si x

(10.612)

The vector loop equation for the RTTT mechanism may be written as

S7S7 + a7ia7i + S1S1 + a23a23 + a45a45 = 0.
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Figure 10.10. Sixteen configurations of the RTTT spatial mechanism.

Projecting this equation onto the direction of (Si x a i2) by using set 1 of the table of
direction cosines gives

= 0. (10.613)

The spherical and polar sine-cosine laws Y65432 = s7iCi and Ug54321 = — V 7i may be
substituted into this equation to give

- a45U!321 = 0. (10.614)

Expanding U4321 and substituting the value of iz/2 for the twist angles a\2 through a56

reduces this equation to

= 0.

This equation may be rewritten as

Pi = a45s3c4,

(10.615)

(10.616)
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s4

s7 s7

s7

Figure 10.10. (cont.)

Figure 10.11. RTTT spatial mechanism.
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where

Pi = a67V7i + S7S7iC! - a7isi. (10.617)

The term P] may be factored as

P} = p l a C l + P l b S l + Pl c , (10.618)

where

Pia = S7s7i - a67c71s7, P l b = -a 6 7 c 7 - a7i, Pic = 0. (10.619)

(ii) Secondary Cosine Law

A secondary cosine law for a spatial heptagon may be written as

Z0 7i23=Z0 5. (10.620)

The term Z05 may be written as

Z05 = -S5S45S56S5 + a45Y5 + a56Y5. (10.621)

Substituting S5 = a56 = 0 and expanding Y5 and substituting values for a45 and a56

gives

Z05 = 0. (10.622)

The term Z07i23 may be expanded as

Z()7123 = ^34Y7i23 + S3S34X7i23 + a23(C34Y7i2 —  S34C3Z7i2) + S2(—X^Xy^  —  Y3X712)

+ a12(Z71X3*2 + Y71Z3) +S ! ( -X 7 X; 2 1 - Y7X32i) +a6 7Y3 2i7 + S7s67X32i7

+ a71(c67Y32i - s67c7Z32i). (10.623)

Substituting S2 = S3 = ai2 = a34 = 0 reduces this equation to

Zo7i23 = a23(c34Y7i2 —  S34C3Z712) + Si (—X 7X321 —  Y7X32i) + a67Y32i7 + S7s67X32i7

+ a71(c67Y32i - s67c7Z32i). (10.624)

Equating this equation to zero, expanding all terms that contain #2 a n d #3, and regrouping
gives

Q1C3 + Q2S3 = 0 , (10.625)

where

Q{ = P2c2 + P3s2 + P4, (10.626)

Q2 = P5c2 + P6s2 (10.627)
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and where

P2 = -a2 3Y7 1,

P3 = -a2 3X7 1,

P4 = -SiX 7i + S7s67V7i + a67(s67Zi + c6 7(-sis7 + Cic7c7i))

+ a71(s67c7Z1 +c67c7iCi),

P5 = -S iX 7 1 + S7s67W7i + a67(-s67Xi - c6 7Vn) + a7i(c67c7iSi - s67c7Xi),

P6 = S7s67U7i + a67(s67Yi - c67s7ic7) + a7i(s67c7Yi - c67s7i). (10.628)

The terms P2 through P6 may be factored into the form

Pi=PiaCi+PibSi+Pi c , (10.629)

where i = 2 . . . 6 and

P2a = 0,
P2b = 0,
P2c = 323Z7,
P3 a = - a 2 3 X 7 ,
P3b = a23Y7,
P3c = 0,
r 4 a — — o i A 7 -

r 4 b = o i Y7 —

P4c = 0,

P5b = P4a,
P5c = 0,
P6a = 0,
P6b = 0,
P6 c = S7s71X7

- S7c7iX7

S7s67c7 -

+ a67Y7 H

- a67Z7 + a7iZ7,
a67C67S7,

h a71Y7.

(10.630)

(iii) Self-Scalar Product of the Vector Loop Equation

The vector loop equation for the mechanism may be written as
a67a67 + S7S7 + a7ia7i + Si Si = —  a23a23 —  a45a45. (10.631)

Taking the self-scalar product of each side of this equation gives

K + ag7a67 • (a7i«i 7i + Si Si) + S7S7 • SiSi = a23a23 • a45a45, (10.632)

where

K = (a67 + S7 H- a71 + St —  a23 —  a4 5)/2. (10.633)

The scalar products of mutually perpendicular vectors, such as, for example, a67 and S7,
equal zero, and all these terms have been omitted from Eq. (10.632). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields

K + a67(a7ic7 + SiX7) + S!S7c71 = a23a45W43. (10.634)
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Expanding the definition of W43 and substituting c34 = 0 gives the result

P7 = a23a45C3C4, (10.635)

where

P7 = K + a67(a7iC7 + SiX7) + S!S7C7i. (10.636)

The second equation that contains 6\ and 02 as the only unknown parameters will next
be obtained by manipulation of Eqs. (10.616), (10.625), and (10.636). Multiplying Eq.
(10.616) by a23C3 and Eq. (10.635) by —s 3 and adding gives

Pia23C3 - P7s3 = 0. (10.637)

Equations (10.625) and (10.637) are linear homogeneous equations in the variables s3 and
C3. A solution will exist only if the equations are linearly dependent (note that the trivial
solution of S3 = C3 = 0 is not physically possible). Because the two equations must be
linearly dependent, it may be written that

0. (10.638)

Expanding Qi and Q2 using Eqs. (10.626) and (10.627) and regrouping gives

(a23PiP5 + P7P2)c2 + (a23PiP6 + P7P3)s2 + P7P4 = 0. (10.639)

Substituting the expressions for Pi through P6, that is, Eqs. (10.618) and (10.629), and
regrouping gives

(Hie? + H2s? + H3S1C1 + H4)c2 + (H5ci + H6Sl)s2 + (H7d + H8si) = 0, (10.640)

where

Hi = —a 23PiaP4b,

H4 = P2cP7,

6c+P3aP7, (10.641)

H8 = P4bP7-

Substituting the tan-half-angle identities s2 = 2x2/(l + x|) and c2 = (1 —  x^
into Eq. (10.640), multiplying throughout by (1 + x\), and regrouping gives

- b2x2 + d2 = 0, (10.642)
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where

a2 = (H7ci + HgsO - (Hie? + H2s? + H3S1C1 + H4),
b2 = 2(H5c1+H6s1), (10.643)
d2 = (H7ci + Hgs,) + (H,c? + H2s? + H3slCl + H4).

Equation (10.643) will be paired with the first equation from the previous section,
that is, Eq. (10.570), whose coefficients ai, bi, and di are defined in Eq. (10.571). The
variable x2 can be eliminated from Eqs. (10.570) and (10.642) as discussed in Section 8.2.
According to Bezout's method, the coefficients aj through d; must satisfy the following
condition in order for the two equations to have a common solution for x2:

|ab||bd| - |ad|2 = 0, (10.644)

where the notation |jk| is used to represent the determinant ji ki
J2 k2

. The determinants
|ab|, |bd|, and |ad| are expanded as

|ab| =S{+\
\bd\=S(-\ (10.645)
|ad| = 2(FiHi - F2H7)c* + 2(F,H2 - *

+ 2(FiH3 - F2H8 - F3H7)slCl

where

+ 2(B,H2 - F3H6)s^ + 2(B!H3 - F2H6 - F3H5)slCl

± 2(-BiH7 + F1H5)c1 ± 2(-B,Hg + F ^ s , + 2BiH4. (10.646)

Substituting the tan-half-angle identities for Si and Ci into the determinants of Eq. (10.645)
and then regrouping gives

|ab|= 2
 2{[B1(H1+H4 + H7)-H5(F1+F2)]x? + [-2B1(H3 + H8)(1+x?)

F2) + 2F3H5]x^ + [2B,(-Hi + 2H2 + H4) + 2F2H5

+ [2Bi(H3 - H8) + 2H6(F! - F2) - 2F3H5]Xl

H4 - H7) + H5(Fi - F2)]}, (10.647)

|bd| = 2 {[B!(Hi + H4 - H7) + H5(Fi - F2)]x? + [2B,(-H3 + Hg)
(1+x?)
+ 2H6(-F, + F2) + 2F3H5]x3 + [2Bi(-Hi + 2H2 + H4) + 2F2H5

2 + [2B!(H3 + Hg) - 2H6(F! + F2) - 2F3H5]x,
H4 + H7) - H5(Fi + F2)]}, (10.648)

|ad| = 2
9 x 2{[F1(H1 + H4) - F.H.lx'} + 2[-F,H3 + F2H8

(1+xf)

[2Fi(-H, + H2 + H4) + 2F2H7 -
- F2H8 - F3H7]Xl + [F^H, + H4) - F2H7]}. (10.649)
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Substituting Eqs. (10.647) through (10.649) into Eq. (10.644) and then dividing through-
out by 4/(1 + x^)4 and regrouping gives the following skew reciprocal polynomial:

moXi + mix] + m2Xj + m3Xj + m4x{ —  1113X1 + m2Xj —  miXi + mo = 0, (10.650)

where

m0 = B?(H? + H* - H^ + 2H1H4) + 2B1H5(F1H7 - F2H4 - F2Hi) + F*(-H? - H"
- H| - 2H!H4) + 2F,F2H7(H, + H4) + F*(H* - H*),

m, = 4B2(-H!H3 - H3H4 + H7H8) + 4B1[H5(-F,H8 + F3Hi + F2H3 + F3H4)
+ H6(-F!H7 + F2H, + F2H4)] + 4 F 2 ( H , H 3 + H3H4 + H5H6)
+ 4F1[F2(-H,H8 - H3H7 - H4H8) + F3H7(-H1 - H4)]
+ 4F*(H7H8 - H5H6) + 4F2F3(H^ - H*),

m2 = 4F2(H2 -Uj-Hl-Hj- 2H,H2 - 2H2H4) + 8F1[F2(-H1H7 + H2H7

+ H 3 H8) + F 3 ( H 1 H 8 + H 3 H 7 + H 4 H 8 ) + B 1 H 6 H 8 ] + 4 B ^ ( - H ? + H2 + H2

- H* + 2H!H2 + 2H2H4) + 8B,[F2(-H2H5 - H3H6 + U^)
+ F3(-H!H6 - H3H5 - H4H6)] + 4F2

2(-R2
5 + H2 + H2 - U2)

+ 16F2F3(H5H6 - H7H8) + 4F3
!(H2 - H2),

m3 = 4F2(H3H4 + H5H6 - 3 ^ 3 + 4H2H3) + 4F![F2(3H3H7 + 3H,H8 - 4H2H8

- H4H8) - B!(H5H8 + H6H7) + F ^ H ^ - 4H3H8 - 4H2H7 - H4H7)]
+ 4B^(-H3H4 + H7H8 + 3H!H3 - 4H2H3) + 4B![F2(4H2H6 - 3H3H5

+ H4H6 - 3H!H6) + F3(H4H5 + 4H3H6 - 3H!H5 + 4H2H5)] + 12F2(H S H 6

- H7H8) + 16F^(H7H8 - H5H6) + 4F2F3(-4H;> - 3H2 + 4U2 + 3H§),
m4 = 2Fi (-3H^ - 3H2

4 - SHJ + HJ + 4H^ - 4Hg + 8H!H2 - 8H2H4 + 2H,H4)
+ 4F![F2(-H4H7 - 4H2H7 + 3H!H7 - 4H3H8) + B!(4H6H8 - H5H7)
+ F3(-4H3H7 - 4H,H8 + 8H2H8 + 4H4H8)] + 2B?(3H2 - 4H^ - 4H^
+ 8H^ + 3H^ + H7 + 8H2H4 - 8 ^ 2 - 2HiH4) + 4B![F2(4H3H6 - 3H,H5

+ H4H5 + 4H2H5) + F3(-4H4H6 + 4H3H5 + 4H!H6 - 8H2H6)]
(-3U2 + 3H^ - 4H^ + 4H^) + 32F2F3(H7H8 - H5H6)
(H^-2H^ + 2H^-H^) . (10.651)

It was shown in Section 10.6.1 how a skew reciprocal polynomial of the form of Eq.
(10.650) may be written in the form

(2m0 + 2m2 + m4)t4 + (-6m! - 2m3)t^ + (16m0 + 4m2)t^ + (-SmO^
+ (16mo) = O, (10.652)

where ti is equal to tan(6>i). Equation (10.652) is a fourth-order input/output equation in
terms of the tangent of the output angle. Four values of ti may be determined from this
equation. Two unique values of 0\ (which differ by 180 degrees) correspond to each value
of ti, and thus a total of eight distinct values of 61 exist.



ai2 = 0
a23 = 7

a34 = 0

a45 = 7

a56 = 0

a67 = 5

a71 = 10

or12 = 9 0

<*23 = 9 0

of34 = 9 0

<*45 = 9 0

<*56 = 9 0

«67 = 55

«7i = 75
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Table 10.11. RTTT mechanism parameters, case 2.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.

51 —  5 0\ = variable

52 = 0 #2 = variable

53 = 0 03 = variable

54 = 0 64 — variable

55 = 0 #5 = variable

56 = 0 #6 = variable

57 = 7 07 = 190 (input)

10.7.2 Determination of remaining joint angles

The joint parameters 02 through 06 can be determined using the same equations listed
in Sections 10.6.2 through 10.6.6. The current values of a?23 = a45 = 90 degrees are now
substituted into the definitions of the terms in these equations.

10.7.3 Numerical example

It has been shown that a total of sixteen solution configurations exist for the RTTT
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
greatly simplifies the analysis. An input/output equation was obtained that was fourth-
degree linear in the tangent of the angle 0\. Eight distinct values of 0\ correspond to these
four values of tan(0i). A unique corresponding value for the angle 02 was next determined
for each value of 9\. Two values of 04 were next calculated for each of the eight sets of
values (0i, 02). Unique corresponding values for 03, 05, and 06 were next determined for
each of the sixteen sets of values of (0i, 02, 04).

The mechanism dimensions of a numerical example are listed in Table 10.11. The
resulting sixteen solution configurations are listed in Table 10.12 and are drawn in Fig-
ure 10.12. It is apparent in the figure that there are two classes of solutions. Each class has
eight cases, that is, two configurations for each of the three Hooke joints of the mechanism.

10.8 RRR-R-RRR spatial mechanism

An RRR-R-RRR spatial mechanism is shown in Figure 10.13. The notation R-R-R is
used to indicate that the third, fourth, and fifth joint axes are parallel. Specifically, the
problem can be stated as

given: <xn, a23, a56, a61, alu

ai2, a23, a34, a45, a56, a67, a7 i ,
S i , S2, S3, S4, S5, S^, S 7 , G?34 = o?45 = 0, and

07
(input angle),

find: 0i, 02,03,04, 05, and 06.

It will be shown that a maximum of eight solution configurations exist for this mechanism.
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Table 10.12. Calculated configurations for the RTTT spatial mechanism

Solution 0\, deg.

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P

38.65
38.65

-141.35
-141.35

53.29
53.29

-126.71
-126.71

78.52
78.52

-101.48
-101.48

-88.14
-88.14

91.86
91.86

02, deg.

175.86
175.86

4.14
4.14

173.27
173.27

6.73
6.73

-105.69
-105.69

-74.31
-74.31
-70.90
-70.90

-109.10
-109.10

03, deg.

69.05
-110.95

-69.05
110.95

6.94
-173.06

-6.94
173.06

-76.28
103.72
76.28

-103.72
80.63

-99.37
-80.63

99.37

04, deg.

-69.53
-110.47

69.53
110.47

-82.77
-97.23

82.77
97.23
58.20

121.80
-58.20

-121.80
-39.88

-140.12
39.88

140.12

05, deg.

-95.35
-84.65
-84.65
-95.35

-107.95
-72.05
-72.05

-107.95
-176.79

-3.21
-3.21

-176.79
-2.41

-177.59
-177.59

-2.41

, case 2.

06, deg.

156.26
-23.74
-23.74
156.26

-156.79
23.21
23.21

-156.79
127.65

-52.35
-52.35
127.65

-47.18
132.82
132.82

-47.18

10.8.1 Determination of 66

The angle 06 will be solved for first for this mechanism. It will be shown that a fourth-
degree polynomial in the tan-half-angle of 06 is obtained from two equations that contain
the unknown joint parameters 66 and 62.

The first equation is obtained from a projection of the vector loop equation onto the
direction of S5. The vector loop equation may be written as

+ S2S2 + a23a23 + S3S3 +

+ S6S6 + a67a67 + S7S7 + a7ia71 = 0.

S4S4 4- S5S5

(10.653)

Using set 5 from the table of direction cosines for a spherical heptagon, the projection of
the vector loop equation may be written as

a23U2i765 + S3Z2i76 + a34U32i765 + S4Z32i76 + S5

+ S6c56 + a67U65 + S7Z6 + a71U765 = 0. (10.654)

The spherical cosine laws and polar sine laws Zi76 = Z34, Z2i76 = Z4, Z32i76 = c45,
= U2345, U2i765 = U345, and U32i765 = U45 are substituted into this equation to give

SiZ76 + ai2U2345 + S2Z34 + a23U345 + S3Z4 + a34U45 + S4c45 + S5 + S6c56

+ a67U65 + S7Z6 + a71U765 = 0. (10.655)

Expanding U2345, Z34, U345, Z4, and U45 and substituting a34 = a45 = 0 simplifies this
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s,

G " h

Figure 10.12. Sixteen configurations of the RTTT spatial
mechanism.

equation to

SiZ76 + ai2U23 + S2c23 + S3 + S4 + S5 + S6c56 + a67U65 + S7Z6 + a71U765 = 0.
(10.656)

Expanding Z76, U23, U65, Z6, and U765 and regrouping gives

As2 + B = 0,

where

A = ai2s23,

(10.657)

(10.658)
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S4

Figure 10.12. (cont.)

and where

Bi = SiS56Y7 - S7S56s67

B 2 = SiS56X7 + a67s56 +

B3 = Sic56Z7 + S2c23 + S3 + S4 + S5 + S6c56

The second equation is obtained from the subsidiary cosine law

Z76 = Z234.

Expanding Z234 and substituting a34 = a45 = 0 gives

Z76 = Z2.

Expanding Z76 and Z2 and regrouping gives

Dc2 + E = 0,

(10.659)

(10.660)

(10.661)

(10.662)
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Figun
nism.

where

D =

; 10.13.

S12S23,

F.ir* 4-

and where

E , =

E2 =

E3 =

= s56Y7,
: S56X7,

: ^56^7

RRR-R-RRR spatial mecha

- C 1 2 C 2 3 .

(10.663)

The parameter 02 may be eliminated from Eqs. (10.657) and (10.662) by
ai2x2 times Eq. (10.662) from S12 times Eq. (10.657) to give

Si2As2 - ai2x2Dc2 + Si2B - ai2x2E = 0.

Because S12A = ai2D, this equation may be written as

Si2A(s2 —  x2c2) + Si2B —  ai2x2E = 0.

Because (s2 —  x2c2) = x2 (see Eq. (9.108)),

(S12A - ai2E)x2 + (S12B) = 0.

Adding Si2x2 times Eq. (10.657) to ai2 times Eq. (10.662) gives

Si2x2As2 + ai2Dc2 + Si2x2B + ai2E = 0.

Again, because Si2A = a^D, this equation may be written as

Si2A(x2s2 + c2) + Si2x2B + ai2E = 0.

Because (x2s2 + c2) = 1 (see Eq. (9.109)),

(si2B)x2 + (si2A + ai2E) = 0.

(10.664)

subtracting

(10.665)

(10.666)

(10.667)

(10.668)

(10.669)

(10.670)
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Equations (10.667) and (10.670) are linear in the variable x2. In order for there to
be a common value of x2 that satisfies the two equations, the equations must be linearly
dependent. As such, the coefficients of these two equations must satisfy the following
expression:

(s12A - a12E)(s12A + a12E) - (s12B)2 = 0. (10.671)

Multiplying the first terms gives

s2
2A2 - a2

2E2 - s2
2B2 = 0. (10.672)

Substituting Eqs. (10.658) and (10.663) for B and E and regrouping gives

Fie2 + F2s2 + F3s6c6 + F4c6 + F5s6 + F6 = 0, (10.673)

where

F^-a^-s^B2,

F2 = -a 2
2 E 2 - s2

2B2,

F3 = -2(a2
2EiE2 + sj2BiB2),

(10.674)
F4 = -2(a?2EiE3 + s?2B1B3),
F5 = -2(a2

2E2E3 + s2
2B2B3),

Substituting the trigonometric identities S6 = (2x6)/(l + x2,) and C(, = (1 —  Xg)/(1 + x2,)
for the sine and cosine of 96, multiplying throughout by (1 + x2,)2, and regrouping gives

f2x2
6 + flX6 + f0 = 0, (10.675)

where

f4 = F 1 - F 4 + F6,
f3 = - 2 ( F 3 - F5),
f2 = 2 ( -F i + 2F2 + F6), (10.676)
f! = 2(F3 + F5),
fo = Fi + F4 + F6.

Equation (10.675) is a fourth-order equation that can be solved for x6. Four values of x6

and thereby four distinct values of 66 can be obtained from this equation. It is interesting
to note that this equation does not contain the link lengths a34 and a45, the perpendicular
distances between the parallel axes.

10.8.2 Determination of 62

A corresponding value of 62 may be obtained for each value of 06 from either Eq.
(10.667) or Eq. (10.670). Numerical values for B and E can be obtained for each calculated
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value of 06. The tan-half-angle of 92 may then be obtained from either

x2 = ~ S l 2 B
 P

 ( 1 ( X 6 7 7 )

SA aE
or

(si2A + ai2E) n n / c _
x2 = . (10.678)

S12B

The angle 92 is obtained from x2 via the equation

02 = 2tarr1(x2) . (10.679)

10.8.3 Determination of 0<|

The following sine and sine-cosine laws may be written for a spherical heptagon:

X6712 = X43, (10.680)

Y6712 = -XJ 3 . (10.681)

Expanding the right sides of this pair of equations and substituting a34 = a45 = 0 yields

X67i2 = 0, (10.682)

Y6712 - 0. (10.683)

Expanding the definitions of the terms X6712 and Y67i2 and regrouping gives

[X67c2 - c12Y67s2]c1 + [-Y67c2 - c12X67s2]si + [s12s2Z67] = 0, (10.684)
[C23(X67S2 + Ci2Y67C2) - S12S23Y67JC! + [C2 3(-Y6 7S2 + Ci2X67C2) - S12S23X67]Si

+ [-s12c23Z67c2 - c12s23Z67] = 0. (10.685)

All the terms in brackets may be numerically evaluated for each set of solution values
of (06, 92). Equations (10.684) and (10.685) thus represent two linear equations in the
variables Ci and s\. The solution of these two linear equations will yield the unique
corresponding value for the sine and cosine of 9\, and thus a unique value for the angle 9\.

10.8.4 Determination of 6A

Projecting the vector loop equation onto the direction of as6 and (S5 x a56) using set 5
of the table of direction cosines yields

SiX76 + a12Wi76 + S2X176 + a23W2176 + S3X2176 + a34W32i76 + S4X32i76

+ a45c5 + a56 + a67c6 + S7X6 + a71 W76 = 0, (10.686)

SiY76 —  ai2U*765 + S2Y176 —  a23U21765 + S3Y2i76 —  a34U321765 + S4Y32i76

- a45s5 - S6s56 + a67c56S6 + S7Y6 - a71U;65 = 0. (10.687)
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Substituting the spherical and polar sine and sine-cosine laws X32i76 —  S45S5, W32176 —
W45, Y32i76 = S45C5, and U;21765 = -V 4 5 gives

SiX76 + a12W176 + S2X176 + a23W2176 + S3X2176 + a34W45 + S4S45S5

+ a45c5 + a56 + a67c6 + S7X6 + a71 W76 = 0, (10.688)

SiY76 —  ai2Ui765 + S2Yi76 —  a23U21765 + S3Y2i76 + a34V45 + S4S45C5

- a45s5 - S6s56 + a67c56S6 + S7Y6 - a7iU;65 = 0. (10.689)

Expanding V45 and W45 and substituting of34 = a45 = 0 yields

SiX76 + ai 2Wn 6 + S2X176 + a23W2176 + S3X2n6 + a34(c4c5 - s4s5) + a45c5

+ a56 + a67c6 + S7X6 + a71 W76 = 0, (10.690)

SiY76 - ai2U*765 + S2Yi76 - a23U21765 + S3Y2i76 - a34(s5c4 + c5s4) - a45s5

- S6s56 + a67c56s6 + S7Y6 - a71u;65 = 0. (10.691)

Introducing the notation s4+5 = sin(^4 + 05) and C4+5 = cos(04 + 0$) and recognizing that
sin(#4 + O5) = S4C5 + C4S5 and cos(#4 + 05) = C4C5 —  s4s5 gives

SiX76 + ai2W176 + S2Xn 6 + a23W2i76 + S3X2n6 + a34c4+5 + a45c5 + a56

+ a67c6 + S7X6 + a71 W76 = 0, (10.692)

SiY76 —  ai2Ui765 + S2Yi76 —  a23U21765 + S3Y2i76 —  a34S4+5 —  a45S5 —  S6s56

+ a67c56S6 + S7Y6 - a71u;65 = 0. (10.693)

These equations may be rearranged as

a34c4+5 + a45c5 = P2i76, (10.694)

a34s4+5 + a45s5 = Q2i76, (10.695)

where

P2176 = —SiX 76 —  ai2Wi76 —  S2Xi76 —  a23W2i76 —  S3X2i76 —  a56 —  a67c6

- S 7 X 6 - a 7 1 W 7 6 , (10.696)

Q2176 = SiY76 - ai2U*765 + S2Yi76 - a23U21765 + S3Y2n6 - S6s56 + a67c56s6

+ S7Y6-a71U7*65. (10.697)

The terms P2i76 and Q2i76 can be numerically determined for each of the four solution sets
Of (06,fl2,0l).

Squaring and adding Eqs. (10.694) and (10.695) yields

a34 + a 5̂ + 2a34a45(c4+5C5 + s4+5s5) = P2176 + Q2176. (10.698)

Because the cosine of the difference of two angles a and /3 may be written as cos(a — /3)  =
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CaĈ  + sas^, this equation may be written as

a'4 + a2
45 + 2a34a45 cos((04 + 05) - 05) = P*762 + Q2

ll62, (10.699)

which thus reduces to

a34 + a45 + 2a34a45C4 = P2n 6 + Q2176' (10.700)

Solving this equation for c4 gives

p 2 I O 2 _ Q2 _ Q2

c4 = 2176 + g 2 1 7 6 34 4 5 . (10.701)
2 a a

Two distinct values of 04 will satisfy Eq. (10.701) for each of the four sets of solutions
(06, 02, 0i)« Thus, a total of eight solution configurations exist for this mechanism.

10.8.5 Determination of 05

Equations (10.694) and (10.695) may be expanded as

a34(c4C5 - s4s5) + a45c5 = P 2 n 6 , (10.702)

a34(s4C5 + C4S5) + a45s5 = Q2i76- (10.703)

Regrouping these equations gives

(a34c4 + a45)c5 - (a34s4)s5 = P2i76, (10.704)
(a34s4)c5 + (a34c4 + a45)s5 = Q2i76. (10.705)

These two equations that are linear in the variables s5 and c5 can be used to determine
unique corresponding values of 05 for each of the eight solution sets (06, 0i, 02, 04).

10.8.6 Determination of 03

The following fundamental sine and sine-cosine laws may be written for a spherical
heptagon:

X17654 = s23s3, (10.706)

Yi7654 = S23C3. (10.707)

Numerical values can be determined for Xi7654 and Yi7654 for each of the eight solution
sets (06, 0i, 02, 04, 05). The calculated values of s3 and c3 yield the unique corresponding
value for 03.

10.8.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RRR-R-RRR
spatial mechanism. Although this is a group 4 spatial mechanism, the special geome-
try of having three parallel joint axes greatly simplifies the analysis. Several industrial
manipulators incorporate this geometry for this reason.
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B

Figure 10.14. Eight configurations of the RRR-R-RRR
spatial mechanism.

The mechanism dimensions of a numerical example are listed in Table 10.13. The result-
ing eight solution configurations are listed in Table 10.14 and are drawn in
Figure 10.14. It is apparent in the figure that there are four classes of solutions. Each
class has two configurations for the three parallel joint axes.

10.9 Summary
Robot manipulators that contain six revolute joints are very common. This is because

rotary electric and hydraulic actuators are readily available. The reverse analysis of
a general six-revolute robot, however, will require the solution of a general group 4
spatial mechanism once the close-the-loop step is accomplished. The solution of this
mechanism is very complicated, and a computer program is available from the authors. The



318 Group 4 spatial mechanisms

Table 10.13. RRR-R-RRR mechanism parameters.

Link length, cm.

a12 = 10.9

a23 = 9.9

a34 = 10.6

a45 - 9.8

a56 = 11.2

a67 = 10.5

a71 = 5.2

Twist angle, deg.

axl = 139

a23 = 80

G?34 = 0

«45=0

a56 = 243

a67 = 307

«7i = 34

Joint offset, cm.

Si =4 .6

S2 = 7.5

S3 = 7.5

S4 = 4.0

S5 = 7.5

S6 = 9.6

S7 = 11.8

Joint angle, deg.

0x = variable

02 = variable

03 = variable

04 = variable

05 = variable

06 = variable

07 = 20 (input)

Table 10.14. Calculated configurations for the RRR-R-RRR spatial mechanism.

Solution

A
B
C
D
E
F
G
H

0i, deg.

147.64
147.64
177.69
177.69
127.24
127.24

-69.32
-69.32

#2, deg.

-37.31
-37.31

14.00
14.00
32.29
32.29

-75.75
-75.75

03, deg.

-36.68
51.71
50.49

152.29
131.03

-151.86
36.85

167.04

04, deg.

93.13
-93.13
107.98

-107.98
80.95

-80.95
143.93

-143.93

05, deg.

115.41
-146.72

44.33
158.49

-24.74
60.03

-65.07
92.59

06, deg.

-20.73
-20.73

14.44
14.44
71.30
71.30

140.08
140.08

reverse-analysis computations require approximately 0.2 seconds when run on a Unix
workstation with a MIPS 4400 CPU operating at a speed of 150 MHZ.

To simplify the reverse-analysis procedure, specialized geometries are typically incor-
porated into robot manipulators that contain six revolute joints. Most common are the
cases where three axes intersect at a point or three axes are parallel. Sections 10.3 through
10.8 show how the reverse analysis is simplified for these cases, and Chapter 11 will
present specific examples of industrial manipulators.

10.10 Problems

1. An RTTT spatial mechanism has the following dimensions (angles are in degrees,
lengths are in cm):

an = 90
CC56 = 9 0

ai2 = 0
a56 = 0
Si =5 .6
07 = 2 3 5

^23

a23
a6?

s2

= 60
= 75
= 5.8
= 4.5
= S3 = S4

CX34 = 90

« 7i = 65
a34 = 0
a7i = 6.6
= S5 = S(

«45

a45

5 = 0

= 0

= 8.2

s7

Determine the sets of values for the angles 0\ through 06.
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2. An RSTR spatial mechanism has the following dimensions (angles are in degrees,
lengths are in cm):

<*56

ai2
a56
Si

s5
Oi

= 60
= 90
= 5.1
= 0
= 9.3
= 0
= 18

«23 =

<*67 =

a23 =

a67 =
S2 =
S6 =

:90
:75
0
2.8
9.7
3.9

Qf34 =

alx =
a34 =
a7i =
S3 =
S7 =

:65
:65
4.3
8.0
8.8
6.2

«45  =

a45 =

S4 =

90

0

9.4

Determine the sets of values for the angles 0\ through 06.

3. The directions of the fourth, fifth, and sixth joint axes of a 7R spatial mechanism
are parallel. The value of #7 is given. Explain how to solve for the remaining joint
parameters, 0\ through 6^.
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Case studies

11.1 Introduction
The majority of industrial robots contain six revolute joints. Closing the loop will yield

a one-degree-of-freedom 7R spatial mechanism with the angle 61 known. The general 7R
spatial mechanism is a group 4 mechanism that is computationally difficult to solve. It
will be shown, however, that most industrial robots have special geometries that greatly
simplify the reverse analysis process. Examples of special geometries are joint axes that
are parallel or that intersect. Three common industrial robots and two other manipulators
will be analyzed in this chapter.

11.2 Puma industrial robot
The Puma 560 robot is shown in Figure 11.1. A kinematic model of this robot with joint

axis and link vectors labeled is shown in Figure 11.2. The constant mechanism parameters
are listed in Table 11.1.

The parameter S6 is a free choice that must be made in order to specify the location
of the origin of the sixth coordinate system. One input to the reverse-analysis problem
is the location of the tool point measured in terms of the sixth coordinate system. This
cannot be specified if the physical location of the origin of the sixth coordinate system is
not known. A value of S6 equal to four inches is selected to locate the origin of the sixth
coordinate system at the center of the robot's tool mounting plate.

The reverse-analysis problem statement is as follows:

given: S6 and the direction of a67 relative to S6 in order to establish the sixth coordinate
system,

6PtC)oi: the location of the tool point in the sixth coordinate system,
FPtooi: the desired location of the tool point in the fixed coordinate system, and
FS6, Fa67: the desired orientation of the robot end effector,

find: $1,92,63,64,65,66: the joint angle parameters that will position and orient the
end effector as desired.

The solution to this problem proceeds as described in Chapter 5. From the given
information, Eq. (5.3) can be used to determine the position of the origin of the sixth
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Figure 11.1. Puma robot.

Figure 11.2. Kinematic model of Puma robot.

coordinate system measured in the fixed coordinate system. A hypothetical closure link
is then created to form a closed-loop spatial mechanism. The link length a67 and the twist
angle a67 were arbitrarily selected as zero and ninety degrees respectively. With these two
choices, the direction of the vector S7 is known in terms of the fixed coordinate system.
Further, the hypothetical seventh joint axis is known to pass through the origin of the sixth
coordinate system.
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Table 11.1. Mechanism parameters for Puma robot.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.

a}2 = 0 ofi2 = 90 0i = variable
a23 = 17 a23 = 0 S2 = 5.9 02 = variable
a34 = 0.8 a34 = 270 S3 = 0 03 = variable
a45 = 0 a45 = 90 S4 = 17 04 = variable
a56 = 0 a56 = 90 S5 = 0 05 = variable

06 = variable

Table 11.2. Mechanism parameters for closed-loop Puma mechanism.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.

ai2 = 0
a23 = 17
a34 = 0.8
a45 = 0
a56 = 0
a67 = 0*
a71 = C.L.

al2 = 90
«23=0
a34 = 270
a45 = 90
<*56 = 9 0
a61 = 90*
(*7i = C.L.

Si = C.L.
S2 = 5.9
S3 = 0
S4 = 17
S5-0
S6-4*
S7 = C.L.

0i = variable
02 = variable
03 = variable
04 = variable
05 = variable
06 = variable
07 = C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure

Chapter 5 shows how the six close-the-loop parameters (S7, Si, a7i, 07, o?7i, and y\)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.2 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.

11.2.1 Solution for 0<\ and fa

The vector loop equation for the closed-loop Puma mechanism is as follows:

S1S1 + S2S2 + a23a23 + a34a34 + S4S4 + S6S6 + S7S7 + a71a71 = 0. (11.1)

Expressing the vectors in terms of set 14 of the table of direction cosines for the spatial
heptagon yields

0 \ /0\ / C2 \ / W45671 \ /X5671^
Si | - s 1 2 + S2 0 + a23 - s 2 + a34 -U:5 6 7 1 2 + S4 Y5671

C12 / \ 1 / \ 0 / I U456712 / \Z5671,

(A (M (\ H
S6 Y71 + S 7 Yj + a 7 1 S lci2 = 0 . (11.2)

J J \J j
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Subsidiary spatial and polar sine, sine-cosine, and cosine laws can be used to simply the
terms for the vectors a34 and S4. Thus, Eq. (11.2) can be written as

(11.3)

The Z component equation (which is equivalent to projecting the vector loop equation
onto the S2 axis) is

S1C12 + S2 + a34U32 + S4Z3 + S6Z71 + S7Zi + a71U12 = 0. (11.4)

Now, U32 = S3S23, and because a23 = 0, then U32 = 0. Similarly, Z3 = c34c23 —  S34S23c3,
and because a?23 = 0 and #34 = 270°, Z3 = 0. Further, ci2 = 0 because an = 90°. Thus,
Eq. (11.4) reduces to

S2 + S6Z7i + S7Z! + a7iUi2 = 0. (11.5)

This equation contains 0\ as its only unknown. Expanding Z7i, Zi, and Ui2 yields

S2 + S6[si2(X7s1 + Y7C1) + Ci2Z7] + S7[ci2c7i - S12S71C1] + a7i[sisi2] = 0.
(11.6)

The equation can be simplified by substituting sJ2 = 1 and Ci2 = 0. Thus, Eq. (11.6) may
be written as

S2 + S6[X7Sl + Y7C1] + S7[-S7ici] + a7i[si] = 0. (11.7)

Grouping the Si and ci terms yields

[S6Y7 - S7s71]Cl + [S6X7 + a71]Sl + [S2] = 0. (11.8)

The terms within the brackets in Eq. (11.8) can be calculated from the known values.
Thus, Eq. (11.8) represents an equation of the form Aci + Bsi + D = 0, where A, B, and
D are constants. It was shown in Section 6.7.2 how this type of equation can be solved
to yield two values of #1, that is, 0\a and 0ib. Figure 11.3 shows the solution tree for
the mechanism thus far. The two associated values for the angle <j>\ can be calculated as
(0 i a - /1) and (0ib - y i ) .

Figure 11.3. Puma
solution tree.
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11.2.2 Solution for 03

Substituting for Si2 = 1 and Cj2 = 0 into the X and Y components of Eq. (11.3) yields

a23c2 + a34W32 + S4X32 + S6X71 + S7X1 + a71d = 0, (11.9)
- Si - a23s2 + a34V32 - S4X;2 + S6Y71 + S7Yi = 0. (11.10)

All terms that do not contain the unknown variables 62 and #3 will be moved to the
right-hand side of Eqs. (11.9) and (11.10) to give

a23c2 + a34W32 + S4X32 = A, (11.11)

- a23s2 + a34V32 - S4X;2 = B, (11.12)

where

A = -S 6 X 7 1 - S7X1 - a7lCl, (11.13)

B = S i - S 6 Y 7 1 - S 7 Y 1 . (11.14)

Expanding W32, V32, X32, and X^2 gives

a23C2 + a34[C2C3 - S2S3C23] + S4[(S34S3)C2 + (S23C34 + C23S34C3)S2] = A, (11.15)
- a23S2 - a34[S2C3 + C2S3C23] - S4[(S34S3)S2 - (S23C34 + C23S34C3)C2] = B. (11.16)

Substituting for a23 = 0° and a34 = 270° gives

a23c2 + a34[c2C3 - s2s3] + S4[-s3c2 - c3s2] = A, (11.17)

- a23s2 - a34[s2C3 + c2s3] - S4[-s3s2 + c3c2] = B. (11.18)

These equations can be written as

a23c2 + a34C2+3 - S4s2+3 = A, (11.19)

- a23s2 - a34S2+3 - S4c2+3 = B, (11.20)

where s2+3 and C2+3 represent the sine and cosine of (02 + #3) respectively.
Equations (11.19) and (11.20) represent two equations in the two unknowns 02 and 03.

These variables will be solved for by adding the squares of Eq. (11.19) and Eq. (11.20).
Squaring the equations gives

a34C2+3 + S4S2+3 + 2a23a34C2C2+3 ~ 2a23S4C2S2+3 ~ 2a34S4C2+3S2+3 = A2,

(11.21)

B2

(11.22)

a23S2 + a34S2+3 + S4C2+3

and adding yields

a23 + a34 + S4 + 2a23a34[c2c2+3 + s2s2+3] + 2a23S4[s2c2+3 - c2s2+3] = A2 + B2.
(11.23)



11.2 Puma industrial robot 325

Now, [c2c2+3 + s2s2+3] = cos[(02 + 63) - 02] = c3 and [s2c2+3 - c2s2+3] = sin[02 - (02

03)] = sin(—0 3) = —  S3, which gives

a 23 a 34 S 4 - 2a23S4s3 = A2 + B2.

Regrouping this equation gives

c3[2a23a34] + s3[-2a23S4] + [a2
3 + a2

4 + S2 - A2 - B2] = 0.

(11.24)

(11.25)

This equation contains only 03 as an unknown. Values for A and B will first be obtained
for 6\ — 0i a. Two corresponding values for 03 will then be found by solving Eq. (11.25).
Next, values for A and B will be obtained for 0\ = 0u,. Two additional corresponding
values for 03 will then be found. The current solution tree is shown in Figure 11.4

11.2.3 Solution for 02

Equations (11.17) and (11.18) can be used to solve for the angle 02. Regrouping these
equations gives

c2[a23 + a34c3 - S4s3] + s2[-a34s3 - S4c3] = A,

S2[~a23 - a34c3 + S4s3] + c2[-a3 4s3 - S4c3] = B.

(11.26)

(11.27)

Equations (11.26) and (11.27) represent two equations in the two unknowns c2 and s2.
Thus, a unique corresponding value of 02 can be found for each 0\, 03 pair. In other
words, 0ia and 03a will be substituted into the equations to yield 02a. Similarly, 0ia and 03b

will be substituted into the equations to yield 02b. The current solution tree is shown in
Figure 11.5.

0 3 c 0 3 d

Figure 11.4. Puma solution tree.

87

e,,

^2a ^2b ^2c ^2d

Figure 11.5. Puma solu-
tion tree.



326 Case studies

6*- 0eu 6*. 6*J 0e- 0«* 0«- 0

Figure 11.6. Puma solution tree.

11.2.4 Solution for 05

The angle 05 can be readily determined from the spherical equation

Zim=U (11.28)

Expanding the right-hand side of this equation and substituting for a^ and a^ yields

c5 = -Z 7 1 2 3 . (11.29)

Thus, for each combination of #7, #1, #3, and 02, a value for c5 and thereby two values for
#5 can be determined. The solution tree for this analysis is now shown in Figure 11.6.

11.2.5 Solution for #4

Corresponding values for 04 can be obtained from the following two subsidiary spherical
equations:

X54 = X 7 1 2 3 ,

X54 = -Y7123 .

Expanding the left-hand sides of these equations yields

X5C4 — Y5S4 = X7123,

X5S4 + Y5C4 = —  Y7123.

Expanding X5 and Y5 gives

(S56S5)C4 + (S45C56 + C45S56C5)S4 = X7123,

(S5 6S5)S4 - (S45C56 + C45S56C5)C4 = -Y7123.

Inserting the values 0̂ 45 = 0̂ 56 = 90° yields

S5C4 = X 7 1 2 3 ,

S5S4 = —  Y7123.

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)

(11.35)

(11.36)

(11.37)
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5a "5b V 5 c V 5 d V 5 e W5f V 5 g W5b

Figure 11.7. Puma solution tree.

Solving for s4 and c4 gives

X
c4 =

-7123

s4 = - -

S5

^7123

S5

(11.38)

(11.39)

Substituting the previously calculated values for the eight sets of corresponding values for
#7, 0i, #2, #3> and 05 will yield a corresponding value for 04. The current solution tree is
shown in Figure 11.7. It should be noted that the solution for #4 becomes indeterminate if
#5 equals 0 or 180 degrees. This special case will be discussed in Section 11.5.

11.2.6 Solution for<96

The angle 06 is the last remaining joint angle to be determined. It will be calculated
from the following two fundamental spherical sine and sine-cosine laws:

X43217 = S56S6,

Y43217 = S56C6.

(11.40)

(11.41)

Because a56 = 90°, these equations reduce to

S6 = X4 3 217,

C6 = Y

(11.42)

(11.43)

Thus, a corresponding value for 96 can be found for each of the eight sets of values for
01, 0\, 63, 02, 05, and 64. The final solution tree for the Puma robot is shown in Figure 11.8.
The solution of the reverse analysis for the Puma robot is complete.
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Figure 11.8. Final Puma solution tree.

11.2.7 Numerical example

As a numerical example, the following information was specified for the Puma manip-
ulator:

in.,S6 = 4in. 6 p
*tool

" 0.079"
-0.787
. 0.612.

=

>

"5"
3
7.

-a

in.,

kn =

FP.ooI =

" 0.997"
0.064

-0.047.

"24.112"
20.113
.18.167.

This specified position and orientation is identical to that which was calculated in the
numerical example of the forward analysis for the Puma robot in Section 4.2. Thus, one
of the solution sets for this reverse-analysis problem must be identical to the input data used
previously in the forward-analysis procedure. Table 11.3 shows the results of the reverse-
position analysis. Solution set 1 matches the input data used in the forward-analysis
example in Section 4.2.

The eight configurations of the Puma robot that position and orient the end effector as
specified are shown in Figure 11.9. It is apparent in the figure that four classes of solutions
exist, with each class having two configurations for the ball and socket joint.

11.3 GE P60 manipulator

The GE P60 manipulator is shown in Figure 11.10. A kinematic model of the manipula-
tor showing joint axis and link vectors is shown in Figure 11.11. The constant mechanism
parameters are listed in Table 11.4.

The value of the offset distance S6 is a free choice that will define the location of the
origin of the sixth coordinate system. A value of 15.24 cm will be used, as this value will
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Table 11

Solution

A

B

C

D

E

F

G

H

.3. Eight solution sets for the Puma

01

-135.0

-135.0

-135.0

-135.0

66.072

66.072

66.072

66.072

o2

150.0

150.0
177.321

177.321

2.679

2.679

30.0

30.0

-60.0

-60.0

-114.611

-114.611

-60.0

-60.0

-114.611

-114.611

robot (angles in degrees).

o4

45.0

-135.0

38.370

-141.630

-156.158

23.842

-149.846
30.154

60.0

-60.0

80.585

-80.585

75.676

-75.676

51.230

-51.230

06

-30.0

150.0

-49.186

130.814

-67.944

112.056

-54.193
125.807

E F G

Figure 11.9. Eight solution configurations of the Puma robot.

locate the origin of the sixth coordinate system at the center of the tool mounting plate of
the manipulator.

The reverse-analysis problem statement is identical to that for the Puma robot. This
problem statement is repeated as

given: S6 and the direction of a67 relative to S6 in order to establish the sixth coordinate
system,

6PtOoi' the location of the tool point in the sixth coordinate system,
FPtooi: the desired location of the tool point in the fixed coordinate system, and
FS6, Fa67: the desired orientation of the robot end effector,

find: <l>\,02,03,64,65,66: the joint angle parameters that will position and orient the
end effector as desired.
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Figure 11.10. GE P60 robot.

Figure 11.11. Kinematic model of GE P60 robot.

As with the Puma robot, the solution to this problem proceeds as described in Chapter 5.
From the given information, Eq. (5.3) can be used to determine the position of the origin
of the sixth coordinate system measured in the fixed coordinate system. A hypothetical
closure link is then created to form a closed-loop spatial mechanism. The link length a67
and the twist angle a61 were arbitrarily selected as zero and ninety degrees respectively.
With these two choices, the direction of the vector S7 is known in terms of the fixed
coordinate system. Further, the hypothetical seventh joint axis is known to pass through
the origin of the sixth coordinate system.

Chapter 5 shows how the six close-the-loop parameters (S7, Si, a7i, 07, a7i, and y\)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.5 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.
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Table 11.4. Mechanism parameters for the GE P60 robot.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.

ai2 = 0 a 12 = 270 </>i = variable
a23 = 7 0 o-23 = 0 S2 = 0 02 = variable
a34 —  90 #34 = 0 S3 = 0 #3 = variable
a45 = 0 o-45 = 270 S4 = 9.8 04 = variable
a56 = 0 o-56 = 90 S5 = 14.5 65 = variable

0e = variable

Table 11.5. Mechanism parameters for closed-loop GE P60 mechanism.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.

ai2 = 0
a23 = 70
a34 = 90
a45 = 0

a56 = 0

&67 = "
r* T

a7i = L.L

al2 = 270
O-23-0
O-34 = 0
(X45 = 2 7 0

«56  = 9 0
a61 = 90*
« 7i = C.L.

Si = C.L.
S2 = 0
S3 = 0
S4 = 9.8
S5 = 14.5
S6 = 15.24*
S7 = C.L.

0! = variable
Q2 = variable
#3 = variable
64 = variable
#5 = variable
06 = variable
07 = C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure

11.3.1 Solution forOi and fa

The vector loop equation for the closed-loop mechanism is

\&\ -f- a 2 3 a 2 3 -f- a 3 4 a 3 4 -+- o 4 i j 4 -t- 0505 -t- 05136 ~r 07137 •+• a 7 ia 7 i = u. yi i.****)

As was the case with the Puma robot, the vector loop equation will be projected on the S2

direction. This is accomplished as follows:

Si(Si • S2) + a23(a23 • S2) + a34(a34 • S2) + S4(S4 • S2)

+ S5(S5 • S2) + S6(S6 • S2) + S7(S7 • S2) + a71(a71 • S2) = 0. (11.45)

It is apparent from the geometry shown in Figure 11.10 that

S i -S 2 = 0, (11.46)

a 2 3 -S2 = 0, (11.47)

a 3 4 - S 2 - 0 , (11.48)

S4-S2 = l, (11.49)

S5-S2 = 0. (11.50)

Equation (11.45) thus reduces to

S4 + S6(S6. S2) + S7(S7 . S2) + a71(a71 • S2) = 0. (11.51)
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Figure 11.12. GE
P60 solution tree.

Set 14 from the direction cosine tables for a spherical heptagon as listed in the appendix
is used to evaluate the remaining scalar products. Equation (11.51) can then be written as

S4 + S6Z71 + S7Zi + a71U12 = 0. (11.52)

This equation contains 6\ as its only unknown. Expanding Z7i, Zi, and Ui2 yields

S4 + S6[si2(X7Si + Y7ci) + Ci2Z7] + S7[ci2c71 - S12S71C1] + a7i[sisi2] = 0.
(11.53)

Because a12 = 270°, this equation can be simplified as

S4 + S6[-X7 S l - Y7ci] + S7[s7ici] + a7 1[-S l ] = 0. (11.54)

Grouping the S\ and ci terms yields

C l [ -S 6 Y 7 + S7s71] + S l [ -S 6 X 7 - a71] + [S4] = 0. (11.55)

The terms within the brackets in Eq. (11.55) can be calculated from the known values.
Thus, Eq. (11.55) represents an equation of the form Aci + Bsi + D = 0, where A, B, and
D are constants. It was shown in Section 6.7.2 how this type of equation can be solved
to yield two values of #1, that is, 0la and 0ib. Figure 11.12 shows the solution tree for
the mechanism thus far. The two associated values for the angle 0i can be calculated as
(0 i a - yi) and (0 ib - Ki).

11.3.2 Solution for6>5

A planar representation of the closed-loop spatial mechanism and its equivalent spher-
ical mechanism is shown in Figure 11.13. Because the vectors S2, S3, and S4 are parallel,
the equivalent spherical mechanism will be a spherical pentagon for which the angle
between the second and third links will equal (02 + #3 + O4).

From the equivalent spherical pentagon, the following spherical cosine law can be
written:

Z17 = Z5. (11.56)

It should be noted that this equation can be readily obtained from the spherical cosine law
for a spherical heptagon, Z71 = Z543, with a23 = a34 = 0.

Expanding the right side of Eq. (11.56) yields

Z n = C56C45 - S56S45C5. (11.57)
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2,3,4

Spatial
Mechanism

1
Equivalent
Spherical

Mechanism
Figure 11.13. Planar representations.

07

n , n , , H _ D^j
3a JO JC JOL

Figure 11.14. GE P60 solution tree.

Upon substituting the values 0:45 = 270° and a56 = 90°, this equation reduces to

Z 1 7 = c 5 . (11.58)

The previously solved-for value of 0ia will be substituted into Eq. (11.58) to yield two
corresponding values of 05. The process is repeated by using the calculated value for 0lb in
the equation to yield a further two other corresponding valued for 05. The current solution
tree for the problem is shown in Figure 11.14.

11.3.3 Solution for 06

The following two equations may be written for the equivalent spherical pentagon
shown in Figure 11.12:

X17 = X56,

Y17 = ~ X 56'

Expanding the right sides of these equations yields

X17 = X5c6 - Y5s6,

Y17 = - X 5 s 6 - Y5c6.

Substituting the definitions for X5 and Y5 gives

X17 = (S45S5)C6 + (S56C45 +

Y17 = -(S45S5)S6 + (S56C45 +

(11.59)

(11.60)

(11.61)

(11.62)

(11.63)

(11.64)
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wla
/ \

e5 a

96a

Figure
tree.

e5 b

Q6b

11.15.

e5 c

lb

e5 d

^6d

GEP60 solution

Substituting values for a45 = 270° and a56 = 90° yields

X17 = - s 5 c 6 , (11.65)

Y17 = s5s6. (11.66)

Solving for c^ and s6 gives

c6 = - , (11.67)

s6 = — . (11.68)

Substituting the previously calculated values for the four sets of corresponding angles
0i, 07, and 05 will yield a corresponding value for 06. The current solution tree is shown
in Figure 11.15.

It should be noted that the solution for 0g will be indeterminate when 05 = 0° or
05 = 180°. This special case, which also occurred for the Puma robot, will be discussed
in Section 11.5.

11.3.4 Solution for 03

At this point of the analysis, all joint angles are known except for 02, 03, and 04. These
are the angles for the three joint axes that are parallel. From Figure 11.11 it would appear
logical to determine the coordinates of the intersection point of the vectors S4 and a34 in
terms of the first coordinate system and then solve a planar triangle (two sides of which
are a23 and a34) for the angle 03. Once 03 is known, corresponding values for 02 and 04

would be computed.
Following this method, the solution will proceed by obtaining two equations that are

projections of the vector loop equation (Eq. 11.44). These two equations are obtained
by projecting the loop equation onto ai2 (the X axis of the first coordinate system) and a
vector perpendicular to S2 and SL\2 (the vector Si, the Z axis of the first coordinate system).
Using sets 1 and 14 of the sets of direction cosines for a spherical heptagon as listed in the
appendix, the projection of the vector loop equation onto the vector aJ2 may be written as

a23c2 + 2.34 W32 + S4X32 + 85X5-71 + SgX-71 + S7Xi + a7iCi = 0. (11.69)
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Similarly, set 14 is used to obtain the projection of the vector loop equation onto the vector
perpendicular to S2 and ai2 as follows:

-S1S12 - a23s2 - a34U*56712 + S4Y567i + S5Y67i + S6Y7i + S7Y1 + a71sici2 = 0.
(11.70)

The subsidiary equations

and

Y567i = - X ; 2 (11.72)

are substituted into Eq. (11.70) to yield

-S1S12 - a23s2 + a34V32 - S4X;2 + S5Y671 + S6Y71 + S7Y1 + a7iSiC12 = 0.

(11.73)

The terms X32 in Eq. (11.69) and X^2 in Eq. (11.73) equal zero after their definitions are
expanded and the constant mechanism dimensions are substituted. Equations (11.69) and
(11.73) may now be rearranged to yield respectively

a23c2 + a34W32 = -S5X6 7 1 - S6X71 - S7X! - a7lCl, (11.74)

- a23s2 + a34V32 = - S i - S5Y671 - S6Y71 - S7Y1. (11.75)

The right-hand sides of these equations will be denoted by Ki and K2, and thus

Kx = -S5X6 7 1 - S6X71 - S7X! - a71ci, (11.76)
K2 = - S i - S5Y671 - S6Y71 - S 7 Y L (11.77)

Because Ki and K2 are defined only in terms of constant mechanism parameters and
previously calculated joint angles, these values can be numerically calculated for each of
the four solution sets thus far.

Expanding the left sides of Eqs. (11.74) and (11.75) yields

a23c2 + a34(c2c3 - s2s3c23) = Ki, (11.78)

- a23s2 - a34(s2c3 + c2s3c23) = K2. (11.79)

Because a23 = 0, these equations reduce to

a23c2 + a34(c2c3 - s2s3) = Ki, (11.80)
-a 2 3 s 2 - a34(s2c3 + c2s3) = K2 (11.81)

or

a23c2 + a34c2+3 = Ki, (11.82)

—a 23s2 —  a34s2+3 = K2, (11.83)
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06c

03a 03b 03c 03d

Figure 11.16. GE P60 solution tree.

where the abbreviations s2+3 and c2+3 have been introduced as

s2+3 = sin(02 + 03), (11.84)

c 2 + 3 =cos(0 2 + 03). (11.85)

Squaring and adding Eqs. (11.82) and (11.83) gives

a23(s2 + cl) + a34(s2+3 + c2+s) + 2a23a34(c2c2+3 + s2s2+3) = K* + Kj. (11.86)

Now, (s^ + cl) = (s2+3 + C2+3) = 1. The third term in parentheses equals the cosine of
[02 —  (02 + 03)L which equals the cosine of [—03]. Thus, Eq. (11.86) may be written as

a23 + a34 + 2a23a34cos(-03) = K^ + K^. (11.87)

Because cos(—03) = cos  03,

a23 + a34 + 2a23a34C3 = K^ + Kj. (11.88)

Solving for C3 gives

Equation (11.89) can be used to determine two values for 03 for each of the four sets
of values for 07, 0i, and 06. The current solution tree for the manipulator is shown in
Figure 11.16.

11.3.5 Solution for 02

The angle 02 can be obtained from Eqs .(11.80) and (11.81). Regrouping these equations
gives

c2(a23 + a34c3) + s2(-a34s3) = Ki, (11.90)

s2(-a2 3 - a34c3) = K2. (11.91)

These two equations contain two unknowns, that is, c2 and s2. Input of sets of the previously
calculated joint parameters will yield values for the corresponding sine and cosine of 02.
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63a ©3b 03c 03d

02a 02b 02c 02d

Figure 11.17. GE P60 solution tree.

03a 03b 03c 03d

02a 02b 02c 02d 92e ^2f 02g 0 2 h

0 4 a 04b 04c 04d 04e 94f 94g 0 4 h

Figure 11.18. Final solution tree for GE P60
robot.

A unique corresponding value for 02 is then determined. The solution tree for the problem
thus far is shown in Figure 11.17.

11.3.6 Solution for 6>4

The corresponding value for the angle 64 will be obtained from the following two
fundamental sine and sine-cosine laws:

X67123 = S45S4, (11.92)

Y67123 = S45C4. (11.93)

Substituting a45 = 270° results in the following solution for the sine and cosine of 04:

s4 = -X6 7 1 2 3, (11.94)

c4 = -Y6 7 1 2 3. (11.95)

Thus, a unique corresponding value for 84 can be determined for each set of previously
calculated joint parameters. The final solution tree for the GE P60 robot is shown in
Figure 11.18.
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Table 11.6

Solution

A
B
C
D
E
F
G
H

Table 11.7

>. Eight solution sets for the GE P60 robot (angles in degrees).

0i

-139.443
-139.443
-139.443
-139.443

30.730
30.730
30.730
30.730

o2

142.825
-133.183

123.396
-114.585

-63.241
58.127

-48.562
36.027

o3

73.355
-73.355
103.879

-103.879
103.385

-103.385
73.855

-73.855

r. Mechanism parameters for the
T3-776 robot.

Link length

ai2 = 0
a23 = 44
a34 = 0
a 4 5 = 0
a56 = 0

, in. Twist angle, deg.

an = 90
a23 = 0
a34 = 90
a45 = 61
a56 = 61

o4

60.073
122.790

-131.022
-45.284

-149.362
-63.960

45.490
108.610

144.493
144.493

-144.493
-144.493

37.692
37.692

-37.692
-37.692

Cincinnati Milacron

Joint offset, in,

S2 = 0
S 3 = 0
S4 = 55
S 5 = 0

Joint

01 =
02 =

o3 =
04 =
05 =
06 =

-52.334
-52.334
127.666
127.666
143.774
143.774

-36.226
-36.226

angle, deg.

variable
variable
variable
variable
variable
variable

11.3.7 Numerical example

As a numerical example, the following information was specified for the GE P60
manipulator:

= 15.24 cm., 6Ptool =

F-0.5774'
0.5774
0.5774

cm., FPtool =

" 0.4082'
0.8165

-0.4082

80.0"
80.0
18.0

cm.,

Table 11.6 shows the results of the reverse-position analysis.

11.4 Cincinnati Milacron T3-776 manipulator
The Cincinnati Milacron T3-776 robot is shown in Figure 11.19. A kinematic model of

this robot with joint axis and link vectors labeled is shown in Figure 11.20. The constant
mechanism parameters are listed in Table 11.7. It is apparent that the geometry of this
manipulator is very similar to that of the Puma robot, that is, the second and third joint
axes are parallel and the last three joint axes intersect at a point. The detailed solution
will therefore be very similar to that for the Puma robot. This solution will be followed
by a general discussion of a geometric solution that does not require that the hypothetical
closure link be determined.
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Figure 11.19. Cincinnati Milacron T3-776 robot.

a34

Figure 11.20. Kinematic model of Cincinnati Milacron T3-
776 robot.

As before, the parameter S6 is a free choice that must be made in order to specify the
location of the origin of the sixth coordinate system. One input to the reverse-analysis
problem is the location of the tool point measured in terms of the sixth coordinate system.
This cannot be specified if the physical location of the origin of the sixth coordinate system
is not known. A value of S6 equal to six inches is selected, as this positions the origin of
the sixth coordinate system at the center of the robot's tool mounting plate.
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Table 11.8. Mechanism parameters for closed-loop T3-776 mechanism.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.

ai2 = 0
a23 = 44
a34 = 0
a 4 5 - 0
a56 = 0
a67 = 0*
a?i = C.L.

a12 = 90
«23 = 0
a34 = 90
G?45 = 6 1

a56 = 61
«67 = 90*
«7i = C.L.

Si = C.L.
S2 = 0
S 3 = 0
S4 = 55
S5 = 0
S6 = 6*
S7 = C.L.

0i = variable
02 = variable
03 = variable
04 = variable
05 = variable
06 = variable
<97 - C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure

The reverse analysis problem statement is repeated again as follows:

given: S6 and the direction of a67 relative to S6 in order to establish the sixth coordinate
system,

6Ptooi: the location of the tool point in the sixth coordinate system,
FPtOoi' the desired location of the tool point in the fixed coordinate system, and
FS6, Fa67: the desired orientation of the robot end effector,

find: 0i, 02» #3, #4, #5, 0 6: the joint angle parameters that will position and orient the
end effector as desired.

The solution to this problem proceeds as described in Chapter 5. From the given
information, Eq. (5.3) can be used to determine the position of the origin of the sixth
coordinate system measured in the fixed coordinate system. A hypothetical closure link
is then created to form a closed-loop spatial mechanism. The link length a67 and the twist
angle a67 were arbitrarily selected as zero and ninety degrees respectively. With these two
choices, the direction of the vector S7 is known in terms of the fixed coordinate system.
Further, the hypothetical seventh joint axis is known to pass through the origin of the sixth
coordinate system.

Chapter 5 shows how the six close-the-loop parameters (S7, Si, a7i, 07, a7i, and y{)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.8 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.

11.4.1 Solution f o r ^ and fa

The vector loop equation for the closed-loop Cincinnati Milacron T3-776 mechanism
is as follows:

SiSi + a23a23 + S4S4 + S6S6 + S7S7 + a7ia7i = 0. (11.96)

Expressing the vectors in terms of set 14 of the table of direction cosines for the spatial



11.4 Cincinnati Milacron T3-776 manipulator 341

heptagon yields

c2 \ /X567A
a23 -S2 + S4 Y5671

\ 0 / \ Z /

(11.97)

Subsidiary spatial and polar sine, sine-cosine, and cosine laws can be used to simply the
terms for the vector S4. Thus, Eq. (11.97) can be written as

°
- S 1 2
c1 2

/X71\ /XA / c , \ / 0 \
+ S6 Y71 + S 7 Yi +a7 1 slCl2 = 0 . (11.98)

\Z71/ \ZJ \Vl2J \0j
The Z component equation (which is equivalent to projecting the vector loop equation
onto the S2 axis) is

S1C12 + S4Z3 + S6Z7i + S7Z1 + a71U12 = 0. (11.99)

Because a23 = 0° and a34 = 90°, Z3 = 0, and because al2 = 90°, cl2 = 0, Eq. (11.99)
thus reduces to

S6Z71 + S7Z! + a71U12 = 0. (11.100)

This equation contains 6\ as its only unknown. Expanding Z7i, Zi, and U12 yields

S6[si2(X7Si + Y7C1) + c12Z7] + S7[ci2c71 - S12S71C1] + a7i[sisi2] = 0. (11.101)

This equation can be simplified by substituting S12 = 1 and ci2 = 0 and may be written as

S6[X7Sl + Y7Cl] + S7[-s7iCi] + a71[Sl] = 0. (11.102)

Grouping the Si and ci terms yields

[S6Y7 - S7s71]Cl + [S6X7 + a7i]si = 0. (11.103)

Upon expanding X7 and Y7 with a61 = 90°, Eq. (11.103) may be written as

[-S6c7c71 - S7s71]ci + [S6s7 + a7i]si = 0. (11.104)

The terms within the brackets in Eq. (11.104) can be calculated from the known values.
Rearranging this equation gives

si (S6c7c7i +S7s7 i )
tan6>! = - = — • -—. (11.105)

ci (S6s7 + a71)
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Figure 11.21. T3-776 so-
lution tree.

Two distinct values of 6\ will satisfy Eq. (11.105). Figure 11.21 shows the solution tree
for the mechanism thus far. The two associated values for the angle <j>\ can be calculated
as ( 0 i a - y i ) and ( 0 i b - / i ) .

11.4.2 Solution for 63

Substituting Si2 = 1 and ci2 = 0 into the X and Y components of Eq. (11.98) yields

a23c2 + S4X32 + S6X7i + S7X! + a7ici = 0, (11.106)
- S i - a23s2 - S4X;2 + S6Y71 + S7Yi = 0. (11.107)

All terms that do not contain the unknown variables 02 and 03 will be transfered to the
right-hand side of Eqs. (11.106) and (11.107) to give

a23c2 + S4X32 = A,

where

A = - S 6 X 7 1 - S 7 X 1 - a 7 1 c 1 ,

B = - S i + S 6 Y 7 i + S 7 Y 1 .

Expanding X32 and X^2 gives

a23c2 + S4[(s34s3)c2 + (s23c34 + c23s34c3)s2] = A,

a23s2 + S4[(s34s3)s2 - (s23c34 + c23s34c3)c2] = B.

Substituting for a23 = 0° and a34 = 90° gives

a23c2 + S4[s3c2 + c3s2] = A,

a23s2 + S4[s3s2 —  c3c2] = B.

These equations can be written as

a23c2 + S4s2+3 = A,

a23s2 - S4c2+3 = B,

where s2+3 and c2+3 represent the sine and cosine of (#2 + #3) respectively.

(11

(11

(11

(11

(11

(11

(11

(11

.108)

.109)

.110)

.111)

.112)

.113)

.114)

.115)

(11.116)

(11.117)
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03a 03b 03c 03d

Figure 11.22. T3-776 solution
tree.

Equations (11.114) and (11.115) represent two equations in the two unknowns 02 and
63. These variables will be solved for by adding the squares of Eqs. (11.116) and (11.117).
Squaring the equations gives

a23C2 + S4S2+3 + 2a23S4C2S2+3 = A2, (11.118)

-S2c2
 3 - 2a 2 3 S 4 s 2 c 2 + 3 = B2. (11.119)

Adding yields

a2
3 + S2 + 2a23S4[c2s2+3 - s2c2+3] = A2 + B2. (11.120)

Recognizing that [c2s2+3 —  s2c2+3] = sin[(#2 + #3) —  #2] = sin(#3) = s3 gives

a2
3 + S2 + 2a23S4s3 = A2 + B2. (11.121)

Solving this equation for s3 gives

2a23S4

Two values for #3 exist that satisfy this equation. The current solution tree is shown in
Figure 11.22.

11.4.3 Solution for#2

Equations (11.114) and (11.115) can be used to solve for the angle 02. Regrouping
these equations gives

c2[a23 + S4s3] + s2[S4c3] = A, (11.123)

s2[a23 + S4s3] + c2[-S4c3] - B. (11.124)

Equations (11.123) and (11.124) represent two equations in the two unknowns c2 and
s2. Thus, a unique corresponding value of 02 can be found for each 01? 63 pair. In other
words, 0la and #3a will be substituted into the equations to yield #2a. Similarly, 0la and #3b

will be substituted into the equations to yield #2b. The current solution tree is shown in
Figure 11.23.



344 Case studies

e,.
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Figure 11.23. T3-776 solu-
tion tree.
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Figure 11.24. T3-776 solution tree.

11.4.4 Solution for 6>5

The angle 95 can be readily determined from the spherical equation

Z7123 = Z 5 .

Expanding the right-hand side of this equation yields

Z7123 = C56C45 - S56S45C5.

Solving this equation for C5 yields

C56C45 "" ̂ 7123
C5 =

S56S45

(11.125)

(11.126)

(11.127)

Thus, for each combination of 07, 0\, #3, and 62, a value for c5 and thereby two values for
#5 can be determined. The solution tree for this analysis is now shown in Figure 11.24.

11.4.5 Solution for 6>4

Corresponding values for 64 can be obtained from the following two subsidiary spherical
equations:

X 5 4 = X7123,

X54 = —  Y7123.

(11.128)

(11.129)
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'3a

e2a

65a 95b

84a 9 4

'3b

'2b

0 4

' 3c

'2c

4b 94c 04d 94e 04f

Figure 11.25. T3-776 solution tree.

'3d

'2d

95f 95g

0 4

Expanding the left-hand sides of the above equations yields

X5C4 — Y5S4 =  X 7 1 2 3 ,

X5S4 + Y5C4 = -Y7123 ,

where

X5 = S56S5,

(11.130)

(11.131)

(11.132)

(11.133)

Equations (11.130) and (11.131) represent two equations in the two unknowns, s4 and c4.
Substituting the previously calculated values for the eight sets of corresponding values for
#7, 0i, 02, 03, and #5 will yield a corresponding value for 04. The current solution tree is
shown in Figure 11.25.

It should be noted that the solution for 64 becomes indeterminate if 05 = 180°. In this
case, X5 = Y5 = 0 (Y5 = 0 because a45 = a56). When this case occurs, the vector S6

becomes collinear with the vector S4. This special case will be discussed in Section 11.5.

11.4.6 Solution for 06

The angle 96 is the last remaining joint angle to be determined. It will be calculated
from the following two fundamental spherical sine and sine-cosine laws:

X43217 = S56S6,

Y43217 = S56C6.

(11.134)

(11.135)

Thus, a corresponding value for 96 can be found for each of the eight sets of values for
07, 0i, 03, 02, 05, and O4. The final solution tree for the Cincinnati Milacron T3-776 robot
is shown in Figure 11.26. The solution of the reverse analysis for the manipulator is
complete.
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Table 11.9.

Solution

A
B
C
D
E
F
G
H

Eight solution sets for the T3-776 robot (angles in degrees).

01

36.945
36.945
36.945
36.945

-143.055
-143.055
-143.055
-143.055

84.358
84.358

-47.830
-47.830

-132.170
-132.170

95.642
95.642

-23.095
-23.095

-156.905
-156.905

-23.095
-23.095

-156.905
-156.905

70.853
-136.036

163.422
-62.672
-16.578
117.328

-109.147
43.964

127.506
-127.506

97.464
-97.464

97.464
-97.464
127.506

-127.506

100.818
-106.070

-6.476
127.430
-6.476
127.430
100.818

-106.070

Ma

'3a

5b

9 6

'3b

'2b

5d

'3c

'2c

0 6

'3d

'2d

4a 94b 94c 94d 94c 94f 94g

6b 96c 06d 66e 66f ^ 6 g

Figure 11.26. Final solution tree for T3-776 robot.

11.4.7 Numerical example

As a numerical example, the following information was specified for the T3-776 ma-
nipulator:

6 p
* tool

1.0"
0.0
0.0

=

Fa6

5
3
V.

in.

7 =

'0
0

Fp
> r t oo l —

0 "
707

0.707

55.0
33
.23

.0

.0
in..

Table 11.9 shows the results of the reverse-position analysis.
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11.4.8 Geometric solution

It is possible to directly calculate the joint angle values for the Cincinnati Milacron
T3-776 manipulator for the reverse-analysis problem statement without performing the
close-the-loop step. This direct geometric solution is possible because of the simplicity
of the geometry of the manipulator, that is, the first two joint axes intersect, the last three
joint axes intersect, the second and third joint axes are parallel, and the vectors Si, ai 2, a23,
and S4 are coplanar.

The geometric analysis begins by first obtaining the coordinates of the point at the center
of the ball and socket joint in terms of the fixed coordinate system. This is accomplished
by first using Eq. (5.3) to obtain the coordinates of the origin of the sixth coordinate
system measured with respect to the fixed system. The coordinates of the center of the
ball and socket joint (the point of intersection of the vectors S4, S5, and S6), FPBS> are then
determined as

— P6orig — S6 (11.136)

Figure 11.27 shows the kinematic diagram of the T3-776 manipulator with the vector
PBS drawn. It is apparent in the figure that the vectors ai2, a23, Si, S4, and PBs all lie in
the same plane. Because of this, the vector Fai2 must equal a unit vector that is parallel or
antiparallel to the vector FPBs with its Z component subtracted. This can be written as

Fa,2 = ±
FPBS - (FPBS • k)k

|FPBS - (FPBS • k )k | '
(11.137)

Alternately, if the vector FPBs is written as FPBSX1 + FPBSyj + FPBSzk, Eq. (11.137) can be
written as

Fai2 = ± 1 + (11.138)

Figure 11.27. Modified kinematic diagram
of the T3-776 manipulator.
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Figure 11.28. Alternate direction for ai

Figure 11.29. Planar triangle.

Figure 11.27 shows the manipulator for the "plus" case of Eq. (11.138), and Figure 11.28
shows the "minus" case. The sine and cosine of 0i that correspond to each of the two
configurations can be calculated from

cos(0i) = Fai2 • i
and

sin(0i) = (i x Fai2) • k.

(11.139)

(11.140)

The two unique values for </>i are thus determined.
The angle #3 will be determined next. Because the vector PBs is known in terms of

the fixed coordinate system, the magnitude of this vector represents the scalar distance of
the center of the ball and socket joint from the origin. A planar triangle is formed whose
three sides are all known as shown in Figure 11.29 (S2 and S3 point out of the page in the
figure).

A cosine law for the planar triangle is written as

| FPB S | 2 = Sj - 2a23S4 cos(<93 TT/2).

Recognizing that cos(#3 + 7r/2) equals —s 3 and then solving for s3 yields

s3 = 2a23S4

(11.141)

(11.142)
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BSz

Figure 11.30. Planar triangle.

Two values of #3 will satisfy this equation. It is interesting to compare this result with
Eq. (11.122). Further, it is interesting to note that the values for 03 are not dependent on

The angle 02 can be determined for the case where ai2 points towards the ball and socket
joint by again considering the planar triangle, which is redrawn in Figure 11.30 with the
vectors S2 and S3 coming out of the page. Projecting two sides of the triangle onto the
vectors ai2 and Si yields the following two equations:

a23c2 + S4 cos(02 + 03 - TT/2) = V
/ P k + P|sy5 (11.143)

a23s2 + S4 sin(6>2 + 03 - TT/2) = PBSz. (11.144)

Recognizing that cos(02 + #3 —  Tt/2) = s2+3 and that sin(02 + 03 —  n/2) = — c 2+3, these
two equations may be written as

a23c2 + S4s2+3 = ^Hsx + Hsy, (11.145)
a23s2 - S4c2+3 = PBSz. (11.146)

These two equations may be used to determine the unique corresponding value of 02 for
each of the two previously calculated values of O3. It is interesting to compare Eqs. (11.145)
and (11.146) with Eqs. (11.116) and (11.117). A similar solution can be obtained by
projection of 02 for the case where ai2 points away from the ball and socket joint.

The remaining angles to be determined are 04, 05, and 06. In Sections 11.4.4 through
11.4.6, the angles were readily found from appropriate spherical sine, sine-cosine, and
cosine laws. However, if the close-the-loop step is not performed, then the previous
approach is not valid because the angle 01 is not known.

The solution can proceed, however, by writing the general transformation equation as

F T = F T ^ T ^ T ^ T ^ T ^ T . (11.147)

The orientation part of this equation may be written as

iJR^RiR^R^R. (11.148)

The matrix £R is known because the orientation of the sixth coordinate system relative to
the fixed system was given in the reverse-analysis problem statement. The general rotation
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matrix jR, where j = i + 1, was given as the upper left 3 x 3 matrix in Eq. (3.7) and is
repeated here as

0

Cjj _

(11.149)

The rotation matrix ^R was given as the upper 3 x 3 matrix in Eq. (3.9) as

cos(0i) —sin(</>i)  0"
cos(0i) 0

0 0 1
(11.150)

Because values are known for the angles fa, 02, and 03, the rotation matrices ^R, 2R, and
3R are fully defined. Moving these matrices to the left side of Eq. (11.148) yields

3r> 2T»  1 T> FT> 3T> 4T> 5T»
2 K 1 K F K 6 K —  4 K 5 K 6 K * (11.151)

All terms on the left-hand side of Eq. (11.151) are known, and the resulting 3 x 3 matrix
can be computed for each of the combination of values for the angles fa, 02, and 03. This
resulting matrix is equal to 3

6R, and Eq. (11.151) is rewritten as

3ij 3ij 4|j 5|j (\\\ K1\
6K —  4K5K6K. (11.OZ)

This equation is rearranged by moving the matrix 4R to the left-hand side and then ex-
panding the matrices 3R, *R, and ^R and substituting the numerical value for a34 to yield

(11.153)
c4

- s 4

0

0
0

- 1

s4

c4

0_

c5

S5Q5

_S5S45

- s 5

C5C45

C5S4 5

0
- s 4 5

C 4 5 .

c6

S6C56

.S6S56

- s 6

C6C56

C6S56

0
- s

c5

The matrix ?R is known and will be written as

a b d
e f g
h i j

(11.154)

Performing the matrix multiplication on both sides of Eq. (11.154) and equating the third-
row, third-column element of the results yields the following equation:

- g = -S56S45C5 + c 5 6 c 4 5 . (11.155)

This equation can be solved for the cosine of 05, which indicates that two values of #5 will
exist for each combination of fa, 62, and #3.

Equating the first-row, third-column elements and the second-row, third-column ele-
ments of Eq. (11.153) results in the following two equations:

dc4 + j s 4 = s5s56,

- d s 4 + jc4 = -c45s56C5 - s45c56.

(11.156)

(11.157)
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These two equations can be used to solve for the corresponding values for the sine and
cosine of 04.

Equating the first-row, first-column elements and the second-row, first-column elements
of Eq. (11.153) results in the following two equations:

ac4 + hs4 = c5c6 - s5s6C56, (11.158)

- a s 4 + hc4 = s5c6c45 + c45C56c5c6. (11.159)

These two equations can be used to solve for the corresponding values for the sine and
cosine of 06.

At this point, the geometric solution of the reverse-analysis problem for the Cincinnati
Milacron T3-776 manipulator is complete. It was shown that it is possible to perform the
reverse-analysis without performing the close-the-loop step. However, it should be noted
that the geometric solution was successful in large part because of the simple geometry
of the robot being analyzed.

Performing the close-the-loop step allows for the use of the spherical equations derived
in Chapter 6. Without these spherical equations, one is left with the task of expanding
the transformation matrices in Eq. (11.147) (which is more general than expanding the
rotation matrices of Eq. (11.148)) and then rearranging the matrices, performing the matrix
multiplications, and looking for corresponding elements that yield appropriate solution
equations. Although this approach will work for simple manipulators, it will not be
sufficient for more complex cases.

11.5 Special configurations
It was noted for the Puma robot that when sin 6$ = 0, the solution for 04 is indeterminate

(see Section 11.2.5). When this case occurs, the joint axis vectors S4 and S6 become
collinear. The reverse position analysis can proceed, however, by selecting any arbitrary
value for 04. The corresponding calculated value for 06 will orient the end effector as
specified.

A similar situation occurred for the Cincinnati Milacron manipulator. It was noted in
Section 11.4.5 that the solution for the angle 04 became indeterminate when 05 = 180°.
For this case, the joint axis vectors S4 and S6 again become collinear. The analysis can
proceed by selecting an arbitrary value for 04 and then solving for the corresponding value
of06.

A special configuration of the GE P60 manipulator occurred when sin 05 = 0 (see
Section 11.3.3). In this case, four joint axis vectors become parallel. Because only three
parallel joint axes are necessary to position and orient an object in the plane perpendicular
to the joint axes, the fourth parallel joint axis is redundant. An arbitrary value can be
selected for 06, and corresponding values for 02,03, and 04 can be determined.

At each of the special configurations, the joint axes of the manipulator became linearly
dependent. In each case, the reverse-position analysis could continue, however, by making
an arbitrary selection for the appropriate joint parameter. Examples of when the joint axes
of a manipulator become linearly dependent are when four axes intersect at a point, four
axes are parallel, or two joint axes are collinear.



352 Case studies

It is important to be able to identify all the cases where the joint axes become linearly
dependent for a particular manipulator (and to avoid these configurations when possible).
When a manipulator is in such a linearly dependent configuration, it will in most cases
not be able to move its end effector at the user-commanded velocity. In an attempt to
control the velocity of the end effector, some joint velocities may approach infinity. This
topic is discussed in detail in a companion book to this text that introduces the screw
theory technique and details the forward-and reverse-velocity analyses for a serial robot
manipulator.

11.6 Space station remote manipulator system (SSRMS)
The conceptual design of a SSRMS is shown in Figure 11.31. As shown in the figure,

this is a seven-axis manipulator in which the first and second joint axes intersect; the
third, fourth, and fifth joint axes are parallel; and the sixth and seventh joint axes intersect.
The kinematic diagram for the manipulator is shown in Figure 11.32, and the constant

Elbow Transition-
Piece

Backup Drive
Unit (BDU) scar

Camera, Light &
Pan/Tilt Unit

Arm Computer
Units (ACU)

— Elbow Joint

• 7 % - / \ Camera, Light &
Pan/Tilt Unit

Hinge
Joints

(Pitch, Yaw, Roll)

Latching
End Effector

•A"

Camera, &
Light Assembly

Video Distribution
Units (VDU)

-End HB" Indicator Stripe

. Joint Electronics Unit (2 per joint)

-Camera & Light Assembly

-Latching End -Effector "B"

Figure 11.31. Space station remote manipulator system.
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Table 11.10. Mechanism parameters for the SSRMS.

Link length, mm.

a12 = 0
a23 = 380
a34 = 6850
a45 = 6850
a56 = 380
a6v = 0

Twist angle, deg.

a12 = 90
a23 = 270
Of34 = 0

(X45=0
a56 = 90
«67 = 90

Joint offset, mm.

S2 = 635
S3 = 504
S4 = 504
S5 = 504
S6 = 635

Joint angle, deg.

0i = variable
02 = user input
03 = variable
04 = variable
05 —  variable
06 —  variable
#7 = variable

s3

s2

Figure 11.32. SSRMS kinematic diagram.

mechanism parameters are listed in Table 11.10. The manipulator is classified as being
redundant because only six joint axes are necessary to position and orient the end effector
arbitrarily in space. The reverse kinematic position analysis will proceed, however, by
having the user specify one of the joint angle parameters in addition to specifying the
desired position and orientation of the end effector (see Crane (1991)).

In the present analysis, the user must specify 02 in addition to the desired end effector
position and orientation. This strategy offers a distinct advantage in that the parameter 02

has a physical meaning for the operator. This angle governs the orientation of the longest
links of the manipulator (a34 and a45 in Figure 11.32) with respect to the XY plane through
the base of the robot. The prior specification of 62 will enable the user to take better
advantage of the redundancy of the system by being able to position the longest links of
the manipulator to move over or around obstacles in the work space.

As with the other manipulators, the parameter S7 is a free choice that must be made in
order to specify the location of the origin of the seventh coordinate system. A value of
800 mm will be used for this analysis.
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The reverse-analysis problem statement is presented as follows:

given: S7 and the direction of a78 relative to S7 in order to establish the seventh coordinate
system,

7PtOoi: the location of the tool point in the seventh coordinate system,
FPtoOb the desired location of the tool point in the fixed coordinate system,
FS7, Fa78: the desired orientation of the robot end effector, and
02: the redundancy parameter,

find: 0i, #3, #4, #5, #6 ,@i'' the joint angle parameters that will position and orient the
end effector as desired.

The solution to this problem proceeds as described in Chapter 5. From the given
information, a slightly modified version of Eq. (5.3) can be used to determine the position
of the origin of the seventh coordinate system measured in the fixed coordinate system.
A hypothetical closure link is then created to form a closed-loop spatial mechanism. The
link length a78 and the twist angle ô g were arbitrarily selected as zero and ninety degrees
respectively. With these two choices, the direction of the vector S8 is known in terms of
the fixed coordinate system. Further, the hypothetical eighth joint axis is known to pass
through the origin of the seventh coordinate system.

Chapter 5 shows how the six close-the-loop parameters (S8, Si, a8i, #8, a%\, and y\)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.11 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.

11.6.1 Development of an equivalent
six-degree-of-freedom manipulator

The first step of this reverse kinematic analysis is to reduce the manipulator to an
equivalent six-degree-of-freedom device. Shown in Figure 11.33a is a close-up drawing
of the first three joints of the manipulator. The value of 62 has been specified by the user,
and joint 3 becomes, in effect, the second unknown joint angle of the system. For this

Table 11.11. Mechanism parameters for closed-loop SSRMS mechanism.

Link length, mm.

a , 2 - 0
a23 = 380
a34 = 6850
a45 = 6850
a56 = 380
a 6 7 = 0
a78 = 0*
a81 = C.L.

Twist angle, deg.

a,2 = 90
CX23 = 270
(*34=0
(*45=0
a56 = 90
<*67 = 9 0

<*78 = 90*
or81 = C.L.

Joint offset, mm.

Si = C.L.
S2 = 635
S3 = 504
S4 = 504
S5 - 504
S6 - 635
S7 = 800*
Ss = C.L.

Joint angle, deg.

0i = variable
02 = user input
#3 = variable
#4 = variable
#5 = variable
06 = variable
07 = variable
£8 = C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure
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Xp

(a)
Figure 11.33. Development of equivalent
six-axis manipulator.

a12 pointing out
of page here

S2 pointing out
of page here

Figure 11.34. Determination of S', and S2.

(b)

reason, the axis S3 has been relabeled as S2 in Figure 11.33b. It is now necessary to
determine

(1) the perpendicular distance between the joint axes Si and S^Ca^),
(2) the twist angle between the two axes Si and S^a^ ) ,
(3) the current effective link length S2, and
(4) the current effective link length S[

as a function of the input parameter 02. With knowledge of these four values, an equivalent
six-axis manipulator can be modeled.

Figure 11.34 shows a drawing of the first three joints of the manipulator with the axis
S2 coming out of the page. It can be seen in the figure that the lengths di and d2 are given
by

di = — a 23/tan#2,
d2 = a23/sin#2.

(11.160)

(11.161)
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Table 11.12. Mechanism parameters for modified closed-loop
SSRMS mechanism.

Link length, mm.

a,2 = 635
a23 = 6850
a34 = 6850
a45 = 380
a56 = 0
a67 = 0*
a7i = C.L.

Twist angle, deg.

a34 = 0
a45 = 90
a56 = 90
a61 = 90*
«7i = C.L.

Joint offset, mm.

Si =C.L + d**
S2 = 504 + d**
S3 = 504
S4 = 504
S5 = 635
S6 = 800*
S7 = C.L.

Joint angle, deg.

0i = variable
02 = variable
Q3 = variable
04 = variable
05 = variable
06 = variable
07 = C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure
** = Calculated as a function of the original input angle 62

The new effective link lengths S2 and S[ can be determined as

s; =
From Figure 11.33b, it can be seen that

ar
12 = S2,

<*'l2 = 0 2 ,

</>!=</>;-270°,
03=0^-90°.

(11.162)
(11.163)

(11.164)
(11.165)
(11.166)
(11.167)

By applying Eqs. (11.160) through (11.167), a new equivalent six-axis manipulator is con-
structed where certain link length and offset values are a function of 02. This manipulator
is shown in Figure 11.35 without the use of the primed notation used in the equations.
Table 11.12 shows the mechanism parameters for the equivalent six-axis manipulator after
the close-the-loop procedure has been completed. Also, it should be noted that the values
di and d2 approach infinity when 02 is near 0 or 180 degrees. If 02 approaches one of these
values, the manipulator is in a special configuration because four joint axes are parallel.
No solutions to the reverse kinematic problem are determined for this case.

11.6.2 Calculation of

Throughout the remaining sections of the kinematic analysis, the primed notation for
the equivalent six-axis manipulator will be discontinued. The joint angle values of the
actual SSRMS will be distinguished from the joint angle numbers of the equivalent six-
axis manipulator by writing the actual angles with an additional subscript, actual. For
example, the fourth joint angle of the actual SSRMS will be written as Actual- The symbol
64 will refer to the value of the fourth joint angle of the equivalent six-axis manipulator.
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Figure 11.35. Equivalent six-axis manipulator.

The vector loop equation of the equivalent closed-loop spatial mechanism can be written

Si + S2S2 + S3S3 + S4S4 + S5S5 +

+ S7S7 + ai2ai2 = 0. (11.168)

This equation can be projected onto the vector S2 (set 14 of the table of direction cosines
for a spherical heptagon in the appendix) to give the following equation:

S6Z71 + S5Z671 + S4Z5671 + S3Z45671 + S2

S7Z1 + a45U567i2 + a34U4567i2 + a7iU12 = 0. (11.169)

Because the vectors S2, S3, and S4 are parallel, Eq. (11.169) may be rewritten as

S6Z71 + S5Z671 + (S2 + S3 + S4) + S1C12

a34U4567i2 + a71U12 = 0. (11.170)

Substitution of the SSRMS mechanism parameters of the equivalent six-axis manipulator
reduces Eq. (11.170) to the following expression:

(11.171)

Ci[-S6s12c7ic7 - S7si2s7i] + Si[S6Si2s7

+ [S2 + S3 + S4 + S1C12 - S6ci2s7ic7 + S7ci2c7i] = 0.

Equation (11.171) is the input/output equation for the closed-loop mechanism. The only
unknown in the equation is 9\. Two values of 9\ can be determined that satisfy this
equation. The solution tree of the manipulator to this point is shown in Figure 11.36.

The angle <j>\ can be calculated by subtracting the close-the-loop variable y\ from each
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Figure 11.36. SS-
RMS solution tree.

ela

05c 05d

Figure 11.37. SSRMS solution
tree.

value of 6\. The angle 0iactuai» the first joint angle of the actual manipulator, can then be
found from Eq. (11.166), where the angles <f>[ and 0i in that equation are respectively the
angles </>i and </>iactuai referred to here.

11.6.3 Calculation of 6$ (factual)

#5 can be determined from the following spherical cosine law for a spatial heptagon:

Z7i23=Z5. (11.172)

This equation reduces to the following result because the vectors S2, S3, and S4 are parallel:

Z7 i=Zs . (11.173)

Substitution of the mechanism parameter values into Eq. (11.173) yields the following
expression for 05:

c5 = - s i 2 [ s 7 s i - C71C7C1] + C12S71C7. (11.174)

Two values of #5 can be determined that satisfy this equation. The current solution tree
for the manipulator is shown in Figure 11.37.

11.6.4 Calculation of 06 (factual)

Two equations that contain 06 can be written as follows:

X 1 7 =X 5 6 , (11.175)

Y17 = -X; 6 . (11.176)
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6a 6b 6c 6d

Figure 11.38. SSRMS solution
tree.

These equations are spherical sine and sine-cosine laws for a spherical pentagon and can
be used in this case because vectors S2, S3, and S4 are parallel.

Substitution of the mechanism parameters into Eqs. (11.175) and (11.176) and solving
for the sine and cosine of #6 gives

c6 = X17/s5, (11.177)

s6 = - Y 1 7 / s 5 . (11.178)

One value of 66 will simultaneously satisfy Eqs. (11.177) and (11.178). The solution
tree for the manipulator is shown in Figure 11.38. It must be noted that these equations
cannot be solved for 06 if 65 equals 0 or n. If this occurs, four axes of the manipulator
will become parallel and the manipulator is in a special configuration.

11.6.5 Calculat ion of 03 (6>4actuai)

The vector loop equation for the closed-loop mechanism was written as Eq. (11.168). In
order to solve for 0\, this equation was projected onto the S2 vector. In order to solve for 63,
Eq. (11.168) will be projected onto the ai2 vector and also onto a direction perpendicular
to aJ2 and S2. These two equations may be written as

S6X71 + S5X67i + S7X! + a45W567i + aw + a71d = - a34W4567i - a23c2, (11.179)

S6Y71 + S5Y671 - Sisi2 + S7Y! - a45U5*6712 + a71slCl2 - a34U^56712 + a23s2. (11.180)

The left sides of Eqs. (11.179) and (11.180) contain only known mechanism parameters
and joint angle values. The right sides of the equations contain 02 and 63.

Two new terms, P567i and Q5671, will represent the left-hand sides of Eqs (11.179) and
(11.180) and are defined as follows:

P567i=S6X71 + S5X671 + S7X! + a45W567i + ai2 + a7lCl, (11.181)

Q567i=S6Y71 + S5Y671 - S l S l 2 + S7Y! - a45U5*6712 + a7lSlc12. (11.182)

The terms on the right-hand side of Eqs. (11.179) and (11.180) may be expanded as
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3a y 3 b y 3c y 3d °3e °3f y 3g ^3h

Figure 11.39. SSRMS solution tree,

follows:
U456712 = ~ V 32 = S2C3 + C2S3C23, (11.183)

W45671 = W32 = c2c3 - s2s3c23. (11.184)

Substitution of these terms with o?23 = 0° into Eqs. (11.179) and (11.180) results in the
following two equations:

P5671 = -a 3 4 c 2 + 3 - a23c2, (11.185)

Q5671 = a34s2+3 + a23s2, (11.186)

where c2+3 and s2+3 represent the cosine and sine of (02 + 03).
Squaring and adding Eqs. (11.185) and (11.186) gives

P5671 + Q5671 = a2
4 + a2

3 + 2a34a23c3. (11.187)

Equation (11.187) may be solved to yield the value of cos 03. Two values of 03 can satisfy
this equation, and the current solution tree for the manipulator is shown in Figure 11.39.

11.6.6 Calculation of 02(03actuai)

Equations (11.185) and (11.186) can be used to determine corresponding values for
02. Multiplying Eq. (11.185) by —  (a34c3 + a23) and Eq. (11.186) by (a34s3) and summing
gives

[(a34c3 + a23)2 + (a34s3)2]c2 = - (a3 4c3 + a23)P5671 + (a34s3)Q5671. (11.188)

Multiplying Eq. (11.186) by (a34c3 + a23) and Eq. (11.185) by (a34s3) and summing
gives

[(a34c3 + a23)2 + (a34s3)2]s2 = (a34c3 + a23)Q567i + (a34s3)P5671. (11.189)

Equations (11.188) and (11.189) can be used to calculate a corresponding value for 02.
Equation (11.167) is then used to determine the angle 03actuah where the angles 0'2 and 03

in that equation are respectively the angles 02 and 03actuai referred to here. The current
solution tree for the manipulator is shown in Figure 11.40.
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03a 03b 03c 03d

02a 02b 02c

Figure 11.40. SSRMS solution tree.

07

03a 03b 03c 03d

02a 02b 02c 02d 92e 2f 2g 2h

04 a 04b 04c 04d 04e % 04g ©4h

Figure 11.41. Final solution tree for the SS-
RMS.

11.6.7 Calculation of 0A(#5actuai)

The final joint parameter can be determined from the following sine and sine-cosine
laws for a spherical heptagon:

X67i23 = S45S4, (11.190)

Y67123 = S45C4. (11.191)

Substituting a45 = 90° gives

(11.192)

(11.193)

A corresponding value of 64 can be found from these two equations. The final solution
tree shown in Figure 11.41 indicates that there are eight possible configurations of the
manipulator.

The reverse kinematic analysis of the SSRMS is complete. It has been shown that eight
solution configurations exist for a given value of 02 and a given position and orientation
of the manipulator. A similar outcome of eight solution configurations will result if a
different angle from #2 is given as an input parameter, again assuming that 62 is not close
toOor 180 degrees.
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Table 11.

Solution

A
B
C
D
E
F
G
H

13. Eight

01

167.297
167.297
167.297
167.297
23.873
23.873
23.873
23.873

solution sets for the SSRMS (angles

-90.076
-35.907

-103.164
-34.317

51.782
-269.065

45.626
83.964

54.169
-54.169

68.847
-68.847

39.154
-39.154

38.338
-38.338

-98.092
-43.923

80.317
149.164

-52.505
-13.352
134.466
172.804

in degrees).

73.628
73.628

-73.628
-73.628

28.260
28.260

-28.260
-28.260

-37.030
-37.030
142.970
142.970
11.479
11.479

-168.521
-168.521

11.6.8 Numerical example

As a numerical example, the following information was specified for the SSRMS:

S7 = 800 mm., 7Ptool =
100'
50
60

mm., FPtooi =
-600.0'
12400.0
3500.0

mm.,

" 0.5774"
0.5774

-0.5774_
, Fa78 =

"0.2673
0.5345
0.8018

The angle 02 was chosen to be 30.0 degrees. Table 11.13 shows the results of the reverse-
position analysis.

11.7 Modified flight telerobotic servicer (FTS) manipulator system
The original design for the flight telerobotic servicer (FTS) manipulator system con-

sists of a series of links connected by seven revolute joints. The first and second joint
axes intersect; the third, fourth, and fifth axes are parallel; and the sixth and seventh joint
axes intersect (see Figure 11.42). The configuration of this manipulator is very similar
to that of the space station remote manipulator system that was analyzed in the previous
section.

A modification was made to the basic FTS manipulator design whereby the first and
second joint axes would still intersect when only the third and fourth axes are parallel,
and then the fifth and sixth axes would intersect. A drawing of this new configuration is
shown in Figure 11.43.

Because the modified FTS manipulator system is a seven-degree-of-freedom device, it
will be assumed that the angle 01 is specified along with the desired position and orientation
of the end effector and that the remaining joint angles (0i, 02, 63,64,65, and 06) must be
solved for.

A kinematic model of the modified FTS is shown in Figure 11.44, with joint axis vectors
and link vectors labeled. The mechanism parameters are listed in Table 11.14.
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Figure 11.42. Flight telerobotic servicer.

Figure 11.43. Modified flight telerobotic servicer.

As with the other manipulators, the parameter S7 is a free choice that must be made in
order to specify the location of the origin of the seventh coordinate system. A value of
zero will be used for this analysis.

The reverse analysis problem statement (see Crane (1992)) is presented as follows:

given: S7 and the direction of a78 relative to S7 in order to establish the seventh coordinate
system,

7Ptooi: the location of the tool point in the seventh coordinate system,
FPtooi' the desired location of the tool point in the fixed coordinate system,
FS7, Fa78: the desired orientation of the robot end effector, and
9j: the redundancy parameter,

find: cj)i, 62,63, 64, 65,66: the joint angle parameters that will position and orient the
end effector as desired.
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Table 11.14. Mechanism parameters for modified FTS.

Link length, in.

a,2 = 0
a23 =9
a34 = 18
a45 = 2.62
a56 = 0
a6? = 4

Twist angle, deg.

an = 90
<*23 = 9 0

Qf34 = 0

C*45 = 9 0

a56 = 90
C*67 = 9 0

Joint offset, in.

S2 - 6.55
S 3 = 0
S4 = 0
S5 = 18
S6 = 0

Joint angle, deg.

0j = variable
02 —  variable
03 = variable
04 = variable
05 = variable
06 = variable
01 —  user input

Figure 11.44. Kinematic diagram of modified FTS.

11.7.1 Development of an equivalent six-degree-of-freedom
manipulator

The solution to the reverse position problem will proceed as described in Chapter
'5. From the given information, a slightly modified version of Eq. (5.3) can be used to
determine the position of the origin of the seventh coordinate system measured in the fixed
coordinate system, FP7orig> as follows:

FP7orig = FPtool - (7Ptool. i)Fa78 - (7Ptooi • j)FS7 x Fa78 - (7Ptool • k)FS7. (11.194)

With these coordinates known, the transformation matrix FT can be written as

Fa78
 F S 7 x F a 7 8

 FS7
 FP7orig

0 0 0 1
(11.195)

The transformation that relates the sixth coordinate system to the fixed can be calculated
from

6rp Frp
_ 7 1 7 1 , (11.196)
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where 7T is defined by Eq. (3.7) as

c7 - s 7 0 a67

S7C67 C7C67 — S67 —  S67S7

S 7 S 6 7 C 7 S 6 7 C6 7 - C 6 7 S 7

0 0 0 1

(11.197)

Because the matrix FT is known, the coordinates of the origin of the sixth coordinate
system are known in terms of the fixed coordinate system, that is, FP6orig- Also, the
orientation vectors Fa67 and FS6 are known.

The reverse-analysis problem statement can now be restated as follows:

given: FP6orig* the location of the origin of the sixth coordinate system measured with
respect to the fixed coordinate system and

FS6, Fa67: the orientation of the sixth coordinate system,
find: 0i, 62,03,64, #5, 66: the joint angle parameters that will position and orient the

sixth coordinate system as desired.

For typical six-axis manipulators such as the Puma, GE P60 , and Cincinnati Milacron
T3-776 manipulators, the values of a67 and a67 are free choices that may be arbitrarily
selected. The same condition holds true in this case, and the twist angle a67 will be selected
as ninety degrees and the link length a67 will be chosen as zero.

Chapter 5 shows how the six close-the-loop parameters (S7, Si, a7i, #7, af71, and y\)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.15 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism. Note that the calculated value for 61 from
the close-the-loop procedure will be used in future calculations as opposed to the original
user-inputted value of #7 for the original manipulator.

Table 11.15. Mechanism parameters for closed-loop modified
FTS mechanism.

Link length, in.

ai2 = 0

a23 = 9
a34 - 18
a45 = 2.62
a56 = 0
a67 = 0*
a71 = C.L.

Twist angle, deg.

an = 90
<*23 = 9 0

<*34 = 0

CK45 = 9 0

a56 = 90
ot61 = 90*
a7l = C.L.

Joint offset, in.

Si = C.L.
S2 = 6.55
S 3 = 0
S4 = 0
S5 = 18
S6 = 0
S7 = C.L.

Joint angle, deg.

0i = variable
02 = variable
03 = variable
04 = variable
05 = variable
06 = variable
07 = C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure
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11.7.2 Expansion of required equations

In order to solve for the joint angle parameter 01? it is necessary to obtain an equation
that contains 0\ as its only unknown. Subtracting the known value y\ fr°m e a c h of the
values of 6\ that satisfy this equation will yield the possible values for 0i.

The analysis begins by listing the following seven equations that contain the unknowns
0i, 02, 04, and 06:

(i) Projection of vector loop equation on the vector S3.

The vector loop equation for the closed-loop spatial mechanism can be written as

S ^ i + S2S2 + S5S5 + S7S7 + a23a23 + a34a34 + a45a45 + a71a71 = 0. (11.198)

Projecting this equation onto the vector S3 and expanding the scalar products using the
direction cosines of a spatial heptagon (set 13 and set 3 of the appendix) gives the equation

S{L2 + S2c23 + S5Z4 + S7Zi2 + a45U43 + a7iUi23 = 0. (11.199)

Substituting the constant mechanism parameters reduces Eq. (11.199) to

-S1C2 + S7(s!S2s7i - c2c71) + a71s2Cl = 0. (11.200)

Rearranging this equation yields

(a7ici + S7S!S71)s2 + ( -Si - S7c71)c2 = 0. (11.201)

(ii) Secondary sine law.

A secondary sine law may be written as

X06712=X043. (11.202)

The right-hand side of Eq. (11.202) can be expanded as follows:

X043 = -S3(X4s3 + Y4c3) + c3X04 - s3Y04, (11.203)

where

X04 = S4(s45c4) + a45(c45s4), (11.204)

Y04 = S4(c34s45s4) + a45(s34s45 - c34c45c4) - a34(c34c45 - s34s45c4). (11.205)

Substituting the constant mechanism parameters yields X043 = 0.
The left side of Eq. (11.202) can be expanded as follows:

X06712 = S2(-X671S2 - Y671C2) + C2X0671 " S2Y0671, (11.206)
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where

Xo671 = SK-XfivS! - Y67Cl) + ClXo67 " SiYofiT, (11.207)

Yo67i = S1c12(X67c1 - Y67Sl) - ai2Z671 + c12(X067Si + Y067Ci) - s12Z067, (11.208)

X067 = S7(-X6s7 - Y6c7) + c7X06 - s7Y06, (11.209)

Yo67 = S7c71(X6c7 - Y6s7) - a71Z67 + c71(X06s7 + Y06c7) - s71Z06, (11.210)

Z067 = S7s71(X6c7 - Y6s7) + a71Y67 + s7i(X06s7 + Y06c7) + c71Z06, (11.211)

X06 = S6s56c6 + a56c56s6, (11.212)

Y06 = S6c67s56s6 + a56(s67s56 - c67c56c6) - a67Z6, (11.213)

Z06 = S6s67s56s6 + a56Y6 + a67Y6. (11.214)

Substitution of the constant mechanism parameters into Eqs. (11.206) through (11.214)
reduces Eq. (11.202) to

S2[c2(s7is6s7 - c71c6) + s2(-s6c7ci + S!(c7is6s7 + s7ic6))] + S1c2[ci(-c71s6s7

- S71C6) - S6C7Si] + S7[c2(-C1S6S7 - SiC71S6C7) + S2S71S6C7]

+ a71[c2si(s7is6s7 - c7ic6) + s2(c7is6s7 + s7ic6)] = 0. (11.215)

Regrouping this equation gives

[S2(-s6c7Ci+ Si(c7is6s7 + s7ic6)) +S7s71s6c7 + a7i(c7is6s7+ s7ic6)]s2

+ [S2(s71s6s7 - c7ic6) + S1(ci(-c7is6s7 - s7ic6) - s6c7si)

+ S7(-C!S6s7 - S!c7is6c7) + a71si(s71s6s7 - c7ic6)]c2 = 0. (11.216)

(iii) Secondary cosine law.

A secondary cosine law may be written as

Z()671 = Z043. (11.217)

The right side of Eq. (11.217) may be expanded as follows:

Z043 = a23(c23(X4S3 + Y4C3) - S23Z4)

+ S3s23(X4c3 - Y4S3) + s23(Xo4S3 + Y04C3) + c23Z04, (11.218)

where

- a34(s34c45 + c34s45c4) - a45(c34s45 + s34c45c4) (11.219)

and the terms X04, and Y04 are defined in Eqs. (11.204) and (11.205). Substitution of the
constant mechanism parameters yields Z043 = 0.
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The term Z067i can be expanded as follows:

- Y67si) + ai2Y67i + Si2(X067Si + Y067Ci) + c12Z067, (11.220)

where the terms X067, Y067, and Z067 are defined in Eqs. (11.209) through (11.211).
Substitution of the constant mechanism parameters into Eq. (11.220) yields

Si[s6c7ci - S!(c7is6s7 + s7ic6)] + S7[c7is6c7c! - s6s7si]

+ a71c1[-s71s6s7 + c71c6] = 0. (11.221)

Rearranging this equation yields

[Si(c7ci - sic7is7) + S7(c7ic7ci - s7s0 + a7i(-CiS7|S7)]s6

+ [-S1S1S71 + a71clC7i]c6 = 0. (11.222)

(iv) Spherical cosine law.

A spherical cosine law may be written for the closed-loop mechanism as

Z67l2=U (11.223)

The right-hand side of this equation reduces to zero upon substitution of the constant
mechanism parameters. Substituting the constant mechanism parameters into the left side
of this equation yields

(s6c7ci - (c7is6s7 + s7ic6)si)s2 + ( - s 7 i s 6 s 7 + c71c6)c2 = 0. (11.224)

(v) Projection of the vector loop equation on the vector S5.

The vector loop equation for the closed-loop mechanism is listed in Eq. (11.198).
Projecting this equation onto the vector S5 and expanding the scalar products using the
direction cosines of a spherical heptagon (set 11 and set 5 of the appendix) gives the
equation

S!Z76 + S2Z176 + S5 + S7Z6 + a23U21765 + a34U45 + a71U765 = 0. (11.225)

Substituting the constant mechanism parameters into this equation and transfering the
term a34U45 to the right-hand side yields

Si[s7is6s7 - c71c6] + S2[(sic7 + c7icis7)s6 + s71cic6] + S5 - S7c6 + a 2 3 [s2 ( -c 6c 7 1

+ s6s7s70 + c 2 ( - s i c 6 s 7 i - Sis6s7c7i + cis6c7)] + a7is6c7 = - a 3 4 s 4 . (11.226)

(vi) Secondary cosine law.

A secondary cosine law for the closed-loop mechanism may be written as

ZO4. (11.227)
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The right-hand side of Eq. (11.227) may be expanded as follows:

Z04 = S4(S45S34S4) - a45(S45C34 + C45S34C4) - a34(c45S34 + S45C34C4). (11.228)

Substitution of the constant mechanism parameters reduces Eq. (11.228) to

Z04 = - a 4 5 - a34c4. (11.229)

Expanding the left side of Eq. (11.227) yields

Z()6712 = S2S23[X67iC2 - Y6 7iS2] + a23Y6 7 1 2 + S23(X067lS2 + Y067lC2) + C23Z0671.

(11.230)

The terms X067i and Y067i are defined in Eqs. (11.207) and (11.208), whereas Z067i is
defined in Eq. (11.220).

Substitution of the constant mechanism parameters into Eq. (11.230) and equating the
result with that of Eq. (11.229) yields

- Ci(c71s6s7 + s7ic6)] + c2[S2(s6c7Ci - Si(c71s6s7 + s71c6))

-S 7 s 7 is 6 c 7 - a7i(c7is6s7 + s7ic6)] + s2[S2(s7iS6s7 - c71c6)
+ Si(-S6C7S! - Ci(c7iS6S7 + S7iC6)) + S7(-CiS6S7 - S!C7iS6C7)

+ a71si(s71s6s7 - c 7 i c 6 ) ] = - a 4 5 - a34c4. (11.231)

(vii) Self-scalar product.

Equation (11.198), the vector loop equation, may be rearranged as

SiSi + S2S2 + S7S7 + a23a23 + a7ia7i = -a34a34 - a45a45 - S5S5. (11.232)

Projecting the left and right sides of Eq. (11.232) upon themselves, dividing both sides
of the equation by two, and expressing the individual scalar products according to the
direction cosines listed in the appendix yields

K + Si(S2Ci2 + S7c71 + a23U2i) + S2(S7Z! + a71Ui2)

+ a23(S7X12 + a71W12) = a34(a45C4 + S5U45), (11.233)

where

K = \(S] + Sj + S2
7 + 4, + a*, - 4 , - a*5 - S2

5). (11.234)

Substitution of the constant mechanism parameters reduces Eq. (11.233) to

+ Si(S7c7i +a2 3s2) + S2(-S7s7iCi
+ a23(S7(s2c7i + Sic2s7i) + a7icic2) = a34(a45C4 + S5s4). (11.235)
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11.7.3 Determination of fa

The analysis proceeds by manipulating Eqs. (11.201), (11.216), (11.224), (11.226),
(11.231), and (11.235) until they reduce to one equation that contains the variables 0\ and
06. This new equation, when used together with Eq. (11.222) (which also only contains
6\ and 06), will yield a sixteenth-degree input/output equation in the variable 0\.

The procedure begins by multiplying Eq. (11.224) by S2 and adding it to Eq. (11.216)
to yield

[S7s71s6c7 + a7i(c7is6s7 + s7ic6)]s2 + [Si(ci(-c7is6s7 - s71c6) - s6c7si)

+ S7(-Cis6s7 - S!C71s6c7) + a7isi(s7is6s7 - c7ic6)]c2 = 0. (11.236)

Adding c2 times Eq. (11.236) to s2 times Eq. (11.231) gives

a7iS!(S6S7S71 - C6C71) + S7(-CiS6S7 - S!S6C7C71) + Si(-Ci(s6S7C7 1 + S7iC6) - SiS6C7)

+ a23S2(-S!S6C7 + Ci(-S6S7C7i - C6S71)) + S2[(S6S7S71 - C6C71)S2 + (CiS6C7

- S!(c6s7i + s6s7c71))s2c2] = - (a 4 5 + a34c4)s2. (11.237)

Subtracting S2c2 times Eq. (11.224) from Eq. (11.237) yields

a7iS!(s6s7s7i - c6c70 + S7(-Cis6s7 - Sis6c7c7i) + Si(-Ci(s6s7c7i + s7iC6) - Sis6c7)

+ a23s2(-sis6c7 + ci(-s6s7c7i - c6s70) + S2(s6s7s71 - c6c71) = - (a 4 5 + a34c4)s2.

(11.238)

The analysis proceeds by multiplying Eq. (11.226) by s2 and Eq. (11.224) by —a 23c2.
Summing the results and substituting ŝ  + c\ = 1 gives

s2[Si(s7iS6s7 - c7ic6) + S2((sic7 + c7iCis7)s6 + s7iC!C6) + S5 - S7c6 + a7is6c7]

+ a23(-c6c7i + s6s7s7i) = -a3 4s4s2 . (11.239)

Subtracting a23c2 times Eq. (11.201) from s2 times Eq. (11.235) yields

s2[K + SiS7c7i + S2a7iSi - S2S7s7iCi] + a23S7c7i + Sia23

(11.240)

The terms (a34c4s2) and (a34s4s2) in Eq. (11.240) may be replaced by direct substitution
of Eqs. (11.238) and (11.239) to yield the result

s2[K + SiS7c7i + S2a7iSi - S2S7s7iCi] + a23S7c7i

= -a45{a7iSi(s6s7s71 - c6c7 1)+ S7(-c1s6s7 - s1s6c7c71) + S1(-ci(s6s7c7i + s7ic6)

- S!S6c7) + a23s2(-sis6c7 + ci(-s6s7c7 1 - c6s7i)) + S2(s6s7s7i - c6c7i) + a45s2}

-S5{s2[Si(s7iS6s7 - c71c6) + S2((sic7 + c7icis7)s6 + s7iCiC6) + S5 - S7c6

+ a23(-c6c71 + s6s7s71)}. (11.241)
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This equation may be regrouped and written in the form

A16s2 = - B 1 6 , (11.242)

where

A i 6 = K + S1S7C71 + S2a7iS! - S2S7S71C1 + a45a23(-sis6c7 + Ci ( - s 6 s 7 c 7 1 - c6s7i))

+ a^5 + S5[Si(s7lS6S7 - C7lC6) + S2((S!C7 + C7iCiS7)s6 + S7lC!C6)

+ S 5 -S 7 c 6 + a71s6c7] (11.243)

and

- c6c7i) + S 7 ( -Cis 6 s 7 -

S1(-Ci(S6S7C7i + S7iC6) - SiS6C7) + S2(S6S7S71 - C6C71)]

s6s7s7i). (11.244)

Equation (11.242) is significant in that it contains only the joint angle parameters 6\, 02,
and 06. The parameter 64 has been eliminated from a manipulation of previous equations.

Subtracting s2 times Eq. (11.236) from c2 times Eq. (11.231) yields

a23C2(-S6C7Si - Ci(C7iS6S7 + S7lC6)) + S ^ ^ C ^ i - Si(C7iS6S7 + S7iC6))

-fS2s2c2(s7iS6s7 - c71c6) - S7S7iS6c7 - a7i(c7is6s7 + s7ic6) = -c2(a4 5 + a34c4).

(11.245)

Adding S2s2 times Eq. (11.224) to Eq. (11.245) and substituting ŝ  + c\ = 1 gives

- ci(c7is6s7 + s71c6)) + S2(s6c7C! - si(c7is6s7 + s7ic6))

- S7s7is6c7 - a7i(c71s6s7 + s7ic6) = -c2(a4 5 + a34c4). (11.246)

Now, Eq. (11.224) may be written as

(s6c7ci - (c7is6s7 + s71c6)si)s2 = (s7is6s7 - c71c6)c2. (11.247)

Multiplying this equation throughout by s2/c2 gives

(s6c7ci - (c7is6s7 + s7ic6)si)s2/c2 = (s7is6s7 - c7ic6)s2. (11.248)

Replacing term s^ by (1 —  Cj), Eq. (11.248) is then regrouped to give

(s6c7ci - (c7is6s7 + s7ic6)si)/c2 = (s7is6s7 - c7ic6)s2

+ (s6c7c! - (c7is6s7 + s7ic6)si)c2. (11.249)

Multiplying throughout by c2 yields

(s6c7ci - (c7is6s7 + s71c6)si) = (s7is6s7 - c7ic6)s2c2

+ (S6C7C! - (C7iS6S7 + S71C6)Si)C2. (11.250)
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Upon multiplying Eq. (11.226) by c2, the right-hand side of Eq. (11.250) may be substituted
into the result to give

- c7ic6) + S2((sic7 + c7icis7)s6 + s7icic6) + S5 - S7c6 + a7is6c7]

+ a23[(s6c7d - (c7is6s7 + s71c6)si)] = -a3 4s4c2. (11.251)

Adding a23s2 times Eq. (11.201) to c2 times Eq. (11.235) gives

c2[K + SiS7c71 + S2(-S7s7iCi + a71si)] + a23(a7iCi + S7sis71)

S5(a34s4c2). (11.252)

The terms (a34c4c2) and (a34s4c2) in the previous equation may be directly substituted
using the results of Eqs. (11.246) and (11.251). This gives

c2[K + SiS7c71 + S2(-S7s7iCi

= -a45{a23c2(-s6c7si - ci(c7is6s7 + s7ic6)) + S2(s6c7ci - Si(c7is6s7 + s7ic6))

- S7s7is6c7 - a7i(c7is6s7 + s7ic6) + a45c2} - S5{c2[Si(s7is6s7 - c7ic6)

+ S2((sic7 + c7icis7)s6 + s7icic6) + S5 - S7c6 + a7is6c7]

+ a23[(s6c7ci - (c7is6s7 + s7ic6)si)]}. (11.253)

This equation may be regrouped and written as

A16c2 = - D 1 6 , (11.254)

where A16 is defined in Eq. (11.243) and

Di6 = a23(a7ici + S7sis7i) + a45S2(s6c7Ci - si(c71s6s7 + s7ic6)) + a45(-S7s7iS6c7

- a7i(c7is6s7 + s7ic6)) + a23S5(s6c7Ci - (c7is6s7 + s7ic6)si). (11.255)

Summing the squares of Eqs. (11.242) and (11.254) in order to eliminate 02 yields

A2
l6 = B2

6 + D2
6. (11.256)

Equation (11.256) contains only the parameters 6\ and 06, but it must be noted that the
equation is not linear in the sines and cosines of these variables.

The terms Ai6, Bi6, and Di6 are expressed in the following form:

NA2Si + NA3)c6 + (NA4Ci + NA5Si + NA6)s6

(N A 7 Ci+N A 8 Si+N A 9 ) ,
NB2S! + NB3)c6 + (NB4C! + NB5Si + NB6)s6

( N B 7 C I + N B 8 S I + N B 9 ) ,

ND2S! + ND3)c6 + (ND4d + ND5sx + ND6)s6

(ND7Cl + ND8Sl + ND9), (11.257)
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where

NA1 = S2S5S71 —  a23a45S7i, NA2 = 0,

NA3 = —S1S5C71  —  S5S7, NA4 —  —a23a45C7jS7 + S2S5C71S7,

NA5 = S2S5C7 —  a23a45C7, NA6 = SiS5S7iS7 4~ $5a7iC7,

N B 3 — —^2a45C7i — ^5a23C7j,

NB5 = —S7a45C7iC7 + a45a7iS
- S i a 4 5 c 7 ,

NB 7=0,
NB9 —  S7a23C7j -f- Sia23,

ND 1=0,
Nj)3 = —a45a7jS7i,

N D 5 = —S2a 45C7iS7 — a 23S5c^

»  N B 4 = —Sia45C7iS7 — S7a45S7

71S7 N B 6 = S2a45S7iS7 + S5a23S7i

N B 8 = 0,

-ND2 = —^2a45S7j — O5a23S7i

Nj)4 = O5a23C7 -|- O2a45C7,

71S7, Nj)6 =z —^7a45S7iC7 — a45a7i'

= 0. (11.258)

To convert Eq. (11.256) to a polynomial form, a tan-half-angle substitution is made in
Eq. set (11.257) by letting

= t any (11.259)

and

x6 = t any . (11.260)

The sines and cosines of 6\ and 6$ can then be replaced by the trigonometric identities

81 = 7 ^ - 2 . ci = T v 4 ' i = 1 ' 6 - ( 1 L 2 6 1 )

1 + xf 1 + xf
Substituting the trigonometric identities into Eq. set (11.257) and then multiplying each
equation by (1 + Xj)(l + x^) results in

nA2Xi +

+ nAgXi

nB2Xi +

+ nB 8 X l

nD2Xi +

+ nD8X!

nA3)x6 + (nA

+ nA9),

nB3)x6 + (nBz

+ nB9),

n D 3 )x^+(n D

+ nD9),

4Xj + nA5Xi -

ix? + nB5xi-f

4X1 + N D 5 Xi •

hnA6)x6

-nB6)x6

•f n D 6)x6

(11.262)

where the coefficients in Equation set (11.262) are defined in a similar way to those
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developed in Section 8.2. These coefficients are defined as follows:

1.263)

where £ equals A, B, or D.
Now that the terms Ai6, Bi6, and Di6 have been expressed as nested second-order

polynomials in the variables xi and x6, the squares of these terms will be nested fourth-
order polynomials in the same variables. The square of the Ai6 term is presented as
follows:

A i 6 = [nAix A2 + 2nA1nA3)x^ nA3]x6(nA

[ (2nA2nA4 + 2nAinA5)Xj + (2nA2nA5 + 2nA3nA4

+ (2nA3nA5 + 2nA2nA6)xj + 2nA3nA6]x^ + [(nA4 + 2nA1nA7)x{

+ (2nA4nA5 + 2nAJnA8 + 2nA2nA7)Xj + (nA5 + 2nA3nA7 + 2nAinA9

+ 2nA2nA8 + 2nA4nA6)x^ + (2nA2nA9 + 2nA5nA6 + 2nA3nA8)x!

+ 2nA3nA9 + nA6]xJ? + [2nA4nA7x| + (2nA4nA8 + 2nA5nA7)x^

+ (2nA6nA7 + 2nA4nA9 + 2nA5nA8)x^ + (2nA5nA9 + 2nA6nA8)xi + 2nA6nA9]x6

+ [nA7x| + 2nA7nA8x] + (nA8 + 2nA7nA9)x^ + 2nA8nA9xi + nA 9]. (11.264)

Similar expressions can be obtained for B2
l6 and D2

l6.
Rearranging Eq. (11.256) yields

A2
l6 - B2

l6 - D2
l6 = 0. (11.265)

Because (11.265) is a nested fourth-order equation in the variables xi and x6, it may be
written as

+ Bx<? + Cx^ + Dx6 + E = 0, (11.266)

where

A =

B =

C =

D =

E =

+ Ao,

Bo,

Co,

+ Do,

Eo.

(11.267)

Equation (11.266) contains only the variables 0\ and 06. This equation will be used
in conjunction with Eq. (11.222), which also contains only these variables, in order to
eliminate 06 from the pair of equations. The result will be an input/output equation that
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contains 0\ as its only unknown. The tan-half-angle substitutions listed in Eq. (11.261)
are substituted into Eq. (11.222) to yield

Fx2 + Gx6 - F = 0,

where

(11.268)

(11.269)

The terms F2 through Go are defined as follows:

- F 2 ,F 2 = a7 1c7i, Fi = 2SiS7i, F o =

G2 = - 2 S i C 7 + 2a7is7is7 - 2S7c7iC7,

Gi = -4SiC 7 iS 7 - 4S7s7 ,

Go = - G 2 .

(11.270)

The parameter 06 can be eliminated from Eqs. (11.266) and (11.268) by multiplying
Eq. (11.266) by 1 andx6 andEq. (11.268) by 1, x6, x2,, andx-?. In this manner, a total of six
equations are created that contain five unknowns (x6, x^, XJ?, x4,, and x5

6). These equations
can be written in matrix form as

(11.271)

where

0
A
0
0
0
F

A
B
0
0
F
G

B
C
0
F
G

- F

C
D
F
G

- F
0

D
E
G
- F
0
0

E "
0

- F
0
0
0

and x =

~x5"X 6

X4
X 6

X3
X 6

X2
X 6

x6

1
(11.272)

The condition that must exist in order for these six equations to have a common set of
roots is that the set of equations be linearly dependent. This will occur if the determinant
of the matrix M equals 0. Expansion of the determinant of M yields

|M| = 0 = - (AEG4) + FG3(-AD + BE) + F2G2(-AC + BD - 4AE - CE)

+ F3G(-AB + BC - 3AD - CD + 3BE + DE) + F4(-A2 + B2 - 2AC

- C2 + 2BD + D2 - 2AE - 2CE - E2). (11.273)

Because the coefficients A through E are fourth-degree polynomials in the tan-half-
angle of 0\ and the coefficients F and G are second-degree polynomials in the tan-half-angle
of 0i, Eq. (11.273) represents a sixteenth-degree input/output equation. Upon solving this
equation for the tan-half angle of 0i, a maximum of sixteen real solutions can exist.
Corresponding values for the parameter fa can be found by subtracting the close-the-loop
variable y\ from each real value of 0\.
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11.7.4 Determination of 06

A unique corresponding value of 06 for each value of 0\ is found by first substituting
0i into the Eq. sets (11.267) and (11.269). Thus, numerical values are obtained for the
coefficients A through G in Eqs. (11.266) and (11.268). Because Eq. (11.268) is quadratic
in the tan-half-angle of 06, the two values of x6 that satisfy this equation are solved for.
Each of these two values of x6 are then substituted into Eq. (11.266). In general, only one
of the solutions to Eq. (11.268) will also satisfy Eq. (11.266). In this manner, the value of
x6 that simultaneously satisfies both Eq. (11.266) and Eq. (11.268) is easily solved for.

11.7.5 Determination of 02

The determination of 02 begins by substituting known values of 0i and 06 into
Eqs. (11.243), (11.244), and (11.255) to obtain numerical values for the terms Ai6, B16,
and Di6. Equations (11.242) and (11.254) are then used to determine values for the sine
and cosine of 02 (and thus the unique corresponding value of 02) as follows:

s2 = -B 1 6 /A 1 6 , (11.274)
c2 = -D 1 6 /A 1 6 . (11.275)

11.7.6 Determination of 05

At this point, sets of values for the angles 0i, 06, and 02 have been determined. Corre-
sponding values for 05 are found by utilizing the spherical sine and sine-cosine equations

X2i76 = X45 (11.276)

and

-X*5. (11.277)

Expanding the terms in these equations and substituting the constant mechanism param-
eters reduces these two equations to

s5 = c6(s2cic7 - (c7is2si + s7ic2)s7) + s6(s7isis2 - c7ic2), (11.278)
c5 = -c is 2 s 7 - (c7isis2 + s7ic2)c7. (11.279)

The corresponding value for 05 is readily found from these two equations.

11.7.7 Determination of 04

At this point, values for the parameters 0i, 06, 02, and 05 are known. Corresponding
values for 04 can be found by using the following two secondary cosine laws:

X()21765 = a34C34S4 (11.280)

and

Y02i765 = a34c34c4. (11.281)

The right-hand sides of these equations have been simplified because s34 equals zero.
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The following terms in Eq. (11.280) are defined as follows:

X()21765 = ~S5(X2i76S5 + Y2176C5) + C5X02176 ~~

Y021765 = S5C45(X2176C5 ~ Y2i7 6S5) ~ a45[S45(X2i76S5 + Y2i7 6C5) + C45Z2176]

+ C45(X02176S5 + Y02176C5) - S45Z02176, (11.282)

Xo2176 = —S 6(X217S6 + Y 2 nC 6 ) + C6X0217 — S6Y0217,

Y02176 = S6C56(X217C6 - Y217S6) - a56[S56(X2l7S6 + Y217C6) + C56Z217]

+ C56(X0217S6 + Yo217C6) ~ S56Z0217,

Z02176 = S6S56(X217C6 - Y217S6) + a56[C56(X2i7S6 + Y217C6) ~ S56Z217]

Y0217C6) + C56Zo217, (11.283)

X0217 = - S 7 ( X 2 i S 7 + Y21C7) + C7X021 - S7Y021,

Y0217 = S7c67(X2iC7 - Y2is7) - a67[s67(X2iS7 + Y21C7) + c67Z2i]

+ C67(Xo2lS7 + Y021C7) — S67Z021,

Z0217 = S7s67(X2iC7 - Y2 1s7) + a67[c67(X2iS7 + Y2ic7) - s67Z2i]

Y02iC7) + c67Zo2i, (11.284)

X02l = "Si(X2Si + Y2Ci) + C!X02 - S1Y02,

Y021 = S1c7i(X2c1 - Y2s0 - a7i[s7i(X2s1 + Y2c0 + c7i22]

+ c7i(X02Si + Y02Ci) - S71Z02,

Z021 = SiS7i(X2ci - Y2si) + a71[c7i(X2s1 + Y2ci) - s7i22]

+ 87^X028! + Yo2ci) + C71Z02, (11.285)

X0 2 = S2s2 3c2 + a23c23s2,

Y02 = S2C12S23S2 - ai2(c12C23 ~ S12S23C2) + a23(Si2S23 ~ C12C23C2),

Z02 = S2S12S23S2 - a12(si2c23 + Ci2s23C2) - a2 3(ci2s2 3 + Si2c23c2). (11.286)

Substitution of the constant mechanism parameters into Eqs. (11.280) and (11.281) using
Eq. (11.282) to Eq. (11.286) yields

a34S4 = Si(-C5C6C7S2Si + C5S6S7iS2Ci - C5C6S7C7iS2Ci + S5C7C7iS2Ci - S5S7S2Si)

+ S2(-C5C6S7C7iC2Si + S5S7CiC2 + C5C6S7S7iS2 + C5C6C7CiC2 + C5S6S7iC2Si

+ S5C7C7iC2Si + C5S6C7iS2 - S5C7S7iS2) + S5(-S5C6S2CiC7 + S5C6S7C71S2Si

+ S5C6S7S7iC2 — S 5S6S7iS2Si + S5S6C7iC2 + C5S2CiS7 + C5C7C7iS2Si + C5C7S7iC2)

+ S7(-S5S7C7iS2Si - S5S7S7iC2 - C5C6S2CiS7 - C5C6C7C7iS2Si - C5C6C7S7iC2

+ S5S2C!C7) + a2 3(-C5C6S7C7iCi - S5S7Si - C5C6C7Si + C5S6S71Ci + S5C7C7iCi)

+ a7i(c5s6s7ic2 + c5s6c7is2si - s5c7s7is2si + s5c7c7ic2

+ c5c6s7s7is2si - c5c6s7c7ic2), (11.287)



378 Case studies

a3 4C4 = Si(C6S7iS2Ci + S6S7C7iS2Ci + S6C7S2Si) + S2(S6S7C7iC2Si — S6C 7CiC2

+ C6S7iC2Si - S6S7S71S2 + C6C71S2) + S7(s6S2CiS7 + S6C7C7iS2Si + S6C7S7iC2)

+ a23(s6s7c7iCi + s6c7si + c6s7iCi) + a45(-s5c6s2cic7 + s5c6s7c7is2si

+ S5C6S7S71C2 - S5S6S7iS2Si + S5S6C7iC2 + C5S2CiS7 + C5C7C71S2S!

+ c5c7s7ic2) + a7i(s6s7c7ic2 + c6c7is2si + c6s7ic2 - s6s7s71s2si). (11.288)

Equations (11.287) and (11.288) can be used to solve for the unique corresponding
value of 64.

11.7.8 Determination of 03

At this point in the analysis, all the joint angle parameters except for 63 have been
solved for. This remaining parameter can be determined from the following two spherical
sine and sine-cosine laws:

= s23s3, (11.289)

= s23c3. (11.290)

Substitution of the constant mechanism parameters into the definitions reduces Eqs.
(11.289) and (11.290) to the following:

S3 = S4[C1(S6S7C7i + C6S7i) + SiS6C7]

+ C4[C1(C5C6S7C71 - C5S6S71 - S5C7C71) + Si(c5C6C7 + S5S7)],

c3 = s4[c1(c5c6s7c71 - c5s6s7i - s5c7c71) + si(c5c6c7 + s5s7)]

+ C4[Ci(-S6S7C7i - C6S7i) - SiS6C7].

(11.291)

(11.292)

The corresponding value for #3 can be determined directly from the preceding two equa-
tions.

At this point the kinematic analysis of the modified flight telerobotic servicer manip-
ulator system is complete. It has been shown that a maximum of sixteen manipulator
configurations can position and orient the end effector at some specified position and
orientation.

11.7.9 Numerical example

As a numerical example, the following information was specified for the modified flight
telerobotic servicer robot:

7 = 0in., 7Pt00i =

-0.0864"
0.7197
0.6889

[4.5"
2.2
1.5

in., FPtooi =
- 1 "

- 1

a78 =
0.9670 "

-0.1058

in.,

= 0°.
0.2318

Table 11.16 shows the results of the reverse position analysis.
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Table 11.16. Sixteen solution sets for the modified flight telerobotic servicer
robot (angles in degrees).

Solution 0i

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

11.8

-104.482
-106.983

-75.843
-56.188
-97.802

-109.592
-15.375

77.213
-131.262

71.617
73.947

-120.974
18.375
73.726

139.894
186.478

Summary

-49.826
135.225

-136.779
-156.038

-68.174
139.633

-165.079
-126.224

-22.198
42.311

-133.449
-28.026

-164.565
46.120

-18.261
-14.673

72.184
97.660

-124.485
67.593

-125.186
-121.969

4.587
-172.724

69.601
174.740

-46.450
-120.607
-163.085
-71.569

-165.291
3.033

-118.649
-139.822
-79.201

-108.187
-75.985
-55.800
-84.478

-154.508
-106.368
-166.342

-42.875
-85.177

-129.971
-30.520

-138.865
-81.689

175.212
2.462

-85.125
63.242

-156.442
-6.261
47.445

8.704
-152.935

175.644
-2.328
160.163

-38.727
-177.783

124.830
-138.102

121.049
30.827

-86.359
92.721

-81.131
-106.611

91.812
-71.679

89.528
-116.373

164.278
-92.269
-88.911
-4.451

-87.700
91.380

Several examples of the reverse position analysis have been presented in this chapter.
The first three examples were of industrial robots comprising six revolute joints. The last
two examples were seven-axis manipulators, one of whose joint angles was specified in
addition to the desired position and orientation of the end effector.

Each of the manipulators would be classified as a group 4 mechanism once the hy-
pothetical closure link is determined. However, many special conditions exist for these
manipulators, such as parallel or intersecting joint axes. These special conditions greatly
simplify the solution technique. For the cases of the Puma, GE, and Cincinnati Milacron
robots, the eight solutions can be obtained via three separate two-solution equations. Each
of these equations can be solved very rapidly via computer. As a result, the overall reverse
position analysis can be performed rapidly, that is, in "real time."

The last example of the modified flight telerobotic servicer (FTS) manipulator demon-
strates how a relatively simple geometry (two axes intersecting, followed by two parallel
axes, followed by two intersecting axes) can in fact be relatively complex to solve. The
solution of the modified manipulator is much more complex than that of the original
FTS. This complexity will affect the controllability of the manipulator, as more computa-
tion time will be required to perform the reverse position analysis. The complexity of the
resulting solution should be taken into account during the design phase of the manipulator.

11.9 Problems
1. Write a computer program that performs the reverse analysis for each of the following

industrial robots:



380 Case studies

Figure 11.45. Robot manipulator.

(a) Cincinnati Milacron T3-776

(b) GEP60

(c) Puma 560

Check your results by performing a forward analysis of each solution set.

2. A 6R manipulator is shown in Figure 11.45. The following facts are known:

(i) The first and second axes intersect and are perpendicular.

(ii) The second and third axes intersect and are perpendicular.

(iii) The third, fourth, and fifth axes are parallel. The fourth and fifth offset values are
zero.

(iv) The fifth and sixth axes intersect and are perpendicular.

(a) Tabulate the mechanism dimensions (link lengths, offsets, and twist angles). Indi-
cate which of these values are equal to zero.

(b) Assume that the coordinates of point A are given together with the direction cosines
of S6 and a^ (all in terms of the fixed coordinate system). List the names of the
variables that become known when you close the loop.

(c) Write the vector loop equation for the mechanism.

(d) Obtain an equation that contains only the variables 61 and 06. Expand the equation
as far as necessary in order to show that the only unknowns in the equation are 01

and 6$. How many values of 06 will satisfy this equation?



V2
Quaternions

12.1 Rigid-body rotations using rotation matrices
In Chapter 2 it was shown how to represent the position and orientation of one coordinate

system relative to another. Further, it was shown how to transform the coordinates of a
point from one coordinate system to another.

The techniques introduced in Chapter 2 can also be used to define the rotation of a rigid
body in space. Any rigid body can be thought of as a collection of points. Suppose that
the coordinates of all the points of a body are known in terms of a coordinate system A.
The body is then rotated y degrees about a unit vector m that passes through the origin of
the A coordinate system. The objective is to determine the coordinates of all the points in
the rigid body after the rotation is accomplished (see Figure 12.1).

This problem is equivalent to determining the coordinates of all the points in a rigid
body in terms of a coordinate system B that is initially coincident with coordinate system
A but is then rotated — y about the m axis vector (see Figure 12.2). This problem was
solved in Chapter 2 using rotation matrices.

An alternate solution using quaternions will be introduced in this chapter. Quaternions
in many instances may represent a more computationally efficient method of computing
rotations of a rigid body compared to the rotation matrix approach. An increase in compu-
tational efficiency implies that fewer addition and multiplication operations are required.
Quaternions and quaternion algebra will be discussed in the next sections, followed by
their application to the rigid-body rotation problem.

12.2 Quaternions
A real quaternion is defined as a set of four real numbers written in a definite order.

Two quaternions, qi and q2, may be written as

qi = (d i ,a i ,b i ,c i ) ,
q2 = (d2,a2,b2,c2).

The quaternion qi will equal q2 if and only if di = d2, ai = a2, bi = b2, and ci = c2.
The sum of qx and q2 is defined as

qi + q2 = (di + d2, ai + a2, t>i + b2, Ci + c2), (12.2)
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Figure 12.1. Rotation of a rigid body 70 degrees
about the Z axis.

Figure 12.2. Rigid-body rotation repre-
sented by rotating coordinate system B
—70 degrees about the Z axis.

whereas the difference of the two quaternions is defined as

qi - q2 = (di - d2, a! - a2, bi - b2, ci - c2).

A quaternion qi that is multiplied by a scalar A. may be written as

A.qi = (Adi, A.ai, Abi, kc\).

Multiplying a quaternion by — 1  results in

—iqi = - q i = ( -d i , - a i , - b i , - c o .

Lastly, the zero quaternion is defined as (0, 0, 0, 0) and is simply written as 0.

12.3 Quaternion algebra

From the definitions presented in the previous section, it should be apparent that quater-
nions will observe the following algebraic rules (let p, q, and r be quaternions and A and

(12.3)

(12.4)

(12.5)
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JJL be real scalars):

(p + q ) + r = p + ( q + r),
Xq = qX,

4 4 (12.6)
(A/x)q = A(/xq),

(X + /x)q = Xq + jitq,
A,(p + q) = Ap + Aq.

Quaternion multiplication must yet be defined. In order to simplify the resulting ex-
pression, the following four quaternion units are defined:

1 = (1,0,0,0),
i = (0,1,0,0),

(12.7)
j = (0,0, 1,0),

k = (0,0,0, 1).

Thus, any quaternion may now be written in the form

q = (d, a, b, c) = dl + ai + bj + ck. (12.8)

The product of the two quaternions qi and q2 will now be written as

qiq2 = (dxl + aii + b j + Cik)(d2l + a2i + b2j + c2k). (12.9)

Applying the distributive law as in regular algebra yields

qiq2 = did2(l)(l) + aia2(i)(i) + b1b2(j)G) + CiC2(k)(k) + d{ l(a2i + b2j + c2k)
+ aii(d2l + b2j + c2k) + bj(d2l + a2i + c2k) + cik(d2l + a2i + b2j),

(12.10)
qiq2 = did2(l)(l) + aia2(i)(i) + b!b2a)a) + CiC2(k)(k) + dia2li + dib2lj

k + aid2il + aib2ij + aic2ik + bid2jl + bia2ji+ b!C2jk
l + da2ki + Cib2kj. (12.11)

The individual quaternion products in this equation are defined as follows:

ij = k,
jk = i,
ki = j ,

lk = k,
ii = - 1 ,

ji = -k,
kj = - i ,
ik = —J,

il = i ,

kl =k ,
ii = - 1

(12.12)

k k = - l ,
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With these definitions, the quaternion product qiq2 may be written as

i2 —  aia2 —  bib2 —  Cic2 + di(a2i + b2j + c2k) + d2(aii + b j

i J k

a2 b2 c2

(12.13)

In general, the product qiq2 ^ q2qi. The exception is when the final determinant in
Eq. (12.13) vanishes.

A quaternion q, where q = d + ai + bj + ck, can be considered as the sum of a scalar,
d, and a vector, v = ai + bj + ck. The symbols Sq and Vq will be used to represent the
scalar and vector parts of quaternion q. Thus

Vq = ai + bj + ck, (12.14)

From Eq. (12.13) it is apparent that qiq2 = q2qi only when one of the vector parts of the
quaternions equals zero or when the vector parts of the two quaternions are proportional.
Either case causes the determinant to vanish.

Multiplication of two vectors, vi and v2, which are in effect two quaternions with no
scalar component, is defined from Eq. (12.13) as

= —aia 2 — b i b 2 —
J

a2 b2 c2

(12.15)

where it is apparent that the scalar part of the result is equal to — vi  • v2 and the vector part
is equal to vi x v2.

Lastly, it is apparent (and left to the reader to prove) that quaternion multiplication is
associative and distributive with respect to addition as follows:

(pq)r = p(qr),

p(q + r) = pq + pr,

(p + q)r = pr + qr.

(12.16)

12.4 Conjugate and norm of a quaternion
The conjugate of a quaternion q = d + ai + bj + ck will be denoted by Kq, and it is

defined as

Kq = Sq - Vq = d - ai - bj - ck. (12.17)

Because the vector parts of a quaternion and its conjugate differ only in sign, the quaternion
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product of a quaternion and its conjugate is commutative. That is,

qKq = Kqq = d2 + a2 + b2 + c2. (12.18)

This quaternion product is a scalar and will be defined as the norm of q, that is, Nq. Thus,

Nq = qKq = d2 + a2 + b2 + c2. (12.19)

When Nq = 1, then q is referred to as a unit quaternion.
The product of a pair of quaternions q = qiq2, where qi = (di, ai, bi, Ci) and q2 =

(d2, a2, b2, c2), is given by (see Eq. (12.13))

q = did2 - aia2 - bib2 - di(a2i + b2j + c2k) + d2(aii + b j

J
(12.20)

a2 b2 c2

The conjugate of q may be written as

Kq = did2 —  aia2 —  bib2 —  Cic2 —  di(a2i + b2j + c2k) —  d2(aii + b j

j k

a2 b2 c2

Exchanging the last two rows of the determinant and multiplying them by — 1  gives

—  bib2 —  CiC2 + di(—a 2i —  b2j —  c2k) + d2(—aii  —  bij —

(12.21)

i J k
- a 2 - b 2 - c 2

The right-hand side of Eq. (12.22) is equal to Kq2Kqj, and thus

(12.22)

(12.23)

Hence, the conjugate of the product of two quaternions is equal to the product of their
conjugates taken in reverse order.

The norm of q is equal to the product qKq. This norm may be written as

(12.24)

(12.25)

(12.26)

= (q1q2)(Kq2Kqi).

Regrouping the order of multiplication gives

Nq = qKq = q1(q2Kq2)Kqi.

Now, Nq2 = q2Kq2, and thus Nq may be written as
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Because the norm of a quaternion is a scalar quantity,

Nq^Nq^qiKq, ) . (12.27)

Lastly, Nqi = qiKq,, and thus

N —  N N ("12 28")

The norm of the product of two quaternions is therefore equal to the product of the
individual norms.

12.5 Quaternion division

The definition of a norm of a quaternion was presented in the previous section as

Nq = Kqq, (12.29)

and therefore

— q = l , (12.30)

provided Nq / 0. Because the vector parts of q and Kq are parallel,

q-^ = 1. (12.31)

The term ^ is defined as the reciprocal of q and is written as

q"1 = ^ i . (12.32)

From Eqs. (12.30) and (12.31) it is apparent that

q q - 1 = q - 1 q = l . (12.33)

From Eq. (12.28), the norm of (qq"1) must equal NqNq-i, which equals one. Therefore,

Nq-, = -L (12.34)
Nq

To divide a quaternion p by a nonzero quaternion q, it is necessary to solve either the
equation

riq = p (12.35)

or

qr2 = p (12.36)

for the result ri or r2. In general, the solutions for the two equations will be different.
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Postmultiplying both sides of Eq. (12.35) by q"1 gives

r i^pq" 1 , (12.37)

and premultiplying both sides of Eq. (12.36) by q"1 gives

r2 = q^p. (12.38)

Because the two solutions ri and r2 are different, the symmetrical notation p/q cannot be
used. Rather, the notation of Eqs. (12.37) or (12.38) will be used. These may be called
the left-hand quotient of p divided by q and the right-hand quotient of p divided by q
respectively. These two quotients are defined whenever q ^ 0.

It is interesting to note that the norm of the two solutions ri and r2 are equal. Taking
the norms of both sides of Eqs. (12.37) and (12.38) and using the result of Eq. (12.34) will
result in

Nr i=Nr 2 = ^ . (12.39)

It may thus be stated that the norm of either quotient of two quaternions is equal to the
quotient of their individual norms.

Lastly, it will be shown how to obtain the inverse of a multiple product of quaternions.
Suppose that q is defined as

q = qiq2q3---qn. (12.40)

The inverse of q may be written as

1 -qn)-1 = ^ , (12.41)

S:=q-'-"rtV' <i2-42)
Thus, the inverse of a multiple of quaternions is equal to the product of the inverses of the
individual quaternions taken in reverse order.

12.6 Rigid-body rotation
Figure 12.3 shows a vector r drawn from a point O that is to be rotated about the unit

vector s by an angle of 20. In this way the vector r will be transformed to the vector
r'. It will be shown in this section that this transformation can be accomplished by the
quaternion operator q( )q-1 and

r '^qrq"1 , (12.43)

where q is defined by the unit quaternion (cos 0 + s sin 0) and where Vr = r and Sr = 0.
The quaternion r and the unit quaternion q may be written as

q = cos# + sin#(sxi + syj + szk), (12.44)

r = rxi + ryj+rzk. (12.45)
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Figure 12.3. Rotation of vector r to position
r\

The quaternion, r'', is now defined by the expression

r^qrq" 1 .

Firstly, let the quaternion t = qr. Therefore,

t = qr = — sin #(s xrx + syry + szrz) + cos #(rxi + ryj + rzk)

j

t = — sin#(s xrx + syry + szrz) + i[rx

sin#(szrx —  sxrz)]

sin#(syrz —  szry)]

sin#(sxry —  syrx)].

The quaternion t will now be written as

t = d + ai + bj + ck,

where

d = — sin#(s xrx + syry + szrz),
a = rxcos# + sin#(syrz —  szry),
b = ry cos# + sin#(szrx —  sxrz),
c = rz cos# + sin#(sxry —  syrx).

(12.46)

(12.47)

(12.48)

(12.49)

(12.50)

The quaternion q l = Kq because Nq = 1, as q is a unit quaternion. Equation (12.46) may
now be written as

= tKq = (d + ai + bj + ck)[cos 0 - sin ^(sxi + syj + szk)]. (12.51)
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+ csz) + dsin#(—s xi —  syj —  szk) + cos#(ai + bj + ck)

(12.52)

The scalar part of r' can be written as

Sf = dcos# + sin#(asx + b s y + csz). (12.53)

Substituting the expressions from Eq. set (12.50) gives

Sr/ = — sin# cos#(s xrx + syry + szrz) + sin#[sx(rxcos# + sin#(syrz —  szry))

+ sy(ry cos# + sin#(szrx —  sxrz)) + sz(rz cos# + sin#(sxry —  syrx))], (12.54)

which reduces to S? = 0. Thus, it has been shown that x' is a quaternion with no scalar
component.

The norm of the right and left sides of Eq. (12.46) can be written as

N, =NqNrNq-. . (12.55)

The order of multiplication can be rearranged on the right side of this equation. Further,
from Eq. (12.34), the product NqNq-i will equal one, Eq. (12.55) simplifies to

N, = Nr, (12.56)

and the norm of r equals the norm of r'. Because x' and r have no scalar components, it can
be said that the sum of the squares of the vector components of x' will equal the sum of
the squares of the vector components of r. Interpreting r and xf as vectors, it can be stated
that the magnitude of the vector r' will equal the magnitude of the vector r. Thus, it is
now known that the operator q( )q - 1 transforms a vector to a vector of equal length. This
must be the case if the operator represents a pure rotation of a vector, where the vector
represents the coordinates of a point in a rigid body.

The task at hand is still to show that the quaternion operator q(r)q-1 will rotate the
vector r about the s axis by an angle of 20 if q equals (cos 6 + s sin 0). At present all that
is known is that the result of the operation will be a vector of the same magnitude as r.
Equation (12.52) will now be expanded to show that the operation does indeed result in a
rotation of the vector about the s axis.

Substituting Eq. (12.50) into Eq. (12.52) and regrouping gives

r' = i{sin2 6>[sx(sxrx + syry + szrz) + sy(sxry - rxsy) + sz(sxrz - szrx)]

+ 2 sin0 cos #(syrz —  rysz) + cos2 8 rx} + j{sin2 #[sy(sxrx + syry + szrz)

+ sx(syrx —  sxry) + sz(syrz —  szry)] + 2sin#cos#(szrx —  sxrz) + cos2#ry}

+ k{sin2 6>[sz(sxrx + syry + szrz) + sx(szrx - sxrz) + sy(szry - syrz)]

+ 2 sin 0 cosO(sxxy - syrx) + cos2 0 rz}. (12.57)
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Rearranging this equation gives

r' = i{ sin20[sx(sxrx + 2syry + 2szrz) +rx(—s 2 —  s2)] + 2sin0cos0(syrz

- rysz) + cos2 0rx} + j{ sin2 0 [sy(2sxrx + syry + 2szrz) + r y ( - s 2 - s2)]

+ 2 sin 0 cos 0(szrx —  sxrz) + cos2 0ry } + k{ sin2 0 [sz(2sxrx + 2syry + szrz)

+ r z ( - s 2 - s2)] + 2sin0cos0(sxry - syrx) + cos20rz}. (12.58)

The axis vector, s, is a unit vector, and therefore the expressions — s 2 —  s2 = s2 —  1,
—s 2 —  s2 = s2 —  1, and —s 2 —  s2 = s2 — 1  may be substituted into Eq. (12.58) to give

r' = i{sin2 0[sx(2sxrx + 2syry + 2szrz) —  rx] + 2 sin0 cos 0(syrz —  rysz) + cos2 0 rx}

+j{sin20[sy(2sxrx + 2syry + 2szrz) —  ry] + 2sin0cos0(szrx —  sxrz) + cos20ry}

+ k{sin2 0[sz(2sxrx + 2syry + 2szrz) —  rz] + 2sin0 cos0(sxry —  syrx) + cos2 0 rz},

(12.59)

which is the result of the quaternion operation q(r)q-1.
In Section 2.8.1 the rotation matrix was developed for the case where one coordinate

system was rotated about an axis by a specified angle relative to the other. Assuming
that coordinate systems A and B are initially aligned, and B is then rotated about the
axis s (which passes through the origin) by the angle 20, the rotation matrix gR is (see
Eq. (2.59))

sj(l - cos20) + cos20 sxsy(l - cos 20) - sz sin 20 sxsz(l - cos 20) + sy sin 20
sxsy(l - cos 20) + sz sin20 s^(l - cos 20)+ cos 20 sysz(l - cos 20) - sx sin20
sx

sz(l —  cos 20) —  sy sin20 sysz(l —  cos 20) + sxsin20 s^(l —  cos 20) + cos 20

(12.60)

The coordinates of a point that has been rotated by 20 about the axis s can be determined
by calculating the coordinates of the point in terms of a coordinate system that has been
rotated by an angle of —20 about the axis s. The rotation matrix £R, which relates
coordinate systems C and D where they are initially aligned and then D is rotated —20
about the axis s, is given by

Cn _
D K -

sj(l - cos 20)+ cos 20 sxsy(l - cos 2^) + szsin2(9 sxsz(l - cos 20) - sy sin 20
sxsy(l - cos 20) - s z sin20 s^(l - cos 20)+ cos 20 sysz(l - cos 20) + sx sin20
sxsz(l - cos 20) + sy sin20 sysz(l - cos 20) - s x sin20 s^(l - cos 20)+ cos 20

(12.61)

Assuming that the coordinates of a point R in the C coordinate system are CPR =
[rx, ry, rz]T, the coordinates of this point in the D system are calculated from

DPR = £R C P R , (12.62)
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where £R is the transpose of {3R . Expanding Eq. (12.62) gives

rx (s2(l - cos 20)+ cos 20) +ry(sxsy(l - cos 20) - s z sin20) + rz(sxsz(l - cos 20) + sy sin 20)
D P R = r x ( s x s y ( l - cos20) + szsin20) + ry (s2(l - cos 20)+ cos 20) + r z ( s y s z ( l - cos 20) - sx sin 20)

rx(sxsz(l - cos20)-sys in20) + ry(sysz(l - cos20) + sx sin20) + rz (s2(l - cos20)+ cos 20)

(12.63)

Rearranging the terms in Eq. (12.63) gives

"(1 —  cos20) (rxs2 + rysxsy + rzsxsz) + cos20rx + sin2#(syrz —  szry)
D P R = (1 - cos 20) (rys2 + rxsxsy + rzsyszJ + cos 20 ry + sin2#(szrx - sxrz)

_ (1 —  cos 20) (rzs2 + rxsxsz + rysysz) + cos 20 rz + sin 2#(sxry —  syrx) _
(12.64)

Substituting the trigonometric identities sin 20 = 2 sin 0 cos 0 and cos 20 = cos2 0 —  sin2 0
gives

( 1 - cos 2 0+ sin20) ( r x s 2 +r y s x s y +r z s x s z ) + ( c o s 2 0 - sin20)rx + 2sin0cos0(syrz - szry)
P R = (1 —  cos2 0 + sin20) ( r y s 2 +r x s x s y +r z s y s z ) +(cos20— sin 20)ry + 2 sin0 cos 0(szrx —  sxrz)

(1—  cos 2 0+ sin20) (r zs2+rxsxsz + rysysz) + ( c o s 2 0 - sin20)rz + 2sin0cos0(sxry - syrx)

(12.65)

Substituting 1 —  cos2 0 = sin2 0 into Eq. (12.65) and rearranging gives

~sin2#[sx(2rxsx + 2rysy + 2rzsz) —  rx] + 2sin# cos#(syrz —  szry) + cos2#rx
DPR = sin2 #[sy(2rysy + 2rxsx + 2rzsz) —  ry] + 2 sin 0 cos #(szrx —  sxrz) + cos2 0ry

sin2 #[sz(2rzsz + 2rxsx + 2rysy) —  rz] + 2 sin 0 cos #(sxry —  syrx) + cos2 0rz_
(12.66)

Comparing Eqs. (12.66) and (12.59), it is apparent that the quaterion operator q( )q -1,
where q = cos# + ssin#, is equivalent to a rotation about the axis s by the angle 20.
Thus, this operator may be used to transform points of a rigid body that undergo rigid-body
rotation.

12.7 Example problems

12.7.1 Problem 1

The rigid body shown in Figure 12.4 is rotated about the axis mi = (3i + 2j) by an
angle of sixty degrees. It is then rotated about the axis m2 = (— j + 2k) by an angle of
115 degrees. Both axis mi and m2 are measured with respect to the fixed coordinate
system shown in the figure. Determine the coordinates of the point (5, 2, 3)T after the two
rotations have been accomplished.

Figure 12.5 shows the rigid body at its original position and after each of the two
rotations. The quaternion operator that models the first rotation is qi ()qj"1, where

q! = cos(30°) + —= sin(30°)(3i + 2j). (12.67)
A / 1 3
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Figure 12.4. Rigid-body rotation.

m,

Figure 12.5. Two successive rigid-body rotations.

The operator that models the second rotation is q2( )q2~1, where

q2 = cos(57.5°) + -J= sin(57.5°)(-j + 2k). (12.68)

The coordinates of the point (5, 2, 3)T after the two rotations may be calculated as

q2qi(5i + 2j + 3k)q71q~1. (12.69)

The solution is (-3.054, 4.624, 2.701)T.

12.7.2 Problem 2

For the previous problem, determine the axis and angle of rotation that will return the
rigid body to its original position.

The quaternion operator that transformed a point in the previous problem was q2qi
Oq^q^ 1 , where qi and q2 were defined in Eqs. (12.67) and (12.68). Performing the
multiplication q2q! gives

q2qi = 0.5699 + 0.0143i + 0.1362J + 0.8102k. (12.70)
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This product can be interpreted as representing the net rotation of the body about a single
axis. The scalar part of the result equals the cosine of half the net angle of rotation. The
magnitude of the vector part of the product will equal the sine of half the net angle of
rotation. Letting 9 equal the angle of rotation, the cosine and sine of 9/2 may be written
as

cos(0/2) = 0.5699, (12.71)

sin(0/2) = 0.8217. (12.72)

The angle 0/2 equals 55.255 degrees, and 0 equals 110.51 degrees. Equation (12.70) can
now be written as

q2qi = cos(55.255°) + sin(55.255°)[0.0174i + 0.1658J + 0.9860k]. (12.73)

By inspection, it is apparent that the net motion is a rotation of 110.51° about the axis
(0.0174i + 0.1658J + 0.9860k). The rigid body can be returned to its original position by
rotating it —110.51° about the same axis vector.

12.7.3 Problem 3

Show that the quaternion multiplication in example problem 1 transforms the points of
the rigid body shown in Figure 12.4 as if they have first been rotated about the m2 axis by
115 degrees and then about the mt axis (measured in terms of a coordinate system that
has been modified by the first rotation) by 60 degrees.

The quaternion operator that is being described in this problem is

q^ iOq^q^ 1 , (12.74)

where qi and q2 are given in Eqs. (12.67) and (12.68).
The new interpretation for the quaternion operator is shown graphically in Figure 12.6.

In (b), the original object has been rotated 115° about the vector m2. In (c), the modified
coordinate system is shown, and in (d) the object has been rotated about the vector mi,
which is defined in terms of the modified coordinate system. The final position and
orientation of the rigid body is the same as that shown in Figure 12.5.

The most straightforward means of demonstrating the result will be to use rotation
matrices to calculate the coordinates of a general point that has been rotated as given by
the problem statement and then comparing the results to the coordinates of the point that
have been transformed by the quaternion operator of Eq. (12.74).

In Section 2.8.1, it was shown how to form the rotation matrix that would describe the
relationship between two coordinate systems, A and B, that were initially coincident. Co-
ordinate system B was then rotated about the unit vector m by an angle of 0. The resulting
rotation matrix that relates the A and B coordinate systems was shown in Eq. (2.59) to be

^R = mxmyv0 + mzs0 m^v0 + c0 mymzv0 —  mxs0 , (12.75)

where s0 and c0 represent the sine and cosine of the angle of rotation and v0 = (1 —  c0).

m
m

m^v0
xmyv0
xmzv0

+ C0
+ mz
—  my

S0
S0

mx

my

myv0
iriyV0
mzv0

- mz
+ C0

S0

S0

mx
my

m2
m2

ml

V0
V0
V0

+ my
- mx

+ C0

S0
S0
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Y'

Figure 12.6. Interpretation of successive
rotations.

The coordinates of a point that has been rotated about the axis m2 by an angle of 115
degrees is equivalent to the coordinates of a stationary point as seen in a new coordinate
system that has been rotated by —115 degrees about the vector m 2. Thus, the coordinates
of a general point that has been rotated 115° about the m2 axis can be determined from
the equation

BPj = B R A P j , (12.76)

where APi represents the initial coordinates of the point, BPi represents the coordinates of
the point after rotation, and BR is evaluated as the transpose of Eq. (12.75)* with 0 equal
to -115° as

-0.4226 -0.8106 -0.4053"
0.8106 -0.1381 -0.5690
0.4053 -0.5690 0.7155

(12.77)

Figure 12.7(a) shows the original object, and Figure 12.7(b) shows the object with the
original A coordinate system and the modified B coordinate system.

The second transformation is defined as a rotation of sixty degrees about the vector
mi, where this vector is measured in terms of the modified coordinate system. It must
be noted that the modified coordinate system is the A coordinate system and that the
reference, or stationary, coordinate system is the B coordinate system. Thus, the next axis
of rotation is 3i + 2j as measured in the A coordinate system. This axis of rotation can
be calculated in the B coordinate system by transforming two points on the vector line

The transpose is needed because we want to take a point known in the A coordinate system and determine
its coordinates in the B coordinate system.
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(a)
Figure 12.7. Rotated coordinate system.

(b)

(a)
Figure 12.8. Two successive rotations.

(b)

from the A coordinate system to the B coordinate system and then calculating the vector
direction as the difference between these two points. The points on the axis of rotation to
be transformed are arbitrarily selected as [3, 2, 0]T and [0, 0, 0]T, and the transformation
equation to be used is given in Eq. (12.76). These two points transform to [—0.8013,
0.5979, 0.0216]7 and [0, 0, 0]T. Thus, the next axis of rotation as measured in the B
coordinate system is -0.8013i + 0.5979J + 0.0216k.

Again, the coordinates of a point that is rotated can be calculated as being the coordinates
of a stationary point as seen in a coordinate system that is rotated in the opposite direction.
Figure 12.8(a) shows the mi vector, which is the next axis of rotation, and Figure 12.8(b)
shows a new coordinate system C, which was initially aligned with B and was then rotated
minus sixty degrees about the axis of rotation. The transformation that relates the B and
C coordinate systems can be calculated from the transpose of Eq. (12.75) using —0.8013i
H- 0.5979J + 0.0216k as the direction of the axis vector m and minus sixty degrees for
the rotation angle 6. This transformation matrix can be written as

0.8210 -0.2582 0.5091"
-0.2208 0.6787 0.7004
-0.5264 -0.6875 0.5002

(12.78)

The coordinates of a point after the two specified rotations may now be written as
CP, = (12.79)
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Substituting Eqs. (12.77) and (12.78) into this equation yields

"-0.3500 -0.9196 0.1784"
0.9274 -0.3133 0.2044 'Pi . (12.80)

-0.1321 0.2370 0.9625

Writing the vector APi as [x, y, z]T, the transformation becomes

Pi =

-0.3500x - 0.9196y + 0.1784z
0.9274x - 0.3133y + 0.2044z

-0.1321x + 0.2370y + 0.9625z
(12.81)

It is necessary to show that the quaternion operator q2qi ()q{
 lq2

 1 transforms a general
point Pi in the same manner as the transformation Eq. (12.81). The product q2qi was
calculated in Eq. (12.70) as

q2qi = 0.5699 + 0.0143i + 0.1362J + 0.8102k. (12.82)

Because qi and q2 are both unit quaternions, the inverse of this product will equal the
conjugate of the product. Thus,

q^q-1 = 0.5699 - 0.0143i - 0.1362J - 0.8102k. (12.83)

Writing the vector Pi as [x, y, z]T, the overall transformation may now be written as

q2qi(xi + yj + z k ^ q " 1 = (0.5699 + 0.0143i + 0.1362J + 0.8102k)(xi + yj + zk)
x (0.5699 - 0.0143i - 0.1362J - 0.8102k). (12.84)

Expanding the first product q2qi(xi+yj+zk) yields

q2qi(xi + yj + zk) = (-0.0143x - 0.1362y - 0.8102z)
+ i(0.5699x + 0.1362z - 0.8102y)
+ j(0.5699y + 0.8102x - 0.0143z)
+ k(0.5699z + 0.0143y - 0.1362x). (12.85)

Writing this product as

q2qi(xi + yj + zk) = di + aii + b j + cik (12.86)

allows Eq. (12.84) to be expressed as

q2qi(xi + yj + zk)q[lc^1 = (0.5699di + 0.0143ai + 0.1362bi + 0.8102ci)
+ 0.5699(aii + b j + cik)
+ d i ( - 0.0143i - 0.1362J - 0.8102k)

1 J k
ai bi ci

-0.0143 -0.1362 -0.8102
(12.87)
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Expanding this expression yields

q2qi(xi + yj + z k ^ q " * = i(-0.3500x - 0.9196y + 0.1784z)

+j(0.9274x - 0.3133y + 0.2044z)

+ k(-0.1321x + 0.2370y + 0.9625z). (12.88)

Equation (12.88) shows that the point [x, y, z]T has been transformed to the point
[(-0.3500x - 0.9196y + 0.1784z), (0.9274x - 0.3133y + 0.2044z), (-0.1321x +
0.2370y + 0.9625z)]T. This is the same transformation as listed in Eq. (12.81).

12.8 Summary

It has been shown in this chapter that rigid-body rotations can be modeled by quater-
nions. It is a very simple procedure to determine the quaternion q that will rotate a point
about an arbitrary axis vector by the quaternion operator q( )q-1. Fewer mathematical
operations are needed to compute q compared to the rotation matrix of Eq. (2.59). For
this reason, quaternion algebra is often employed in many applications, as, for example,
in computer graphics. Quaternions are introduced in this chapter because they elegantly
quantify rigid-body rotations, which are the cornerstone of the spatial kinematics discussed
throughout this book.

12.9 Problems

1. Prove that successive rotations by the angles 0, | radians, and <j> respectively about the
x, y, and z axes are equivalent to a single rotation of | radians about the y axis.

2. The quaternions qi and q2 are given as

qi = cos(30°) + c (3i + 4k),

q2 = cos(60°) + Sm^-) (5j - 2k).

Solve the following equation for the quaternion q3:

3. qi is a unit quaternion, and p is a quaternion with no scalar component. Under what
conditions will p = qi(p)qj~1?

4. A box is moved from position 1 to position 2 and then to position 3 as shown in
Figure 12.9. Determine the axis and angle of rotation that would move the box directly
from position 1 to position 3.

5. A box has been rotated forty degrees about an axis parallel to 2i + j -f k. It was then
rotated sixty degrees about an axis parallel to i + 3j —  2k (measured with respect to
the fixed coordinate system). You wish to return the box to its original orientation with
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Figure 12.9. Two successive rotations.

of r 0Nation

Figure 12.10. Rigid-body rotation.

one rotation. Determine the angle and axis of rotation (measured with respect to the
fixed coordinate system) that will accomplish this.

6. Line segment AB is rotated minus seventy-five degrees about an axis parallel to i + j + k
that passes through point C as shown in Figure 12.10. The coordinates of points A, B,
and C are as follows:

A: (5, 2, 0)
B: (1,3,0)
C: (0, 2, 2)

Use quaternions to determine the coordinates of the endpoints of line segment AB after
the rotation is accomplished.
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7.

(a) Assume the quaternions p and q are given as follows:

p = (1, - 1 , 2, 3) q = ( -3 , 2, 1, 0.5)

What is the product pq? What is qp? What is p -1q?
(b) Under what circumstances would the product pq equal qp? List all cases.

(c) What is the result of the quaternion product ijk?
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Equations for a Spherical Triangle Equations for a Polar Triangle

U12 = S3S23 V12 = S3C23 W12 = c 3

U 2 3 = S1S31 V 2 3 = S1C31 W 2 3 = ci

U31 = s 2 s 1 2 V31 = s2ci2 W31 = c 2

X i = S23S3 Y i = S23C3 Z{ = c 2 3 U 2 i = S3S31 V 2 i = S3C31 W 2 i = c 3

X 2 = S31S1 Y 2 = S31C1 Z 2 = c3i U 3 2 = S1S12 V 3 2 = S1C12 W 3 2 = ci

X 3 = S12S2 Y 3 = Si2C2 Z 3 = C12 U13 = S2S23 V13 = S2C23 W13 = C2

Xi = s23s2

X 2 = S31S3

X 3 = S12S1

Yi

Y2

Y3

= S23C2

= S31C3

= S12C1

Zi

z2
z3

= c23

= c3i

= Ci2

Direction Cosines - Spatial Triangle

Set

Set

Set

Set

Set

Set

1

2

3

4

5

6

S2(0,
S3 (X2,

S2(0,
S3(0,
S! (X3,

S3(0,
Si(O,
S2(X,,

Si(O,
S3(0,
S2(X3,

S3(0,
S2(0,
S, (X2,

S2(0,

Sa(Xi,

0,
-S12 ,
Y2,

0,
- S 2 3 ,
Y3,

0,
- S 3 1 ,
Yi ,

0,
S31.
- Y 3 ,

0,
S23,
- Y 2 ,

0,
S12,
- Y , ,

1)
C12)

z2)

1)
c23)
z3)

1)
C31)
Zi)

1)
C31)

z3)

1)
C23)

z2)

1)
C12)
Zi)

a , 2 ( l ,
§23 (C2.
a3i (ci,

§23 (1 ,
§31 (C3,
a12 (c2,

§31 (1 .
§12 (Cl,

a2 3 (C3,

a3i(l>
a2 3 (C3.
a,2(ci,

a23(!>
I12 (C2,

§31 ( c 3 ,

§12 ( 1 ,

§31 (cl-
a23 (c2,

0,
S2C12,
- s i ,

0,
S3C23,
- s 2 ,

0,
S1C31,
- s 3 ,

0,
-S3C31,
S i ,

0,
-S2C23,
S3,

0,
- S i C 1 2 ,

S2.

0)
U21)

0)

0)
U32)

0)

0)
U,3)

0)

0)
U31)

0)

0)
U23)

0)

0)
U12)

0)
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Equations for a Spherical Quadrilateral

Fundamental Formulas:

X12 =

X23 =

X34 =

X41 =

X21 =

X32 =

X43 =

X14 =

Subsidiary
X12 :

X23 :

X34 :

X41 :

X2 1:

X43

X14

: S34S3

= S41S4

= S12S1

: s23s2

= S34S4

= S41S1

= S12S2

= S23S3

J Formulas:
= X3

= X4

= Xl

= x2

= x
= x2

= x3

Equations for a

Fundamental Formulas:
Ui2 3 =

U2 3 4 =

U341 =

U4i2 -

U321 =

U2H :

U143 :

U432 :

= S4S34

= S1S41

= s2s12

= s3s23

— S4S41

= S3S34

= S2S23

= S1S12

Y12 —

Y23 =

Y34 =

Y4i =

Y2i =

Y32 =

Y43 =

Y14 =

- X J 2

- X 2 3

" " ^ 3 4

- X J ,

- X 4 3

- X J 4

S34C3

S41C4

S12C1

S23C2

S34C4

S41C1

S12C2

S23C3

= Y3

= Y4

= Yi

= Y4

= Y!
= Y3

Polar Quadrilateral

Vl23 =

V234-

V341 =

V412 =

V321 =

V2,4 =

Vl43 =

V432 =

= S4C34

= S1C41

= s2c12

= s3c23

= S4C41

= S3C34

= S2C23

= S1C12

Z12 = C34

Z2 3 = c41

Z 3 4 = C12

Z41 = C23

Z21 = C34

Z 3 2 = c4i

Z43 = C12

Z14 = C 2 3

Z i = Z 3

Z2 = Z4

Z3 = Z,

Z4 = Z2

Z2 = Z4

z4 = z2
Zi=Z3

W123 = C4

W 2 3 4 = ci

W3 4i = c2

W412 = c3

W321 = c4

W 2 W = c3

W143 = c2

W432 = c,
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Subsidiary Formulas:
u1 2 3 = u4 3 u?23 = - v 4 3 w 1 2 = w 4 3
U234 = UM U*34 = - V 1 4 W23 = W14

U341 = u2 1 u;4 1 = - v 2 1 w 3 4 = w 2 1

u4 1 2 = u 3 2 u ; l 2 = - v 3 2 w4 1 = w 3 2

U321 = u41 u;21 = - v 4 , w32 = w41

U214 = U3 4 U*14 = -V34 W2 1 = W3 4

u1 4 3 = u 2 3 ut43 = - v 2 3 w 1 4 = w 2 3
U432 = U,2 U*32 = - V , 2 W43 = W12

Half-Tangent Laws for a Quadrilateral

Set l
X34 Y34 — S12  X32 Y32 —  S41

xi = T;—:  = ^ xi =

X2 = 77—:  = Tr X2 =

x3 =

X4 = = X4 =
Y23 + S41 X23 Y21 + S34 X21

Set 2

Y34 +

X4I

Y4i +

X12

Y12 +

x 2 3

S12

S23

s34

X34

Y 4 1 -
X41

Y , 2 -
X12

Y 2 3 -

S23

S34

S41

Y32 +

X43

Y43 +

X14

Y14 +

X21

S41

S12

S23

X32

Y 4 3 -

X43

Y 1 4 -

X14

Y 2 1 -

Sl2

S23

S34

x2 =

x3 =

X4 —  X2

Y4-Y2

x,-x3
Y,-Y3

X2 —  X4

Y2 - Y4 ~

X 3 - X t

Y 4 H
X4H

YiH

X,H

Y 2 -

x 2 -
Y 3 -

hY2

hX2

hY3

KX3

hY4

hX4

f-Yi
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Setl

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set 8

Direction Cosines - Spatial Quadrilateral

S_i(0,
S2(0,
S3(X2,
§4 (X32,

S2(0,
S3(0,
S4(X3,
S_i (X43,

S3(0,
S4(0_,
Si (X4,
S2 (X14,

§4(0,
Si(0,
Sa(Xi,
S3(X2i,

S,(0,
§4(0,
S3(X4,
S2 (X34,

§4(0,
S3(0,
S2(X3,
Si (X23,

S3(0,
S2(0,
Si (X2,
S4(Xi2,

S2(0,
Si(0,
S4(Xi,
S3 (X41,

0,
-S12 ,
Y2,
Y32,

0,
~S23,
Y3,
Y43,

0,
— S34>

Y4,
Y14,

0,
—S41,
Yi ,
Y21,

0,
S41>

- Y 4 ,
- Y 3 4 ,

0,
S34.
- Y 3 ,
- Y 2 3 ,

0,
S23,
- Y 2 ,
- Y , 2 ,

0,
Sl2>
- Y , ,
—  Y4I,

1)
C12)

z2)
Z32)

1)
C23)

z3)
z43)

1)
C34)
Z4)

Z14)

1)
C41)
Zi)

Z21)

1)
C41)
Z4)

Z34)

1)
C34)

z3)
z23)

1)
C23)

z2)
Z12)

1)
C12)
Zi)

Z41)

§12(1'
§23 (C2>
§34(W32,
§41 ( C l .

§23(1.
§34 (C3.

§41 (W43,
§12 (C2,

§34(1-
§41 (C4.
§12(W14,
§23 (C3,

§41 (1 ,
§12 (Cl,
§23(W21,
§34 (C4.

§41 (1 ,
§34 (C4.
§23(W34,
§12 (Cl,

§34(L
§23 (C3,
§12(W23,
§41 (C4,

§23 (1 ,
§12 (C2,
§41 (W,2,
§34 (C3.

§12(L
§41 (Cl,
§34(W41,
§23 (C2,

0,
S2C12,

-u;2 i>
- s i ,

0,
S3C23,

TT*U432'
- S 2 ,

0,
S4C34,

- U 1 4 3 .
- S 3 ,

0,
S1C41,

"U5l4.
- s 4 ,

0,
-S4C41,

U?4i,
S i ,

0,
- s 3 c 3 4 ,

s4,

0,
-S2C23,

Ut23.
S3,

0,
-S1C12,

'-'412'
s2,

0)
U21)

U321)
0)

0)

u32)
u432)

0)

0)

u43)
U143)

0)

0)
U14)

U214)
0)

0)
U41)

U341)
0)

0)
U3 4)

U234)
0)

0)

u23)
U123)

0)

0)
U12)

U412)
0)
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Equations for a Spherical Pentagon

Fundamental Formulas:
X123 = S45S4

X234 = S51S5

X345 = S12S1

X451 — S23S2

X512 = S34S3

X321 = S45S5

X432 = S51S1

X543 = S12S2

X154 = S23S3

X215 = S34S4

Subsidiary Formulas:
Se t 1 X123 — X4

X234 = X 5

X345 = X i

X451 = X2

X512 = X 3

X321 = X5

A432 = A i

X543 = X2

X154 = X3

X215 = X 4

Set 2 X1 2 = X43

X23 = X 5 4

X34 = X15

X45 = X21

X51 = X32

X32 = X51

X43 = X12

X54 = X23

X15 = X34

X21 = X45

Yl23 = S45C4

Y234 = S51C5

Y345 = S12C1

Y45I = S23C2

Y512 = S34C3

Y32I = S45C5

Y432 = S51C1

Y543 = S12C2

Y154 = S23C3

Y215 = S34C4

~X*2 3 = Y4

- X * 3 4 = Y5

- X ; 4 5 = YX

~ A 4 5 1 —  Y2

~ A 5 1 2 —  Y3

~ A 3 2 1 — *5
- X * 3 2 = Yi

—A 5 4 3 = 12

— X154 = Y 3

~ A 2 1 5 = Y 4

Y12 = - X * 3

Y23 = - X 5 %

Y34 = ~ X * 5

I 45 —  —-^21

Y51 — - A 3 2

132 — ~ A 5 i
Y43 = — X j 2

Y54 = - A 2 3

Y15 = — X34

Y2I = " X ^

Z123 =

^234 =

Z345 =

Z45I =

Z512 =

^321 =

Z432 =

Z543 =

Z154 =

^215 =

1-7 ry
ZJ\2 = Z4
Z23 = Z5
Z34 = Zi

Z45 = Z2

Z51 = Z3

Z32 = Z5

Z43 = Zi

Z54 = Z2

Z15 = Z3
Z21 = Z4

Z12 = Z4

Z23 = z 5

Z34 = Zi

Z45 = Z2

Z51 = Z3

Z32 = z 5

Z43 = Zi

Z54 = Z2

Z15 = Z3

Z21 = Z4

C45

C51

C12

C23

C34

C45

C51

C12

C23

C34
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Equations for a Polar Pentagon

Fundamental Formulas:
U1234 = S5S45

U2345 = S1S51

U3451 = s2si2

U4512 = S3S23

U5123 = S4S34

U4321 = S5S51

U3215 = S4S45

U2154 = S3S34

U1543 = S2S23

U5432 = S1S12

Subsidiary Formulas:
Set 1 U1234 = U54

U2345 = U15

U3451 = U21

U45i2 = U 3 2

U5123 = U43

U4321 = U51

U3215 = U45

U2154 = U34

U1543 = U23

U5432 = U12

Set 2 U123 = U543

U234 = U154

U345 = U215

U451 = U321

U512 = U432

U432 = U512

U 3 2 1 = U451

U215 = U345

U154 = U234

U543 = U123

V1234 = S5C45

V2345 = S1C51

V3451 = S2C12

V4512 = S3C23

V5123 — S4C34

V4321 = s5c5 i

V3215 = S4C45

V2154 - S3C34

V1543 = S2C23

V5432 = S1C12

TT* — - V i cU2345 —  v 15

u;451 = - v 2 1
u;5i2 = - v 3 2

TT* — —  Vyn
^^19^ —  "43

T5123

u:32i = - v5 ,

U3215 = ~ V 4 5

U2154 = - V 3 4

ut5 4 3 = -V23
U5%32 = - V l 2

V 2 3 4 = - ^ 5 4

V345 = —U215

V451 = —U3 2 1

V512 = —U4 32

v4 3 2 = - u ; 1 2
V32i = - U ^ 5 1

V215 = - U ; 4 5

v1 5 4 = - u * 3 4

W[ 2 3 4 = c5

W 2 3 4 5 = C]

W 3 4 5 i = c 2

W 4 5 i 2 = C3

W 5 i 2 3 = c 4

W 4 3 2 i = c 5

W3215 = C4

W 2 i 5 4 = C3

W i 5 4 3 = c 2

W 5 4 3 2 = Ci

w 1 2 3 = w 5 4
W2 3 4 = Wis

W345 = W21

W451 = W3 2

W512 = W4 3

W432 = W5i

W321 = W4 5

W215 = W3 4

W1 5 4 = W2 3

W5 4 3 = W12

w 1 2 3 = w 5 4
w 2 3 4 = w 1 5
w3 4 5 = w2i
w 4 5 1 = w 3 2
w 5 1 2 = w 4 3

W432 = W5 1

W321 = W4 5

W2 1 5 = W3 4

w 1 5 4 = w 2 3
W543 = W12



Appendix 407

Half-Tangent Laws for a Pentagon

Set l
Y345 — S12 X432 Y432 — s5i

Xl

x2

X3

x4

X5

Set 2

Xl

X2

x3

x4

Y ^

X345

Y345 + S12

X451

Y451 + S23

X512

Y512 + S34

X123

Y123 + S45

X234

Y234 + S51

X45 —  X2

Y45 - Y2

X51 —  X3

Y51 - Y3

X12 —  X4

Y,2 - Y4

X23 —  X5

Y2 3 - Y5

X34 —  X i

X345

Y451 — S23

X451

Y512 — S34

X512

Y123 — S45

X123

Y234 — S51

Y45

X45

Y5i

X5i

Y12

X12

Y23

x 2 3

Y34

X234

+ Y2

+ x2
+ Y3

+ X3

+ Y4

+ x4
+ Y5

+ x5

. + Y,

Xl

x2

X3

x4

x5

Xl

X2

x3

X4

Y ^

X432

Y432 + S51

X543

Y543 + Sl2

X154

Y154 + S23

X215

Y215 + S34

X321

Y321 + S45

X32 —  X5

Y32 - Y5

X43 —  Xi

Y43 - Yi

X54 —  X2

Y54 - Y2

X15 —  X3

Y15 - Y3

X21 —  X4

X432

Y543 •- S 1 2

X543

Y l 5 4 •

Xi

Y215 •

- s2 3

54

- S34

X215

Y321 •

X,

Y32 +
X32 +
Y43 +
X43 +

Y54 +
X54 +

Y.5 +
X15 +

Y2i +

- S45

(21

Y5

x5
Yi
Xi

Y2

x2
Y3

x3

Y4

Y34 —  Yj X34 + X] Y21 —  Y4 X2i + X4

Direction Cosines - Spatial Pentagon

Se t l

s,
s2
S3

S4

(0,
(0,
(X2,
(X32,

0,
- S 1 2 ,

Y2,
Y32,

1)
C12)

z2)
Z32)

§12(1.
§23 (C2,
S34 (W32,

S45 (W432,

0,
S2Cl2,

- U 3 2 1 .

- u : 3 2 i .

0)
U21)

U321)
U432l)

S5(X432, Y432, Z432) a51(ci, - s i , 0)

Set 2

s2
S3
S4

loo

(0,
(0,
(X3,
(X43,

0,
- S 2 3 ,

Y3,
Y43,

1)
C23)

Z3)

z43)

§23

§34

§45
a

(1.
(c3,
(W43,
(W543,

0,
S3C23,

~ U 4 3 2 '
-U*,

0)
U32)

U432)
U5432)

S1(X5 4 3 , Y543, Z543) a1 2(c2 , - s 2 , 0)
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Set 3

Set 4

Set 5

Set 6

Set 7

Set 8

s3
s .
s5
S_i

s2

S4

s5col

s2
S3

s5

s2
S3

S4

c/5l

&

S4

S3

s2

s5
S4

S3

s2
Si

S4

S3

s2
Si

s5

(0,
(0,
(X4,

(X54,

(X154,

(0,
(0,
(X5,

(X15,

(X215,

(0,
(0,
(Xi,
(X21,

(X321,

(0,
(0,
(X5,

(X45,

(X345,

(0,
(0,
(X4,

(X34,

(X234,

(0,
(0,
(X3,

(X23,

(X123,

0,
- S 3 4 ,

Y4,
Y54,

Y154,

0,
- S 4 5 ,

Y5,
Y15,

Y215,

0,
- S 5 1 ,

Yi ,

Y21,

Y321,

0,
S51.

- Y 5 ,
—Y 4 5 ,
—Y345,

0,

S45,

- Y 4 ,

- Y 3 4 ,

—Y234,

0,
S34,

- Y 3 ,

- Y 2 3 ,

- Y 1 2 3 ,

1)
C34)

z4)
Z54)

Z154)

1)
C45)

z5)
Z15)

Z215)

1)
C51)

Z i )

Z21)

Z321)

1)
C51)

z5)
Z45)

z3 4 5)

1)
C45)

Z4)

Z34)

Z234)

1)
C34)

z3)
Z23)

Z123)

§34(1,

§45 (C4,

§51 (W54,

§12 ( W i 5 4 ,

§23 (C3,

§45(1,

§51 (C5,

a,2(Wi5,
§23( W 215,

§34 (C4,

§51 (1 ,

§12 (Cl,

§23(W21,

a3 4(W32 1,

§45 (C5,

§51 (1 ,

§45 (C5,

§34(W 4 5,

§23 (W345,

345(!»

3.-̂ 4 \C4?

a23 (W34,

§12 (W 2 3 4 ,

§51 (C5,

§34d,

§23 (C3,

§12(W23,

§51 (W,23,

§45 (C4,

0,
S4C34,

- U 5 4 3 '

-U1543.
- S 3 ,

0,
S5C45,

- U t 5 4 ,
- ^ , 5 4 ,

S4,

0,
S1C51,

^ 2 1 5 '

- U | 2 1 5 ,

- s 5 ,

0,

- S 5 C 5 1 ,

U451.

U3451'

S i ,

0,
—S4C45,

U345>

^ 2 3 4 5 '

S 5 ,

0,
—S3C34,

U234,

u*2 3 4 ,
s4,

0)
U43)

u5 4 3)
U,543)

0)

0)
U54)

U154)

U2i54)

0)

0)
U15)

U215)

U3215)

0)

0)
U51)

U451)

U3451)

0)

0)
U45)

U345)

U2345)

0)

0)

U34)

u2 3 4)
U1234)

0)
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Set 9

Set 10

&(0,
S2(0,
Si (X2,

S.5 (X12,

S4(X512,

S2(0,
S,(0,
Ss(Xi,

S4(X51,

S3 (X45i,

0,
S23,

- Y 2 ,

- Y 1 2 ,

—Y512,

0,
S12,

- Y i ,

- Y 5 1 ,

—Y451,

1)
c23)

z2)
Z12)

Z512)

1)
C12)

Zi)

Zsi)

Z451)

a2 3(l ,

a12 (C2,

Ssi (W12,

a45 (W512,

a34(c3,

3l2d,

3si(ci,

a45(W5,,

a3 4 (W4 5i ,

a23 (c2,

0,
- s 2 c 2 3 ,

UT23.

^ 1 2 3 .

s3,

0,
- S 1 C 1 2 ,

U5*12,

^ 4 5 1 2 '

S2>

0)
U23)

U123)

U5i23)

0)

0)
U12)

U512)

U4512)

0)
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Equations for a Spherical Hexagon

Fundamental Formulas:
X1234 = S56S5

X2345 = S61S6

X3456 = S12S1

X456I = S23S2

X56I2 = S34S3

X6123 —  S45S4

X432I = S56S6

X5432 = S61S1

X6543 = S12S2

Xi654 = S23S3

X2165 = S34S4

X32I6 = S45S5

Subsidiary Formulas:
Se t 1 X1234 — X5

X2345 = Xg

X3456 = X i

X4561 = X 2

X5612 = X 3

X6123 = X 4

X4321 = X 6

X5432 = X i

X6543 = X 2

Xi654 = X3

X2165 = X4

X32I6 = X 5

Se t 2 X123 —-  X54

X234 = X 6 5

A 345 —  A 1 6

X456 = X21

X56I = X32

X612 = X43

Yi234 =

Y2345 —

Y3456 =

Y456I =

Y5612 =

Y 6 1 2 3 =

Y432I =

Y5432 =

Y6543 =

Yl654 =

Y2165 =

Y32I6 =

~X1234

- X 2 3 4 5

~X3456

- x * 5 6 1
-X5*612

~ X 6 1 2 3

- x * 3 2 1

-X5*432

~ X 6 5 4 3

^•1654

- x * 6 1 5
-X3*216

Y123 =

Y234 =

Y345 =

Y456 =

Y56I =

Y 6 1 2 =

S56C5

S61C6

S12C1

S23C2

S34C3

S45C4

S56C6

S61C1

S12C2

S23C3

S34C4

S45C5

= Y5

= Y6

= Yi
= Y2

= Y3

= Y4

= Y6

= Yi
= Y2

= Y3

= Y4

= Y5

-x*54
~X65

- x t 6
-X*,

~X32

-xi,

Zl234 — ^56

Z2345 = C61

^3456 = C12

^4561 = ^23

Z56I2 = C34

^6123 = C45

Z432I = C56

Z5432 = C6l

^6543 = C12

Zl654 = C23

^2165 = C34

Z32I6 = C45

^123 = Z5

^234 = ^ 6

Z345 = Z i

Z456 = Z 2

2̂ 561 = ^ 3

^612 = Z 4

Z432 = ^ 6

Z.543 = la\

^654 = ^ 2

Zl65 = Z 3

Z2I6 = Z4

Z32I = Z5

Zl23 = Z5

Z234 = Z6

Z345 = Z i

Z456 — Z2

Z561 = Z3

Z612 = Z 4
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X432 =

X543 =

X654 =

X1 6 5 =

X2I6 =

X321 =

Set 3 X123 =

X234 -

X345 =

X456 :

X561 =

X612 :

X432 :

X543 :

X654 :

X l 6 5 :

X216 :

X321 :

Fundamental
U12345 =

U23456 =

U3456I —

U456I2 =

U56I23 —

U61234 =

U54321 =

U432I6 =

U32I65 =

U21654 =

U16543 =

U65432 =

= X6i

= X12

= X23

= X34

= X45

= x 5 6

= X54

= x 6 5
= X16

= X2i

= X32

= X43

= X6i

= X12

= X23

= X34

= X45

= x 5 6

Y432 = ~' X 6l

Y543 = - X * 2

Y654 = — X23

Yi65 = -

Y2I6 = -

Y32I = -

- X T * =
- X 2 3 4 =

- A 3 4 5 —

- X 4 5 6 =

- X 5 * 6 i =

- x * 1 2 =
- X 4 3 2 =

Y*
~ A 5 4 3 —

- X 6 5 4 =
Y*

~~A165 —

-X216 =

~A321 —

-X3*4

-x*5
-X5*6

Y54

Y65

Yi6

Y21

Y32

Y43

Y 6 i

Y12

Y23

Y34

Y45

Y56

2432 = 2 6

Z543 = Zi

Z654 = Z2

2i65 = 2 3

2216 —  24

2321 = 25

2i2 = 254

223 = 265

234 = 2i6

245 = Z21

256 = 2 3 2

261 = 243

243 = 26 i

Z54 = Z12

265 = 223

^ 1 6 = ^ 3 4

Z21 = Z45

232 = Z 5 6

Equations for a Polar Hexagon

Formulas:
S6S56

S1S61

S2S12

S3S23

S4S34

S5S45

S6S61

s5s5 6

S4S45

S3S34

S2S23

S1S12

Vl2345

^23456

V3456I

V456I2

V56123

^61234

V54321

V432I6

V32165

V21654

V16543

V65432

= s 6 c 5 6

= sic6i

= S2C12

= S3C23

= S4C34

= S5C45

= S6C61

= S5C56

= S4C45

= S3C34

= S2C23

= S1C12

W12345

W23456

W3456I

W4 5 612

W56123

W6i234

W5 4 321

W432I6

W32165

W21654

W16543

W65432

= c6

= Ci

= c2

= c3

= c4

= c5

= c6

= o5

= c4

= c3

= c2

= Ci
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Subsidiary Formulas:

Set 1 U12345 = U65

U23456 = Ui6

U34561 = U21

U45612 = U 3 2

U56123 = U43

U61234 = U54

U54321 = U 6 i

U432I6 — U56

U32I65 = U45

U21654 = U34

U16543 = U23

U65432 = U12

Set 2

Set 3

U2345 = Ui65

U3456 = U2l6

U456I = U321

U56I2 = U432

U6123 = U543

U5432 = U612

U4321 = U56i

U32I6 = U4 5 6

U2165 = U345

Ui654 = U234

U6543 = U123

U2345 = Ui65

U3456 = U216

U456I = U321

U56I2 = U432

U6123 = U543

U*2345

^23456

U3456I

^45612

^56123

^61234

U54321

U432I6

^32165

^21654

^16543

^65432

V1 2 34

V2345

v3 4 5 6
V456I

V5612

V6123

V5 4 32

V4321

V32I6

v2 1 6 5
Vl654

V6543

^1234

U^345

^3456

U?612

= - v 6 5
= - V i 6

= - V 2 i

= - v 3 2
= - v 4 3
= - v 5 4

= -v 6 i

= - v 5 6
= - v 4 5
= - v 3 4
= ""V23

= - V i 2

= -U?54

= -UIss

—  TT*— ~" U321

- - u : 3 2
= - u ; 4 3

= - U 6 1 2

= - u ; 5 6
= - U ? 4 5

= - U 2 3 4

= - u t 2 3

= -V 6 5 4

= - V i e

= - V 2 1 6

= - V 3 2 1

= -V432

= - V 5 4 3

w1 2 3 4
W2345

W 3 4 5 6

w4561
w5 6 1 2
W6123

W5432

W 4 3 2 1

W 3 2 ,6

w2 1 6 5
w1 6 5 4
W6543

W1234

w2 3 4 5
W3456

W4 5 6,

W5612

W6123

W5432

W4321

W3216

w2 1 6 5
w1 6 5 4
W6543

w1 2 3
W2 3 4

W345

w 4 5 6
W 5 6 1

w 6 1 2

= w 6 5
= w 1 6
= w 2 1
= W32

= w 4 3
= w 5 4

= w 6 1

= w 5 6
= w 4 5
= w 3 4
= W2 3

= w 1 2

= w 6 5

= w , 6
= w 2 1
= w 3 2
= w 4 3
= w 5 4

= w 6 1

= w 5 6
= w 4 5
= w 3 4
= w 2 3
= Wi2

= w 6 5 4

= w1 6 5
= w 2 1 6
= W 3 2 1

= W432

= w5 4 3
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U5 4 32 = U 6 1 2 U5*432 = - V 6 1 2 W 5 4 3 = W 6 1 2

U4321 = u 5 6 1 u;m - - v 5 6 i w 4 3 2 = w 5 6 1

U32I6 = U 4 5 6 U 3 2 1 6 = — V456 W321 =  W 4 5 6

U2i65 = U345 U*1 6 5 = - V 3 4 5 W 2 1 6 = W 3 4 5

u 1 6 5 4 = u 2 3 4 ut 6 5 4 = - v 2 3 4 w 1 6 5 = w 2 3 4
U 6 5 4 3 = U 1 2 3 U*5 4 3 = -V123 W 6 5 4 = W 1 2 3

Half-Tangent Laws for a Hexagon

Set l
X5432

x
3456 i S12

X4561
x2 - —

*4561 + S23 ^4561 *6543 + Si2

X5612
X3 — T? ; = ~ X3 —

Y3456 —

Y4561 —

X4561

Y56I2 ~"

X56I2

Y6123 "~

X6123

Y2345 —

Sl2

S23

S 3 4

S45

S56

S61

Y56I2 + S34 X 5 6 i 2 Y i 6 5 4

X6123

Y6123 + S45 X 6 i 2 3 Y2i65 + S34

• S56 X i 2 3 4 Y 3 2 i 6 + S45

X432i

Y5432 —

Y6543 ~"

X6543

Xi654

Y2165 —

X2165

X32I6

Y4321 ~

S61

Sl2

S23

s

s

[ 2345 "I" S61 ^-2345 Y4321 + S^

Set 2
A456 — A. 2 1455 T 12 -*M32 — ^ 6

Xl = v ^~ =

_ X 5 6 i — X 3
X2 —  T; ^ ~ :

A 561 —  Y 3

~v ~v
A.612 — ^4
Y612 —  Y 4

_ X1 2 3 —  X 5 ^
Yi 2 3 — Y 5

_ x 2 3 4 —  x 6
X5 — T7 ^ ~  :

I 234 — I  6

X456H

Y 5 6 H
X561 H

Y 6 i 2 H

X612 H

Y1 2 3H
X1 2 3H

1 224 ~

X234 -

Y345 "

- x 2
HY3

HX3

h Y 4

HY5

HX5

HY6

hX6

I-Yi

^

_X 5 —

_ X345 —  Xi _ _ ._ _ _
Y Yi X345 + Xi Y32i —  Y5 X32i + X5

Y432

X543

X654

Y654

xZ
Y216

X321

- Y 6

- x 2
- Y 2

- Y 3

- X 4
- Y 4

- x 5

Y432

Y543

X543

Y654

Yl65

Xl6 5

Y321

+

+
+

+
+

+

Y6

Y,
X!

Y2

Y3

Y4

x4
Y5
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Set 3
X56 —  X3 2

X2 =

x3 =

x4 =

x5 =

x6 =

Y56

X6i

Y6i

X12

Y12

X23

Y23

X34

Y34

X45

- Y 3 2

—  X43

- Y 4 3

—  X54

- Y 5 4

- x 6 5
- Y 6 5

—  Xi6

- Y 1 6

- X 2 1

Y56

X56

X 6 i

Y12

X12

Y23

X23

Y34

X34

Y45

+
+
+
+
+
+
+
+
+
+
+

Y32

X32

Y43

X43

Y54

X54

Y65

X65

16

Y 2 I

Y45 —  Y21 X45 + X21

Direction Cosines - Spatial Hexagon

Setl

Set 2

Set 3

s,
s2
S3

S.4

&

s6

1

s2
S3

S4

s5
s6
Si

!

S4

s5
s6
Si

s2

(0,
(0,
(X2,

(X32,

(X432,

(X5432,

(0,
(0,
(X3,

(X43,

(X543,

(X6543>

(0,
(0,
(X4,

(X54,

(X654.

(Xi654,

0,
- S 1 2 ,

Y2,

Y32,

Y432,

Y5432,

0,

- S 2 3 ,

Y3,
Y43,

Y543>

Y6543,

0,

—S34,

Y4,
Y5 4,

Y654,

Yi654,

i)
C12)

z2)
Z32)

Z432)

Z5432)

i)

C23)

z3)
Z43)

Z543)

Z6543)

i)
C34)

z4)
z5 4)

z654)
Z1654)

and,

a34(W32,

§45 (W432,

a56 (W5432,

a.Cci,

a23(l,
a3 4(c3,

§45 (W43,

a56(W543,

a6i (W6543,

a i 2 (c 2 ,

134(1,

§45 (C4»

a5 6(W5 4,

Sei (W654,

a i 2 (Wi 6 5 4 ,

§23 (C3,

0,
S2C12,

- U 3 2 1 '

- u ; 3 2 i ,

-U54321.

- s i ,

0,

S3C23,

- u : 3 2 >
- U 5 4 3 2 '

- U 6 5 4 3 2 '

- s 2 ,

0,
S4C34,

- u ; 4 3 ,
- U 6 5 4 3 '

TT*u16543'

- S 3 ,

0)
U21)

U321)

U4321)

U54321)

0)

0)

u32)
U432)

U5432)

U65432)

0)

0)

U43)

u543)
U6543)

U16543)

0)
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Set 4
§4(0,
§5(0,
§6(X5,
§1 (Xfij,

§2 (Xl65,

§3 (X2165,

Set 5
§s(0,
§6(0,
§1 (X6,
§2 (Xl6,

§3 (X2I6,

§4 (X32I6,

Set 6
§e(0,
§!(0,
§a(Xi,
§3(X21,

§4 (X321,

§5 (X4321,

Set 7
§,(0,
§e(0,
§5 (X6,

§4 (X56,

§3 (X456,

§2 (X3456,

Set 8
§6(0,
§5(0,
§4(X5,
§3 (X45,

§2 (X345,

§1 (X2345,

0,

~S45,

Y5,
Y 6 5 ,

Yl65,

Y2165,

0,

- s 5 6 ,

Y6,
Yi6 ,

Y216,

Y3216,

0,

- s e i ,

Yi ,

Y21,

Y32I,

Y4321,

0,

S61.

- Y 6 ,

—Y 5 6 ,

~Y456,

—Y3456,

0,

S56,

- Y 5 ,

-"Y45,

~Y 3 4 5 ,

—  Y2345,

1)
C45)

z5)
z65)

Zl65)

Z2165)

1)
C56)

z6)
Zle)

Z216)

Z3216)

1)

C61)

Zi)

Z21)

Z321)

Z4321)

1)

c6l)

z6)
z56)

Z456)

Z3456)

1)

C56)

z5)
Z45)

Z345)

Z2345)

§45(1'

§56 (C5,

§61 (W65,

ai2(Wi65,

§23(W2165,

§34 (C4,

§56(1'

§61 (C6,

§12(Wi6,

§23 (W 2 l6 ,

§34 (W3216,

§45 (C5>

§61 d '
a12(ci,
§23(W21,

§34(W321,

§45(W4321,

§56 (C6,

§61 (1 ,

§56 (C6,

§45 ( W 5 6 ,

§34 (W456,

§23 (W3456,

§12 (Cl,

§56(1'

§45 (C5 '

§34(W45,

§23( W 345,

§12(W2345,

§61 (C6,

0,

S5C45,

- U ? 5 4 '

-ut 6 5 4 '
" ^ 2 1 6 5 4 ,

— S4,

0,

S6C56,

-u t 6 5 ,
-uii«.
~ ^ 3 2 1 6 5 ,

- s 5 ,

0,

SlC6i,

~^216.
"U^ig,

- s 6 ,

0,

- S 6 C 6 1 ,

U5*61^

u:5 6 i '
U3456I,

S i ,

0,

- S 5 C 5 6 ,

u:56»
u;456'
^23456 '

S6,

0)

U54)

U654)

Ul654)

U21654)

0)

0)

u65)
Ui6s)

U2165)

U32165)

0)

0)

U,6)

U216)

U3216)

U43216)

0)

0)

U561)

U4561)

U34561)

0)

0)

u56)
U456)

U3456)

U23456)

0)
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Set 9
S5(0,

§4(0,
S3(X4,
S2(X34,

Si (X234,

S 6 (Xi234»

Set 10
§4(0,

&(0,
S2(X3,
Si (X23,

S6(Xi23,

S5 (X6i23,

Set 11
§3(0,

§2(0,

Si (X2,

S6 (X12,

S5 (X6l2,

S4 (X5612,

Set 12
S2(0,
§i(0,
S6(Xi,
S5(X6i,
§4(X56l,

S3(X456l,

0,

S45,

- Y 4 ,

- Y 3 4 ,

—Y234,

~Yi234,

0,

S34,

- Y 3 ,

- Y 2 3 ,

—  Yi23,

—  Y6i23,

0,

S23,

- Y 2 ,

- Y 1 2 ,

—Y612,

—Y5612,

0,

Sl2>

- Y i ,

- Y 6 i ,

- Y 5 6 1 ,

— Y456I,

1)

C45)

z4)
Z34)

Z234)

Z1234)

1)

C34)

z3)
Z23)

Z123)

Z6123)

1)

C23)

z2)
Z12)

Z612)

Z5612)

1)

C12)

Z i )

Z6i)

Zsei)

Z4561)

§45 ( ^

§34 (°4,

§23 (W34,

§12 (W234,

§61 (W1234,

§56 (C5?

§ 3 4 ( ^

§23 (C3,

§i2(W23,

§61 (Wl23,

§56(W6123,

§45 (C4,

§23 (h
§12 (C2,

§61 (Wi 2 ,

§56 (W6l2,

§45 (W5612,

§34 (C3,

§12(1,

§61 (Cl,

§56(W6i,

§45(W561,

a34(W456i,

§23 (C2,

0,

- S 4 C 4 5 ,

u;45>
^ 3 4 5 ^

U12345'

0,

- S 3 C 3 4 ,

^ 1 2 3 4 '

^61234 '

S 4 ,

0,

- S 2 C 2 3 ,

U123.

US123.

^ 5 6 1 2 3 '

S3,

0,

- S 1 C 1 2 ,

UJl2,

U*12.

^45612 '

S2.

0)

U45)

U345)

U2345)

Ui2345)

0)

0)

U34)

u2 3 4)
U1234)

U61234)

0)

0)

U23)

U123)

U612 3)

U56123)

0)

0)

U12)

u«12)

U5612)

U45612)

0)
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Equations for

Fundamental Formulas:
X12345 = S67S6

X23456 = S71S7

X34567 = S12S1

X4567I = S23S2

X56712 = S34S3

X67123 — S45S4

X71234 = S56S5

X54321 = S67S7

X65432 = S71S1

X76543 = S12S2

Xn654 = S23S3

X21765 = S34S4

X32176 = S45S5

X43217 = S56S6

Subsidiary Formulas:
Set 1 X12345 - X6

X23456 — X7

X34567 = X i

X45671 = X 2

X56712 = X 3

X67123 — X4

X71234 = X 5

X5432I = X7

X65432 = X i

X76543 = X 2

Xn654 = X3

X21765 = X4

X32176 = X 5

X43217 = X 6

a Spherical Heptagi

Y12345 = S67C6

Y23456 — S71C7

Y34567 = S12C1

Y45671 = S23C2

Y56712 = S34C3

Y67123 —  S45C4

Y71234 = S56C5

Y54321 = S67C7

Y65432 = S71C1

Y76543 = S12C2

Yl7654 —  S23^3

Y21765 — S34C4

Y32176 = S45C5

Y43217 — $56 C6

Y* — Y
^12345 —  1 6
Y* v
A23456 —  I 7
Y* V
A34567 — - 1 1

~ X 4 5 6 7 1 = Y2

Y* _ V
~A56712 —  Y3

Y* V
^67123 —  I 4
Y* Y^71234 —  X5

Y* V
^54321 —  17
Y* V

""^65432 —  x 1
Y* —  Y^""^76543 —  12
Y* — Yo"" A17654 —  Y 3

~X26 7 1 5 = Y4

Y* V
^32176 —  J 5
Y* Y
^43217 —  1 6

on

Zl2345 = ^67

Z23456 = C71

Z34567 = C12

Z45671 = ^23

Z56712 = C34

Z67123 = C45

Z71234 = C56

Z5432I — ^67

Z65432 = C71

Z76543 = C12

Zl7654 = C23

Z21765 —  C34

Z32176 = C45

Z43217 = C56

Zl234 = Z6

Z2345 — Z7

Z3456 = Z i

Z4567 = Z 2

Z5671 = Z 3

Z6712 = Z4

Z7123 = Z5

Z5432 — Z7

Z6543 = Z i

Z7654 = Z 2

Zl765 = Z3

Z2176 — Z4

Z3217 = Z5

Z4321 = Z 6
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Set 2 X1234 = X6 5

X2345 = X 7 6

X3456 = X17

X4567 = X21

X5671 = X32

X6712 = X43

X7123 = X54

X5432 = X 7 i

X6543 = X12

X7654 = X23

Xi765 = X34

X2176 = X45

X3217 = X 5 6

X4321 = X 6 7

Set 3 X1234 = X6 5

X2345 — X76

X3456 = X17

X4567 = X21

X5671 = X32

X6712 = X43

X7123 = X54

X5432 = X71

X6543 = X12

X7654 = X23

Xi765 = X34

X2176 = X45

X3217 = X56

X4321 = X 6 7

Set 4 X 1 2 3=X 6 5 4

X234 = X 7 6 5

X345 = X176

X456 = X217

X567 = X321

X671 = X432

X712 = X543

Yi234 =

Y2345 =

Y3456 =

Y4567 =

Y567I =

Y6712 =

Y7123 =

Y5432 =

Y6543 =

Y7654 =

Yi765 =

Y2176 =

Y3217 —

Y4321 =

Y*^1234
Y*
^2345
Y*

~A3456
Y*

~A4567
Y*"~A5671
Y*~~A6712
Y*~ A 7123

Y*
~ A 5432

Y*A6543
Y*^7654
Y*~~A1765
Y*~ A 2176
Y*

~A3217
Y*^4321

Y123 =

Y234 =

Y345 =

Y456 =

Y567 =

Y 6 7 i =

Y712 =

""X 6 5

Y*

- x ; 7
- X 2 1

-x* 2
-X43

- x ; 4

- x ? 2
Y*—A 2 3

—A. 34

Y*— A45

- x ; 6
- X ^ 7

= Y65

= Y76

= Y n

= Y21

= Y3 2

= Y4 3

= Y54

= Y7i

= Y, 2

= Y2 3

= Y34

= Y45

- Y 5 6

= Y67

~Xg5 4

Y*
~A765

Y*
~A176

~X2\7
Y*

~~A321
Y*~ A 4 3 2
Y *

Zi234 = Z6

Z2345 ~ Z7

Z3456 = Z i

Z4567 = Z 2

Z5671 — Z3

Z6712 = Z4

Z7123 = Z 5

Z5432 = Z 7

Z6543 = Z i

Z7654 = Z2

Zl765 = Z 3

Z2176 = Z 4

Z3217 == Z5

Z4321 = Zs

Z123 = Z 6 5

Z234 = Z 7 6

Z345 = Z17

Z456 = Z21

Z567 = Z32

Z671 = Z43

Z712 = Z54

Z543 = Z71

Z 6 5 4 = Z12

Z765 = Z23

Z176 = Z34

Z217 == Z45

Z321 = Z56

Z432 = Z 6 7

z 1 2 3 = z 6 5
Z234 = Z76

Z345 = Z17

Z456 = Z21

Z567 = Z 3 2

Z 6 7 i = Z43

Z712 = Z54
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X543 = X712 Y543
X654 = X123 Y654

X765 = X234 Y 7 6 5

X176 = X345 Y176

X217 = X456 Y217

X321 = X5 67 Y321

X432 = X671 Y432

= ~ ^ 7 1 2 ^543 =

= ~Xj23 ^654 —

~ "X-234 ^765 =
= ~ X 3 4 5 Z176 =

— ~ X 4 5 6 Z217 =

— ~ X 5 6 7 ^321 =

= ~ X 6 7 1 Z432 =

Equations for a Polar Heptagon

Fundamental Formulas:
Ui23456 = S7S67

U234567 = S1S71

U34567I = S2S12

U456712 —  S3S23

U567123 = S4S34

U671234 — S5S45

U712345 = S6S56

U654321 = S7S71

U543217 = S6S67

U432176 = S5S56

^321765 = S4S45

^217654 = S3S34

U176543 —  S2S23

U765432 = S1S12

Subsidiary Formulas:
Se t 1 Ui23456 = U 7 6

U234567 = U17

U34567I = U21

U456712 = U32

U567123 = U43

U671234 = U54

U712345 = U65

U654321 = U71

U543217 = U67

U432176 = U 5 6

U321765 = U45

U217654 = U34

U176543 = U23

U765432 = U12

Vl23456 = S7C67

V234567 = S1C71

^345671 = S2C12

^456712 = S3C23

^567123 = S4C34

V671234 = S5C45

V712345 = S6C56

V654321 = S7C71

V543217 = S6C67

V432176 = S5C56

^321765 = S4C45

^217654 = S3C34

V176543 — S2C23

^765432 = S1C12

U123456 = ~ V 7 6
U234567 = ~ V 1 7
U345671 = ~ V 2 1

Uk712 = -V32
U567123 = ~ V 4 3
U671234 = ~ V 5 4
U712345 = ~ V 6 5

U654321 = ~ y 7 1

U*543217 = ~ V s 7
U432176 = ~ V 5 6
U321765 = ~ V 4 5
U217654 = ~ V 3 4

Ut76543 = - V 2 3

U?6S4^9 = —Vl2

: Z71

: Z12
: Z23
: Z34
: Z45
: Z 5 6
: Z6 7

Wi23456

W234567

W34567i

W4 5 67i2

W567123

W67i234

W712345

W65432l

W543217

W432176

W321765

W2i7654

Wn6543

W765432

W12345 =

W23456 =

W34567 =

W 4 5 67i =

W 5 6 7 i2 =

W6 7i23 =

W71234 =

W65432 =

W54321 =

W 4 3 2 l 7 =

W 3 2 1 7 6 =

W2i765 =

Wi7654 =

W76543 =

= C7

= Ci

= c2

= c3

= c4

= c5

= c6

= c7

= c6

= c5

= c4

= c3

= c2

= Ci

= w 7 6
= w1 7
= w2 1
= w 3 2
= w 4 3
= w 5 4
= w6 5
= w7 1
= w6 7
= w 5 6
= w4 5
= w 3 4
- W 2 3

= w 1 2
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Set 2 U 1 2 3 4 5 =
U23456 =

U3456"7 =

U45671 =

U56712 =

U67123 =

U71234 =

U65432 =

U54321 =

U43217 =

U3 2n6 =

U21765 =

U17654 =

U76543 =

u 7 6 5u I 7 6
u 2 1 7
U 3 2 i

U 4 3 2

u 5 4 3
u 6 5 4

u 7 1 2

u 6 7 1
u 5 6 7
U 4 5 6

u 3 4 5
u 2 3 4
Ul2 3

Set 3

U23456

U34567

U45671

U56712

U67123

U71234 ;

U65432

U54321

U43217

U32176

U21765

= u?
217

U76543 =

Set 4 U1234 = "
U2345 :

U3456

U4567

U5671

U6712

U7123

= u 5 4 3
= U654

u 7 1 2
u 6 7 1

: U 5 6 7

: U 4 5 6

; U 3 4 5

^u 2 3 4
U 1 2 3

U7654

U1765

U 2 1 7 6

•• U 3 2 1 7

: U4321

: U5432

: U65 43

V23456

V34567

V45671

V56712

= -u
= -u

765

176

-"217

= -u
= -U;
= -U;

321

432

543

V71234 = - I

- "U 7 *12

= - U 6 7 1

V439.17 = — I '567

J456

= - U
= -U;

345

^34567 —

^45671 =

^56712 =

^67123 =

U71234 =

U*

54321 —

'-'43217 =

U32176 =

234

ut23

v 7 6 5
v 1 7 6
v 2 [ 7

- V 3 2 1

- V 4 3 2

- v 5 4 3
- v 6 5 4

- V 7 1 2

- v 6 7 1
- V 5 6 7

- v 4 5 6
- v 3 4 5
- v 2 3 4
- V 1 2 3

V i 2 3 4

v 2 3 4 5
V3456

V4567

V5671

V6712

V7123

= - U

= - U
7654

1765

J2176

= -U:3217
U4321

^5432

U6543

w123 4 5 = w 7 6
W 2 3 4 5 6 = W , 7

W34567 = W21

W4567i = W 3 2

W7i234 =

W65432 =

W54321 =

W21765 =

W 7 6 5 4 3 = W n

W 1 2 3 4 = W 7 6 5

W 2 3 4 5 = W 1 7 6

W 3 4 5 6 = W217

W4567 = W321

W5 6 71 = W 4 3 2

W 6 7 1 2 = W 5 4 3

W 7 1 2 3 = W 6 5 4

W 6 5 4 3 = W 7 1 2

W 5 4 3 2 = W 6 7 1

W 4 3 2 1 = W 5 6 7

w 3 2 1 7 = w 4 5 6
W2176 = W345

w1 7 6 5 = w 2 3 4
w 7 6 5 4 = w 1 2 3

w 1 2 3 4 = w 7 6 5
w 2 3 4 5 = w 1 7 6
W34 56 = W217

W4567 = W321

W 5 6 7 1 = W432

w 6 7 1 2 = w 5 4 3
w 7 1 2 3 = w 6 5 4
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U6543 = U7123

U5432 = U 6 7 i2

U4321 = U5671

U3217 = U4 5 67

U2176 —  U3456

Un65 = U2345

U7654 = U1234

V6 5 43 -

V5432 =

V4321 =

V3217 =

V2l76 =

Vl765 =

V7654 =

-u
-u
-u
-u;
- U
-U;
- U

7123

6712

5671

4567

3456

2345

1234

w 6 5 4 3 = w 7 1 2
W 5 4 3 2 = W 6 7 1

W4321 = W 5 6 7

W3217 = W 4 5 6

W 2 1 7 6 = W345

W1765 = W 2 3 4

w 7 6 5 4 - w 1 2 3

Half-Tangent Laws for a Heptagon

Setl

A l

x2 -

X3 -

X4 -

x5 -

X 6 —

Y-,

X34567

Y34567 + Sl2

X45671

Y45671 + S23

X56712

Y56712 + S34

X67123

Y67123 + S45

X71234

Y71234 + S56

Yi2345 + S67

X23456

Y34567 — S12

X34567

Y45671 — S23

X45671

Y56712 ~ S34

X56712

Y67123 — S45

X67123

Y71234 ~ S56

X71234

Yi2345 ~ S67

Set 2

x2 =

x3 =

x4 =

x5 =

x6 =

x7 =

Y23456 + S71

X4567 —  X 2

Y4567 —  Y2

X5671 —  X3

Y5671 —  Y 3

X6712 —  X4

Y6712 —  Y4

X7123 —  X5

A 7 1 2 3 — 1 5

X1234 —  X$

Y1234 —  Y 6

X2345 —  X7

Y2345 ~ Y7

X3456 ~ X i

* 3456 "" A 1

Y23456 ~ S71

X23456

4 5 6 7

X4567 + X2

Y5671 + Y3

X5671 + X3

Y6712 + Y4

X6712 + X4

Y7123+Y5

X7123

Y1234

X5

Y6

X1234 + X6

Y2345 + Y7

X2345 + X7

Y3456 + Yi

X3456 + Xi

xi =

x2 =

x3 =

x4 =

x5 =

x6 =

X7 =

X65432

Y65432 + S71

X76543

Y76543 + S12

Xn654

Yi7654 + S23

X21765

Y21765 + S34

X327I6

Y327I6 + S45

X43217

Y43217 + S56

X54321

Y5432I + S67

Y65432 — S71

X65432

Y76543 — S12

X76543

Yi7654 — S23

Y21765 ~" S34

X21765

Y327I6 "" S45

X327I6

Y43217 "~ S56

X43217

Y5432I — S67

X5432I

X5432 —  X7 Y5432 + Y7

x2 =

x3 =

Y5432 —  Y7

X6543 ~ Xi

I 6543 — I 1

X7654 —  X2

Y7654 —  Y 2

x4 =

x5 =

x6 =

x7 =

X5432 + X7

Y6543 + Y\
X6543 + Xi
Y7654 + Y2

X7654 + X2

Y1765 + Y3

Yl765 —  Y3

X2176 "" X4

Y2176 ~" Y4

X3217 ~" X5

Y3217 ~ Y5

X4321 —  X 6

Y4321 ~" Yg

X3

Y2176 + Y4

X2176 + X4

Y3217 + Y5

X3217 + X5

Y4321 + Y6

X4321 + X6
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Set 3

x2 =

x3 =

x4 =

x5 =

x7 =

X567 —  X32

Y567 —  Y 3 2

X67i —  X43

Y671 —  Y43

X712 —  X54

Y712 —  Y54

X123 —  X 6 5

Y123 —  Y 6 5

X234 —  X76

Y234 ~ Y76

X345 —  X17

Y345 —  Y17

X456 —  X21

Y567 +

X567 +

Y671 +

X671 +

Y712 +

XX712 "

Y123 +

X123 +

Y234 +

X234 +

Y345 +

X345 +

Y456 +

Y32

X32

Y43

X43

-Y54

hX5 4

Y65

X65

Y76

x 7 6

Y17

X17

Y21

X432 —  X 6 7

x2 =

x3 =

x4 =

x5 =

Y432

X543

Y67

• X71

Y543 •

^ 6 5 4

Y71

' X12

Y654

^ 7 6 5

Y12

• X23

Y765 •

X176

Y 2 3

X34

Y176

X217

Y 3 4

• X45

Y217

X321

Y45

• x 5 6

Y432H

X432 H

Y543 -

X543 -

Y654 "

X654 "

Y765 "

X765 "

Yl76 "

X176 "

Y217 "

X217 "

Y32I "

hY67

hX67

hY7 1

hX7 1

HY12

\-Xu

\-Y23

\-X23

FY3 4

FX3 4

fY 4 5

fX 4 5

f-Y56

Y456 — -21 X456 + X21 Y321 - Y56 X32I + X;56

Direction Cosines - Spatial Heptagon
Setl

Set 2

Si

s2
S3

S4

s5
s6
s7

s2
S3

§4

&

s6
s7
Si

(0,
(0,
(X2,

(X32,

(X432,

(X5432,

(X65432>

(0,

(0,

(X3,

(X43»

(X543,

(X6543»

(X76543,

0,

- S 1 2 ,

Y2,

Y32,

Y432,

Y5432,

Y65432,

0,

- S 2 3 ,

Y3,

Y4 3,

Y543,

Y6543.

Y76543,

1)

C12)

z2)
Z32)

Z432)

Z5432)

Z65432)

1)

C23)

z3)
Z43)

z5 4 3)
Z6543)

Z76543)

112(1.

§23 (C2>

a34(W32,

§45 ( W 4 3 2 ,

a56(W5432,

§67 (W6 5 432,

a7i (ci,

123(1,
a34(c3,

§45 (W43,

a56(W543,

a67(W6543,

§71 (W7 6 543,

a,,(c2,

0,

S2C12,

- U 3 2 1 .

- U «21-

-Us4321 .

- U 6 5 4 3 2 1 »

- S i ,

0,

S3C23,

—U432,

—TT*U 5 4 3 2 '

" ^ 6 5 4 3 2 ,

- U 7 * 6 5 4 3 2 ,

- S 2 ,

0)

U21)

U321)

U4321)

U54321)

Ue5432l)

0)

0)

U32)

u432)
U5432)

U65432)

U765432)

0)
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Set 3
S3(0,

S4<0,

S5 (X4,

S6 (X54,

S_7 (X654,

S_i (X7654,

& (X17654,

Set 4
§4(0,
S5(0,

S6(X5,

S.7(X65,

Sj (X765,

S_2 (X1765,

S3 (X2l765,

Set 5
S5(0,

S6(0,

S7(X6,

Si (X76,

S2 (Xi7 6,

S3 (X2176,

S4 (X32176,

Set 6
Se(0,
S7(0,

S, (X7,

S2(Xi7,

S3 (X217,

S4(X3217,

S5 (X43217,

0,

- S 3 4 ,

Y4)

Y5 4,

^ 6 5 4 ,

Y7654,

Yi7654,

0,

- S 4 5 ,

Y5,

Y65,

Y765,

Yn65,

Y21765,

0,

- S 5 6 ,

Y6,

Y76,

Y176,

Y2176,

Y32176,

0,

- S 6 7 ,

Y7,

Y17,

Y217,

Y3217,

Y43217,

1)

C34)

z 4 )
z5 4)

z654)
Z7654)

Z17654)

i)

C45)

Zs)
z6 5)

z765)
Z1765)

Z21765)

1)

C56)

z 6 )
z7 6)

Zl76)

^2176)

Z32176)

1)

C67)

z7)
Z17)

Z217)

Z3217)

Z43217)

§34(1,

§45 (C4,

§5 6(W5 4,

§67 (W654,

§71 (W7 654,

§12 ( W i 7 6 5 4 ,

§23 (C3,

§45(1,

§56 (C5,

§6 7(W65,

§71 (W765,

§12 (Wi765,

§23 (W21765,

§34 (C4,

§56d,

§61 (C6,

§71 (W76,

§12 (W 176,

§23 (W2l76,

§34 (W32176,

§45 (C5,

§67(1,

§71 (C7,

§l2(Wi7,

§23 (W217,

a34(W3217,

§45 (W43217,

§56 (C6,

0,
S4C34,

- U 5 * 4 3 >

" ^ 5 5 4 3 ,

"" ^76543 '

~Ui 7 6 5 4 3 ,

- S 3 ,

0,

S5C45,

-US54,

" ^ 7 5 5 4 ,

~V 17654'

•~U 2 1 7 6 5 4 ,

— s 4 ,

0,

S6C56,

- U ^ 6 5 ,

~^1765'

~U21765'
~"U321765,

- s 5 ,

0,

S7C67,

-Ul76»

^2176'

~U3 2 1 7 6 ,

~~ ^432176'

- s 6 ,

0)

U43)

U543)

U6 543)

U76543)

Ul76543)

0)

0)

U54)

u654)
U7654)

Ul7654)

U217654)

0)

0)

u65)
u765)

u1765)
U21765)

U321765)

0)

0)

u67)
Ul76)

U2176)

U3 2 I76)

U432176)

0)
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Set 7

Set 8

Set 9

Set 10

S7 (0,
S,(0,
S2(X1;

S3 (X21,

S 4 (X 3 2 i ,

S5 (X4321,

S6(X54321,

S,(0,
S7(0,
SeCXv,
S5 (X67,

S4 (X567,

S3 (X4567,

S_2 (X34567,

S7(0,
§6(0,
S5 (X6,

§4 (X56,

S3 (X456,

S_2 (X3456,

S_i (X23456,

S6(0,
S5(0,
S4(X5,

S_3 (X45,

S2(X3 45,

S_i (X2345,

S 7 (X12345,

0,
- S 7 1 ,

Yi ,

Y2 1,

Y321,

Y4321,

Y54321,

0,

S71,

- Y 7 ,

- Y 6 7 ,

—Y 5 67,

- Y 4 5 6 7 ,

—Y34567,

0,

S67,

- Y 6 ,

—Y 5 6 ,

—Y456,

-Y3456,

0,

S56,
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Bezout's solution method, 109-110

CCC Spatial Manipulator, 99-102
Cincinnati Milacron T3-776 robot, 338-351
classification of spatial mechanisms, 56-59
close-the-loop, 47-51
compound transformations, 9-10
coordinate transformations, 4-17
cylindric joint, 23

degrees of freedom, 4, 22-24, 26, 54-56
dual angles, 114-115
dual numbers, 112-114

elimination, 107-110, 162, 204, 375
equivalent spherical mechanism, 53-54

forward kinematic analysis, 39-41
4 4 transformation matrices, 7

G.E. P60 robot, 328-338
general transformations, 13-17
Group 1 Spatial Mechanisms:

RCCC, 99-102
RCPCR, 92-95
RRPRPPR, 95-99

Group 2 Spatial Mechanisms:
RCRCR, 117-124
RRCCR, 124-128
RRRPCR, 129-133
RRPRCR, 133-139
RRPRRPR, 139-157

Group 3 Spatial Mechanisms:
RCRRRR, 164-178
RRPRRRR, 178-202

Group 4 Spatial Mechanisms:
7R, xii, 2, 204-266
RRRSR, 266-276
RRSRR, 276-285
RSTR, 285-290
RTTT, case 1 290-299
RTTT, case 2 299-308
RRR-R-RRR, 308-317

half-angle-laws, 163-164
Hooke joint, 26
hypothetical closure link, 46-51

industrial robots:
Cincinnati Milacron T3-776, 338-351
G.E. P60, 328-338
Puma, 40-41, 320-328

inverse of a transformation, 7-9
iterative solution techniques, 45-46

joints:
Hooke joint, 26
plane joint, 24-25
prismatic joint, 22-23
revolute joint, 21-22
screw joint, 23
spherical joint, 26-27

kinematic chain, 27-31, 57-58
kinematic inversion, 57
Kotelnikov, 115

labeling of kinematic chain, 27-31
LaPlace's theorem, 175-176

mobility, 54-58
Modified Flight Telerobotic Servicer robot, 362-379

plane joint, 24-25
point transformations, 5-6
polar polygons:

heptagon, 87
hexagon, 87
pentagon, 84
quadrilateral, 83-84
triangle, 73-75

polar sine, sine-cosine, and cosine laws:
heptagon, 87
hexagon, 87
pentagon, 84
quadrilateral, 83-84
triangle, 73-75
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principle of transference, 115
prismatic joint, 22-23
projection of vector loop equation, 111
Puma robot:

forward displacement analysis, 4CMU
reverse displacement analysis, 320-328

quaternions:
algebra, 382-384
conjugate, 384
definition, 381-382
division, 386-387
norm, 385-386
rigid body rotations, 387-391

RCPCR mechanism, 92-95
RCRCR mechanism, 117-124
RCRRRR mechanism, 164-178
recursive notation:

U, V, W definitions, 65-67
X, Y, Z definitions, 60, 62, 64, 187

reverse displacement analysis problem statement, 44
revolute joint, 21-22
rigid body rotation, 387-391
rotation matrix, 13-17
RRCCR mechanism, 124-128
RRPRCR mechanism, 129-133
RRPRPPR mechanism, 95-99
RRPRRPR mechanism, 139-157
RRPRRRR mechanism, 178-202
RRRPCR mechanism, 129-133
RRRSR mechanism, 266-276
RRR-R-RRR mechanism, 308-317
RRSRR mechanism, 276-285
RSTR mechanism, 285-290
RTTT mechanism, 290-308

screw joint, 23
secondary cosine laws, 112-117

self-scalar product, 111-112
7R mechanism, xii, 2, 204-266
Space Station Remote Manipulator System,

352-362
spatial link, 20-21
spherical joint, 26-27
spherical link, 53
spherical polygons:

heptagon, 86-89
hexagon, 86-87
pentagon, 84-86
quadrilateral, 75-84
triangle, 68-75

spherical sine, sine-cosine, and cosine laws:
heptagon, 86-87
hexagon, 86-87
pentagon, 84
quadrilateral, 75-76
triangle, 68-70

standard link coordinate systems, 33-34
standard transformations, 10-11
subsidiary sine, sine-cosine, and cosine laws:

heptagon, 86-87
hexagon, 86-87
pentagon, 84
quadrilateral, 82-83

Sylvester's solution method, 108-109

tan-half-angle solution, 77-78
tan-half-angle laws, 163-164
transformations:

between standard coordinate systems, 34-36
compound, 9-10
coordinate, 4-17
general, 13-17
inverse, 7-9
point, 5-6
standard, 10-11

trigonometric solution, 78-79


