A robot manipulator is a movable chain of links interconnected by joints. One end is fixed
to the ground, and a hand or end effector that can move freely in space is attached at the
other end.

This book begins with an introduction to the subject of robot manipulators. Next,
it describes in detail a forward and reverse analysis for serial robot arms. Most of the
text focuses on closed-form solution techniques applied to a broad range of manipulator
geometries, from typical industrial robot designs (relatively simple geometries) to the most
complicated case of seven general links serially connected by six revolute joints. A unique
feature of this text is its detailed analysis of 6R-P and 7R mechanisms. Case studies show
how the techniques described in the book are used in real engineering applications.

The book meets the need for a thorough, up-to-date analysis of the structure and mobility
of serial manipulators and will be useful to both graduate students and engineers working
in the field of robotics.
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Preface

This text provides a first-level understanding of the structure, mobility, and analysis
of serial manipulators. A serial manipulator is an unclosed or open movable polygon
consisting of a series of links and joints. One end is fixed to ground, and attached to the
open end is a hand or end effector that can move freely in space.

The structure of a serial manipulator is established by labeling the skeletal form (the
sequence of joints and links) with appropriate twist angles and perpendicular distances that
define the relative positions of sequences of pairs of skew lines. In this way the geometry
of the manipulator is defined, and subsequently it is possible to apply various coordinate
transformations for points located on the links. Such transformations readily provide a
so-called forward analysis, that is, they can be used to provide the position of some point
on the end effector together with the orientation of the end effector measured relative to a
coordinate system fixed to ground for a specified set of joint variables.

A more difficult problem is the solution of the so-called reverse or inverse analysis.
Here, the position of a point on the end effector together with the end effector’s orientation
is specified. It is required to determine a corresponding set of six joint variables that will
position and orient the end effector as desired. There are multiple solution sets of the
six joint variables, in contrast to the forward analysis, where only one solution exists.
The method of solution presented in this text is to join the end effector to ground by a
hypothetical link. The six parameters that specify the position and orientation of the end
effector can easily be transformed into the corresponding six parameters that model the
hypothetical link. In this way, the reverse analysis of the manipulator is transformed into
the analysis of a corresponding closed-loop spatial mechanism, that is, the computation
of multiple solution sets of the joint variables of the closed-loop spatial mechanism. The
analysis of closed-loop spatial mechanisms with more than four links has proved to be a
difficult subject. A brief history is now presented.

As far as the authors are aware, the first attempt to analyze spatial mechanisms was
by Dimentberg (1948), who applied screw algebra. Following this, various works on the
subject were published by Weckert (1952); Denavit (1958); Worle (1962); Yang (1963);
Yang and Freudenstein (1964); Uicker, Denavit, and Hartenberg (1964); and Pelecudi
(1972).

In the late 1960s and early 1970s much attention was focused on the analysis of five-link
3R-2C* spatial mechanisms. All such mechanisms were successfully analyzed; see Yang
(1969), Yuan (1970, 1971), Soni and Pamidi (1971), and Duffy and Habib-Olahi (1971,

* Throughout this text R, C, P, E, and S denote respectively revolute, cylindric, prismatic, planar, and spherical
(ball and socket) kinematic pairs.
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1971a, 1972). However, the results highlighted the difficulties in the analysis of spatial
mechanisms. Wallace (1968), Wallace and Freudenstein (1970, 1975), and Tor Fason and
Sharma (1973) had also experienced major difficulties in the analysis of five-link RRERR
and RRSRR spatial mechanisms.

It had become clear to the second author of this text that some form of shorthand or
concise notation was required to write down the lengthy loop equations for spatial five-,
six-, and seven-link mechanisms. This was accomplished by Rooney (1974), Keen (1974),
and Duffy and Rooney (1975). The last provided the foundation for Dufty (1980). Various
six-link 4R-P-C and seven-link 5R-2P spatial mechanisms were analyzed by Duffy and
Rooney (1974) and by Duffy (1977). The remaining linkages were analyzed in Duffy
(1980).

A significant result was the analysis of the spatial six-link SR-C mechanism by Duffy
and Rooney (1974a). The difficulty was of an order of magnitude two times greater than
the analysis of spatial six-link 4R-P-C and seven-link 5SR-2P mechanisms. A sixteenth
degree polynomial in the tan-half-angle of an output angular displacement was determined
by eliminating a pair of variables in a single operation from a set of four equations.

Duffy and Crane (1980) obtained a thirty-second—degree polynomial for the general
seven-link 7R spatial mechanism, “the Mount Everest” (Freudenstein [1973]). Recently,
Lee and Liang (1987, 1988) obtained sixteenth degree polynomials for the seven-link 6R-P
and 7R spatial mechanisms by using and extending the unified notation developed by Duffy
(1980), which was translated into the Chinese language by Professor Liang. More recently,
the 7R spatial mechanism was solved by Raghavan and Roth (1993) using matrix notation.
All these results demonstrate the high degree of difficulty in the solution of closed-loop
spatial mechanisms, and Lee, Liang, Raghavan, and Roth are to be congratulated on their
results.

An analysis of seven-link 6R-P and 7R mechanisms is given in this text using the
unified and extended notation in collaboration with Lee and Liang. Detailed derivations
are presented that we hope will greatly assist any reader who wishes to analyze seven-link
6R-P and 7R spatial mechanisms.

Finally, the shorthand recursive notation presented in Duffy (1980) using spherical
trigonometry is developed in this text using rotation matrices. The results throughout the
text are highlighted by examples.

Acknowledgments

The authors wish to thank P. Adsit, D. Armstrong, W. Abbasi, S. Ridgeway, D. Novick,
and J. Wit for their valuable comments and for their assistance in proof reading the text.
The authors are indebted to Ms. Florence Padgett, Editor, Cambridge University Press for
her patience, advice, and guidance in the preparation of the text.
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Introduction

This book stems from a first graduate course taught at the University of Florida onrobot
geometry. It describes in detail a forward and reverse analysis for serial robot manipulators,
and a displacement analysis for closed-loop spatial mechanisms.

In the forward analysis, the variable joint angles are given, together with the constant
parameters that describe the geometry of the manipulator. The goal is to determine the
location (position and orientation) of the robot’s end effector. This problem is relatively
simple. A single solution for the location of the end effector exists for a given set of joint
angle parameters.

The reverse analysis is more difficult because multiple solution sets exist. Here, the
desired location of the robot’s end effector is specified, and the goal is to obtain all the
sets of joint variables for the specified location. In other words, the manipulator has a
multiple of distinct configurations for a specified location of the end effector. Here, it is
required to compute all these multiple sets of joint variables that determine each distinct
configuration.

One method of performing a reverse analysis is to use an iterative technique. In this
approach, a multidimensional search is performed employing a minimization of some
specified error function. Often, one component of the error function is the square of the
distance between the end effector location for the current set of joint parameters and the
desired end effector location. The other component of the error function will usually
measure the difference in orientation of the end effector from the desired orientation. Two
problems arise with the use of an iterative technique. The first is that only one set of joint
variables will be calculated. There is no guarantee that the iterative solutions for a pair of
neighboring end effector locations will yield the same robot configuration. For example,
a planar three-link revolute manipulator has in general two distinct configurations for a
specified location of the end effector. When the end effector is in the first quadrant, these
two configurations are referred to as elbow up and elbow down. A problem occurs when
the manipulator performing a task is in an elbow-down position and the iterative technique
yields an elbow-up configuration. The second problem is that the objective function to be
minimized in an iterative approach often has mixed units such as (length)2 + (radians)?,
which stems from an error equation that is a combination of position and orientation errors.
Such functions are devoid of any geometrical meaning and they are not invariant with a
change of units.

The majority of the book will focus on closed-form techniques for solving the reverse
analysis problem. In this closed-form approach, all the possible sets of joint parameters
that locate (position and orient) the robot’s end effector as desired will be found by firstly
solving a polynomial in the tan-half-angle of one of the joint variables. Admittedly it
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is necessary to iterate to solve for the roots of a polynomial of degree greater than four.
This is, however, clearly different from performing the multidimensional search. The
remaining joint variables are solved for sequentially using appropriate loop equations.

Chapter 2 begins with a definition of position and orientation. Coordinate systems are
attached to each of a series of rigid bodies. Following this, transformations are derived
that relate the coordinates of a point in one coordinate system to another.

Chapter 3 proceeds to define a link and to describe the different types of joints that
can interconnect these links. A coordinate system is attached to each link of a serial robot
manipulator, and the transformation that relates these coordinate systems is derived.

The forward analysis is discussed in Chapter 4. The transformations developed in
Chapter 3 are used to determine the overall transformation that relates the coordinate
system of the last link, the end effector link, to ground. This overall transformation will
be used to transform the coordinates of a point in the end effector coordinate system (i.e.,
a tool point) to its coordinates in the ground coordinate system. The transformation will
also define the orientation of the robot’s end effector relative to ground.

Chapter 5 presents the detailed problem statement for the reverse analysis, and initially,
iterative solution techniques are discussed. Following this discussion, a framework for
obtaining a closed-form solution is established by adding a hypothetical link to the free
end of the manipulator. This hypothetical link acts to connect the free end to ground and
effectively converts the open or unclosed serial manipulator into a closed-loop spatial
mechanism.

Chapter 6 introduces spherical closed-loop mechanisms. It is shown that an equivalent
corresponding spherical mechanism can be constructed for a serial robot manipulator
with a hypothetical closure link. The angular relationships for the equivalent spherical
mechanism and the actual spatial manipulator are the same.

After closing the loop, the reverse analysis problem is converted to that of solving for
the joint angles for the closed-loop mechanism when one of the joint angles is known. If
the newly formed closed-loop mechanism has one degree of freedom, then this problem is
solvable. The angular values that solve the closed-loop mechanism will also position and
orient the original robot’s end effector as desired. The solutions of virtually all closed-loop
spatial mechanisms of one degree of freedom are presented in Chapters 7 through 10.

Chapter 11 presents useful reverse analyses for 6R manipulators with special geometry
that can be analyzed directly rather than by simplifying the general 7R mechanism anal-
ysis. Five examples are given: the Puma 560, Cincinnati Milacron T3-776, and GE P60
industrial robots and two conceptualized by NASA, that is, the space station remote ma-
nipulator system and the modified flight telerobotic servicer manipulator system. These
five examples demonstrate how the techniques developed in Chapters 5 through 10 are
applied to solve real manipulators.

At the conclusion of Chapter 11, the reader should understand the forward and reverse
position analyses of serial robot manipulators. These two analyses constitute the first step
required for robot control.

Quaternions are introduced in Chapter 12 as an alternative (or supplement) to the
coordinate transformation methods discussed in Chapter 2. This material is presented
for completeness (it is not required for a basic understanding of the forward and reverse
analysis procedure). Many papers have been published describing various applications of
quaternions. These papers are difficult to understand without a knowledge of the basics
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that are presented in this chapter, and the development follows Brand (1947). A more
recent and advanced text on rotation operators has been published by Altmann (1986).

Summarizing, this text provides a first-level understanding of the structure and analysis
of serial manipulators. It is clear that a manipulator is an unclosed or open movable
polygon consisting of a series of joints and links. A geometric description of joints and
links is presented that provides a proper means of analysis using appropriate coordinate
transformations for points and orientations. Itis also clear that any open serial manipulator
can be intimately related to a corresponding closed-loop spatial mechanism simply by
joining the free end to ground by a hypothetical link. In this way, the reverse position
analysis of the serial manipulator is essentially obtained from the solution of the input—
output equation of this corresponding closed-loop spatial mechanism.
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Coordinate transformations

This chapter relates the position and orientation of a coordinate system B in three-
dimensional space to a reference coordinate system A. Once this has been accomplished,
itis possible to transform the coordinates of any point in coordinate system B to coordinate
system A.

2.1 Relative position and orientation of two coordinate systems

Figure 2.1 shows the pair of coordinate systems A and B. The position and orientation
of system B relative to A are defined by the vector Vaq_.gg, which gives the position of
the origin of the B coordinate system relative to the origin of the A system, and the three
unit vectors Xg, ¥g, and zg, which point along the coordinate axes of the B coordinate
system. Knowledge of these four vectors as measured in the A coordinate system (written
as AV oo, “Xg, Ays, *zg) completely defines the position and orientation of the B
coordinate system measured with respect to the A coordinate system.

The three unit vectors *xg, *yg, “zg, each of which has three scalar components,
represent a total of nine scalar quantities. However, these are not independent because
the vectors are unit vectors and they are also mutually perpendicular. Thus, the following
constraint equations may be written:

|*x| = 1, 2.1
|*ys| = 1, (2.2)
|fzg| = 1, (2.3)
Axg - Ay =0, (2.4)
Axp - Az5 = 0, (2.5)
Ays -Azg = 0. (2.6)

The unit vectors “Xg, *yg, *Zp thus represent 9 — 6 = 3 independent scalar quantities that
specify the orientation of the coordinate system B relative to A.

Consider now that the coordinate system B is attached to a rigid body. The vectors
AV a0—B0» “XB, 5, and *zg, which define the position and orientation of the B coordinate
system with respect to the A system and which consist of six independent parameters, can
be used to locate the rigid body in space with respect to the A reference frame. Because
six independent parameters must be specified to define position and orientation, it is said
that a rigid body in space possesses six degrees of freedom.
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Figure 2.2. Depiction of point transforma-
tion problem.

2.2 Point transformations

From here on, the notation 'P; is used to indicate the coordinates of a point j as measured
in a coordinate system L. As such, 'P; is a vector that begins at the origin of the I coordinate
system and ends at point j and is thus equivalent to 'V_;.

In many kinematic problems, the position of a point is known in terms of one coordinate
system, and it is necessary to determine the position of the same point measured in another
coordinate system. The problem statement is presented as follows (see Figure 2.2):

given: BP,, the coordinates of point 1 measuredin the B coordinate system (i.e.,BVgo_, 1),
APgy, the location of the origin of the B coordinate system measured with respect
to the A coordinate system (i.e., 2V 50_.po),
Axg, Ayg, Az, the orientation of the B coordinate system measured with respect
to the A coordinate system,
find: APy, the coordinates of point 1 measured in the A coordinate system (i.e., *V 50 1).

From triangle A-Bo-1 in Figure 2.2, it may be written that

Vao—s1 = Vaopo + Vpos1- (2.7)
Evaluating all the vectors in terms of the A coordinate system gives

AVaos1 = *Vaospo + *Vioo 1. (2.8)

It is thus necessary to solve Eq. (2.8) for AV 5_, (= 2P}). The first term on the right side
of Eq. (2.8) is a given quantity, that is, the coordinates of the origin of the B coordinate
system as measured with respect to the A system. The second term on the right side of
Eq. (2.8) is yet to be obtained.



6 Coordinate transformations

Figure 2.3. Point 1 projected onto the
B coordinate system.

Figure 2.3 shows the vector Vg,_, | projected onto the coordinate axes of the B coordinate
system. The directions of the coordinate axes of the A coordinate system are also shown as
intermittent lines. The vector Vg, may be written in terms of the B coordinate system
as

BVroo1 = biBxp + bPyp + bsPzg, (2.9
where the components of Bxg, Byg, and Bzy are respectively [1, 0, 0]%, [0, 1, 0], and
[0, O, 1]F. Because the vector BVy ., is a given quantity, the values of the scalars by,
b,, and b; are known. Further, the vector Vgo_,; can now be expressed in terms of the A
coordinate system, and thus

AVioo1 = by *xp + bo yp + bs*zp. (2.10)
Finally, substituting Eq. (2.10) into Eq. (2.8) gives

AVaos1 = *Vaosro + bi*xs + br yp + by*zg, (2.11)

which can be further arranged in matrix form as

by
AVaost =AVaomo + [*xs *yp  “zg] | b2, (2.12)
bs

where [Axg *yg “zg] represents a 3 x 3 matrix that will be designated as

sR=[*xz *ys “z). (2.13)
Substituting BP; = [by, by, b3]T, AP, = AV 01, and *Pgo = #Va¢_,po yields

AP, = APpo + s R®P). (2.14)

All terms on the right-hand side of Eq. (2.14) were given directly in the problem statement,
where the vectors “xg, *yg, and Azg are the columns of the matrix 5 R.
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2.3 4 x 4 transformation matrices

Equation (2.14) expresses the transformation of any point in one coordinate system
to a reference coordinate system when the relative position and orientation of the pair
of coordinate systems are known. The notation will be slightly modified, however, by
introducing homogeneous coordinates.

In homogeneous coordinates, a three-dimensional point given by X, Y, and Z is repre-
sented by four scalar values, that is, X, y, z, and w. The three-dimensional and homogeneous
coordinates are related by

X = x/w, (2.15)
Y =y/w, (2.16)
Z=1z/w. (2.17)

Thus, when w = 1, the first three components of the homogeneous coordinates of a point
are the same as the three-dimensional coordinates of the point. Points at infinity occur
when w equals zero, but these will not be encountered in this book.

By using homogeneous coordinates, Eq. (2.14) may be written as

Ap AR i Bp
=] B o (2.18)

1 0 0 0 1 1
where the matrix 4R and the vector #Pg form the first three rows of a 4 x 4 matrix. The
equivalency of Eqs. (2.14) and (2.18) is most easily seen by representing the components
of &R, APpy, and PP, symbolically and then performing the indicated multiplications and

additions. The results will be the same for both equations.
The notation §T will be used to represent the 4 x 4 matrix as

AR APBO
aT = B : 2.19
B 0 0 0 1 @19
The point transformation problem can now be written as
AP, = sTBP,. (2.20)

It should be noted that in Eq. (2.14) all the vectors such as “P, are three dimensional,
whereas in Eq. (2.20) each vector is expressed in homogeneous coordinates with w = 1.

2.4 Inverse of a transformation

Quite often during robot analyses, it will be necessary to obtain the inverse of a 4 x 4
transformation. In other words, given 4T it will be necessary to obtain §T. The definition
of 4T was presented in Eq. (2.19). The matrix gR is a 3 x 3 matrix whose columns are
Axg, Ays, AZg, that is, the coordinates of the unit axis vectors of the B coordinate system
measured in the A coordinate system. The vector APy represents the coordinates of the
origin of the B coordinate system measured with respect to the A coordinate system.

It should be clear that the inverse of 5 T can be obtained from Eq. (2.19) by interchanging
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the letters A and B and that

BR  Bp
BT = A A"} . (2.21)

0 0 0 1

The inverse will be defined once the matrix 5R and the coordinates of the point BP4 are
determined.
The matrix 4R can be written in the form

A A A A A A
XB * XA ¥B - "Xp Zg - XA
AR — | A A A A A A
gR= |25 -2y *yp-"ya Pz -"ya |- (2.22)
A A A A A A
Xp - Zp Ys - Za Zp-"Za

where the components of #x4, Aya, and #z, are respectively [1, 0, 017, [0, 0, 117, and
[0,0, 1]7. Each of the nine scalar terms of the 3 x 3 matrix QR has been expressed in
terms of a scalar product. A scalar product is an invariant operator that can be physically
interpreted as being the cosine of the angle between the two unit vectors. The value of the
scalar product will remain constant no matter what coordinate system the two vectors are
expressed in. Thus,

AXB : AXA = BXB 'BXA,
Ays - Aya = Pyg - Bya, (2.23)
A B

/3 AZA = BZB + T ZA.

Applying this to all the terms of §R yields

B B B B B B
XB *© XA ¥ - XA Zg - XA
AR — | B B B B B B
sR=|Pxg-®ys Pys-Pya Pzs-Pyal- (2.24)
B B B B B B
XB * Zp YB - Za Zg * " ZA

It can be seen that the rows of the 3 x 3 matrix §R are Bx,, Bya, Bz, by recognizing that
Bxg = [1,0, 01", Byg = [0, 1, 0], and Bzg = [0, 0, 1]". Thus, £R can be written as

BXAT
bR=[*xs “ys “zs| = |By,T|. (2.25)
BZAT
The transpose of Eq. (2.25) is
sRT = [Bxs Byx Pza]. (2.26)

The columns of the 3 x 3 matrix in Eq. (2.26) are the unit vectors of the A coordinate
system measured in terms of the B coordinate system. This is precisely the definition of
BR. Thus, it can be concluded that

BR =4R". (2.27)

The remaining term to be determined is BP,q. This term can readily be calculated from
APpgo now that ER is known. First, the vector AP will be transformed to the B coordinate
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system by utilizing Eq. (2.14) as
BPgo = BR*Ppo + BPyo. (2.28)

Now BPg, = [0, 0, 01T, which are the coordinates of the origin of the B coordinate system
measured in the B system. Substituting this result into Eq. (2.28) and rearranging yields

PPa0 = —AR*Pgo = —R" *Pg,. (2.29)
Substituting Egs. (2.27) and (2.29) into Eq. (2.21) yields the final result

ART ARTA
AR —ART APy,

B
T =
AT 10 0 00 1

(2.30)

2.5 Compound transformations

In Figure 2.4, the coordinates of point 1 are known in terms of the C coordinate
system. The position and orientation of the C coordinate system is known relative to the
B coordinate system. The position and orientation of the B coordinate system is known in
terms of the A coordinate system. The objective is to determine the coordinates of point
1 in terms of the A coordinate system.

From this problem description, it should be apparent that the transformations T and
&T are known. Thus, the problem can be solved in two steps. First, the coordinates of
point 1 in the B coordinate system can be found from

Bp, = 8T CP,. (2.31)
Then, the final answer can be obtained from

AP, = §TPP,. (2.32)
Combining these two equations yields

AP, = ATETCP,. (2.33)

Figure 2.4. Compound transformation.
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The term § T ET transfers a point directly from the C coordinate system to the A coordinate
system. Thus, it can be inferred that

AT = ATET. (2.34)

The ability to perform matrix multiplication to yield compound transformations is the
primary reason why the 4 x 4 transformation notation is used.

2.6 Standard transformations

In many problems, the relationship between coordinate systems will be defined in terms
of rotations about the X, Y, or Z axes. A typical problem statement would be as follows:

given: (1) Coordinate system B is initially aligned with coordinate system A.
(2) Coordinate system B is then rotated « degrees about the X axis.
find: &R (often written as R, ;) .

Figure 2.5 shows the A and B coordinate systems. By projection, it can be seen that

[1
Axg = | O], (2.35)
K
T 0
Ays = |cosa |, (2.36)
| sinw
[ 0
Azg = | —sina | . (2.37)
| cosa
Thus,
1 0 0
SR=R,, = |0 cosa —sina|. (2.38)
0 sina cosa
Zy z,
Ys
o
Ya
Xp

XA

Figure 2.5. Rotation about the X
axis.
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The problem will now be repeated for rotations about the Y and Z axes.

given: (1) Coordinate system B is initially aligned with coordinate system A.
(2) Coordinate system B is then rotated S degrees about the Y axis.
find: SR (often written as Ry 4) .

Again by projection it can be shown that

cosfp O sing
SR=R,z=| 0 1 0 |. (2.39)
—sinf O cosp

Lastly,

given: (1) Coordinate system B is initially aligned with coordinate system A.
(2) Coordinate system B is then rotated y degrees about the Z axis.
find: AR (often written as R, ).

By projection it can be shown that
cosy —siny O
SR=R,, = |siny cosy Of. (2.40)
0 0 1

2.7 Example problem

Coordinate system B is initially aligned with coordinate system A. It is translated to the
point [5, 4, 11T and then rotated 30 degrees about its X axis. Lastly, the coordinate system
is rotated 60 degrees about an axis that passes through the point [2, 0, 2]T, measured in
the current coordinate system, which is parallel to the Y axis. Find §T.

Figure 2.6 shows the A coordinate system and the B coordinate system after all the
operations have been performed. Figure 2.7 also shows four other intermediate coordinate
systems labeled C, D, E, and F.

Coordinate system C was initially aligned with coordinate system A and was then
translated to the point [5, 4, 1]T. Thus,

0 0 5
(241)

SO O -

1 0 4
011
0 01

Figure 2.6. Initial and final coordinate
systems.
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Figure 2.7. Intermediate coordinate systems.

Coordinate system D was initially aligned with coordinate system C and was then
rotated 30 degrees about the X axis. Thus,

1 0 0 0
0 cos30 —sin30 O
0 sin30 cos30 O
0 0 0 1

ST = (2.42)

The last modification to the coordinate system was a rotation of 60 degrees about an
axis parallel to the Y axis, which passes through the point [2, 0, 2]T, measured in terms of
the D coordinate system. The point that the axis of rotation passes through will be called
point M. From observation (see Figure 2.7), it is apparent that °Py = BPy = [2, 0, 2]T.
Because of this fact, the transformation that relates coordinate system D and coordinate
system B will be formed by translating to the point [2, 0, 2]T (see coordinate system E),
rotating 60 degrees about the current Y axis (see coordinate system F), and then translating
[—2, 0, —2]7 to obtain coordinate system B. The transformations that accomplish this
are

1 0 0 2
ol (2.43)
E 001 2|’
[0 0 0 1
[ cos60 O sin60 O
iT = _0 oo , (2.44)
—sin60 0 cos60 O
0 0 0 1
(1 0 0 —2
P [0000 (2.45)
B 0 01 -2
0 0 0 1
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The overall transformation 5T can be calculated as
AT =ATSTETETET. (2.46)
The numerical value of 5T is

0.5 0 0.866 4.268

0433 0.866 —0.25 2.634
AT = . (247)
—-0.75 0.5 0433 3.366

0 0 0 1

2.8 General transformations

Two types of additional problems dealing with transformations often occur. In the first,
coordinate system B is initially aligned with coordinate system A. An axis and angle of
rotation are given about which coordinate system B will be rotated. The objective is to
determine 4R. The second problem is the opposite. A rotation matrix 4R is given, and
it is desired to determine the axis and angle of rotation that is represented by the matrix.
Solutions to both problems will be presented in this section.

2.8.1 Determination of equivalent rotation matrix

In this problem, it is assumed that an axis of rotation represented by the unit vector
m = [m,, my, m,]T and an angle of rotation, 6, are known. A coordinate system B is
initially aligned with a coordinate system A. It is then rotated by an angle 8 about the axis m
which passes through the origin (see Figure 2.8). Itis desired to find the rotation matrix, 4 R.

The problem will be solved by first introducing a coordinate system C whose Z axis is
parallel to the vector m. The relationship between the A and C coordinate systems can be
written as

a, by my
&R= [a, b, m,|. (2.48)
a, b, m,
fm

Figure 2.8. Rotation of
angle 6 about axis m.
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Only the terms my, my, and m, are known in this equation. A second coordinate system,
D, is now aligned with coordinate system C. It is then rotated by an angle € about its Z
axis. The relationship between coordinate systems C and D is

cosf® —sinf O
SR=|sinf cosd O]. (2.49)
0 0 1

It should be noted that the A and C coordinate systems are essentially rotated together
as a single rigid body. In this way the A coordinate system is transformed into the B
coordinate system while the C coordinate system is transformed into the D coordinate
system. Hence, 2R = BR and therefore JR = AR”. The rotation matrix that relates the
A and B coordinate system may now be written as

SR =2RSRER. (2.50)
Expanding the right side of Eq. (2.50) yields

a, b, m, cos® —sinf O a ay a
sR=|a, b, my| |[sind cos®§ O] by by b, |. (2.51)
a, b, m, 0 0 1] [my my m,

Performing the matrix multiplication and substituting s = sin# and ¢ = cos @ yields

[asc+bys —axs+bec my| [ax a, a,
fR=|ac+bs —as+bec my| b b, b, |. (2.52)
|a,C+b,s —a,s+b,c m, m, my m,

c(aZ+b2)+m?  c(aya,+byb)+s(agby  c(aa+b,by)+s(azby |
—bya,)+mymy — b,ax)+m,m,
AR — Caxay+byby)+s(ab,  c(a2+bZ)+m? c(aza,+b,by)+s(aby
B — byay)+myem, — b,ay)+mym,
c(axa;+bxb,)+s(axb, c(aya,+byb,)+s(a,b, c(aZ+b?)+m?
— bya,)+m,m, —bya,)+mym,

(2.53)

It must be pointed out that the terms in Eq. (2.53) are not all known. The terms a,, a,,
a, by, by, and b, have not been specified. Three facts should be remembered, however.
First, the columns (and rows) of éR are unit vectors. Second, the columns (and rows) of
2R are orthogonal to one another. Third, the last column of 2R can be calculated as the
cross product of the first two columns. These facts will be used to simplify Eq. (2.53) and
eliminate the unknown terms.

QR“ represents the element in the first row and first column of Eq. (2.53). This term
is written as

aRi1 =c(al +b3) + m? (2.54)

x*
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Because the first row of the matrix in Eq. (2.48) is a unit vector,

al+bl+m; =1 (2.55)
Substituting for (a2 + b2) reduces Eq. (2.54) to the following

ARy =c(l—m}) + m{ = c+mi(l —c). (2.56)
The element in the second row, first column of the matrix in Eq. (2.53) is written as

2R21 = claxay + byby) + s(acby — beay) + memy. (2.57)

Because the first two rows of the matrix in Eq. (2.48) are orthogonal, the following equation
may be written

a,ay + byby + mymy = 0. (2.58)

Further, because the third column of the matrix in Eq. (2.48) can be generated as the cross
product of the first two columns, the following expression can be written

m, = a,by — bya,. (2.59)
Regrouping Eq. (2.58) and then substituting it and Eq. (2.59) into Eq. (2.57) yields
sR21 = c(—=mymy) + s(m,) + mymy = mymy(1 — ¢) + m,s. (2.60)

Similar substitutions may be made on the remaining elements of the matrix 3R to eliminate
the unknown terms. The final result for the matrix §R is

mym,v+c  mymyV-—m,S mym,v+ mys
QR = | mymyv+m,8s mymyv-+c mymv-—ms|, (2.61)
mym,v —mys mym,v-+mes m,m,v-+c
where s and c represent the sine and cosine of 6, and v represents (1 —cos 6). Itis interesting

to note that Eq. (2.61) reduces to the matrices expressed in Eqgs. (2.38), (2.39), and (2.40)
when the axis vector m is aligned with the X, Y, and Z coordinate axes respectively.

2.8.2 Determination of axis and angle of rotation

For this problem, it is assumed that a rotation matrix, 53R, is given, and it is desired
to calculate the axis vector, m, and the angle of rotation about this axis that would rotate
coordinate system A so as to align it with coordinate system B. The rotation matrix may
be written as

Iy Iy I

A

gR=|r 1 13|, (2.62)
I3 I3y I3z

Eq. (2.61) shows how the elements of the rotation matrix can be written in terms of the
axis vector m and the rotational angle #. Summing the diagonal elements of the matrices
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in Egs. (2.61) and (2.62) and equating the results gives

Iy + 1 + 133 = (1 — cos6) (mi + m] + m2) + 3cosd. (2.63)
Because the axis vector m can be considered to be a unit vector, Eq. (2.63) reduces to

Iy +ry;+r3=14+2cosb. (2.64)
Solving for cos 8 gives

I+ +r3—1
5 )

cosf =

(2.65)

The angle ¢ is not uniquely defined by Eq. (2.65). Two distinct values of  in the range
of —m to 47 exist that will satisfy this equation. The value of € that lies in the range of
0 to = will be selected, however, and the unique corresponding axis of rotation will be
computed. (Had the value of 6 in the range of — to 0 been selected, the resulting rotation
axis would point in the opposite direction to the one that will be computed.)

Subtracting the off-diagonal elements of the matrices of Egs. (2.61) and (2.62) and
equating the results yields

Iy — I = 2m, sind, (2.66)
;3 — I3 = 2my sing, (2.67)
I3y — I3 = 2m, sin . (2.68)

The components of the axis vector m can be readily computed from these equations.
When the rotation angle ¢ is very small, the axis vector m is not well defined, because
the ratios used to compute the vector components all approach g. When the rotation angle
approaches m, the ratios again approach g. In this case, however, the axis vector is well
defined and the problem can be reformulated to obtain an accurate solution.
Equating the diagonal elements of the matrices of Egs. (2.61) and (2.62) yields

I = mi(l — cosf) + coso, (2.69)
Iyn = m§(1 — cosf) + cosO, (2.70)
I3 = mz(l — cosf) + cosb. 2.71)

Solving these equations for m,, my, and m, gives

— 0

m, = ¢/ L7 2.72)
1 —cos@
Iy — cosf

m, = :l:,/—, 2.73

Y 1 —cos® ( )
- 0

m, = 4/ 2= SY (2.74)
1 —cosé
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Because the angle 8 has been determined, the remaining issue for each term is whether
the positive or negative sign should be used in the equations. Equations (2.66) through
(2.68) will be used to determine this information. Because the angle 8 was selected to be
in the range of 0 to , sin# will be greater than zero. From Eq. (2.68), it is now obvious
that m, will be positive if the term r3; — 13 is positive. The sign for the terms my and m,
can be deduced in a similar fashion from Eqs. (2.67) and (2.66).

In theory, the axis vector m has been determined for the case when 6 approaches
7. Experience has shown, however, that a numerically more accurate answer results if
only the largest-magnitude component of m is calculated from Eqgs. (2.72) through (2.74).
The remaining components can be determined from the following equations, which are
obtained by summing the off-diagonal elements of the matrices in Eqs. (2.61) and (2.62)
and equating them:

ri2 + 1y = 2mymy (1 — cos 9), (2.75)
113 + r3; = 2mym,(1 — cos 9), (2.76)
r3 +r3; = 2mym, (1 — cos ). .77)

Thus, if the absolute value of m, as calculated in Eq. (2.72) is larger than the absolute
values of my and m, as calculated in Egs. (2.73) and (2.74), then a more accurate answer
for my can be obtained by using Eq. (2.75), and a more accurate answer for m, can be
obtained by using Eq. (2.76).

2.9 Summary

This chapter addressed the problem of how to describe the position and orientation of
one coordinate system relative to another. It was shown that a convenient representation
for position is the specification of the location of the origin of the second coordinate
system relative to the first. Orientation can be defined by specifying the coordinates of
the unit axis vectors of the second coordinate system measured in the first coordinate
system.

It was also shown that the selected method of describing relative position and orientation
could be used to easily transform a point between coordinate systems. Homogeneous
coordinates were introduced, and the point transformation matrix was expressed as a
compact 4 x 4 matrix.

The point transformation methods introduced in this chapter will be used extensively
in the analysis of robot manipulators that follows. Thus, the material presented in this
chapter will form the foundation on which the forthcoming three-dimensional kinematic
analyses will be based.

2.10 Problems
1. Under what conditions will R equal ER?

2. A coordinate system {B} is initially coincident with coordinate system {A}. It is ro-
tated by an angle 6 about the X axis and then subsequently rotated by an angle
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about its new Y axis. Determine the orientational relationship of {B} with respect
to {A}, 3R.

3. The following transformation definitions are given:

[ V3 T (V2 V2 T
X2 0 05 20 Y2 X2 0 o0
2 2 2
sp | 0 7P 0 0 Cp = 2o V2o
A \/§ ’ A 2 2 ’
05 0 -—— 0 0 0 -1 10
L0 0o o 1] o o o 1]
1T 0 0 0]
3
0 v3 0.5 10
pr=| 2
0 —05 V3 0
2
0 0 o 1]

(a) Determine the transformation ST.

(b) The coordinates of point number 1 are [20, —30, 5]" measured in the D coordinate
system. Determine the coordinates of this point as measured in the A, B, and C
coordinate systems.

. Coordinate systems A and B are initially coincident. Coordinate system B is then ro-

tated sixty degrees about a vector parallel to [2, 4, 7], which passes through the point
[3, 4, —2]". Determine the transformation 3 T.

. The origins of coordinate systems A and B are coincident. You are given the coordinates

of three points in the A and B coordinate systems, that is, APy, AP,, AP, EP}, BP,,
BP;. Determine the rotation matrix 4R.

2
. The coordinates of point 1 as seen from the A coordinate system are [8} . The co-
8
12
ordinates of the same point as seen from the B coordinate system are | 20 |. The B
-8

coordinate system can be obtained by initially aligning it with the A system, translating
to a point, and then rotating forty degrees about the Z axis.

(a) Determine the coordinates of the origin of the B coordinate system measured in
the A coordinate system on the basis of the given information.

(b) Determine the coordinates of the origin of the A coordinate system measured in
the B coordinate system.
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7.

10.

11.

The transformation that relates the A and B coordinate systems is given as
0.866025 0O 0.5 0.26795

A 0 1 0 0
gl =

—-0.5 0 0.866025 1

0 0 0 1

Coordinate system B can be obtained from coordinate system A by initially aligning
it with A and then rotating coordinate system B about an axis m by an angle y where
the rotation axis passes through a point p. Determine m, y, and p.

. Coordinate system B is initially aligned with coordinate system A. It is then rotated

thirty degrees about an axis that is parallel to the X axis but that passes through the
point [10, 20, 10]T.

Coordinate system C is initially aligned with coordinate system A. It is then rotated
sixty degrees about an axis [2, 4, 6]T that passes through the origin.

Determine the transformation that relates the C and B coordinate systems, that is,
BT.

Coordinate systems A and B are initially aligned and coincident. Coordinate system
B is then rotated by an angle of thirty-five degrees about its X axis. It is then rotated
120 degrees about its new Y axis. You wish to return coordinate system B to its origin
orientation (aligned with coordinate system A) by performing one rotation. About
what axis and by what angle should B be rotated?

Write two computer functions named matmult and vecmult that will perform matrix
multiplication and matrix and vector multiplication. The C language prototypes for
these functions are as follows:

void matmult (double ans[4][4], double matrix1[4][4], double matrix2[4][4]);
void vecmult (double ans[4], double matrix1[4][4], double vector1[4]);

The function matmult will accept as input two 4 x 4 matrices, that is, matrix1 and
matrix2. The product of matrix1 times matrix2 will be calculated, and the resulting
4 x 4 matrix will be returned by the function via the parameter ans.

The function vecmult will accept as input one 4 x 4 matrix and one 4 x 1 vector, that
is, matrix1 and vectorl. The product of the matrix times the vector will be calculated,
and the resulting 4x 1 vector will be returned by the function via the parameter ans.
Test your functions by calling them from a main program.

Write a computer function named invert_transform that will calculate the inverse
of a 4 x 4 transformation matrix. The C language prototype for this function is as
follows:

void invert_transform (double result[4][4], double tran[4][4]);

The parameter tran will be a 4 x 4 transformation matrix that is input to the function.
The inverse of tran will be calculated and returned via the parameter result. Test your
function by calling it from a main program.
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Manipulator kinematics

3.1 Introduction

The previous chapter introduced point-to-point transformations, that is, the coordinates
for a point expressed in some coordinate system were expressed in a second coordinate
system. These transformations will now be applied to serial robot manipulators. In this
chapter, a spatial link will be defined. Then, different types of joints that can interconnect
these spatial links will be discussed. Finally, a standard method of specifying a coordinate
system for each link will be introduced together with the transformations that relate these
coordinate systems.

3.2 Spatial link

In this text, the term “robot manipulator” will be defined as a serial assemblage (or
chain) of links and joints. One end is connected to ground, and at the free end is attached
an end effector or gripping device. It will be assumed that a link is a rigid body. Figure 3.1
illustrates a link connecting a pair of consecutive joint axes that are in general skew, labeled
with unit directional vectors S; and S;. Two scalar parameters, the link length a;; and the
twist angle ;;, define the relative position of this pair of skew axes. The link length is the
mutual perpendicular distance between the axes, and the twist angle is the angle between
the vectors S; and S;. The unit vector a;; is defined by S; x S; = a;; sina;; as shown in
Figure 3.1. Clearly, the choice of the directions of the unit vectors S; and S; is arbitrary,
that is, either S; or S; can be drawn in the opposite direction. However the cross product
Si x §;j (or §; x §;) will always determine the direction of a;;, and then «;; is measured in
aright-hand sense about a;;.

A kinematic model of a serial manipulator is made by replacing each physical link of
the robot with a link drawn along the vector a;;. This is because the physical shape of the
actual link is of no geometrical importance. Rather, the geometry of a link is defined by
the directions of the vectors ajj;, S;, and S; together with the link length a;; and the twist
angle a;;. Figure 3.2 shows the kinematically equivalent link for the physical link shown
in Figure 3.1.

Figures 3.3 and 3.4 show two special cases. The first occurs when the perpendicular
distance between the vectors S; and S; is zero, that is, S; and S; intersect at a finite point.
This is called a spherical link. The second occurs when the twist angle, a;;, is zero or .
In this case the link is planar and the vectors S; and S; are parallel or antiparallel, that is,
Si and §; intersect at a point at infinity.
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1S,

~~—__ Kinematic
Equivalent Link

Figure 3.3. Spherical link.

In summary, a link is defined by two scalar parameters, the link length, aj;, and the twist
angle, «;;. The direction for the unit vector a;; is determined by S; x §; = ajj sin «j;, which
automatically defines the twist angle.

3.3 Joints

The nature of the relative motion between a pair of successive links is determined by
the type of connecting joint.

3.3.1 Revolute joint (R)

One of the simplest and most common joints is the revolute joint, denoted by the letter
R. This joint connects two links as shown in Figure 3.5. Link jk is able to rotate relative
to link ij about the vector S; (it is assumed that the vector S; of link ij and the vector §;
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Figure 3.4. Planar link.

Figure 3.6. Prismatic joint.

of link jk will always be selected so as to be parallel and not antiparallel when the joint
is assembled). Link jk thus has one degree of freedom with respect to link ij. The joint
angle 6; measures the relative rotation of the two links and is defined as the angle between
the unit vectors a;; and aj,, measured in a right-hand sense with respect to the unit vector
Sj, i.e., aj X ajx = Sj sin Qj.

Because link jk can rotate only relative to link ij, the distance S; is a constant. This
parameter is called the joint offset distance. Itis the mutual perpendicular distance between
the vectors a;; and aj. In summary, a revolute joint can be completely described by the
variable joint angle 6; and the constant offset value S;.

3.3.2 Prismatic joint (P)

A prismatic joint, which is denoted by the letter P, allows link jk to translate paralle] to
the vector S; with one degree of freedom relative to link ij (see Figure 3.6). The angle 0
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is a constant, and it is measured in the same way as for the revolute joint, that is, it is the
angle between the vectors a;j and a; measured in a right-hand sense about the vector S;.
The offset distance S; is a variable for the prismatic joint.

3.3.3 Cylindric joint (C)

A cylindric joint, represented by the letter C, allows link jk to rotate about and translate
parallel to the vector S; relative to link ij as shown in Figure 3.7. Link jk thus has two
independent degrees of freedom relative to link ij. The joint angle 6; and the offset distance
S; are both variables.

3.3.4 Screw joint (H)

The screw joint, which is denoted by the letter H, is shown in Figure 3.8. For this joint,
the offset distance S; is related to the joint angle 6; by the linear equation

S; = pif;, 3.1)

where p; is the pitch of the screw. Clearly, p; is a constant; it has units of length/radian, and
it may be positive or negative accordingly as the screw has a right- or left-handed thread.

Because the offset distance is a function of the joint angle, link jk has one degree of
freedom relative to link ij.

Figure 3.8. Screw joint.
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3.3.5 Plane joint (E)

The plane pair (E), which is illustrated in Figure 3.9, permits three independent degrees
of freedom between links hi and ij. These freedoms can be considered as a pair of linear
displacements in the plane of motion together with a rotation perpendicular to the plane of
motion. The three freedoms can be measured, for example, by the pair of coordinates for
the origin of the second coordinate system measured in terms of the first coordinate system
together with the orientation angle y, which measures the angle between the direction of
x; and X, measured in a right-hand sense about the direction z;.

It is not possible to actuate the planar pair in this form in an open loop. However, the
plane pair is kinematically equivalent to a combination of two prismatic joints and one
revolute joint. The axis of the revolute joint must be perpendicular to the plane formed
by the two prismatic joints. Figures 3.10 and 3.11 illustrate such cases. It is important
to note that for the plane joint simulated by the PRP shown in Figure 3.10, the following
special geometry exists:

aj =m/2, a;=0,
ax =m/2, ax=0,
Sj=0, 9’120, 0k=0

Figure 3.10. Simulation of plane
pair (PRP).



3.3 Joints 25

Figure 3.12. Simulation of plane
pair (RPR).

Figure 3.13. Simulation of plane pair (RRP).

For the PPR combination shown in Figure 3.11, the special geometry is as follows:

Qj = 7'[/2, i = 0,
Qjx = 7'[/2, Ak = 0,
Sk=0, 9i=0, 9J=3T[/2

The plane pair is kinematically equivalent to a combination of two revolute joints and
one prismatic joint as illustrated in Figures 3.12 and 3.13. Lastly, Figure 3.14 illustrates
the most practical form of the plane joint. In this case three revolute joints whose axes are
parallel will simulate the plane pair. It is left to the reader to deduce the special geometry
for these cases.
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(RRR).

Figure 3.16. Spherical joint (S).

3.3.6 Hooke joint (T)

The Hooke joint is simply two revolute joints whose axes S; and S, intersect. It should
be apparent that link kl possesses two degrees of freedom relative to link ij. In Figure 3.15,
the axes are mutually perpendicular. They can, however, be drawn at any angle.

3.3.7 Spherical joint (S)

The spherical joint, or ball and socket joint, is illustrated in Figure 3.16. Link jk has
three degrees of freedom relative to link ij. These three freedoms can be considered as
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Figure 3.17. Simulation of spherical
joint.

three rotations that align a coordinate system attached to link ij with a coordinate system
attached to link jk. In Figure 3.16, the origins of the coordinate systems that are attached
to each of the links are both located at the center of the spherical joint.

Coordinate system 2, which is attached to link jk, can be obtained from coordinate
system 1, which is attached to link ij, by performing the following three rotations:

* arotation of @ about the Z axis
» arotation of 8 about the modified X axis
* arotation of ¢ about the modified Z axis.

The transformation that converts a point known in the second coordinate system to the
first coordinate system is simply given by

JR=R,R,R,, (3.2)
where
[cosa —sina O] 1 © 0
Ry =|sine cosa O|, Ryp=|0 cosfp —sinf|,
Y 0 1] 0 sinf cosB
[cos¢ —sing O]
R,y = |sing cos¢p Of. (3.3)
Y 0 1]

The relationship between the first and second coordinate system could be defined in many
different ways, that is, the order and corresponding angles of rotation could be changed.

The design and implementation of a spherical joint can be a complicated process. It
is especially involved because one needs to actuate the three freedoms of the joint. The
spherical joint, however, can be modeled by three noncoplanar cointersecting revolute
joints as shown in Figures 3.17 and 3.18. This method of modeling a spherical joint is
commonly used in industrial manipulators.

3.4 Labeling of a kinematic chain

A kinematic chain is shown in Figure 3.19. One body is attached to ground. The
present objective is to

(1) select the directions for the joint axis vectors,
(2) select the directions for the link vectors,
(3) label the joint angles and twist angles,
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Figure 3.18. Simulation of spherical
joint,

Figure 3.19. Kinematic chain.

Figure 3.20. Joint vectors labeled.

(4) label the offset and link length distances, and
(5) compile the mechanism parameters in a table listing the constant values and iden-
tifying which parameters are variable.

These five steps will be carried out for the kinematic chain shown in Figure 3.19.

Step 1: Label the joint axis vectors.
The first step is to label the joint axes. This is shown in Figure 3.20. One may draw the
vector in either direction along the joint axis. However, once directions are selected it is
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Figure 3.21. Link vectors labeled.

important that they be documented for use in all future analyses. The simplest means of
labeling the joint axes is to remember that for a revolute, cylindric, or screw pair, the joint
axis is along the line of rotation. A prismatic joint has no particular axis because all points
in one body undergo the same relative parallel sliding motion. It is, however, convenient
to label this sliding motion by a unit vector drawn on the centerline of the joint.

Step 2: Label the link vectors.

Once the joint axis vectors are specified, the link vectors can be labeled. The link
vectors lie along the line that is perpendicular to both of the joint axis vectors that the link
connects (see Figure 3.21). The line perpendicular to two joint axes will be unique unless
the two joint axes are parallel. If the two joint axes are parallel, then the location but not
the direction of the link vector is arbitrarily selected.

The selection of the direction of the vector ag7 is somewhat arbitrary because a seventh
joint axis, that is, S7, does not physically exist in this example. The direction of ag; must be
selected so that it is perpendicular to S, and it must pass through a point on the line of the
sixth joint axis. We will later show that the selection of as7 will define a coordinate system
attached to the last link of the manipulator and that tool points (points to be positioned in
the work space) will be defined in terms of this coordinate system.

Step 3: Label the joint angles and twist angles.

Once the joint axis vectors and the link vectors are specified, the joint angles and
twist angles are uniquely defined. For example, in Figure 3.22, 6, is defined as the angle
between a,; and a3, measured in a right-hand sense about Ss, that is, ay; X a4 = Sz sin 6;.
Similarly, in Figure 3.23 ay; is defined as the angle between S, and S; measured in a
right-hand sense about a,3, that is, S; X S; = ay; sin ;.

The joint angle values that are defined in this manner may not be the same joint pa-
rameters that have been defined by the robot manufacturer. The relationship between the
kinematic joint angles and the robot manufacturer’s joint angles will be linear, as shown
by the following equation:

ei(manufacturer) = I<10i + K2- (34)

The values for K; and K, can be easily determined by moving each joint of the robot to two
positions and recording the kinematic joint angles and the manufacturer’s joint angles. K;
and K, can then be obtained by solving two equations with two unknowns.
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Figure 3.24. Offset lengths labeled.

Step 4: Label the offset and the link length distances.

The offset lengths and link lengths are uniquely defined. For example, S; is the distance
between the vectors a»3 and a4, and a3 is the distance between the vectors S, and S;. The
offset and link lengths are shown in Figures 3.24 and 3.25. The offset and link lengths may
have negative values. For example, the offset distance S; will be positive if the direction
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Table 3.1. Mechanism parameters for kinematic chain shown
in Figure 3.21.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.

ap, =3.25 ap, =30 ¢, = variable

a; = 2.25 axn = 30 S, =275 6, = variable

ayy = 2.125 o3y = 270 S; = variable 6; = variable

a5 =3.5 ags =210 S, = variable 64 =270

asg = 3.25 s = 40 S5 =3.75 6s = variable
S¢ =4.75 6 = variable

Figure 3.25. Link lengths labeled.

of travel from a,; to as4 is along the direction of S;. The offset distance S; will be negative
if moving from ay; to a4 is opposite to the direction of vector S;.

It is important to note that offset distance S; is not defined. According to the labeling
convention being used, S; would be the distance between the vectors ag; and a;,. Because
ay; is not defined, the offset distance S is not defined either.

Step 5: Compile the mechanism parameters.

The values for the constant parameters for the kinematic chain must be recorded. The
mechanism parameters for the kinematic chain shown in Figure 3.21 are listed in Table 3.1.

The first joint angle must be measured with respect to ground and not relative to another
link, as is the case for all the other joint angles. A coordinate system, named the fixed
coordinate system, is attached to ground. Its origin is located at the intersection of the
vectors Sy and ay,. The Z axis of the fixed coordinate system is along S; (see Figure 3.26).
The first joint angle, labeled ¢4, is defined as the angle between the X axis of the fixed
coordinate system and the a;, vector, measured in a right-hand sense about the vector S;.

The Puma robot is used as a second example of labeling a kinematic chain. Figure 3.27
shows the Puma robot, and Figure 3.28 shows its kinematic drawing. The joint axis vectors
are labeled in Figure 3.29, and the link vectors are labeled in Figure 3.30. The twist angles
and joint angles as well as the offset lengths and link lengths are now uniquely defined.
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Figure 3.26. Definition of fixed coordinate system.

tool mounting plate

Figure 3.27. Puma robot.

Figure 3.28. Kinematic diagram of Puma robot.
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Table 3.2. Mechanism parameters for Puma robot.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.

apy = 0 o) = 90 ¢| = variable

A3 = 17 03 = 0 Sz =59 92 = variable

asy = 0.8 O3y = 270 S3 =0 93 = variable

A5 = 0 Oys = 90 S4 =17 94 = variable

As56 = 0 56 = 90 S5 =0 95 = variable
O = variable

S
1 S3
S, o

Figure 3.30. Link vectors labeled.

Labeling of these terms is left as an exercise for the reader. Table 3.2 lists the mechanism
dimensions for the Puma robot.

3.5 Standard link coordinate systems

For the analysis of manipulator links it is necessary to attach a coordinate system
to each rigid body. The selection of the coordinate system for each link will be done
systematically. The coordinate system attached to a link ij (see Figure 3.31) will have its
origin located at the intersection of S; and a;;. The Z axis of the coordinate system will
be parallel to S;. The X axis will be parallel to a;;.

For a serial manipulator, the coordinate system attached to link 12 will be called the
first coordinate system. Similarly, the coordinate system attached to link 23 will be called
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Figure 3.31. Standard link coordi-
nate system.

S
S, S, /"2
Z, ? A3
Z, Y,
S
Y

X|——=ay,

Figure 3.32. First and second coordinate sys-
tems.

the second coordinate system, and the coordinate system attached to link mn (n = m+ 1)
will be called the m™ coordinate system.

Most industrial robots, such as the Puma shown in Figure 3.27, have a tool mounting
plate. The axis of the sixth joint passes through the center of this plate. In this case, the
location and the direction of the vector agy, which is the X axis of the sixth coordinate
system, can be arbitrarily selected. Typically, the vector ag; will be placed in the plane
of the tool mounting plate. A line will be drawn on the tool mounting plate to signify
the ag; vector. Once the vector ag; is specified, the sixth coordinate system as well as the
parameters Sg and 6 are defined.

3.6 Transformations between standard coordinate systems

Figure 3.32 shows link a;; and link a,; of a serial manipulator together with the first
and second coordinate systems. It is desired to determine the transformation that relates
these two coordinate systems.

The second coordinate system can be obtained by starting with a coordinate system
that is initially aligned with the first coordinate system. This new coordinate system is
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Figure 3.33. First coordinate system trans-
lated along a;;.

Figure 3.34. Coordinate system rotated
about a,, by the angle ;.

then translated by the distance a;; along the X axis (see Figure 3.33). Next, it is rotated
by the angle «); about the X axis (see Figure 3.34). Following this, the coordinate system
is translated along the Z axis by a distance S,. Lastly, the coordinate system is rotated by
the angle 6, to align it with the second coordinate system. The transformation that relates
the second and first coordinate system can be written as

1 0 0O arn 1 0 0 0 1 0 0 O Cr —8S 0 0
lT= 0 1 0 0 0 Ciz2 —Sp2 0 010 0 Ss Ca 0 0
2 0 01 O 0 sp ¢ O[]0 O 1 S[|0 O 1 0}’
0 0 0 1 0 0 0 1]L0 0 0 1 0O 0 01
3.5)
or
C2 —S2 0 a2
;T: $2C12 CoCiz —S12 —S125 ’ (3.6)
$2812 €812 €12 C12S2
0 0 0 1

where s, and c; represent the sine and cosine of 8,, and s;; and ¢, represent the sine and
cosine of .. In general, the relationship between the jth and the ith coordinate systems
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is given by

¢ -—-s; 0 ajj
. SiCij CiCij  —S;j  —SiiS;
T B R ij i j
iT= Sis: CiS: o kS | 3.7
iSij €Sy ij i
0 0 0 1
The inverse of this transformation will often be used and is given by

Cj Sjcij SjSij —cjaij
"T _ —S§j CjC,'j CjS]j sjaij
A =

0 —Sjj Cij —Sj

0 0 0 1

(3.8)

One additional transformation will be presented for completeness. This is the relationship
between the first coordinate system and the fixed system. The transformation is simply a
rotation about the Z axis by the angle ¢; because the origins of the fixed coordinate system
and the first coordinate system are coincident. The transformation is given by

cos¢; —sing; 0 O
in 0 0
}I;T _ sing; cos ¢ (3.9)
0 0 1 0
0 0 0 1
3.7 Summary

In this chapter, the rigid body link was defined and quantified by the link length c;;
and the twist angle a;;. Seven types of joints that can interconnect these links were then
defined, the most common of which were the revolute joint, R, and the prismatic joint, P.
Compound joints such as the Hooke joint, the planar pair, and the ball and socket joint
must be simulated by an appropriate series of R and P pairs for actuation in a serial robot
manipulator.

The steps for labeling a kinematic chain and defining the mechanism parameters were
discussed. Finally, a standard coordinate system was attached to each link and the trans-
formation between coordinate systems was developed.

In the next chapter, the forward kinematic analysis of a robot manipulator will be
presented. For this analysis, it is assumed that the constant mechanism parameters and
the variable mechanism parameters are all specified. It is necessary to determine the
position and orientation of the robot end effector. This analysis will be developed by
using the general transformation between standard coordinate systems that was developed
in Section 3.6.

3.8 Problems

1. An open chain of links shown in Figure 3.35. Label the joint vectors, link vectors, joint
angles, and twist angles on the figure.
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Figure 3.35. Kinematic diagram.

Figure 3.36. RRR manipulator.
2.

(a) Draw a sketch of four general links connected by three revolute joints. Label the
twist angles, link lengths, offset lengths, and joint angles.

(b) Specify the special mechanism dimensions necessary to make this mechanism equiv-
alent to a planar pair.

(¢) Specify the special mechanism dimensions necessary to make this mechanismequiv-
alent to a ball and socket joint.

3. A 3R manipulator is shown in the Figure 3.36. The vectors Sy, S», and S3 are shown
together with a fixed coordinate system. The following information is also known:

Distance between the origin of the fixed coordinate system and point A is ninety-five
inches.

Distance between point A and point B is twenty-five inches.

Distance between point B and point C is thirty-five inches.

Distance between point C and point D is thirty inches.

Distance between point D and point E is sixty inches.

(a) Draw the vectors a;, and a3 on the figure, assuming that the twist angles o> and
ap3 are equal to ninety degrees.

(b) Tabulate the mechanism dimensions and give their values.
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Figure 3.37. RRP manipulator.

(¢) Write down the coordinates of point E in terms of the third coordinate system.

(d) At the instant shown in the figure, the joint angle parameters are known to be
¢ = 240° 6, = 120° 63 = 160°.
Determine the coordinates of point E in terms of the fixed coordinate system. Also

determine the direction cosines of vectors Sz and a34 in terms of the fixed coordinate
system.

4. An RRP kinematic chain is shown in Figure 3.37. Label all joint and link axes. Label

all joint angles and twist angles. What are the variable parameters for this manipulator?

. The following information is given for a robot manipulator:

o = 50° ap =0 S, =50cm ¢ = 70°
3 = 90° axy = 20 cm S3 =35cm 92 = 120°
63 = 90°

The coordinates of a point measured in terms of the third standard coordinate system
are [8, 2, 0]T cm. Determine the coordinates of this point in terms of the standard fixed
coordinate system.
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Forward kinematic analysis

4.1 Problem statement

A forward analysis of a serial manipulator determines the unique location (position
and orientation) for a specified set of joint variables. In practice, the joint variables are
monitored continuously as the end effector performs a task. A forward analysis thus
monitors continuously the actual location of the end effector, which may of course not be
precisely the desired location. The difference is used for location control.

Specifically, for a manipulator comprising six revolute joints, the variable parameters
1, 6>, 03, 84, 05, and 8¢ would be known. The goal of the analysis is to determine the
coordinates of a tool point that is attached to the last link of the manipulator, that is, link
67 for this case, together with its orientation. Specifically, the forward analysis problem
statement for a 6R manipulator is

given: (1) the constant mechanism parameters (link lengths a,, through as¢, twist angles
a; through asg, and joint offsets S, through Ss),
(2) the joint offset distance Sg and the direction of the vector aq; relative to the
vector S¢ (to establish the sixth coordinate system),
(3) the variable mechanism parameters (¢, 6,, 83, 64, 05, and 6s), and
(4) the location of a tool point measured in the last coordinate system, Py,
find: (1) the location of the tool point in the fixed coordinate system, FPo1, and
(2) the orientation of the last coordinate system measured with respect to the fixed
system ({R for a six-axis robot).

4.2 Forward analysis

The forward analysis is a relatively straightforward problem. Clearly, there is a unique
pose for a specified set of six joint variables. The first step of the solution is to obtain the
transformation that relates the end effector coordinate system with the fixed coordinate
system. Assuming that we have a six-axis robot and using the transformations developed
in Section 3.6, the transformation ET can be obtained from

T =TITITITIT T. 4.1)

The orientation of the sixth coordinate system with respect to the fixed system is given by
PR, the upper left 3 x 3 matrix of ET. As a reminder, the first column of R is the vector
Fag;, and the third column is the vector FSq by Eqg. (2.13) and Section 3.5.



40 Forward kinematic analysis

Table 4.1. Mechanism parameters for Puma robot.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.

ap =0 a; =90 ¢, = variable
ay; =17 o3 =0 S; =59 6, = variable
ay =0.8 a3y = 270 S;=0 65 = variable
a5 =0 ays = 90 S4=17 64 = variable
ase =0 ase = 90 Ss=0 65 = variable

0 = variable

Figure 4.1. Kinematic model of Puma
robot.

With the transformation T now known, the position of the tool point in the fixed
coordinate system can be simply found from

l:Ptool = ET 6Ptool- 4.2)

The Puma robot, described in detail in Section 3.4, will be used as an example, and
Figure 3.28 and Table 3.2 are repeated as Figure 4.1 and Table 4.1. The numerical
values listed in Table 4.1 represent all the constant mechanism parameters for the Puma
manipulator. It is important to note, however, that the location of the origin of the sixth
coordinate system is not yet defined. A value for the offset distance S¢ must be specified in
order for the origin of the sixth coordinate system to be defined. The offset S¢ represents
the distance between the vectors ass and ag; measured along the S¢ axis (see Figure 4.1).
The vector ag;, however, does not physically exist, and thus a unique constant value for
S¢ is not automatically defined. This problem is addressed by having the user arbitrarily
select a value for S¢. Once this value is chosen, the origin of the sixth coordinate system
is uniquely defined. A value of S¢ equal to four inches will be used in this case for the
Puma robot.

The next problem is to select a direction of the vector ag;. It is known that the vector
ag; will pass through the origin of the sixth coordinate system and that ag; must be
perpendicular to S¢. However, a planar pencil of lines passes through the origin of the
sixth coordinate system and is perpendicular to S¢. The user must align ag; with one of
these lines. In a typical application, the value of S¢ may be chosen so that the origin of the
sixth coordinate system is located at the center of the tool mounting plate for the robot. A
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line is then drawn on the face of the tool mounting plate. This line will represent the vector
ag7. The sixth coordinate system is now completely defined because its origin has been
determined by the selection of S¢ and the orientation vectors S¢ and ag; are physically
defined. The user would then measure the coordinates of the tool point in terms of this
sixth coordinate system, and the forward analysis problem can be completed.

The following numerical data were given for the forward analysis of the Puma robot:

S¢ = 4.0in.,

¢ =5m/4, 6,=5m1/6, 6;=-m/3,

6y =m/4, s =m/3, 6= —m/6,

5
Poot = | 3 | in.
7

where the joint angles are given in units of radians. The transformation £ T is given as

0.997 —-0.002 0.079 18.577

P 0.064  0.614 —0.787 23.457 43)
07 1 -0.047 0789 0612 11.750 |’ '
0 0 0 1
and thus the orientation of the sixth coordinate system is known.
The location of the tool point in the fixed coordinate system is calculated from
FPtool = gT 6Ptool- (44)
Therefore,
0997 -0.002 0079 18577 |5
E 0.064 0.614 —-0.787 23457| |3
Ptool = , 4.5)
—0.047 0789 0.612 11.750| |7
0 0 0 1 1
and hence
24.112
Fp 20.113 | . 6)
= in. .
ol T 18,167
1
4.3 Problems

1. Write a computer function that will perform a forward kinematic analysis of the GE P60
robot. Write a second function that will perform the forward analysis of the Cincin-
nati Milacron T3-776 robot. Use the kinematic diagrams and mechanism dimensions
presented in Sections 11.3 and 11.4 respectively.
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The value for the offset S¢ must be selected in order to define the location of the
sixth coordinate system of the robot. Use a value of 6.0 cm for the GE P60 robot and
8.0 inches for the Cincinnati Milacron robot.

For both cases, assume that the coordinates of the tool point as measured in the sixth
coordinate system are [12, 8, 5]T. Also, the values for the joint angles of the robot are

¢1 = 50°,
6, = 120°,
0y = 295°,
0y = 30°,
05 = 190°,
86 = 100°.

Determine the position of the tool point in terms of the fixed coordinate system. Also
determine the orientation of the end effector in terms of the fixed coordinate system,
that is, Fag7 and FSq.

A prototype for the function may be written as

void forward_ge (double phil, double th2, double th3,
double th4, double th5, double th6,
double S6, double P_tool_6[3],
double P_tool_F[3], double S6_F[3], double a67 _F[3]);

2. A three-axis robot is shown in Figure 4.2.
(a) Label all vectors along the links and joint offsets on the accompanying diagram.
Label all joint angles and twist angles.
(b) Tabulate the mechanism dimensions and give their values.

(¢) Assume you are given the following angular data:

Y1 = 30°, 6, = 90°, 03 = 40°

where in this case, the angle , is measured between the fixed Y axis and the link
vector that is perpendicular to the first two joint axes.

Figure 4.2. RRR manipulator.
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Determine the coordinates of point A and the direction cosines of vector v in terms
of the fixed coordinate system shown in the figure.

3. Suppose you are given an RP manipulator with the following dimensions:

ap = 5 in., o1y = 2700,
6, = 135°,

(a) Draw the manipulator and label the vectors ayy, a3, Sy, and S,. Label the fixed
coordinate system and the second coordinate system.

(b) A tool pointis given as [3.0, 1.0, 2.0]T measured in terms of the second coordinate
system. Determine the location of the tool point in terms of the fixed coordinate
system when ¢; = 45° and S, = six inches. In addition, determine the direction
of the vectors S; and ap; in terms of the fixed coordinate system.
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Reverse kinematic analysis problem
statement

A reverse analysis for a 6R serial manipulator determines all possible sets of the six
joint variables for any specified end effector location. Each set of six joint variables
defines a particular pose for the given end effector location. This analysis is especially
important when the end effector must move through a number of finite locations when
performing some specified task. This analysis is clearly more difficult than the forward
analysis described in Chapter 4. The analysis begins in this chapter by introducing the
concept of closing the loop, where a hypothetical link is inserted between the end effector
and ground to form a closed-loop spatial mechanism. The analyses of these closed-loop
mechanisms are presented in detail in Chapters 7 through 10.

5.1 Problem statement

The problem statement for the reverse analysis of a 6R manipulator is as follows (see
Figure 5.1):

given: (1) the constant mechanism parameters (link lengths a,, through ase, twist angles
o, through ase, and joint offsets S, through Ss),
(2) the joint offset distance Se¢ and the direction of the vector ag; relative to the
vector S¢ (to establish the sixth coordinate system),
(3) the desired position and orientation of the end effector, that is, FPiols TSe,
F367, and
(4) the location of the tool point in the sixth coordinate system, that is, )
find: ¢1, 92, 93, 94, 95, 96-

It is assumed that PS¢ and Fag; are unit vectors. From this information, the transformation
that relates the sixth coordinate system to ground is given by

T = [0 g(? . FP‘T“} : (5.1)
where

¢R = [Fag7, FSs x Fagy, FS4] (5.2)
and

FPsorig = "Pioot — (*Proot - 1)7a67 — (“Proor - j)FS6 % Fagr — (*Poor - k) Se. (5.3)
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Figure 5.1. Reverse analysis known information.

The 3 x 3 matrix R is easily determined because Fag; and FS¢ are the X and Z axes of
the sixth coordinate system measured with respect to the fixed coordinate system. The
location of the origin of the sixth system is determined by projection.

5.2 lIterative solution techniques

Iterative techniques represent one method of solution for the reverse-analysis problem.
In these techniques, an initial guess for the joint parameters (¢, through ¢ for a 6R robot)
is made. A forward analysis is performed to determine the position and orientation of
the tool point for the selected joint parameters. The difference between the position and
orientation calculated with the forward analysis and the desired position and orientation
represent an error that is to be minimized.

In typical iterative techniques, the error must be reduced to or represented by a single
scalar value. An objective function, F(¢y, 6, 05, 04, 65, 0¢), is formulated, and search
techniques are used to obtain the set of design parameters (¢, 6,, 65, 04, 65, O) that will
minimize F. A typical objective function would be the sum of the squares of the position
errors in the X , Y, and Z directions, plus the sum of the squares of the orientation errors
measured by X-Y-Z fixed angles or some other orientation measurement system. Thus,
the objective function could be written as

F($1, 05, 03,04, 05, 05) = (X¢ — Xo)* + (Ye — Ya)2 + (Zs — Zg)* + (o — @a)?
+ (B — Ba)* + (vt — v, (5.4)

where the subscript f refers to a position or orientation value calculated by performing a
forward analysis using the current design parameters, and the subscript d refers to a desired
value specified at the start of the reverse analysis problem. The optimal solution for this
problem is to obtain a set of values for the design parameters that cause the objective
function to equal zero.

A problem exists with Eq. (5.4). It contains terms with different units. The first three
terms have units of dimension lengthz, whereas the last three terms are dimensionless
(radians?). Such an objective function is without any geometrical meaning. Many times
this problem is simply incorrectly ignored or some arbitrary constants that have units of
length? are used to multiply the orientation differences. Any such multiplication destroys
the geometric meaning of orientation. If the specified end effector position and orientation
is in the reachable work space of the robot, however, the iterative solution can yield correct
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results because sets of joint angles will exist that will position and orient the end effector
as desired. The objective function will thereby attain its optimal value of zero.

A second problem with the iterative solution is that only one set of joint parameters
will be calculated that position and orient the end effector as desired. It will be shown
later that up to sixteen sets of joint parameters may exist that will position and orient the
end effector of a 6R manipulator as desired.

Some texts might point out that there are two “advantages” to an iterative solution
technique. Firstly, a single computer program can be used for virtually any manipulator
geometry. Only the values of the mechanism dimensions need be changed for application
to a different robot. Secondly, the iterative solution will normally converge with only
a few iterations. Usually, a desired position and orientation for the end effector will be
very close to the current position and orientation. The current joint parameter values can
be used as the initial guess for the design parameters, and the iterative technique should
converge to a solution rapidly.

Using the iterative solution technique has serious disadvantages. The problem of mixed
units is significant, and if the end effector is commanded to move to a pose that is not
within its reachable work space, different “optimal” solutions will result for different units
used in the problem. Further, it can be argued that the objective function with mixed units
is meaningless. Aside from this argument, the iterative solution cannot guarantee that
all solution sets will be determined. If it is important to compute all the sets of joint
parameters that can position and orient the robot’s end effector as desired (as is often the
case), then a closed-form analytical solution must be obtained. This closed-form solution
will be the subject of the remainder of this text.

5.3 Closed-form solution technique - hypothetical closure link

A hypothetical closure link will now be added that connects an imaginary joint axis
labeled S, to the first joint axis, labeled S;. The direction and location of the vector
S; must be selected first, where by definition the vector S; must be perpendicular to
a¢7. The direction of S; will be defined by selecting a value for the angle «g;, which
will be arbitrarily chosen as 90 degrees. With this selection of «7, S7 can be calculated
from

FS, = Fag; x FSq. (5.5)

The vector S; will be located so that it passes through the point O, the origin of the
sixth coordinate system. Thus, the distance ag; = 0.

Figure 5.2 shows the hypothetical joint axis S; and the hypothetical link 71. It will be
shown that unique values can be found for the following parameters, which are shown in
the figure

a7, 87, Si, aq1, 87, 1.

It is interesting to note that the offset distance S, is now defined for the new closed-loop
mechanism. S is the distance between the vectors a7, and a|», measured along S;.
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L

Figure 5.2. Hypothetical closure link.

5.4 General solutions for «;; and 6,

Expressions for the twist angles «;; and joint angles ; will now be presented. The twist
angle o;; is defined as the angle between the vectors S; and S; measured in a right-hand
sense about a;;. Because it is assumed that S; and S; are unit vectors, cosa;; = S; - §;,
where () denotes the usual scalar product of a pair of vectors. Knowledge of the cosine
of aj is not sufficient, however, to uniquely determine «;;. There are two distinct angles
between 0 and 27 that will have the same cosine value. To uniquely determine aj, it is
also necessary to determine sin ;. Now, S; x 8; = a;; sin «5, where (x) denotes the usual
vector or cross product of the pair of vectors S; and S;. Further, (S; x §;) - a; = sina;;. In
summary, the expressions for the cosine and sine of «;; are

Cyj = Si . Sj, (56)
sij = (8i x §)) - a, (5.7

where s;; and ¢;; represent the sine and cosine of a;; respectively.
Similarly, it can be shown that the cosine and sine of §; can be expressed as

Cj = a&jj - Ak, (5.8)
s; = (a; x aj) - S;, (5.9

where s; and c; represent the sine and cosine of 6; respectively.

5.5 Determination of the close-the-loop parameters

The solution for the parameters a;;, S;, Sy, @71, 67, and y; begins by determining a
direction for the vector a;; measured with respect to the fixed coordinate system. Because
a;; must, by definition, be perpendicular to 87 and S,, then

FS7 X FS]

= g rs 10
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The vector FS; is given by Eq. (5.5), and because S, is parallel to the Z axis of the fixed
coordinate system, FS, = [0, 0, 117. It should be noted that the denominator of Eq. (5.10)
will equal zero if the vectors S; and S; are parallel. This special case is identified if
FS, - FS; = +1 and is discussed in Section 5.6.

The twist angle a7; can now be calculated by using Eqgs. (5.6) and (5.7) and

e ="87-F8y, (5.11)

$71 = (FS7 X Fsl) . F2171. (512)
The joint angle 8; can be found by applying Eqgs. (5.8) and (5.9) as

¢ = Fag - Fag, (5.13)
s7 = (Fag; x Fazy) - Sy (5.14)
The angle y, is the angle between the vector a7; and the X axis of the fixed coordinate

system (see Figure 5.2). The sine and cosine of y; can be determined in a manner similar
to that for 6;; see Eqgs. (5.8) and (5.9). It can be shown that

1
cosy; = Faz - |0] , (5.15)
0
1
sin Y1 = F2171 x |0 .Fsl. (516)
0

At this point, the values for a7, 67, and y; have been determined. The remaining
parameters to be solved for are the distances S7, a7;, and S;. These distances will be
determined by first writing the vector loop equation

FPsorig + S77S7 + a7 Fay + 8,75, = 0. (5.17)

Because all the vectors in Eq. (5.17) are known, the vector equation represents three scalar
equations in the three unknowns S7, a;;, and S;.

The distance S; is obtained by forming a cross product of the left and right sides of
Eq. (5.17) with FS; and recognizing that S; x S; = 0. This gives

(FPsorig x ¥S1) + S7(FS7 x FSy) + a7 (Fas x FS1) = 0. (5.18)
Because (FS; x FS|) = s7,Fay;, Eq. (5.18) reduces to

(FPsorig X FS1) + S7s717az + a7 (Faq x FS;) = 0. (5.19)
Forming the scalar product of the left and right sides of Eq. (5.19) with Fa;; yields

(FPsorig x 7S1) - Faz + S8 = 0. (5.20)
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Clearly, (Fa;; x FS;)-Fa;; = 0 and Fa;; -Fa;; = 1, so Eq. (5.20) can be rearranged to
yield

FS p orig) * F
5, = St % Poorg) -"an (5.21)
$71

Similarly, it can be shown that the distances a;; and S, are given by

(FP6orig X FSI) . FS7

4y — (5.22)
$71
FP orig X FS -F
sl=( 6 orig S ) - an. (5.23)
71

5.6 Special cases

5.6.1 S; and S; parallel

Equations (5.10) and (5.21) through (5.23) yield infinite values when s;; =0. This
occurs when S; and S; are parallel or antiparallel and when there is no unique vector
a71ay; that is mutually perpendicular to S; and S;. This condition is easily identified
because from Eq. (5.11), ¢;; = =%1. It is possible to obtain a solution by selecting S; =0,
for which Eq. (5.17) reduces to (see also Figure 5.3)

FPorig + a717a7; + $17S; = 0. (5.24)
Forming a scalar product of Eq. (5.24) with F'S, and solving for S, yields

S1 = ~"Poorig - "S1. (5.25)
Rearranging Eq. (5.24) gives

a7 Fay = —(FP()orig + 5 FSI)- (5.26)

The right side of Eq. (5.26) is known. However, both a;; and Fa;, are unknown. The

S
Ze
Y1
Xg
5
/
ay

Figure 5.3. Special case where S; and S, are parallel.



50 Reverse kinematic analysis problem statement

distance a7, is easily computed because from (5.26)
a71 = | = ("Pgorig + S17S1)|- (5.27)
Dividing Eq. (5.26) by a7, yields the unknown vector

- (FP6orig + SIFSI)

a7

F
a7 =

(5.28)

Finally, 6; and y, are computed using Egs. (5.13) through (5.16).

5.6.2 S, and Sy collinear

A second special case occurs when S; and S; are collinear (see Figure 5.4). This is
identified when Eq. (5.27) yields a;; = 0. The direction of the vector a;, in the plane
normal to S, is now arbitrary. In this case, the angle 6; will be chosen as zero, thereby

making a;| parallel to ag;. The angle y, can now be calculated from Egs. (5.15) and (5.16)
as before.

5.7 Example

The close-the-loop parameters will be calculated for the case of the Puma robot. At the
start of the problem, one must select a value for the link offset distance S¢. Following this
selection, the location of the origin of the sixth coordinate system on the robot is defined.
The position of the tool point in terms of this sixth coordinate system, °Py,,;, must next be
specified.

At this point, the reverse kinematic analysis proceeds by the user’s specifying the
desired position and orientation for the tool point in terms of the fixed coordinate system,
thatis, Py, FS¢, and Fag;. The close-the-loop parameters are then calculated as described
in Sections 5.5 and 5.6.

%\f
Ye \?67
a;

Figure 5.4. Special case
where S; and S, are collinear.
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As a numerical example, the following specifications are made:

5
6Ptool = |3} in,
|7
[25 0.177 —0.153
FPoot = [23]in., FSq= 0.884|, Fag = 0.459
124 —0.433 0.875

The following values were calculated by using the close-the-loop procedure and are drawn
in Figure 5.5:

ay = —16681[1, o7 = 102.500,
S7 = 20.67 in., 07 = 63.690,
Sy = —=17.53in.,, y; = —84.79°.

The hypothetical closure link has in effect transformed the open-loop Puma manipulator
into a closed-loop spatial mechanism. The parameters for this closed-loop mechanism are
listed in Table 5.1. The next chapter will show that this closed-loop spatial mechanism
has one degree of freedom. Thus, if one of the variable joint angles of the closed-loop
mechanism is known, then the remaining joint variables can be calculated. The angle 6,
was determined during the close-the-loop process and will serve as the input angle for the
one-degree-of-freedom spatial mechanism.

Chapters 7 through 11 will detail how to solve for the variable joint parameters for
the vast majority of closed-loop spatial mechanisms. These joint parameters will be the
values that are required to position and orient the end effector of corresponding robot
manipulators as desired and thus constitute the solution for the reverse kinematic analysis
problem.

Table 5.1. Mechanism parameters for the closed-loop
Puma mechanism.

Link length, in.

Twist angle, deg.

Joint offset, in.

Joint angle, deg.

app; =0 o =90 S1 = —17.53 ¢ = variable
ap =17 a3 =0 S, =59 6, = variable
azy = 0.8 a3y = 270 S3=0 63 = variable
a5 =0 o5 = 90 Si =17 64 = variable
ase =0 ase = 90 S5 = 65 = variable
ag7 =0 a7 = 90 Sg=2.0 6 = variable
a7; = —16.68 a7 = 102.50 S7; = 20.67 07 = 63.69
Robot User-specified Close-the-loop

parameter

value

variable
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Figure 5.5. Close-the-loop parameters.

5.8 Problems

1. Write a computer function that will perform the close-the-loop analysis. Your program

should solve the standard case as well as the two special cases, that is, when S; and
S: are parallel and when S; and S; are collinear. The C language prototype for your
subroutine may be written as

void close_loop (double P_tool_6[3], double P_tool_f[3], double S6_f[3], double
a67_1[3], double *a71, double *S7, double *S1, double *al71, double *th7, double
*
gaml).

Test your subroutine by passing in the values for ®P, FPioi, FSs, Fag; listed in
Section 5.7.

. The origin of the standard coordinate system attached to an end effector of a robot

manipulator is located at the position r=0i + 0j + Ok. The orientation vector S¢ is
parallel to the direction —j + k, and the vector ag; is parallel to —j — K. Determine the
six close-the-loop parameters for this case.

. The origin of the standard coordinate system attached to an end effector of a robot

manipulator is located at the position r = 3j. The orientation of the vectors S¢ and a¢;
as measured in the fixed coordinate system are respectively [0, 0, —1]T and [1, 0, 0]T.

(a) For the case described, determine the six close-the-loop parameters. Show the angle
y1 on a drawing, and also indicate the direction of vector ay;.

(b) Determine the close-the-loop parameters if the end effector was moved to the origin
of the fixed coordinate system while the orientation remained the same.
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Spherical closed-loop mechanisms

6.1 Equivalent closed-loop spherical mechanism

In the previous chapter, it was shown that any serial manipulator can be transformed
into a closed-loop spatial mechanism by constructing a hypothetical closure link. This
chapter will focus on the geometry of the new closed-loop mechanism.

A new closed-loop mechanism called the equivalent spherical mechanism will be
formed from the original spatial closed-loop mechanism. The first step in creating the
equivalent spherical mechanism is to give all the unit joint vectors, S;, which label revolute
or cylindric joint axes, self-parallel translations so that they all meet in a common point O
and so that they all point outward from O (see Figure 6.1). Thus the directions of the S;
vectors are the same for the original spatial mechanism and the cointersecting arrangement.

Consider now that a unit sphere is drawn, centered at point O. The unit vectors S; will
meet this sphere at a sequence of points,i=1, 2, 3, ..., and so forth, as shown in Figure
6.2. Links (arcs of great circles) can be drawn on the unit sphere joining adjacent points,
12, 23, 34, ..., and so forth. For example, Figure 6.2 illustrates a spherical link joining
points 1 and 2 such that the angle between S; and S, is ¢, that is, the same angle as
between S; and S; in the original spatial mechanism. It should be noted that the length of
the link connecting points 1 and 2 is £1, = ra,, where « is measured in radians and r is
the radius of the unit sphere. For example, if r = 1 ft., then £, = «); ft.

Finally, the equivalent spherical mechanism is formed by connecting adjacent links
(a12, 023), (€23, 034), ..., and so forth, with joints. If the joint connecting a pair of
adjacent links, for example a;; and ay, of the original spatial mechanism is a revolute
or cylindric joint, then the corresponding adjacent links, oy and aj, of the spherical
mechanism are joined by a revolute joint. A spherical mechanism can permit relative
rotation only between adjacent links. The linear displacement of a cylindric joint is not
reflected in the equivalent spherical mechanism. A prismatic joint joining links a;; and aj
in the original spatial mechanism is modeled by a unit vector drawn from point O parallel
to the prismatic joint displacement and a solid connection between links «;; and ajx, which
preserves the constant angle 6; between these links. Following this method for connecting
adjacent links, the angles «;; and 6 are defined so as to be the same for the equivalent
spherical mechanism and the original spatial mechanism. Thus, any equations that relate
the twist angles and joint angles of the equivalent spherical mechanism will also be valid
for the corresponding spatial mechanism. Figure 6.3 shows a spatial closed-loop five-link
mechanism together with its equivalent spherical mechanism.
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Figure 6.2. Spherical link o5 placed between S|
and Sj.

Figure 6.3. Spatial closed-loop mechanism and equivalent spher-
ical mechanism.

6.2 Degrees of freedom

Before generating expressions that contain the twist angles and joint angles of the equiv-
alent spherical mechanism, a method for calculating the number of degrees of freedom of
spatial and spherical mechanisms will be presented.
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6.2.1 Spatial manipulators and closed-loop mechanisms

In Chapter 2, it was shown that a body in three-dimensional space has six degrees
of freedom. Six independent quantities, three related to position and three related to
orientation, are needed to completely describe the position and orientation of an object
in space. Consider now that there are n unconnected rigid body links. The number of
degrees of freedom measured relative to a fixed body or ground, or mobility M, of this set
of links is given by

M =6n. 6.1)

Consider, for example, a system of two unconnected links. This system possesses
twelve degrees of freedom. When the pair of links is connected by a revolute joint, the
number of degrees of freedom of the system is reduced to seven. Although one of the
links possesses six degrees of freedom measured relative to ground, the second link is
constrained to rotate about an axis relative to the first link and thus possesses only one
additional degree of freedom. The net mobility M of the system of two links is seven.
The revolute joint, which allows one relative degree of freedom, has in effect reduced the
total mobility of the system by five.

In general, a joint i that connects two links hi and ij will reduce the total mobility of
the system by (6 — f;), where f; is the number of relative degrees of freedom permitted
by joint i. Thus, the net mobility of a system of n links, one of which is connected to
ground, is 6(n — 1). Further, when they are interconnected by j joints (no two bodies are
connected by more than one joint), the net mobility, M, is*

j
M=6m—1)—) (6—f). (6.2)
i=1
For a single-chain closed-loop spatial mechanism, the number of links will equal the
number of joints. Eq. (6.2) reduces to

M= zn:fi —6. (6.3)
i=1

For a serial robot manipulator, the number of joints is one less than the number of links.
Eq. (6.2) reduces to

i
M=) f. (6.4)
i=1

If the resulting mobility of a system of links is equal to zero, then the system is a
simple structure. If the mobility is less than zero, the system is a redundant structure. If
the mobility is equal to one, the overall system has one degree of freedom. Specification
of one variable is all that is required to completely position all the links of the system.
From Eq. (6.3), a single-chain closed-loop spatial mechanism will have one degree of
freedom (M = 1) when 3, f; = 7, that is, the sum of the relative freedoms of the joints
equals seven. The spatial mechanism shown in Figure 6.3 has three revolute joints and
two cylindric joints and thus has one degree of freedom. In other words, a single input
angular displacement will constrain the loop.

* This is the general mobility equation. Special geometry may exist that increases the mobility of the system.
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Figure 6.4. Positioning of a spherical link.

6.2.2 Spherical mechanisms

A link of a spherical mechanism has three degrees of freedom. Itis shown in Figure 6.4
that the angles 8, A, and ¥ completely specify where a link is positioned and oriented on
the sphere. By analogy with Eq. (6.2), the mobility of n spherical links, one of which is
connected to ground, that are interconnected by j joints may be written as

i
M=3n-1)-) (3-f), (6.5)
i=1

where again f; represents the relative degrees of freedom of the i joint.
The number of links for a single-chain closed loop spherical mechanism will equal the
number of joints, and for this case Eq. (6.5) reduces to

j
M=) f-3. (6.6)
i=1

Clearly, when j = 3, the mobility for a spherical 3R triangle is zero, M = 0. Further, for
j=4,5, 6, and 7 the mobility for a spherical 4R quadrilateral, 5R pentagon, 6R hexagon,
and 7R heptagon are respectively M = 1,2,3, and 4. As an example, the spherical
mechanism shown in Figure 6.3, for which 3;_, f; = 5 thus possesses (5 — 3) =2 degrees
of freedom.

6.3 Classification of spatial mechanisms

The current objective of this text is to perform a closed-form reverse kinematic analysis
for a spatial manipulator. In Chapter 5 it was shown how a hypothetical link could be
added to a spatial manipulator to obtain a single-chain closed-loop spatial mechanism.
The joint angle for the hypothetical joint (6; for a 6R manipulator) was calculated during
the close-the-loop procedure. When the resulting closed loop mechanism has one degree
of freedom, a value of 6, is sufficient to define the system. In other words, it is possible
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Table 6.1. Classification of spatial
kinematic chains.

Group Number of links Mechanism

4 R-3C

) 5 2R-P-2C
6 3R-2P-C
7 4R-3P
5 3R-2C

2 6 4R-P-C
7 5R-2P
6 S5R-C

3
7 6R-P

4 7 R

to develop a procedure to compute all the joint parameters of the manipulator, and the
reverse analysis will be complete.

Table 6.1 lists all the single closed-loop spatial polygons or closed spatial kinematic
chains of links and joints that possess an overall mobility M = 1, assuming one link in the
chain is held fixed. The various loops are labeled by the numbers of revolute R, prismatic
P, and cylindric C kinematic pairs. The listing does not specify the order or sequence of
joints.

Reuleaux (1876) stated: “In itself a kinematic chain does not postulate any definite
absolute [displacement*]. One must hold fast or fix in position one link of the chain
relatively to the portion of surrounding space assumed to be stationary. The relative
displacement of links then becomes absolute. A closed kinematic chain of which one link
is made stationary is called a mechanism.”

The link that is held fixed is called the frame. A change in the selection of a reference
frame is known as kinematic inversion. Here we are concerned only with relative dis-
placements, and the relative displacement between any pair of links is independent of the
choice of the frame, that is, the kinematic inversion.

In order to identify kinematic inversions it is necessary to firstly specify the sequence
of joints. Clearly for four links there is only a single sequence of the four joints R-3C
(see Table 6.1). Inversions can be easily identified by drawing planar polygons, and
an R-3C chain can be represented by the planar quadrilateral shown in Figure 6.5. An
obvious inversion is the spatial four-link RCCC! mechanism with frame a4;, an input

* The term “displacement” has been substituted for the term “motion” used in Reuleaux’s original text. The
motion of a rigid body relative to a reference frame implies not only displacement but velocity, acceleration,
and so on (see Hunt (1978)).

t The terminology “R-3C” identifies the types and number of each type of joint that is in a kinematic chain.
The terminology “RCCC,” however, identifies a specific inversion of an R-3C chain. The input angle is a
revolute joint, identifid by the first letter of the sequence. The frame is located between the revolute joint
and the cylindric joint represented by the last letter of the sequence. The terminology, where the first letter
indicates the type of input joint and the frame is located between the input joint and the joint identified by
the last letter of the sequence, will be used throughout the text.
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4 1

frame
input angle output angle

Figure 6.5. Planar representation of an
RCCC spatial mechanism.

5 1 5 1

Figure 6.6. Planar representation of two 3R-2C kinematic
chains.

joint R, and the output joint C. An electric motor could be used to drive the input joint
at constant angular speed. Other inversions are of no practical interest, and from here on
only inversions with revolute input joints will be considered.*

A pair of distinct 3R-2C loops is illustrated in Figure 6.6 with kinematic inversions
RCRCR, RRCRC, RCRRC, and RCCRR,RRCCR, RRRCC. The process can be continued
to identify all inversions of all single-degree-of-freedom closed-loop spatial mechanisms.

Table 6.1 classifies the various kinematic spatial chains, and hence the various inver-
sions, according to group numbers. Each group number is simply the mobility of the
equivalent spherical mechanism. For example, the mobility of the equivalent 4R spherical
mechanism of the four-link RCCC mechanism is M = 1 (see Eq. (6.6)) as are equivalent
4R spherical mechanisms of inversions of the five-link 2R-P-2C, six-link 3R-2P-C, and
seven-link 4R-3P kinematic chains. Clearly, all of the inversions of the spatial five-link
3R-2C chains have equivalent 5R spherical mechanisms with mobility M = 2.

The grouping of spatial mechanisms according to the mobility M of equivalent spherical
mechanisms is important because it can be used to provide a method for the closed-form
analysis or the derivation of input—output equations for a given kinematic inversion. This
essentially solves the reverse kinematic analysis for serial manipulators. Solutions for the
joint parameters of group 1, 2, 3, and 4 mechanisms are presented in detail in Chapters 7,
8,9, and 10 respectively.

* For a serial manipulator, a hypothetical link is connected between the end link and ground. This hypothetical
link is connected to the end link by a revolute joint whose joint angle value is computed. A closed-loop spatial
mechanism results where the hypothetical link is the frame and the value of the revolute joint is the input
angle. Because closed-loop spatial mechanisms are being analyzed as a means of performing the reverse
analysis for a serial manipulator, only closed-loop mechanisms whose input joint is a revolute joint will be
considered.
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This chapter will continue by providing basic equations that will be used to analyze the
various closed-loop mechanisms in Chapters 7 through 10. Specifically, the joint vectors
and link vectors will be written in the standard link coordinate systems as defined in
Section 3.5 together with other additional coordinate systems. Further equations will be
generated that relate the twist angles and joint angles for a spherical triangle, quadrilateral,
pentagon, hexagon, and heptagon.

6.4 Generation of expressions for the joint vectors

Expressions for the direction cosines of each of the unit joint vectors (S; through S;)
and the unit link vectors (a;, through ac;) in each of the standard link coordinate systems
are important in the analysis of spherical and spatial mechanisms and manipulators. The
derivation of these expressions will begin with the joint vectors expressed in terms of the
first standard coordinate system, which has its Z axis along S; and its X axis along aj,. It
should be clear that
0
S,=101. (6.7)
1

Analogously, the vector S; in the second coordinate system is given by
"0
’S,=|01. (6.8)
1

It is important to recognize that all the vectors S; and a;; are drawn from the center of a
unit radius sphere and represent the points of penetration on the sphere by the vectors.
The coordinates of the point of penetration of the unit vector S, will now be transformed
to the first coordinate system by application of the rotational part of the transformation
defined by Eq. (3.6). Thus, %S, will now be transformed to the first coordinate system by
application of the rotational part of the transformation defined by Eq. (3.6). Thus,

Cy —Ss 0 0 0
1S, = [sc12 ez —sip| [O] = | =si2 | . (6.9)
82812 €281z Cn2 1 Ci2
The process will be extended to obtain the vector S; in the first coordinate system as
1S; = IR3IR’S;. (6.10)

The calculations involved in the matrix multiplication can be reduced by recognizing
that 2R3S; = ?S;. The term 2S; can be obtained simply by an exchange of subscripts
(1 - 2,2 —> 3)inthe right side of Eq. (6.9). Thus, the expression for the direction cosines
of S in terms of the first coordinate system can be written as

Cy —83 0 0 $2382
1
S;=|[s20612 €1z —Sia| | =S| = | —(812€23 + C12523¢2) | . (6.11)
$2812 €812 Ci2 (%1} C12€23 — 812823C2

The right-hand side of Eq. (6.11) is somewhat lengthy, and expressions for 'S;, 'Ss,
!S¢, and !'S; are more lengthy and complicated. For convenience a recursive shorthand
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notation is introduced. This is possible because patterns of combinations of sines and
cosines of the twist and joint angles reoccur. The terms X, Y,, and Z, are introduced into
the right side of Eq. (6.11) and hence

X,
1S, =Y, (6.12)
Z,
where X, Y, and Z, are defined as
X, = sis, (6.13)
Y2 = —(s12623 + c12823¢2), 6.14)
zz = C12€23 — 812823C2. (6.15)

In general, the notation introduced in Egs. (6.13) to (6.15) can be written as

= s (6.16)
Y; = — (s + Cijsik)), (6.17)
Zj = GCjjCik — SijSjkC;y» (618)

where the subscriptj=i+ landk =j+ 1.
Single subscript terms with a different combination of twist angles and joint angles will
appear repeatedly. These terms will be defined by X, Y;, and Z;, where

X; = sis;, (6.19)
Y; = — (8¢ + ki), (6.20)
Zj = CikCij — SjkS;jCj- (621)

The definitions )_(j, Yj, Zj and Xj, Yj, Z; can be related to the geometry of the spherical
dyad shown in Figure 6.7 by first writing

X =ss, 6.22)
Y =—(sc+csc), (6.23)
Z=cc—ssc. (6.24)

S;
Figure 6.7. Spherical dyad.
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The subscript j is an indicator that the expressions contain the joint angle 6. Hence,

X; =ss;, Xj = ss;,
Y= —(sc+csg), Yj=—(sc+csg), (6.25)
j = CC—8Sg;j, Z; =cc—s8sgj.

Now, X; = sjs; indicates an approach along arc o to vertex j, whereas X; = s;s; indicates
an approach along arc ;; to vertex j. Hence, one can write

j = Sjk Sjs Xj = sij Sj,
j= —(S Cik + CSik Cj), Yj = —(S Cij + C Sjj Cj), (626)
j = CCjk — S8k Cj, Zj=CCij—SSijCj.

The remaining unlabeled angle in each of these expressions is simply the other angle
completing the dyad, which is respectively oj; and oy

Because the vector 'S; is a unit vector, the sum of the squares of the elements of the
vector as expressed in Eqs. (6.13) through (6.15) will equal one. In general, from Eq.
(6.16) through Eq. (6.21)

X+Y+2 =1 6.27)
and
X[ +Y/+Z} =1. (6.28)

Further, a comparison of Eqs. (6.16) through (6.18) and Eqs. (6.19) through (6.21) yields
X; # X; and Y; # Y;. However,

Z, =2, (6.29)

The procedure now continues by determining expressions for the vector S, in terms of
the first coordinate system. The vector 'S, can be expressed as

1S, = !R?S,. (6.30)

The term %S, can be obtained by an exchange of the coefficients of Eq. (6.12). Thus, 'S,
can be written as

C —S; 0 X3 Xsc — Vss:
'S4 = |s;ci2 e —si2 Y3 | = | caX382 + Y3cp) — 51273 | (6.31)
$2812 €812 Cn2 Z s12(X382 + Y3¢2) + c12Z3
where X3 = s3483, Y3 = —(823¢34 + €23534C3), and Z3 = (ca3€34 — Sp3sucs). The terms,

“X32,” “Y3,,” and “Zs3,” will now be defined as
Xa = X0 — Vis, 6.32)
Y3, = ci2(Xs82 + Y302) — 81273, (6.33)
Zy, = s12(X382 + Y302) + c12Z3 (6.34)
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so that (6.31) can be written as

X3
1Si = | Y3 |. (6.35)
Zs3)

In general, the terms Xy, Yy, and Z,4, and a new term, X;j, will be defined as

Xy = Xy — Yus;, (6.36)
X5, = Ky + Ve, (6.37)
Yy = cij(Xksj + Yie)) — siiZy, (6.38)
Zyi = sii(Xys; + Yi<y) + ciZy, (6.39)

where j = i+ 1 and k = j+ 1 and where Xy, Yy, and Z, are defined in Eqgs. (6.16) through
(6.18). Further, the terms Xj;, Yj;, Z;;, and Xi*; will be defined for future use as

Xij = Xi¢; — Y;s;, (6.40)
X;; = X8 + Yig¢j, (6.41)
Y = cx(Xisj + Yic)) — spZ;, (6.42)
Zi = six(Xis; + Yic)) + ciZi, (6.43)

where Xj, Y;, and Z; are defined in Eqs. (6.19) through (6.21).
Again, it can be shown that the following equations are true for the double subscripted
terms

Xy+ Yo +Z5=1, (6.44)
X+Yi+Zi=1, (6.45)
Zi = Z;. (6.46)

The procedure now continues by determining expressions for the vector Ss in terms of
the first coordinate system. The vector 'S5 can be expressed as

'Ss = IR?Ss. (6.47)

The term Ss can be obtained by an exchange (1 — 2,2 — 3,3 — 4,4 — 5) of the
coefficients of Eq. (6.35). Thus, !S5 can be written as

¢ =8, 0 X43 Xpcr — Yi3s2
'Ss= [scin ccin —si2| | Yas | = | craXuzs2 + Yas¢2) — s12Za3 | - (6.43)
$2812 CS12 Ci2 Zss $12(Xg382 + Ya3¢2) + €12Z43

The terms X432, Y432, and Z43, will now be defined as
X432 = Xa43¢2 — Ya382, (6.49)

Ya32 = cio(Xassz + Ya3p) — 812743, (6.50)
Zyyy = $12(Xu382 + Y43¢2) + CioZys (6.51)
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so that the vector 'Ss can be expressed as
Xazn
'Ss = | Yas (6.52)
Zyz;

It should be clear at this point that the expressions for X, Y, and Z with three subscripts
are recursive. The definitions for expressions with three subscripts in increasing order are

written as

Xix = Xjiox — Yk,
X;‘J‘.k = Xjjsk + Yjjcx,
Yix = cu(Xjjsk + Yijex) — sz,
Zijx = su(Xjjsk + Yjic) + cuZ,

and the definitions for expressions with three subscripts in decreasing order are

Xyii = Xigei — Yiisi,
Xy = Xjsi + Yici,
Yiii = cni(Xisi + Yiii) — snigs
Zyji = spi(Xy8i + Y€1) + Cniyjs

(6.53)
(6.54)
(6.55)
(6.56)

6.57)
(6.58)
(6.59)
(6.60)

wherei =h+41,j =i+ 1 and k = j + 1. Further, for a mechanism with n joints, joint

n + 1 (the joint after joint n) is joint 1.

The process could be repeated two more times to obtain expressions for the vectors Sg
and S; in terms of the first coordinate system. However, the notation is recursive and the

results are
Xs432
1
Se = | Ysa32
Zsan
and
Xe6s5432
1
S7=| Yesan | ,
Zssa32
where

Xsa32 = Xs543¢2 — Y5438,
Ys432 = €12(Xs4382 + Ys43C2) — S12Z543,

Zsary = $12(Xs54382 + Ys543C2) + C12Z543

(6.61)

(6.62)

(6.63)
(6.64)
(6.65)
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and
Xes432 = Xe543¢2 — Ye54382, (6.66)
Yesa32 = C12(Xes54382 + Yes543C2) — S12Z6543, (6.67)
Zesazr = $12(Xes54382 + Ye543C2) + C12Z6543- (6.68)

The definitions for expressions with four subscripts in increasing order are written as

Xhigk = Xnijck — YhijSks (6.69)
X = Xnijsk + Yhijcx, (6.70)
Yhix = Cia(Xnijsk + Yhijck) — SuZnij, 6.71)
Znijx = s (Xnijsx + Yhijcx) + cuZnij, 6.72)
and the definitions for expressions with four subscripts in decreasing order are
Xyjin = Xijich — YiiiShs 6.73)
Xiih = Xxjish + YxiiCh, (6.74)
Yijin = Con(Xyjisn + YxjiCh) — SgnZiis (6.75)
Zyjin = Sgn(Xjish + Yijicn) + CgnZuii- (6.76)
The definitions for expressions with five subscripts in increasing order are written as
Xnijn = Xniik€1 — YhijSt, (6.77)
Xhiga = Xnigs1 + Yhixci, (6.78)
Yhij = Cim Xnijkst + Yhi€) — SimZnijk, (6.79)
Zhixi = Sim(Xnijks1 + YiikC1) + CimZnijk s (6.80)
and the definitions for expressions with five subscripts in decreasing order are
Xijih = Xijich — YikiSh, (6.81)
Xiiih = Xugish + Yixjich, (6.82)
Yijin = Con(Xijish + Yugicn) — SenZii» (6.83)
Zijih = Sgh (XS + Yikjicn) + ConZiji, (6.84)

whereh=g+ 1,i=h+1,j=i+ 1, k=j+1,{=k+1l,andm=¢+ 1.
As before, the sum of the squares of the multisubscripted X, Y, and Z terms will equal
one. Also it is true that

Zij...mn = an...ji- (685)

In summary, expressions have been found for the joint vectors S, through S; in terms
of the first coordinate system. The results can be summarized as follows:

0 0 X2 Xn—l,n—2 ..... 2
ISi= (0], 'So=|-si2|, 'Ss=[Y2|, 'So=|Yuino2.2 (6.86)
1 C12 Z Zy 2.2

forn=4,5, 6, or 7. A similar procedure could be used to obtain the direction cosines for
the joint vectors in terms of other standard link coordinate systems.
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6.5 Generation of expressions for the link vectors

The direction cosines for the link vectors will be determined in terms of the first
coordinate system in a manner similar to that used in the previous section for the joint
vectors. The components of the vector a;, measured in the first coordinate system are
given by

1
lap, = |0]. (6.87)

The components of the vector a; in terms of the second coordinate system are given by

1
2a,, = | 0] . (6.88)
0

Transforming this vector to the first coordinate system via application of the rotation
matrix part of Eq. (3.6) gives

Cy —S 0 1 Cy

1

a3 = [ $2€12 C€12 —S12 0 =|s0c12]. (6.89)
82812 G812 C12 0 82812

The vector az4 can be transformed from the third coordinate system to the first system by
the following two successive rotations

'ay, = JRIR *ay,. (6.90)

The term §R3 a4 is equivalent to a4, and this term can be obtained by matrix multiplication
or by an exchange of subscripts (1 — 2,2 — 3,3 — 4) of Eq. (6.89). The vector lay,
is then given by

¢ —Sy 0 C3 C2C3 — $283Cn3

1

A= [$2¢12 ¢z —Si2| | $3C23| = | —S12(83823) + C12(S2€3 + €283C23) | . (6.91)
$2812 €812 €12 | | S3sz C12(83823) + S12(S2C3 + €283C23)

A shorthand notation for the right-hand side of Eq. (6.91) is introduced using the following
definitions

Uz = 83823, (6.92)
Viz = —(82¢3 + €283¢23), (6.93)
Wi, = ¢3¢3 — $283C23. (6.94)

In general, the notation introduced by Eqgs. (6.92) through (6.94) can be written as
Uji = s;85;, (6.95)
Vii = —(s8i¢; + ¢;8i¢55), (6.96)
Wi = ¢i¢j — sisicyj, (6.97)
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where j =i+ 1. Analogously, the terms Uj;, Vj;, and Wj; are defined as

Uij = Sisij7 (698)
Vij = = (si¢i + ¢j8i¢y), (6.99)
Wij =G — SjSiCij. (6100)

Finally, further abbreviations are introduced as follows

Uszz1 = UsCrz — Vs, (6.101)
Ul = Usasiz + Vi (6.102)

so that Eq. (6.91) can now be written in the abbreviated form

W,
lay, = [—U’gﬂ] : (6.103)
Usyi

Before proceeding with the determination of the direction cosines of the vector ays in
the first coordinate system, it is instructive to introduce all the definitions for the terms
U, U*, V, and W with multiple subscripts. Egs. (6.95) through (6.100) have defined the
expressions for U, V, and W terms with double subscripts in both ascending and descending
order. Egs. (6.101) and (6.102) have introduced some of the triple-subscript terms. All
the triple-subscript expressions are defined as follows:

Uik = Ujjicik — VijSik» (6.104)
Ul = Uisik + Vijei, (6.105)
Viik = e (Usik + Viie) — siWiyj, (6.106)
Wik = sk(Uysix + Vici) + aW;. 6.107)

Expressions for U, U*, V, and W with three or more subscripts are recursive and are valid
for both ascending and descending order.
Expressions for four subscripts for U, U*, V, and W are

Uik = UniiCik — VhijSik, (6.108)
Uik = UnijSik + ViiCix, (6.109)
Vhijk = Ck(UnijSik + VnijCix) — 8k Whij, (6.110)
Whik = Sk(UnijSik + VhijCik) + Cx Whj, (6.111)

expressions for five subscripts for U, U*, V, and W are

Ughijk = UghijCik — VghijSjk» 6.112)
UZhijk = UgnijSik + VgnijCik» (6.113)
Vanijk = ck(UgnijSik + VenijCix) — Sk Wenij» 6.114)

Wonik = Sk(UgnijSik + VnijCix) + ckWanij, 6.115)
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and expressions for six subscripts for U, U*, V, and W are

Usghijk = UgenijCk — VienijSik» (6.116)
Ufanizk = UtghijSik + VighiiCik, 6.117)
Vighik = Ck(UggnijSik + VigniiCix) — Sk Wghij (6.118)
Wignik = Sk(UsgnijSix + VighijCix) + €k Wegnij- (6.119)

It can be shown for any number of subscripts that

Wij.umn = an...ji (6.120)
and
Ul o+ Vit Wi =1 (6.121)

Returning now to the problem of transforming the link vectors to the first coordinate
system, the vector a5 can be transformed to the first coordinate system as follows

Ta;s = R %ags. (6.122)

The term 2a,s may be obtained by an exchange of subscripts in Eq. (6.103), and thus
Eq. (6.122) may be written as

. —% 0 Was $2UG +CoWas

i

5= |01 ¢ —sp2||—Ulp | =[—s12Uss2 — ci2 (02Ul — 2 Wa3) | (6.123)
$2812 G812 Cn2 Ui, c12Usz — 812(€2U%3, — 9 Wa3)

or

Wasz

lags = | —Ulyy | - (6.124)
Uaszi

The vector 'ass may be written as

lass = )R %as. (6.125)

The term 2ass may be obtained by the exchange (1 —-2,2—3,3—>4,4—5, 5 6)
from Eq. (6.124). Eq. (6.125) now becomes

*
C —$) 0 Wsas $2US43; + C2Wsa3
1
ass = | 2C12 ¢z —Si | | =Uly, | = | —s12Usasz — 12(C2U%, — 9 Wsa3)
$2%12 G281z Cn2 Usaz ¢12Usaz2 — 812(€2U%3, — $2Wsa3)
(6.126)

or

Wsaz
'ass = [‘U§4321] . (6.127)

Usazn
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Table 6.2. Direction cosines expressed in the 1st standard
coordinate system.

S (0,0, 1) an (1,0,0)

S (0, —si2,C12) ay  (c2,82012, Uz )

S3 (Xz, Yz, zz) azy (Wi, =U3,, Usny )

Sy (Xap, Ya2,Z3) a5 (Waz, =Ujspy, Usar)

Ss (Xas2, Yazo, Zyn) ass  (Wsaaz, —Usyyp5 Usaanr)
S (Xsan2, Ysa2, Zsqn) ag7 (Wesanz, —Ugssany> Ussaszr)

S7 (X65432, Y65432 > 265432)

Lastly, the vector 'ag; may be written as
'ag; = 1R %ag. (6.128)

The term 'ag; may be obtained by the exchange (1 >2,2—3,3—-4,4—-5,5—>6,
6 — 7) from Eq. (6.127). Equation (6.128) now becomes

*
C - 0 Wesas $2Ugs432 + €2 Wesas
1
a7 = |12 €12 —sp || —Uksisn | = | —812Ussa32 — €12(€2Ufisaz, — $2Wesa3 )
$2812. G812 Cnz Ussa c12Ussaz2 — 812(C2Ujs432 — 52 Wesa3)
(6.129)
or
Wesaaz
1 N N A
g7 = Utsas1 | - (6.130)
Ussa321

Expressions have now been found for the direction cosines of the unit joint vectors S;
through S¢ and for the unit link vectors a;, through ag; in terms of the first coordinate
system. The results are summarized in Table 6.2. The process may be repeated to
determine the direction cosines of the point vectors and the link vectors in any of the
standard coordinate systems.

6.6 Spherical triangle

6.6.1 Derivation of fundamental sine, sine~cosine, and cosine laws

The spherical triangle shown in Figure 6.8 has mobility M = O (see Eq. (6.6)) and is
therefore a structure. The objective here is to generate a series of equations that relate the
twist angles, o, and joint angles, 6;.

It has been shown that the direction cosines of the vector S; in terms of the first coordi-
nate system can be obtained by transforming the vector from the third coordinate system
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Figure 6.8. Spherical triangle.

to the second and finally to the first coordinate system. The result of the transformations is

X,
'S; = [Yz}. (6.131)
Z,
Because the spherical triangle is a closed-loop structure, the vector S; can be transformed
directly to the first coordinate system. This transformation, 3R, can be obtained by start-
ing with a coordinate system B initially coincident with the third coordinate system. B
is rotated about the vector a;; (the X axis of the third coordinate system) by the angle
a31. The Z axis of the B coordinate system is now aligned with the Z axis of the first
coordinate system. The B system is now rotated about the Z axis by the angle 6;. The B

coordinate system is now coincident with the first coordinate system. Thus, the rotational
transformation that relates the third and first coordinate systems can be written as

1 0 0 Ci —S1 0 Ci —$ 0
?R= 0 C31  —S31 S1 Ci 0| = C3181 ©€31€¢1 —S31 ] . (6132)
0 s3 ¢y 0 0 1 S31S1  S$31C1 €31

Using the inverse of this transformation to obtain the vector 'S; gives

Ct G381 83181 0 83181
'S; =1R’S; = | —s; cycr sy | [O] = |sae |- (6.133)
0 —s33 ¢y 1 C3i
Equating Eqgs. (6.131) and (6.133) gives
Xy = susy, (6.134)
Y2 = 831€C1, (6135)
Z; =cy. (6.136)

Equations (6.134) through (6.136) are respectively the sine, sine—cosine, and cosine laws
for a spherical triangle.
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Table 6.3. Fundamental sine, sine—cosine,
and cosine laws for a spherical triangle.

Xy = sp38y Xy = 83183 X3 = 8128
Y = snc Y2 = 83163 Y: = spipcy
Z, =cn Z; = ¢3 Zs =cp2
Xl = 82383 Xz = 83151 Xs = S1282
Y = $23C3 Y2 = 831C1 Ys = §12C2
zl =3 Z, = C31 23 = C12

A second set of laws can be generated by rotating the vector 28, to the third coordinate
system in two directions, that is, directly from the second to the third coordinate system
and from the second to the first and then to the third. Equating the results of the two
transformations yields the second set of sine, sine~cosine, and cosine laws. This result
can be obtained simply by exchanging the subscripts in Eqgs. (6.134) through (6.136) as
follows:

3
! (6.137)
2

W =
—_- N

According to this exchange of subscripts, 9, is replaced by 83, 6, is replaced by 6;, 65 is
replaced by 6,, a;; is replaced by a3, a3 is replaced by «y,, and a3 is replaced by «a;3.
This yields

X1 = $2383, (6.138)
Yl = $23C3, (6139)
Zl = C»3. (6140)

A total of six sets of sine, sine—cosine, and cosine laws can be generated for a spherical
triangle (see Table 6.3). This equates to the six possible ways of reordering the three
subscripts. Note that the subscripts appear in increasing order in Eq. (6.137), the same
as the original subscripts 1, 2, and 3. For three of the six possible permutations, however,
the new subscripts will be in decreasing order. An example of this is the exchange

(6.141)

W €~ =
N N
—_—— W

Whenever an exchange of subscripts occurs, any resulting angle o;; (where j = i + 1)
should be rewritten as a;;.

6.6.2 Sample problem

Suppose that you have three spherical links. You measure the twist angles and find that
a1z = 120°, ay = 80°, and a3; = 135° (see Figure 6.9). You wish to determine the joint
angles 6y, 6,, and 6; for the assembled spherical triangle.
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a31 = 1350
a23 = 800
&, =120

Figure 6.9. Three spherical links.

The solution will begin by examining the equations listed in Table 6.3 in order to find an
equation that has only one unknown. Upon examination, it is seen that all the cosine law
equations have a single unknown, whereas the sine and sine—cosine law equations have
two unknowns. The cosine law Z; = c,3 will be arbitrarily selected. Expanding Z, gives

C12€31 — 812831€1 = C23. (6.142)
Solving for ¢, gives

e T (6.143)
812831

Substituting numerical values gives ¢; = 0.2938. There are two distinct angles whose
cosines will equal this value. These two angles will be designated as 6,4 and 6,5. Thus
01a = 72.92° and 0,5 = 287.08°. In general, if only cosine 8 is known, or only sine 6 is
known, then two distinct values for @, where 0 < 0 < 27, exist. However, if both the sine
and the cosine of an angle are known, then only one angle is defined that satisfies both
the specifications. For the current problem, only ¢, is known. Therefore, two values of 6,
exist, which will be labeled 6,5 and 0. This should be expected for this problem because
the three links can be assembled in either a clockwise or counterclockwise fashion.

Corresponding values for 8, can be computed from the sine and sine—cosine laws (see
Table 6.3):

X = s28s, (6.144)

Y| = $5365. (6.145)
Expanding X, and Y, gives

$3181 = $2382, (6.146)

—(812€31 + €12831C1) = $3C. (6.147)
For the A case, where 0,4, = 72.92 degrees, the corresponding values for s, and ¢, are

s2a = 0.6864, (6.148)
Coa = 0.7273. (6.149)
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The unique value for 6,, is 43.34 degrees. For the B case, where 8,5 = 287.08 degrees,
the corresponding values for s, and c; are

s,p = —0.6864, (6.150)
cp = 0.7273. (6.151)

The unique value for 6,5 is 316.66 degrees.
Corresponding values for 6; are computed from the following sine and sine—cosine
laws:

X, = sys3, (6.152)

Y, = sy0;3. (6.153)
Expansion of the left sides of Eqs. (6.152) and (6.153) gives

S1281 = 82383, (6.154)

— (831C12 + €31812C1) = $23C3. (6.155)

The terms s3 and c; are the only unknowns in Eqgs. (6.154) and (6.155). For the A case,
where ;4 equals 72.92 degrees, the corresponding values for s; and c; are

s3a = 0.8406, (6.156)
c3a = 0.5416. (6.157)

The unique value for 65, is 57.20 degrees. For the B case, where 8,5 = 287.08 degrees,
the corresponding values for s; and c; are

s;p = —0.8406, (6.158)
csp = 0.5416. (6.159)
The unique value for 6;5 is 302.79 degrees.

Thus, two solution sets have been determined for the three given links. The two
assemblies are shown in Figure 6.10.

Figure 6.10. Two assemblies of the
spherical triangle.
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6.6.3 Direction cosines of joint vectors and link vectors for a spherical
triangle

The direction cosines for the vectors Sy, S,, S, a5, and ay; expressed in terms of the
first coordinate system were determined in Sections 6.4 and 6.5 of this chapter. The vector
a3 is yet to be determined. It is known that 3a;; = [1, 0, 0]T. Transforming this vector to
the second and then to the first coordinate system yields

(&) —S 0 C3 —S3 0 1 W32
1
a3 = [$2C12 €12 —Si2|]|S263 €3¢3 —snu|[{0]| = [-U |. (6.160)
$2812 €812 €12 ] 183823 C3is;3 ¢ [0 Usyy

The vector *a3; can be rotated directly to the first coordinate system using the transpose
of the transformation in Eq. (6.127) as follows:

C1 C3181 83181 1 (]

1 Ip3

a3 =;R%a; = | —s; ¢3¢ sz | |0 =] —s;]. (6.161)
0 —831 C31 0 0

At this point, the direction cosines of all the link vectors and joint vectors have been
calculated in terms of the first coordinate system. The process can be repeated, or an
exchange of subscripts can be used to express all the vectors in the second and third
coordinate systems. The results of these calculations are presented in the appendix as sets
1 through 3 of the direction cosine table.

The appendix also shows the results of projecting the link and joint vectors onto three
additional coordinate systems. For example, set 4 in the appendix projects the vectors
onto a coordinate system whose X axis is along the vector a3; and whose Z axis is along
S;. These additional three sets of projections result from performing an exchange of
subscripts, where the order of the subscripts is changed from increasing to decreasing.

6.6.4 Polar sine, sine-cosine, and cosine laws for
a spherical triangle

In Figure 6.11, the link vectors a;5, 9,3, and a3; have been extended to intersect the unit
sphere in three points which can be joined by great circular arcs to form a second triangle

Figure 6.11. Link vectors intersect unit sphere.
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Figure 6.12. Polar triangle.

called the polar triangle. The points of penetration of the unit vectors ajz, a3, and a3
are the poles of the planes formed by the pairs of vectors (S1, S,), (S,, S3), and (S5, Sy)
respectively.

Sets of sine, sine—cosine, and cosine laws can be generated for this polar triangle just
as for the spherical triangle. The approach could be similar to that used for the spher-
ical triangle. For example, the vector a3, could be transformed to the first coordinate
system by premultiplying it by JRZR. This result would be equated with the vector *a3
premultiplied by 1R.

A comparison of Figure 6.8 and Figure 6.12 reveals a simpler method of generating
the laws for the polar triangle. The link vectors and joint vectors have switched roles. For
example, the link vector a3, of the spherical triangle is always perpendicular to the plane
containing link «3;, which connects the joint vectors S; and S;. The joint vector S; of the
polar triangle is always perpendicular to the plane containing link 65, which connects the
link vectors a,; and az;.

Because of the similarity of the spherical triangle and the polar triangle, the laws for
the polar triangle can be generated directly by a substitution of variables in the spherical
triangle laws. Substituting the definitions of X, Y, and Z, into Egs. (6.134) through
(6.136) yields

82382 = 83151, (6.162)
— (812C23 + C12823C2) = $31Cy, (6.163)
C12C23 — 812823C2 = C3. (6.164)

A set of polar sine, sine—cosine, and cosine laws will now be generated by substituting
the angles o, o23, and a3; respectively for 6y, 6,, and 6; and the angles 6,, 63, and 6,
respectively for a2, a3, and a3;. This yields

83823 = 81812, (6.165)
— (82€3 + C283C23) = 8C12, (6.166)
C2C3 — $283C23 = Cy. (6.167)

The left side of Eqs. (6.165) through (6.167) can be replaced by the notation Us;, Vi,
and W3, based upon the definition of these terms presented in Eqs. (6.92) through (6.94).
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Thus, a set of sine, sine~cosine, and cosine laws for a polar triangle may be written as

Ui = 81812, (6.168)
V3 = sicp2, (6.169)
Wy, = ¢ (6.170)

The substitution of parameters may be applied to each of the six sets of sine, sine—-cosine,
and cosine laws for the spherical triangle. However, it is simpler to exchange the subscripts
1, 2, 3 in the right and left sides of Eqs. (6.168) through (6.170). Either way, this will
result in six sets of polar laws. These six sets are listed in the appendix.

6.7 Spherical quadrilateral

6.7.1 Derivation of fundamental sine, sine-cosine, and cosine laws

A spherical quadrilateral is shown in Figure 6.13. Assuming that one link is attached
to ground, the number of degrees of freedom of the mechanism is one. The objective
here is to generate a series of equations that relate the twist angles and joint angles of the
quadrilateral.

In Section 6.4, it was shown that the vector *S, could be rotated from the fourth
coordinate system to the third, second, and then first coordinate systems. The result of
these transformations (see Eq. (6.35)) was

Xap
1S4=|Yan|. (6.171)
Zyn

Because the spherical quadrilateral is a closed-loop mechanism, the vector S, can be
rotated directly to the first coordinate system via a transformation }R. This transformation
can be generated in the same manner as was the transformation } R for the spherical triangle,

Figure 6.13. Spherical quadrilateral.
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that is, by a rotation of a4; about the X axis of the fourth coordinate system followed by
a rotation of 6, about the modified Z axis. The resulting transformation is

Ci —S1 0

4

lR = | C4181 €C41€C1 —S41 ] . (6172)
84181  S41€C; C41

The vector 'S, can now be calculated as

C1 C4181  S41%1 0 $4181
1S4 = 1114S4 = | =S1 C41C1 S$431C; 0| = $41€C1 | - (6173)
0 —S41 C41 1 Ca1
Equating Eqgs. (6.171) and (6.173) yields
X3 = sq181, (6.174)
Y32 = sqic1, (6.175)
232 = C41. (6176)

Equations (6.174) through (6.176) are respectively fundamental sine, sine—cosine, and
cosine laws for a spherical quadrilateral. A total of eight fundamental sets of laws can be
generated for the quadrilateral by performing an exchange of subscripts. The eight sets
of laws are listed in the appendix.

6.7.2 Sample problem

A spherical quadrilateral is formed from four links o, = 40°, a3 = 70°, o34 = 85°,
and a4; = 70°, where link oy is attached to ground. Because a spherical quadrilateral
with revolute joints on the axes S;, S,, 83, and S is a one-degree-of-freedom mechanism,
a single joint parameter or input angle must be specified. The angle 8, = 75° is selected as
the input angle. The objective of the problem is to obtain values for the joint angles 6, 6,,
and 6s.

(a) Identification of Input/Output Equation

The solution begins by selecting the joint angle to be solved for first, which is typically
called the output angle. The angle 9, is the output angle for this example because link a4 is
the frame or ground. The fundamental sine, sine—cosine, and cosine laws in the appendix
are then examined in order to identify one equation that contains only one unknown. An
advantage of the notation used in this book is that the subscripts of the X, Y, and Z terms
identify the joint angles that are contained in the expanded definitions. For example, the
term X3, contains the angles 65 and 6,. The subscripts 2 or 3 cannot appear in an equation
that contains ¢, as the only unknown. There are apparently two such equations

Zy =cx 6.177)
and

Zi4 = co3, (6.178)
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which are of course identical because Z4; = Z,4. Expanding the left side of Eq. (6.177)
yields

s12(X481 + Y4C1) + C12Zs = Cp3. (6.179)
Equation (6.179) can be regrouped and written as
C1(s12Y4) + 81(812X4) + (1224 — cp3) = 0. (6.180)

It should be recalled that the definitions of the terms X4, Y4, and Z, are

X4 = $3484, (6181)
Y4 = —(S41C34 + C41534C4), (6.182)
Z4 = C41C34 — $41834C4. (6.183)

The right-hand sides of Egs. (6.181) through (6.183) are all expressed in terms of known
parameters. Thus, it can be observed that the terms in parentheses in Eq. (6.180) can be
numerically evaluated. The task at hand, therefore, is to solve the equation

Aci+Bs;+D=0 (6.184)
where

A =5,,Y,, (6.185)

B =s;,X4, (6.186)

D= C1224 —Cy3 (6187)

for all values of 8;. Two solution techniques for this equation will be introduced.
(b) Tan-Half-Angle Solution of Ac; + Bs; + D = 0

In the first solution, the term x; will be defined as tan(6;/2). The following trigono-
metric identities will be employed

2X1

— , 6.188

S1 452 ( )
1—x2

— 6.189

“ET1F x2 ( )
Substituting Eqs. (6.188) and (6.189) into Eq. (6.184) yields

1—x? 2

A—I 4B D=0 (6.190)

1 +x7 1+ x7
Multiplying Eq. (6.190) by (1 + x?) and regrouping gives

(D — A)x3 + (2B)x; + (D + A) = 0. (6.191)
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JAZ+B?

Y

A

Figure 6.14. Definition of angle
y.

Solving Eq. (6.191) for x; yields

. = -B+V/B2-(D-A)D+ A)_ (6.192)
(D-A)

Two real values of x, satisfy Eq. (6.191) provided B> — (D — A)(D + A) > 0. For each
of the values of x,, a unique value for 6, can be calculated from the equation

6, = 2tan"!(x)). (6.193)

This is because x; = tan(6,/2) is single-valued in the range 0 < 8; < 27, whereas tan(8,)
is double-valued in the same range.

(c) Trigonometric Solution of Ac; + Bs; + D = 0
A second technique for solving the equation Ac; + Bs; + D = 0 will begin by dividing
Eq. (6.184) by the term /A2 + B2 to yield
A B D
c + S + =0
A? + B? +/A? + B? +/A? + B2
Using the right-angled triangle shown in Figure 6.14 it is possible to substitute

B

VA? + B?
A

VA? + B?

Because the sine and cosine of y are expressed in terms of all known quantities, a unique
value for the angle y can be determined. Substituting Egs. (6.195) and (6.196) into Eq.
(6.194) gives

(6.194)

=siny, (6.195)

= cosy. (6.196)

D
CyCI + Sy51 =+ \/ﬁ =0 (6197)
Using the trigonometric identity
cos(a — B8) = cos(a) cos(B) + sin(a) sin(B) (6.198)
in Eq. (6.197) and regrouping yields
-D
cos(f), —y) = (6.199)

VA? + B?
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Two values for the quantity (8; — y) can be found that satisfy Eq. (6.199) as long as the
quantity on the right side of Eq. (6.199) is between —1 and 1. Because a unique value for
y has already been determined, two values for 6, are now known.

(d) Comparison of Solution Techniques

Three special conditions may occur that will cause one or both of the solution techniques
for the equation Ac; 4+ Bs; + D = 0 to yield indeterminate results.

(i) Case 1: A=D #0,B #0.

For this first case, the tan-half-angle solution, Eq. (6.192), reduces to

X = "Boi B (6.200)

Thus, the two solutions for x; are % and g. The first value for x, that equals infinity
corresponds to a value of 6, equal to . The second value for #; cannot be determined.

Two values for #; can be determined by using the trigonometric solution technique for
this case. The sine and cosine of y were previously defined in Eqs. (6.195) and (6.196).
The cosine of the difference between 6; and y as expressed in Eq. (6.199) can be written
as

—A

It is apparent from Eqs. (6.196) and (6.201) that for this case, cos(y) = —cos(8, — y).
One solution is obviously 8, = . The second solution for 8; is dependent on the val-
ues of the coefficients A and B and can be determined as before by first determining the
unique value of the angle y from Egs. (6.195) and (6.196) and then obtaining the two

values for the quantity (6; — y) that satisfy Eq. (6.201). The sum of (8; — y) and y will
yield 6;.

cos(bh —y) = (6.201)

(ii) Case2: A=D#0,B=0.

For this case, both solutions of Eq. (6.192) for x; will equal g.
In the trigonometric solution, the sine and cosine of y will equal 0 and 1 respectively.
Thus, the angle y equals 0. Eq. (6.199) now reduces to

cosf = —1. (6.202)
The two values of 9, that satisfy this equation are a repeated value of .
(iii) Case 3: A=D=0,B #0.

For the third and final special case, the values for X, as determined by the tan-half-angle
solution, Eq. (6.192), are %33 and %. The first value corresponds to a value for 6, of m.
The second value for 8; cannot be determined.

In the trigonometric solution, the values for the sine and cosine of y are respectively

1 and 0. Thus, the angle y equals 7. The value for the cosine of (6 — y) as defined by
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Eq. (6.199) is O for this case. Thus, the two values for the angle (6; — ) are % and 37”
Finally, the two values for 6, are 0 and =.

(iv) Summary

Three special cases have been introduced in which two values for 6, were not obtained
when the tan-half-angle technique was used to solve the equation Ac; + Bs; + D = 0.
Proper solutions were obtained, however, when the trigonometric solution technique was
used. For this reason, the trigonometric solution is the preferred method for solving this
type of equation.

(e) Numerical Solution for 6

Upon substituting the numerical values for the twist angles o5, 023, @034, and gy and
the input angle 6, into Eqs. (6.181) through (6.183), Eq. (6.180) can be written as

—0.1093c; 4 0.6185s; — 0.5048 = 0. (6.203)

The trigonometric solution technique was used to solve this equation for ;. The sine
and cosine of the angle y were evaluated from Eqs. (6.195) and (6.196) as 0.9847 and
—0.1741. The unique value for y is 100.02 degrees.

The cosine of (6, — y) was evaluated from Eq. (6.199) as (0.8037. The two values for
(61 — y) are therefore 36.52 degrees and 323.48 degrees.

The two values for 8, can be obtained by summing each value of (6; — y) with y . The
two values for 6; are 136.54 degrees and 63.50 degrees. These two values will be referred
to as 91A and 91}3.

(f) Solution for 6,

The value for the angle ¢, may be determined in many ways. However, it is pre-
ferred to use the following fundamental sine, sine—cosine, and cosine laws for a spherical
quadrilateral:

X4y = 82382, (6.204)
Yu = $23Co. (6205)

The left-hand sides of Eqs. (6.204) and (6.205) will be evaluated by substituting 6, and 614
into the definitions of X4, and Y4,. The value for 6, that is associated with 6, and 6,5 can
be uniquely determined because the sine and cosine of 8, are computed from Eqgs. (6.204)
and (6.205). This value for 6, will be called 6,4.

Next, 6, and 0, will be substituted into the definitions for X4, and Y4,. The sine and
cosine for 6,p are then determined.

It is important to recognize that 8,, will be the correct value for 8, when 6; = 6}a.
Similarly, 6; will equal 6,5 when 8; = 6.

The values for 6,5 and 6,p for this problem are —38.23 degrees and 38.23 degrees
respectively.

(g) Solution for 6,

As was the case with 6;, many different equations can be used to calculate 6;. However,
it is preferred to use the following fundamental sine, sine-cosine, and cosine laws for a
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Table 6.4. Solution to spherical
quadrilateral sample problem (units in

degrees).

014 = 136.54
04 = —38.23
035 = 135.76

68 = 63.50
05 = 38.23
O = 87.72

0,
SN
0,, 0
| |
0, O
| |
03a O3

Figure 6.15.
Solution tree.

1B

spherical quadrilateral

X14 = 82383, (6.206)
Y14 = $23C3. (6207)

The definitions of X, and Y4 can be determined by substituting the numerical values of
64 and 6;,. The corresponding value for 63, called s, , is then known because the sine
and cosine of #; are known.

The process is repeated by substituting 64 and 6,5 into Egs. (6.206) and (6.207). The
calculated values of s; and c; determine the corresponding value for the angle 6sp.

For this problem, the values for 85, and 63 are 135.76 degrees and 87.72 degrees. The
solution is complete, and the results are listed in Table 6.4.

It is often helpful to visualize the solution process by drawing a solution tree (see
Figure 6.15). At the top of the tree is the given input angle 64. The angles 6, and 6,5 were
the first joint angles to be calculated, and therefore they are listed in the tree directly below
64. The next angle that was calculated was 6. The tree indicates that the angle 6,5, was
calculated using the values for 64 and 6, in the appropriate equations. The angle 6,5 was
calculated using 64 and 6,5 in the same equations. Lastly, the angle 65, was determined
based upon the values of the angles 64, 6,4, and 6,4. The value of ;5 was calculated by
using ,, 61, and 6,5 in the same equations. The solution tree pictorially shows that there
are two solution sets to this problem. For the given input angle, 6,, the two solution sets are
(614, 624, B34) and (Og, O2p, O3p). It is important to remember that a solution comprises
an entire set of angles and that care must be taken to correctly organize the angles into the
appropriate solution sets.

Figure 6.16 shows the two solutions to the problem. Link 41 is attached to ground.
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Solution A Solution B

Figure 6.16. Two solutions of a spherical quadrilateral (64 input
angle).

The angle 6, is the same for both configurations, and thus the position of link 34 is the
same for both solutions. Links 12 and 23 are shown in the two solution configurations.

6.7.3 Derivation of subsidiary sine, sine—cosine, and cosine laws

It is possible to generate equations for the spherical quadrilateral in addition to the
sine, sine—cosine, and cosine laws derived in Section 6.7.1. These new equations will be
referred to as subsidiary sine, sine—cosine, and cosine laws.

One set of subsidiary equations will be generated here by projecting the vector S4 onto
the second coordinate system. This can be done in two ways. Firstly, the vector *S,
can be rotated to the third and then to the second coordinate sytem. The result of these
transformations (see set 2 of the direction cosine table in appendix) is

X;
8= |Y5]. (6.208)
Zs

The vector *S, can also be rotated directly to the first coordinate system and then to the
second coordinate system. Using the results from Eq. (6.173), where S4 has been rotated
directly to the first coordinate system,

C2  $2C12 $2812 84181

2 2p 1

S4 = IR S4 = | =8 CC1p CS12 $41C1 | . (6209)
0 —S12 Ciz Cq

After performing the matrix multiplication and regrouping terms, Eq. (6.209) may be
written as

X12
28y = | =X5, | . (6.210)
Z,
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Equating Egs. (6.208) and (6.210) yields the following set of subsidiary sine, sine—cosine,
and cosine laws

X, = Xu, (6.211)
¥y = -X%, (6.212)
Z3=17,. (6.213)

A total of eight sets of subsidiary laws can be generated by performing each of the eight
possible exchanges of subscripts. The resulting sets of subsidiary laws for the quadrilateral
are listed in the appendix.

With regard to the previous sample problem, had the angle 6, been selected as the first
joint angle to be solved, the following subsidiary cosine law would have been used:

Zs =7Z,. (6.214)

The remainder of the solution is left as an exercise for the reader.

6.7.4 Direction cosines of joint vectors and link vectors for a spherical
quadrilateral

The direction cosines for all the vectors of the spherical quadrilateral except for ay
were determined with respect to the first coordinate system in Section 6.5. The vector
'a,; can be determined by rotating the vector “a,;, which equals [1, 0, 0]7, directly to the
first coordinate system as follows:

€1 Ca1S1  S4181 1 c
1341 = iR4a41 = | —81 €C41¢C1 8411 0| = -S$1 1. (6215)
0 —841 Cq1 0 0

All the vectors of the spherical quadrilateral have now been determined in terms of the
first standard coordinate system. The process can be repeated to express all the vectors
in the second, third, and fourth coordinate systems. The results of this are listed in the
appendix as sets 1 through 4 of the direction cosine table.

The appendix also shows the results of projecting the vectors onto four additional
coordinate systems. These results were obtained by performing the four exchanges of
subscripts where the order of the indices was changed from increasing to decreasing. The
results are listed in the appendix and will be used in future analyses.

6.7.6 Polar sine, sine-cosine, and cosine laws for
a spherical quadrilateral

A polar quadrilateral may be formed by extending the link vectors a;; so that they
intersect the unit sphere. New spherical links are placed between the a;; vectors to maintain
their relative orientation. As with the spherical and polar triangle, the roles of the twist
angles and joint angles have been interchanged. For example, in the spherical quadrilateral
the length of the link that separates the vectors S, and Ss is a23. In the polar quadrilateral,
the length of the link that separates the vectors a,; and aa4 is 6;.
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Because of the interchange of the roles of the twist angles and the joint angles, polar
sine, sine—cosine, and cosine laws and subsidiary polar sine, sine—cosine, and cosine laws
can be generated by an appropriate exchange of variables. The results of this variable
exchange are presented in the appendix.

6.8 Spherical pentagon

6.8.1 Generation of fundamental, subsidiary, and polar sine,
sine—cosine, and cosine laws

A spherical pentagon is shown in Figure 6.17. Link 51 is attached to ground, and the
mechanism has two degrees of freedom. Thus, when all the twist angles, o;;, are specified
together with two of the joint angles, 8;, it is possible to solve for the remaining joint
angles.

As with the spherical triangle and the spherical quadrilateral, fundamental sine, sine—
cosine, and cosine laws can be generated by transforming the vector °Ss to the first
coordinate system in two directions, that is, via the fourth, third, and second coordinate
systems, and directly from the fifth to the first coordinate system. A total of ten sets of
fundamental laws can be determined by an exchange of subscripts. The resulting ten sets
of fundamental laws for the spherical pentagon are listed in the appendix.

Subsidiary formulas can be generated by rotating the vector °S;s to the second coor-
dinate system via the fourth and third coordinate systems and then equating the result
to °Ss as it is rotated to the second coordinate system via the first coordinate system.
Another set of subsidiary laws can be generated by rotating the vector °Ss to the third co-
ordinate system in two directions. All the resulting subsidiary equations are listed in the
appendix.

Similar to the polar triangle and quadrilateral, a polar pentagon can be formed by allow-
ing the link vectors to intersect the unit sphere and then placing spherical links between
adjacent link vectors to maintain their relative orientation. An appropriate exchange of
variables in the fundamental and subsidiary laws results in the polar fundamental and
subsidiary laws. All the polar sine, sine—cosine, and cosine laws for the polar pentagon
are listed in the appendix.

Figure 6.17. Spherical pentagon.
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Table 6.5. Spherical pentagon
parameters (units in degrees).

a1, =40 6= ?
oy =35 = 7?7
o33 =80 6; =100
a4 =60 0,= ?
as; =90 0s = 65

6.8.2 Sample problem

Table 6.5 shows the specified angular values for a spherical pentagon where it is assumed
that link 51 is attached to ground. Because two joint angles are given, and the spherical
pentagon is a two-degree-of-freedom mechanism, it should be possible to determine values
for the remaining joint angles.

At the outset, it is necessary to decide which joint angle to solve for first. For this
example, the angle 9, will be chosen, and it is named the output angle because it connects
link 12 to the frame. The task at hand is to obtain the input/output equation, that is, an
equation that contains the angle 9, as its only unknown. Afterreviewing all the fundamental
and subsidiary sine, sine—cosine, and cosine laws for a spherical pentagon, the following
equation was identified:

Zs) = Zs. (6.216)
The definition of the right-hand side is expanded as

Z3 = ¢23C34 — $2383C3. 6.217)
Substituting the given mechanism parameters into Eq. (6.217) yields

Z; = 0.2403. (6.218)
Substituting the definition of Zs; into Eq. (6.216) yields

s12(Xss1 + Ys¢1) + c12Zs — Z3 = 0. (6.219)
The only unknown in Eq. (6.219) is 8;. Regrouping this equation gives
(s12Ys)e1 + (s12X5)81 + (c12Zs — Z3) = 0. (6.220)

This equation is of the form Ac; + Bs; + D = 0, where

A = spYs, (6.221)
B = 5;,Xs, (6.222)
D = c1pZs — Zs. (6.223)

Using the trigonometric solution technique developed in Section 6.7.2, the two values of
6, are 6,4, = 93.01° and O, = 151.99°.
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Solution A Solution B

Figure 6.18. Two solutions of a spherical pentagon (65
and 63 input angles).

The following two subsidiary equations will be used to determine corresponding values
for 6,:

Xs1 = X3, (6.224)
Ysi = —X5,. (6.225)

The given value of 85 and the calculated value 8,4 will be substituted into the left-hand
sides of Eqs. (6.224) and (6.225) to yield numerical values. Substituting the definitions
for X3, and X3, yields

Xsc2 — Y350 = X1, (6.226)
—(X382 + Yic2) = Y5 (6.227)

Equations (6.226) and (6.227) represent two equations in the two unknowns s, and c;.
Substituting 6s, 63, and 6,4 into these equations and solving for s, and ¢, yields a unique
value for 6,, called 6,4. The angle 8,5 will be determined by substituting 85 and ;3 into
Eqs. (6.226) and (6.227) and then solving for the sine and cosine of 6,5. The calculated
values for the angles 6,4 and 6,5 are —64.23 degrees and —120.55 degrees respectively.

The last variable to be determined is 64. This angle will be obtained from the following
fundamental sine and sine—cosine laws:

X123 = S4554, (6.228)
Y123 = S45€C4. (6229)

Numerical values for the left-hand sides of these equations will be obtained by substituting
the values for 63, 614, and 6;4. The sine and cosine for the corresponding angle 8,4 is
readily calculated. Next, the values of 63, 6,5, and 655 are substituted into the equations,
and the angle 6,5 is determined. The calculated values for the angles 644 and 645 are 48.52
degrees and 86.56 degrees respectively. The two solution configurations for the spherical
pentagon are shown in Figure 6.18.

6.9 Spherical hexagon and spherical heptagon
6.9.1 Generation of fundamental, subsidiary, and polar sine,
sine—cosine, and cosine laws

A spherical hexagon and a spherical heptagon are comprised respectively of six and
seven spherical links (see Figures 6.19 and 6.20). The spherical hexagon is a three-degree-
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Figure 6.20. Spherical heptagon.

of-freedom mechanism, whereas the spherical heptagon is a four-degree-of-freedom mech-
anism.

For both of these spherical mechanisms, it is possible to generate fundamental sine,
sine—cosine, and cosine laws by transforming the last joint vector to the first coordinate
system in two directions. A total of twelve sets can be generated for the spherical hexagon
and fourteen sets for the spherical heptagon by applying an exchange of subscripts. All
the fundamental laws for the hexagon and the heptagon are listed in the appendix.

Subsidiary laws can be generated by rotating the last joint vector to the second,
third, ..., and (n — 2) coordinate systems, where n is six for the hexagon and seven
for the heptagon. All the resulting subsidiary laws are listed in the appendix.

As was the case with the spherical triangle, quadrilateral, and pentagon, a polar hexagon
and a polar heptagon can be formed by allowing the link vectors to intersect the unit sphere
and then placing spherical links between adjacent link vectors to maintain their relative
orientation. An appropriate exchange of variables in the fundamental and subsidiary laws
results in the polar fundamental and subsidiary laws. All the polar sine, sine—cosine, and
cosine laws for the polar hexagon and the polar heptagon are listed in the appendix.

6.9.2 Sample problem

Table 6.6 shows the specified angular values for a spherical heptagon. Four joint angles
are given because the mechanism is a four-degree-of-freedom device. The objective is to
calculate the remaining three joint angles.
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Table 6.6. Spherical heptagon
parameters (units in degrees).

a; =40 6= ?
ap =20 6, = 50
o3y =35 6= "7
ags =30 6, =330
ose = 80 fs= 7
agr =45 0s =115
an =65 67 =340

6, is selected as the angle to be solved for first. The fundamental and subsidiary sine,
sine—cosine, and cosine laws for a spherical heptagon will be examined in order to find
an equation in which 6, is the only unknown. The following subsidiary cosine law was
identified:

Zs1z = Za. (6.230)

The right-hand side of this equation can be evaluated because all the angles that comprise
the term Z, are known. Expanding the left-hand side and regrouping yields

$23(Xe7182 + Ye7102) + C23Z671 — Z4 = 0. (6.231)

Substituting the definitions of the terms X¢7;, Yg71, and Zg;; and then grouping the sine
and cosine of 6; terms gives

C1(8238:X67 + $23€2C12 Y67 + €23812Y67)
+ 81 (—52382 Y67 + 523¢2€12X67 + €23512X67)
+ (—$23¢2812Z¢7 + C23€12Z67 — Z4) = 0. (6.232)

Equation (6.232) is of the form Ac; 4+ Bs; + D = 0. Substituting the given values, Eq.
(6.232) numerically evaluates to

¢1(—0.1039) + 5,(0.8082) + (—0.4346) = 0. (6.233)

Using the trigonometric solution technique developed in Section 6.7.2, the two values of
91 are 91A = 39.56° and 91]3 = 155.09°.

The following subsidiary sine and sine—cosine laws are used to solve for corresponding
values of 6;

Xe712 = X4z, (6.234)
Yer12 = —Xs. (6.235)

The given values of 8¢, 87, and 8, together with the angle 6,4 are substituted into the
left-hand sides of the equations to yield numerical values. Substituting the definitions of
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Solution A Solution B

Figure 6.21. Two solutions of a spherical heptagon (67, 6, 64, 62
input angles).

X43 and X3, into the right-hand sides yields

Xerz = Xacs — Yuss, (6.236)
Yo7z = —(Xas3 + Yacs). (6.237)

Equations (6.236) and (6.237) represent two equations in the two unknowns s3 and cs.
Solving for these parameters, a unique value of 83 can be determined that corresponds to
B1a. This value will be called 8;4. The angle ;g is determined by substituting 6,5 into
Eqs. (6.236) and (6.237) and then solving for the sine and cosine of 85g. The calculated
values for the angles 655 and 655 are 51.45 degrees and —92.99 degrees respectively.

Finally, corresponding values of 65 are determined from the following fundamental sine
and sine—cosine laws:

X71234 = 85685, (6.238)
Y71234 = $56Cs. (6.239)

Numerical values for the left-hand sides of these equations will be obtained by substituting
the given values for 67, 6, 64, and 6, and the calculated values 6,4 and 8;4. The sine and
cosine for the corresponding angle 0s, is then determined. Next, the given values and
the calculated values 8, and 65 are substituted into the equations, and the angle 6sg
is determined. The calculated values for the angles 654 and 6sg are 39.38 degrees and
141.44 degrees. The two solution configurations for the spherical heptagon are shown in
Figure 6.21.

6.10 Summary

Chapter 5 showed how an open-loop robot manipulator could be converted to a closed-
loop spatial mechanism by solving for the parameters of an imaginary link that closes
the loop. In this chapter, the equivalent spherical mechanism for a given spatial mecha-
nism was introduced. All single-degree-of-freedom spatial mechanisms were classified
according to the number of degrees of freedom of their equivalent spherical mechanism.

All equations that relate the joint and twist angles of an equivalent spherical mechanism
will also be valid for the original spatial mechanism. For this reason, sets of fundamental
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and subsidiary sine, sine—cosine, and cosine laws were generated for a spherical triangle,
quadrilateral. . . heptagon. Polar polygons and corresponding and laws were also generated
for each case. The spherical and polar equations are fully listed in the appendix. These
equations will serve as a toolbox to be used in future analyses of robot manipulators.

6.11 Problems
1. Completely expand the definitions of the following terms:

(a) Xesa3, Yesa3, Zesaz
(b) Ussse, Vasse, Waase

2. Write a computer function that will use the trigonometric approach to solve an equation
of the form Ac + Bs + D = 0. A C language prototype for this function is written as
follows:

int solve_trig (double A, double B, double D, double *ang_a, double *ang_b);

The subroutine should return one if two real solutions were calculated and zero otherwise.
Test your subroutine using data that you have checked by hand (or with a program such
as MathCad, Mathematica, Maple, etc.)

3. A spherical quadrilateral is to be formed from the following four links:
a1y = 750, a3 = 1100, O3y = 600, oy = 80°.

The value of §;, the input angle for this case, is 120 degrees. Determine the two sets of
solutions for the remaining joint angles of the quadrilateral.

4. Assume that the twist angles (os) of a spherical pentagon are all known. Further, values
for the angles 64 and 6, are known. Explain how you would obtain values for the
remaining joint angles. How many solution sets exist?

5. Write a computer-subroutine that will solve two linear equations in two unknowns. The

pair of equations may be written as

Aix+Biy=D

Axx + Byy = Dy,
where the coefficients A}, A;, By, B2, Dy, and D, are known and the parameters x and
y are unknown. The C language prototype for your program may be written as

int solve_pair (double *x, double *y, double A1, double B1, double D1,

double A2, double B2, double D2);

The function will return a value of one if values of x and y could be obtained. It will

return zero if the two equations are linearly dependent and thus unique values of x and
y could not be obtained.
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Figure 6.22. Planar representa-
tion of a spatial hexagon.

Test your subroutine using data that you have checked by hand (or with a program
such as MathCad, Mathematica, Maple, etc.).

6. Assume that the twist angles («es) of a spherical hexagon are all known. Further, values
for the angles 6, 04, and 63 are known. Explain how you would obtain values for the
remaining joint angles. How many solution sets exist?

7. Write a computer program that will solve a spherical quadrilateral. In particular, your
program will ask the user to enter values for the angles o2, 23, @34, and ay4;. Next, the
user will be prompted to enter a value for the input angle 65. With these inputs, your
program must print the two set of values for the remaining joint angles.

Your program must identify the case where no solution exists. In other words, no
solution for the angles 61, 6,, and 63 may exist for the given values of the inputs.

8. You are trying to build a spherical triangle whose angles are 8, = 120°, 6, = 80°, and
63 = 140°. What values should ¢, @23, and «3; have so you can build your triangle?

9. Assume that you are given numerical values for the angles 6, 05, and 8, for the planar
represented of a closed-loop spherical mechanism shown in Figure 6.22 (all the « angles
are assumed to be known also).

(a) Write an equation that can be used to solve for ;. Factor this equation into the form
A(c)) +B(s;)) + D =0.

(b) Show how to solve an equation of the form
A(c;) +B(s))+D =0

for the angle 6;. How many values of 6, may satisfy this equation?
(c) Assuming that 6, is known, describe how to solve for 6.

(d) Assuming that 6; and 6, are now known, describe how to solve for 6,.
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Displacement analysis of
group 1 spatial mechanisms

7.1 Introduction

A group 1 spatial mechanism was defined in Chapter 6 as a one-degree-of-freedom
closed-loop kinematic chain with one link, the frame, fixed to the ground and whose
equivalent spherical mechanism also has one degree of freedom. All the mechanism
dimensions, the link lengths and twist angles, are assumed to be known at the outset.
Also, the offset (joint angle) of each revolute (prismatic) joint connecting a pair of links
that in general are skew is assumed to be known. The joint angle of a revolute pair (the
input pair) connecting a link (the input link) to the frame is assumed to be known.

It will be seen in this chapter that the analysis of all group 1 spatial mechanisms
can proceed by first determining the unknown joint parameters from sine, sine—cosine,
and cosine laws for the equivalent spherical mechanism, which is essentially a spherical
four-link mechanism because there can be no relative motion on a sphere of a pair of
links connected by a prismatic joint. The remaining unknown displacements will then be
determined from writing the vector loop equation for the mechanism and projecting this
equation onto three linearly independent directions, which yields three scalar equations in
three unknown displacement values. Two example mechanisms will be presented in this
chapter followed by an analysis of the CCC spatial robot manipulator.

7.2 RCPCR mechanism

Figure 7.1 shows an RCPCR group 1 spatial mechanism and its equivalent spherical
mechanism. Figure 7.2 shows a planar representation of the same mechanism. Link as;
is attached to ground. The specific problem statement is presented as follows:

given: aj, a3, a4, a4s, asi,
a1z, (023, 034, O4s, U5,
Sl, Ss, 93, and
s (input angle),

find: 61,6, 6y, S,, Sz, and S;.

It was mentioned in the previous section that the analysis can be decoupled in that the
three unknown joint angles can be solved for first from analyzing the equivalent spherical
mechanism. The angle 6, is identified as the output angle because it is connected to the
frame, and this angle will be calculated first.
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Figure 7.1. RCPCR spatial mechanism and its equivalent spherical mecha-

nism.
3
4 2
. 5 e aaes
Input output
angle angle

Figure 7.2. Planar representation of
RCPCR spatial mechanism.

The objective now is to find a spherical equation that contains only the input angle, 6s,
the output angle, 0, and the constant angle, 6;. All cosine laws for a spherical pentagon
contain three joint parameters, and there is a unique subsidiary cosine law that contains
s, 0, and 6;. This subsidiary cosine law is

Zsi =Zs. (7.1
Expanding the left side gives
s12(Xs81 + Ys¢1) + ¢12Zs — Z3 = 0. (7.2)

This equation can be factored into the form of Ac; + Bs; + D = 0 and can be solved for
two values of 6, by using the solution technique presented in Section 6.7.2(c). These two
solutions will be called 8,5 and 6.

Unique corresponding values for the angle 6, can be obtained from the following two
spherical equations:

Xs51 = Xz, (7.3)
Y5 = —X3,. (7.4)
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The given value of 85 and the calculated value 6,4 will be substituted into the left sides of
Eqgs. (7.3) and (7.4) to yield numerical values. Expanding X3, and X3, yields

Xsca — Y380 = Xsy, (7.5)
— (X382 + Y3¢2) = Ys1. (7.6)

Equations (7.5) and (7.6) represent two equations in the two unknowns s, and ¢,. Solving
for these parameters, a unique value for 6, can be determined that corresponds to the angle
01a. This value will be called 8,,4. The angle 6,5 is found by substituting 65 and 6,5 into
Eqs. (7.5) and (7.6) and then solving for the sine and cosine of 6,g.

The last joint angle to be determined is 6,. This angle will be determined from the
following fundamental sine and sine—cosine laws:

X123 = S4584, (7.7)
Y123 = S45Ca. (7.8)

Numerical values can be obtained for the left sides of these equations by substituting the
constant joint angle #; and the previously calculated values of 6,4 and 6,4. The sine and
cosine of the corresponding angle 6y, is readily calculated. The procedure is repeated by
substituting 65, 6,p, and 6,p into Eqs. (7.7) and (7.8) and then solving for the sine and
cosine of ;5.

The remaining parameters to be determined are the three variable offset distances S,,
S;, and S4. These will be determined by first writing the vector loop equation for the
mechanism as

S1Si + apan + S$28; + a3ax3 + S383 + a34a34 + S4S4 + agsass + Ss5Ss + as a5, = 0.
7.9

Because all the joint angles are now known for each of the two configurations of the
mechanism, the joint and offset vectors can be calculated in terms of any desired coordinate
system. Thus, projecting the vector loop equation onto any three linearly independent
vectors will yield three scalar equations in the unknowns S,, S3, and Sy.

Quite often, a judicious selection of a projection vector will simplify the solution for
the three unknowns. For example, projecting Eq. (7.9) onto the vector a3, yields

a3 - (5181 + 20215 + S58: + 23253 + S383 + azsa34 + S48,
+ a45845 + S585 + as1a5,) = 0. (7.10)

Using the sets of direction cosines for a spatial pentagon that are listed in the appendix to
evaluate the scalar products yields

S1Xs4 + a1 Wa3 + $2X3 + @233 + asa + asscs + SsXy + a5 Wsy = 0. (7.1D)

This equation contains the parameter S, as its only unknown. The calculated values for
B1a, 624, and 6,4 are substituted into Eq. (7.11) to find the corresponding value for S,,
that is, S,4. The process is repeated by substituting values for 6,g, 655, and 8, to find the
corresponding value for S;g.
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Table 7.1. RCPCR mechanism parameters.

Link length, cm.

Twist angle, deg.

Joint offset, cm.

Joint angle, deg.

ap = 20 A = 45 S| =15 9] = variable
a =40 oy = 60 S, = variable 6, = variable
A3y = 30 A3y = 25 S3 = variable 93 =65

a5 =20 ays = 30 S4 = variable 64 = variable
as; = 30 s =70 Ss =35 65 = 60 (input)

Table 7.2. Calculated configurations for
the RCPCR spatial mechanism.

Solution A Solution B
6y, degrees 223.10 85.48
6,, degrees —100.84 —112.84
64, degrees 113.75 26.37
S,, cm —49.13 —112.84
S3, cm 35.94 197.38
S4,cm —58.83 —223.36

The parameter S, can be determined by projecting the vector loop equation onto the
vector az;. Expansion of the scalar products yields

S1X2 + @122 + a3 + 23403 + SaXs + asWaz + SsXa3 + a5 W2 = 0. (7.12)

The distance Sy is the only unknown in Eq. (7.12). The calculated values of 84, 654, and
044 are substituted into the equation to yield S44. The values 6;g, 6,5, and 655 are then
input to determine Syp.

The final parameter, S;, will be obtained by projecting the vector loop equation onto
the vector S;. Expanding the scalar products yields

S1Z; + a15Ups + Sacas + S5 + Sycsq + agsUyz + 5524 + a5;Usgz = 0. (7.13)

The corresponding value for Ss, that is, Ss4, is obtained by substituting S;a, Ssa, 014, 624,
and 6,, into Eq. (7.13). Similarly, S;p is obtained by substituting S,g, S4g, 015, 625, and
645 into the equation.

At this point the analysis of the group 1 RCPCR mechanism is complete. Two solution
configurations were determined. Table 7.1 shows data that were used for a numerical
example. The calculated values for the two configurations are listed in Table 7.2.

7.3 RRPRPPR mechanism

Figure 7.3 shows an RRPRPPR group | spatial mechanism with its equivalent spherical
mechanism. Figure 7.4 shows a planar representation of the same mechanism. Link a7
is attached to ground. The specific problem statement is listed as follows:
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Figure 7.3. RRPRPPR spatial mechanism and its equivalent
spherical mechanism.

input 7 1 output
angle angle

Figure 7.4. Planar representation
of RRPRPPR spatial mechanism.

given: 212, 23, A34, A45, As6, A67, A71,

12, 023, (34, 45, O56, O67, A71,
Sls S4s SGs S7s 02’ 03’ 055 and
8; (input angle),

find: 01, 04, 06, Sz, S3, and SS.

The analysis will proceed as in the previous section, where the three unknown joint
angles are obtained first followed by the three unknown joint offsets. The angle 6, is
identified as the output angle because it is connected to the frame, and 6; will be calculated

first.

The objective now is to find a spherical equation that contains only the input angle, &;,
the output angle, 8;, and the constant angles, 8>, 65, and 85. All cosine laws for a spherical
heptagon contain five joint parameters, and a unique subsidiary cosine law contains &;, 6;,
0,, 65, and fs. This subsidiary cosine law is

2317 =Zs.

(1.14)
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Expanding the left side of Eq. (7.14) and rearranging gives
867(X32187 + Y321¢7) + €67Z321 — Zs = 0. (7.15)

Expanding the definitions of X351, Y351, and Z3,, and then grouping all the terms containing
the sine and cosine of 6, yields

ci[X7X32 — Y7 Y3] + 81[—X7Y32 — Y7 X30] + [Z7Z3; — Zs] = 0. (7.16)

Because all the terms in brackets are defined in terms of the given constants, this equation
can be solved for two values of 6y, that is, 6,4 and 6,5, by using the technique described
in Section 6.7.2(c).

The angle 8¢ will be solved for next. One solution technique starts by writing the
following subsidiary sine and sine—cosine laws for a spherical heptagon:

X317 = Xs6, (7.17)
Yio = — X (7.18)

Expanding the definitions for the terms on the right-hand side of these equations gives

X317 = X5¢6 — Y586, (7.19)
Y3217 = —(Xs86 + Ys¢6). (7.20)

Equations (7.19) and (7.20) represent two linear equations in the two unknowns s¢ and ce.
A unique corresponding value for 6, called 654, can be found by substituting the given
joint and twist angle parameters and 6,4 into the two equations and then solving for sga
and c¢a. Similarly, the given joint and twist angle parameters and 6,3 are substituted into
the two equations to yield s¢g and cgp.

The last remaining joint angle to be computed is 6,. This angle can be obtained by
writing the following two fundamental sine and sine—cosine laws for a spherical heptagon:

X67123 = 84584, (7.21)
Ye7123 = 845C4. (7.22)

Substituting the given joint and twist angles and the previously calculated values for
01 and Bg, into the pair of equations will yield the corresponding values for the sine
and cosine of 644. The corresponding value for 6,5 will be determined in a similar
fashion.

At this point, two solution sets exist for the joint angles of the spatial mechanism.
Corresponding values for the offset parameters S,, S3, and Ss must yet be determined.
These parameters can be calculated as in the previous section by writing the vector loop
equation for the spatial mechanism as

SiS1 + appap + S282 + a3 + S383 + aza3s + S4S4 + assa4s
+ S5S5 4+ asgasg + S¢S6 + ag7as7 + S787 + anjay; = 0. (7.23)

All joint parameters are known for each of the two solution sets. Thus, the vector loop
equation can be projected onto any three linearly independent directions to yield three
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scalar equations in the three unknowns S,, S3, and Ss. For example, projecting the vector
loop equation onto the vector ay; yields

ay; - (5181 + apan + S28; + apags + S383 + agazy + S48 + assays
+ S585 + asease + S6S¢ + ag7a67 + 757 + anjayn) = 0.x (7.24)

Evaluating the scalar products using the sets of direction cosines for a heptagon listed in
the appendix gives

S1X5 + a15Co + a3 + 234C3 + S4X3 + 245 W3 + SsXuz + aseWisas + SeXsa3
+ a7 W72 + S$7 X2 + a7 W2 = 0. (7.25)

Upon substituting the constant mechanism parameters and the calculated values for 6,4,
044, and Bg4 into this equation, the corresponding value for the joint offset S5 can be
determined, as this is the only unknown in Eq. (7.25). The value for S5 corresponding to
018, 948, and Bgg can be found in a similar fashion.

Projecting the vector loop equation onto the vector a;, and expanding the scalar products
using the sets of direction cosines in the appendix yields

a1y + 236 + S3Xo + 433 W3 + S4 X3 + 245 Waz2 + SsXaz2
+as6We71 + S6X71 + ag7W71 + $7X; + a7.¢, = 0. (7.26)

This equation can be used to solve for S; for the A case by substituting values for the
constant mechanism parameters and the calculated values of 8;,, 644, Gsa, and Ssa into
this equation. The offset value for S; for the B case can be found by substituting the
corresponding values of 0,5, 043, O¢g, and Ssp into Eq. (7.26).

The last joint offset to be calculated is S;. This parameter may be determined by
obtaining a scalar equation by projecting the vector loop equation onto any arbitrary
direction independent of a3 and a;». Projecting the vector loop equation onto the direction
of S, and expanding the scalar products yields

SiC12 + Sz + S3cas + 234Uz + SaZs + assUszr + S5Z43 + aseUsriz
+S6Z1 +ag7Usi2 + S9Z1 + an U, = 0. (7.27)

This equation can be used to determine values for S, for the two solution sets by substituting
the constant mechanism parameters and each set of previous solutions for 6;, 84, 66, Ss,
and Ss.

At this point, the solution of the RRPRPPR mechanism is complete. It was shown
that the three unknown joint angles could be determined first by analyzing the equivalent
spherical mechanism. The three corresponding unknown joint displacements could then
be determined by projecting the vector loop equation onto any three linearly independent
directions to yield three scalar equations in the three unknown joint offset variables. Data
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Table 7.3. RRPRPPR mechanism parameters.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.

app = 20 Uy = 45 S] =15 9] = variable
a3 =40 w3 = 60 S, = variable 6, =80

azy = 30 w3y = 25 S3 = variable 6; = 65

ays =20 s = 30 S4a=35 6, = variable
ase = 20 asg = 70 Ss = variable 65 =20

Ae7 = 10 Ug7 = 20 86 =25 96 = variable
ayy = 30 a7 = 40 S7 =50 97 = 300 (input)

Table 7.4. Calculated configurations for
the RRPRPPR spatial mechanism.

Solution A Solution B
0;, degrees 23543 -5.15
0,, degrees 101.77 14.25
0, degrees —-91.17 160.51
S, cm —53.98 -110.15
S;,cm 104.23 110.12
Ss,cm —134.30 —208.09

used in a numerical example are listed in Table 7.3, and the two solution configurations
are listed in Table 7.4.

All group 1 spatial mechanisms follow the pattern demonstrated in this and the previous
section. In other words, group 1 spatial mechanisms can always be solved by decoupling
the problem. The unknown joint displacements can be calculated first by analyzing the
equivalent spherical mechanism, which is, of course, a spherical 4R mechanism with
mobility M = 1. The unknown joint offsets can then be determined by projecting the vector
loop equation onto three linearly independent directions. Group 1 spatial mechanisms thus
represent the simplest form of a spatial closed-loop device, and as such further examples
will not be developed in this chapter. The next section, however, will present a solution
for the simplest spatial manipulator, that is, the CCC manipulator.

7.4 CCC spatial manipulator

Figure 7.5 shows a CCC spatial manipulator. The fixed coordinate system has been
attached so that the Z axis is parallel with the vector S;. It is important to note that the
origin of the fixed coordinate system does not always coincide with the origin of the first
coordinate system, that is, the intersection of the vectors S and a,,, because the first joint
of the manipulator is a cylindric joint. The distance from the origin of the fixed coordinate
system to the origin of the first coordinate system is defined in the figure as L;.

The specific problem statement for the reverse analysis of the CCC spatial manipulator
is stated as follows:
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Figure 7.5. CCC spatial manipulator.

given:
constant mechanism parameters:
a2, 423,
ay, (23,
position and orientation of end effector:
FPuool, 783, Fas,, and
location of tool point in the 3™ coordinate system:
3Pt001,
find: ¢1, 92, 93, Ll, Sz, and S3.

The location of the third coordinate system can be obtained using Figure 7.5. Its origin
is located at the intersection of the vectors S; and ay4. Its Z axis is parallel to the vector
S;, and its X axis is parallel to the vector as4. The location of the tool point in terms of
this third coordinate system is given together with the desired position of the tool point
and orientation of the vectors S; and ay4 in the fixed coordinate system. The objective is
to determine the values for the variable parameters that will position and orient the end
effector as desired.

The first step of the analysis will be to determine the location of the origin of the
third coordinate system as measured in the fixed coordinate system. Using the results

of Eq. (5.3), the location of the origin of the third coordinate system may be calculated
from

"Psorig = "Prool — (*Proot - 1)7 235 — (PProot - §)S3 x Fazs — (Proar - k)FSs. (7.28)

The second step of the analysis will be to form a closed-loop mechanism by calculating
the parameters of a hypothetical fourth link as described in Chapter 5. Arbitrary values
may be selected for the parameters as4 and a34. For this analysis, the link length a;4 will be
selected as zero and the twist angle w34 will be selected as ninety degrees. With these two
selections, the direction of the vector S, is known in terms of the fixed coordinate system.
Further, it is known that the vector S, passes through the origin of the third coordinate
system because the link length a;4 was chosen as zero.
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Table 7.5. Constant mechanism parameters for the CCC manipulator.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.

ap =12 op =27 L, = variable ¢, = variable
A3 = 23 3 = 45 Sz = variable 92 = variable
S; = variable 63 = variable

Figure 7.6. Hypothetical closure link for CCC manip-
ulator.

Figure 7.6 shows the hypothetical closure link for the CCC manipulator. The analysis
presented in Chapter 5 will be used to determine the close-the-loop parameters, that is, the
three distances SicL, S4, and a4, and the three angles 64, o4, and y;. It should be noted
that the close-the-loop parameter S ¢, (see Figure 7.6) is the distance along the vector S,
from the intersection of the vectors S; and a4, to the origin of the fixed coordinate system.
The desired output value L, (see Figure 7.5) will equal the difference between the distance
S, (defined in the traditional way as the perpendicular distance between the vectors a4
and a,;) and the distance ScL.

Upon completing the close-the-loop procedure, the CCC manipulator can be analyzed
as a closed-loop RCCC spatial mechanism. The equivalent RRRR spherical mechanism
is analyzed first as discussed in Section 6.7.2 to yield two solution sets for the joint
angles 0y, 0, and 6;. The two corresponding values for ¢, are then found from the
equation

¢ =0 —n. (7.29)

The corresponding values for the three displacements Sy, S, and Sz are then determined
by projecting the vector loop equation onto any three linearly independent directions and
then solving the three scalar equations for the three unknown displacements. Finally, the
value of the parameter L, is found as the difference between the calculated value of S,
and the close-the-loop parameter ScL.

At this point the analysis of the CCC manipulator is complete, and a numerical ex-
ample is now presented. Table 7.5 shows the constant mechanism parameters of a CCC
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Table 7.6. RCCC mechanism parameters.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
ap =12 oy =27 S; = variable 6, = variable
ay; =23 o3 = 45 S, = variable 6, = variable
aj, =0 o, =90 S3 = variable 63 = variable
ay; = —38.6996 agr =102.77 St =—-34.3735 6;* =112.10
(input angle)

* = arbitrary selection
** = close-the-loop parameter

manipulator. The desired position and orientation for the manipulator are given as

45.529 0.6672 —0.0900
FPoot = | —11.355| cm, FS; = | —0.6482 Faz, = | 0.4188], (7.30)
50.125 0.3671 0.9036
and the position of the tool point in terms of the third coordinate system is given as
6
Pioot = | 8| cm. (7.31)
2

The objective is to calculate sets of values for the parameters L, S,, S3, ¢, 65, and 65
that will position and orient the end effector as desired. The solution begins by determining
the location of the origin of the third coordinate system by using Eq. (7.28). The calculated
value was determined to be

50.6499
FPyoig = | ~7.4845| cm
42.2003

(7.32)

Values for the parameters a4 and a34 were arbitrarily selected as ninety degrees and zero
respectively, and the close-the-loop parameters were calculated to be

SicL = —49.8007cm, az=—38.6996cm, S; = —34.3735cm, 6,=112.10°,
oy = 102.77°, y =49.31°. (7.33)

Table 7.6 shows the mechanism parameters for the newly formed closed-loop RCCC
spatial mechanism. All parameters of the mechanism are known, and the three unknown
joint angles can be determined as presented in Section 6.7.2. The three joint offset values
are calculated by projecting the vector loop equation onto three different directions.

Table 7.7 shows the resulting two configurations of the manipulator that will position
and orient the end effector as desired.

7.5 Summary

Group 1 spatial mechanisms can always be solved by first analyzing the correspond-
ing equivalent spherical mechanism to determine the two configuration sets of the three
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Table 7.7. Calculated configurations for
the CCC manipulator.

Solution A Solution B
¢y, degrees 71.63 20.02
6, degrees —34.94 34.94
65, degrees 9248 60.02
Li,cm 41.59 10.04
S;,cm —~14.97 14.97
S;,cm 54.31 35.00

variable joint angles. The corresponding values for the three variable joint offsets can
next be determined by projecting the vector loop equation for the mechanism onto any
three arbitrary directions. This will yield three scalar equations in the three unknown joint
offset distances. It was shown in the example problems that a judicious selection of the
projection directions can simplify the solution.

A complete example of the reverse analysis of the simplest spatial manipulator, the
CCC manipulator, was also presented. This example illustrated the concept of closing the
loop with a hypothetical link in order to form a new closed-loop spatial mechanism. The
resulting group 1 spatial mechanism was then analyzed using the techniques presented in
this chapter.

7.6 Problems
1. A CCC robot has the following dimensions:

a1 = 60° ajp = 30in.

oy = —30 ay; = 12.

The tool point in terms of the third coordinate system is given as [6, 8, 2]T. Determine
the values for the parameters L, S,, S3, ¢1, 62, and 65 that will position the tool point
at [45, —11, 50]" measured in terms of the fixed coordinate system. The orientation of
the end effector is to be specified by

S;=10[1,2,2]" and az =[2,-2,1]".

2. A planar representation of a spatial RPRPRPR mechanism with link a;; fixed to ground
is illustrated in Figure 7.7. The link a7 is fixed to ground.

(a) What group mechanism is this? Why?

(b) Assuming that the input angle 6; is specified together with all constant mechanism
dimensions, obtain an input/output equation of the form

Aci+Bs; +D=0.

Obtain expressions for A, B, and D.
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y N

Figure 7.7. RPRPRPR mechanism.

Figure 7.8. RPRRPPR mechanism.

(c) Show how to solve the equation from part (b) for all values of 8, in terms of the
parameters A, B, and D.

(d) Explain how to solve for corresponding values of 65 and 6s.

(e) Explain how to solve for the three slider displacements S;, S4, and S¢.

3. A planar representation of a group 1 spatial closed-loop mechanism with link a;; fixed
to ground is shown in Figure 7.8.

(a) Assuming that all constant mechanism parameters are known and that the angle 6;
is given as an input angle, explain how to solve for the angle 6,. How many values
for 6, can be found?

(b) Assuming that you have successfully solved for 6;, explain how you would solve
for the angle 6.

(c) Assuming that you have successfully solved for 8, and 64, explain how you would
solve for the angle 6.

(d) Finally, assuming that you have successfully solved for 6, 64, and 85, explain how
you would solve for the slider displacements S;, S3, and S¢.
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R P
6 / 1
Figure 7.9. RRPCRP mechanism.

4. Shown in Figure 7.9 is a planar representation of a six-link RRPCRP group 1 spatial
mechanism with link a¢; fixed to ground. The input parameter is 6, and the parameter
to be solved for first is 6,.

(a) Assuming that all constant mechanism dimensions are known, what link lengths,
offsets, twist angles, and joint angles are still unknown?

(b) Write an equation that contains only the input angle and the output angle. Expand
the equation into the format:

Acy +Bs; + D =0.
(¢) Describe how you would solve an equation of the form Ac; + Bs; + D = 0. How

many values of 8, would satisfy this equation?

(d) Assuming that 6, is now known, explain how you would determine the remaining
angles 65 and 6s.

(e) Assuming that all joint angles are now known, explain how you would solve for the
slider displacements S4, S3 and S;.
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Group 2 spatial mechanisms

8.1 Problem statement

A group 2 spatial mechanism is defined as a one-degree-of-freedom single-loop spatial
mechanism whose equivalent spherical mechanism has two degrees of freedom. The
simplest group 2 mechanism consists of five links that are interconnected by three revolute
joints and two cylindric joints.

Figure 8.1 shows an RCRCR spatial mechanism and its equivalent spherical mechanism
(note that the distance S, is negative in the drawing). Link as is fixed to ground, the input
angle is s, and it is assumed that all constant mechanism parameters are known, that
is, the constant twist angles, link lengths, and joint offset distances. The objective is to
determine values for the unknown output angle, 6,, together with values for 6,, 65, and 6,
and the unknown joint offset distances S; and S;. The angle 6, is the output angle (the
unknown parameter to be solved for first).

Because the RCRCR mechanism is a one-degree-of-freedom device, specification of
the angle 65 is sufficient to calculate values for all the unknown parameters. Examination
of the fundamental and subsidiary cosine laws yields that each cosine law contains three
joint variables (sine and sine—cosine laws contain four joint variables). Hence, itis possible
to write down only a spherical equation containing the input angle 65, the output angle
01, together with a third joint angle. The equations that contain 8;, 83, and 6, as the third
angle are respectively

Zsi2 = Cyy, 8.1

Zs) = Zs, (8.2)
and

Zss) = Co3. (8.3)

The solution to the problem will be accomplished by deriving a second equation in the
input angle fs, the output angle 9;, and the unwanted angle ;. It is necessary to eliminate
85 from this equation and Eq. (8.2).

The next section describes alternative solutions for a pair of trigonometric equations.
Following this, methods for generating additional equations are derived using vector loop
equations and dual numbers. Finally, the second equation in 65 for the RCRCR mechanism
is derived, and a numerical example is presented.
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S,

S
S; !

Figure 8.1. Spatial RCRCR group 2 mechanism and
its equivalent spherical mechanism.

8.2 Solution of two trigonometric equations in two unknowns

In the example of the RCRCR spatial mechanism, it will be assumed that a second
equation can be found that contains 65 as the extra unknown. This new equation will be
paired with Eq. (8.2), which can be expanded in the form

$12(Xs581 + Ys¢1) + C12Zs = €23C34 — $23534C3. (84)

Equation (8.4) and the yet-to-be-determined second equation can be regrouped into the
general form

c3(Aicy + Bisy + Dy) + s3(Eic; + Fis; + Gy) + (Hicy +Iis; +J;) =0, i=1,2,
(8.5)
where the coefficients A; through J; can be numerically evaluated as they are all in terms
of the given mechanism parameters.

The sine and cosine of an angle, 8, can be written in terms of the tan-half-angle, xy,
where x; = tan(6/2) using the following trigonometric identities

2Xk
= 8.6
0 14+ xi (8.6)
1—x2 87)
= . .

KT 14

Substituting for the sine and cosine of 8, and #; and then multiplying throughout by
(14 x})(1 + x3) in the pair of equations represented by Eq. (8.5) gives
(1 = x3)[Ai(1 — x}) + Bi2x1) + Di(1 +x})]
+ (2x3)[Ei(1 — x}) + Fi(2x)) + Gi(1 + x7)]

+(1+x3) [Hi(1 —x}) +L2x) + 3 (1+x})] =0,  i=1,2. 88)

Regrouping Eq. (8.8) gives
x5 [x}(Ai = Di — Hi + 1) + x;(2[; — 2B)) + (—A; — D; + H; + J))]

+ %3 [x}(=2E; + 2G)) + x(4F) + (2E; + 2G)] + [x{(—Ai +Di — Hi + J)
+X1(21i+2Bi)+(Ai+Di+Hi+Ji)] =0, i=1,2. (8.9
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Equation (8.9) may be written as

x3[aixt + bixy +d] + x3[ex] + fixg + gi] [hix} +ixq + ji] =0, i=1,2,
(8.10)

where the coefficients ¢; through j; are readily expressed in terms of the coefficients A;
through J; and are therefore known quantities. These expressions are as follows:

a=A-Di—Hi+Ji b=20-B) d=-A-Di+H+]J

e =2(G; — E) fi = 4F; 8 =2(G; +E) (8.11)

hi=-Ai+Di—Hi+Ji i =2;+B) ji=A+Di+H+1IJ.

The problem of solving for values of 8, and 6, that satisfy the two equations represented
by Eq. (8.5) has now been reduced to determining values for x; and x5 that satisfy the two

biquadratic equations represented by Eq. (8.10). Two solution techniques for this problem
will be introduced.

8.2.1 Sylvester's solution method

The equations represented by Eq. (8.10) can be written as

Lix3 +M;x; + N; =0, (8.12)

Lyx3 + Maxs + Ny = 0, (8.13)
where

Li=ax] +bx, +di, i=1,2 (8.14)

M =exi+ fixi+g, i=12 (8.15)

Ni = hix] +ixi + ji,  i=1,2. (8.16)

The coefficients L; through N; are quadratic expressions in the variable x;.

Equations (8.12) and (8.13) are a pair of quadratic equations in the variable x;. A
quadratic equation clearly has two solutions. The question, however, is what conditions
must the coefficients L; through N; satisfy in order for one value of x5 to solve both
Eqs. (8.12) and (8.13) simultaneously.

In Sylvester’s solution method, Eqs. (8.12) and (8.13) will be rewritten as

L1t+M1u+N1v =0, (817)
Lot + Myu + Npv = 0, (8.18)

where t = x%, u = X3, and v = 1. Equations (8.17) and (8.18) represent two linear homo-
geneous equations in the three unknowns t, u, and v.
Equations (8.12) and (8.13) are now multiplied by x; to yield

leg + M1x§ + N1X3 = 0, (819)
Lox3 + Max3 4+ Noxs = 0. (8.20)



8.2 Solution of two trigonometric equations 109

Lettings = xg, and using the definitions for t and u, Egs. (8.19) and (8.20) may be written
as
Lis + Mit+ Nju =0, (8.21)
L,s + Mt + Nou = 0. (8.22)
Equations (8.17), (8.18), (8.21), and (8.22) represent four linear homogeneous equa-

tions in the four unknowns s, t, u, and v. These four equations can be written in matrix
form as

0 L1 M1 N1 S 0
0O L, M, N t 0
S = (8.23)
L1 M1 N1 0 u 0
L, M; N 0] [v 0

The four linear homogeneous equations must be linearly dependent if there is to be any
solution set other than the trivial solution where all the unknowns equal zero. The equations
will be linearly dependent if the following determinant equals zero:

0 L M, N

0O L, M, N,

L, M Ny O

L, M, N, O

=0. (8.24)

The terms L; through N; are quadratic in the variable x,. Expansion of the determinant
will thus yield in general an eighth-degree polynomial in the variable x;.

8.2.2 Bezout's solution method

Equations (8.12) and (8.13) can be thought of as two quadratic equations in the variable
X3. Bezout’s solution method proceeds by rewriting these equations as

x3(Lix3 + M) + N; =0, (8.25)
X3(Loxs + M) + N, = 0. (8.26)

These two new “linear” equations must be linearly dependent if there is to be a common
solution. Equations (8.25) and (8.26) will be linearly dependent if

Na(Lix3 + M) — Ni(Loxs + M) = 0. (8.27)
This equation can be written as

L N
L, N,

M, N,

X3
M, N,

=0. (8.28)

Equations (8.12) and (8.13) can now be written as

X3(L1) + Mix3 + Ny =0, (8.29)
x3(Ly) + (Max3 + Np) = 0. (8.30)
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These two new “linear” equations (linear in the term x3) must be linearly dependent if
there is to be a common solution. The equations will be linearly dependent if

Li(Mzx3 + N3) — L,(Mjx3 + N3) = 0. (8.31)
Equation (8.31) can be written as

Ll Ml
L2 M2

Ll Nl

X
? L, N,

=0. (8.32)

Equations (8.28) and (8.32) are two linear equations in the variable x;. In order for a
common solution for x3 to exist that simultaneously satisfies Eqs. (8.28) and (8.32), the
equations must be linearly dependent and the following expression may be written:

2

Ly M,
=0. (8.33)

L, M,

M, N,
M, N,

Ly N;
L, N

The coefficients L; through N, are quadratic in the variable x;. Thus, Eq. (8.33) can be
expanded, and in general it will yield an eighth-degree polynomial in the variable x;, which
is the same eighth-degree polynomial obtained by Sylvester’s method. The reader may
well prefer Bezout’s method because the expansion of Eq. (8.33) is simpler than that for
Eq. (8.24) and also Egs. (8.28) and (8.32) give alternate expressions for x; = tan(6;/2).
However, special relationships between the coefficients L; through N, may reduce the
degree of this polynomial, and for the RCRCR mechanism it in fact reduces directly to
fourth degree.

The corresponding value for x3 for each value of x; can be found from Eq. (8.28) as

M, N
TIM, N,
Ly N
L, N;

X3 = (8.34)

or from (8.32) as

Ly N
L, N;
Ly M,
L, M,

X; = (8.35)

In summary, it has been shown in this section how two biquadratic equations in two
unknowns can be solved. The result is in general an eighth-degree polynomial in one of
the variables. Corresponding values for the second variable are readily obtained.

8.3 Generation of additional equations

The previous section showed how two equations, such as Eq. (8.5), that are linear
in terms of the sines and cosines of two unknown angles may be solved. The result
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is, in general, an eighth-degree polynomial in terms of the tan-half-angle of one of the
unknowns.

This section will focus on techniques for obtaining the second equation that will be
paired with a spherical cosine law to obtain a mechanism’s input/output equation. Three
types of equations will be introduced and discussed in general terms. After this, specific
examples such as the RCRCR mechanism shown in Figure 8.1 will be presented.

8.3.1 Projection of vector loop equation

The vector loop equation for a spatial closed-loop mechanism is formed by summing
all the products of the link lengths times the unit link vectors plus the offset distances times
the unit joint axis vectors. This summation will equal the zero vector. For the RCRCR
mechanism, the vector loop equation is written as

SiSi + appan + S28; + axzar3 + 5383 + a34a34 + S4S4 + agsass + S5Ss + asia5 = 0.

(8.36)

This vector loop equation can be projected onto any vector, b, to yield a scalar equation.

This projection is accomplished by performing a scalar product of each vector in the loop
equation with the vector b.

Typically, the vector loop equation is projected onto one of the link vectors or joint
axis vectors. This is done because the scalar product can be easily evaluated by use of the
direction cosine tables listed in the appendix. For example, for the RCRCR mechanism,
the projection of the vector loop equation onto the direction a34 can be written as

Si(S1 - a3) + ap(@nz - a34) + S2(S2 - a34) + ar3(az3 - a34) + S3(8S;3 - a34)

+a34(A34 - A34) + S4(S4 - A34) + ag5(A45 - 234) + Ss(Ss - a34) + as51(as) - a34) = 0.
(8.37)

The result of a scalar product is independent of the coordinate system that the two
vectors are measured in. Thus, each scalar product in Eq. (8.37) may be evaluated using
a different set from the direction cosine table for a spherical pentagon, if so desired. For

example, using set 8 for the direction cosine table for the first six scalar products and set
3 for the remainder yields the scalar equation

S1Xas + a1nWas + $2X3 + @3¢5 + @34 + a4scq + SsXy + a5, Wsy = 0. (8.38)

It will be seen in Chapter 11 that the projection of the vector loop equation will be used
often in the reverse-analysis solution of industrial robot manipulators.

8.3.2 Self-scalar product of vector loop equation

A scalar equation can be generated by performing a scalar product of the vector loop
equation with itself. For the RCRCR mechanism the self-scalar product may be written as
[SiS1 + apa + S28; + anas; + S38; + asa3s + S4S4 + agsags + SsSs + asiasi]

-[SiS1 + appaz + S2S2 + axas + S35 + azgass + S4S4
+ agsa45 + S5S5 + as as] = 0. (8.39)
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Expanding this equation, dividing by 2, and then regrouping gives

1
58T+ al, + 87 a3, + ST + a3, + ] +als + 85+ af)

+S:81- [ apap +S28; +anazs + 5383 4 azsazs + S484 + ag5a45 + S58s + asjas) |

+apanp- [ S282 + az3a:3 + S383 + @34a34 + S484 + agsays + SsSs + asjas |
+S58;- [ 23873 + S383 + 233434 + S48, + as5a45 + S5S5 + as1as:]
+ ana- [ S383 + asa3s + S484 + assa45 + S585 + as1as51]
+35383- [ 34834 + S48, +ag5245 + S58s + as1as; ]
+ azasg- [ S4S4 + assass + SsSs 4 as;as ]
+S4Ss- [ a45845 + S585 + as1as;]
+ agsays- [ SsSs + as1as1]
+SSSS‘ [ 351351]=0.
(8.40)

Each of the remaining scalar products can be evaluated in terms of any desired coor-
dinate system to yield a scalar equation. In most applications of the self-scalar product,
certain terms of the vector loop equation are moved to the right-hand side of the equal
sign. A self-scalar product is then performed for the remaining vectors on the left side
of the equation. This is equated to the self-scalar product of the vectors on the right side
of the equation. This procedure is used to obtain a scalar equation that does not contain
certain unwanted joint angles.

8.3.3 Secondary cosine laws

Secondary cosine laws are scalar equations that have proved to be most useful in the
analysis of spatial mechanisms. They can be derived by employing various scalar triple
products of vector loop equations for closed polygons.

It is, however, easier and more instructive to derive secondary cosine laws from existing
spherical cosine laws, and this is precisely why they have proved to be most useful. They
contain the very same joint angles as their corresponding spherical cosine laws, which
themselves contain the minimum number of joint variables. Further, this derivation crys-
tallizes the concepts of equivalent spherical and spatial mechanisms (see Section 6.1 and
Figure 8.1). Any spherical cosine law that contains certain a;’s and 6;’s is valid for
equivalent spherical and spatial polygons. Dualizing the spherical cosine law provides an
additional secondary cosine law for the spatial polygon that contains the same «;;’s and
6;’s together with corresponding a;’s and S;’s. In order to accomplish this, it is necessary
to understand the definitions and various operations of dual numbers and dual angles that
were first introduced by Study (1901).

(a) Dual Numbers

A dual number is defined as a pair of real numbers, one of which is associated with the
real unit +1 and the other of which is associated with the unit e where > = €?> = ... = 0.
For example, a dual number may be written as 5 + 7e.
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The definition of addition, multiplication, and division of dual numbers is straightfor-

ward. The sum of two dual numbers 4 and b that are defined as
4 =a+ €ay, (8.41)
b=b+eb, (8.42)
(8.43)

is
a+b=(a+Db)+ e(ag + by).

The product of 4 and b is defined as
4b = (ab) + e(aby + bay). (8.44)
The division of dual numbers such as
(a + €0) (8.45)

ﬁ' —
b (b+eby)
is accomplished by multiplying the numerator and denominator by (b — eby) which

gives
(8.46)

(a+€a) (b—€by)  (ab) + €(agb — boa)

a
b~ (b+ebo) (b—eby) b?
Division by a “pure dual number” for which the denominator has no real part is not

defined.
Dual numbers may be substituted into functions. For example, suppose that f(x) is

defined as
f(x) = 3x* + 2x + 7. (8.47)
Substituting the dual number (5 + 2¢) into the function gives
(8.48)

£(5 +2¢) =3(5+26)2 +2(5 +2¢) + 7 = 92 + 64e.

The function can also be evaluated by a different manner. The Taylor’s series expansion

of a function is given by the infinite series
f//
*) (8.49)

f(x + Ax) = f(x) + Ax@ + (Ax)? IR

Substituting the dual number 4 into Eq. (8.49) gives
(8.50)

f(a + eag) = f(a) + eagf (a).

Equation (8.50) is not an approximation because the remaining terms of the Taylor’s series
expansion vanish because e2=e2=¢e"=0,n> 2. Using Eq. (8.50) for the function
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f(x) when x = (5 + 2¢) gives
£(5 + 2€) = £(5) + 2¢f'(5) = 92 + 2€(32) = 92 + 64e. (8.51)

The Taylor’s series expansion will be used extensively when evaluating functions with
dual numbers. As a second example, consider the function

g(x) = cos(x) + 3 sin(x). (8.52)
Evaluating this function when x = (2 4 5¢) radians gives

2(2 + 5¢) = g(2) + 5¢g'(2) = cos(2) + 3 sin(2)
+ 5€(—sin(2) + 3 cos(2)) = 2.31 — 10.79¢. (8.53)
Taylor’s series expansion may also be used for a function with more than one variable. For

example, if fis a function of three variables, that is, (X, y, z), then f(a+€ay, b+€byg, c+e€cp)
is defined by

af of of
f(a + €ap, b + €bp, c +€cp) =f(a,b,c) +€ay—|x=, +€bo-—|x=a +€Co—|x=a-
0X|y—p ly=» 9z]y_»
(8.54)

Equation (8.54) can be easily extended by the reader for a function with more than three
variables.
As an example, consider the function

f(x, y) = 4x* cos(y) + 3xsin(y). (8.55)
Evaluating this function at X = 4 + 2¢ and y = 3 + 5S¢ yields

(4 + 2¢, 3 + 5¢) = 4(4)% cos(3) + 3(4) sin(3)
+ 2¢[8(4) cos(3) + 3 sin(3)]
+ 5€[—4(4)? sin(3) + 3(4) cos(3)]
= —61.67 — 167.07¢. (8.56)

(b) Dual Angles

A dual angle can be used to measure the relative position of two skew lines in space.
For example, the dual angle &, = o, + €a;; completely describes the relative position
of the lines $; and $, (the notation $; represents the line in space that passes through the
i™ joint axis of the mechanism). Similarly, the dual angle 6, = 6, + €S, completely
describes the relative position of the lines $;, and $,3, where $,, represents the line along
link a;; and $,; represents the line along link ap;.

It can be shown that all the trigonometric identities will be valid for dual numbers. For
example, it can be shown that sin? 92 + cos?8, = 1 as follows:

sinf, = sin®, + €S, cos B, (8.57)
cos 9, = cosb; — €S, sin b,. (8.58)
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Squaring and adding the left and right sides of Eqs. (8.57) and (8.58) gives

sin? 0, + cos? 6, = (sin® 65 + cos® 6,) + €[2S, sin 6, cos 8, — 28, sin6, cos ;] = 1.

(8.59)

Dual angles will now be inserted into the spherical and polar sine, sine—cosine, and
cosine laws, resulting in new equations. These equations were proven to be valid by
Kotelnikov (1895) in his Principle of Transference.

(c) Secondary Cosine Laws

Dual angles are most often substituted into spherical cosine laws because these laws
have one less joint variable than sine or sine—cosine laws and the objective of most problems
is to obtain equations with as few unknowns as possible. The phrase “secondary cosine
law” refers to the equation that is formed by equating the dual parts of a spherical cosine
law whose twist and joint angles have been replaced by dual angles.

As an example, consider the spherical cosine law

Zy =cp (8.60)

for an RCCC spatial mechanism. The left-hand side of Eq. (8.60) contains the angles 6,4,
601, aaq, 41, and a1, The right-hand side contains only the angle «;3. Dual angles will now
be substituted for all of these angles. Dual angle substitutions will now be made by writing

Zy = . (8.61)
The right-hand side of Eq. (8.61) is clearly
8y = €3 — €ansny. (8.62)

The left-hand side of Eq. (8.61) can be written as

Za = Zay + €Zoay, (8.63)
where

Zyy = 812(Xy81 + Yacy) +C12Zy (8.64)
and

0Z4 0Z4 0Z4 0Z4 0Z4
26, + 28, +a348a34+a4

. 8.65
S ap b, (8.65)

Each of the partial derivatives of Eq. (8.65) must now be evaluated. The partial derivative
of Z4; with respect to 6 is readily evaluated as

0Z4

—— = 512(X4C; — Y481) = 512Xy. (8.66)
26,
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Similarly, the partial derivative of Z4; with respect to ¢, is readily evaluated as

0Z4
Pa = C12(X481 4+ Y4€1) — 512724 = Y4;. (8.67)
1
The partial derivatives of Z4; with respect to 6, and ¢34 can more easily be determined
by taking a partial derivative Z,4, which equals Z4;. This is equivalent to performing the
following exchange of subscripts on Eqgs. (8.66) and (8.67):

4 1 2 3
[ 111 6
1 4 3 2
The exchange yields the following two partial derivatives:

0Z4
— =834 X14, 8.69
20, $34X14 (8.69)
9Z

1 Y. (8.70)
Oy

The partial derivative of Z4; with respect to ¢4; remains to be evaluated. This partial
derivative can be written as

% =812 (::TX:ISI + %cl) + 012%. 8.71)
Now,

X4 = 53484, (8.72)

Y4 = —(841C34 + C41534C4), (8.73)

Z4 = C41C34 — 841534C4. (8.74)

Taking a partial derivative of each of these terms with respect to ¢4 yields

0 Y Y4
XK g e 50 (8.75)
3(!41 8a41 a0541

Substituting these derivatives into Eq. (8.71) yields

97,
2 se1Za 4 cppYa. (8.76)
dayy

All the partial derivatives in Eq. (8.64) have been expanded. The secondary cosine law
that corresponds to the spherical cosine law Z;; = c,; may now be written as

S4(534X14) + S1(512X41) + @34 (Y14) + a41(—312¢1Z4 + €12Y4) +a12(Yq1) = —a2383.
(8.77)

The procedure for generating secondary cosine laws is straightforward. The task of
evaluating the partial derivatives can be simplified, however, by use of a computer software
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package that can perform symbolic manipulations. Several of these types of packages are
commercially available.

One example of evaluating a secondary cosine law has been presented in this section.
The subsequent sections of this and the next chapter will show how secondary cosine laws
can contribute to the determination of the input/output equation for a spatial mechanism.

8.4 Five-link group 2 spatial mechanisms

Five-link group 2 mechanisms will contain three revolute joints and two cylindric joints.
These mechanisms are the simplest group 2 mechanisms and will result, in general, in an
eighth-degree input/output equation. One exception, however, is the RCRCR mechanism,
which will have only a fourth-degree input/output equation because of special reductions
in the determinants [LM|, [MN|, and |LN]| (see Eq. (8.33)).

Two cases of five-link group 2 mechanisms whose input is a revolute joint will be
presented in this section. The two cases represent the situations where the two cylindrical
joints are adjacent in the mechanism or they are separated by a revolute joint. All five-link
group 2 mechanisms (whose input is one of the revolute joints) may be solved using one
of these cases.

8.4.1 Case |: RCRCR spatial mechanism (C joints separated by
one R joint)

The RCRCR mechanism is shown in Figure 8.1. A planar representation of the mech-
anism is shown in Figure 8.2. The problem statement is as follows:

given: constant mechanism parameters, that is,
a2, A23, A34, 45, A5,
a2, 023, O34, 045, U5,
Sl, S3, and Ss and
input angle, 0s,
find: 91, 92, 93, 94, Sz, and S4.

4 2
input 5 1 output
angle angle

Figure 8.2. Planar representation
of RCRCR group 2 spatial mech-
anism.
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The angle 6; will be solved for first and is called the output angle. The present objective
is to obtain an equation that does not contain the variable joint offsets S, or S4 and that
has 6, and any one of 6, 03, or 8, as its only unknowns. This equation will be paired with
the appropriate spherical cosine law, and the input/output equation will then be obtained
as described in Section 8.2.

The necessary equation can be obtained by focusing on the fact that the variable joint
offset distances S, and S, must not appear in the equation. One approach would be to
project the vector loop equation onto a vector that is perpendicular to S; and Sy, that is,
Sz x S4. Although this may yield the desired result, the procedure will be complex. As
an alternative, dual angles will be substituted into the spherical cosine law

Zs) = Z;. (8.78)

This spherical equation was selected because it does not contain 8, or 64 and as such its
corresponding secondary cosine law will not contain S; or Sy4.
The secondary cosine law associated with Eq. (8.78) will be written as

Zos1 = Zos. (8.79)
Now,
Z3 = cy3C34 — $23534C3. (8.80)

The dual part of this equation, after the dual angles @3, @34, and 05 have been substituted,
can be written as
_ 323 323 323
Loy =an—— +ayy—— + S3——. 8.81
03 = an g + ay B +S3 36, (8.81)

Evaluating the partial derivatives yields
203 = 323Y3 + a34Y3 + S3S34X3. (882)

The left side of Eq. (8.79) must now be evaluated. The term Zos; can be written as

0Zs; 0Zs; 0Zs; 0Zs; 0Zs;
=ays—— +a a S S .
Zos) = a5 pons 2 s, +a;; des +3Ss 905 +5 30,

(8.83)

After expanding the partial derivatives for the a;; and S, terms, Eq. (8.83) may be expressed
as

Zosi = a12Ys1 + S1812Xs1 + 512(Xoss1 + Yos¢1) + c12Zgs, (8.84)
where

Xos = 454585 + Ss5845Cs, (8.85)

Yos = a45(S51845 — C51C45C5) — @51Zs + S5C51845S5, (8.86)

Zos = as5Ys + as; Ys + SsSs18455s. (8.87)
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Substituting the results of Eqs. (8.82) and (8.84) into Eq. (8.79) and moving all terms to
the left-hand side results in the equation

a12Ys1 + S1512Xs1 + $12(XosS1 + Yos¢1) + €12Zos — a3 Y3 — 234 Y3 — S3834X3 = 0.
(8.88)

Equation (8.88) contains the unknown joint angles 8; and 65, which together with Eq. (8.78)
can be used to eliminate 6; in order to obtain the input/output equation that contains
only 6.

Equations (8.88) and (8.78) must be regrouped into the form of Eq. (8.5). Equation (8.78)
will be referred to as the first equation, and Eq. (8.88) will be the second equation.

The first equation, is expanded as follows:

$12(Xss1 + Ys¢1) + €1oZs — (C23€34 — $p3834¢3) = 0. (8.89)
Regrouping this equation yields
c3[523834] + 83[0] + [c1(512Y5) + 81(512X5) + (€12Zs — cp3¢34)] = 0. (8.90)

Thus, the coefficients for the first equation, when regrouped into the form of Eq. (8.5),
are

A =0, B, =0, Dy = sy3534,
E, =0, F, =0, G =0, (8.91)

H; = s12Ys, I =512Xs, Ji = C12Zs — C23Ca4.

The second equation, is expanded by substituting

Xs1 = Xs¢1 — Yssy, (8.92)
Ys1 = c2(Xs81 + Ys¢1) — 812Zs, (8.93)
Y3 = —(834€23 + €34823C3), (8.94)
Y3 = —(s23¢34 + c23834€3), (8.95)
X3 = 82383 (8.96)

and regrouping to yield

€3[223€23834 + @34C34523] + S3[—S3534823]
+[c1(aci2Ys 4 S1512Xs + 812 Y0s) + 81(a12€12Xs — S1812 Y5 + 812Xo0s)
+ (—a12812Zs + 12205 + a23823C34 + @34534C23)] = 0. (8.97)

Thus, the coefficients for the second equation, when regrouped into the form of Eq. (8.5),
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are
Ay =0, B, =0, D2 = 233€23834 + 234C34523,
E;, =0, F, =0, Gy = —S383452,
H; = a;p¢12Ys + S1812X5 + 812 Y s, (8.98)
I, = a;2¢12Xs — S1812 Y5 + 812Xos,
Jo = —a812Zs + ¢12Z¢5 + 23523C34 + 234834C23.

Equations (8.90) and (8.97) represent two equations of the form

¢3[Aic; + Bisi + Dil + s3[Eic; + Fis; + Gi]1+ [Hic; + Lis; + 11 =0 i=1,2
(8.99)

Letting x; equal tan(6;/2), the sine and cosine of 65 can be replaced by the following
trigonometric identities:

2X3

= 8.100

BT x5 ( )
1 —x3

= . 8.101

=Ty x5 ( )
Multiplying Eq. (8.99) throughout by (1 + x3) and regrouping gives

x3[(H; — A)er + (@i — Bp)si + (i — D)1 + x3[2(Eic; + Fis; + Gi)]

+IHi+A)e + G +B)si +Ji+D)]=0  i=1,2 (8.102)

Substituting the coefficients for the first equation, Eq. set (8.91), into Eq. (8.102) yields

x3[(s12Ys)C1 + (812Xs)81 + (€12Zs — €23¢34 — $23834)]

+ [(s12Y5)ci + (s12X5)81 + (C12Zs — €23¢34 + $23834)] = 0.

(8.103)
Introducing the shorthand notation
C23+34 = COs(opy =+ a34), (8.104)
Eq. (8.103) may be written as
x3[(s12Ys)er + (812Xs)s1 + (€12Zs — €23-34)]
+[(s12Ys)c1 + (812Xs)81 + (C12Zs — C23434)] = 0. (8.105)

Substituting the zero-valued coefficients for the second equation, Eq. set (8.98), into
Eq. (8.102) yields

x3[Hact + Ls; + (J2 — D2)] + x3[2G;] + [Haey + ks + (32 + D2)]1 = 0. (8.106)

Equations (8.105) and (8.106) represent two equations that are quadratic in the variable x;.
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These two equations may be written as
Lix;+Mx; +Ni=0 i=12, (8.107)
where the coefficients are given as

Li =(si2Ys)ci + (512X5)s1 + (C12Zs — Ca3-34),
M, =0, (8.108)
Ni =(s12Ys5)ci + (512X5)s1 + (C12Zs — C23434)

and

L; =Hyci + Lsy + (J — Dy),
M, =2G,, (8.109)
N> =Haci + Isi + (J2 + Dy).

The condition that must exist on the coefficients L; through M; of these equations in order
for there to be a common root of x3 was shown in Section 8.2.2 to be

2

L, M
=0. (8.110)

L, M,

M, N,
M; N;

L N
L, N;

The determinant notation |S T| is defined as

S Ty
IS T} = . (8.111)
S, T,
The determinants [L M|, [M N]J, and |L N] are expanded as
IL M| =LiM; = 2G;[(s12Y5)ct + (812X5)81 + (€12Z5 — €23-34)], (8.112)
IM N| = —M,N;| = —2G,[(812Y5)¢1 + (812X5)81 + (C12Z5 — Ca3434) ], (8.113)
IL N| = 2D;[(s12Y5)c1 + (812X5)81 + c12Zs] 4 [Hac1 + L1 + Ja1[C23434 — €23-34]
— Dy[Co3434 + C23-34] (8.114)
Equation (8.114) is simplified by recognizing that cr3434 — C23-34 = —2823834 and that
C23434 + C23-34 = 2C23C34 to yield
IL N| = 2D;[(s12Y5)c1 + (812X5)81 + ¢12Zs]
+ [Hacq + I8y + J21(—2823834) — D2(2¢23¢34). (8.115)

Equations (8.112), (8.113), and (8.115) can be regrouped into the following forms

IL M| =c¢i(P) +51(Q) + Ry), (8.116)
IM NI = c1(P2) +51(Q2) + (Ry), (8.117)
IL N| = c1(P3) + 51(Q3) + (R3), (8.118)
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where

Py =2G;s12Ys, Q1 =2Gy812Xs, Ry =2Ga(c12Zs — €23-34),

P, = —2Gys12Ys5, Q2 = —2G3812Xs, Ry = —2Gy(c12Zs — C3434),

P; =2D;812Y5 — 2823834Hy,

Q3 = 2D;812Xs — 2838341,

R; = 2D,¢12Zs — 282383432 — 2Dsc3C34. (8.119)
Each of the three determinants defined in Eqgs. (8.16) through (8.18) will be reevaluated

by substituting the tan-half-angle trigonometric identities for the sine and cosine of 6;.
Multiplying throughout by (1 + x2) and regrouping yields

IL M| = [x{(R; — P1) +x,(2Q1) + (R; + P)] /(1 +x7), (8.120)
IM N| = [X%(Rz —P) +x1(2Q2) + R, + Py)| /(1 + X7), (8.121)
IL N| = [x](Rs — P3) + x;(2Q3) + (R + P3)] /(1 + x}). (8.122)

The product [L M||[M N| can now be evaluated as

IL M|IM N| = {[x}(R; —=P1)+x1(2Q1) + (R; +Py)]
x [x3(Ry — P2) +%(2Q2) + Rz +P)] } /(1 +x2)". (8.123)

This equation is expanded to yield

ILM|IMN| = {x{[(R; — P))(R; — P))] + x}[(R; — P1)(2Q2) + (R2 — P2)(2Q))]
+x3[(R; = P))(R; + P2) + (R; — P)(R; + P)) 4+ 4Q,Q,]
+x:1[2QD (R, + P2) + (2Q2)(R; + Py)]

+[R; +P)R: + P21}/ (1+x3)%. (8.124)

The product |L N|? is evaluated as

IL NI = {x][(Rs — P3)’] + xi[(Rs — P3)(4Q)] + x] [2(Rs — P3)(Rs + P3) + 4Q]]
+x1[(4Q3)(R3 + P3)] + [(R3 + P3)’] } /(1 + x2)?. (8.125)
A fourth-order input/output equation for the spatial mechanism is finally obtained by
substituting Eqs. (8.124) and (8.125) into Eq. (8.110) and multiplying throughout by
(1 + x3)?, which yields the following equation that contains 6, as its only unknown:
xi[R; = P)(R; — Py) — (Ry — P3)?]
+x3[(R; = P1)(2Q2) + (R; — P2)(2Q)) — (R3 — P3)(4Q3)]
+xj [Ri —PD(R; + P2) + (R, — P)(R; + Py) +4Q,Q;
—2(R3 — P3)(R3 + P3) — 4Q3] + x;[(2Q1)(R2 4+ P2) + (2Q) (R, + P))
— (4Q3)(R3 + P3)] + [(R; + PR, + P2) — (R3 + P3)*] =0. (8.126)
Equation (8.126) can be solved for up to four distinct values of x; and thereby four

corresponding values of 8;. All the coefficients P, through R; are defined in terms of the
constant mechanism dimensions and the given input angle, 6s.
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Corresponding values for the tan-half-angle of 6; can be calculated from either Eq. (8.34)
or Eq. (8.35). Quite often it is useful when debugging a computer program to compare
the two solutions to see if they are the same. Numerical round-off error on the computer
may be improved if the two calculated values are averaged together.

The joint angle 6, can be obtained by writing the following subsidiary sine and sine—
cosine laws for a spherical pentagon:

Xis = Xag, (8.127)

Yis = -X3,. (8.128)
Expanding the right sides of Eqgs. (8.127) and (8.128) gives

X5 = X3c4 — Y384, (8.129)

Y5 = — (X384 + Y3cy). (8.130)

Equations (8.129) and (8.130) represent two equations in the two unknowns s4 and c;.
Corresponding values of 8, and 8; can be substituted into these equations to calculate a
unique corresponding value for 6;.

The remaining joint angle, 8,, can be determined from the following two fundamental
sine and sine—cosine laws for a spherical pentagon:

Xs43 = 81282, (8.131)

Ys43 = s12C3. (8.132)
Corresponding values for the angles 6y, 65, and 6, can be substituted into these equations
to calculate the corresponding value for 6,.

The offset distances S, and S, are the last variables to be determined. These two
values will be found by projecting the vector loop equation for the mechanism onto two
different directions. Earlier, in Section 8.3.1, the vector loop equation was projected onto

the direction a34. The resulting scalar equation was listed as Eq. (8.38) and is repeated
here as

S1Xo3 + a;sWaz + S2 X5 + a33¢3 + asg + ags¢4 + 55)_(4 + a5;Ws4 = 0. (8.133)

The offset distance S, is the only unknown in this equation. The distance S, will be
determined by projecting the vector loop equation onto the direction a;. This can be
written as

Si(S1 - az3) +ap(@an - a3) + S2(Sy - ax3) + as(as - ax3) + S3(S3 - ax3)
+ a34(a34 - a3) + S4(S4 - a3) + ags(aygs - ax3) + Ss(Ss - ax3) + asi(as; - a3) = 0.
(8.134)

Evaluating the scalar products by using the sets of direction cosines listed in the appendix
gives

S1Xs + a12¢; + a3 + 23403 + SaX3 + assWaz + SsXa3 + a5, Wy, = 0. (8.135)

This equation contains the variable S, as its only unknown.
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Table 8.1. RCRCR mechanism parameters.

Link length, Twist angle, Joint offset, Joint angle,

cm. deg. cm. deg.

ajp; =25 o2 =60 S =30 0, = variable
ax =30 oy =45 S; = variable 6, = variable
Az = 40 w34 = 35 S3 =25 93 = variable
ays = 10 oy = 30 S4 = variable 64 = variable
as) = 32 s = 12 S5 =10 95 =260 (il’lpllt)

Table 8.2. Calculated configurations for the RCRCR
spatial mechanism.

Solution
A B C D
0., degrees —104.75 —~78.85 3.38 22.84
0,, degrees 121.97 -105.96 —120.86 —164.64
03, degrees 13498 —129.10 -51.22 16.89
0,, degrees -59.73 73.62 -57.70 —120.81
S,, cm. 46.12 101.88 -1.60 —40.59
S4, cm. —92.28 —106.34 —13.25 —26.16

4 2

5 1
input output
angle angle

Figure 8.3. Planar representa-
tion of RRCCR group 2 spatial
mechanism.

This completes the analysis of the RCRCR group 2 spatial mechanism. Four solution
configurations were determined. Table 8.1 shows data that were used for a numerical
example. The calculated values for the four configurations are listed in Table 8.2.

8.4.2 Case ll: RRCCR spatial mechanism (C joints adjacent)

Figure 8.3 shows a planar representation of the RRCCR spatial mechanism. The prob-
lem statement for this mechanism is as follows:
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given:
constant mechanism parameters, that is,
a2, a23, 434, A4s, A5,
A12, ®23, X34, Qas5, A51,
Si, S4, and S5 and
input angle, 05,
find: 01, 02, 03, 04, Sg, and S3.

Because this is a group 2 mechanism, it will be necessary to obtain two equations that
contain the input angle, s, the output angle, 8;, and one additional joint angle. One of these
equations will be a spherical cosine law (whether fundamental or subsidiary), and the other
will be an equation that contains the constant link length and joint offset parameters. This
second equation must not contain the variable offsets S, and S;. One means of obtaining
such an equation is to project the vector loop equation onto the direction a;.

The vector loop equation for the mechanism is written as

S181 +anap +528; + azazs + S383 + azsass + S484 4 agsass + SsSs 4+ asjas; =0.
(8.136)

Projecting this equation onto the direction a,; yields

S1(S1 - a23) +ap(ai2 - a23) + S2(S2 - a23) + az3(az3 - a23) + S3(S3 - a23)
+ a34(a34 - 223) + S4(Ss - a23) + as5(ass - A23) + S5(Ss - a23) + as1(as; - ax3) =0.
(8.137)

The individual scalar products can be evaluated by using the sets of direction cosines listed
in the appendix as follows:

S1Xs + 2120, + a3 + 2343 + SaXs12 + asWsi2 + SsXjp +a5; Wy = 0. (8.138)
The fundamental sine-cosine law
Ys12 = 8343 (8.139)

can be used to eliminate c; from Eq. (8.138) provided s3, does not equal zero.* Equation
(8.138) can thus be written as

S1Xa +a12¢ + a3 + 234 Ys12/834 + SaXsio + assWsip + SsXjp + a5 Wi, = 0.
(8.140)

Equation (8.140) contains the input angle, 85, the output angle, 8;, and the extra angle, 6,.
This equation will be paired with the fundamental cosine law

Zs;p =cCx (8.141)
to generate the input/output equation for the mechanism.

* If s34 equals zero, then S3 and S4 would be parallel or antiparallel. The equivalent spherical mechanism
would reduce to a quadrilateral. Spherical equations could then be used to obtain the input/output equation.
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Expanding the left side of Eq. (8.141) and regrouping terms yields
C20823Ys1] + 82[823X51] + [€23Zs1 — €34] = 0. (8.142)
Expanding X5, Ys;, and Zs; and then regrouping gives

calci(s23€i2Ys) + s1(523¢12Xs) + (—823812Z5)] + S2[c1(523X5) + s1(—523Y5)]
+ [c1(c23812Y5) + 81(€23812X5) + (C23€12Z5 — €34)] = 0. (8.143)

Expressing Eq. (8.141) in the form of Eq. (8.5) yields'

Al =s53¢12Y5, By =spicinXs, Dy = —sp5127s,
E; = 553X, F| = —s»3Ys, G; =0, (8.144)

H) = cp3812Ys, I} =c3810Xs,  Ji = ca3¢12Zs — C34.

Expanding X5, Ysi2, Xs12, Wsy2, Xi2, and Wy, in Eq. (8.140) and regrouping terms
yields

colar + a34C23Ys1/534 + SaXsy + agsWsy + SsX; + asicy]
+53[S1812 + 234623 X51 /834 — S4Ys1 + ass(Usis12 + Vsiciz) — SsY 1 — a5181€12]
+ [az3 — @34523Zs1/534] = 0. (8.145)

Finally, expanding Xs, Ysi, Zs1, X1, Y1, Usy, Vsy, and Ws; and expressing in the form of
Eq. (8.5) yields

Ap =234C23C12 Y5 /534 + S4Xs + ass¢s + as,
B; =a34€23€12X5/834 — S4Ys5 — a4585¢s1 + SsSs1,
D; =aj; — 2342381225 /534,
E; = 23423 X5/834 — S4€12Y's — 245€1285C51 + S5€12851,
Fy = —a34¢53Y5/834 — S4¢12X5 — as5¢12¢5 — asicia, (8.146)
Gy =Si512 + S4812Z5 4 a45Us1813 + Ss819C51,
H; = —a345,3812Y5/834,
I = —a34523812X5/824,

Jo = a3 — @34823€12Z5/834.

Finally tan-half-angle identities for 8; and 8, can be used and the pair of equations expressed
in the form of Eq. (8.10), for which the coefficients are expressed by Eq. (8.11).

The two equations of the form of Eq. (8.10) are quadratic in the variables x, and x;.
These equations can be solved using Bezout’s method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable x,. Thus, a maximum of eight values of 0, exist for the
mechanism for a given value of the input angle 6s.

T Note that the extra variable in the current equations is 6, as opposed to 85 as written in Eq. (8.5).
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The corresponding value for the parameter x, can be found from either
M, N

M; N,
L, N,
L, N;

Xy =

(8.147)

or

Li N
L N
Li M
L, M,

Xy =

, (8.148)

where L, M;, and N; are defined in Eqgs. (8.14) through (8.16) and Eq. set (8.11).
Equations (8.147) and (8.148) can be derived in a manner similar to that in which
Egs. (8.34) and (8.35) were derived.

A unique corresponding value of 8, can be obtained from the following fundamental
sine and sine—cosine laws:

Xo15 = $3484, (8.149)
Y215 = 834C4. (8150)

Similarly, a unique corresponding value of 85 can then be obtained from the following
fundamental sine and sine—cosine laws:
X512 = 83483, (8.151)
Y512 = 8$34C3. (8152)
The offset distances S, and S3 are the remaining parameters to be determined. These
two values will be found by projecting the vector loop equation for the mechanism onto

two different directions. Projecting the vector loop equation onto a4 (see Section 8.3.1)
yielded Eq. (8.38), which is repeated here as

S1X03 4+ a1sWo3 + S$2 X3 + a33¢3 + @34 + a45¢4 + SsXu + a5, Wsg = 0. (8.153)

The offset distance S, is the only unknown in this equation.
The offset distance Ss is determined by projecting the vector loop equation onto the
direction a;,. This can be written as

Si(Si - app) +ap(an -an) + S:(S; - a) + a3 (@ - ap) + S3(S3 - a2) +a3s(aszs - a52)
+ S4(S4 - a12) + ags(ays - a12) + Ss(Ss - ap2) + asi(as; - az) =0. (8.154)

Evaluating the scalar products by using the sets of direction cosines listed in the appendix
gives

apy + ancy + S3Xy + a3aWas + S4Xaz + a;sWs; + SsX + asie; = 0. (8.155)

This equation contains the variable Ss as its only unknown.
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Table 8.3. RRCCR mechanism parameters.

Link length, Twist angle, Joint offset, Joint angle,

cm. deg. cm. deg.

ap = 12 oy =62 S, =180 6, = variable
a3 = 34 o3 = 67 S, = variable 8, = variable
azy = 40 a3 =173 S3 = variable 83 = variable
A5 = 41 Q45 = 127 S4 =26 94 = variable
as) = 44 a5y = 80 S5 =87 95 =222 (input)

Table 8.4. Calculated configurations for the RRCCR spatial mechanism.

Solution
A B C D E F G H
0, deg. —11227 5592 —11.80 —4.36 14.84 99.08 104.92 150.19
6, deg. 29.06 —154.37 324 -3.07 167.77 159.13 —86.11 —138.75

03, deg. 110.96 —163.98 —156.77 —149.63 131.56 59.12 5515 —41.78
04, deg. 85.99 —153.67 25.02 25.04 —127.84 —14826 —4049 9255
Sz, em. —135.77 52.99 -2.51 3.18 3736 —46.10 5483 —64.34
S3, cm. 99.96 —115.49 106.68 105.67 —104.68 —84.69 79.56  —10.82

This completes the analysis of the RRCCR group 2 spatial mechanism. Eight solution
configurations were determined. Table 8.3 shows data that were used for a numerical
example. The calculated values for the eight configurations are listed in Table 8.4.

It is interesting to plot the calculated joint angles and offsets as the input angle varies in
increments between zero and 27r. Figure 8.4 shows the calculated outputs for the RRCCR
mechanism whose dimensions are given in Table 8.3 as the angle 6 is varied.

8.5 Six-link group 2 spatial mechanisms

All six-link group 2 mechanisms consist of four revolute joints, one cylindric joint,
and one prismatic joint, that is, 4R-C-P. The only difference between the various six-link
group 2 mechanisms is the order of the types of joints.

The solution method for all the six-link mechanisms is identical to that for the five-link
mechanisms of the previous section. That is, two equations will be derived that contain the
input angle, the output angle, and one extra joint angle. Elimination of the extra joint angle
from the two equations will result in an eighth-degree polynomial in terms of the tan-half-
angle of the output angle. One of the two equations will be a subsidiary or fundamental
cosine law for a spherical hexagon. The other equation will be either a secondary cosine
law (if the C and P joint are not adjacent in the mechanism) or a projection of the vector
loop equation onto a link direction vector.

Two examples will be presented in this section, one where the C and P joints are adjacent,
and one where they are not. These two examples should be sufficient to demonstrate the
solution technique. After completing these examples, the reader should then be able to
apply the technique to all other cases.
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Figure 8.4. Output vs. input for RRCCR spatial mechanism.

8.5.1 RRRPCR spatial mechanism (C and P joints adjacent)

A planar representation of the RRRPCR spatial mechanism is shown in Figure 8.5. The
problem statement for this mechanism is as follows:

given:
a12, 423, 434, 45, as6, 61>

g2, 023, (34, Olys, Olse, A6,

Sl, S4, S5, Sﬁ, and
6; and
input angle:
0,
find: 6y, 0,, 04,65, S5, and S3.

constant mechanism parameters:



130 Group 2 spatial mechanisms

input 6 1 output
angle angle

Figure 8.5. Planar representa-
tion of RRRPCR spatial mech-
anism.

The equation that contains the link lengths and offsets must not contain the unknown
parameters S; and S;. One way of obtaining such an equation is to project the vector loop
equation onto the vector a,3. The vector loop equation is written as

S1S1 +apap + S38; + az3az3 + S383 + azaxn

+ 5484 + assa45 + SsSs + aseass + SeS6 + 1361 = 0. (8.156)
Projecting this equation onto a,; yields
S1(S1 - az) + app(an: - az3) + S2(Sz - a33) + a3(a3 - a23) + S3(S; - ax3)
+a34(a34 - @23) + Sa(S4 - 23) + ags(ags - az3) + Ss(Ss - az3)
+ as6(ase - 23)+S6(Se - a23)+a61 (361 - az3) = 0. (8.157)

The sets of direction cosines for a spherical hexagon that are listed in the appendix are
used to evaluate the scalar products of the above equation. The resulting equation is

S1X5 + a15¢; + a3 + 2343 + S4 X3
+assWa3 + SsXe12 + aseWe12 + S6Xi12 + a6 Wi = 0. (8.158)

All the terms in this equation, with the exception of Wy;, contain only the constant
mechanism parameters, the input angle, 8¢, the output angle, 6,, and the extra angle, 6,.
The exception, W3, is defined as follows:

W43 = C3C4 — 8384Cy4. (8159)
This equation may be modified to yield

W, = (845€4)C3 — C34(84584)83 (8.160)

845

provided s4s5 does not equal zero. Fundamental sine and sine—cosine laws for a spherical
hexagon may be used to replace the two terms in parentheses in Eq. (8.160). Thus, this
equation may be written as

W (Y6123)C3 — C3a(Xg123)s3 €34 Y612 — $34Z612C3
43 = = .

S45 845

(8.161)
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This expression is now defined in terms of the given parameters, the output angle, and the
extra angle, 6.
Substituting Eq. (8.161) into Eq. (8.158) yields

C34 Y612 — 834Z612€3

S45
+ S5X612 + as6We12 + SeX12 + ag Wiz = 0. (8.162)

S1Xy + a12€ + a3 + a34C3 + SaXs + ass

This equation contains the output angle, §;, and the extra angle, 6,, as its only unknowns.
It will be paired with the fundamental cosine law

Ze123 = C45 (8.163)

to yield the appropriate input/output equation for the mechanism.

Both Eqs. (8.162) and (8.163) will be expanded and regrouped into the format of
Eq. (8.5). The tan-half-angle substitutions for 6, and 6, will then be used to yield two
biquadratic equations that can be solved for the output angle by using Bezout’s method.

Equation (8.163) will be designated as the first equation, and it can be written as

$34(X61283 + Yg12C3) + C34Zg12 — C45 = 0. (8.164)
Expanding X¢15, Ye12, and Zg;, and regrouping yields
c2lX3Xe1 — Ya Yol + s2[—Xs Yer — Y3Xe1] + [Z3Ze; — cas] = 0. (8.165)
Expanding X¢;, Ye;1, and Zg; and regrouping yields

caler (XaXe — Yac1Ye) + 51(—=X3 Y6 — Yac12Xe) + (Y3512Z6)]
+ sale1(—Xscn Yo — Y3Xe) + s1(—Xsc1Xs + Y3Y6) + (X3812Z6)]
+[c1(Z3512Y6) + 51(Z3512X6) + (Z3c12Z6 — €45)] = 0. (8.166)

The coefficients for the first equation (see Eq. (8.5)) are thus

A =X3Xs — YicnnYs, Bi=-X3Y¢ — YicioXe, Di=YisinZs,
E; =—Xsc1nY6 — Y3Xs, Fi=—-XscXs+ Y3Ys, Gy =Xss12Z, (8.167)
H; =Z3s12Ys, I = Z3812Xs, Jy =2Z5¢1,Z6 — Cas.

The second equation, Eq. (8.162), is expanded and regrouped as follows by substituting
for the terms Xy, Xe123, Y6123, X612, We12, X12, and Wy

Z:Yq
calay + S5X61 + assWe1 + Se X1 + a61C1 + s S
45
73X
+s [31812 —SsYe1 +assUg ), — Se Y1 — ag181C12 + s S 1]
45

- YiZ
+ [323 + a34C3 + S4X3 + ass : 61] = 0. (8.168)
45
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This equation is next regrouped into the format of Eq. (8.5) as follows:

z3012Y6>

C |:Cl <S5X6 + as56C6 + ag1 + ass S
45

Zic1nX 738127,
+5 <_SSY6"‘aS6S6C61 + Sese1 + ags ——= 6) + <a12 —ag 6)]

S45 845
Z3Xs >

845

+s; [01 <_SSCIZY6 — 856C1286C61 + S6C12561 + a4s
Z3Y6>
845

+8; <_SSCIZX6 — 856C12C6 — A61C12 — A4s5
+ (SISIZ + Ss812Z¢ + aseUg1812 + 56812061>]

Y3512 Y. Y;3810X
+[cl<a45 3812 6>+sl<a45 3812 6)
845 845

_ YicZ
+ <323 + a34C3 + SaXs + as 3812 6)] =0. (8.169)
45

The coefficients for the second equation (see the format of Eq. (8.5)) are thus
Az =S5X¢ + as6Cs + 61 + 845Z3¢12 Y /Sss,
By =—S5Ys — assS6Ce1 + SeS61 + a45Z3¢12X6 /a5,
D; =ay; — a45Z3812Z6/Sus,
E;=—S5¢12Ys — as6C1286C61 + SeC12961 + a45Z3X6 /845,
Fy = —Ss5c12X6 — a56C12C6 — 261C12 — 45Z3Y6/Ss5, (8.170)
Gz = S1812 + S5812Z6 + assUs1812 + S6812€61,
Hy =a45Y3812Ye/545,
Ip = a45 Y3512 X6/545,
Jo=a + a34C3 + SaXs + as5Y3¢12Z6 /515

Now that both equations have been regrouped into the format of Eq. (8.5), the tan-half-
angle identities for the sine and cosine of 6, and 6, are inserted. The two equations can
then be regrouped into the format of Eq. (8.10), where the coefficients of this equation are
defined in Eq. set (8.11).

The two equations of the form of Eq. (8.10) are quadratic in the variables x; and x;.
These equations can be solved via Bezout’s method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable x;.

The corresponding value for the parameter x, can be found from either

M, N,
M, N

Xp= 2 21 (8.171)
Ll Nl

L, N,
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or

L N

L, N;
L M

L, M

Xy = , (8.172)

where L, My, and N, are defined in Eqgs. (8.14) through (8.16) and Eq. set (8.11). Equa-
tions (8.171) and (8.172) can be derived in a manner similar to that in which Eqgs. (8.34)
and (8.35) were derived.

Two joint angles remained to be solved, that is, 6, and 65. A unique corresponding
value of @5 can be obtained from the following fundamental sine and sine—cosine laws:

X3216 = 84585, (8.173)
Y3216 = 845Cs. (8.174)

Similarly, a unique corresponding value of 6, can then be obtained from the following
fundamental sine and sine—cosine laws:

X123 = 84584, (8.175)
Y6123 = $45C4. (8.176)

The offset distances S, and S; are the remaining parameters to be determined. These
two values will be found by projecting the vector loop equation for the mechanism onto two
different directions. Projecting the vector loop equation onto the direction a3, and evaluat-
ing the scalar products using the sets of direction cosines provided in the appendix yields

S1X23 + a;aWas + S$2X3 + a3¢3 + a4 + agscq + SsXy + assWsy
+ S6Xs54 + 61 Wess = 0. 8.177)

The offset distance S, is the only unknown in this equation.

The distance S; will be determined by projecting the vector loop equation onto the
direction a;;. Evaluating the scalar products by using the sets of direction cosines listed
in the appendix gives

an + a3 + S3X; + a3 W3 + SaXz + ausWser + SsXe1
+assWe1 + S6X + agic; = 0. (8.178)
This equation contains the variable S; as its only unknown.
At this point, the analysis of the RRRPCR group 2 spatial mechanism is complete.
Eight solution configurations were determined. Table 8.5 shows data that were used for

a numerical example. The calculated values for the eight configurations are listed in
Table 8.6.

8.56.2 RRPRCR spatial mechanism (C and P joints separated)

A planar representation of the RRPRCR spatial mechanism is shown in Figure 8.6. The
problem statement for this mechanism is as follows:
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Table 8.5. RRRPCR mechanism parameters.

Link length, Twist angle, Joint offset, Joint angle,

cm. deg. cm. deg.

app = 35 xpp = 82 Sl =67 01 = variable
a3 = 19 ®y3 = 78 Sz = variable 92 = variable
ay = 19 A3y = 34 S3 = variable 93 = 320

a5 = 9 Q45 = 93 S4 =62 04 = variable
asg = 22 56 = 50 S5 =71 05 = variable
ag] = 10 Ael = 77 SG =61 06 =322 (input)

Table 8.6. Calculated configurations for the RRRPCR spatial mechanism.

Solution

A B C D E F G H

f1,deg. —107.96 —118.51 —6347 2240 21.05 4748 -—163.33 —173.31
6y,deg. —108.08 62.38 5138 —145.85 138.65 —76.66 —31.45 134.67
04, deg. 168.94 —9554  —49.91 92.56 28.47 56.74 —175.62 -9845
05, deg. 170.53 13.46 46.78 —148.55 156.88  —53.32 87.08 —68.65
Sz, cm. 324 -3543 71.46 143.61 165.13 89.03 —87.61 —68.78
S3,cm. —140.58 15.60 2695 —114.68 —149.83 63.81 —3681 —89.69

input 6 1 output
angle angle

Figure 8.6. Planar representation
of the RRPRCR group 2 spatial
mechanism.

given:
constant mechanism parameters:
a12, A23, A34, 45, As6, A61,
A2, A23, A34, U455, Use, Aol
S], S3, S5, S(,, and
64 and
input angle:
Bs,
find: 91, 92, 93, 95, Sz, and S4.

Because this is a group 2 mechanism, two equations must be generated that contain
only the output angle and one additional angle as unknowns. One of the two equations will
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be a spherical cosine law. The other equation will contain the link lengths and offsets and
must not contain the unknown parameters S, and S;. One way of obtaining this second
equation is to write the secondary equation of a cosine law that does not contain the angles
6, or 8,. The equation

Z561 = 23 (8179)
will be dualized to yield
Zose1 = Zos. (8.180)

The term on the right side of Eq. (8.180) contains the parameters 63, a3, and a34. Thus,
the right-hand side may be written as

- 974 RYA 9Z5
=S;— e — e 8.181
Zo3 35 5, + ap3 Yo + az detns ( )

Evaluating the partial derivatives yields
Zos = S3(523834583) + az3(Y3) + a3 (Y3). (8.182)

The term on the left side of Eq. (8.180) contains the parameters 6s, 0, 61, o5, Uts6, Qs1,
and o;; and may be written as

dZ dZ dZ
Zossi = Ss 561+56 561+S1 561

905 36¢ a6,
97 97 d97Z 97
F a2t a0l 4 g 0L 4 g (8.183)
daus dass dae days

Evaluating the partial derivatives gives
Zose1 = Ss(s45X165) + Se(— X1 X% — Y1 Xs6) + Si(s12Xs61) + ass(Yies)
+ as6(—845CsZ16 + Ca5Y16) + 261(—812€1Zs6 + C12Ys6) + a12(Yse1).  (8.184)
Equating the results of Eqs. (8.182) and (8.184) yields the equation
Ss(sasXi6s) + Se(—X1X% — Y1 Xs6) + S1(812Xs61) + a4s(Y1e5)

+ as6(—S45C5Z16 + Cas Y 16) + 61 (—512C1Zs6 + C12Ys6) + a12(Ys61)
+ S3(—$2383483) + a3(—Y3) + az(—Y3) = 0. (8.185)

All terms in Eq. (8.185) are expressed in terms of the constant mechanism parameters,
the input angle 65, the output angle #;, and the extra angle s, with the exception of
the Ss, ay3, and as4 terms. The notation C(S3), C(ay3), and C(as4) is now introduced to
represent the coefficients of the Ss, a3, and a3, terms. For this case these coefficients are
defined as

C(S3) = —s2383483, (8.186)
C(an) = —Ys, (8.187)
C(ay) = -Y;. (8.188)
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The coefficient for the S; term may be written as

C(S3) = —s34X;. (8.189)
A subsidiary sine law may be used to write this term as follows:

C(S3) = —834 X654 (8.190)

The coefficient for the a3, term may be modified by using a subsidiary sine—cosine law to
give

C(azs) = Xiess- (8.191)
The coefficient for the a,3 term may be written as
C(a23) = $23€34 + €23834C3. (8.192)

Multiplying the right-hand side of Eq. (8.192) by & yields

2
_ 853C34 + C23823834C3

C(ay) = (8.193)

823

Adding and subtracting the term 033034 from the numerator of Eq. (8.193) and then re-
grouping terms gives

2 2
_ 833C34 + €334 — C23(C23C34 — $23834C3)

Clay) (8.194)
823
Substituting for the definition of Z; gives
—cnZ
Clay) = A= B% (8.195)
823
A subsidiary cosine law is used to replace the term Z; to give
—cnZ
Clay) = T B26 (8.196)

823

All the terms in Eq. (8.185) have now been expressed in terms of the constant mechanism
parameters, the input angle 65, the output angle 6;, and the extra angle 5. This equation
is written as

Ss(845X165) + Se(—X1X5s — Y1Xs6) + S1(512Xs61) + a45(Y165)
+ as6(—545¢5Z16 + Ca5Y16) + 261(—S12C1Zs6 + €12 Ys56) + a12(Ys61)
+ S3(—$34X1654) + 23(C34 — €23Z165) /823 + @34 (Xgs4) = O. (8.197)

This equation will be paired with the fundamental spherical cosine law
Zyse1 = C3 (8.198)

to yield an eighth-degree input/output equation in the tan-half-angle of ;. Both Eqs. (8.197)
and (8.198) will be expanded and regrouped into the format of Eq. (8.5) (where the extra
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angle is now 0s instead of 6,). The tan-half-angle substitutions for 8, and 85 will then be
used to yield two biquadratic equations that can be solved for the output angle by using
Bezout’s method.

Equations (8.198) and (8.197) will be referred to as the first and second equations for
this problem, respectively. These two equations will be regrouped into the format

C5(Ai01 + Bisl + Di) + 55(Eicl + Fisl + G,) + (Hicl + Iisl + Ji) =0 1= 1, 2.

(8.199)
The coefficients of the two equations are listed as follows:
A1 = 312(Ce156X4 + Ya(—S361856 + C61C56C6)),
B = s12(c6X4 — 86C56 Y4),
D; = c12(XeXs — Y4 Ya),
E; = 812(X4(—561856 + C61C56C6) — Co156 Y4),
Fi = 812(—Cs656X4 — c6Y4),
G = c1a(—Xe Y4 — Y6Xy),
H, = s12Y¢Z4,
I} = 812X6Z4,
J1 = 122624 — C23, (8.200)

Ay = Ss(845C6151286) + a61(—S12845 Y6) + S3534812[S4C4s(Ss6561 — Cs6C61C6) — C4Co156]
+ @34812[C45C4 (56861 — C56C61C6) + $486C61] + 12C12545(S61556 — C61C56C6)
+ a53C23845812/923(— 856861 + C56C61C6) + S6(C61812C5684556) + S1(S12C5684556)
+ as6(—S12845 Y6) + 245512C45(S56561 — Cs56C61C6),

By = S3534812(—C4C6 + Ca5C565486) + S5(S45512C6) + @34512(S4C6 + C45C56C4S6)
+ @23(—C23845C5651286/923) + S1812845(—S61856 + C61C56C6) + 245(C45C5651286)
+ 56 (—84585651256) + S6(S12C56545C6) + @12(C12C5684556),

D, = S3834¢12(84Cas Yo — CaX) + 23(—C23845¢12 Y6 /523) + a61C12545 (S61556 — C61Cs6C6)
+ a34¢12(CaCas Yo + 54X6) + ass(Casc12¥6) + Ss(845861C1286) + a12(—S12845 Y6)
+ S6(861C12C5684586) + as6(—S45C12Z6),

E; = a61(—51286184586) + S1(812845C6) + @12(C12C6154556) + S6(C1812845C6)
+ @34812[€4C45C6186 + S4(—S56S61 + C56C61C6)] + @23(—C23845C6151286/523)
+245(Ca5C6151256) + S3812934[Ca5C618456 + C4(Ss56861 — C56C61C6)]
+ S5812845(—S61856 1+ C61€56C6),

Fa = a73(—¢23845812C6/523) + S6(—51284556) + @12(C12545C6) + 245(Ca5512C)
+ S3512534(C4554C6 + C56C4S6) + Ss5(—S45C5651256) + 234512(C45C4C6 — C565456)

+ S1(—812C6154556)
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G, = a3c1p(—54 Y6 + cascaXe) + a23(—C23845861C1286/523) + a61(C12C6184556)
+ a12(—51286184556) + S3€12834(84C45X6 + C4¥6) + aus(CasS1C1256)
+ S6(s61C12845C6) + Ss(—C12845 Ys),
H; = a61(—812C45Z¢) + a45(—S12845Y6) + 223(—812€23Ca5 Yo /523) + 212(C12C45Y6)
+ S3(—83481284584 Y6) + S6(C61512856C4586) + S1(812856C4556)
+ a34(—812845C4 Y6) + 56C45812(S56561 — C56C61C6)>
I; = a45(—34585681286) + as56(Ca5C5651286) + S6(S12856C45C6) + A23(—C23Ca585651256/523)
+ 834(—845856812C486) + a12(C12856C4586) + S1(—812€25Y6)
+ S3(—834845856512846),
J2 = S3(—834845C1284Z6) + a23(C34/823) + A23(—C23C12C45Z6/523) + a61(C12Ca5 Y6)
+ 834 (—845C12¢4Z6) + a12(—Cas812Z6) + ass(CasC12 Yo)
+ a45(—545C12Z6) + S6(S61€12556C4556)- (8.201)
Now that both equations have been regrouped into the format of Eq. (8.199), the tan-

half-angle identities for the sine and cosine of 8; and 05 are inserted. The two equations
can then be regrouped into the format similar to Eq. (8.10), that is,

x:[aix] + bixi + di] + xs[eix] + fixi + gi] + [x] +ixi + ji] =0, i=12,
(8.202)
where the coefficients of this equation are defined in Eq. set (8.11).

The two equations of the form of Eq. (8.202) are quadratic in the variables x; and xs.
These equations can be solved via Bezout’s method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable x;.

The corresponding value for the parameter x5 can be found from either

M N

M, N,
Li N;
L, N,

X5 =

(8.203)

or

L, N,
L, N,

L, M,

L, M,
where L, M|, and N, are defined in Eqs. (8.14) through (8.16) and Eq. set (8.11). Equa-
tions (8.203) and (8.204) can be derived in a manner similar to that in which Egs. (8.34)
and (8.35) were derived.

Two joint angles remain to be solved, that is, 6, and 6;. A unique corresponding value
of 6, can be obtained from the following fundamental sine and sine—cosine laws:

X5 =

, (8.204)

Xas61 = 82382, (8.205)
Yas61 = $23C2- (8.206)
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Table 8.7. RRPRCR mechanism parameters.

Link length, Twist angle,  Joint offset, Joint angle,

cm. deg. cm. deg.

ajp =35 ap =82 S, =67 6, = variable
ap = 19 a3 =78 S, = variable 6, = variable
azg = 19 O34 = 34 S3 =15 93 = variable
a5 = 9 045 = 93 Sa= variable 94 = -96

ase = 22 asg = 50 Ss =71 65 = variable
ag = 10 ag =77 S¢ = 61 05 = 322 (input)

Similarly, a unique corresponding value of 8; can then be obtained from the following
fundamental sine and sine—cosine laws:

X654 = $2383, (8.207)
Yies4 = $23C3. (8.208)

The offset distances S; and S are the remaining parameters to be determined. These
two values will be found by projecting the vector loop equation for the mechanism onto
two different directions. Projecting the vector loop equation onto the direction as4 and
evaluating the scalar products using the sets of direction cosines provided in the appendix
yields

S1X2 +apWas + S:X3 + az3¢3 + a
+ a45C4 + S5)_(4 + as6Wsq4 + SgXs4 + a1 Wesq = O. (8.209)

The offset distance S; is the only unknown in this equation.

The distance S4 will be determined by projecting the vector loop equation onto the
direction a;,. Evaluating the scalar products by using the sets of direction cosines listed
in the appendix gives

ar2 + ax3cy + S3Xo + a34Wa + Ss X
+ a45Wsg1 + SsXg1 + as6We1 + SeX; + agicy = 0. (8.210)

This equation contains the variable Sy as its only unknown.

At this point, the analysis of the RRPRCR group 2 spatial mechanism is complete.
Eight solution configurations were determined. Table 8.7 shows data that were used for
a numerical example. The calculated values for the eight configurations are listed in
Table 8.8. The eight configurations are shown in Figure 8.7.

8.6 Seven-link group 2 spatial mechanisms

All seven-link group 2 mechanisms comprise five revolute joints and two prismatic
joints, that is, SR-2P. The solution method for these mechanisms is identical to that for
the five- and six-link group 2 mechanisms.



140 Group 2 spatial mechanisms

Solution B
S5 s,
S¢”
8,
Solution C Solution D

Solution E

8,

Solution G Solution H
Figure 8.7. Eight configurations of an RRPRCR group 2 spatial mechanism.
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Table 8.8. Calculated configurations for the RRPRCR spatial mechanism.

Solution

A B C D E F G H

0;,deg. —118.75 —59.12 —38.23 17.13 4528 —154.88 169.62 164.59
6,, deg. 62.27 2474 —149.05 -92.70 89.61 —9570 —49.48 148.25
03, deg.  —39.69 9.66 164.51 115.85 78.19 —-11673 —-136.00 —26.77
05, deg. 13.40 56.19 8936 —19.39 167.66 174.27 12431 —87.70
S;,em. —35.60 73.80 138.13 56.12 7133  —88.82 -—-15049 —125.81
S4, cm. 62.35 61.79 —100.10 72.67 —14330 -30.80 67.11 —74.25

input 7 1 output
angle angle

Figure 8.8. Planar repre-
sentation of the RRPRRPR
group 2 spatial mechanism.

Two equations are generated in terms of the input angle, the output angle, one extra
joint angle, and the constant mechanism parameters. These two equations are solved
simultaneously using Bezout’s method to yield an eighth-degree input/output equation.

One seven-link group 2 mechanism will be solved as an example. Figure 8.8 shows
a planar representation of an RRPRRPR mechanism. The problem statement for this
mechanism is as follows:

given: constant mechanism parameters:
a2, 423, A34, A45, As6, A67, A715
Q12, 023, (34, 045, 056, Ue7, O7]
Sl, S3, S4, Ss, S7, and
92, 95 and

input angle:

67,

find: 91 , 93, 94, 96, Sz, and S5.

One equation that will contain the constant link lengths and offsets (but not the un-
knowns S, and S;) is the secondary cosine law

Zos11 = Zoas- (8.211)

The term on the right side of this equation contains the parameters 03, 64, 23, ¢34, and o4s
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and can thus be written as

0Z43 0Z43 0Z43 0Z43 0Z43
Zoys =S + S +a +a +a .
s =S50 36, %30 T M0 T s

(8.212)
Expanding the partial derivatives gives

Zoss = S3(823X43) + Sa(845X34) + a23(Y43) + asa(ca3 Ya — $23¢3Z4) + a45(Y34).
(8.213)

The term on the left side of Eq. (8.211) contains the parameters S, S7, S, ase, a¢7, a71,
and aj,. It can thus be written as follows:

0Ze71 0Z¢7 0Ze71

Z =S S S
0671 6 T + 5 26, + 5 20,
97 97 97 0Z
4oagOlon | o %o | Zen | Zen (8.214)
dase datgr dagy dayp
Expanding the partial derivatives for this equation yields
Zoen1 = Se(8s6X176) + S7( — X1 X%y — Y1Xe7) + S1(512Xe71) + as6(Y176)
+ a67(Cs6 Y17 — 856C6Z17) + a71(C12 Y67 — S12C1Z67) + a12(Ye71)- (8.215)

Substituting the results of Eqs. (8.213) and (8.215) into Eq. (8.211) and moving all terms
to the left side of the equation gives

Se(ss6X176) + S7(—X1X5; — Y1Xe7) + S1(s12Xem1) + ase(Y176)
~+ as7(cs6 Y 17 — S56C6Z17) + a71(c12Ys7 — S12C1Z67) + a12(Y671) + S3(—823X43)
+ Sa(—845X34) + a23(—Ya3) + asa(—c23 Yy + $2363Z4) + ass(—Y34) = 0. (8.216)

The angle 6 is selected as the extra joint angle in this equation. Thus, each of the terms

in Eq. (8.216) must now be written in terms of the input angle, 9;, the output angle, 6,

the extra angle, 0, and the two constant angles, 8, and 6s. In other words, the angles 6;

and 0, that appear in the S3, S4, a3, 234, and ays terms in Eq. (8.216) must be replaced.
The S; term may be written as

C(S;) = —s23Xus3. (8.217)
A subsidiary sine law for a spherical heptagon can be used to rewrite this term as

C(S3) = —823Xe712- (8.218)
Similarly, a subsidiary sine law can be used to rewrite the S4 term as

C(S4) = —845X1765- (8.219)
Subsidiary sine—cosine laws are utilized to rewrite the a,; and ays terms as

C(a3) = X571 (8.220)
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and

C(ass) = X]7¢5- (8.221)
The last remaining term is as4. This term appears in Eq. (8.216) as

C(asg) = —cn3 Y4 + $2363Z4. (8.222)
Expanding Y, yields

Y4 = —(834C45 + C34845C4)- (8.223)
Multiplying the right side of Eq. (8.223) by § and regrouping gives

2
S —834C45 — €34534845C4

Y, = (8.224)
834
Adding (c3,¢45 — ¢ css) to the numerator of Eq. (8.224) and regrouping gives
¥ = — (s34 + ¢34)cas + caalCascas — 534545(54)‘ (8.225)
834
This equation can be simplified to yield
- Z
Y, = M‘ (8.226)
834
Equation (8.222) can now be written as
c(Cas — C34Z N
Clagy) = BB =) o 7., (8.227)
S34
Regrouping this equation gives
—Z4Z
Clayy) = 2085 245 (8.228)

S34

Subsidiary cosine laws are used to replace the Z, and Z; terms in Eq. (8.228) to give

€23C45 — Zr176Z1765

C(as) = (8.229)

S34
The coefficient of the as4 term has been expressed in terms of the constant mechanism
parameters, the input angle, the output angle, and the extra angle, 6. However, Eq. (8.229)
appears to be of second order in the sines and cosines of the variable joint angles, 6 and
0. The product Z,,76Z7¢s must be expanded and regrouped in order to reduce it to a linear
expression.
The term Z,7¢5 is written as follows:

Z1765 = 845(X17655 + Y176C5) + C45Z176- (8.230)
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Expanding Y76 and Z;7 gives
Zy765 = 84585X176 + 5455 (C56X 176 — 856Z17) + Cas (856X (76 + C56Z17).- (8.231)
Regrouping this equation yields
Zi76s = X5Xi76 — Ys5X{76 + ZsZy7. (8.232)
The term Z,;7¢ is written as
Zy176 = $56X3176 + C56Z217- (8.233)

The results of Eqs. (8.232) and (8.233) may now be used to express the product Z;,7Z1765
as

Zo16Z1765s = [X5X176 — Y5Xi76 + ZsZi7] [$56X3176 + Cs6Z217]- (8.234)
This equation can also be written as

Zr176Z1765 = 56§ XsX176X5176 — YsX76X5176 + ZsZ17X5176 } + Cs6{Z1765Z217}-
(8.235)

Two new terms, Asg712 and Bsg;12, will be defined to represent the expressions in the braces
of Eq. (8.235). Thus, the following two definitions are introduced

Aseriz = XsX176X3176 — Ys5X176X2176 + Z5Z17X3176 (8.236)
Bse712 = Z1765Z217, (8.237)

and the product Z,;76Z1765 may be written as
Zy176Z1765 = Sse6Aser12 + Cs6Bser12- (8.238)

Equation (8.236) will be simplified by first expanding the following fundamental cosine
law for a spherical heptagon:

Z31765 = C3a- (8.239)
Expanding Z,7¢5 gives

$45(X217685 + Y2176C5) + CasZoi76 = C34. (8.240)
Expanding Y,;7¢ and Z;7¢ gives

$3485X2176 + 845¢s (56 X176 — S56Z217) + Cas(856X5176 + Cs6Z217) = Caa (8.241)
Regrouping this equation gives

XsXa176 — YsX3176 + ZsZp17 = C34. (8.242)

The middle term, YsX3,,, (which also appears in Eq. (8.236)), may thus be expressed
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as

Ys5X5176 = X5Xa176 + ZsZa17 — Ca4. (8.243)
This result is now substituted into Eq. (8.237) to give

Aseri2 = XsX176X5176 — Xi76[X5X2176 + ZsZ217 — €34l + ZsZ17X5 7. (8.244)
This equation is regrouped as

Aseriz = Xs [X176X5 176 — Xir6Xo176] + Zs [Z17X5176 — Xiz6Z217] + €34X}56.  (8.245)
The terms X76, X}76, X2176, and X3¢ are substituted into this equation to give

Asgriz = Xs[(Xi7¢6 — Yi786) (X21786 + Y217¢6) — (X1786 + Y17¢6) (X217¢6 — Y21786)]
+ Zs[Z17(X21786 + Y217¢6) — (X1786 + Y17€6)Z217] + €34 X756 (8.246)

Performing the multiplication and substituting for s + ¢ = 1 gives

Asgrir = Xs[X17Y 217 — Y1rXoi7] + Zs[s(X217Z17 — Z217X17)
+¢6(Z17Y217 — Zo17Y17)] + cauXlyg- (8.247)

The first term in brackets is written as

X17Ya217 — Y17 Xa17 = [Xie7 — Yisslleer(Xars7 + Y2167) — 8672211
— [cer(X187 + Yic7) — se1Z11[X2167 — Yars7]. (8.248)

Performing the multiplication and recognizing that s + ¢ = 1 gives

X17Y217 — Y17 Xo17 = &1861(X1Zy — Z1 X))
+7861(Zo1 Y1 — YaZy) + cer(Ya X1 — X1 Y1) (8.249)

Substituting for Xsi, Ya1, Z2;, X1, Y1, and Z,, regrouping terms, and recognizing that
st +ci = lands3 + % =1 gives

X17Y217 — Y1rXa17 = cil—c12Y7Xs + Xa(—c2 Y2 — s1225)]
+s1[—cpX7Xa + ci2 Y7 Y2 + 812Y7Z2] + [512Z7X2]. - (8.250)
This term is linear in the sines and cosines of 6y, ,, and ;. Equation (8.250) will be
simplified by firstly expanding the terms X5, Y, and Z, and recognizing that s?, +¢c1, = 1.
The result of this step is

Xi17Y217 — Y17Xo17 = sp3(cicaXy — 8162 Y7 — €128192X7 — c12€182 Y7 + 5128277).
(8.251)

Regrouping this equation and introducing the terms U,;, V1, and Wy, gives

Xi17Y217 = YirXo17r = so3s(Wu X7 + Vo Y7 4+ Uy Zy). (8.252)
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Expanding the terms X5, Y7, and Z; in this equation and regrouping gives

Xi17Y217 — Y17 X017 = sas[cer(Uzicr1 — Vi) — sez(c7(Uzisy + Vaicr) — ssWo)l.

(8.253)
Equation (8.253) can now be written as the simplified expression
X17Y217 — Y17Xa17 = $23U2176. (8.254)
The second term of Eq. (8.247) is written as
Xo17Z17 — Zo17Xi7 = [Xa1¢7 — Yaus7)[se7 (X187 + Yi¢7) + ce7Z1]
— [s67(X2187 + Y21¢7) + c7Za][X 17 — Yis7]. (8.255)
Multiplying the terms and recognizing that s3 + ¢3 = 1 gives
Xo17Z17 — Zo17X17 = c1¢7 (X121 — ZuX1) + 87¢67(Za1 Y1 — Yo Zy)
+s67(Xa1 Y1 — Y21 Xy). (8.256)

Substituting for Xy, Ya1, Z2;, X1, Y1, and Z;, regrouping terms, and recognizing that
s2+ci=1lands? +c2 =1 gives

X017Z17 — Zo17X17 = c1[c12Xa(—s67871 + C67€71C7) — C12C6787 Y2 — $12C6787Z32]
+ s1[—c12¢6787 X2 + €12 Y2 (867871 — C67¢71€7)
+ 812Z, (867871 — C7¢7167)] + [$12X2 Y71, (8.257)
This term is linear in the sines and cosines of 6;, 8,, and 8;. Equation (8.257) will be
simplified by first introducing the terms X, Y,, and Z, and recognizing that s3, +c?, = 1

to give

X217Z17 — Z217X17 = $23[81282 Y7 + €67C2(87C1 + ©781C71) — S6757181C2

+ c1282(—S67571C1 + C67C71C1C7 — C675157) ] (8.258)
This equation may be regrouped as
X017Z17 — Zo17X17 = $23[Un Y7 + 867871 Va1 — Ce7¢7167 Va1 + Co787Wo1]. (8.259)
Expanding Y7 and regrouping terms gives

Xo17Z17 — Z217X17 = s23[—s67(Uz1c71 — Va1571) — Ce7(c7(U21871 + Varcn) — s7War)l.
(8.260)

The first term in parentheses in Eq. (8.260) is U,;7, and the second term in parentheses is
V,17. Thus, Eq. (8.260) may be written simply as

Xo17Z17 — Zo11X17 = —s23U3 4. (8.261)
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The third expression in Eq. (8.247) is written as

Z17Y217 — Zorr Y17 = [se1(Xis7 + Y1¢7) + ce1Z1 1[ce71(Xa1s7 + Ya1¢7) — 867Z21]
— [s67(X2157 + Y21¢7) + c61Za11[Cer (X187 + Yi¢7) — s1Z4].
(8.262)

Multiplying the terms on the right side of this equation, regrouping, and recognizing that
2, + ¢2; = 1 gives

Zi7Y21 — Zon Y11 = (2 Yo — Y\ Zy) + 892, X1 — X1 Zay)- (8.263)

Substituting for X1, Ya1, Z21, X1, Y1, and Z,, regrouping terms, and recognizing that
st +c?=1ands? +c2 =1 gives

Z17Y217 — Z217Y 17 = cilciaensiXa + c12¢7 Y2 + 8126722 + si[c2¢7 X2

— 12671872 — $1267187Z,] + [—s1287187Xa]- (8.264)
This equation can be regrouped to give
Z17Y217 — Zo17Y 17 = co(Wn Y2 — Vi Xo) + s12(Wy Z, — Uy Xy). (8.265)

This term is also linear in the sines and cosines of 6, 6,, and ;. Equation (8.265) may
be simplified by introducing the terms X;, Y,, and Z, and recognizing that s3, + ¢2, = 1
to give

Z17Y 217 — Zy17 Y17 = —spsls2(Uisiz + Vaici2) + 6aWai ] (8.266)
The term in brackets in this equation is W5,,, which equals W57, and therefore

Z17Y217 — Za1 Y17 = —sWoyg. (8.267)

Substituting the results of Egs. (8.254), (8.261), and (8.267) into (8.247) yields

Aser12 = Xs[823U2176] + Zs [86(—523U3 176) + c6(—523W217)] + €3 X6 (8.268)
Rearranging this equation gives

Aser12 = 523(X5Uz176 — ZsWai76) + €34X]76- (8.269)

All that remains to be accomplished is to expand the term Bsg7,; as defined in Eq. (8.237)
so that it is linear in the sines and cosines of the unknown joint parameters. Expanding
25671 = 21765 in Eq (8237) giVCS

Bssr12 = [812(Xs6781 + Ys67€1) + 127256712517 (8.270)
Expanding Ys¢; and Zse; gives

Bss712 = [s12(Xser81 + (c11 X3 — s11Zss)c1) + ci2(s71X3gy + ©11Zs6) | Zo17.  (8:271)
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Regrouping terms yields
Bser12 = X1 Xs67Za17 — Y1 X367 2017 + Z1ZseZarr. (8.272)

The current objective is to express Bsg71; as an expression that is linear in the unknown
values 8 and 6. This task will begin by writing the products Xs¢77Z,;7 and X54,Z517 from
Eq. (8.272) as

Xs672217 = 867(X21X56787 + Y21X567C7) + C67Z21 X567 (8.273)
and
X;672217 = S¢7 (X21X;67S7 + Y21X§67C7) + C67Z21X§67- (8.274)

Next, a fundamental cosine law for a spherical heptagon (Z;;7¢5s = C34) is expanded as

845(X217685 + Y2176Cs) + CasZa176 = Caq. (8.275)
Expanding Y;176 and Z;;76 and regrouping this equation gives

XsXo176 — Ys5X3176 + ZsZar7 = Ca4. (8.276)
Expanding X;76 and X34 gives

Xs5(X217¢6 — Ya1786) — Ys5(X21786 + Y217C6) + ZsZa17 = Caq. (8.277)
Rearranging this equation yields

Xs6X217 — X56 Y217 + ZsZy17 = C34. (8.278)
Substituting for X517, Y217, and Z;; gives

Xs6(Xa167 — Y2187) — X56(ce7(X2187 + Y21¢7) — 867Z21)
+ Zs(s67(X2187 + Y21C7) + Ce7Z21) = C3a- (8.279)

Regrouping this equation yields

X21(Xs6¢7 — (cerXs6 — 8671Zs)87) — Ya1(Xs687
+ (c67X%6 — 867Z5)C7) + Zai (s67X%6 + C1Zs) = Caa. (8.280)

This equation may be written as

X1 Xs67 — Y21 X567 + Z21Zs6 = Ca4. (8.281)
Multiplying this equation by s; and then c; and rearranging yields

X21Xs6787 = Y21X56,87 + (2 — Z21Zs6)s7 (8.282)
and

Y21 X56,67 = X201 Xs567€7 — (€34 — Z21Zs6)C7. (8.283)
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Substituting Eq. (8.282) into Egs. (8.273) and (8.283) into Eq. (8.274) gives

Xs61Za17 = 867 Y21X36787 + (€38 — Z21Zse)s7 + Y21 Xs67¢7] + 67221 X567 (8.284)
and

XtaZorr = se7[Xa1Xler87 + X21Xs67¢7 — (Caa — Z21Zs6)07] + CerZo1Xlgy- (8.285)
Expanding the terms Xs¢7 and X3, in these two equations yields

Xs67Z217 = 867[Y21(Xs687 + Ys56C7)87
+ (€38 — Zy1Zsg)s7 + Y21(Xs6¢7 — Ys657)C7] + C67Z21 X567 (8.286)

and

Xi67Z217 = 867 X21(Xs5687 + Ys6€7)87 + X21(Xs6¢7 — Ys87)C7
— (C34 — Zy1Zsg)c1] + 61201 X567 (8.287)

Multiplying and rearranging terms and then recognizing that s2 + c2 = 1 gives

Xse1Zo17 = 8671 Y21 X56 + (C3a — Z31Zs6)57] + C67Z21 X567 (8.288)
and
Xi67Z217 = 867[X21X56 — (€38 — Zy1Zse)c7] + C67221 X3 (8.289)

Substituting Eqs. (8.288) and (8.289) into Eq. (8.272) and expanding Z,;; gives

Bss712 = Xils67(Y21Xs6 + (34 — Z21Zs6)$7) + C67Z21 X567
=Y [s67(X21Xs6 — (C34 — Z21Zs6)C7) + C1Z21 K |
+Z,Zss[s67(Xa187 + Y21¢7) + €67Z21]- (8.290)

This equation is linear in the sines and cosines of the input angle, 6%, but is not yet
linear in the sines and cosines of the output angle, ;. Regrouping this equation gives

Bssr12 = 867Xs56(X1 Y21 — Y1X21) + ¢67Z21(21Zs6 + X1 Xse7 — Y1 X%;)
+ s61Zss[$7(Z1 X1 — X1Z21) + ¢7(Z1 Y21 — Y1Za1)] + Casser X (8.291)

The second term in parentheses in Eq. (8.291) may be rewritten as
Z\Zss + X1 Xs61 — Y1 X557 = (71012 = 81181261)Zse
+ (s1281) X567 + (87112 + €71812€1) X547 (8.292)
This equation may be regrouped as

Z\Zss + X1 Xs671 — Y1 X% = 81281 X567 + 812¢1 (611 XEg7 — $711Zs6)
+cCp2 (S71X§67 + c7IZ56) . (8.293)

* Tt is not important that the equation be linear in the sines and cosines of the given joint parameters. It is only
important that it be linear in the sines and cosines of the unknown joint parameters.
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Introducing the terms Ysq; and Zsg; in the right side of Eq. (8.293) yields
Z\Zss + X1 Xs61 — Y1 X%, = $12(Xs6781 + Ys67€1) + C12Zs67. (8.294)

Finally, this term may be simplified by recognizing that the right side of Eq. (8.294) is
51mply Z5671. ThllS,

Z\Zss + X1 Xs67 — Y1 X%, = Zser1.- (8.295)
Equation (8.295) is substituted into Eq. (8.291) to yield

Bser12 = s67Xs56(X1 Y21 — Y1X21) + ¢67Z21Zs671
+ s67Zs6[$7(Z1Xa1 — X1Za1) + ¢1(Z1 Y21 — Y1Z21)] + caaser X} (8.296)

Equation (8.296) is still not linear in the sines and cosines of 8;. The first term in paren-
theses in this equation may be written as

X1 Y2 — Y1 X = [sizsillen(Xasi + Yaer) — snZs]
+ [s71¢12 + crsic1 11X — Yosql. (8.297)

Performing the multiplication of terms, regrouping, and recognizing that s} + ¢? = 1
yields

X1Y2 — Y1 Xo1 = ci(ciosnXa) + sisn1(—c12Y2 — $12Z3) + (512671 X2)- (8.298)
Expanding the terms X,, Y,, and Z, and recognizing that s2, + ¢, = 1 gives
XiYy — YiXa1 = sasl(si2s2)en + (5162 + ¢182612)871]- (8.299)

The term in brackets on the right side of Eq. (8.299) is U,;7. Thus, Eq. (8.299) may be
written as

XiYa — Y1 Xp1 = 553Uz (8.300)
The second term in parentheses in Eq. (8.296) may be expanded as

Z,Xy — X1Zy1 = [erie12 — smsizer 1[Xocr — Yasi]

— [sizs1][s71 (Xas1 + Yac1) + €1Z,]. (8.301)
Multiplying the terms together, regrouping, and recognizing that s? + ¢ = 1 yields
Z1Xo1 — XiZo1 = ci(CraenXa) + sier1(—ci2¥2 — s1225) + (—s12871%). (8.302)
Expanding the terms X,, Y,, and Z, and recognizing that s, + ¢, = 1 gives
ZXo1 — X1Zy = —sp3[(s1282)871 — (5162 + €182€12)Cm]. (8.303)

The term in brackets on the right side of Eq. (8.303) is U%,,. Thus, Eq. (8.303) may be
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written as
21X21 - )_(1221 = —823U;17. (8304)
The third term in parentheses in Eq. (8.296) may be expanded as

Z,Y21 — Y1Z21 = [enici2 — susiacillen (Xasy + Yacr) — s7125]
+ [s71¢12 + crisiaci1Is71 (Xas1 + Ya¢1) + €1 Zs]. (8.305)

Multiplying the terms together, regrouping, and recognizing that s3, + ¢3, = 1 yields

Z1Y2 — Y1 Zy1 = ci(ca Y2 + 512Z2) + 51(c12X). (8.306)
Expanding the terms X,, Y,, and Z; and recognizing that 2, + ¢%, = 1 gives

Z1Y2 — Y1Zy = —splcicr — s15:€12]. (8.307)
This equation may be rewritten as

Z,Y2 — Y1Z2 = —s53Way. (8.308)

The only term in Eq. (8.296) that has not yet been expressed linearly in the sines and
cosines of the joint angles is Z;;Zs67,. This term may be written as

ZnZssn = [snX5; + cnZa] [s12X%, + c12Zse7) - (8.309)
Performing the multiplication gives

Z1Zse11 = 812571 X671 X351 + C12571Zs67 X%, + €122 Zse1 - (8.310)
Expanding X3, in the first term gives

Z1Zser1 = S12511 K67, (Xas1 + Yac1) + €281 Zse1X5, + €1Z2Zs671. (8.311)

The first term of this equation is the only term that is not linear in the sines and cosines
of the joint angles. This term will be modified by first expanding the fundamental cosine
law, Zsg712 = Ca4, as follows:

$23(Xs67152 + Ys671C2) + C23Zs671 = C3a. (8.312)
Expanding Ys¢;; and Zsg7; gives

$238:X5671 + $23€2(C12X3g7; — S12Zs67) + €23 (812X567; + C12Zs67) = C34. (8.313)
Rearranging this equation yields

XoXs671 — Yo X + Z2Zsg7 = Caa. (8.314)
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Multiplying Eq. (8.314) by ¢, and rearranging gives
Yo Xk 61 = XoXser1¢1 — (¢34 — ZoZser)cy. (8.315)
Equation (8.315) is now substituted into Eq. (8.311) to yield

ZnZssyy = 812571 [Xbe7, X281 + XoXs671¢1 — (Cas — Z,Zs67)c |

+ 12811 Zsg1X31 + 1122 Zser- (8.316)

Substituting X%, and Xs¢7; into this equation, regrouping, and recognizing that s{+c7 = 1
gives

ZnZssr1 = sisnl[Xse1Xa — (¢34 — ZaZser)er] + casnZser Xy + onZaZsgn. (8.317)

This term is linear in the sines and cosines of the joint angles. Equation (8.317) can now
be regrouped as follows:

ZnZssn = 11 [s12Xs561X2 + Zser(c12X5, + 5126122) ]| + c11Z2Zsert — $12€34871€1.-
(8.318)

The term in parentheses in this equation will be expanded and simplified. This term may
be written as

cX3 + s1ciZy = cp(Xas1 + Yacy) + 81261 Z;. (8.319)
Expanding X, Y2, and Z; and recognizing that s, + c2, = 1 yields

c12X5, + 8126122 = —8p3(C1C2 — 8185:C12). (8.320)
Equation (8.320) may now be written as

cXh + 812612y = —s3Way. (8.321)
Substituting Eq. (8.321) into (8.318) and expanding X, gives

ZnZssn = 8235711 (Xs61Un1 — ZserW21) + ¢11Z2Zse71 — $12C34871C1. (8.322)

Substituting the results of Egs. (8.300), (8.304), (8.308), and (8.322) into Eq. (8.296)
gives the following expression for Bsg7;2:

Bss712 = S67Xs6[523U217] + Cor[823871 (Xs67U21 — Zse7Wa1) + c11Z2Zser
— 812¢34871¢1] + 867Zs6 [87(—823U% 1) + €1(—823Wa1)] + caserX 7. (8.323)
Now that the terms Asg71; and Bsgr1, have been expressed linearly in terms of the joint

angle variables, Egs. (8.269) and (8.323) may be substituted into Eq. (8.238) to yield an
expression for the product Z,76Z7¢5. This product may then be substituted into Eq. (8.229)
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to yield the following complicated, but linear, expression for C(as4):
Clay) = {—ss6[523(Xs5U2176 — ZsWa176) + €2aX6] — 56 [867X56(523U217)
+ 67523871 (Xs67Ua1 — Zsg7Wa1) + ¢11Z2Zs671 — $12€34871C1)
+ s67Zs6 (37 (—523U% ) + C1(—823Wa1)) + Caaser X}y + C23Cas | /534
(8.324)

The results of Egs. (8.218) through (8.221) are now substituted into Eq. (8.216) to give
the following result:

S1(812Xe671) + S3(—$23Xe712) + Sa(—845X1765) + Se(856X176)
+S7(=XiXE, — YiXer) + an(Yen) + a3 (X5p0)
+ a45 (X]765) + as6(Y176) + a67(Cs6 Y17 — 856€6Z17)
+27;(C12 Y67 — 812€1Z¢7) + 234[C(azs)] = 0, (8.325)
where C(ay,) is defined in Eq. (8.324).
This equation contains the constant mechanism parameters, the input angle, 6;, the

output angle, 6, and the extra angle, 8s. This equation will be paired with the fundamental
cosine law

Zs712 = Cas, (8.326)

which also contains the output angle, 6,, and the extra angle, 6, as its only unknowns.

Equation (8.326) will now be referred to as the first equation, and Eq. (8.325) will be
now referred to as the second equation for this problem. Both equations will be regrouped
into the following format:

cs(Aic; + Bis; + Dy) + s¢(Eic; + Fis; + Gy) + (Hicy + Iis; + J;) =0, i=1,2.
(8.327)

The coefficients of the two equations are listed as follows:

A; =Xs5(c7Xy — e7187Y2) 4 Ys(—ce187X2 + Ya(se1871 — C67¢71€7)),

B, = Xs(—c7157X2 — ¢7Y2) + Y5(Cer87 Y2 4 Xa (867571 — C67€71€7)),

Dy = Xs5(X7Z,) + Ys(—Y72y),

E; = Xs(—cg71X2 + Ya(s67871 — €67¢71167)) + Ys(Cq187Y2 — ¢7X0),

Fi = Xs(cers7Y2 + Xa (867871 — €67¢71€7)) + Ys(¢7¥2 + ¢7197X2),

Gi = Xs(—Y72,) + Ys(—X7Z2),

Hy = Zs(X:X2 — Y7Y2),

I =Zs(—X7Y2 — Y7Xa),

N =Zs(ZyZy) — caa, (8.328)

Ay = 5,(812856C6757) + S3523856(—C287C67 + €1252(S67871 — C67C71€7))
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+ S4812845(—C587C71 + 85C56(S67871 — C67€71C7)) + S6(S12856C7157)
+ S7(512856C67C7157) + A12€12856(S67571 — C67€71C7)

+ 23856(8287C67 + €2€12(S67571 — C67€71€7))

+ a45812(8587C71 + C5Cs6(S67871 — C67€71€7))

+ a56812C56(867871 — C67C71€7) + 867(—S12856 Y7)

+ a71(—S12856 Y7) + 834 [812C34856(—S67871 + C67€71C7)

+ Xscs6 (87067 (—81222031 + 82383102) - 01282386787182)

+ Zs5823556(C2C7 — €12€718287) + YsCs6(—S23C67871€2Y7

+ 812€67¢71Z2 (867571 — C67€71€7) + Sg7923(C2C7 — $287€12¢71)) | /834,

By = S1812856(—867871 + C67€71€7) + S3523856(C2(S67871 — C67€71€7) + C12€675287)
+ S4812845(—C5C7 + C56C678587) + S6(S12856C7) + S7(812856C67C7)
+212(C12856C6757) + 223856 (S2(—S67871 + C67€71€7) + C12C67C287)

+ a45812(85C7 + C56C67C587) + a56(812C56C6787) + A67(—81285656757)
+ 834 [ —$12€24556C6787 + Zs823856(—C71€287 — C1282¢7) + XsCs6 (—S12C67¢71¢7Z
- C12823067S$18287 - 82386787102) + Yscse (01282382 (571067Y7 - S§7C7)
+ s87¢71 (5120§7zz - S§782302))]/534,
Dy = S3(—51282385652Y7) + SaC12845(—Cs87871 + 85¢s56 Y7) + S6(C1285657157)
+ S7(c12856C6757157) + a12(—S12856 Y7) + 23(—S12856¢2 Y7)
+ a45C12(85X7 + €5Cs6Y7) + as6(C12Cs6 Y7) + ag7(—C12856Z7)
+ a71C12856(S67871 — C67¢71C7) + @34 [—C12€34856 Y7 + ZsUy 152385687157
+ Xscs6(823U21 Y7 — €12C67¢7187187Z2) + Yscs6(Ua182387187
+ 01206707122Y7)] /s34

E; = S1(812856C7) + S3823856(—C2C7 + €12C718287) + S4812845(C5(S67871 — C67€71C7)
+ 85C56C7187) + S6812856(—S67871 + C67€71€7) + S7(812856€71€7) + A12(C12856€7187)
+ 23856(82€7 + C12€71C287) + A45812(85(—867871 + C67€71C7) + C5C56C7157)

+ a56(S12C56C7157) + a71(—S1285687157) + A34 [ —$12C34856C7157

+ Z5523856(C1282(867871 — C67€71C7) — C67C287)

+ Yscs6(523871 (1286782 — C6787187C2) + $12C67¢5,57Z2)

+ X556 (71(Z2812C67(S67571 — C67€71€7) + $23867(C67871C2 — S67€125257))
+ 823C2C7 (531‘%7 + 527))] /s34,

Fy = S;(—812856C7157) + S3823856(C1282C7 + C71C287) + S4812845(C7C587 + C5685C7)
+ S6(—812856C6757) + S7(—81285657) + @12(C12856C7) + a23856(C12C2C7 — €718287)
+ a45812(Cs6CsC7 — C678587) + as6(812C56C7) + a34 [ —$12C34856C7
+ Zs5523856(C2 (867871 — €67€71C7) + €12€675287)

+ X5Cs6(S23867(C1282(—S67€7 — C67871C71) — $67€71€287)
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— €12823C;53,C782 + 812€5;€7187Z2) + Ys5Cs6(812C67€71€7Z2
+ 523871(S67C2 + C12€675715287))] /8345
Gy = S3(—8125238565715287) + SaC12845(Cs Y7 + C5685X7) + Se(—Ci2856Y7)
+ S7(C12856571C7) + a12(—81285657187) + a23(—812856571C287)
+ a45C12(—85Y7 + C56871C587) + a56(C12C5687157) + a71(C12856C7157)
+ a34 [ — €12C3485657157 — Z5523856 U1 Y7 + XsCs6(52387187Uz1 + 1266767122 Y7)
+ Yscse(Ci2Ce1871¢7187Z2 — 523Uz Y7)] /534,
Hy = S1(512C5686757) + S3823Cs6(—X7¢2 + €1282Y7) + S4(—81284585655 Y7)
+ S7(812C56567C7187) + a12(C12Cs6 Y7) + 223C56(52X7 + €12€2Y7)
+ a45(—812856Cs Y7) + as6(—S12856 Y7) + 867512C56(S67871 — C67C71C7)
+ a71(—812C56Z7) + a34 [ —812C34Cs6 Y7 + X5823856(C128, Y7 — €2X7)
+ ZscseCer(—s12611Z2 Y7 + $23(87162Z7 + 867(C1C2 — $752€12¢71)))] /34,
I = S1(—812C56Y7) + S3523Cs6(82€12X7 + €2Y7) + Sa(—5128458568675557)
+ S7(812C56867C7) + @12(C12C5686787) + 223Cs6(C12C2X7 — $2Y7)
+ a45(—812856867C587) + as6(—S1285656757) + 867(812C56C6757)
+ a34 [—$12€34Cs656787 + X5823856(C2 Y7 + $212X7)
+ ZsCs6Ce7 (5212823 (—571Z7 — $67C7) + S67671(—S1287Z2 — $2387€2))] /34,
Jo = S3(—512823C5692Z7) + Sa(—C1284585655Z7) + S7(C12C5656757157) + a12(—$12C56Z7)
+ a23(—$12C56€2Z7) + Ass(—C12856CsZ7) + as6(—Ci2856Z7) + a67(C12Cs6 Y7)
+ a71(C12656 Y7) + asa[—ZsZ3Z7C12Cs56C67¢71 — Ua1Xs5Z7823856

+ €12€34C56567571C7 + €23C45]/834- (8.329)

As in the previous solutions, the tan-half-angle identities for the sine and cosine of 6,
and 6 are now inserted into Eq. set (8.327). These two equations can then be regrouped
into the form

Xé [aixf + bix; + dl] + X¢ [eixf + fiX1 + gl] + [hiX% + ;X1 + ]1] =0, i=1,2,
(8.330)

where the coefficients of this equation are defined in Eq. set (8.11).

The two equations of the form of Eq. (8.330) are quadratic in the variables x; and xg.
These equations can be solved via Bezout’s method (Section 8.2.2) to yield an eighth-
degree polynomial in the variable x.

The corresponding value for the parameter x4 can be found from either

M, N;
M, N

xg = ——— 21 (8.331)
L, N

L, N,
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or

L N
L, N
xg = ——— 21 (8.332)
Li M

L, M

where L, M, and N, are defined in Egs. (8.14) through (8.16) and Eq. set (8.11). Equa-
tions (8.331) and (8.332) can be derived in a manner similar to that in which Egs. (8.34)
and (8.35) were derived.

Two joint angles remain to be solved, that is, 63 and 6,. A unique corresponding value
of 65 can be obtained from the following fundamental sine and sine—cosine laws:

Xs6712 = 83483, (8.333)
Ys6712 = $34C3. (8.334)

Similarly, a unique corresponding value of 6, can then be obtained from the following
fundamental sine and sine—cosine laws:

Xo1765 = 83454, (8.335)
Y21765 = $34C4. (8.336)

The offset distances S, and Ss are the remaining parameters to be determined. These
two values will be found be projecting the vector loop equation for the mechanism onto two
different directions. Projecting the vector loop equation onto the direction a4s and evaluat-
ing the scalar products using the sets of direction cosines provided in the appendix yields

S1 X234 + 212Wass + S X34 + asWay + S3Xy + ancy
+ a45 + a56Cs + SG)_(S + ag7Wes + S7Xes + a71 Wrgs = 0. (8.337)

The offset distance S, is the only unknown in this equation.

The distance Ss will be determined by projecting the vector loop equation onto the
direction a;,. Evaluating the scalar products by using the sets of direction cosines listed
in the appendix gives

a1z + 22362 + S3Xo + a3g W3y + Sy Xsp + agsWys
+ S5X432 + assWer1 + SeX71 + a7 W71 + S7X; + a71¢; = 0. (8.338)

This equation contains the variable Ss as its only unknown.

At this point, the analysis of the RRPRRPR group 2 spatial mechanism is com-
plete. Eight solution configurations were determined. Table 8.9 shows data that were
used for a numerical example. The calculated values for the eight configurations are listed
in Table 8.10. These eight configurations are shown in Figure 8.9.
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Table 8.9. RRPRRPR mechanism parameters.

Link length, = Twist angle,  Joint offset, Joint angle,

cm. deg. cm. deg.

ap =23 ap =120 S1=16 6, = variable
a3y = 13 O3 = 43 Sz = variable 92 =265

azy =40 oz =175 S; =65 6; = variable
ags = 17 oys = 120 S4 =38 64 = variable
asg = 20 asg = 92 S5 = variable 6s = 307

ag7 = 38 ag7 =111 Ss =179 65 = variable
a; =24 g = 67 S, =83 67 = 256 (input)

Table 8.10. Calculated configurations for the RRPRRPR
spatial mechanism.

Solution
A B C D E F G H
6;,deg. —78.01 25.62 56.45 143.96 16575 —164.32 57.78 —150.92
63, deg. -2.91 15825 -109.73 —-73.07 —39.09 65.70 142.42 76.72
64,deg.  —23.85 —46.06 —133.56 129.29 114.33 149.71 0.19 164.22
66, deg.  —53.67 155.97 55.51 12.40 36.28 14922 —174.72 163.68
S,, cm. 5.22 33.44 5099 -51.36 —80.35 —6698 -—-7380 —86.20
Ss, cm. 138.83 36.60 6.50 41.94 28.63 —47.96 —63.86 —35.09

8.7 Summary

The method of solution for group 2 mechanisms should at this point be apparent. Two
equations are generated, each of which contains the input angle, the output angle, the
constant mechanism parameters, and one extra joint angle. The two equations are solved
simultaneously using Bezout’s method to yield, in general, an eighth-degree polynomial
in the tan-half-angle of the output variable.

One of the two equations will be either a projection of the vector loop equation or a
secondary cosine law. The selection of this equation is guided by the fact that it may
not contain either of the unknown joint offsets. Quite often, however, one term of this
equation requires additional manipulation in order to be expressed in terms of the required
variables (see, for example, Egs. (8.187) and (8.222)).

Once the equation containing the link lengths and offsets is selected, the extra joint
angle is identified. An appropriate cosine law can then be selected that contains the output
angle and the extra angle as its only unknowns. The two equations are then factored into
the format of Eq. (8.5), and the solution continues as per Bezout’s method.

Examples of five-link, six-link, and seven-link group 2 mechanisms have been presented
in detail in this chapter. Although a solution for every group 2 mechanism has not been
presented, it is hoped that the reader has grasped the solution technique and will be able
to solve any group 2 mechanism.
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Solution A Solution B

Solution G Solution H
Figure 8.9. Eight configurations of an RRPRCR group 2 spatial mechanism.
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8.8 Problems

1. Insert dual angles into the following spherical cosine laws and derive the corresponding
secondary cosine laws:
(a) Spherical pentagon: Z43 = Z,;
(b) Spherical hexagon: Zs43; = cg;

(c) Spherical hexagon: Zj; = Zs4

2. Shown in Figure 8.10 is a planar representation of a five-link RCCRR spatial mechanism.
The input parameter is s, and the output parameter is 6;.

(a) Assuming that all constant mechanism dimensions are known, what link lengths,
offsets, twist angles, and joint angles are still unknown?

(b) What group mechanism is this? Why?

(c) Write a secondary cosine law that contains the input angle, the output angle, and
only one additional unknown. Expand the secondary law.

(d) Describe how you would use the equation in part (c) to solve for the output angle 6;.

3. A spatial six-link RCRPRR mechanism is represented in Figure 8.11. The input parame-
ter is g, and the output parameter is 6;. It is necessary to obtain an input/output equation
for this mechanism. In order to do this it will be necessary to obtain two equations that
each have 6, as an extra unknown parameter.

(a) Write a spherical equation that contains the output angle and 6; as its only unknowns.

(b) Write a secondary cosine law that contains the output angle and 6, as its only
unknowns. Expand your equation as necessary to show that these are the only
unknowns in the equation.

(¢) Describe how you would use the equations in parts (a) and (b) in order to solve for
6,. How many values for 6, can be found for each given value of 6¢?

R R
5 TT7TTTTITITIT

Figure 8.10. RCCRR spatial mecha-
nism.
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Figure 8.11. RCRPRR spatial mecha-

nism.
R
R C
R
Figure 8.12. RRRCC spatial mecha-
nism.

(d) Assuming that values for #; are now known, describe how you would solve for
corresponding values of 6,.

(e) Describe how you would solve for the remaining unknown mechanism parameters.

4. Evaluate the function
f(x,y)= e"(xzy +4x + 6)

whenx =2+ 3eandy =1 — Se.

5. Completely expand a secondary cosine law for a spatial quadrilateral that will not contain
the offsets S, or S4.

6. A planar representation of a spatial closed-loop mechanism is shown in Figure 8.12.

(a) What group mechanism is this?

(b) Assuming that all constant mechanism parameters are known and that the angle 65
is given as an input angle, explain how to solve for the angle 6.

(c) Assuming that you have successfully solved for 64, explain how you would solve
for the angle 6;.
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(d) Assuming that you have successfully solved for 64 and 6, explain how you would
solve for the angle 6s.

(e) Assuming that you have successfully solved for 684, 61, and 63, explain how you
would solve for the angle 6,.

(f) Assuming that you have successfully solved for 6y, 8y, 63, and 8;, explain how you
would solve for the slider displacements S; and S,.
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Group 3 spatial mechanisms

9.1 Introduction

Group 3 mechanisms, namely the six-link SR-C and seven-link 6R-P mechanisms, all
have equivalent spherical mechanisms with mobility three. This means that it is possible to
select an appropriate spherical cosine law for the equivalent six-link, six-revolute spherical
mechanisms that contains the input angle, the output angle, and two additional angular
displacements. The spherical cosine law can be expressed in the form

(axZ + bxm + d)x2 + (ex2, + fXm + g)Xa + (hx2 + ixm +j) =0, 9.1)

where x,, and x,, are the tangents of the half angles (tan-half-angles) of the two additional
angles 6, and 6,. The coefficients a through j are themselves quadratic in the tan-half-
angle of the output angular displacement. It is becoming apparent that it is necessary to
eliminate a pair of tan-half-angles in a single operation from a set of equations. This is
much more difficult than the elimination problem encountered with group 2 mechanisms,
which was the elimination of a single tan-half-angle from a pair of simultaneous equations.

At the outset it appears that it is necessary to form a further two or possibly three
equations of the form of Eq. (9.1) and to attempt to apply Sylvester’s dialytic method to
eliminate Xx,, and x, in a single operation. This procedure yields a polynomial in the output
tan-half-angle that is of thirty-second degree (or higher). However, it will be shown here
that the input—output polynomials for group 3 mechanisms are of sixteenth degree, and
they can be derived by generating four simultaneous equations of the form

(aix2, + bixp + di)Xs + (X2 + fixm + &) =0, i=1...4, 92)

where the coefficients a; through g; are again quadratic in the tan-half-angle of the output
angle. Multiplying these four equations by x,, will yield eight “linear” homogeneous
equations in the eight “variables” xfnxn, xfnx,,, XmXns X?m xfn, Xm> Xn, and 1. These equations
will have a solution only if the equations are linearly dependent. The eight equations will

be linearly dependent if the determinant of the coefficient matrix equals zero, and thus

00ai bi di €i fi gi

(9.3)
a ¢ b 4 0 fi g O

Expanding this 8 x 8 determinant will yield a sixteenth-degree input—output equation
because the coefficients a; through g; are quadratic in the tan-half-angle of the output
angle.
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In the next section it will be shown how to generate tan-half-angle laws for spherical
mechanisms that can be regrouped into the format shown in Eq. (9.2). After this is
completed, the analysis of six-link and seven-link group 3 mechanisms will be presented.

9.2 Tan-half-angle laws

It was shown in Section 6.4 (see Eq. (6.55)) that for an n-sided spherical mechanism,
the direction cosines of the vector along the n' joint axis measured in terms of the first
coordinate system could be written as

Xn—l n—2,...,2

1

§n: Yn—l,n—2,...,2 . (94)
Zy_1n-2,.2

The direction of this vector was also calculated by rotating the vector directly from the n't
coordinate system to the first coordinate system as
Sn181
'S, = | smic1 | - 9.5)
Cn1

Equating the components of Eqs. (9.4) and (9.5) resulted in the following fundamental
sine, sine—cosine, and cosine laws for a spherical mechanism with n links:

Xn—l.n—2 ..... 2 = 84181, (96)
Yn—l,n—2 ..... 2 =38351C1, (97)
Zn—l,n—2 ..... 2 =Cni- (98)

—x2 .
Substituting the half-angle expressions s; = a—";; and ¢; = %ﬁ—;— where x; = tan(ez—'), into
1 i

Egs. (9.6) and (9.7) gives

2X1
Xn—l,n—2 ..... 2 = 8p1 <—> ’ (99)
1+x}
1-x2
Yn—l,n—2 ..... 2 = Sn1 <—1> (910)
1+ x3

(Xn—l,n—Z Z)X% + (_anl)xl + (Xn—l,n—Z 2) =0, (911)

~~~~~~~~~~

(Yn—l,n—2 2+ Snl)X% + (Yn—l,n—2 2 Snl) =0. (912)

The necessary condition that two quadratic equations of the form a;x> + bix +d; = 0
(i =1, 2) have a common root (see Section 8.2.2) is

2

a b
=0, 9.13)

b, d,
b, d

a d

a b a d
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where the common root is evaluated as

a| d1 b1 d1
= — Vaz dzr _ bz dz (9 14)
! a) b1 B a| d1 ' '
az bz az dz

Applying the condition of Eq. (9.13) to Egs. (9.11) and (9.12) gives
szx—l,n—z 2 T lem—l,n—z 2= 51211- 9.15)

,,,,,,,,,,

,+ci =1 (9.16)

.....

szx—l,n—z ..... )+ lem—l,n—z 2 +Z;21—1,n-2 2= 1. 9.17)

,,,,,,,,,,

This relationship was shown to be true in Section 6.4. Therefore, Eqs (9.11) and (9.12)
always have a common root. The value of this common root can be obtained by applying
Eq. (9.14), which yields a pair of alternative expressions,

X =

(9.18)
These equations represent two new relationships for an n-sided spherical mechanism.
These will be called half-angle laws for a spherical n-gon.

Further sets of half-angle laws can be generated from the other fundamental sine and
sine—cosine laws. Additionally, more half-angle laws can be generated from pairs of sub-
sidiary sine and sine—cosine laws by following the same procedure. Sets of half-angle laws
are presented in the appendix for the spherical quadrilateral through the spherical heptagon.

9.3 Six-link group 3 spatial mechanisms

All six-link group 3 mechanisms contain five revolute joints and one cylindric joint,
that is, 5R-C. The only difference between the various six-link group 3 mechanisms is the
selection of the frame or fixed link. One example mechanism will be presented in this
section. The solution technique developed here is applicable to the various inversions.

Shown in Figure 9.1 is a planar representation of an RCRRRR spatial mechanism.
Here, link ag is attached to ground and all the constant mechanism parameters are known
together with the input angle, 6¢. The objective is to determine corresponding values for
the remaining unknown joint displacements and joint offsets. In particular, the problem
statement is as follows:

given: oy, 0023, 034, Olas, Use, g1,
a2, 423, A34, A5, Ase, A6,
Sl, Sz, S3, S4, Sﬁ, and
0 (input angle),

find: 91, 92, 93, 94, and 95, S5.
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input 6 1 output
angle angle

Figure 9.1. Planar representation
of an RCRRRR spatial mecha-
nism.

The angle 6, is identified as the output angle because it is connected to the frame, and it
will be solved for first.

9.3.1 Development of input—output equation (solution for 9,)

It will be shown that the input—output equation for this mechanism will be generated
from four equations of the form of Eq. (9.2). The first pair of equations is derived from
the following subsidiary tan-half-angle laws for a spherical hexagon:

Xy = X2 = (Ya — Ye12)x3, (9.19)
(X4 + Xe12)x3 = —(Y4 + Yon). (9.20)
It can readily be shown by expanding Y, and Z, that
$34Y4 = C34Z4 — Cus. 9.21)
Using a subsidiary cosine law to substitute for Z, gives
$34 Y4 = C34Z612 — Cas. (9.22)

Multiplying Egs. (9.19) and (9.20) by s34 and then using Eq. (9.22) to substitute for the
quantity s3, Y, gives

$34(X4 — Xo12) = (C34Z612 — 834 Yo12 — Cas)X3, (9.23)
$34(Xs + Xo12)X3 = —(c3aZ612 + 834 Yo12 — Cas)- (9.24)

Corresponding secondary tan-half-angle laws can now be generated by substituting dual
angles into Egs. (9.23) and (9.24). The expansion of the necessary partial derivatives has
been demonstrated in Chapter 8 with the exception of the derivative %z, where x3 = tan %.
Hence,

dx; 1 ) (93)) 1+ x2
& (1 (2)) = 5 9.25
6, 2( a5 2 ©.25)
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Using this result, the dual of Eq. (9.23) may be written as

a34034(Xs — Xe12) + 532(Xoa — Xos12) = [aasS45 + a34(—534Z612 — C34 Ye12)

1+x3
+ ¢34Zo612 — S34 Yos121X3 + S3(C3aZ612 — 534 Y612 — C45)(T3)- (9.26)

It remains to reduce Eq. (9.26) to an equation that is linear in x;.

Several of the terms of this equation may be substituted by expressions formed from
Egs. (9.23) and (9.24). Multiplying Eq. (9.23) by x; and then subtracting the result from
Eq. (9.24) gives

2534 Xo12X3 = —C3aZe12 (X5 + 1) + 834 Ye12(x3 — 1) + cas(x3 + 1), 9.27)
which can be rearranged in the form
(c38Zg12 — 534 Y12 — Ca5)X3 = —2534X612X3 + (—C34Z612 — 534 Y12 + Cas)- (9.28)

After multiplying Eq. (9.26) throughout by s34 and substituting Egs. (9.28) and (9.23) into
Eq. (9.26) yields

a34C34(C34Z612 — 834 Yo12 — Cas)X3 + 85,(Xoa — Xos12) = [AasSss + asa(—s3aZe12
— €34 Ye12) + C34Zo612 — S34 Yo612]834X3 + 253534(0342612 — 834 Y612 — Ca5)
+ S3834 (—834X612X3 + %(_0342612 — s Ye2 + C45)>- 9.29)
This equation reduces to

) o
34C34(C34Z612 — 834 Y612 — Ca5)X3 + 83,(Xos — Xos12)
= [a45545 + a34(—534Z612 — C34 Y612) + C34Z0612 — 534 Y 0612]534X3
2 2
- S3S34Y612 - S3S34X612X3 (930)

and is finally expressed in the form

[a34(Zo12 — C34Cas) — AasS34Sas — $34C34Zog12 + S34 Yoe12 + 3554 X612] X3
+ [834(Xos — Xos12) + S383,Ye12] =0. 931

Analogously, taking partial derivatives, the dual of Eq. (9.24) can be expressed as

1+x2 -
( 5 3) + 534(Xos + Xos12)X3
= —a45845 + a34(834Z612 — C34 Y612) — (C34Z0s12 + S34 Y0612), 9.32)

a34C34(Xys + Xe12)X3 + S3834(Xs + Xe12)

which can be rearranged in the form

2
= —ay5845 + 34(834Z612 — C34 Y612) — (C3aZ0612 + 534 Yo612)- (9.33)

_ X3 1 - —~
X3(X4 + X612) (334034 + 53534—> + 553534()(4 + Xe612) + 834(Xos + Xos12)X3
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Multiplying by s34 and substituting Eq. (9.24) into Eq. (9.33) gives

(—CZgia — 34 Y612 + C45)(334034 + 33534%) + %Sssg4()_(4 + Xe12) + 534 (Xoa + Xos12)X3
= —a45545834 1 234534(83¢Z612 — C34 Ye12) — 834(C34Z0612 + 534 Yo612) - (9.34)
Equation (9.23) can be rearranged to solve for the product $34X4, and
$34Xs = (c3aZ612 — 834 Y612 — €45)X3 + 834 Xe12- (9.35)
This expression may be substituted into Eq. (9.34) to yield

1

233$§4X612

X
(—c34Z612 — 534 Y612 + Ca5) (334034 + 33534*23‘) +

1
2

= —45545534 + 834534(834Zg12 — C34 Y612) — 534(C24Zos12 + S34 Yos12)- (9.36)

+ =S3834[(c34Zs12 — S3a Y612 — Cas)X3 + 534 Xe12] + 534 (Xoa + Xos12)X3
Rearranging this equation gives
[—S3834 Y612 + 53, (Xoa + Xos12)] %3 + [@3aC3a(—c34Zg12 — 534 Y612 + Cas) + S35, Xs12
+ 845534845 — 834834(534Z612 — €34 Yo12) + 834(C34Zos12 + 534 Yo612)] = 0. (9.37)
Equations (9.31) and (9.37) contain the input angle 6, the output angle 0;, the extra
angle 6,, and the tan-half-angle of 6;. However, each of these equations also contains the
expression X4, where by definition

)_(04 = a45C45S4 + S4S45C4. (938)

This term clearly contains a further unwanted angle 6,. However, both s4 and ¢4 can be
expressed in terms of the angles ¢, 0, and 6, using spherical equations. Firstly, multiply-
ing Eq. (9.38) by s3,s45 and substituting X, = ssss4 gives

S§4S45)-(04 = a45s§4c45)_(4 + S4534545(834545C4) . (9.39)

Equation (9.23) may be solved for the product s34 X, and the result then substituted into
Eq. (9.39). This yields

s2,5a5Xoa = a45534Cas[(c3aZ612 — 534 Y12 — €a5)X3 + 534 X612] + S4534545(S34545C4)-
(9.40)

Expanding the left side of the subsidiary cosine law Z; = Zg), gives
C34C45 — $34845C4 = Zg12. (9.41)

This equation may be rearranged to solve for the expression (S34S45¢4), which is then
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substituted into Eq. (9.40) and yields

,
$34845 X04 = A45534C45[(C3aZg12 — $34 Y12 — Ca5)X3 + 834 X612] + S4534845(C34C45 — Zo12).
(9.42)

Substituting Eq. (9.42) into s,5 times Eq. (9.31) gives

2 2
[234(Zg12 — C34C4s) — AusS3aSas — 34€3aZ0612 + 834 Vo612 + S385,X612] S45X3
+ a45534C45[(C3aZ612 — 834 Y612 — Ca5)X3 + 834 Xe12] + S4834845(C34C45 — Ze12)
2 2
— 845834 Xo0612 + S384583, Y612 = 0. (9.43)

This equation may be rearranged as

2 2
{[a34(Zs12 — C3aCa5) — $34¢34Z0g12 + 83, Y0612 + S383,X612)Sas — sS4
2
+ 245834C45(C34Z612 — 834 Yo12) }X3 + 245Ca583, X612 + Sa534845(C34Cas
2 2
—Zg12) — 84585, X612 + S354553, Y612 = 0. (9.44)

The term X3 Xo4 will now be eliminated linearly from Eq. (9.37). Multiplying Eq. (9.39)
by x; gives

834845 X04X3 = a4553,C45X4X3 + S4834845(S34545C4)X3. (9.45)
Equation (9.24) can be rearranged in the form

$34X4X3 = —(C34Zg12 + 534 Y612 — Ca5) — 534 X612X3- (9.46)
Substituting Eq. (9.46) into Eq. (9.45) gives

, o
$34845 X04X3 = —45534C45(C34Z612 + 534 Y612 — Cas + 534 X612X3) + S4834545(534845C4)X3.
(9.47)

Equation (9.47) may now be substituted into s45 times Eq. (9.37) to give

2 2
[~S383, Y612 + 83, Xo0612) S45X3 — A45834Ca5(C2aZ612 + 534 Yo12 — Cas + $34Xe12X3)
2
+ S4834845(834845C4)X3 + S45[34C3a(—C34Z612 — 34 Yo12 + Cas) + S383, X612

+ 45534845 — 234834 (834Z612 — C34Ye12) + $34(C3aZo612 + 834 Yos12)] = 0, (9.48)

which can be rearranged in the form

2 2 2
{-S3834 Yo12 + 83, Xo612] S45 — 24583,4€45 Xo12
+ S4834545(534845C4) } X3 — 45834Ca5(C3aZ612 + 834 Ye12) + Q45534
2
+ 845 [234C34(—C34Z612 — 534 Y612 + Ca5) + S383, X612

— a34834(s34Zs12 — €34 Yo12) + $34(C2aZo612 + 834 Yos12)] = 0. (9.49)
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The product (s34845¢4) can be eliminated using Eq. (9.41), and thus

2 2 2
{83534 Yo12 + 53, Xo612] a5 — 4553,Cas X612 + S4534845(C34Cas — Zg12) } X3
— 245534C45(C3aZ612 + 534 Yo12) + 245534 + 845 [34C34(—CaaZo12 — 534 Y12 + Cas)
2
+ 8353, X612 — @34534(534Zs12 — €34 Y612) + S3a(c34Z0612 + 834 Yos12)] =0.  (9.50)

Simplifying Eq. (9.50) yields
{8383, Ye12 + 53, Xo612] S45 — 84553,Ca5 X612 + Sa53a845(C34Cas — Ze12) } X3

— a45534€45(C3aZe12 + 834 Y612) + Q45834 + Sas [~a34Z612 + 234C34Cas
+ 8353, X612 + S34(C3aZos12 + s34 Yos12)] = 0. (9.51)

Equations (9.44) and (9.51) are a pair of equations that can be expressed in the format of
Eq. (9.2). Two additional equations are now derived from the following secondary cosine
law:

Zos = Zos12. (9.52)
Expanding the left side of Eq. (9.52) gives

Sss34Xs + a34 Y4 + 45 Y4 = Zogro- (9.53)
The term Y, may be expressed in terms of Z, as follows:

S45Y4 = C45Z4 — Cag. (9.54)
A subsidiary cosine law can be used to substitute for Z,4 to yield

Sa5 Y4 = Ca5Zg12 — C3a. (9.55)
Equations (9.55) and (9.22) may now be substituted into s34s45 times Eq. (9.53) to give

483,545 X + 234845(C34Z612 — Cas) + AusS34(CasZe12 — C34) = S34545Z0612- (9.56)
Using Eq. (9.23) to substitute for the term X, gives

S4834845[(C3aZ612 — S34 Y612 — Cas)X3 + 534 Xe12] + 234845(C3aZg12 — Cas)

+ a45834(CasZg12 — C34) = 8348450612 9.57)

This equation can be rearranged as

[S4534845(CaaZe12 — 834 Y612 — Cas) X3 + [Sas34545 X612 + 34545 (C3aZg12 — Cas)
+ a45534(CasZs12 — C34) — S3a845Z0612] = 0. (9.58)

Equation (9.24) may be used to substitute for the term s34X4X3 in the product of X3 times
Eq. (9.56). The result can be written as

S4834845[—(C3aZ612 + 534 Y612 — Ca5) — $3aXe12X3] + [@34545(C24Zg12 — C45)

+ 245834 (C45Z612 — C34) — $34845Z0612]X3 = 0. (9.59)
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This equation can be rearranged as

[_S4S§4S45X612 + 234845 (C3aZo12 — Cas) + AusS3a(CasZe12 — C3a) — S3a845Z0612) X3
+ [—S4834845(C3aZg12 + 534 Y12 — Ca5)] = 0. (9.60)
Equations (9.58) and (9.60) can be expressed in the form of Eq. (9.2) and these together
with (9.44) and (9.50) can be used to obtain a sixteenth degree input/output equation in
terms of x;, the tan-half-angle of the output angle. The four equations can be rewritten in
the form
{a34845Z612 — M| — M5¢34Z0612 + M Y612 + M2 S3X612 + Maags(C3aZe1a — 534 Ye12) }X3
+ Msass Xe12 + Ms5S4(C34¢45 — Ze12) + Ma(—Xos12 + S3Ye12) = 0, 9.61)

{—=M,S3Y 612 + MaXos12 — M3agsXei2 + MsSa(C34€a5 — Ze12)}X3
— Maays(C3sZs12 + 834 Y612) + My + MyS3 X612 — 2348457612
+MesZos12 + M2 Y612 =0, (9.62)

{MsS4(c3aZ612 — 835 Y612 — Ca5)}X3 + M2SuXe12 + MyZg12 — 234545Css

— 45834C34 — MsZog12 = 0, (9.63)
{—M,S4 X612 + M7Zg12 — 234845C45 — 245534C34 — MsZos12}X3
— M5S4(c3aZs12 + 834 Y612 — C45) = 0, (9.64)

where M, through M; are constants defined as

M| = 234C34C45845 + 45834, Ms = 834845,

_ 2 _
M, = 83,845, Mg = $34C3484s5, 9.65)
— 2 _ )
M; = s347Cys, M7 = a34C34845 + 245834Cas,
M, = $34¢C45.

Equations (9.61) through (9.64) must be expanded into the format of Eq. (9.2). As a
first step the terms Xos12, Yos12, and Zgg» are expanded as follows:

Xos12 = —S2X¢;, + Xo61€2 — Yo6152,
Yos12 = —a23Z612 + S2¢23 X612 + €23(Xos182 + Yos1€2) — 82320615 (9.66)
Zos12 = a3 Y612 + 2823 X612 + 823(Xos152 + Yos1€2) + €23Zo61,

where
Xos1 = —S1X§; + XosC1 — YoeS1,
Yos1 = —a12Z¢1 + S1¢12Xe61 + €12(Xos81 + Yo6C1) — 8122065 (9.67)
Zos1 = a12Ye1 + S1812X61 + 8$12(Xos81 + YosC1) + €12Z0s.

and where
Xo6 = 256C5656 + S6556C6s
Yo6 = as56(S61556 — C61C56C6) — 26126 + S6Co185656. (9.68)
Zos = as6 Y + a1 Y + SeS6155656.
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Equations (9.61) through (9.64) may now be regrouped into the form
(AiCZ + BiSZ + Di)X3 + (EiCZ + Fis; + Gl) =0, i=1...4, (969)
where

A=A ci+Airs +As,
: (9.70)
Gi =Gy ¢ +Gizs1 4+ Gia.

The coefficients A, ; through G, 3 are now defined as

Ap1 = [Msc34(ar2812823 — 223€12€23) + MaaysCia(823€31 — €23834)
— M(a52812€23 + a23€12823) + 234€12823845] Y6 + [M2(S3 + S2€23 + S1€12€23)
— Mi823¢34(S1€12 + S2)1X6 + €12[M2€23 — Ms823¢34] Yo,
A1 = [Msc34(a12812823 — 223€12C23) + MaagsC2(S23C34 — €23834)
— M2(a12812€23 + 223C12823) + 234€12823845]X6 — [M2(S3 + S2¢23 + S1¢12¢23)
— Ms823¢34(S1€12 + 52)] Y6 + €12[M2C23 — M5823¢34] X0,
Aj 3 = [Mz(a23812823 — 212€12€23) + Myass512(C23834 — 523C34)
+ Msc3a(a12€12823 + 223812€23) — 34812823845)Z6 + $12[M5823¢31 — Mac23]Zs,
B 1 = [Maays(s23¢34 — €23831) — Maax3sys — Msa3¢3Cag + 2348238451X6
— [M2(S;€23 + S3¢12 + S2¢12€23) — MsC3a(S1823 + S2€12823)]1 Y
+ (M2€23 — Ms823¢34) Xos,
Bi2 = —[Maays(s23C3s — C23834) — Mrazsys — MsascasCas + 2345238451 Y6
= [M2(S1¢23 + S3¢12 + Sa¢12€23) — M5¢34(S1823 + 52€12823)1X6
+ (Ms823¢34 — M2¢23) Yos,
B13 = s12[M2(S3 + S2¢23) — MsS2823¢341 7,
Dy1 = [Msc34(a23812823 — a12€12€23) + Maasss12(823834 + €23€34)
— Ma(a12€12823 + 223812C23) + 234812€23845] Y6 — $12[M2S1823 + MsS1¢23¢341X6
— $12[M2823 + M5¢23¢34] Y06,
D5 = [Ms€34(a23812823 — 212€12€23) + MaaysS12(823834 + €23C34)
— M3(a;2€12823 + 223812€23) + 234812€238451 X6 + 812[M2S1823 + M5S1¢23¢34] Y6
— $12[M2823 + M5¢23¢34] X0,
Dy 3 = [M2(a2812823 — 223€12C23) + Maaysc12(823834 + €23¢34)
+ MscC34(a12812C23 + 223€12823) + 234C12€23845]1Z6
— ¢12(M2s23 + Msc23¢34)Z0s — My,
E; 1 = [Ma(S1 + Sa¢12 + S3¢12€23) — M5S4¢12823] Y + Maags Xs — MaXos,
Ej 2 = [M2(S1 + Saci2 + S3¢12€23) — MsS4€12823]X6 — M3agsYe + MaYos,
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E13 = 8$12[MsS4823 — Ma(S; + S3¢23)1Zs,
Fi1 = [M2(Sz + Siciz + S3¢23) — MsSy823]1X6 — [Maans1a + Msassci2]Ys
+ Mzc12 Y6,
Fi2 = —[M(S2 + Si€12 + S3€23) — MsS4823]Ys — [Maaasia + Miassci2]Xe
+ Mae12Xo6,
Fi 3 = [Msagssi2 — Maaaci2]Ze — Masi2Zos,
Gi1,1 = —s12[M2S3823 + M5S4C23] Y,
G12 = —812[M2S3823 + MsS4c231X5,
G135 = —¢12[M2S3823 + Ms5S4¢23]Z6 + M5Sac3acas, 9.71)
Ar 1 = [-M2(S1 + Sz¢12 + S3€12€23) — MsSac128231 Y6 — Maags X + M2Xos,
Azp = [-Ma(S1 + Sz¢12 + S3¢12623) — €128231X6 + M3ass Yo — M2 Yo,
Az 3 = s2[Ma(S2 + S3¢23) + MsSas231Zs,
B2,1 = —[M2(S2 + Sic12 + S3€23) + MsS4823]1X6 + [Maanasi2 + Msassci2] Y
— Mc12 Y06,
B = [Mza812 + M3aysc2]Xe + [M2(S2 + S1€12 + S3¢23) + MsS4823]1Y6
— M2c12Xos,
B3 = [Maajacr; — Maagssip]Ze + Masi2Zos,
Dy = 812[M2S3823 — M5S4¢23] Y5,
D;» = $12[M2S3823 — M5S4¢23]1X6,
D; 3 = ¢12[M3S3823 — M5S4¢23]Z6 + MsSac3acss,
E; 1 = [Mg(a23¢12€23 — a12812823) — M2(a12812€23 + 223€12823)
— Myays5€12(823C34 + C23834) — 234C12823845] Y6
+ [M2(S3 + Sa2¢23 + S1€12€23) + Mes23(S2 + S1€12)1X6
+ ¢12[MeS23 + M2C23]Y 06,
E»» = [Mg(a23€12€23 — a12812823) — M2(@12812€23 + 223€12823)
— Myass¢12(823C34 + €23834) — 34C128238451 X6
— [M2(S3 + Sa2¢23 + S1€12€23) + Mgs23(S2 + Sic12)]Ys
+ ¢12[MsS23 + M2c231X 06,
E; 3 = [Ma(a23812823 — 212€12C23) + Miass812(823C34 + C23834)
— Me(a12€12823 + 23812C23) + 3481282384512 — 812[M2€23 + MeS231Z06
Fa1 = [Msascos — Myass(s23C34 + €23834) — MaansSos — 23482384516
— [M2(S1¢23 + S2€12€23 + S3€12) + Me$23(S1 + S2€12)1Y6
+ [Mzc23 + M6s231Xos,
F22 = —[Mga3¢y3 — Maays(823€34 + €23834) — Maap3sos — 2348238451 Y
— [M2(S1C23 + S2¢12€23 + S3C12) + Mg$23(S1 + S2€12)1X6
— [MaC23 + Mg823] Y065
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F, 3 = s12[M2(S3 + Sz¢23) + MgS28231Z6,
G3,1 = [Meg(a12€12€23 — 223812523) + Myays912(823834 — €23C34)
— M(a12€12823 + 323812€23) — 234812C23845] Y6
+ 812[M6S1¢23 — M2S1823]1X6 + 512[M6C23 — M2823] Y 06,
Ga2 = [Me(a12€12C23 — 223812823) + Maasss12(823834 — €23€34)
— M2(a12€12823 + 223812€23) — 234512238451 X6
— 812[M6S1€23 — M3S15231Y6 + 812[M6C23 — M2823]Xos,
G5 = [Ma(a12812823 — 223€12€23) + MaaysCra(823834 — €23C34)
— Me(a12812C23 + @23€12823) — 834€12€23845]Z6 + C12[MgCa3 — Mas3]Zos + My,
Aj 1 =M;sS4c12Y6(523C34 — €23834), 9.72)
Asz 2 =M;sS84¢12X6(823C34 — C23834),
Az 3= —M;S4812Z6(523¢34 — C23834),
B3 1 =MsS4Xe(823¢34 — C23834),
B3 2= —M;5S4Ye(s23¢34 — C23834),
B33=0,
D31 =M;sS4812Y6(823834 + €23€34),
Dj35 = M;sS4512X6(823834 + €23€34),
D33 =MsS4¢12Z6(523534 + C23€34) — M5S4€ss,
E; 1 = [Ms(a12812823 — @23€12€23) + M7¢12823] Y + [M2S4 — Mss3(S2 + S1¢12)1X6
— Msc12823 Yos,
Es 2 = —[M2Ss — Ms823(S2 + S1¢12)1Y6 + [Ms(a12812823 — 223€12¢23) + M7C128231X6
— Msc12523Xo06,
E; 3 = [Ms(a12C12823 + 223512€23) — M78128231Z6 + Ms812823Z06,
F3 1 = [Ms823(S1 + Sa¢12) — M2Saci2]Ys + [M7823 — Msazsca3]Xe — Mss23 Xos,
F35 = —[M7s23 — Msa3c23] Y6 + [Mss23(S1 + Sac12) — MyS4¢121X6 + Mssa3 Yo,
F33 = [M2S4812 — Ms5S28128231Z,
G311 = [Ms(ax3812823 — 212€12€23) + My812€23] Y6 — MsS1812623X6 — Mss12¢23 Y06,
Gs 2 = [Ms(az3s12823 — 212€12€23) + M7812¢23]1X6 + MsS1812€23 Y6 — Ms812€23X06,
Gs3 = [Ms(223€12823 + 212812€23) + M7C12€23]Z6 — 834845C45 — A45534C34
— M;sci2¢23Z0s, 9.73)
Ag1 = —[Ms823(S2 + S1€12) + MaS41X6 + [Ms(a12812523 — @23C12€23) + M7C12823] Y6
— Msc12823 Yos,
Az = [Ms(a12812823 — @23€12C23) + M7€128231X6 + [Ms823(S2 + S1¢12) + M2S4] Y6

— M;sc¢12823X0s,
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Ay = [—Myzs12823 + Ms(a12€12823 + 223812€23)1Z6 + M5812823Z06,

By 1 = [Ms823(S1 + S2€12) + M2S4c12] Y6 + [M7523 — Msapscas] X6 — Mssy3 Xoss

By 2 = —[M78233 — M5253¢23] Y6 + [Ms823(S1 + S2€12) + M2S4€12]X6 + Mss23 Yoe,

By3 = —[M3S4s12 + MsS,812823]Zs,

Dy 1 = [Ms(a23812523 — a12€12€23) + M7812€23] Y6 — M5S1812€23X6 — M581223 Y6,

Dy 2 = [Ms(a23812823 — 212C12€23) + M7812€231X6 + Ms5S51812€23 Y6 — M5812€23 X 06,

Dy 3 = [Ms(2a12812€23 + @23C12823) + M7C12€23]Z6 — 234845C45 — 845534C34 — M5€12€23 706,

E41 = —M;554¢12Y6(C23834 + 523C34),

B4z = —MsS84¢12X6(C23834 + 523C34),

B4 3 = MsS84512Z6(C23834 + $23C34),

Fs1 = —M;554X6(C23834 + 523C34),

Fs2 = MsS4Ye6(C23s34 + 523C34),

Fi3=0,

Ga1 = M;sS4512Y6(523534 — €23C34),

Ga2 = MsS84512X6(823834 — €23Ca4),

Ga,3 = MsS4¢12Z6(523534 — C23C34) + MsS4Cys. 9.74)
The coefficients defined in Eq. sets (9.71) through (9.74) can all be evaluated numerically
because they are expressed in terms of given parameters.

The four equations that are now expressed in the format of (9.69) are next modified
by substituting the tan-half-angle expressions for the sines and cosines of 6, and 6,.

The equations may be written as follows after multiplying each by the product (1 + x?)
(1 +x3):

(aix3 + bixy +di)x3 + (x5 + fix, + &) =0,  i=1...4, 9.75)
where
Q= i,lX% + aj2x1 + a3,

: (9.76)
gi= gi,1X% + 8i2X1 + & 3-

The coefficients a; ; through g; 5 are defined in terms of A, ; through G; ;5 as follows:

a1 =Dis— Az —Di1 + A,
a2 =2(Diz — Ain),

a3 =Dis—Ais+Di1 — Al
b1 = 2(Bi3 — Bi1),

bi2 = 4B;2,



9.3 Six-link group 3 spatial mechanisms 175

bis = 2(Bi3 + Bi 1),

di1 =Diz+Ai; —Di1 — Ay,

di2 = 2(D;2 + Ain),

di3 =Di3+ A3+ Di1 + Aiy,

i1 = Gi3s —Eizs — Gy +Ei1,

ei2 = 2(Gi2 — Ei2),

ei3 = Gz —Eiz+ G —Ei,

fi1 = 2(F3 — Fi1),

f» = 4F,,

fis =2F;;+F),

g1 =Giz+Ei3—Gi1 —Ei,

gi2 = 2(Gi2 + Ei2),

g3 =Gi3+E3+ Gy +Ei. 9.77)
Equation set (9.76) represents four equations that are expressed in the format of

Eq. (9.2). A sixteenth-degree input/output equation may be obtained from these equations
by expanding the 8 x 8 determinant of Eq. (9.3). This equation is written as

0 0 a b d e f; g

0 0 a b d & L &

0 0 a3 by d3 e3 f3 g

0 0 a3 by dy es f5 g _o ©.78)
a, e b d 0 f g O ’ )
a3 e b, & 0 f, g O

a3 e by dy 0 £ g O

a, e by do O f4 g O

This determinant may be expanded by using Laplace’s theorem, which states that
a determinant can be evaluated by taking any m rows of the determinant and forming
every possible minor of the m® order from these rows. Each minor is multiplied by its
complement, that is, a determinant formed by deleting the rows and columns of the minor
from the original matrix. Each product is then given a sign based on whether the sum of
the numbers indicating the rows and columns from which the minor is formed is even or
odd. The value of the original determinant will equal the sum of the individual products.

As an example, consider the 5 x 5 matrix

a; by ¢ d; e
B by o d e
a3 by c3 dy es|. (9.79)
a3 by ¢y dy ey

La5 b5 Cs d5 €s




176 Group 3 spatial mechanisms

Laplace’s theorem may be applied to evaluate the determinant by forming the product of
every 2 x 2 determinant from the first two rows of the matrix times its corresponding 3 x 3
complement determinant. The determinant can thus be evaluated as

a b ¢ di e

b o d e c; dy e by d; es
a b a ¢
a3 by ¢ d3 e = cs dy eyq|— by di e
a b a C
ag by ¢ dy ey Cs ds es bs ds es
as bs c5 ds es
b; ¢;3 e b; ¢ d a3 d; e
a, 4, 3 €3 €3 a, e 3 C3 d3 b, o||® B S
+ b4 Cq4 ©4|— b4 Cq d4 + a4 d4 €4
a d n e b, ¢
b5 Cs €5 b5 Cs d5 as d5 €5
a3 Cc3 e a3 ¢ d a3 by e
b, d 3 C3 €3 b, e 3 C O3 o di||® >
- a4 C4 €4+ a3 C d4 + aq b4 €4
b, d, b, e ¢ d;
as Cs s as ¢ ds as bs es
a3 by d a C
o el D & 4 ell® by ¢
- c e ay b4 d4 + d e a4 b4 Cql. (980)
2 2 as b5 d5 2 2 as b5 Cs

By using Laplace’s theorem, Eq. (9.78) may be written as the summation of products
of 4 x 4 determinants as
|aebd||defg| + |aebf||bdfg| — |aebg||bdeg| — |aedf]||adfg|
+ |aedg||adeg| + |aefg||abdg| = O, (9.81)

where the determinant notation |xyzw| is defined by

X1 Y1 21 W

X2 Y2 Zp W

XyZwW| = . 9.82
Iylx3y3Z3W3 (9.82)

X4 Ya Za Wy

Equation (9.81) represents the sixteenth-degree input/output equation for the mechanism,
as each of the 4 x 4 determinants can be evaluated as an eighth-degree polynomial in
terms of the tan-half-angle of 6,. Although it is possible to generate this equation sym-
bolically, it is far easier to expand the determinants of Eq. (9.81) numerically to produce
the input/output equation for the case at hand. This equation can then be solved for the
sixteen possible values of 6;, not all of which may be real-valued.

9.3.2 Determination of 4, and 63

Expressions for x; and x3 can be obtained by rearranging Eq. set (9.75) as follows:

(a)x3%3 + (b)x2x3 + (€5 + (fixz +dixs + g) = 0, i=1...4 (9.83)
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Equation set (9.83) represents four homogeneous equations in the four unknowns x3x3,
X2X3, X3, and 1. A solution will exist only if the equations are linearly dependent. This
occurs if the determinant of the coefficients equals zero, that is,

ap by e (fixx+dixs +g1)

a by e (X2 +dox; + g2)

(9.84)
a3 by es (f3x2 +ds3x; +g3)
as by es (f4X2 4 daxs + g4)
This determinant may be expressed in the form
|abef|x, + |abed|xs + |abeg| = 0. (9.85)
Equation set (9.75) may next be rearranged as
(a)X3X3 + (d)x3 + (&) + (bixs + &z + f)x, = 0, i=1...4 (9.86)

This represents four homogeneous equations in the unknowns x§x3, X3, 1, and x,. A
solution to these equations will exist only if the equations are linearly dependent. Thus,
it must be the case that

a dp g1 (bixa+exa+1)

az d2 ] (b2X3 + X, + f2)

9.87)
a3 dy g3 (b3xst+esxp +13)
ay di g4 (baXz +esxz+1y)
This determinant may be expressed in the form
|adgb|x; + |adge|x, + |adgf| = O. (9.88)
Solving Eqs. (9.85) and (9.88) for x, and x5 gives
- d dgf] d
X, = |abeg||adgb| + |adgf]||abe I, (9.89)
|abef||adgb| — |adge||abed|
—|abef||adgf d b
, = labeflladgf] + adgel abeg ©.90

|abef||adgb| — |adge||abed|
Equations (9.89) and (9.90) may be used to calculate unique corresponding values for 6,

and 0; for each previously calculated value for 6.

9.3.3 Determination of 9, and s

Corresponding values for 6; and 85 may be obtained from the following pairs of fun-
damental sine and sine—cosine laws for a spherical hexagon:

X123 = S4584, (9.91)
Ye123 = 845C4, (9.92)
X3216 = 84585, (9.93)

Y3216 = 845Cs. (9.94)
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Table 9.1. RCRRRR mechanism parameters.

Link length, Twist angle, Joint offset, Joint angle,

cm. deg. cm. deg.

app = 7.2 Uy = 90 S[ =2 91 = variable

a3 = 0 W3 = 90 Sz =26 92 = variable

ay =3.6 o3y = 90 S;3=0 63 = variable

45 = 0.8 Uy = 90 S4 =0 94 = variable

asg = 2.3 ass = 90 S5 = variable 65 = variable

ag = 9.2 g1 = 90 Se = 0.8 65 =273 (input)
4

input ouput
angle 7 1 angle

Figure 9.2. Planar representa-
tion of an RRPRRRR spatial
mechanism.

9.3.4 Determination of Ss

The last parameter to be determined is the offset distance Ss. This may be determined
by projecting the vector loop equation onto any direction, resulting in one equation in one
unknown. Projecting onto the vector Ss gives

S1Z¢ +a12U1ss + SyZ1s + a23Usss + S3Z4 + a3 Uys + S4Chs5 + S
+ Secs6 + a1 Ugs = 0. (9.95)

This equation can readily be solved for the parameter Ss.

9.3.5 Numerical example

Table 9.1 shows the data that were used as input for anumerical example. The calculated
values for the sixteen configurations are listed in Table 9.2.

9.4 Seven-link group 3 spatial mechanisms

All seven-link group 3 mechanisms comprise six revolute joints and one prismatic
joint, that is, 6R-P. Shown in Figure 9.2 is the planar representation of the closed loop
RRPRRRR spatial mechanism.
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Table 9.2. Calculated configurations for the RCRRRR spatial mechanism.

Solution 6y, deg. 6,, deg. 6, deg. 6,4, deg. s, deg. Ss, cm.
A —-19.33 87.68 -74.71 —20.04 105.18 16.45
B 13.74 176.81 —13.80 83.90 179.24 13.31
C 14.22 941 14.28 —83.88 —177.69 20.48
D —139.62 79.75 82.62 139.28 =71.75 —-0.22
E 28.09 —103.89 119.16 —147.42 58.09 18.80
F —154.06 4.01 —15391 —96.60 178.24 5.27
G —129.76 —98.16 92.90 50.23 98.13 —0.07
H -593 —89.70 —114.52 —173.49 —65.65 16.58
I 12.62 —31.49 —164.81 123.61 —7.88 13.88
J 39.05 79.77 73.26 -41.07 —109.32 18.88
K -153.71 18.29 27.94 109.31 —8.47 -1.70
L —174.96 87.74 —81.58 —17491 81.81 222
M 172.26 -93.73 -95.18 7.76 —95.64 2.03
N —154.71 155.20 —26.88 —109.35 10.95 5.08
O 15.70 —141.46 160.99 —123.92 11.73 19.90
P —154.38 169.36 154.24 96.59 —175.39 —1.89

There are three distinct inversions of this mechanism,
Input Output

RRPRRRR 6, 6,
RRRPRRR 6, 6,
RRRRRPR 6, B,

and a detailed analysis of the first of these three inversions will be given here.

It is assumed that all the mechanism dimensions are known together with the input
angle 6; and that it is required to compute the remaining unknown joint displacements. In
particular, the problem statement is as follows:

given: a2, a3, (34, 45, Ase, A7, U715
a2, 23, A34, 445, Ase, Ag7, A71,
Sl, S2, S3, S4, 95, Sﬁ, S7, and
(67 input angle),

find: 91, 92, 93, 94, 96’ and S5.

9.4.1 Development of the input-output equation
(solution for 8,)

It will be shown that the input—output equation for this mechanism will be gener-
ated from four equations of the form of Eq. (9.2). Firstly, a pair of equations of this
form is generated from projecting the vector loop equation onto two directions that are
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perpendicular to the direction of Ss, that is, the x and y components of set 5 from the
table of direction cosines. Following this, a second pair of equations is generated from
secondary tan-half-angle laws.

The projections of the vector loop equation onto the x and y directions of set 5 from
the direction cosine table are

S1X76 + a12Wi76 + S2 X176 + a23Wai76 + S3X0176 + 234 Wan176 + SaXs2176

+ a45C5 + s + 26706 + S7X6 + a7 W6 = 0, (9.96)
S1Y76 — a12U765 + S2Y 176 — 223U3 1765 + S3 Y2176 — 234 U3, 1065 + SaY32176

— a4585 — S¢Ss6 + A6786Cs6 + S7 Y6 — a71Usgs = 0. 9.97)

These equations can be modified by using fundamental and subsidiary spherical and polar
laws to substitute for the terms X32176, Y32176, U3, 765, and W37 to give

S1X76 + a1nWi76 + S2X176 + a23Wa176 + S3Xa176 + 234 Was + S4Xs + a45Cs

+ as6 + ag7C6 + S7X6 + a7 Wrs = 0, (9.98)
S1Y76 — a12U7 765 + S2Y 176 — 223U3 765 + S3Y 2176 + 234 Vas 4 S4845Cs — 4585

— SSs6 + a6786Css + S7Y6 — a1 Ules = 0. (9.99)

All terms that contain the angle 6 are now expanded, and these two equations can be
expressed in the forms

Hics — Has¢ + M = 0, (9.100)
csgHacs + cseHisg + N =0, (9.101)
where

H; = $X7 + $2X17 + S3Xo17 + a12Wi7 + a3 Wy + a6y + a71¢7,

H, = S1Y7+ S, Y17 + S3Y217 — S1867 — 212U} — 223U 56 + a71Ce787,

M = §;Xs5 + a34Wys + a45C5 + asg, (9.102)

N = S4845¢5 + 34 Vas — 4585 — Hsssg,

H; = S1Z; + $2Z17 + S3Za17 + S6 + S7¢67 + 212U 176 + a23Uz176 + a71Uss.
The last equation in Eq. set (9.102) can be modified by reversing the order of the subscripts
on the Z;; ,, terms and by substituting for the terms Uy7g, U176, and Uy respectively by
the equivalent expressions X571, X712, and X;. Also, itis noted that the angle 6, is contained

only in the terms M and N and because of this these terms will be expanded. The Eq. set
(9.102) can thus be rewritten in the form

H; = $iX7 + $2X17 + S3Xa17 + a2 Wy7 + a3 Way7 + a7 + 7167,

H, = S1Y7 + $: Y17 + S3Y217 — S1867 — a12Uj76 — 253U 16 + a91C6787,

M =1, + Kiics + Kiz84,

N =J, + Kycq + Knsy,
H; = S\Z7 + S2Z71 + S3Z712 + S¢ + S7¢67 + a12X71 + a3 X712 + a1 Xy, (9.103)
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where

J1 =as6 + a45Cs5 + S45458s, K1 = aycs, K2 = —a34Css8s,
Jo = —ss56H3 + S4845C5 — as58s, K21 = —ayss, K2 = —a34¢y5¢s. (9.104)

The solution proceeds by generating two new equations. The first is obtained by
subtracting the product of csex¢ times Eq. (9.100) from Eq. (9.101), where x¢ = tan(6s/2).
The second equation is generated by adding the product of cs¢ times Eq. (9.100) to the
product of x¢ times Eq. (9.101). These two equations may now be written as

cse[H; (s¢ — ceX6) + Halce + seXe)] + (N — cs6x¢M) = 0, (9.105)
cs6[Hi(86X6 + ¢6) + Ha(CoXs — S6)1 + XN + cs56M. (9.106)

The terms (56 —CgX6) and (ce+56Xe) Will next be expanded by introducing the trigonometric
identities of Eqs. (6.157) and (6.158). Firstly,

2X¢ 1 —x2
- = — — . 9.107
8¢ — CeX6 T4 1% xéxﬁ ( )

Simplifying this expression yields

Xs(x¢ + 1)
e = — 9.108
S6 — CeXg g X6 ( )
Secondly,
1 —x? 2
Co + SeXg = ——8 4 X6 o1, (9.109)

1+x2 1+4x2
Simplifying Egs. (9.105) and (9.106) using Egs. (9.108) and (9.109) gives
cse[Hixe + Ha] + (N — csxsM) = 0, (9.110)
css[Hi — Haxg] + XN + c56M, (9.111)
which can be rearranged as

css(Hi — M)xg + (cssHa + N) = 0, (9.112)
(cssHy — N)x6 — cs6(H; + M) = 0. (9.113)

Equations (9.112) and (9.113) are not quite in the form of Eq. (9.2). They contain the
input angle 6;, the output angle 6;, and the two extra angles 8, and 65 (note that they are
linear in x¢). However, they also contain the variable 6, in the terms M and N, which has
to be eliminated. This final elimination will be performed after the next pair of equations
is developed.

A further two equations of the form of Eq. (9.2) are derived from the following subsidiary
laws for a spherical heptagon:

Xa176 = Xys, 9.114)
X516 = —Yas. 9.115)
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The following pair of corresponding secondary equations can be obtained by introducing

dual angles into Egs. (9.114) and (9.115):

Xo2176 = Xoas,

Xioi76 = — Yous.
The left side of these equations may be expanded as

—S6(X21786 + Y217C6) + Xo0217¢6 — Y0217S6 = Xods,
S6(X217¢6 — Y21786) + Xo21756 + Y0217C6 = — Y45,

and regrouping gives
(Xo217 — S6Y217)¢6 — (Yo217 + S6X217)86 = Xous,
(Xo217 — S6Y217)86 + (Y0217 + S6X217)¢6 = —Yous.
The previous two equations have common terms and may be rewritten as

ace — PBsg = A1,

ase + Bce = Az,
where

a = Xp17 — S¢Yar7, A = Xoss,
B = Yo7 + S6Xa17, Ay = —Yus.

Subtracting xs times Eq. (9.122) from Eq. (9.123) yields
a(se — CeX6) + B(Cs + S6X6) = A2 — A1Xe-
Adding Eq. (9.122) to x times Eq. (9.123) yields

a(ce + s6Xs) + B(CsXe — S6) = A1 + A2Xs.

(9.116)
(9.117)

(9.118)
(9.119)

(9.120)
(9.121)

(9.122)
(9.123)

(9.124)

(9.125)

(9.126)

Equations (9.125) and (9.126) may be simplified using Eqs. (9.108) and (9.109), and

thus
aXe+ B = A2 — AXe,
o — ﬂX6 = )\1 + )"2X6-
Regrouping terms gives
(@+AD)xe+ (B —A2) =0,
(B+A2)xe — (@ — A1) =0,

(9.127)
(9.128)

(9.129)
(9.130)
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and expanding « and g using Eq. (9.124) gives
Xo217 — S6 Y217 + Xoas)Xe + (Yo217 + S6Xo17 + Yous) = O, (9.131)
(Yo217 + S6X217 — Yous)Xe — (Xo217 — Se Y217 — Xoas) = 0. (9.132)

It is important to note that each of these equations contains the unwanted slider displace-
ment Ss in the terms Xo45 and Y 45. This displacement will be eliminated by first expanding
the definitions of the terms X5 and Zys as

Xoas = —S5(X48s + Yucs) + (Xopacs — Yo4Ss), (9.133)
Zpss = Ss856(XaCs — Y485) + ase Y45 + 8s6(Xoass + Y04C5) + Cs6Zoa. 9.134)

Part of the unwanted Ss term can be eliminated by adding ss¢cs times Eq. (9.133) to ss
times Eq. (9.134) and by making the substitution Zys = Zg,7. This yields

856Cs X045 = —85Z0217 — Ss58s56 Y4 + 25655 Y 45 + S56X04 + C5655Z04. (9.135)

It remains to eliminate —Ssss¢Y4 from this equation. It can readily be shown upon
expanding Y, and Z, that

1
Y4 = ——(Ca45Z4 — C34) (9.136)
S45
and hence
s s
—Ss856Ys = —Ss—c45Zs + S5—Cay. (9.137)
845 845

Now, by projecting the vector loop equation onto the direction of S; (using sets 3 and 13
from the table of direction cosines), the following equation may be written:

—SsZ4 = S1Zy + S¢23 + S3 + S4c34 + SeZ712 + S7Z12 + a12Unz 4 assUss
+ aseUsas + a67U7123 + a7 U 3. (9.138)

This equation may be modified by substituting for the terms Ups, Uas, Usss, U723, and
U),; respectively with X, X4, Xus, X217, and X»; to give

—SsZ4 = Hy, (9.139)
where
Hy = S$1Z; + S12¢23 + S3 + Sacaa + SZ712 + S$1Z12 + annXa + 245Xy + aseXas
+ ag7 X217 + a7 Xy, (9.140)

Further, by projecting the vector loop equation onto the direction of S¢ (using sets 6
and 10 from the table of direction cosines), the following equation may be written:

—Sscs¢ = S1Z7 + S2Z91 + S3Z712 + SaZs + S + S7ce7 + 212U 176 + a23U2176
+ a34Uus6 + a45Use + a71Us. 9.141)
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This equation may be modified by substituting for the terms Uy76, Uj176, Uases Use, and
Uy respectively with X7;, X712, Xs4, X5, and X5 to give

—Sscs¢ = Hs, (9.142)
where
Hs = S1Z7 + S2Z71 + S3Z712 + SaZs + S¢ + S7ce7 + 212 X71 + a3 X
+ a3 X4 + assXs + an Xy. (9.143)
The expression for Hs may also be written as
Hs = H; + S4Zs + a34Xs4 + 245X, (9.144)

where Hj is defined in Eq. set (9.103).

Substituting Egs. (9.139) and (9.142) into Eq. (9.137) and then this result into Eq. (9.135)
gives the following expression for Xg45 with the slider displacement Ss completely elimi-
nated:

Xoas =

—845Cs5685Z0217 + Ca5856Cs6Ha — 34556 Hs + S45C5655 (56 Y 45 + C56Z04) + S45856C56 K04

845856C56Cs

(9.145)

The elimination of the slider displacement Ss from the term Y5 is relatively simple.
By definition

Yous = Sscs6(Xacs — Yass) — ase(856X]s + C56Za) + c56(Xo4Ss + Yoacs) — 856Zos-
(9.146)

The unwanted S5 term can be eliminated by simply subtracting cs¢ times Eq. (9.134) from
ss¢ times Eq. (9.146) and by making the substitution Zoss = Zg17. This yields

Cs6Z0217 — A56X35 — Zoa

Yous = (9.147)

856

Substituting the expressions for Xo45 and Y5 (Eqgs. (9.145) and (9.147)) in Egs. (9.131)
and (9.132) gives two equations that are of the same format as Egs. (9.112) and (9.113).
In other words, these four equations contain the input angle 6;, the output angle &, the
two extra angles 8, and 65 (note that they are all linear in x¢), and the angle 6,. It remains
to eliminate 6, to obtain the format of Eq. (9.2).

All terms in Egs. (9.131) and (9.132) that contain the angle 8, will next be expanded
so that the sine and cosine of this angle may be expressed separately. By inspecting these
two equations it is apparent that the angle 6, is present only in the terms Xgq5 and Yous.
By inspection of Eqgs. (9.145) and (9.147) it is necessary to expand the terms X4, X4s, X5,
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X54, Y45, X()4, and 204, and
X4s = X4Cs5 — YqCs,
Xis = X4ss + YqCs,
Yas = c56(X48s5 + Y4Cs) — 85624,
X4 = 83484,
Y4 = —(S45C34 + C45834C4), (9.148)
Z4 = C45C34 — S45534C4,
Xss = Xscq — Ysss,
Xos4 = 234C3484 + S4834C4,
Zos = —a34(C45534 + S45C34Ca) — A45(S45C34 + C45534C4) + S4S4553454.

After substituting these expansions into Eqs. (9.145) and (9.147), they may be written
in the form

Xoas = I3 + K314 + K384, (9.149)
Yoas = Ja + Kgycs + Kazsy, (9.150)
where

7 / 2 2 2
J3 = [—s45C5685Z0217 — C3aSs6Hy + CasSseCssHy — 34534845Ca5C56Ss — A45C34575C5685
2 2
— 856C34575C5655Cs | / (S45856Cs6Cs),
Ks =[S Xs + 5353 ;
31 = |94834545856C56 — a34034('556 s+ 54505(,55) — A45534845C45C54S5
2
+ 256534 (S45C5655(SasSs6 — CasCs6Cs) + CisSs6Cs6Ss) | / (845556Cs6Cs),
2 2 2
K3 = [5453454505655 — A34C34C455545C5 + A45834C45556Cs6
2
+ 25653456 (Sa5C5655 + CasSs6Cs) | / (S45856C56Cs),

Cs6Z0217 + 834534C45 + 245C34545 + A56C34545Cs

J4 = 3
Ss6

—S4534545 — a56534S5

K42 == ’
Ss6

434C34845 + 245534C45 + A56534C45Cs

K4y = , (9.151)
Ss6
and where

H, = Hy — a45X4 — as6Xus = S$1Z5 + Sy¢23 + S35 + Sscas + S6Z712 + S7Zy,
+ aXp + agrxar + anXat,
(9.152)
H; = Hs — a3 Xs4 = $1Z7 4 S:Z71 + S3Z712 + SuZs + Se + Syc67 + 212X

+ a3X712 + assXs + a7 X5
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Substituting the expressions for M and N in Eq. set (9.103) into Egs. (9.112) and
(9.113) and then substituting Eqs. (9.149) and (9.150) into Eqs. (9.131) and (9.132) yields
the following four equations:

cse(Hi —Ji1 — Kjics — Ki284)%6 + (cs6Hz + J2 + Knics + K2S4) = 0, (9.153)
(cseHz — Jo — K4 ~ Kosa)xe — css(Hi +J1 + Kiics + Kiasy) =0, (9.154)
(Xo217 — S6 Y217 + J3 + Ks1¢4 + K3284) %6

+ (Y0217 + S6Xa17 + Ja + Kajcs + Kapsg) = 0, (9.155)
(Yo217 + S6X217 — J4 — Ka1€s — Ka284)%6
— (Xo217 = S Y217 = J3 — K3104 — Ki84) = 0. (9.156)

It is important to recognize that the coefficients in these equations, that is, H;, J;, Kj;,
contain the sines and cosines of the angles 8, and 8, as their only variables. It now remains
to eliminate 6, from these four equations without increasing the degree in the sines and
cosines of the angles 8, and 6,. This is accomplished by eliminating the four terms c4Xe,
S4X¢, C4, and s4 in a single operation. This operation is derived from the following four
spherical equations:

(Xas + X217)%6 + (Yas + Y217) = 0, (9.157)
(Y45 — Y217)%x6 — (Xas — Xo17) = 0, (9.158)
Zus — Zo7 =0, (9.159)
Zysxg — Zyirxe = 0. (9.160)

Note that Eq. (9.160) is equal to the product of x¢ times Eq. (9.159). These four equations
can be written in the matrix form

Xis Yais —Xo17 =Y,17

-Y. X -Y X
I Rl 217 o+ | (9.161)
0 Z45 0 Z217

Zys 0 Zr17 0

All terms that contain the variable angle 8,, thatis, X4s, Y45, and Z,s, will next be expanded
as
X4s = X4C5 — Y4Ss,
Y45 = Cs6(X485 + Y4Cs) — S56Z4,
Z4s = s56(X48s + YacCs) + cs6Za,
X4 = 53484,
Y4 = —(545C34 + C45834C4),

(9.162)

Z4 = C45C34 ~ 845834C4.
The expression for X,s may be expanded as

Xas = (53484)Cs + (S45C34 + C€45534C4)Ss (9.163)
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and then rearranged as

Xas = s34(X5¢s + ©584) + 34X, (9.164)
The new term X is defined by

X, = cgs5s (9.165)

The expression for Y45 may be expanded as

Y4s = Cs6((53454)85 — (845C34 + C45534C4)Cs) — S56(Ca5C34 — $45534C4). (9.166)
This can be rearranged as

Yas = s34(Zics + X584) + €2 Ys, (9.167)
where X and Z{ are defined here as

X = cses, (9.168)

Z; = 845856 — Ca5Cs6Cs. (9.169)
Now, Z45 =Zs4 and

Zss = s34(Xss4 + Ys5¢4) + C3uZs. (9.170)

Substituting Eqs. (9.164), (9.166), and (9.170) into Eq. (9.161) and rearranging gives

Xscs +csss ] Xs Zicy + Xisy
- (2/504 + )_(/584) -Y;s X/504 + C584
S Xg + ¢ Xe + S34 | -
34 0 6+ Ci 6+ S34 Ksss + Tsca
Xss4+ Yscy Zs 0
—Xon [ —Y21r
-Y X
_ 217 Xs + 217
0 Lo
Lo L 0
This equation can be rearranged as
Xicy +cs8q | Zicy + Xisy —Xo17
—(2/504 + )_(/584) X’504 + Cs584 —Y>17
S34 X6 + 834 | o < = X6
0 X5S4 —+ Y5C4 0
Xssq + Yscs 0 Loy
Yoy [ Xs Ys
Xorr . -Ys  —c X
—Cxu 6—C34 | _
Zor 0 Zs
0 Zs 0

9.171)

9.172)
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The left side of Eq. (9.172) may be regrouped to yield

CaXg —Xon ~You17 Xs Ys
S4X -Y X -Y
s3aM ol = 2 X¢ + S C34 ? Xg — C34 )_(5 . (9.173)
Ca 0 2517 0 5
S4 2217 0 z5 0
where
X/j Cs 2/5 )_(/5
-7, =X. X. ¢
M= 3 5087 (9.174)

0 0 Y5 Xs
Ys Xs 0 0

It is important to note that the matrix M contains only the given constant mechanism

parameters. The terms c4Xg, S4Xg, C4, and s, can be solved for by inverting M to obtain
the result

CaXg —Xo17 Yo7 Xs Ys

$4X M-! ~-Y X -Y
4Xe | _ M7 217 Xg + 27 | o3 5 Xe — C34 )_(5 9.175)
C4 S34 0 Lr17 5
S4 Zo17 0 Zs 0

The inverse of M may be obtained from the equation

AdjM

-1

- ’ (9.176)
M|

where Adj M is the adjoint matrix of M. In review, Adj M is the transpose of the matrix

of cofactors, that is, the i® row and j column element of Adj M is the determinant of the

original matrix M with its j row and i column removed. Adj M is thus calculated as

adiM =
Xs (Riks —es¥s)  —Ks (Z%%s —%;¥s) %s (Zyes - %%, ) s (5%, + 25K, ) + s (o2 +%2)
—¥s (xgxs —c5Y5) s (z;xs - x;Ys) —¥s (z;cs - x;x;) s (x52 ¥ 252) —Ys (csx’5 n z;x;)
%s (ZRs-¥s%;)  Ks (XRs—TFses)  —Xs (Xies+2Z4%; ) + ¥s (2 +X2) %s (X%, - Zyes )
s (G% -2%s) U5 (Tses—Xi%s)  Xs (XZ+27) - ¥s (Xies +X;24) ¥s (Zhes - X%y

9.177)
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This equation can be simplified by expanding the terms in parentheses to yield the inter-
mediate results

X(Xs —csYs = —Ys, (9.178)
ZXs — YsX} = Xs, (9.179)
Zies — XiX5 = —Zs, (9.180)
Xses + XiZ = —X;5Ys, (9.181)
XP+Z2=-Yi+ 1. (9.182)

Using these results, Eq. (9.177) may be rewritten as

-Xs5Ys —XsXs —XsZs s
YsYs  YsXs  YsZs Xs
XsXs —XsYs  Ys XsZs
-Y;Xs  Ys5Ys Xs —YsZs

adj M = (9-183)

The determinant of M is expanded as

IM| = Xs5(XsX5? — 2X5Yses + XsZ2) + Vs (Vsc? + UsXP — 2X:X(Z:).  (9.184)
This can be regrouped as

IM| = XX3 + XPY3 — 2% Vs (Xies + X4Z8) + X328 + Yacs. (9.185)
The term in parentheses in this equation can be replaced by using Eq. (9.181) to give

M| = X2X3 + X2Y2 — 2R Ys(—=Xs¥s) + X3Z2 + Yics. (9.186)
This equation is next regrouped as

IM| = X2X3 +XPY: + X3(2Y3 + Z22) + Yick. (9.187)

Equation (9.182) can be rearranged so that the quantity (Y2 + Z.?) can be replaced by
(1 — X2?) in the previous equation to yield

IM| = XX3 + X2V + X3 (Y5 + 1 — XP) + Yick. (9.188)
This equation is now rearranged as

M| = XPY2+ X2(Y2 + 1) + Yicl. (9.189)
Regrouping this equation again yields

M| = X2 + Y3(X? + X2 +c2). (9.190)

After substituting the definitions for X} and X, and recognizing that (s}, + ¢%) = 1 and
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(s2 + c%) = 1, the determinant of the matrix M can be written as
M| = X3 + Y3. (9.191)

Now that the adjoint and determinant of M have been expressed in terms of the constant
mechanism parameters, the matrix M~! as defined in Eq. (9.176) can be substituted into
Eq. (9.175) to solve for the terms c4Xs, S4X¢, C4, and s4. These four terms may be written
as

CaXe = P11xXe + Pi2,

S4X6 = Py1Xg + Py,

(9.192)
¢4 = PyX6 + P2,
4 == P4iX¢ + Py,
where
Py = K(XsYsXa17 + XsX5Ya17 + Ys5Zs17 — 34 Y5Zs),
Py = K(XsYs5Ya17 — XsXs5Xo17 — XsZsZa17 + ¢34 Xs),
Py = K(=Y5Y5Xo17 — Y5X5Y217 + Xs5Zs17 — €3 XsZs),
Py = K(YsXsXo17 — Y5Y5Ya1y + Ys5ZsZpy7 — casYs),
P3; = K(—XsXsXo17 + X5Y5Yar + XsZsZyy7 — c34X5),
Py, = K(—X5Y5Xo17 — X5X5Y217 + Y5Za17 — caaYsZs),
Py = K(YsX5Xa17 — Y5YsYar7 — YsZsZay7 + ¢34 Ys),
Py, = K(Y5Y5Xa17 + YsXs Yo7 + XsZay — c34X5Zs),
1
= e (9.193)
Substituting Eq. (9.192) into Eqgs. (9.153) through (9.156) and regrouping gives

[cse(Hr — Ki2Pa1 — KPPy — J1) + KaiPay + KoPayIx6

+ [cs6(—Ki2P22 + Ha — KiiP12) + KaiPaz +J2 + KpoPsp] = 0, (9.194)
[cs6(Ha — Ki11P31 — KipPar) — KoPoy — Koy Piy — 1216

+[cse(—Hi — KiiPy — J1 = KppPa) — KoPoy — Koy Pi2] = 0, (9.195)
[=S6Y217 + I3 + K32P2y + Ka1P31 + K31 P1y + KaoPay + Xozi71%6

+ [Ka2Pa2 + J4 + K32P22 + Yo217 + KaiPi2 + KarPy2 + S6Xa17] = 0, (9:196)

[S6X217 — Ja — KaoPay + K31 P3y — Ky Py + K35 Pay 4+ Yo2171%6
+ [K32Paz + I3 — Kg2Poy — X217 — KaiPi2 + K31P3p + S Y2171 = 0. 9.197)
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The variable parameters in these four equations are the angles 6, 6,, and 5. Because
these four equations are linear in the tan-half-angle of ¢, they may be written in the form

(Aicy + Bisy 4+ Dy)xg + (Eico + Fisy + G)) =0, i=1...4, (9.198)
where
Ai=Aiic + Aipst + Ais,
: (9.199)
Gi =Gii¢1 + Gizsi + Gis.

The following definitions are provided that are used to expand the terms in the four
equations that contain the angles ¢, and 6,:

X217 = X2167 — Y2187, Y17 = car(Xis7 + Yi¢7) — 86721,
Yo7 = c1 (X187 + Y21€7) — 861221, Z17 = Zny,

Zo17 = se7(X2187 + Y21¢7) + C67Z21, Un176 = U217C67 — V217567,

Xo1 = Xpc1 — Yosy, U376 = Ua17867 + Va17¢67,

Yo = cn(Xosi + Y1) —s11Zy,  Uzpp = Uzieq — Varsyy,

Zy1 = s (Xas1 + Yac1) + ¢712,, Va7 = ¢7(Uy871+ Vaieq) — 87 Way,

X, = siys,, W27 = $7(Uyis71 + Vaicr1) + ¢7Way,
Y2 = —(512€23 + C12823C2), Uy = si2%2,

Zy = C12Co3 — S12823C2, Uy = 87181,

X712 = X71€2 — Y7192, Va1 = —(81€2 + ¢15:2€12),

Y712 = €23(X7182 + Y71€2) — 823271, W21 = €€ — 8182C12,

Zq12 = Zay7, U6 = Uyr¢s7 — V17867,

X7 = X9¢1 — Y78y, Utz = Ui7867 + V17C67,

Y71 = ci2(Xys1 + Yq¢1) — 81277, Vi7 = —(87¢1 + ¢781C71),
Zy = S_12(X751_+ Y7c1) + ¢z, Wiz = €1 — $981C71.
X17 = XIC7 - YIS7, (9200)

The terms X217, Yo217. and Zg, 7 are expanded as follows:

Xo217 = =57(X2187 + Y21¢7) + Xo21¢7 — Yoa187,

Yo217 = —a¢7Z217 + S7¢67X217 + C67(Xo02187 + Y021¢7) — 86720215
Zpp17 = 267Y217 + S7867X217 + 867(X02187 + Yo021€7) + C67Z021,
Xoa1 = —S1(Xas1 + Yac1) + Xoaey — Yoos1,

Yoo = —anZy + SicnXar + 1 (Xoas1 + Yo2€1) — 871202,

Zon = a7 Yo + S1811 X1 + 511(Xoes1 + Yoac1) + ¢71Za2,

Xop = ag3¢238; + S2823C2,

Yo2 = S1€1280382 — annZy + ax(812823 — €12€23€2),

202 = 578128238 + alez + anY,. (9.201)
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Using these definitions, the coefficients of Egs. (9.194) through (9.197) may be written

as
Ap

Bl,l

Bi»

1)1,1

D1,2

XsciosK [Kirese (—YsX; — XsZ;) — KipeseYg

+ Ko 1 (=XsX5 + YsZ, 4+ ZsY7) | + YscosuK[—Kiics Yr

+ K2 (XsX; — YsZ, — ZsY7) + cs6Ki2(XsZ + Y5X5)]

+ ¢s6(a23C7 + S3€12523¢7187)

Xsci283K [—Kiics6 (Xs Xy + Ysc7) — KizeseXy

+ Ko (=Xs5¢7 + YsX) + ZsX7) ] + YsciassK[—Kiies6Xs

+ Ki2¢s6(X5X) + Ys¢7) + Koo (Xse7 — YsX; — ZsXy) |

+ cs6(—aX; + S3ci2823¢7),

X5812823K [K11056(Xs Y7 + Y5X7) + KiacseZy + Ko1 (XsX7 — Y5Y7 — ZsZy)]
+ Ys5812523K [Ki1¢56Z7 + Kipcss(—Xs Y7 — Ys5X7)

+ Koo (—XsX7 + YsY7 + ZsZ7)] — S3812823¢56 X7,

Xss3K[—Ki1es6(XsX) + Ys¢7) — KiacseXy + Kot (—Xs¢7 + YsX) + ZsX7) |
+ ¥ss23K [~ Ki1€56X7 + Ki20s6 (XsX) + Ys5¢7) + Koo (Xs¢7 — YsX; — ZsX7) ]
+ ¢s6(—a23¢12X5 + S382307),

Xss3K [Kiics6(XsZ) + Y5X5) + Kiacse Y7 + Koi (Xs X — YsZ, — ZsY7)]

+ Yss23K [Ki1¢56 Y7 + Kipess (—X5Z) — Y5X5)

+ Ko (—XsX; + Y5Z) + ZsY7)] — cs6(azsciacr + S353X5),

3812C56 X7,

Xss12023K [Kiiess (—XsZ; — Ys5X;) — Kizcss Y7

+ Ko1 (—XsX5 + YsZ, + ZsY7) | + YssizesK[—Kiicse Y7

+ Kia¢s6(XsZ; + YsX5) + Koo (XsX) — Y5Z) — ZsY5)]

+ ¢s6(a12¢7 + S2812X) + S3812023X5),

Xs81263K [—K1656 (X5 X, + Ys¢7) — KipeseXy

+Kai (—Xs5¢7 + YsX) 4+ ZsX7)] + YssiacsK [—KiicseXs

+Kipes6(XsX) + Ysc7) + Koa(Xse7 — YsX; — ZsXy) |

+ ¢s6(—a12X5 + S2812¢7 + S3812€23¢7),

XsK[Kiiciaeascss(—X5Y7 — YsX7) + KiaCs6(C34Zs — €12€23Z7)

+Koi(—ca + cpoeos(=Xs Xy + Ys5Y7 + ZsZy))]

+ Y5K[Kies6(c3aZs — C12€23Z7) + KipCiacasess(Xs Y7 + YsX7)

+ Ko (C34 + c12623(Xs5X7 — YsY7 — Z5Zy))]

+Cs6(—J1 + 81 X7 + S2012X7 + S3ciae3 Xy + agy + a71¢7),

XsciassK[Kiicss (XsX; — YsZh + ZsY7) + Kot ( — XsZ, — YsX)) + KoYy
+ Ysci2803K [Kiacs (—XsX5 + YsZ) — ZsY7) + Ko Y7 + Koo (X5Z, + Y5X) |
+ Cs6(S3c1283Z; + a3 X5) — 8s6(a23 X7 + S3¢12823Y7),
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E, =

Ez =

1::1,1 =

Fi, =

Fi3 =

G =

Gz =

Ay =

Ay =

Az =

Xsc283K [Kiics6(Xs¢7 — YsX) + ZsX7) — Kot (XsX5 + Ys¢7) + K Xy]

+ Ys5c12823K [Kipcss (—Xs¢7 + YsX5 — ZsX5)

+K21X7 + Koo (XsX; + Ys¢7)] + ¢s6(—aZ; + S3c12823X))

+ 856 (a23 Y7 — S3¢12823X7),

Xss12823K [Kiise(—XsX7 + Ys Y7 — ZsZ7) + Ko (X5 Y7 + Y5X7) — KnnZy)

+ ¥s81283K [K12€56(Xs X7 — Y5 Y7 + ZsZ7) — Ky1Zg — Knp(Xs Y7 + Ys5X7)]

+ S3812823(8s6Z7 — C56Y7),

Xss3K[Kiis6(Xse7 — Y5X) + ZsX7) — Ko1 (XsX5 + Ys¢r) + KpnXy]

+ Y5823K [Ki2¢s6 (—X5¢7 + Y5X5 — ZsX7) + Ko X7 + Koa (X5X) + Ysc7)]

+ ax3¢12 (856 Y7 — Cs6Z7) + S3823(—8s56X7 + C56X5),

XssosK [KiiCse (—Xs X5 + YsZ) — ZsY7) + Ka1 (X5Z, + YsX;) —Kn Y]

+ ¥s5823K [K 12056 (X5 X — YsZy + ZsY7) — K21 Y7 — Ko (XsZ) + YsX))]

+ ax3¢12(856X7 — c56X7) + S3823(856 Y7 — Cs6Z5),

a23812(Cs6 Y7 — $56Z7).

Xss12023K [Ki1656 (Xs Xy — YsZ + ZsY7) — Kot (XsZ, + Y5X5) + Kn Y7]

+ ¥ss12023K [Ki2¢s6 (—Xs X5 + YsZ7 — ZsY7) + Ko Y7 + Ko (XsZ) + Y5 X))

+ Sa812(—856 Y7 + C56Z7) + S3812(—~C23856 Y7 + C2356Z7)

+ a5y (—s56X7 + ¢56X5),

Xss12¢23K [Ki1¢s6 (Xs¢7 — YsX) + ZsXy) — Koy (XsX; + Ysc7) + KXy

+ ¥ss12023K [Kizes6 (— X507 + YsX5 — ZsXq) + K1 X7 + Koo (X5X5 + Ys¢7) ]

+ S2812(—856X7 + C56X5) + S3812€23 (—856X7 + C56X5) + a12 (856 Y7 — Cs6Z7),

XsK [K11Cs6(—c34 + 12023 (X5X7 — Y5 Y7 + ZsZ7)) — Kp1e12003(Xs5 Y7

+ Ys5X7) + Kpp(—c3Zs + ¢12¢23Z7)] + YsK[Kiacse(Caa + Cr2¢23(—Xs5X5

+Y5Y; — ZsZy)) + Kai(—c34Zs + €12623Z7) + KanC12€3 (X5 Y7 + Y5X7)]

+ S1(cs6 Y7 — 856Z7) + S2C12(—8s56Z7 + C56Y7) + S3¢12€23(—856Z7 + C56 Y7)

+ S4845¢5 — SeSs6 — S7(Ss56Ce7 + Cs6S67) — A4sSs + a71(—Ss6X7 + €56 X5),
(9.202)

XscisuK [Kiiess (XsXy — YsZy — ZsY7) — Koy (XsZ) + YsX5) — K Y7]

+ Ysci283K [Kiacss (—XsX5 + YsZ; + ZsY7) — Ko Y7 + Ko (XsZ + YsX)) |

+a3 (8s6X7 + C56X7) + S3¢12823 (856 Y7 + C56Z5),

Xsci2823K [Kiics6 (Xs¢r ~ YsX) — ZsX7) — Ko (XsX5 + Ys¢7) — KnXy]

+ Ysci2823K [Kiacss (— X507 + YsX5 + ZsXq) — Ko X7 + Ko (X5X5 + Ys¢7) ]

— a3 (856 Y7 + Cs6Z7) + S3C12823 (856 X7 + €56 X5).

Xss12823K [Ki16s6(—Xs5X7 + YsY7 + ZsZ;) + Ko (X5 Y7 + YsX5) + KnZs]

+ ¥ss1283K [Kia¢s6(XsX7 — Ys Y7 — ZsZy) + K21Z7 — Kna(Xs Y7 + Y5X7)]

— S3812823(856Z7 + C56Y7),
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By = Xss23K [Kiics6 (Xs¢7 — Y5X5 — ZsXy) — Ko (X5 X + Ysc7) — K Xy]
+ ¥s823K [Kiacs6 (—Xs¢7 + Ys X, + ZsXq) — Ko Xy + Kaa (XsX5 + Yscq)]
— ax3C12 (856 Y7 + Cs6Z7) + S3823(856X7 + C56X5),
Ba2 = X583 K[Kiicse(—XsX; + YsZ, + ZsY7) + K1 (XsZ) + YsX5) + K2 Y7]
+ Yss23K [Kiacse (Xs X — YsZ) — ZsYq) + Ko Y7 — Kap (XsZ, + YsX))]
— ax3C12 (856 X7 + C56X7) — S3823 (856 Y7 + C56Z5),
By3 = a23812(8s6Z7 + Cs6 Y7),
Dy = Xss12c3K [Kiicss (Xs Xy — YsZ — ZsY7) — Kot (XsZ) + YsX;) — K2 Y7]
+ Yss1263K [Kipess (—XsX) + YsZ, + ZsY;) — Ko Y7 + Koo (XsZ + YsX7) |
+a55(ss6X7 + Cs6X5) + Sa812(8s6 Y7 + C56Z5) + S3812623 (556 Y7 + C56Z7),
D, = Xss12¢3K [Ki1¢s6 (X567 — Y5X5 — ZsX7) — Ko (XsX; + Ysc7) — KnXy]
+ ¥ss1223K [Kiacss (—Xs5¢7 + YsX) + ZsXy) — KXy + Koa (XsX5 + Yscq)]
—a12(8s6 Y7 + Cs6Z7) + S2812(856X7 + C56X5) + S3812C23 (856 X7 + C56X5),
D,3 = XsK[Kiicse(Cas + €12623(Xs X7 — YsY7 — ZsZ7)) — Kpicipens(Xs Y7 + Y5X7)
+ K22(c34Zs — €12623Z7)] + Y5K [Ki2¢s6(—C34 + C12623(—Xs5X7 + Y5 Y7
+ Z5Z3)) + Ka1(c3aZs — €12¢23Z7) + Knac12603(Xs Y7 + Ys5X7)]
+ S1(8s6Z7 + Cs6 Y7) + S2C12(856Z7 + €56 Y7) + S3¢12€23(556Z7 + €56 Y 7)
— S4845C5 + SgSs6 + S7(S56C67 — C56567) + A45Ss + a71(S56X7 + C56X7),
Ex; = Xsci2823K [Ki1€s6(XsZ7 + Ys5X5) — Kiaese Y7 + Kot (XsX5 — YsZ + ZsY5) ]
+ Yscisa3K [~Kiicss Y7 — Kipcss (XsZ + Ys X))
+ K2 (—XsX) + YsZ) — ZsY7)]| — cse(axcr + Ssci1283X7),
Ey» = Xsci2823K [Kiicss(Yser + XsX5) — Kiacss Xy + Kot (Xse7 — YsX) + ZsXy) |
+ Yscias23K[—Kiics6X7 — Kipcss (XsX) + Yscr)
+ K (—Xs¢7 + YsX; — ZsXq) ] + cs6 (a3 X’ — S3c12823¢7),
Ey3 = Xss12813K[—Kiics6(Xs Y7 + YsX7) + KiacseZs
+ K1 (—XsX7 + YsY7 — ZsZ7)] + Yss1283K [Kiics6Zs
+Kiz2es6(XsY7 + Y5X7) + Kn(XsXy — YsY7 + ZsZ;)] + Sses6X,
Fo1 = Xs8i3K [Kiics6(XsX) + Yscr) — Kipess Xy + Koi (Xse7 — YsX, + ZsX;) ]
+ Ys523K[—Ki1c56X7 — Kia€s6 (Xs X7 + Ysc7) + Koo (—Xsc7 + Ys X, — Zs X7 )]
+ cs6 (a23c12X); — S3s23¢7),
Fr2 = Xssi3K[—Ki1€56(X5Z; + Y5X)) + Kiacse Y7 + Kot (—Xs5X) + Y5Z), — ZsY5) |
+ Yss3K[Kiics6 Y7 + Kiacse (XsZ; + YsX7) + Koo (XsX; — YsZ, + ZsY7) |
+ cs6(@3c12¢7 + S3823X5),
By = —33812Cs56 X7,
Gy, = Xss1eaK [Kiiess (XsZy + YsX;) — Kiaess Y7 + Kot (XsX5 — YsZ) + Zs Y7)]
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Gy, =

Gy3 =

Az =

Ay =

Ay =

Bs =

B3, =

+ ¥ss12023K[— Kiicss Y7 — Kincss (XsZ; + YsX)) + Ko (— XsX;,

+Y5Z, — ZsY4)] — cse(ancy + S2812X; + Sssi2e X)),

Xs5812023K [Ki1656 (X5 X7 + Ys¢7) — KiacseXy + Kai (Xs¢7 — YsX) + ZsXy)]
+ Yss1263K[—Ki1cs6X7 — KiaCse (Xs X5 + Yscr) + Ko (—Xs¢s

+ YsX; — ZsX7)] + cse(aiX; — Sas12¢7 — S3812¢23¢7),
XsK[Kiici2a3¢s6(Xs Y7 + YsX7) + KipCse(C34Zs — €12€23Z7)

+ Kai(—c3a +¢12623(Xs X7 — Y5 Y7+ ZsZ7))] + YK [KiiCs6(C34Zs — €12623Z7)
+ Ki2¢12¢23¢56 (—Xs Y7 — Y5X7) + Kaa (€34 + €12C03(— X5X7 + Y5 Y7 — Z5Zy7))]
—cs6(J1 + a7 + a71¢7 + S1 X7 + S2¢12X7 + S3c12623X7), (9.203)
Xsc1283K [Ki1 (X527 + YsX7) + K Y7 + Kat (—XsX, + YsZ, + ZsY7) ]

+ Ysc12803K [K31 Y7 — Kao(XsZ, + YsX)) + Kao(XsX) — Y5Z) — ZsY5)]

+ 85[823(a12812Y7 — a67¢12Z; + a71C12Z7 — S1€12X7 — $2X7 — S7€12867X7)

— 423012623 Y7] / (856C5) + C12823¢45 [a67X); + S¢ Y7 — S78791] /(845¢5)
—C34[23X7 + S3¢12823Y7] / (S45Cs6Cs) + S1€12823¢7 + S2823¢7 — SeC12523Z5

+ 87128237107 — 12812823 X5 + A23C123 X — a71C12823X7,

Xscios3K[Kap (XsX) + Yser) + KXy + Kai (—Xs¢7 + Ys X + ZsX7) |

+ Ysci2823K [Ka1 X7 — K2 (Xs X + Ys¢7) + Kap (Xse7 — Ys X, — ZsX5)]

+ 85 [a12812823X7 — a23¢12¢23X7 — ag7C12823 X7 + SiC12823Y7 + S2823 Y7

— $7C12523867C7] / (856C5) + C12823 [a67Ca5C7 + a71Cas + SeCasXq]/ (845¢s)

+ ¢34 [423Y7 — S3¢12823X7] / (845C56C5) — Si1€12823X5 — S2823X5 — Seci283 X,
— 57C1282387 — 212812823C7 + @23€12€23C7,

Xss1sK [~Ks1 (X5 Y7 + YsXy) — KnZg + Ka(Xs Xy — YsY7 — ZsZ5)]

+ ¥ss12803K[—K31Z7 + K0 (X5 Y7 + YsX7) + Kaa(—XsX7 + Ys Y7 + Z5Z5)]
+85[a12€12823Z7 + 2381262377 + 867812823 Y7 + 471512823 Y7

+ $7812823867X7] / (S56Cs) — S12823Cas [a67X7 + S1 + S6Z7 + S7¢71] /(845C5)

+ [S3512523¢34Z7]/ (845C56Cs) + Se812823 Y7 — $7812823871C7 — 1€ 12823 X7

- 323512023)_(7 - 371512523)_('7,

Xs803K [K31 (X5X) + Ys¢r) + K2 X7 + Kay (—Xs¢7 + Ys X + ZsXy) |

+ Ys5523K [K31 X7 — K2 (XsX5 + Ys¢q) + Kap (X567 — YsX, — ZsX5)]

+ 85 [S1823Y7 + S212823 Y7 — S7823867¢7 — 03¢ X7 — a67523X5] / (S56C5)

+ 82345 [S6X7 + a67¢7 + a71] / (sa5Cs) + C34[—S3823X7 + a23¢12Y7] / (845C56C5)
— S1823X5 — S2¢12823X5 — S823X5 — S782387 + A23€23C7,

XssK[—Ks1 (X5Z) + YsX,) — Kap Y + Kay (XX, — YsZ, — ZsY5)]

+ ¥s5523K[—K31 Y7 + K2 (X5Z) + Y5X)) + Koo (XX, + Y5Z; + ZsY5) |
+55[S1823X7 + S2€12823X7 + $7823¢71X7 + 22323 Y7 + 2675237
—a71513Z7] / (Ss6Cs) + $23Cas[—S6 Y7 + S7871 — a67X7] / (845C5)
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+ ¢34 [S3523 Y7 + @3¢12X7] / (845Cs6Cs) — S1823¢7 — S2€12823¢7 + Se53Z,
— 57823C71C7 — a23023)_('7 + a71523)_(7,
B3 = [212823€451/(845C5) — [S281282385Z7]/(856C5)
— [23812€34Z71/ (845C56C5) + S2812823X7,
D3 = Xss12¢3K [Ks1 (XsZ + YsX)) + Kap Y7 + Kay (= XsX + Y5Z, + ZsY7) ]
+ Ys81263K[Ks1 Y7 — K3p (X5Z5 + Y5X5) + Kao (X5 X5 — Y5Z, — ZsY5)]
+ 55 [—S1812€23X7 — S7812€23867X7 — 212€12€23 Y7 + 323812823 Y7 — a67812C23Z;
+ 27181262377 / (856C5 ) + 812023C45 [S6 Y7 — S7871 + a67X5] / (s45C5)
— ¢34 [S2812Y7 + S3812623 Y7 + 212X7] / (845C56Cs) + S1812€23¢7 — Se812623Z5
+ S7812€23¢71C7 + a12012023)_('7 - a23512523)_('7 — a7181263 X7,
Ds, = Xs581203K [K3) (XX + Ys¢7) + KXy + Kay (= X507 + YsX, + ZsX) |
+ ¥ss1203K [K31 X7 — K32 (X5 X5 + Ys¢7) + Ko (Xs¢7 — YsX; — ZsX7)]
+ 85[S1812€23 Y7 — $7812€23867C7 — 21212623 X7 + 223812823 X7
— 26781263 X5 ] / (S56C5) + $12¢23¢45 [S6 X7 + a67¢7 + a71] / (s45C5)
+ ¢34 [—S2812X7 — S3812623X7 + a12Y7] / (845656¢5) — S181223X5 — Ses1263X]
— 578122387 + 212€12C23C7 — 223812823€7,
D33 = XsK[K31012023(Xs Y7 + Y5X7) + Ksa(—C34Zs + ¢1263Z7)
+ Ka1(—c3s + c12623(—XsX7 + Y5 Y7 + ZsZ7))]
+ Y5K[Ks1 (—¢34Zs + ¢12¢23Z7) — Kszepe3(Xs Y7 + Y5X7)
+ Kap(css + €12623(XsXy — YsY7 — ZsZy))]| + s5[—S7¢12623867 X7
+ 12812€23Z7 + 223C12823Z7 — 834834C45C56 — A45C34845Cs6
— ag712C23 Y7 — a71€12¢23Y7] /(856Cs) + Cas [S1C12¢23 + S2€23 + S5 + Sacas
+ S6€12023Z7 + S7€12€23¢71 + 267€12623X7] / (845Cs) + C3a[—S1Z7 — S2¢12Z7
— 83€12623Z7 — S4Zs — Sg — S7Ce7 — AssXs — a71X7] / (S45Cs6Cs) — SeC12¢23 Y7
+ 87¢12€23871¢7 — A12812623 X7 — 323012823)_(7 + 3710120235('7 — 856C34C56X5/856,
B3 = XscisuK [Kai (= XsX5 + YsZ) — ZsY7) — Ka (XsZ; + YsX;) + Kar Yo]
+ Ysci283K [Kao (Xs X5 — YsZ, + ZsY7) + K1 Y7 + Ko (X5Z5 + YsX))]
+ €56 [S1€12823X7 + S2823X7 + S7€12823867 X7 — A12812823 Y7 + 823€12623 Y7
+ a67C1283Z5 — a71C1283Z7] /856 + S1€12523 X5 + S2823X5 + S6C12823 X5
+ S7¢12823¢67X5 — 2128128325 + 223126375 — 26712823 Y7 — 271€12823 Y7,
B3, = XscisK [Ksi (—Xs07 + YsX5 — ZsX7) — Kai (Xs X + Yser) + K Xq]
+ Ysci2853K [Kap (Xsc7 — YsX 4+ ZsX7) + Kai Xy + Ko (XsX; + Ys¢r) |
+ Cs6[—S1€12523Y7 — $2823Y7 + $7€12823867C7 — 212812823 X7 + a23€12¢23X7
+ ag7C1253 X5 /856 — S1€12553Z7 — S2823Z) + S6C12823¢7 + $7€12823C67C7
—apspsnX; + ancienX; — agc83 X7,
Es; = Xss12803K[Ks1 (XsX7 — Ys Y7 + ZsZ7) + K (XsY7 + Ys5X7) — KaaZs]
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+ Yssi83K [Kan(—XsX7 + YsY7 — ZsZ7) — KaZ7 — Kia(Xs Y7 + Y5X7)]
+ Cs6 [_57512523567)_(7 — a12C12823Z7 — a23812¢3Z7 — 67812523 Y7
- a71812823Y7] /856 — Ses12823X7 — $7812823¢67X7 — A12C12823 Y7
— a23812C23 Y7 + 26751282377 — a7181283Z7,
F31 = Xs23K [Ks1 (—Xs¢7 + YsX) — ZsX7) — Kar (X5X5 + Yscr) + KanXy]
+ V523K [Kaz (Xs¢7 — YsX) + ZsX7) + Kar X7 4+ Kap (XsX5 + Yscr)]
+ cs6[—S1823Y7 — S2¢12823 Y7 + S7823867C7 + a23¢23X7 + ag7523X5] /856
—S1823Z5 — Syc1285Z + S6523¢7 + S7823C67C7 + 03623 X5 — agr823 X7,
Fiz = XssK[Ks1 (XsX) — YsZ) + ZsY7) + K1 (XsZ; + YsX)) — Kar Y]
+ Ys823K [Kao (—XsX) + YsZ; — ZsY7) — Ka Y7 — K (XsZ; + YsX)) |
+ cs6[—S1823X7 — S2€12823X7 — S7823867X; — 0323 Y7 — A6183Z,
+ a71823Z7] /856 — S1823X7 — S2¢12823X7 — Se823X5 — S7823¢67X5 — 36325
+a67523Y7 + anss Y,
F33 = Sos12823 Y7 + Sp812823C56Z7/8s6,
Gs,1 = Xs81263K [Ka1 (—XsX + YsZ; — ZsY7) — Kat (X5Z + Ys5X7) + Kap Y7
+ Yss12023K [Ka2 (Xs X5 — YsZ + ZsY7) + Ka Y7 + Ko (XsZ + YsX)) |
+ C56[S1812023X7 + $7812€23867X5 + 212€12€23 Y7 — 823812823 Y7 + 6781262325
— a71812€23Z7] /856 + S1812623X7 + S6512623X5 + S7812€23¢67X5 + a12€12623Z,
— 2538128237} — 267812¢23 Y7 — 271812623 Y7,
Gs2 = Xs812623K [Ks1 (—Xs¢7 + YsX) — ZsX7) — Kar (X5X5 + Ysc7) + K Xy]
+ ¥s5s12023K [Kaa (Xs¢7 — YsX5 + ZsX7) + Kai X7 + Ko (X5X5 + Ys¢7) ]
+ 56 [—S1812623 Y7 + S7812€23867C7 + 212€12€23X7 — 223812823X7
+ a67812€23X5 ] /856 — S1812€23Z5 + S6812€23¢7 + $7812€23C67C7 + 212C12C23 X
— ay3812823X7 — a67812€23 X7,
Gs3 = XsK[Ks1(Cas + C12623(—XsX7 + YsY7 — ZsZ7)) — Kaicipeps(Xs Y7 + Ys5X7)
+ Kaa(—€34Zs + ¢1263Z7) | + YsK[Ksp(—Cas + croe3 (XsX7 — Y5 Y7 +ZsZ7))
+ Ka1(—c4Zs + €12€23Z7) + Kaac12623 (X5 Y7 + Y5X7)]
+ [cs56(S7¢1223867X7 — A12812623Z7 — 323€12823Z7 + 867C12C23 Y7 + 271C12C23 Y7)
+ 834834C45 + A45C34845 + A56C34845Cs | /556 + S6C12623 X7 + S7€12€23C67 X7
—a1p812C3 Y7 — a23¢12823 Y7 — 67€12€23Z7 + a71C1263Z, (9.204)
As1 = XscsuK [Kai (= XsX5 + YsZ) + ZsY7) — Kai (X5Z; + YsX5) — K Y]
+ Ysci283K [Kaa (XsX — YsZ) — ZsY7) — Ka Y7 + Ko (XsZ + YsXY)
+ Cs6[—S1€12623X7 — S2823X7 — S7C12823867 X7 + A12812823 Y7 — ax3€1263 Y7
— agrC128Zy + 2710128327 | /856 + S1€1283X5 + S2823X] + SeC12823X5
+ S7¢12823¢67X5 — a12812823Z7 + a23€12623Z7 — a67€12823 Y7 — a71c12823 Y7,
Asp = Xsc83K [Kar (—Xs¢7 + YsX) + ZsXy) — Kay (XsX5 + Yscr) — Kap Xy
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Ay =

By =

B4,2 =

Bss =
Dy, =

Dy, =

Dys =

+ Ysci283K [Kap (Xsc7 — YsX5 — ZsX7) — Kar Xy + Kao (XsX5 + Ysc7)]

+ Cs6 [51012823Y7 + 52823 Y7 — §7€12823867C7 + 212812823 X7 — 223C12€23X7

— ag7C12523X5 ] /856 — S1C12853Z5 — S2523Z); + S6€12823¢7 + S7C12523C67C7

— a12812823X7 + 22312623 X — 267C12523 X7,

Xs812823K [K31(XsX7 — YsY7 — ZsZ7) + Ky (X5 Y7 + YsX7) + KapZs)

+ Ys51283K [Kao(—XsX7 + Y5Y7 + ZsZ7) + K1 Zy — Kp(Xs Y7 + Y5X7)]
+ Cs6[S7512823867X7 + @12€12823Z7 + 22381262377 + 267512523 Y7

+ a71512523Y7]/556 - S6512523)_(7 - S7512523C67)—(7 - a12012823‘?7 - a23s12023Y7
+ 26781282377 — a718125232Z7,

Xss3K [Ksi (—Xs5¢7 4+ YsX) + ZsX7) — Ky (X5X5 + Ys¢7) — KX

+ Ys5523K K2 (Xs¢7 — YsXj — ZsX7) — KaiX7 + Kap (X5X5 + Ysc7)]

+ €56 [S1523Y7 + S2€12823 Y7 — S7823867C7 — 42323 X7 — 67823 X5 ] /856 — S1823Z;
— S2¢12823Z5 + S6823¢7 + S7823C67C7 + A23¢23 X7 — 267523 X7,

Xss3K [Ka1 (XsX) — YsZ — ZsY7) + Kai(XsZ) + YsX)) + Ke Y]

+ Ys5503K [Kao (—X5X5 + Y5Z) + ZsY7) + Ko Y7 — Ko (Xs5Z5 + YsX))]

+ Cs6[S1523X7 + S2€12823X7 + S7523867 X7 + 223623 Y7 + 267823Z5

—a7183Z7] /856 — S1823X5 — S$2€1283X5 — Se523 Xy — S7823¢67X; — apsensZy
+ag7823Y7 + a783 Y7,

2812523 Y7 — S2812823C56Z7/Ss6,

Xss1263K [Ks1 (= X5X5 + Y5Z) + ZsY7) — K1 (XsZ; + YsX)) — Kap Y]

+ ¥s81263K [Ka2 (X5X5 — YsZ) — ZsY7) — Kar Y7 + Ko (X5Z5 + YsX5)]

+ Cs6[—S1812623X7 — S7812¢23867X5 — A12€12€23 Y7 + 23812823 Y7 — a67812623Z
+ a71812¢23Z7] /556 + S1812€23X5 + Se512€23X5 + S7812€23€67X5 + a12€12623Z,
- a238128232/7 — a67512€23 Y7 — a71s12023Y7,

Xss12623K [Ka1 (—Xs¢7 + YsX + ZsX7) — Kat (X5X5 + Yser) — KaaXy]

+ Ys5812623K [Kap (Xs¢7 — YsX; — ZsX7) — Kar X7 + Ko (X5X5 + Ysc7) ]

+ €56 [S1512€23 Y7 — S$7812€23867¢7 — 212612623 X7 + a23812823X7

— 267512€23X5 ] /56 — S1812€23Z7 + S6512€23C7 + S7812€23€67C7 + 2121263 X5
— 223812823 X77 — A67812C23 X7,

XsK[Ksi(—css + c12023(—XsX7 + Ys Y7 4+ Z5Z7)) — Kyyc12623(Xs Y7 + YsX7)
+ Kap(caZs — ¢12623Z7)] + YsK [Ksz(Caq + c12623(XsX7 — YsY7 — ZsZy))

+ Ka1(c1aZs — ¢12623Z7) + Kup€12623(Xs Y7 + Y5X7)] + [cs6(—S7¢12¢23867X7
+ a12812623Z7 + 423€12823Z7 — 267C12C23 Y7 — 271C12€23 Y7) — 234534C4s

— 45C34845 — a5603454505] /SS6 + S6CIZCZ3X7 + S7c12€23¢67 X7 — a12s12023Y7

¥, !
—a3€12823 Y7 — a67C12C23Z7 + a71C12C23Z7,
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Es1 = XscipsuK[—Kii (XsZ; + YsX5) + Ka s + Koy (XsX) — Y5Z) + ZsY7)]
+ Ysc1283K [Ka1 Y7 + K3p (Xs5Z + Ys5X)) + Kao (—Xs X5 + YsZ; — ZsY7)]
+55[—S1€12523X7 — S2823X7 — S7C12823867X5 + A12812823 Y7 — 42312623 Y7
— ag7C12823Z; + a71C12823Z7] / (856Cs) + C12823€45 [S6 Y7
—S7871 + a7X5] / (545¢5) — C3a[S3¢12823 Y7 + a23X7] / (845C56C5) — Si€12823¢7
— 8282367 + S6C12823Z7 — S7€12823¢71C7 + A12812823 X7
— a0 X + a71C12823 X7,
Es» = Xsci283K[—Ka1 (XsX; + Ysc7) + KXy + Kai (Xse7 — YsX) + ZsX)]
+ ¥Ysc1283K K31 X7 + K (X5X) + Ysc7) + Kap (—Xs¢7 + YsX); — ZsXy)]
+ 85 [S1€12823 Y7 + S2823 Y7 — S7€12823867C7 + 212812823 X7 — 8231263 X7
— a7¢12823X5 ] / (S56Cs) + C12823Cas [S6X7 + ag7¢7 + a1 / (s45Cs)
+ c34[—S3¢12823X7 + a3 Y7] / (845¢56Cs) + SiC1283 K5 + Sp823X]
+ 8612823 X7 + S7C1282387 + 212812823C7 — @3€12€23C7,
Ess = Xss1283K [Kai(Xs Y7 + YsX7) — KnnZy + Ka (—XsX7 + Y5 Y, — ZsZy)]
+ Yss1283K [ — K31Z7 — Kn(Xs Y7 + Ys5X7) + K (XsX7 — YsY7 + ZsZy)]
+ 35 [S7812823867X7 + 2121282377 + 2381262327 + 267812513 Y7
+ 271812823 Y7] / (856Cs) — $12823Cas[S1 + S6Z7 + S7¢71 + a67X7] / (Sa5Cs)
+ [S3812523¢34Z71/ (845Cs6Cs) — Se812823 Y7 + S7812823871C7
+ a1¢12823 X7 + ansen Xy + 3718128235(/7,
Fii = XssuK[~Ka1 (X5X) + Yscr) + KXy + Kai (Xs¢7 — YsX5 + ZsX7) |
+ Ys593K [K31 X7 + Kap (X5 X5 + Ys¢7) + Kao (—Xs¢7 + Y5X) — ZsX5)]
+ 85 [S1823Y7 + 8212823 Y7 — 78238677 — 3¢ X7 — a67523X5] / (S56Cs)
+ $23¢45 [S6 X7 + agrcy + a1/ (845Cs) + Caa [—S3823X7 + axc12Y7] / (sascsecs)
+ S1823X5 + S2¢12¢23 X5 + S6823X5 + S782387 — 232367,
Fip = Xs83K([K31 (XsZ; + YsX;) — K Y7 + Kai (—X5X) + Y5Z) — ZsY5)]
+ Ys583K [—K31 Y7 — K5 (X5Z) + Y5X)) + Ko (X5 X5 — Y5Z) + ZsYq)]
+ 85 [S1823X7 + S2C1283 X7 + S7823867XK5 + 223623 Y7 + ag7823Z,
— a71823Z7) / (356C5) + S23¢a5[—S6 Y7 + S7871 — a67X5] / (s45Cs)
+ C34[S3823 Y7 + @23¢12X7] / (845C56Cs) + S1823€7 + SaC12823¢7 — Se823Z;
+ S7823¢71€7 + ap3enX) — agsu Xy,
Fi3 = —Sps12803[X7 + 85Z7/(s56C5)] + a12823Cas/(S45Cs) — a23812C34Z7/ (S45Cs56Cs),
Ga1 = Xs81263K [~Ks1 (X525 + YsX5) + K Y7 + Kai (XsX; — Y5Z) + ZsY7) ]
+ Y5812623K [K31 Y7 + K32 (X5Z) + YsX5) + Kao (—XsX) + YsZ, — ZsY5)]
+ 85[—S1812623X7 — $7812€23867X7 — 212€12¢23 Y7 + 223812823 Y7 — a8 12632,

+ an81263Z7] / (856C5) + 812€23€45[S6 Y7 — S7871 + 267 X5 ] / (sas¢s)
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—C34[S2812Y7 + S3812¢23Y7 + 212X7] / (845C56C5) — S1812€23¢7
+ S6'5120232'7 — $9812C3C71C7 — 312012023)_('7 + 323512523)_('7 + a71512023)_(7,
Gar = Xss1263K [~ K31 (XsX) + Yscr) + KXy + Kai (Xs¢7 — YsX5 + ZsXy)]
+ Yss1263K [K31 X7 + K2 (XsX) + Yscr) + Kap (—Xs¢7 + YsX; — ZsXy) ]
+ 85 [S1812€23 Y7 — $7812€23867¢7 — A12€12¢23X7 + 823812823 X7
— 267512623X5] / (856Cs) + $12€23€a5 [S6 X7 + a67¢7 + a71] / (s45¢s)
+ ¢34 [—S2812X7 — S3812623X7 + 212Y7] / (s45¢56¢5) + S1812€23X7 + Se812€23 X5
+ S7812€2387 — 212€12€23€7 + 323812823C7,
Ga3 = XsK[—K31012623(Xs Y7 + Y5X7) + Ko (—c34Zs + €12623Z7)
+ Kay (=¢34 + €1263(Xs X7 — Y5 Y7 + ZsZ7))] + YsK[Ks1(—C34Zs + €12¢23Z7)
+ K32e12023(Xs Y7 + Ys5X7) + Kaa(css + 1203 (—XsXq + YsY7 — ZsZy))]
+ 85 [—S7c1223867X7 + 212512623Z7 + 8231282377 — 834534Ca5Cs6 — AsC34545Cs6
— 267C12623 Y7 — 871€12€23 Y7 /(856Cs) + €45 [S1€12€23 + S2€23 + S3 + S4C4
+ S6¢12¢23Z7 + S7€12C23¢71 + 267€1223X7] / (845¢5) — caa[assXs + S1Z;
+ 82¢12Z7 + S3¢12¢23Z7 + S4Zs + Se + S7¢67 + a71X7] / (Sa5C56C5)
+ 8612623 Y7 — $7€12€238717 + a12812€23 X7 + 2312823 %7

— 871012623 X — 56C34C56 X5 /S56- (9.205)

The following definitions were used in the coefficients:

Xf, = C6787, (9206)
)_C, = C7187, (9207)
Zil = S¢7571 — €67€71C7. (9208)

At this point there are four equations of the form of Eq. (9.198) whose coefficients are
listed in Eq. (9.199). These coefficients have been expanded in terms of the given mech-
anism parameters in Eqs. (9.202) through (9.205). The solution can proceed in a manner
identical to that for the SR-C mechanism in the previous section with the exception that
the four equations are linear in the tan-half-angle of 4 rather than the tan-half-angle of 6.

The four equations of Eq. set (9.198) are next modified by substituting the tan-half-
angle expressions for the sines and cosines of 6, and 8,. The equations may be written as
follows after multiplying each by the product (1 + x3)(1 + x3):

(a;x3 + bixy + di)xe + (eix3 +fix; +g) =0,  i=1...4, (9.209)
where
3 = ai,1X% + a;2x; + a; 3,
(9.210)
g = giX] + gi2Xi + g3

The coefficients a; ; through g; 5 are defined in terms of A; ; through G; 5 in Eq. set (9.77).
The input/output equation for this mechanism is then obtained as described in Section 9.1.
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An 8 x 8 determinant is expanded to yield a sixteenth-degree polynomial in the tan-half-
angle of the output angle, 8;. Equation (9.81) is this input/output equation.

9.4.2 Determination of 8, and 6g

Section 9.3.2 describes how to determine the corresponding values for the tan-half-
angle of the angles 6, and 65 from the four equations of Eq. set (9.75) for each calculated
value of the tan-half-angle of the output angle 6;. The procedure for solving for the tan-
half-angle of 8, and 85 for this mechanism is identical with the exception that x3 in Eq.
set (9.75) is replaced by x¢ in Eq. set (9.209). Following the solution method outlined in
Section 9.3.2, expressions for the tan-half-angle for the corresponding values of &, and s
may be written as

__ —|abeg||adgb| + |adgf]|abed|
" |abef|jadgb| — |adge||abed|

 — —|abef]|adgf| + |adge|jabeg|
™ |abef||adgb| — |adge||abed|

(9.211)

(9.212)

9.4.3 Determination of 9; and 4,

Corresponding values for 3 and 6, may be obtained from the following fundamental
sine and sine—cosine laws for a spherical heptagon:

Xs6712 = 83483, (9.213)
Ys6712 = $34C3, (9.214)
X21765 = 83454, (9.215)
Y21765 = $34C4. (9.216)

9.4.4 Determination of Ss

The last parameter to be determined is the offset distance Ss. This may be determined
by projecting the vector loop equation onto any direction, resulting in one equation in one
unknown. Projecting onto the vector Ss gives

S1Z76 + S2Z34 + S3Z4 + S4Cs5 + Ss + SeCs6 + S7Zs + 412U 1765
+ a23U345 + 23484584 + a67Ugs + a7;Uz¢5 =0. 9.217)

This equation can readily be solved for the parameter Ss.

9.4.5 Numerical example

Table 9.3 shows data that were used as input for a numerical example. The calculated
values for the sixteen configurations are listed in Table 9.4.
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Table 9.3. RRPRRRR mechanism parameters.

Link length, Twist angle, Joint offset, Joint angle,
cm. deg. cm. deg.

ap =29 o =90 S, =127 6, = variable
apn = 13.2 a3 =90 S:=1.1 6, = variable
ay = 1.1 a3y = 90 S; =3.1 63 = variable
a5 = 16.7 ays = 90 S;=6.8 6, = variable
asg = 12.7 asg = 89 Ss = variable 65 =252

ag; =194 g7 = 90 S¢=11.8 6 = variable
ay =6.0 a7 =90 S$;=69 6; = 83 (input)

Table 9.4. Calculated configurations for the RRPRRRR spatial mechanism.

Solution 6y, deg. 6,, deg. 63, deg. 64, deg. 65, deg. S5, cm.
A —104.45 —15.64 —83.75 —169.89 —108.56 26.57
B -92.69 —17.54 71.40 —8.92 75.10 —26.82
C —81.74 —147.90 68.43 9.80 —60.75 32.15
D —77.36 —151.93 —79.48 166.21 122.33 —33.78
E —22.26 —106.57 18.84 73.16 -72.93 20.52
F —12.82 119.26 —9.09 —56.65 —83.58 46.60
G 16.21 —107.69 —167.05 95.41 105.76 —22.59
H 22.23 121.09 173.63 —131.49 98.41 —45.17
1 69.34 —172.85 127.94 168.99 86.65 —-3441
J 74.42 —175.21 -93.24 7.64 —97.05 34.26
K 106.03 —36.04 —-99.73 —16.90 131.19 —28.89
L 134.51 —52.30 138.26 —139.97 —58.47 24.60
M 159.46 107.73 —168.75 74.84 —80.65 4547
N —164.56 115.68 9.06 104.77 101.29 —47.82
(0] —163.88 -73.99 —20.16 —88.53 113.33 —19.20
P 143.01 —~58.22 144.98 —130.15 —61.19 23.42
9.5 Summary

It has been shown that it is possible to solve group 3 spatial mechanisms by obtaining
four equations of the form

(aix] +bix; + di)xi + (ex] +fix;+g) =0,  i=1...4, (9:218)

where the coefficients a; through g; are quadratic in the tan-half-angle of the output angle.
Eliminating x; and x, from the set of equations results in a sixteenth-degree input/output
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Table 9.5. RRPRRRR mechanism parameters.

Link length, Twist angle, Joint offset, Joint angle,

cm. deg. cm. deg.

a5, =98 ap =291 S, =57 6, = variable
a,3 =2.9 3 = 263 S, =028 6, = variable
ay = 2.1 o3y = 147 S;=3.6 63 = variable
a5 = 4.6 ays = 184 S;=94 64 = variable
asg = 4.5 s = 268 S5 = variable 6; =97

ag; =33 ag; =173 S¢ =4.4 0 = variable
a;; =14 a7 = 153 S; =08 6; = 279 (input)

equation that can be expressed as

|aebd|[defg| + |aebf||bdfg| — |aebg||bdeg|
— |aedf||adfg| + |aedg||adeg| + |aefg||abdg| = O, (9.219)

where the determinant notation |xyzw| is defined by

X1 Y1 21 W

X Z w
yzw| = |2 2 B (9.220)
X3 Y3 Z3 W3

X4 Y4 Zs W4

Examples of six-link SR-C and seven-link 6R-P mechanisms have been presented in
this chapter. Alternate inversions of these mechanisms, that is, the location of the C or
P joint changes in the serial chain, can be solved in a manner similar to that described in
the examples. It should be noted also that several inversions may be solved by simply
changing (or cycling) the number of the joints in the example problems so that the example
mechanism matches the case to be analyzed.

The symbolic expansion of the coefficients of the four equations can be a tedious process
(see Egs. (9.71) through (9.74) and (9.202) through (9.205)). C language computer code
that numerically evaluates these coefficients can, however, be obtained from the authors.
Once these coefficients are evaluated for a specific mechanism, the remainder of the
analysis is straightforward.

9.6 Problems

1. The mechanism parameters of a group 3 RRPRRRR spatial mechanism are given in
Table 9.5. Using the available computer code that expands the coefficients of Egs. (9.202)
through (9.205), write a computer program to determine all the real solutions for the
variable parameters 0y, 6,, 63, 64, 65, and Ss.



10

Group 4 spatial mechanisms

10.1 Introduction

The solution of the group 4 general 7R spatial mechanism (with seven joint axes that
are arbitrarily skew) was described by Ferdinand Freudenstein as the “Mount Everest of
kinematic problems.” This complicated analysis is presented solely for reference purposes
and could be omitted by the vast majority of readers. The derivation given contains much
more detail than that presented by Lee and Liang (1988). The intention is to assist any
researcher who wishes to develop a computer program for the 7R mechanism analysis.
Further, an in-depth study may well lead to a simpler derivation.

It will be shown in this chapter that the input/output equation for the general 7R mech-
anism can be obtained from four equations of the form

(aixj2 + bix; + d;) Xk + (eixj2 +fix;+g) =0, i=1...4, (10.1)

where the coefficients a; through g; are quadratic in the tan-half-angle of the output param-
eter. Eliminating the variables x; and xi from this set of equations will yield a sixteenth-
degree input/output equation in the tan-half-angle of the output angle.

Because the format of (10.1) is identical to that of (9.2), the generation of the in-
put/output equation will be identical to that developed for the group 3 mechanisms once
the quadratic coefficients a; through g; are obtained. Further, the solution for the parame-
ters X; and xx will be the same as presented in Section 9.3.2.

The majority of industrial manipulators in use today consist of an end effector link free
to move in space connected serially by six revolute joints to ground. The end effector
link, together with the five intermediate links plus ground comprise seven links. Thus,
when the close-the-loop process is performed as part of the reverse analysis procedure,
a group 4 7R spatial mechanism results where one angle, 6;, is known. It will be seen
that obtaining the coefficients a; through g; in Eq. set (10.1) is a lengthy undertaking.
The numerical evaluation of these coefficients and the subsequent solution of a sixteenth-
degree input/output equation can require a significant computational time. Precise real-
time control of industrial manipulators requires that the reverse-analysis calculations be
performed as rapidly as possible.

At the outset it appears that a manipulator design that can be modeled by a group 1
spatial mechanism would be preferred to a manipulator that is modeled by a group 4
spatial mechanism, simply because the reverse-analysis procedure is easier. However,
the vast majority of industrial manipulators do in fact incorporate six revolute joints with
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“specialized” geometry. For example, certain link lengths may be set equal to zero, which
allows pairs of successive joint axes to intersect. This produces the mechanical design
of wrist and shoulder-type joints. It is also common to set to zero or 7 radians certain
twist angles for which adjacent joint axes are parallel. All such special geometry greatly
simplifies the reverse analysis and avoids any problems associated with the actuation of
slider displacements, which is necessary for a manipulator design modeled by a group 1
mechanism.

This chapter will first present the solution of the general 7R spatial mechanism with
arbitrary dimensions. This complicated analysis is presented for reference purposes.
Following this, six 7R mechanisms with special geometries will be presented to show how
the reverse-analysis procedure can be greatly simplified for such special cases.

10.2 General 7R group 4 spatial mechanism

Shown in Figure 10.1 is a planar representation of the 7R spatial mechanism. It is
assumed that all the constant mechanism parameters are known together with the input
angle, 8;. The objective is to obtain corresponding values for the remaining unknown
joint displacements. In particular, the problem statement is as follows:

given:  ap, a3, 034, Oas, Use, Cle7, X715
a12, 423, 34, 45, As6, A67, 471,
Sl, Sz, S3, S4, S5, S6, S7, and
07 (input angle),

find: 91,92,93,94,95, and 96-

The angle 0, is the output angle because it is attached to the frame a;;, and it will be
solved for first. The solution will proceed by first obtaining two pairs of equations that
are linear in the tan-half-angle of 6 and that also contain the variables 0;, 6,, 64, and 0s .
Once these are obtained, it will be shown how to eliminate the angles 64 and 85 from these
equations in order to obtain four equations of the form of Eq. (10.1).

input 7 1 output
angle angle

Figure 10.1. Planar representation
of 7R spatial mechanism.
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10.2.1 Derivation of the first pair of equations

The vector loop equation for the 7R spatial mechanism may be written as

R = R®% £ R — ¢, (10.2)
where
R% = S6S6 + agrag7 + S187 + azjan + S1S1 + apap + S28; + axans, (10.3)
R*% = $38; + 234834 + S4S4 + assass + SsSs + asease. (10.4)

In general, the notation R™* will represent the sum of the terms of the vector loop equation
beginning with S;S; and ending with ajajy.

Projecting Eq. (10.2) onto the direction of the vector as¢ and then onto the direction
(S¢ x ase) gives

RS2 . a5 = —R*56 - as, (10.5)
R%% . (Sg x ass) = —R>*0 . (S¢ x ase). (10.6)

The scalar products on the right side of these equations will be evaluated by using set 10
of the sets of direction cosines for a spherical heptagon. This yields

J, = —R*® . ags = —(S3Xys + azaWis + S4Xs + a45Cs + ase), 10.7)
Jo = —R*% . (8¢ x ass) = S3Yas5 — 234U + SaYs + a4585¢s6 — SsSs6- (10.8)

The scalar products on the left side of Eq. (10.5) will be evaluated by using set 5 from the
direction cosine table, and the left side of Eq. (10.6) will be evaluated with set 10. This
yields

RS2 . ass = agrcs + S7Xs + a71 Wag + S1X76 + a12W 176 + S$2X176 + 223 Wa 17,

n i} (10.9)
R - (86 X as6) = ag75¢ — S7Y 12345 + a71U123456

— S1 Y2345 + a12U%5456 — S2 Y345 + 223U 6. (10.10)

Fundamental and subsidiary spherical and polar sine—cosine laws may be used to substitute
for the coefficients of S+, ay;, S1, a12, S;, and a3 in Eq. (10.10) to give

6,23 — * %
R - (8¢ x as¢) = ag756 — S7867C6 — 271 V16 + S1X76 — 212 V176 + S2X(56 — 23 Va2176-

(10.11)
Expanding Eqgs. (10.9) and (10.11) and regrouping terms using the expansions
Xs = serss, X7 = Xsce — o8, Xize = Xir€e — Y1186,
Xt = Xys6 + Yice, Xt = Xiss + Yiscs, (10.12)
Wi = CsC7 — $657Cq7, Wiz = 86Ut +cs W7, Waize = 86¢U3 56 + s War,

Vo6 = —(86C7 + C687Cs7), Vi = ceUjyg — s W7, Vars = U35 — 86Way7,
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yields
R%% . as = Hicg — Hysg, (10.13)
RS2 . (S¢ x as¢) = Hacs + Hyss, (10.14)
where
H; = ag7 + a71¢7 + $1X7 + anWy7 + S2Xa7 + a3 Ways, (10.15)
H; = —S7s67 + a71¢e787 + SlY7 — ale’f76 +S,Y;7 — 323U;176' (10.16)

Substituting Eqgs. (10.7), (10.8), (10.13), and (10.14) into Eqs. (10.5) and (10.6) and
rearranging gives

Hice — Hys6 —J; =0, (10.17)

Hyce + Hysg — J, = 0. (10.18)
Adding Eq. (10.17) to x¢ times Eq. (10.18) yields

H;(c6 + sex6) + Ha(cexe — s6) — Toxg — J; = 0. (10.19)
Subtracting x¢ times Eq. (10.17) from Eq. (10.18) gives

H; (s¢ — c6x6) + Ha(ce + sex6) + J1x6 — J» = 0. (10.20)
The following trigonometric identities were introduced in Egs. (9.108) and (9.109):

S¢ — CeXg — X6 (1021)

Ce+ sex6 = 1. (10.22)
Equations (10.19) and (10.20) can be simplified by using these identities and rearranged
to give

(Hz + 12)x6 — (H1 = J1) =0, (10.23)

(Hy +J)x6 + (H, — J2) = 0. (10.24)

These two equations are linear in the tan-half-angle of 6 and contain the variable
parameters 61, 8, 64, and 6s. It will be necessary to eliminate the angles 6, and 05 from

these equations so that the result may be expressed in the format of Eq. (10.1). Two
additional equations will first be generated before the angles 6, and 65 are eliminated.

10.2.2 Some important vector expressions

Prior to developing the next pair of equations that will be linear in the tan-half-angle
of 0g, four new expressions will be obtained. These expressions will be used later.
Using set 6 of the table of direction cosines for a spherical heptagon, it is apparent that

R%? . as; = Hy, (10.25)
R%% . (S x ag7) = H,, (10.26)
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where H; and H; are given by Eqgs. (10.15) and (10.16). Substituting for H; and H; in
Egs. (10.13) and (10.14) gives

R%? . ass = [R®? - ag7]cs — [R% - (S x ag7)]se, (10.27)
RS2 . (S5 x ass) = [R®Z - (S5 x ag7)]cs + [R® - ag)]ss. (10.28)

Also from set 6 of the direction cosine table, the scalar product of S; and asg may be
written as

Ss - asg = X217¢6 — Y21756. (10.29)
This equation may also be written as
S; - ass = [S3 - ag7]cs — [S3 - (Ss X a67)]ss. (10.30)

Lastly, set 6 of the direction cosine table may be used to evaluate the scalar product of
S; with the vector (8¢ X asg) as

Xo11n Yo7 Zop
S3 . (86 X 356) = 0 0 1 (1031)
Cé —Sg 0
Expanding this determinant gives
S3 - (8¢ x ass) = X21786 + Y217C6- (10.32)
This may also be written as
S3 - (Se x as¢) = [S3 - ag71ss + [S3 - (S¢ X as7)]cs. (10.33)

The four expressions listed in Eqs. (10.27), (10.28), (10.30), and (10.33) will be used
in the next section to derive a further pair of equations that are linear in x¢ and that also
contain the variable joint angles 6, 6,, 64, and 6s.

10.2.3 Derivation of the second pair of equations

Using Eq. (10.2), we can form the following pair of equations:
SR ROP)(S; - ag) — (RSP - SRS - age)
= SRV RIS; - as) — (R SR - agp) (10.34)
and
SRS ROZ)(S, -8 x age) — (RS2 - S9) (R - S x ae)

_ %(R”G CROMOY(S, - Sg x ass) — (RS . §5)(R¥% - S5 x ase). (1035)
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Substituting Eqgs. (10.27) and (10.30) into Eq. (10.34) gives

1
§(R6'23 -R&P)[(S; - a67)cs — (S3 - S6 X a67)s6] — (R®Z - §3)[(R*? - ag7)cs

1
— (RO% . S x a7)sq] = §(R3v56 -R¥3)(S; - ass) — (R¥ - §3)(R>C - ag).

(10.36)
Regrouping terms gives
Hice — His6 —J3 =0, (10.37)
where
H; = %(Rw ‘R®P)(S; - ag)) — (R - SR - agy), (1038)
Hy = %(Ra23 R*%)(S; - S x ag7) — (R®P - §5)(R? - S x ag7), (10.39)
Iy = %(R3'56 -R¥%)(8; - a56) — (R*™ - $3)(R*™ - ase). (10.40)

Similarly, substituting Eqgs. (10.28) and (10.33) into Eq. (10.35) yields

%(R&B R®P)[(S3 - a67)s6 + (S3 - S6 X A7)¢s] — (R - §3)[(R®? - S5 x agy)ce
+ R - agy)se] = %(RS'% R*%)(S;5 - S5 x as6) — (R>* - §3)(R** - S5 x ase).
(10.41)
Rearranging terms gives
H3s6 + Hice — J4 = 0, (10.42)
where
i = S(R¥%S - R¥9)(S; - S x asg) — (R¥ - §) (R - S x ase). (10.43)

2

By analogy with Egs. (10.17) and (10.18), Egs. (10.37) and (10.42) yield the following
pair of equations:

(Hs +J)x6 — (H3 = J3) =0, (10.44)
(H3 + J3)x6 + (Hs — 1) =0, (10.45)

which are analogous to Egs. (10.23) and (10.24).

10.2.4 Expansion of terms Hs, Hy, J3, and J,

In order to avoid massive tedious expansions, it is necessary to expand vectors such
as R*3¢ and R%?* and to regroup terms. Further, in order to avoid repeating expansions
unnecessarily, it is preferable to expand R*® in a sequence and to use these results to
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expand the larger vector R®? using as far as possible appropriate exchanges of subscripts
and superscripts.
Firstly, substituting

R>% = R 4+ R>%, (10.46)
where

R** = $38; + agyas + S4Ss + assaus (1047
and

R> = S58s + assass, (10.48)

into Eq. (10.40) gives

1 1
Jy= §(R3’45 ‘R¥)(S3 - as¢) + (R** - R>¥)(S; - ase) + E(RS’56 - R>%)(S; - ase)

—(R* - 8$3)(R** - ase) — (R*® - $3)(R** - asg) — (R** - $3)(R*™ - as).
(10.49)

The expansion of J; continues by writing*

R x 83) - (R¥ x ass) = R> - R>*)(S; - ass) — R - ase)(R> - §3).
(10.50)

Substituting this expression into Eq. (10.49) and rearranging gives
1 1
J; = §(R3’45 R¥)(S; - as6) — R - S3)(R* - ase) + E(RS’56 R>%)(S; - asg)
— (R 83)(R™ - ass) + (R** x 83) - (R™* x as). (10.51)

The term R>* is now written as

R34 = R>¥ L R, (10.52)
where
R** = S38; + ayay, (10.53)
R4’45 = S4S4 + a454s. (1054)

The first two terms of Eq. (10.51) are of the same format as the terms on the right side
of Eq. (10.40), which was expanded to give Eq. (10.51). Thus, these two terms can be
expanded by substituting the superscripts (3,34), (4,45), and (3,45) for the superscripts
(3,45), (5,56), and (3,56) everywhere in Eq. (10.51) and substituting the result in for the

* This is simply the expression for the scalar product of four vectors a,b, ¢, andd and (a x b) - (¢ x d) =
(@a-c)b-d)y—(a-dyb-c).
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first two terms of Eq. (10.51). This gives
1 1
Jy = E(R3’34 ‘R¥)(S; - ase) — R - S)(R> - ase) + E(R4’45 -R¥®)(S; - ase)

1
_ (R3,45 . S3)(R4,45 . a56) 4 (R3,34 % S3) . (R4,45 % a56) 4 §(R5,56 . R5,56)
x (83 - as6) — (R*™ - S3)(R*¥ - as) + (R*® x 83) - (R*¥ x as).  (10.55)

This equation may be rearranged in the form

1
I, = _2_(R3,34 CR3H 4 RS RS LR RS)(S, - ag)
— (RM- SR - ag) — (RM - $5) (R - a5) — (R - $3) (R - ase)
+ R x 83) - R* x as5) + (R x §3) - (R¥¥ x asq). (10.56)

The expression for J; can be obtained directly from Eq. (10.56) by substituting (S¢ x ase)
everywhere for ass. Thus,

1
Jo = S(ROM RV RASRYS L RO RO)(S; - 5 x asg)
— (R*™ . §;)(R** - 86 x asg) — (R** - S3)(R** - 85 x ase)

— (R*% . §5)(R>* . §6 x ass) + (R** x S3) - (R** x (S5 x asg))
+ (R3* x §3) - (R> x (S6 x asg)). (10.57)
The terms H; and Hy will now be expanded. Firstly, it is observed that the form of the

term Hj is very similar to that of J;. (This is based upon a comparison of Egs. (10.38)
and (10.40).) Thus, it is possible to write the term Hj by introducing the expression

RSB = RS2 4 R23, (10.58)
where

R%!? = S¢S¢ + ag7ae; + S787 + azja7; + S1S; +apap (10.59)
and

R*? = 8,8, + ayan, (10.60)

and then substituting the superscripts (6,12), (2,23), and (6,23) for the superscripts (3,45),
(5,56), and (3,56) and the vector ag; for ass in Eq. (10.51). This yields

1 1
Hy = ~(R*Z-R*")(S; - ag) — R - SR - ag) + 5 (RP? - RP)(S; - ag)
— (R*? - $3)(R*? - ag7) + (R*"? x 83) - (R*® x agy). (10.61)
The last term of this equation may be expanded as

RS2 x 8;3) - R x agr) = (R*'?-R*P)(S; - agy) — (R*? - S3)(R®" - agy).
(10.62)
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An additional expression may now be written in the form

R X agy) - (R*? x 83) = R RPF)(S; - ag)) — (R¥ - ag)(R*? - 85).
(10.63)

The first term on the right side of Eq. (10.63) appears in Eq. (10.62). Upon substitution,
Eq. (10.62) may be written as

R®"? x 83) - (R*? x ag7) = (R x ag7) - (R x §3) + (R - ag)(R*'? - §3)
— (R*?.85)(R%!% . ag7). (10.64)

Substituting this result into Eq. (10.61) yields

1 1

Hy = 2R -R*)(Ss - ag7) — R - SR - agy) + (R - R*)(Ss - ag7)
— R*? - S3)(R*™ - ag7) + (R x ag)) - (R*® x 83)
+(R*2 - ag)(R%2 - 83) — (R - $5)(R* 1 - ag)). (10.65)

Now, the terms —(R®2 - S;)(R?*2 - ag;) + (R*12 - S3)(R>% - aq;) are equivalent to
~[(R%? — R%!2) . §;1(R>2 . ag7). This term may be written as —(R>%* . §;)(R>2 . ag;),
and hence
1 1
Hy = SR - R*™)(S; - ag7) — R*- SR - ag)) + (R - R*)(Ss - a7)
— R*Z - 8)(R*? - ag) + (R®" x ag)) - (R*® x §3)— (R - S3)(R*" - agy).

(10.66)
Now,
R6!2 = R®! 4 RM12, (10.67)
where
R = S4S¢ + ag7367 + $7S7 + a3y (10.68)
and
R'2 =88 + apap,. (10.69)

The first two terms of Eq. (10.66) are of the same format as the terms on the right side
of Eq. (10.38). Thus, these two terms can be expanded by substituting the superscripts
(6,71), (1,12), and (6,12) for the superscripts (6,12), (2,23), and (6,23) in Eq. (10.66).
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This gives

H; = %(le R®7)(S; -ag) — RO - SR - ag7) + %(R“z R")(S; - ag7)
— R"?- SR a) + R x ag;) - (R"'? x 83) — (RN - S3) (R - a7)
+ %(RZ’B ‘R¥P)(S; - ag7) — R*P-S3)(R™? - ag) + R*'? x ag)
S(R*2 x 83)—(R*2.8;)(R%2 . agy). (10.70)

Finally, the term R%"! is defined as

RO = ROY7 4 R7’71, (10.71)
where

R = S¢S¢ + agrag (10.72)
and

R’ = $,8; + aja9,. (10.73)

The first two terms of Eq. (10.70) are of the same form as the terms on the right side of Eq.
(10.38). Thus, these two terms can be expanded by substituting the superscripts (6,67),
(7,71), and (6,71) for the superscripts (6,12), (2,23), and (6,23) in Eq. (10.66). This gives

1 1
H; = §(R6’67 ‘R%)(S; - ag7) — R®Y7 - S3)(R*Y - agy) + §(R7‘71 ‘R"H(S; - ag7)
— R" SR -ag) + R® x agy) - R x S3) — (R?"! - $3)(R* - ag7)

1
+ SR RM)(S; a6) — R 7SR - ag) + R x ag) - (RM x S3)

1
—R"?- SR - ag) + §(R2’23 ‘R¥P)(S; - agy) — (R*? - $3)(R*? - ag))
+ (R®" x ag))-(R*® x §3)—(R>? - $3)(R*" - ag). (10.74)

This equation can be rearranged as
1
2
— R* - S)R*Y - ag) — R - S))(R™"' - ag))

+ R x agy) - R""! x 83) — R™™ - S3)(R* - agy)

—R"?-S;)(R""? -ag) + R*"! x ag) - (R™'? x S3)

— R"? -8R - ag) — (R - S3)(R*” - agy)

+ (R®" x ag7) - (R*® x §3) — (RPZ - §3)(R*"2 - agy). (10.75)

H3 — (R6,67 . R6,67 + R7,71 . R7.71 4 R1,12 . R1,12 4 R2,23 . 112,23)(S3 . 367)

The expression for Hy can be obtained directly from Eq. (10.75) by substituting (Se x
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ag7) for ag;. Thus,

H, = %(R6,67 RO £ R7TTLRTTN £ RVIZLRLIZ 4 R223 -R2'23)(S3 - S¢ X ag7)
— (R §3)(R* - Sg x ag;) — (R”"" - §3)(R™"" - Sg x ag7)
+ (R x (S¢ x a67)) - R x 83) — (R7™" - §3)(R*? - S5 x ag7)
— (RM2.8,)(R""2. S¢ x agr) + (R®”" x (S x ag7)) - (R"'? x S3)
—(R"2.8,)(R®"" . 8 x ag7) — (R2P - 83)(R*? - ¢ x ag7)
+ (R x (S x ag7)) - (R* x 83) — (R*® - $3)(R*' - 86 x ag7).  (10.76)

Equations (10.75), (10.76), (10.56), and (10.57) provide expressions for the terms
Hi, H4, J3, and 14 in terms of scalar products of various vectors. It is next necessary
to expand these scalar products in terms of the constant mechanism parameters and the
variable joint angles. This will be accomplished in the next sections.

10.2.5 Detailed expansion of J; and J,

The following expressions that are contained in J; must be expanded:

1
_2_(R3,34 . R3,34 4 R4,45 . R4,45 4 R5,56 . R5’56), S3 - asg,

R3,56 . S3, R3,45 . S3, R3,34 . S3,
5,56 4,4 34
R3¢ - asg, R*% . asg, R . as,

(R % §3) - (R* x as6), (R¥™ x 83) - (R x as).
Additionally, the following terms in J4 must also be expanded:

S3 - 8¢ X as,
R>%6 . §¢ x ase, R*% . S¢ X ase, R . Sq x ase,

(R33 x 83) - (R*® x (S¢ x ass)), (R** x 83) - (R> x (S5 X as6)).

Each of these terms will now be expanded individually, with the results substituted back
into Eqgs. (10.56) and (10.57).

@ %(R““ CR3¥ R4 R4S 4 R5SS . RS56)

These simple scalar products can be readily evaluated using the sets of direction cosines
listed in the appendix. The result can be written as

%(R3'34 . R3,34 + R4,45 . R4,45 4 R5,56 . R5,56) — Kl» (1077)
where

1
K, = 5(s§ + a3, + S3 + aj; + S2 + ak). (10.78)
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(i) Ss-ase

From set 10 of the table of direction cosines

S; - ase = Xys. (10.79)
@iii) R>%¢.S;

This term may be written as

R0 . 83 = (S3S; + asa3q + S4S4 + assass + SsSs + asease) - S;. (10.80)

Evaluating the scalar products using sets from the table of direction cosines gives

R3¢ .83 = Js, (10.81)
where
J5 = S3 + S4C34 + 345X4 + S5Z4 + 356X45. (1082)

(iv) R*.S;

The individual scalar products evaluated in (iii) can be used here to obtain

R** .83 = S5 + Sscas + assXa. (10.83)
v) R>*.S,

The individual scalar products evaluated in (iii) can be used here to obtain

R**.8;=§;. (10.84)
(vi) R>3¢. As56

This term may be written as

R>3 - ass = (S5Ss + assase) - ass. (10.85)
Evaluating the scalar products gives

R - a5 = ag. (10.86)
(vii) R** . ase

This term may be written as

R - ass = (S484 + assays) - ase. (10.87)
Evaluating the scalar products gives

R*® . ags = S4Xs + as5s. (10.88)
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(viii) R** - a5
This term may be written as
R* . ags = (S3S; + a34a34) - as6.
Evaluating the scalar products gives
R* . ass = S3X4s + a3 Wis.

(ix) (R* x 83) - (R* x as)

Expanding the terms R*3* and R** and recognizing that S; x S; = 0 gives

(R* x 83) - (R* x as6) = az(@as x S3) - [(S4S4 + assaus) X asgl.

(10.89)

(10.90)

(10.91)

All the cross products must be performed in terms of the same coordinate system so that
each of the resulting terms of the final scalar product, that is, (a3 x S3) and [(S4S4 +
as5a45) X asg), will be evaluated in the same coordinate system. Using set 4 from the table
of direction cosines with the vector S3 given by [s3454, $34C4, €341, the cross product terms

are evaluated as

i J k —C3484
auxXSi3=1 ¢ —s4 0 |=|—Caucs|,
83484 S34C4 C34 S34

i j k —Cy4585
S4 X As¢g = 0 0 1 = Cs s

0

0
= | —84585 | .
C4585

Substituting these results into Eq. (10.91) gives

Cs  C4585 84585

i J k
1 0 0
Cs  Ca585  S4585

A5 X A5 =

—C3454 —S4C4585
3,34 445
(R x 83) - (R™™ X asg) = 234 [ —C34Cq | - | SaCs — 4584585 | .

834 A45C4585

Evaluating the scalar product gives

(R x 83) - (R** x a56) = 23454€34C455485 — (a34C34C4)(S4Cs — As5S45Ss)

=+ 234845534C45Ss.
This equation may be regrouped as

(R* x 83) - (R* x as6) = —a34(Sac34Was + assss Ys).

(10.92)

(10.93)

(10.94)

(10.95)

(10.96)

(10.97)
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x)  (R*® x 83) - (R™ x ase)
The vectors R** and R>3¢ are expanded to give
R x 83) - (R x as)
= [(S3S5 + 234834 + S48y + assa45) x S3] - [(S5Ss + asease) x ase. (10.98)

The individual cross products will all be evaluated using set 11 of the table of direction
cosines. This gives

i J k S4(S45Y4 — C45Z4)
a34 X S3 = C4 —Cu4s84 SasSa | = | S4584X4 —CaZy |, (10.99)
Xe =Yy Z Cas84 X4 — C4 Yy
i J k SasZ4 + Cys Y4
SaxS:i=|0 s45 cus|= CasXy , (10.100)
Xe =Yy4 Z4 —845X4
i J k 0
as xS3=|1 0 0|=1|-24|, (10.101)
Xy =Yy Z4 -Y,
i j k —Ss
Ssxasg=[0 0 1= ¢ |. (10.102)
Cs5 S5 0 0

These results may be used to evaluate the terms (R** x 8;) and (R x as) as
follows:

83484 (S45 Y4 — CysZ4) + Sa(S45Z4 + C45Y4)
(R3‘45 X S3) = a34(s45s4X4 - C4Z4) + S4(:45)(4 - a4524 s (10103)
a34(C4584Xa — C4Y4) — SasasXy —ass5Yy
—-S5C5
(R>* x asg) = | Sscs | . (10.104)
0
The term (s45Y4 — c45Z4) may be expanded, and
Sas Y4 — Ca5Z4 = —845(545C34 + C45534C4) — C45(Ca5C34 — $45834C4). (10.105)
Regrouping and substituting s3; + c25 = 1 yields
S45Y4 — C45Z4 = —Ca4. (10106)

Analogously, the term (s45Z4 + c45 Y4) may be expanded, and

84524 + Ca5 Y4 = 845(C45C34 — 845534C4) — Ca5(S45C34 + C45534C4). (10.107)
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Regrouping gives

SasZ.4 + Cas Y4 = —8534C4. (10.108)
The term (54584 X4 — €4Z4) may be expanded, and

84554 X4 — C4Zs = S4554(53454) — C4(Ca5C34 — S45534C4), (10.109)
which reduces to

S4584X4 — C4Z4 = 834545 — C34C45C4. (10.110)
Lastly, the term (c4554X4 — ¢4 Y4) may be expanded, and

C4584X4 — C4 Y4 = C4584(53484) + C4(S45C34 + C45534C4), (10.111)
which reduces to

Ci584Xs — €aYq = =Y. (10.112)

Substituting the results of Eqs. (10.106), (10.108), (10.110), and (10.112) into Eq.
(10.103) gives

—83484C34 — S4834C4
(R*® 5 83) = | a3 (34845 — C34CasCs) + SaCasXa — AsZy | . (10.113)
—a34Yy — S4845Xy —ags Yy

Equation (10.113) can be written in the abbreviated form

—Xoa
R¥*» xS =| Yu |. (10.114)
—Zoa
where
Xoa = 34C3484 + S4834C4, (10.115)
Yos = S4C45X4 + a34(S45534 — C45€34C4) — AssZa, (10.116)
Zos = Suss5Xs + a3 Yy + as5Ys. (10.117)

The scalar product of Eqs. (10.114) and (10.104) may now be written as

R*® x 83) - R> x ass) = Ss(s5Xo4 + C5Yo4). (10.118)
(xi) S3-S6 x ase

This term may be expanded by using set 5 from the table of direction cosines as follows:
Xorr6 Y6 Zowre

0 —Ss6  Cs6
1 0 0

S3 . S6 X as¢ = (10119)
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Expanding this determinant gives

S; - S¢ X ass = cs56 Y2176 + S56Z2176- (10.120)
Substituting the definitions of the terms Y;;7¢ and Z;,7¢ gives

S5 Se X ass = Cs6(C56X376 — S56Z217) + Ss6 (856 X5 176 + C56Z217)- (10.121)
This equation may now be written as

S3 - Se % ass = X376 = — Yas, (10.122)
where a subsidiary sine—cosine law was used to substitute for X3, .
(xii) R . 8¢ x as

The vector R>¢ is expanded to give

R>% . S¢ x ass = (SsSs + aseass) - S¢ X ass. (10.123)
Recognizing that ass - (S¢ X as¢) = 0, the equation may be written as

R>%6 . S¢ x ass = S58s - S X ase. (10.124)

Expanding this scalar triple product by using set 10 from the table of direction cosines
yields

0 s cs6
SS . S6 X as¢ = 0 0 1], (10125)
1 0 O
and therefore
R . § x ass = Sssss. (10.126)

(xiii) R** . S¢ x asg
Expanding the vector R*%,
R*% . S6 x ass = (S4S4 + assaus) - S X ass. (10.127)

The scalar triple products S, - S¢ X as¢ and a5 - S¢ X as56 can be evaluated using set 10
from the table of direction cosines, and

Xs —Ys Zs
S4 . Sﬁ X As¢ = 0 0 1| = —Y5, (10128)
1 0 0
Cs —SsCs6  SsSs6
a5 . Sﬁ X as¢g = 0 0 1 = —Cs56Ss. (10.129)
1 0 0

Substituting these results into Eq. (10.127) gives

R*® . 8¢ x ass = —(S4Ys + as5Cs565s). (10.130)
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(xiv) R¥* . S¢ x asg
Expanding the vector R334,
R33* . 8¢ x a5 = (S3S3 + a34a34) - S¢ X ase. (10.131)

The scalar triple products S3 - S¢ x asq and a4 - S¢ X as¢ can be evaluated using set 10
from the table of direction cosines, and

Xas —Yas  Zss
Sy-Sexass=|0 0 1 |=-Y, (10.132)
1 0 0
Wis Uzse Uass
Ay - S6 X Aseg = 0 0 1 = Uj;56. (10133)
1 0 0

Substituting these results into Eq. (10.131) gives

R** . Sg x ass = —S3 Y45 + 34Ul (10.134)

(xv) (R** x S3) - (R* x (S¢ x as))

Set 4 from the table of direction cosines will be used to evaluate all the scalar and vector
products. First, the vector product S¢ x ase is evaluated as

i J k s5(84sY's — CasZs)
S6 X As6 = X5 Y5 25 = C5Z5 — S45S5X5 . (10135)
Cs5  Ca585  S4585 C4585X5 - CsYs

This result will be expanded using the definitions for Xs, Y5, and Zs. The term (s45Ys —
Cs5Zs) may thus be written as

Sa5sY's — CasZs = —S45(845Cs6 + CasS56Cs) — Ca5(CasCs6 — S45856Cs), (10.136)
which reduces to

sasYs — CasZs = —Css. (10.137)
The term (csZs — s4585X5) may be written as

CsZs — 84585 X5 = C5(CasCs6 — Sa5856C5) — S555(S5685), (10.138)
which reduces to

CsZs — S4585Xs = —(S45856 — CasCseCs) = —Zs. (10.139)
The term (c4555Xs — ¢5Ys) may be written as

CasSsXs — CsY's = Cas85(S56Ss) + Cs(845Cs6 + CasSs6Cs), (10.140)
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which reduces to
C4585Xs5 — CsYs = $s56Ca5 + Cs6845Cs = — Y. (10.141)

Substituting Eqs. (10.137), (10.139), and (10.141) into Eq. (10.135) and recognizing that

!

Cs685 18 the definition of the term )_(5 gives
_)‘('5
S5 X Asg = —Z,S . (10142)
—-Ys

The vector triple product (R** x (S¢ x as¢)) will next be evaluated by first expanding
the vector R**. This gives

R**® x (Sg X ass) = (S4Sq + as5a45) X (Sg X ass). (10.143)

The vector products Sy X (S X as6) and a45 X (S X ase) are evaluated by using set 4 from
the table of direction cosines as follows:

i ] k Z;
Sy x(S¢xasg) =| O 0 1 | = [—Xg} , (10.144)
=Xy -Zi -Ys 0
i i k 0
ay5 X (Sg X asg) = [ 1 0 0 |= { Y5 } . (10.145)
X, -Z{ -Ys —Z;

Substituting Eqs. (10.144) and (10.145) into Eq. (10.143) gives
S4Z;
R** x (Sg x ass) = | —SaX5 +ass5Ys | . (10.146)
—a45Z’5
The cross product (R** x S3) is evaluated by expanding the vector R***. This gives
R** x 83 = (S38; + assa3q) ¥ Ss. (10.147)

Now, S; x S; = 0 and the vector product a4 x S; is evaluated using set 4 from the table
of direction cosines as

i J k i J k ~—C3484
az4 X S3 = Ca —84 0 = Cq —84 0 = | —C34C4 | .
Xowes  Yares  Zaizes 83484 834Cs Cx 834

(10.148)

Note that fundamental sine, sine—cosine, and cosine laws for a spherical heptagon were
used in this equation to substitute for the terms X5;76s5, Y21765, and Z»y765. Substituting
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Eq. (10.148) into Eq. (10.147) gives

—33403454]
(10.149)

3,34
R x 83 = [—33403404
34834

Forming the scalar product of Eq. (10.146) with Eq. (10.149) gives the result

(R** x 83) - (R x (S¢ x ase))
= —a3[S4(Zscaass — Xeacs) + ags(Yscaacs + Ziss)]. (10.150)

The terms Z and 5(’5 may be substituted into the expression (Z;csss4 — 5(;03404) to yield

Z5c3484 — X5C34C4 = (556545 — C56C45C5)C3454 — (C5655)C34Ca. (10.151)
Regrouping the right side of Eq. (10.151) gives

Z'c3a84 — X5€34C4 = CaalSs6(Sassa) — Cs6(S5¢a + C584¢a5)] = C3aUlsg. (10.152)
Substituting this result into Eq. (10.150) yields

(R** x 83) - (R*™ X (Sg x as6)) = —as4 [Ss(c34Ujss) + ass(Yscaaca + Zisas)].

(10.153)

(xvi) (R*® x 83) - (R>* x (S5 x ase))

Set 11 from the table of direction cosines will be used to evaluate all the scalar and
vector products in this expression. Firstly, the vector product Sg X ase is evaluated as

i j k i j k —Cs56S5
Se X as¢ = | X71234  —Y71234  Z71234 | = | S5655 —S56Cs Cs6 | = | C56Cs | -
Cs Ss 0 Cs Ss 0 Ss6

(10.154)

Note that fundamental sine, sine-cosine, and cosine laws for a spherical heptagon were
used in this equation to substitute for the terms X71234, Y71234, and Z75034.

The expression (R>%° x (Sg x as¢)) is next evaluated by expanding the term R>%°, This
gives

R>% x (S x ass) = (SsSs + aseass) X (Sg X ase). (10.155)
The vector product (S5 x (S¢ X ase)) is evaluated first, and

i j k —Cs56Cs
0 0 1 |=|—csess|. (10.156)
0

Ss x (Se x asg) =

—Cs685 Cs56Cs  Ss6
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The vector product (ase x (S¢ X as¢)) is evaluated, and

i j k S56S5
asg X (S6 X 356) = Cs Ss 0= —856Cs | - (10157)
—Cs6Ss  Cs6Cs  Sse Cs6

Substituting Eqs. (10.156) and (10.157) into Eq. (10.155) gives

—S5C56C5 + 5685655
(10.158)

5,56 _
R x (8¢ X asg) = |:_SSCSGSS — 56556Cs
aA56Cs6

The factor (R** x S3) was previously expanded using set 11 from the table of direction
cosinesin Eq. (10.117). Using this result, the scalar product (R*** x §3)-(R>36 x (Sg x as6))
may now be written as

R x 83) - (R x (Sg x as6)) = Xo4(SsC56C5 — as65s65s)

— Y04(S5C5685 1+ 256856C5) — Zo4(as6Cs6)-

(10.159)

Now that the sixteen terms in Eqs. (10.56) and (10.57) have been expanded, the terms
J; and J, may be written in the abbreviated forms

J3 = KiXys — S3(S3Xas + a34Was) — (S5 + Sacas + assX4) (54X + a45¢s)
—Jsass — a34(S4C3aWias + 24585 Y4) + Ss(s5Xoa + c5You), (10.160)

Jo = =K Yus + S3(S35Y4s — a34Ujs) + (S3 + Sacas + a45Xs)(S4Ys + a45Cs68s)
—J5Ss856 — a3 [54 (034UZ56) + ays (Y5034C4 + 2/5834)] + Xo4(S5Cs56C5 — 56856S5)

— Y04(Ss5Cs655 + a56556Cs) — Zoa(as6Cs6), (10.161)

where K; and Js were defined in Eqs. (10.78) and (10.82).

10.2.6 Detailed expansion of H3 and H,

The following terms that are contained in H3 (see Eq. (10.75)) must be expanded:

1
5(Rs,67 RSS7 4 R?7L. R £ RU2.RV2 L R2B.R2B), S, . ag,

R6,67 . SS, R7,71 . SS, R1,12 . SS,
2,23 2,23 1,12
R>% .83, R** . aq;, RY' - aq,
1 6,71
R ag;, RO . ag;, R®7! . ag;,
6,12 6.6 71 6,71 1,12
R™>'% - aqy, (R®% x ag7) - (R77! x S3), (R®"! x ag7) - (RV2 x S3),

(R x ag7) - (R2B x 83).
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Additionally, the following terms in Hy (see Eq. (10.76)) must also be expanded:

S; - S X ag7, R>2 . 8¢ x ag7, RV12.8, x ag7,

R77 . 8¢ x ag7, R5¢7 . §¢ x ag7, RS7! . §¢ x ag,

R%!2. 8¢ x ag;, (R%%7 x (S6 x ag7)) - (R x S3),

(RO % (Sg x ag7)) - (RM12 x 83), (R%12 x (Sg x ag7)) - (R*? x S3).

Each of these terms will now be expanded individually, and the results substituted back
into Eqgs. (10.75) and (10.76) to yield H; and H,.

(1) %(R6,67 . R6,67 + R7,71 . R7,71 4 R1,12 . R1,12 + R2,23 . R2,23)

These simple scalar products are readily evaluated as

1

_2_(R6,67 .RSS7 4 R77L.R77! 4 RLIZ.RVIZ 4 R223 -R2‘23) =K, (10.162)
where

K, = %(S§+a§7+S$+a$1 + ST +al, + S5+ a3,). (10.163)
(i) S;-ag

Set 6 from the table of direction cosines can be used to evaluate this term as

S; - ag; = X7 (10.164)
(iii) R%%7 .S,

This term may be written as

R%% . S; = (S6S¢ + ag7a¢7) - Ss. (10.165)

The scalar products in this equation may be evaluated using set 6 of the table of direction
cosines to give

R . 83 = S¢Zy17 + aerXa17- (10.166)
(iv) R"'.S,

This term may be written as

R"7' .83 = (887 + az1an) - Ss. (10.167)

The scalar products in this equation may be evaluated using set 7 of the table of direction
cosines to give

R”7.8; = S775, + a1 Xa1. (10.168)



10.2 General 7R group 4 spatial mechanism 225

(v) R“Z2.S,
Expanding the vector R},
R1‘12 . S3 = (SISI + 312312) . S3. (10169)

The scalar products in this equation may be evaluated using set 1 of the table of direction
cosines to give

R"2.8; = 8,7, +a;,X,. (10.170)
(vi) R?%.8,

Expanding the vector R*23,

R>% . 8; = (S,8; 4 anay) - Ss. (10.171)

The scalar products in this equation may be evaluated using set 2 of the table of direction
cosines to give

R*® .83 = Sycs. (10.172)
(vii) R*® - ag

Expanding the vector R*2,

R*® - ag; = (S:5: + anan) - ag. (10.173)
Evaluating the scalar products using set 14 and then set 15 gives

R*® - ag; = S$,Usp; + ay Wy, (10.174)
(viii) R"'? - ag;

Expanding the vector R112,

R"2 . ag; = (S,S; +apap) - agr. (10.175)
Evaluating the scalar products using set 8 and then set 14 gives

R""? . ag = iUy +apWor. (10.176)
(ix) R -ag

Expanding the vector R77!,

R - ag; = (S7S7 +anan) - aer. (10.177)
Evaluating the scalar products using set 7 gives

R . ag; = a1¢q. (10.178)
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x) R%Y.ag

Expanding the vector R,

R - ag; = (SeS6 + a57867) - A67- (10.179)
Evaluating the scalar products using set 6 gives

R . ag; = ag7. (10.180)
(xi) R®™'.ag

Expanding the vector R®"!,

R . ag; = R + $:8; + a137)) - ag;. (10.181)
Using Eq. (10.180) and evaluating the last two scalar products using set 6 gives

R . ag = agy + azics. (10.182)
(xii) R*'?. ag

Expanding the vector R®!2,

R*"7 . ag; = R +8S; +apap) - ag. (10.183)
Using Eq. (10.182) and evaluating the last two scalar products using set 6 gives

R®"2. a5 = ag; +aj1c7 + 1 X7 +apWs. (10.184)
(xiii) (R*? x ag) - (R"7' x S3)

The vector and scalar products in this term are evaluated using set 7 from the table of
direction cosines. Expanding the vector R®® gives

R%% x ag; = (S¢Ss + ag7367) X g7 (10.185)

The vector product of S¢ and ag; may be evaluated as

i j k i j k C6787
Se x a7 = | Xsazz1 Ysazn  Zsan2i | = |S6757 S67C7 Ce7| = [ CerC7 |,  (10.186)
Cy —S7 0 Cy —S7 0 —S67

where fundamental sine, sine—cosine, and cosine laws for a spherical heptagon were used
to simplify the direction cosines of S¢. Because ag; x ag; = 0, Eq. (10.185) may be
written as

SeCe787

R6’67 X Qg7 = S6C67C7 . (10187)
—S6S67

The factor (R”7! x S;) may be expanded as

R7’71 X S3 = (S7S7 + a7la71) X S3. (10188)
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The vector product of S7 and S; is written as

i j k -Y,;
S7 X S3 =10 0 1| = X>1 . (10189)
Xo1 Yu Zy 0
Further,
i j k 0
a; X S3 = 1 0 0| = —221 . (10190)
X21 Y21 Z21 Y21

Equation (10.188) may now be written as

—S7Yy
1{7'71 X S3 = S7X21 - a71241 . (10191)
a7 Y1

Finally, the scalar product of Egs. (10.187) and (10.191) yields
(R*Y x ag) - (R"7! x S3) = S¢S7c67X217 + Sear1(—s67 Y21 — C67¢7Za1).  (10.192)
(xiv) (R*"" x agr) - (RM'? x S3)

The vector and scalar products in this expression are evaluated using set 1 from the
table of direction cosines. The first vector product may be written as

R®7' x ag; = (S¢Ss + agras7 + $787 + aza7) X agr. (10.193)

The vector product of S¢ and ag; may be written as

i j k ik
Se x ag7 = | Xsaz Ysan sy (= | X1 —=X3, Z;
Wesazz  —Ugsaznr  Ussaszn Wi Vi Uy

W3 Z; — X71Upy
VX + Wy X3,

l—UﬂX;l - VuZ,
(10.194)

Here, subsidiary spherical and polar sine, sine—cosine, and cosine laws have been used to
simplify the direction cosines for S¢ and ag;. Expanding the right side of Eq. (10.194),
regrouping terms, and using the identities s] + ¢} = 1,85 +¢5 = 1, and 5, + ¢, = 1
gives

S6 X a7 =

— Ul
—aZ -8 X, |, (10.195)
Y,

where the terms X and Z; were introduced in the previous chapter, and

Xl7 = C¢787, (10196)

Z/7 = 8718¢7 — C71C¢7C7. (10197)
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Now, ag7 x a¢; = 0, and the vector product of S; and a¢; can be written as

i i k i J k
S7 x ag7 = | Xesazz  Yesasz Zesanz | = |S7S1 $71€1 ©n
Wi Vi Uy Wi Vi Ugp

U7i871€1 — V7ieny
= | =Unsyusi + Waen |, (10.198)
Vas7is1 — Waisy ¢y

where fundamental sine, sine—cosine, and cosine laws were used to simplify the direction
cosines for S;. The last element of this expression may be expanded as

V7187181 — Wy1871€1 = —(81C7 + C(87C71)87181 — (C(C7 — $187C7()$7(C1. (10.199)
Regrouping this expression and substituting s? + ¢2 = 1 yields

V7187181 — Wyi871€1 = —$71C7. (10.200)
Substituting Eq. (10.200) into Eq. (10.198) gives

[ U7i871¢1 — V71691
S7 X ag7 = —U7IS7181 + W71C71 . (10201)
—$71C7

Similarly, the first two elements of Eq. (10.198) can be expanded and regrouped to yield

=V
S; xag; = | —$781 + ¢3¢ | - (10.202)
—S71C7

The vector product of a;; and ag; may be written as
i J k —Unsy
a Xagg=|¢ —-s O |= —U7¢y . (10.203)
Wi Vi Ugy Ve + Wagsy

The last element of this expression may be written as

Vaier + Woisp = —(81¢7 + €187C71)C1 + (€1€7 — $187C71)81. (10.204)
Regrouping this expression and substituting s? + ¢ = 1 yields

Vi1 4+ Woisp = —cqi87. (10.205)
Substituting this result into Eq. (10.203) gives

=Unsy
a7 X ag7 = —U71C1 . (10206)
—Cn1%7
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Substituting Eqs. (10.195), (10.202), and (10.206) into Eq. (10.193) gives

—SeUTm —8;Vi; — a5 Uys
R6,71 X ag7 = Se(—C]Z; — S]X%) + S7(—S7S] + ¢sci¢91) — an Uiy | . (10207)
S6Y7 — S7871¢7 — ancnsy

Expanding the vector R!!2,
RU12 % 85 = (S1S; + aparn) x Ss. (10.208)

The vector product S; x S; may be expressed as

i j Kk -Y,
SixS=/0 0 1|=|X (10.209)
)_(2 Yz 22 0
The vector product a;; x S; may be expressed as
i j Kk 0
apxS=|1 0 0|=|-2Z]. (10.210)
Xz Yz 22 Yz
Substituting the results of Egs. (10.209) and (10.210) into Eq. (10.208) yields
-S1Y»
R1‘12 X S3 = SIXZ — a1222 . (10.211)
apYs

Evaluating the scalar product of the vectors (R®7! x ag;) and (R"!? x S3) gives

RS x ag7) - RM'? x §3)
=[=S6Uf76 — S7Vi7 — a71Up181 ] (=S1Y2) + [Se(—¢1Z) — 5, X])
+ S7(=s781 + cs¢1¢71) — anUz1¢1] ($1X2 — a1pZy)
+[S6Y7 — S7871¢7 — an1cn1871(ap Ya). (10.212)

(xv) (R x ag) - (R** x S3)

Set 1 of the table of direction cosines will be used to evaluate all the scalar and vector
products of this term. Expanding the vector R%12,

R6'12 X a¢7 = (R6'71 + SISI + 312312) X Ag7, (10213)

where the vector product of R®"! and ag; has been evaluated using set 1 of the table of
direction cosines in Eq. (10.207). The vector product of S; and ag; may be written as

i j k -V
Sl X Ag7 = 0 0 1 = W71 , (10214)
W7 Vi Uy 0

where the substitutions Wy, = Wesa32, V71 = —Ugsy3,1, and Uy = Ugsaz; have been made.
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The vector product of a;; and ag; may be written as

ik 0
Ay X ag7 = 1 0 0 = —U71 . (10.215)
Wi Vi Un Vi

Substituting the results of Eqs. (10.207), (10.214), and (10.215) into Eq. (10.213) gives
R6’12 X Ag7
—SeUl76 — S7V17 — aUy81 — S1Vyy
= | Se(—c1Z; — $1X5) + S7(—s781 + ¢7¢1¢71) — an Uggep + S1Wqp — a;pUy

S6Y7 — S7871¢7 — a71¢7187 + a2V

(10.216)
Now,
R>% x 83 = (5,8, + apay) x Ss. (10.217)
The vector product S; x 83 is written as
i J k —81222 - C12Y2
S xS =0 —sp Cr2| = Clz)_(z (10.218)
X3 Y; Z, $12X2

The first element of this vector can be simplified by introducing the definitions of Y, and
Z, and regrouping terms to give

$23C2
Sz X S3 = Clz)_(z . (10.219)
$12X>

The vector product a3 x S; may be written as

i J k SzClzzz_ - 82812—?2
axy; X S3 =i S$2C1p S2S12 | = 82812X2 — CzZz . (10.220)
X2 Yo Zp Y2 —$2¢12Xs

This expression can be simplified by substituting the definitions of X, Y,, and Z;, sub-
stituting s + ¢3 = 1 and s?, + ¢, = 1, and then regrouping terms to yield

X,
ay; X S3 = Z/z , (10.221)
Y

where )_(/2 = C23%; and le = 812823 — C12C23Cs.
Substituting Eqgs. (10.219) and (10.221) into Eq. (10.217) yields

S2823¢2 + ap X, }
(10.222)

R*? x 83 = [52C12):(2 + anZ,
Ss12Xy +anY,
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Evaluating the scalar product of the vectors (R%!? x ag;) and (R*? x 8;) gives

(R*" x ag7) - R*? x 83)
= [=SU76 — S7Vi7 — a7 Uzis; — 81 V] (Sasaser + 23 X5 ) + [Se(—¢1Z; — 51X))
+ S7(=s8781 + ¢7¢1671) — a7 U711 + S1Wqp — 212U ](S2012X0 + 253Z))
+[S6Y7 — S7871¢7 — azic7187 + a2 V1 1(Sas12Xa + a3 Y2). (10.223)

(xvi) 83 - S¢ X ag7

Set 6 of the table of direction cosines will be used to evaluate this term as

Xorr Yo7 Zon
S3 . S6 X g7 = 0 0 1 = Y217. (10224)
1 0 0
(xvii)R*? - §¢ x ag

Now,

R>? . §¢ x ag7 = (5282 + az3a23) - (S X A67). (10.225)
The vector product Sg x as; may be evaluated using set 6 from the table of direction
cosines as

i j k 0
S¢xag; =0 0 1|=11]. (10.226)
1 0 0 0

Forming the scalar product of S, and a3 with (S¢ X as7), Eq. (10.225) can be expressed
in the form

R*% . 8¢ x ag7 = S$2Y 17 — anUs 4. (10.227)
(xviii) R"'% - S¢ x ag

Now,

R - S6 x ag; = (511 +apap) - (S¢ x ag). (10.228)
Using set 6 of the table of direction cosines and Eq. (10.226),

RYZ.S¢ x ag; = S, Y7 — apUly. (10.229)
(xix) R™" . §¢ x ag

Now,

R"7' . 8¢ x ag; = (S7S7 + anja71) - (Se ¥ ag7). (10.230)
Using set 6 of the table of direction cosines and Eq. (10.226),

R77'. 8¢ x ag; = —S7867 + a7, Ce757. (10.231)
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(xx) R%%7 . 8¢ x ag

Now,

R%67 . 8¢ x ag; = (S6Ss + as7267) - (S¢ X 267, (10.232)
and clearly

R .86 x ag; = 0 (10.233)
because S¢ - S¢ X 267 = 0 and a¢7 - Sg x ag7 = 0.
(xxi) R®7! . §¢ x ag;

Now,

R .85 x ag; = R%7 . 85 x ag; + R"7! - 8 x ag. (10.234)
From Egs. (10.233) and (10.231),

R®7! . 8¢ x ag; = —S75¢7 + a71C6757- (10.235)
(xxii)R®!? . S¢ x ag;

Now,

R%12. 84 x ag; = RS - 8¢ x ag; + RV12 . 84 x ag7. (10.236)
From Egs. (10.235) and (10.229),

R®'2. 8¢ x ag; = —S7867 + a7icer87 + S1 Y7 — apUly. (10.237)
(xxiii) (R*%7 x (Sg x ag7)) - (R"7! x 83)

Set 7 of the table of direction cosines will be used to evaluate the scalar and vector
products in this expression. The first term in the expression may be written as

R%%7 x (S5 x a67) = (S6Ss + as7867) X (S6 X ag7). (10.238)

The vector product S¢ x ag; can be evaluated as

i j k i j k Cg757
Se x @67 = | Xsaz21  Ysazor Zsazai | = |S6757 S¢7€7 Ce7| = | CerC7 |, (10.239)
C7 —87 0 C7 —S7 0 —S¢7

where the fundamental sine, sine—cosine, and cosine laws Xs4321 = 6757, Ys4321 = S67C7,
and Zsy3;1 = ce7 were used to simplify the direction cosines of Sg.
The vector product S¢ x (Sg X ag7) may now be written as

i j k —C7
= s |. (10.240)

S67S7 S67C7  Ce7
C6787 Ce7C7  —Se7

S X (S¢ x ag7) =
0
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The vector product of ag; and (S¢ X as;) may now be written as

i j k 86757
ag7 X (S6 X 367) = C7 —87 0 = {S¢7C7 | . (10241)
C6787 C67C7  —S67 Ce7

Substituting Egs. (10.240) and (10.241) into Eq. (10.238) yields

—S6C7 + 6756757
(10.242)

R%% x (Sg x ag7) = [ Ses7 + a67867C7
A67C67

The factor (R”"7! x 83) has previously been evaluated using set 7 of the table of direction
cosines. The result is stated in Eq. (10.191). Forming the scalar product of (R%7 x (Sg x
ag7)) and (R77! x S;) yields the result

(R x (Ss x a7)) - (R™"! x 83)

= (—57Y21)(—S6C7 + a6756787) + (S7X21 — a71Z21)(SeS7 + 267567€7)
+ (a71 Y21)(a67C67) - (10.243)

(xxiv) (R®7! x (S x ag7)) - (R x 83)

Set 7 of the table of direction cosines will be used to evaluate all the vector and scalar
products in this expression. Expanding the vector R%7!,

R®7! x (S¢ x ag7) = (R*Y + 8,87 + a71a7;) X (S¢ X ag7). (10.244)

The vector product S¢ x aes; was previously calculated using set 7, and the results are
presented in Eq. (10.239). Also, the vector product R%%7 x (S¢ x a¢7) is listed in Eq.
(10.242). The vector product S7 x (S¢ X as7) may be written as

i J k —C67C7
S7 X (S6 X 367) = 0 0 1 = C6757 . (10245)
C6787 C67C7  —Se7 0

The vector product a;; x (S¢ X ag7) may be written as

i j k 0
a7 X (S6 X 367) = 1 0 0 = Sg7 . (10246)
C6787 C67C7  —Se67 C67C7

Substituting the results of Eqs. (10.242), (10.245), and (10.246) into Eq. (10.244) gives

—S6C7 + 6756757 — S7C67C7
(10.247)

671 _
R>" x (S x ag7) = |:S6S7 + a67867C7 + S7C6757 + 271567
a67C67 + a71C67C7

Now,

RI12 x 83 = (S:S) + apap) x Ss. (10.248)
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The vector product S; x S; may be written as

i J k —s71Zy1 — e Y2
Sl X S3 = 0 —S71 Cnn | = C71X21 (10249)
Xyy Yu Zy $71X21

Expanding Y;; and Z,; and substituting s%l + c%l = 1 in the first component of §; x S,
gives

X3
Sl X S3 = C71X21 . (10250)
$711X21

The vector product a;; x S; may be written as

apxS3=|c¢ sien Up|= Ui7Xo1 — €12y

Xo1 Yo Zy c1Y21 — sien Xy

(10.251)

i J k {51071221 - U17Y21}

Expanding the terms X1, Y21, Z21, and U}, and substituting s3 +c? = 1 and s3, +¢%, = 1
gives

8122
ap X S3 = —YzSn — C71C122 . (10252)
Y2 —s71€1Z;

Substituting Eqs. (10.250) and (10.252) into Eq. (10.248) yields

—Slle + 3128122
. (10.252)

R"M2 xSy = [Slcnle - a12(\—(25_71 +C7101?2)
SisnXa1 +ap(cn Yz — s71€12s)

Evaluating a scalar product of Eqgs. (10.252) and (10.247) yields

(R®7! (S x ag7)) - (R"'2 x 83) = [— $; X3, + 2128125 (— SeC7 + 8786757 — S7C67C7)
+ [S1c71Xa1 — a1 (Y2571 +€7161Z2)1(S687 + 26786767 + S7€6787 + a71567)
+ [S1sn1X21 + ana(cn Yo — $7161Z2)(ag7¢e7 + 71C67C7)- (10.253)

(xxv) (R*'? % (S x a67)) - (R* x 83)

Set 1 of the table of direction cosines will be used to evaluate all the vector and scalar
products in this expression. The first factor may be written as

R%!% x (Sg x a67) = (S6S6 + 267867 + S787 + an1a7 + $18; + apag) x (Ss x ag7).
(10.254)

The vector product S¢ x ag; was previously calculated using set 1, and the results are
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presented in Eq. (10.195). The vector product S¢ x (S¢ X ag7) may be written as

Ss x (S¢ x ag7)

i j k =X Y7+ (©1Z5 + s1X5)Zy
=| Xn _X;I %7 = —X11Y7 — Z7UT76 , (10255)
_UT76 “‘C1Zl7 — 81Xl7 Y7 X71(—C1Z/7 — 51Xl7) — X;IUT76

where the subsidiary sine, sine—cosine, and cosine laws Xsq3 = X71, Ys3 = —X5,,
and Zs43, = Z; were used to simplify the direction cosines of vector S¢. Expanding and
regrouping terms and introducing the trigonometric identities s, + ¢, = 1,82, + ¢, =
1,82+ c2=1,and s + ¢} = 1 yields

—Wx
S6 X (S6 X 367) = —V71 . (10256)
-Uy

The vector product ag; X (S¢ X ag7) may be written as

a7 X (S¢ X ag7)

i J k VY7 + Ugi (12 + 5, X5)
=| Wg Vi qn = —W71Y7 — Uy Uiy , (10.257)
—UT76 —CIZI7 - 51Xl7 Y7 W71(—C1Zl7 - 81Xl7) + V71UT76

where the subsidiary polar sine, sine—cosine, and cosine laws U7y = Ugsaz, V71 =
~Ugsaznr» W11 = Wesszn were used to simplify the direction cosines of vector ag;. Ex-
panding and regrouping terms and introducing the trigonometric identities s, + ¢2; =
1,82 +c2=1,and s} + ¢ = 1 yields

X711
agy X (S¢ X ag)) = | =X, | - (10.258)
77

The vector product S7 x (S¢ x ag7) may be written as

S7 x (S¢ x as7)

i J k S71C1Y7 + ¢ (C1Z/7 + SIX;)
=| s7181 $71Cy o |= —s7181Y7 — ¢71UJ , (10.259)
_UT76 —-CIZI7 - 51X/7 Y7 S71$1(—C1Z/7 - 51Xl7) + S71C1UT76

where the fundamental sine, sine—cosine, and cosine laws X¢s432 = $7151, Y5432 = S71C1,
and Zgsq3, = ¢7; were used to simplify the direction cosines of vector S;. Expanding and
regrouping terms and introducing the trigonometric identities s3, +¢2, = 1 and s?+¢c? = 1
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yields
—Ce7 W11
S7 x (S x ag7) = | —C67 V71 (10.260)
—ce7Un
The vector product a;; x (S X ag7) may be written as
i j k —s1Y7
a7, X (S¢ X ag7) =| ¢ —S; 0= —c1Y,
—Uls —¢Z;—s1X; Y ci(—¢1Z; —51X5) — 51U
(10.261)

Expanding, regrouping, and substituting sf + ¢? = 1 in the last element of this vector
gives

—81Y7
ay X (S¢ x ag7) = | —¢; Y7 | . (10.262)
A

The vector product §; x (Sg X ag7) may be written as

i j k 012’7 + 81Xl7
S; x (8¢ x ag7) = 0 0 1| = —Uls (10.263)
_UT76 —CIZ/7 - SIX/7 Y7 0
The vector product a;; x (S X ag;) may be written as
i j k 0
ap X (Se x ag;) =] 1 0 0= -Y, . (10.264)
—U>1k76 —CIZI7 — SIXI7 Y7 —CIZI7 — SIX/7

The factor (R%!? x (S¢ x ag)) may now be expressed by substituting the results of
Eqgs. (10.256), (10.258), (10.260), (10.262), (10.263), and (10.264) into Eq. (10.254) to
give

116'12 X (86 X 367)

—S6W71 + agr X7 — S7¢e7 W1 — ans1 Y7 + Si(€1Z) + 51 X5)
= |—=SeV71 — a7 X3, — S7¢67Va1 — anic; Y7 — S$1Ufe —anYs | (10.265)
—SeU71 + agrZ7 — S1c;Ury — anZ) — ap(¢1Z; + 51 X5)
The term (R>? x S;) was previously expanded in terms of set 1 of the table of direction

cosines. The results are expressed in Eq. (10.222). The scalar product (R%!? x (Sg x
ag7)) - (R*? x S3) may now be written as

(R®'? x (S x ag))) - (R* x 83)
= [—SeW71 + agX71 — S7¢e7 W1 — a7181Y7 + S1(¢1Z] + 51X5)] [Sas23¢2 + 223X
+ [—S6V71 — a7 X5, — S7c67 Va1 — anici Y7 — 81Ut — a2 Y7 [S2c12Xo + a23Z5)
+ [=S6Us1 + ag1Z7 — S1ce7Un — anZi— app (127 + $1X5) | [S2s12Xz + a3 Yo ).
(10.266)
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All twenty five-terms listed at the beginning of this section have now been expanded.
The results of these expansions will now be substituted into the expressions for the terms
H; and Hy as defined in Eqs. (10.75) and (10.76), which gives

H, =

KoXa17 — (SeZ217 + a61Xa17)a67 — (S9Z21 + anXar)agicy

+ [S6S7¢67X217 — S6a71(867 Y21 + C67€7Z21)] — (S9Z21 + a71Xa1) a7

— (S$1Zy + a;2X5) (81 Uz + a;nWoy) + [SeUlq6 + S7Vig

+a71Uz181] ($1Y2) + [S6( — ¢1Z) — $1X5) + S7(—s781 + ¢oc1691)
—anUz1¢1|(S1X; — a12Z2) + [S6 Y7 — Sos7107 — agieqsrl(aY2)

— (S1Z; + a12X5) (ag7 + a71¢7) — $2623(S2Uq12 + 23 W) + [—S6UT56
=$7Vi7 — a3 Ugis; — S1Va1] x (Sa823c2 + 223X5) + [Se( — €1 Z,

—$1X)) + Sq(—=s781 + crc1671) — a91Uzi¢q + S1Wap — appUqi] (S2c12X,

+ ax3Z}) + [6Y7 — S787107 — 47107187 + a12V711(S2812X2 + a23Y2)

— Sxca3(asy + a7107 + S1X7 + apWig), (10.267)

Hy = Ky Y217 — (59Z12 4 271 X51)(—S7867 + a71¢6757) + (—S7Y21)(—S6c7

10.2.7

+ a6786787) + (S7Xa1 — a71Z21) (S687 + 267867C7) + (a71 Y21)(a67C67)

— (8122 + a12X2) (S1Y7 — apUyg) + [—S1X5; + ansiZs] (—Secr + ag1567%7

— $7¢67¢7) + [S1c71Xa1 — a12(Y2s71 + ©91€122)] (S6$7 + a67567¢7

+ S7ce787 + ar1867) + [S1811X21 + an2(c71 Y2 — s71¢122) ] (as7¢67 + a71€67C7)

— (5122 + a12X3)(—S7867 + a71C6787) — S2623(S2 Y17 — a3 U3 56) + [ — S6Wni
+ a6 X71 — S7eWa1 — a7181Y7 + S1(c1Z; + $1X5)] [Sas23c2 + a3 X))

+ [=S6V71 — a67X5; — S7c67Va1 — agie1 Yy — $1Uf¢ — a2 ¥7] [Sac10Xs + 237
+ [—S6Us1 + a67Z7 — S1c67Uqy — anZ; — app (€1 Z5 + 1X5) ] [S2312 X + a3 Y5
— 85¢23(—S7867 + 2716787 + S1Y7 — a12UTog). (10.268)

Regrouping of the terms Hs, Hy, J3, and J,

The terms Hj, Hy, J3, and J, are defined respectively by Eqs. (10.267), (10.268),
(10.160), and (10.161). These equations can be regrouped as follows:

H3=
H4=

J3=

Iy =

(L101 + Lle + L3)Cz + (L4Cl + L5Sl + L6)82 + LgSl + Lg) =0, (10269)
(Lioct + Liisy + Liz)er + (Lize; +Ligs; + Lis)s,

+ (Lisc1 + Lizs; +Lig) =0, (10.270)
(Liocs + Laoss + Laj)cs + (Lazcs +Losss + Las)ss + (Loscs +Lagss + Lag) =0,
(10.271)

(Lagcs + Laoss + Lag)cs + (Laics + Laoss + Lsz)ss
+ (Lascs + Lasss + Lag) = 0, (10.272)
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where

v/ !
L = S1(S2823X) + Sec12823X5 + S7C1252387 + 2128128237 — @23€12€23C7)

4 1 !
+ 55 (S6523 X5 + S752387 — a23¢23¢7) + Se(S7c12523¢m1X) — ap2s12823Z,
, _
+ a2301202327 — a67C12823 Y7 — a71012323Y7) + S7(a12812523€71€7
v/
— 823C12€23€71€7 + A67€(2523871 + 871€12523871C7) + A2 (323312023X7

¥, 'y, 2 v/
—a7s1283X7) + asancen Xy + (Ky — ag; )i Xy,

1 v/
L, =35, (5252307 - S601252327 + S7€12823€71C7 — 212812523 X5

L;

Ly

Ls

L

+ a23012023)_(’7 - a71012323)_(7) +3S; (_563232/7 + S7823¢71C7

+ a23023X5 — a71823X7) + S6(S7C1282367¢7 — A12812823 X

+ 23012023 X5 — 267€12523X7) + S7(—21281252387 + 823€12€2387)

+ a12a23512€23C7 — 867371C12823 + (Kz - 327 - 331)01282307,

S1(ag7812823 + a71512823€7) + 36(_57312323967)—(7 - a12012323‘_(7 - a23812023‘_(7

+ ag7s12823Z7 — a71s12323Z/7) +S7(a12€12523871C7 + 223512€235871C7 + A67512523C71
+a7;512823¢7(C7) + ap2 (3230120235(7 + a71012323)_(/7) + a23a71312023)_(/7

+ (—K; + ST + ag;)sns2 Xy,

S, (5201232307 — S6823Z5 + S7823¢71C7 + a230235-(/7 - a71323)_(7) +5S, (_569123232/7
+ S7€12823€71C7 — a12312s23)—(/7 + a23012023)_(/7 - a71012323)_(7) + S6(S7323C67C7

+ a23023 X5 — ag7523X7) + S7a23¢2387 — agranisy + (Ko — af, — ag; — a3, )spsc,
S1(—Sac12823X — S523 X5 — S752387 + a23¢23¢7) + S2(—S6C12823 X5

— S7C1282387 — a12812823€7 + a23012023c7) + SG(_S7323C71X; - a230232/7
+ag7823Y7 + a71823‘_(7) + 57(a23€23€71C7 — 867523871 — 471523871C7) — a23a71023)_(7
+ (—Ka2 + aj, + ag;) 523X,

—513125235{7 +3S; (56312323‘_(7 — S7812823871¢7 — a12012323)_(7

- a23s12023)_(7 - a71312s23)_(’7) + ajp(—ag7823 — a71523€7),

S, (56312923)(/7 + S7812€2387 — @12€12€23¢7 + a23s12323c7) — Syai2¢23¢7

+ 687812023071 X] + a12012623Z7 — 381282327 — 867512¢23 Y7 — a71812€23Y7)
+ S7(—a12¢12€23€71C7 + 223512823C71C7 + A67512C23871 + @71512€2387,C7)

+ a12(2123012523)_(/7 + a71012023)_(7) - a23a71s12s23)_(7 + (Kz - S% - 327)3120235(/7,
Si (_563129232/7 + Sss12¢03¢71€7 + a12012023)_(/7 - a23312523)_(/7 - a71s12023X7)

+ 52312023)_(/7 + 56(5731202306707 + a12012023X/7 - a23312823)(/7 - a67312<223X7)
+ S7(a12€12€2387 — 2381252387) + 212823C12523C7 — A67871512€23

+ (K2 - S% - 327 - 331)812023C7,

S1(—82¢3X7 — a67C12C23 — @71C12€23C7) + S2(—a67C23 — 271C23¢7)

+ S6(S7012923C67X7 - 312812023‘?7 - a23012823‘_(7 — ag7c1263Z7 + a710120232/7)

+ S7(a12812€23871€7 + 223€12523871€C7 — 267€12€23C71 — 871C12€23€71€C7)
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L=

L =

L=

Liz =

L=

Lig =

+ a12(—2123512523)_(7 + a71512023)_(,7) + a232171012523)_(,7
+ (Ky — ST — S3 — aZ;)cinens Xy, (10.273)

S1(S2523Z5 — SeC12823¢7 — S7€12823C67C7 + A12812823 X5 — Ascr2enX)

+ 26712823X7) + S2(—S6823¢7 — S7823C67C7 — 2323 X + 867823 X7)

+ S6(—5701252307107 + 312512523)_(’7 - 323012023)—(’7 + 371012523)_(7)

+ S7 (12812823071 X5 — a23¢ 1223671 X5 + 867C12823¢71 X7 + 271C12823C67X7)

+ a2 (a23812023Z7 — 267812823 Y7 — a71512823 Y7) + a3 (agrci2c23 Y7

+ a71C12¢23 Y1) — ag7a71¢12823Z7 + Koc1assZy — Sicisassersai,

S1(S2823 X5 + Sec12823X + S7ci2823¢71 Xy — 21281282327 + a23€12623Z5
—a67C12823Y7 — 471012523 Y7) + S2(S6523 X + S7823071X5 + 2302375 — 867523 Y7
- a71523Y7) + S6(S7¢1282387 + 2128128237 — @23€12€23¢7) + S7(a12812823C67C7
— 423€12C23C67C7 + A67C12523567C7 + A71C12523867) + a12 (323512023)(/7

— a67812523X7) + asag7¢12623X7 + (Ko — a3 )c12803 X5,

S1(—S7812823867 + a71512523X5) + S6(S7812823871C7 + A12€12823X7 + 23812623 K7
+ 371512523)_(/7) + S7(312012523067)-(7 + 323512023067)_(7 — 267812823871 X7

+ a71812823¢71X5) + a12 (ax3¢12023 Y7 — ag7¢12823Z7 + a71€12823Z7)

+ a3 (—a67812C23Z7 + a71812¢23Z7) — 8771812823 Y7

+ (—Kz + S%)512523Y7 - 53512523567071»

S1(S2c12823X5 + Ses23 X5 + S7823¢71 X5 + A3 Z; — a67523Y7 — 71823 Y7)
+S2(Sec12823X5 + S7ciasa3cn Xy — a12812823Z5 + a23¢12623Z5 — 267¢12823 Y7
— 71012823 Y7) + S6(S782387 — @2323¢7) + S7(—33¢23C6707 + A67523867C7

+ a71823867) + a23867¢23X7 + (Ko — 3%2 - 331)523)(,7,

S1(—82¢12823Z5 + S6823¢7 + S7823¢67C7 + a23¢23 X — ag7523X7)

+S (5601252307 + S7¢12823C67¢7 — 312512523X’7 + 323012023)(,7 - a67012523)(7)
+Ss (5752307107 + 323023)_('7 - a71523)_(7) + S5 (323023071)(,7 — 86782371 X7

- 371523067)_(7) + a23(—367<323Y7 - a71<:23Y7) + ag7a71537Z

+ (K3 + a3, )$23Z} + S3823867871,

—S1a12823 Y7 + S2(—S6512823X7 — S7812823¢67X7 — A12€12823 Y7 — a23812023 Y7
+ 26781282327 — a7151252327) + S7a12823867 — A12a71523X5,

S1(—S6812623¢7 — S7512€23C67¢7 — 21212623 X5 + 423812823 X5 + 26751223 X7)
— S,apcexnX; + S6(—5751202307107 - 312012023)_(’7 + a23512523)_(,7 + a71512023)_(7)
+ S7(—apci2e23671 X + 3812823071 X5 + 867512C23¢71 X7 + 271812C23¢67X7)
+ a12(ax3¢12823Z; + a67¢12623Y7 + aric12623Y7) + a3 (—a67512523 Y7

S 2 r Q2
—a71512823Y7) — 2677181262327 + (Ko — S3)s12623Z7 — S3812¢23867871,
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Ly =

Lis =

S1(Ses12623X7 + S7812023¢71 X + 2121260375 — 8238128375 — 267812623 Y7

— a71812¢23Y7) + $2212023Z5 + S6(S7812€2387 — 212€12C23C7 + 223812823€7)

+ S7(—a2C12€23€67C7 + 223512523C67C7 + A67512C23567C7 + A71512C23567)

+ a12(a23012823X5 + a67¢12623X7) — anagrsisnXy + (Ko — S5 — a3, )s12e3 X5,
S1(—S2¢23Y7 + S7c12¢03867 — a71€12623X7) + S2(S7c23867 — 271623 X7)

+ S6(_S7CIZCZ3S7IC7 + a12812€23X7 + a3c12823 X7 — 371012023)_(/7)

+ S7(a12812023¢67X7 + 823€12523C67X7 + 267C12€23871 X7 — a71C12623¢71X7)
+a12(—ax3S12523 Y7 — 2678126327 + 271512025 + a3 (—aerC1253Z7

’ 2 2 ¥, 2
+ a71012823Z7) + ag7azc12¢23Y7 + (Ko — ST — S3)ci263 Y7 + S7ci2¢23867¢71,

(10.274)

= ~83a34 — S4234C34 + S5(—a34C34Cy5 + 245534545),
= S4S5834 + asgasscasss + (Ki — S5 — aZg)saacas,

Ssas56534845,

S4S5S34C45 + (Kl - S% - 342‘5 - 326) S34,

S334C45 + S4(@34C34C45 — 45534845) + S5a34C34,
= —a45a56534,

—S3a45 — S4845C34 + S5(a34534545 — A45C34C4s),

—S3S4845 + asqassssacas + (Ki — S5 — S§ — a3¢)caasas,

—S3a56 — S4a56C34 — S5856C34C4s, (10.275)

L35 =

Ly =

S4S5834C56 + 234(Q45C34545C56 + 856C34C45556) — A45256534545556
2

+ (K1 — S3)s34casCse,

S3234Cs6 + S4(@34C34C56 — 256534556) + S5(@34C34C45Cs56

— 845534545C56 — A56534C45556),

= a34(a45C34C45556 + A56C34545C56) + A45856534C45Cs6

2, @2
+ (=K + S5 + S5)5345455s6,
S3234C45Cs56 + S4(834C34C45C56 — 845534545C56 — A56534C45S56)

+ S5(234C34C56 — a56534556),

2, 2
= —S4S5834Ca5Cs6 — A34856C34856 + (—Ki + S5 + a35)S34Cs6,

= —S83a34545556 + S4(—a34C34545556 — A45534C45556 — A56534545C56) — S5245534S56,

—S8354845C56 + 234(245534C45C56 — A56534545556) + A45856C34C45S56

+ (K; — S5 — S3)c34845C56,

S3a45Cs6 + S4845C34C56 + S5(—a34534845C56 + 245C34C45C56 — 256C34545556),
S3(—S4C45856 — Ss5856) — S4S5C34556 + 234 (—245534545556 + A56534C45C56)

+ agsaseCaasascss + (Ki — S5 — S7 — S3)caacussss. (10.276)



10.2 General 7R group 4 spatial mechanism 241

10.2.8 Grouping of the four equations

Equations (10.23), (10.24), (10.44), and (10.45) are linear in the tan-half-angle of 9
and linear in the sines and cosines of the angles §; and 6,. They are also linear in the
sines and cosines of the angles 8, and 6s. It is necessary to eliminate these last two angles
without increasing the degree of the sines and cosines of 8; and 6, in order to obtain four
equations of the form of Eq. (10.1).

It is possible to express Egs. (10.23), (10.24), (10.44), and (10.45) in the form

(Micz + Nisy + Oi)xg + (Picz + Qis, +R;)
= (M;C4 + N;S4 + O;)X6 + (P;C4 + Q;S4 + Ri), (10277)

wherei=1...4 and

M; = M 1¢1 + Mias; + M,

N; = Nii¢; + Niasy + Ni,

O; = O;1¢1 + Oi281 + Oi3,

P; = Pijc1 + Piosi + P,

Qi = Quici + Qias1 + Qi

R =R;ic;i + Riss1 +Ri3 (10.278)

and

M =M jcs + M85 + M5,

Ni = Njjcs + Ni,s5 + Ni3,

O} = Of ,¢c5s + O] ;ss,

P =P 05 + P85 + P,

Q; = Q{,lcs + Q;,ZSS + Q{,3,

R{ =R cs + R{,ss. (10.279)
Note that all of the coefficients, that is, M; | through R} ,, can be numerically evaluated in

terms of the given constant mechanism parameters.
The expansions of the coefficients are given as follows:

M, = anXy, M, = —anZ’, M ;=0,
/ _
N1 = —ancinZl, N, = —ancpXi, N3 = ans;p Yy,
O1.1 = S812Z5 + ap Xy,
! !

O12 = Sos2 X —apZs,

Y, V /
O13 = S1Y7 + S2¢12Y7 — S3€34Ca5856 — SaCas8s6 — Ss8s6 — S7867 + a71 X7,

v/
P11 = —ayey, P, =apX’, Pi;s=0,
L _
Q11 = apcXy, Q12 = ancicy, Qi3 = —anspXy,
v/
Ri1 = —S3812X; — ajpey,

v/
Ri2 = =Sys1207 + a2 X5,
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Ri3 = —8:X7 — S3¢1pX7 — ass — ag7 — ayic7,

M| | = S3s34€45Cs6, 1.2 = —a34Csq, 1.3 = —S35348458s6,
N} | = —234C45Cs6, 1.2 = —S3834Css, 1.3 = 234845556,
O} = S3C34845Cs6 + S4845€s6 O] ; = —agsCse, (10.280)
Pi, =ay, 12 = S383C4s, 13=0, '
Q}.; = S3s34, 1.2 = —a34Css, 13=0,
R} | = ags, 1.2 = S3C34845 + Sqsus,
M1 =ancr, M, = —apX;, My3 =0,
No i = —agcpXy, N;, = —apciscy, Ny 3 = a33512X7,
02,1 = Sp812X5 + appcy,
022 = S3812¢7 — 312)9,
023 = S1X7 + S3¢12X7 — as¢ + ag7 + a71C7,
Py = anX;, Py = —anZ., Py3=0,
Q21 = —apcpZ, Q22 = —ancpXy, Q23 = anspYy,
Ry = Sas12Z5 + a;pX),
Ry2 = Sos10X), —apZs,
R23 = S1Y7 + Szc12Y7 + S3¢34Cas8s6 + Sacassse + Sssse — S7867 + a1 X5,
51 = a3, 52 = S383Css, M, , =0,
51 = S3834, 57 = —a34C4s, N;; =0,
51 = s, 5 2 = S3C34845 + S4845,
/2‘1 = —53534C45Cs6, /2,2 = a34Cs6, /2‘3 = S35345458s6,
/2‘1 = 434C45Cs6, /2‘2 = S3834Cs6, Q’z‘3 = 34845856,
51 = —S3C34845Cs6 — S4845Cs6,
)y = AsCss. (10.281)
M;; =Ly, M;, =Ly, M;; = L,
N3 =Lis, N3;> =Ly, N33 =Lis,
03,1 = Lys, O32 =Ly, O33 = Lig + Lag,
Py =—L, P:; = —L,, P33 = —Ls,
Q31 = —Lg, Q32 = —Ls, Q33 = —Ls,
R;; =-Ls, R; 2 = —Lg, R33=—-Lo+ Ly,
51 = —Las, 32 = —La, M; 3 = —Lao,
51 = —Lap, 52 = —La, 33 = —Laa,
51 = —Laag, 52 = —Las,
/3 1= —Ljo, ,32 = "‘L20» P/3‘3 = —Ly,
31 = —La, 5. = —Los, 533 = —Lag,
’31 = —Lys, /33 = —Ly, (10.282)
M, =Ly, Mis =1L, M3 =1Ls,
Ny = Ly, N, = Ls, N.3 = Ls,
041 =17, Oy, = Lg, O43 = Lo + Loy,
P41 =Ly, P,2 =Ly, P35 =L,
Q41 =Li3, Qs2 =Ly, Q43 = Lys,
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Ry = Lis, Rsp = Ly, Ry 3 = Ljg — Lsg,

M, , = —Li, 22 = —Loo, a3 = —Lay,

N, = Lo, N;, = Lo, a3 = —La,

0, = —Las, n2 = —Los,

P, = Lag, w2 = Log, P, ; = Lao,

Q1 = Lai, Q;, = La, Q5 = Las,

R, , = Las. R, = L. (10.283)

The four equations represented by Eq. (10.277) may be written in matrix format as
follows:

Tla = sz, (10284)
where

T, =

Mg Miz2 Mys Ny Ny Nis Opy O12 Oy3 Pry Prz Pis Qi Qi2 Qi3 Ry Riz Rz
My May; Mas Noj Nag Naos Oz 022 Oz3 Poy Pap Pas Q1 Qa2 Q23 Ray Ry Ry
Mz M3z Mas N3y N3p Nisz O35 O3z Os3 Py P2 Pas Qs Qs2 Qs3 Rzy Ryz Ry |’
My Maz Mys Ny Nag Nas Osp Og2 Og3 Pyy Psn Pas Qa Qa2 Qa3 Rey Rap Ry

(10.285)

a = [cCXs, S1C2X6, C2X6, €152X6, S152X6, S2X6, C1X6, S1X6, X6, €1C2,
T
$1Cy, €2, €182, 8182, $2, €1, §1, 117, (10.286)

T2 =
M/],l M,1,2 M/l,3 N/ll N/l,2 N/l,3 O/l,l 0/1,2 l)’],l lyl,Z lyl,3 Q/],l Q/I,Z Q/l,3 R/l,l R/1,2
My, My, My Nopy Ny, Noy Opy Oy Py Py Py @0 Q0 Qo3 Ry Ry,
M, My, My, Ny Ny, Ny Oy Oh, Py Py Py QG Qs Q5 Ry, Ry, )Y
My My, My Ny Ny, Ny; Oy Of, Py Py Py Qy Qp Qs Ry R,
(10.287)

b = [c4C5X6, C4S5X6, CaXe, S4C5Xs, S4S5Xs, S4Xs, C5Xg, S5Xg, C4Cs, €455,

Ca, $4Cs, S4Ss, S4, Cs, S5]". (10.288)

Note that all the elements of matrices T and T, are known in terms of the given mechanism
parameters.

It is necessary to express vector b in terms of the constant mechanism parameters, the
output angle 68;, the angle 6,, and the tan-half-angle of 6¢. Once this is accomplished, tan-
half-angle substitutions will be made for the sines and cosines of the variable joint param-
eters, and the matrix equation, Eq. (10.284), can be regrouped to represent four equations
of the form of Eq. (10.1). Such an expression for b will be obtained in the next section.

10.2.9 Elimination of 8, and 65 to obtain
input—output equation

An expression for b in Eq. (10.284) will be obtained by generating sixteen additional
equations that are (i) linear in the sines and cosine of 6, and s, (ii) linear in the variable
X¢, and (iii) linear in the sines and cosines of the variables &; and 6,. The solution of these
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sixteen linear equations will then be substituted into Eq. (10.284), the result of which
will, upon regrouping, be four equations of the form of Eq. (10.1). The sixteen equations
are generated as follows:

(i) Half-Angle Law

The following subsidiary half-angle law may be written for a spherical heptagon:

X6(X217 + X45) + (Ya17 + Y45) = 0. (10.289)
This equation is regrouped as

Xasxs + Yas = —Xa17X6 — Yau7. (10.290)
Expanding X4s and Y5 gives

(X4cs5 — Y485)X6 + C56(X4Ss5 + Yas) — 85624 = —X317X6 — Y217 (10.291)
Expanding X4, Y4, and Z, and regrouping terms gives

(834C45)CaSsXe + (334)84CsXe 1 (C34545)85Xe + (—534Ca5C56)CaCs + (S34545556)C4

+(534C56)848s5 4 (—C34845Cs56)Cs = —X217X6 — Y217 + C34C45556. (10.292)

(ii)) Half-Angle Law

The following subsidiary half-angle law may be written for a spherical heptagon:

X6(Ya217 — Ya5) — (Xa17 — Xys5) = 0. (10.293)
This equation is regrouped as

—YusXe + Xa5 = —Y217%X6 + X217. (10.294)
Expanding X4s and Yys gives

—{cs6(Xass + Yacs) — 856Z4]X6 + (Xacs — Y485) = —Yai9X + X217 (10.295)
Expanding X4, Y4, and Z, and regrouping terms gives

(834C45C56)CaCs X6 + (—534545556)CaXe + (—534C56)8485X6 + (C34845C56)Cs X6

+ (534Ca5)Cass + (834)84Cs + (C3a845)8s = (— Y217 — C34Ca5856)X6 + X217.  (10.296)

(iii) and (iv) Secondary Half-Angle Law

The following subsidiary sine and sine—cosine laws may be written for a spherical
heptagon:

Xa176 = Xas, (10.297)
X176 = — Yas. (10.298)
Substituting dual angles into these equations gives

Xo2176 = Xo4s, (10.299)
Xoa176 = — Yous. (10.300)
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Equations (10.299) and (10.300) may be expanded as

—S6(X21786 + Y217¢6) + Xo217¢6 — Yo021786 = Xoss, (10.301)
Se(X217¢6 — Y21786¢) + X021786 + Y0217€6 = — Yo4s. (10.302)

The following trigonometric identities were introduced in Eqs. (9.108) and (9.109):

S¢ — CeXe = X¢, (10.303)
Ce + SgXg = 1. (10.304)

Adding Eq. (10.301) to x¢ times Eq. (10.302) and using the above trigonometric identities
yields

—S¢(Xa17%6 + Y217) + X217 — Yo217%6 = Xoas — YoasXe- (10.305)

Subtracting Eq. (10.301) times x¢ from Eq. (10.302) and using the trigonometric identities
gives

S6(X217 — Ya17X6) + Xo217%6 + Yo217 = —(XoasXe + Yous)- (10.306)
Equations (10.305) and (10.306) may be rearranged as

—Yousxs + Xoas = (—=Yo217 — S6X217)X6 + (Xo217 — S¢Y217), (10.307)
XoasXe + Yoas = (—Xo217 + S6Y217)X6 — (Y17 + S6X217). (10.308)

The terms Xo4s5 and Y45 may be expanded as

X045 = _S5XZS + X0405 - Y04S5, (10309)

Yoas = Sscs6Xas — as6Z4s + 56(Xo0aSs + Yo4aCs) — Ss6Zo4, (10.310)
where

Xoa = S4834C4 + 234C3484, (10.311)

Yos = Sacas Xy — a45Z4 + a34(S45534 — C45C34C4), (10.312)

204 = S4S45X4 + a34Y4 + a45Y4. (10313)

Substituting these expressions into Eqs. (10.307) and (10.308) gives the third and fourth
of the sixteen equations as

Kscqcsxe + Kycassxe + KscyXs + KgsacsXe + K78485X6 + Kgsaxs + Kocsxs

+ Kiossxe + Kiicacs + Kiacass + Kizsscs + Kigs485 + Kiscs

+ K685 = (= Y0217 — S6Xa17 + Ki7)X6 + (Xoz217 — S Y217), (10.314)
Ki1€4CsXe + K12€a85X6 + Ki1384C5X6 + Kia8485X6 + Kiscsxe + KigSsxe

— Kiscses — Kyucyss — Kscy — Kgsacs — K7s4ss — Kgsq — Kocs

—K0S5 = (=Xo217 + S Y217)X6 — (Yo217 + S6 X217 + Ky7), (10.315)
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where

K3 = (234C34C45Cs56 — A45834845C56 — A56534C45556)
K4 = (—S4834C56 — S5534C45Cs6),

K5 = (—234C34545556 — 245534C45556 — A56534545C56),
K6 = (—S4834C45Cs56 — S5834C56),

K7 = (—234C34Cs6 + a56534556),

Kg = (54834845856),

Ky = (—234834845Cs6 + 245C34C45C56 — 256C34845556),
Kio = (—S5C34845Cs6)., (10.316)
K11 = (S4834 + S5834C45),

K12 = (a34C34Ca5 — 245534845),

Kz = (a34C34),

Kis = (—S4834Ca5 — S5534),

Kis = (S5C34845),

Ki6 = (—234534845 + 245C34C4s),

K17 = (23483445556 + 245C34845856 — A56C34C45C56).

(v) Subsidiary Cosine Law

A subsidiary cosine law for a spherical heptagon is written as

Zys = Z517. (10.317)
Expanding Z,s gives

s56(X4Ss5 + Y4Cs) + C56Z4 = Zo17. (10.318)
Expanding X4, Y4, and Z, and rearranging terms gives

(—834C45856)C4Cs + (—534845C56)Ca + (534556)5485 + (—C34545556)C5s = Zp17 — C34C45Cs6.

(10.319)
(vi) Secondary Cosine Law
Dual angles may be substituted into Eq. (10.317) to give
Zogs = Zop17. (10.320)

The term Zy4s may be expanded as
Zoas = as6 Y45 + Ss5856Xas + as5(—S56C5Z4 + C56Y4) + Sa834Xs54 + 234 Ys54.  (10.321)

Substituting this expression into Eq. (10.320) and then expanding the terms Xys, Y5, Xsa,
Ysq, X4, Y4, Z4, X4, and Y, and rearranging gives

Ki5€4Cs + KioCass + KaoCs + Kai84¢5
+ Kys8485 + Kozsy + Koacs 4+ Kosss = Zgo17 4+ Kog, (10.322)
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where

Kis = (—234C34C45556 + 245534545556 — A56534C45C56),

Ko = (54534856 + S5534C45556),

K20 = (—a34C34845C56 — 845534C45Cs6 + 856534545556,

K31 = (54534€45556 + S5534556),

K2 = (a34€34556 + a56534Cs6), (10.323)
K>3 = (84834845Cs6),

K4 = (234534545556 — 245C34C45556 — 856C34545Cs56),

K25 = (S5€34845856),

K26 = (834534C45Cs6 + 245C34845Cs6 + A56C34C45856)-

(vii) Projection of Vector Loop Equation

The vector loop equation can be written as the sum of the vectors R%? and R*%.
Projecting these terms onto the vector S yields

R¢#.§; = —R** . S;. (10.324)
The left side of this equation may be written as

R%% .83 = (S¢S + asragr + S187 + aziaz + S181 + apan + $28; + anaz) - Ss.

(10.325)

Evaluating the scalar products gives

R®% . S; = H;, (10.326)
where

Hs = S¢Z712 + as7U7123 + S7Z12 + a71 Uiz + S1Z5 + a3 Uzz + Sy003. (10.327)
The right side of Eq. (10.324) may be written as

—R*% . S; = —(S3S; + a34a34 + S484 + assa4s + S5Ss + asease) - Ss. (10.328)
Evaluating the scalar products gives

—R*% . 85 = —(S3 + Sac3s + assUs3 + SsZ4 + aseUsaz). (10.329)

Substituting Eqgs. (10.326) and (10.329) into Eq. (10.324) and then expanding Ugs, Z4,
and Usy3 and rearranging gives

(—a56534C45)C4S5 + (S5534545)Cq + (—256534)84Cs

+ (—45534)84 + (—a56C34845)Ss = Hs + S3 + S4C34 + Ss5C34Css. (10.330)

(viii) Projection of Vector Loop Equation
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The vector loop equation can be written as the sum of the vectors R®? and R*%,
Projecting these terms onto the vector S¢ yields

R623 .8, = —R>% . §. (10.331)

The left side of this equation may be written as

R%% . S = (S6Ss + 257267 + S7S7 + az1a; + 1S + apa; + S5S; + anaz) - Se.

(10.332)

Evaluating the scalar products gives

R®% . S¢ = Hs, (10.333)
where

Hg¢ = S¢ + S7c67 + a71U76 + S1Z7 + a1nU176 + S2Z17 + 223U i76. (10.334)
The right side of Eq. (10.331) may be written as

—R*% . 86 = —(S3S3 + az4a34 + S4S4 + 245245 + SsSs + asease) - S. (10.335)
Evaluating the scalar products gives

—R*% . S = —(S3Zss + a33Usss + S4Zs + assUse + SsCs). (10.336)

Substituting Egs. (10.333) and (10.336) into Eq. (10.331) and then expanding Zss, Ujse,
Zs, and Usg and rearranging gives

(53834C45856)CaCs + (—234856)Ca85 + (53834845C56)C4 + (—a34C45556)84C5
+ (—S3534556)8485 + (—234845C56)84 + K27Cs + (—2a45856)85
= Hg + S3C24€45Cs6 + Saca5Cs6 + Sscse, (10.337)

where
K37 = (54845856 + S3C34845856)- (10.338)
(ix) Self-Scalar Product

The vector loop equation can be written as the sum of the vectors R%?* and R*¢, Thus,
it can be written that

R62 — _R3%6. (10.339)

Taking the self-scalar product of each side of this equation and dividing by two gives

(R6,23 . R6,23) — (R3,56 . R3,56). (10.340)

1
2

The left side of this equation can be evaluated as

1
2

%(Razs .R%®) = Hy, (10.341)
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where

H; = K; + S¢(S7¢67 + 271 X7 + $1Z7 + a12X71 + $2Z71 + 423 X712) + ag7(a7107 + S1X5
+a;oWi7 + 5:X17 4+ a3 Wai7) + $7(Sic71 + 212X + S2Zy + aiXy2)
+a71(anct + $2X + a;3Wa1) + S1(S2¢12 + 223X2) + ana(azscr) (10.342)

and where K, has been previously defined in Eq. (10.163).
The right side of Eq. (10.340) can be expanded as

1 _
§(R3'56 -R*%) = K + S3(S4C34 + 245Xy + S5Zs + 256 Xss) + a4 (aasca + S5 Xy
+ as6Wsa) + 5S4(S5€45 + as6X5) + a45(as6Cs), (10.343)

where K, is defined in Eq. (10.78).
Substituting Eqs. (10.341) and (10.343) into Eq. (10.340) and then substituting the
definitions for the terms that contain 8, and s and regrouping gives

(234856)C4Cs + (S3256534C45)C485 + KogCa + (S356834)84C5 + (—34256C45)8485 + Kao84
+ (a45356)Cs5 + K3pss = Hy — S354¢34 — S355€34C45 — SaSscas — Ky, (10.344)

where

K2 = (azsas5 — S355834845),
Ka9 = (23455845 + S3245834), (10.345)

K30 = (S3856C34845 + S4as6845).
(x) Projection of Self-Scalar Product

Because R%23 = —R*% it is possible to construct the following expression:
1
§(R6'23 ‘R®P)(S6 - S3) — R*P - §6)(R*? - §3)
1
= SR R¥)(Sg - 83) — (R¥ - So)(R* - §y). (10.346)

The left side of this equation will be designated as Hg, and the right side will be named
Jg. Thus, it may be written that

Hg = Js, (10.347)
where

Hy = (RO ROP)(Sq - 85) — (RO 8RO -8,) (10348)
and

1
Jg = §(R3'56 -R¥3)(Sg - S3) — (R3¢ . S6)(R*¢ . §5). (10.349)
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The format of Hg is the same as that of H; written in Eq. (10.38), with the term ag; now
replaced by S¢. Thus, an expression for Hg may be obtained by rewriting Eq. (10.75),
replacing each occurrence of ag; with Sq. This yields

H8 — %(R6,67 . R6,67 4 R7,71 . R7.71 4 R1,12 . R1,12 4 R2,23 . R2'23)(S3 . S6)

— R - S3)R* - Sg) — R - S3)(R”7" - S)

+ R* x S) - R x 83) — R - $3)(R> - S)

— RMZ-S)(RM2 - Sg) + R x Sg) - (R x S3)

— RM2- SR - S¢) — (R*P - S3)(RM™ - S¢)

+ R x Sg) - R*® x 83) — (R*? - §3)(R>'? - S¢). (10.350)

The format of Jg as listed in Eq. (10.349) is similar to the format of J, listed in Eq. (10.40)

with the vector S¢ replacing ass. An expression for Jg may now be written based on Eq.
(10.56) as follows:

1
J8 — _2_(R3,34 . R3,34 4 R4,45 . R4,45 + R5,56 . R5,56)(S3 . S6) _ (R3,34 . S3)(R3,34 . S6)

— R - S3)(RM - §g) — R - $5)(R™™ - Sg) + (R x §3) - (R* x S5)
+ (R¥® x S3) - (R x Sg). (10.351)

The following terms that are contained in Hg and J3 must now be expanded:

S, - S, R69.S,, RM.S,  RUM2.S,,
R22 .S, RO1.S,, RS1Z.S,  RO.S,
R4 . S, R556 . G,

(R x Sg) - (R"7! x 83),

(R®7' x Sg) - (RM12 x S3),

(R%12 x S¢) - (R x 83),

(R** % 83) - (R** x Sg),

(R3* x 83) - (R>3 x S¢).

(@ S;-S¢

This term can be evaluated using set 13 of the table of direction cosines to give

S3 - 8¢ = Z12. (10.352)
It may also be evaluated from set 3 as

S; - S¢ = Zsy. (10.353)
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The results of Eq. (10.352) will be substituted into Hg, and Eq. (10.353) will be substituted

into Jg.
(b) R®97.Sq
This expression may be written as
R%%7 . S5 = (S6S6 + a67367) - Se.
Evaluating the scalar products gives
R%%7 . S5 = Se.
(© RS
This expression may be written as
R7" - S = (8787 + az1a71) - Se.
Evaluating the scalar products gives

R7’71 . Sﬁ = S7C67 + a71X7.

(d R2.Sg
This expression may be written as
R"Z.Ss = (S1S| + apay,) - Se.
Evaluating the scalar products gives
RM2. 8¢ = $;Z; + a;p Xy
) R>®.§,
This expression may be written as
R*% . S¢ = (8,5, + anan) - Sg.
Evaluating the scalar products gives
R>% . 8¢ = $,Z7; + aX712.
) RST'.Sq
This expression may be written as
RS7!. S, = (RS 4+ R77Y) - S,
Using the results of Eqs. (10.355) and (10.357) gives

R6’71 . Sﬁ = Sﬁ + S7C67 + a71X7.

(10.354)

(10.355)

(10.356)

(10.357)

(10.358)

(10.359)

(10.360)

(10.361)

(10.362)

(10.363)
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(g R*Z.§
This expression may be written as
R612.§, = (RO + RM12) . §,.
Using the results of Eqgs. (10.363) and (10.359) gives
R%12.8¢ = S¢ + S7ce7 + a1 X7 + $1Z7 + a;p X7y
) RS
This expression may be written as
R** .8 = (S3S; + aza34) - Se.
Evaluating the scalar products gives
R . 8¢ = 83754 + 234 Xsa.
() R .S,
This expression may be written as
R .85 = (S484 + aysa45) - Ss.
Evaluating the scalar products gives
R . S¢ = S4Zs + a45Xs.
() RS
This expression may be written as
R . §¢ = (S5S5 + aseass) - S.
Evaluating the scalar products gives
R>% . S5 = Sscse.

® (R xS (R x S)

(10.364)

(10.365)

(10.366)

(10.367)

(10.368)

(10.369)

(10.370)

(10.371)

The scalar and vector products in this expression will all be evaluated using set 7 from
the table of direction cosines. The first term of this expression may be written as

R%®7 x S5 = (S¢S¢ + agra67) x Se.

(10.372)

The vector product of Sg with itself is zero. The vector product ag; x S¢ = —S¢ X ag;
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(see Eq. (10.186)). Thus Eq. (10.372) may be written as

—a67C6787
(10.373)

R%%7 x Se = |:_367C67C7
267867
The vector product of R”7! and S; was previously evaluated using set 7, and the results

are presented in Eq. (10.191). The scalar product of Eqgs. (10.373) and (10.191) yields
the result

R* x Sg) - R x 83) = —agS7¢e1Xa17 + ag7a71 (867 Y21 + Ce7¢7Z1).  (10.374)

O (RO x S) - R x Sy)

Set 1 from the table of direction cosines will be used to evaluate all the scalar and vector
products in this expression. The first term in this expression may be written as

R x Ss = (S6S6 + ag7ag7 + S7S7 + a1a71) X Se. (10.375)
Now, 8¢ x S¢ = 0. The vector product S¢ x ag; was evaluated in Eq. (10.195). Thus,
Uiz
Ag7 X S6 = 012’7 + 51X,7 . (10376)
~Y,

The vector product S; x S¢ may be written as

i J k S710127 + C71X;1
S7 X 8¢ =|sns1 su€1 oy | = Xy — 87181247 , (10.377)
Xn X3, Z; —s7181 X7, — s71¢1X7)

where fundamental and subsidiary sine, sine—cosine, and cosine laws were used to simplify
the direction cosines of S¢ and S;. Expanding and regrouping the elements of this vector
and recognizing that s? + ¢? = 1 gives

—sg7 W71
S7 X S6 = —S67V71 (10378)
—s67U71
The vector product a;; x Sg may be written as
i j k —-5127
a7 X Sﬁ = | C1 —S$1 0= —0127 . (10379)
Xn X5 Z; — 1 X3, + 81 X7
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Expanding the last term of this vector gives

a7 X 8¢ =

—81Z7
—c1Z7 | . (10.380)
-Y;

Substituting the results of Egs. (10.376), (10.378), and (10.380) into Eq. (10.375) gives

ag7U776 — S78567W71 — 2718177
RO % Sg = |agr(1Z] + 1X7) — Sys67Vr — anciZy | . (10.381)
—a67Y7 — Sy867U71 — 271 Y7

The factor (R"!2 x S3) has been previously evaluated in terms of set 1 from the table
of direction cosines. The result is presented in Eq. (10.211). Performing a scalar product
of Egs. (10.381) and (10.211) gives the result

(R6,71 % S6) . (R1,12 % SS) —
[a67U%6 — S7867W71 — a7181Z7] (—S1Y2) + [ag7(c1Z7 + 51X5) — S7867 V71
— a7101Z7] (81X, — anZy) + [—ag; Y7 — S7867U71 — a7 Yq1(an Y). (10.382)

(m) (R x S¢) - (R¥ x 8y)

Set 1 from the table of direction cosines will be used to evaluate all the scalar and vector
products in this expression. The left factor may be written as

(R*"2 x S¢) = (R®" + S,8; + appa;y) x Se. (10.383)

The vector product of R%7! and Sg has been evaluated in set 1 (see Eq. (10.381)). The
vector product of S; and S¢ may be written as

i § k| [Xx
Sl X S6 =10 0 1= X71 . (10384)
Xy —Xi Z 0

The vector product of a;; and S¢ may be written as

i j k 0
ap X S6 = 1 0 0|= -—Z7 . (10385)
X7 —X3, 2y X3

Substituting Eqs. (10.381), (10.384), and (10.385) into Eq. (10.383) gives

ag7Ul76 — S7867 W71 — a7181Z7 + S1X7
R x S = | agr(c1Z;) + 81X5) — S1867Vr1 — anic1Zy + $1Xq1 — apZy
_367Y7 = Sys67U7 — a7 Y7 — apX3,
(10.386)

The factor (R>? x S;) was previously evaluated using set 1 in Eq. (10.222). The scalar
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product of Eqgs. (10.386) and (10.222) gives the result
(R*"? x Sg) - (R*? x §3) =
[a67Ut76 — S7867W71 — agis1Zy + S1X3,] (Sasascr + a3 X)) + [aer(1Z; + 51X5)
—S$1867V71 — an1¢1Zy + $1Xq1 — 1277 (S2¢12X2 + a3Z; ) + [—a67Y7 — S7867Uns
—an Y7 — apX3 | (S2812Xs + a3 Y)). (10.387)
@ (R x 8y) - (R* x S)

Set 4 from the table of direction cosines will be used to evaluate all the scalar and vector
products in this term. The first term may be written as

R*** x 83 = (S38; + aza34) X Ss. (10.388)

Now, §; x S3 = 0. The vector product a34 X S; was previously determined in Eq. (10.92).
Eq. (10.388) can thus be written as

—a34C3454
R x 83 = | —ascaacs (10.389)
434834
The term (R** x S¢) may be written as
R4’45 X 86 = (S4S4 + a45345) X Sﬁ. (10390)
The vector product S; X Sg may be written as
i j k -Ys
SaxS=/0 0 1|=|Xs|. (10.391)
Xs Ys Zs 0
The vector product ass X Sg may be written as
i j k 0
Ays X 85 =11 0 0= —25 . (10392)
Xs Ys Zs Ys
Substituting Eqs. (10.391) and (10.392) into Eq. (10.390) gives
-S4 Ys
R4’45 X 86 = S4)_(5 — a4525 . (10393)
a5Y5

Forming the scalar product of Eqs. (10.389) and (10.393) gives the result
(R** x 83) - (R*™ x Sg) = (—a343484)(—S4Y's) + (—224C34C4)(S4 X5 — assZs)
+ (a34834) (245 Y's). (10.394)
© R x8y) - (R x S)

Set 11 of the table of direction cosines will be used to evaluate all scalar and vector
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products in this expression. The first term has previously been expanded, and the results
are presented in Eq. (10.117). The second term may be written as

R x S¢ = (S5S5 + aseass) x Se. (10.395)

The vector product Ss x S¢ may be written as

i J k $56Cs
S5 X Sﬁ = 0 0 1| = S56Ss5 | (10396)
S56S5 —S56C5  Cs6 0

where fundamental sine, sine—cosine, and cosine laws were used to simplify the direction
cosines of the vector Sg.
The vector product asg X Sg may be written as

i J k C56Ss
Cs S5 0= —Cs56Cs5 | . (10397)

85685 —Ss56C5  Cs6

as6 X S(, =

—Ss6

Substituting Egs. (10.396) and (10.397) into Eq. (10.395) gives

S5856Cs + 56C56S5
R>® x S¢ = | Sss5655 — A56C56Cs (10.398)
—a56556
Evaluating the scalar product of Egs. (10.117) and (10.398) gives the result
(R3,45 x S3) . (R5,56 % S6) —
— Xo04[S5856Cs + a56C5655] + Y0a[S585685 — a56Cs56C5] + Zoa[asesse ] (10.399)

The terms Hg and J3 may now be expanded by using the previous results to yield

Hs = KoZ712 — S6(S6Z712 + a67X217) — (57221 + 271 X21)(S7¢67 + a71X7)
+ [—26787¢67X217 + ag7871 (867 Y21 + C67¢7Z01)] — S6(S7Za1 + 271 X21)
— (81Z; + 212X3)(81Z7 + a12X71) + [a67U}6 — S7867W71 — 87181 Z7] (—S$1Y2)
+ [ag7(c1Z] + $1X5) — S7867 V71 — 2716127 (S, Xz — apZs) + [—267Y7
— S7367U71 — a7 Y7] (@12 Y2) — (S1Z2 + a12X3)(S6 + S7¢67 + 271 X5)
— $2¢23(S2Z71 + a3 X712) + [a67U%56 — S786 W1 — ansiZy + S1X3,]
x (S2823¢2 + a3X5) + [a67(c1Z7 + 51X5) — S7867 Va1 — a71¢1Z7 + $1 X7
— apZs) (SacnXo+anZ)) + [—ag Y7—S7867Us1 — a7 Y7 — apX3 ]
X (S2812X2 + a23Y2) — S2¢23(S6 + S7¢67 + a71X7 + S1Z7 4+ appXs1),  (10.400)
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Js = KiZss — S3(S3Zss + 234 Xs54) — (S3 + SaCas + as5X4)(SaZs + a45Xs) — J5SsCs6
+ (—2343484)(—S4Ys) + (—34¢34€2) (SaXs — ay5Zs) + (a34534) (245 Ys5)

— Xo04[S5856C5 + a56Cs685] + Yo4[SsS5655 — aseCseCs] + Zoalasesss ], (10.401)

where K, is defined in Eq. (10.78), K; is defined in Eq. (10.163), and J5 is defined in Eq.
(10.82).

Equation (10.347) may be factored into the format

Ksicscs + Kspcass + Kiszcs + Kasacs + Kissass + Kiesy + Kares
+ K85 = Hg — Ko, (10.402)

where

K31 = 856 [(534Ca5/2) (S — S5 — S5 — a3, — aj; — a3g) — 3424534845 — SaSs5834)
+ Cs6a56[A34C34Cas — A45534545],
K32 = 856[—3454C3s — 83455C34Cas — 83453 + a45S583484s] + CseaseS34[—Ss — SsCas],
K33 = Ss6256]—234C34845 — A45534Cas] + Cs6 [(S34845/2)
x (S5 — S5 + S — a3, — al; — aX) + aausC3aCas),
Ks4 = 856 [—33454034045 + 84554534845 — 3453C45 — 33455034] ~+ C56856534 [—Ss - S4C45] ,
Kis = ssgs34[(—S3 + S5 +S2 + a2, — 2% + a3g)/2 + S4Sscas| — Cs6a34a56C3a,
K36 = 856 [35654534545] + Cs6 [—33453545 — 4555834 — 4554534C45 — 33454034545],
K37 = ss6[(C34845/2) (S5 + S5 —S2 — a2, — al, — a3g) — A34245534Cas + S3SaSss)
+ Cs6a56[ —a34534845 + 245C34Cas],
Kig = ss6 [—34554034 — 4555C34C45 + 23455534845 — 34553] — Cs6 [35655034545],
K30 = Ss6as6[—234534Cas — 45C34845] + Cs6[(C34€a5/2) (—S3 — Si—Si+4aj,
+ajs + 3§6) — S3S5 — 234245534545 — S354Cas — S4S5C34). (10.403)
(xi) through (xvi)
The fifth through tenth equations that have been generated do not contain the tan-

half-angle of 65. Therefore, the final six equations can be obtained by multiplying these
equations by the term Xg.

The sixteen equations may be written in matrix form as
Ab =c, (10.404)

where b was previously defined in Eq. (10.280) but is repeated here along with A and ¢
as



-

0

§34C45C56

—834C45856
Kis
0
$3534C45556
a34ase
K31

§34Cas
0

—a56534Ca5
—a34556
S3as56534C45
K3

0 834
—834545556 0
Ks Ks
0 Kis
0 0
0 0
0 0
0 0
0 0
0 0
—$34845C56 0
Kao Ko
Sssasas  —aseSae

$3534545C56 —a34C45556 —S3534556 —A34545Cs6

Kas
Ks3

S3a56534
Kis

§34856
K2
0

—a34a56C45

Kss

o

S © © ©O o o o C

Kas

—45534

Kz
K36

0
€34545C56
Ko
Kis
0

S © o O

0
—C34845556
Ko
0
K2
a45as6
K37

€34845
0
Kio
Kis
0

S O O O o ©

Kas

—a56C34545
—a45856

Kso
Ksg

—534C45C56
0
Kt
_K3
—834C45556
Kis
0

$3534C45556

a3ase
K3

S © © © o O

—a45534

Kz
Kie

0 834545856 0 834Cs6
534C45 0 34 0
K2 0 Kis Kis
—K4 —~Ks —Kg -K7
0 —$34545C56 0 834856
Ko K2 K2 K2
—as6S34Ca5  Ss5534845  —aseSi 0
—a3ss6  $3534845Cs6 —a34CasSs6 —S53534S56 —Aa34545Css
S3a56534C45 K S3as6834 —a34856Cas
Kss Kss Ki4 Kss
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

S © O O o ©

—C34545C56
0
Kis
—Ko
—€34845556
Ko
0
K2

C34845

—a56C34545
—a45856

(10.405)
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—C4C5X6-
C4S5X¢
CaXg
S4C5X6
S4SSX6
S4Xg
Cs5X¢
b=| %% |, (10.406)
CaCs
C485
Cy
S4Cs
S485
S4
Cs
L ss

[—X217]X6 — Y217 + C34€Ca5856
[—Y217 — C34€a58561%6 + Xa17
[—Yo0217 — S6X217 + Ki7]X6 + Xo217 — S Y217
[—Xo0217 + S6Y217]X6 — Yo217 — S6X217 — Ky7
Z517 — C34C45C56
Zpa17 + Kag
H5 + S3 + S4C34 + S5C34C45
Hg + S3C34C45Cs56 + SaCasCs6 + SsCse
“=| u- S384C34 — S385C34Cas — SaSscus — Ky | (10.407)
Hg — K39
[Z217 — €34€45C561%6
[Zo217 + Kas]xs
[Hs + S3 + S4c3s + Ss5¢34Cas]x6
[Hg + S3€34C45C56 + SaCas5Cs6 + Ss5Cs61Xs
[H7 — S354¢34 — S3S5¢34¢45 — S4Ss5¢45 — K1]X6
[Hg — Kso]%6

Note that the matrix A is completely defined in terms of the constant mechanism param-
eters, whereas the elements of ¢ are linear in the sines and cosines of 8; and 6, and the
tan-half-angle of 6.

The vector ¢ may now be factored into the format

¢ = Tsa, (10.408)
where a was previously defined in Eq.(10.278) and T} is defined as
T3 =
M/l/,l M/l/i M/l/.S N/l/l N/I/.Z N/l/,S 0/1/.1 O/I/,Z O/I/,B P’1/<1 P/I/.Z P’I/._‘! /I/.I /I/.Z 11/.3 R/l/,l l{/l/Z R/I/S

" " " " " 1" 4 7’ 7 4 4 4 i i ’ ” ” ”
MZ,I MZ,Z M2,3 N2,I N2,2 NZ,} 02,1 02,2 02,3 P’Z,I P’Z,Z P’2,3 2,1 2,2 2,3 RZ,I R2,2 R2,3

" " a a 7’ " '’ /1 /" // 4 ” ” "
N16.2 NI6,3 016.1 016.2 016,3 P16,l P’IG,Z P16,3 16,1 16,2 16,3 l{16,1 R16,2 RIS,S

(10.409)

M/I/G.l M/I/6,2 M/l/6.3 N},

16,1
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The terms in the matrix T3, which are all defined in terms of the constant mechanism
parameters, are written as

" 14 "
1,1 = —€71C1282387, 1,2 = —C12823C7, 1.3 = 57181282357,
14 14 1"
1,1 = —823€7, 1,2 = ©7182387, 3= 0,
i 7" "o
1.1 = —C71812C2387, 1,2 = —812C23€7, 1,3 = —571€12C2387,
11 / 17 / 11 ¥
11 = —C12823Z7, 12 = —C12823X7, 13 = s1281Y7,
/N / "o ’ o
11 = —snXj, 12 = 823, 13=0,
” 7 "o i "o ¥
L1 = —S1263Z3, 12 = —S12€23X5, 13 = —C€12€23 Y7+C34C45856,
(10.410)
1/ » Y4 /A » Y4 (/2 » /4
21 = Y 22 = Y12 23 = 1,3
n ” "o " "o O
2,1 = X1 22 = N2 23 =Y
" ” 174 ” 4 ¥
21 =Ri 22 =Ry, 5.3 = —C12€23 Y7 — C34C45856,
R Y (4 " N " N
2,1 = 1,10 22 = 1,2 23 = 1,3
"o _ N\ "o N "o
2,1 = N1,1’ 22 = N1,2’ 23 = 0,
"o 0 "o _ 0y "o 0y
2,1 = L1 22 = 1,20 23 = 1,3 (10411)
14 ! ! v/ ! !
M; | = —Sic2823X; — $2823X7 — Sec12823X5 — S7¢71C12853 X, + as12823Z;

— 4231202327 + 267612523 Y7 + @71C12823 Y7,
M, = Sic12853Z7 + S2823Z7; — S6C12823C7 — S7C12823C67€7 + A12812523X
— a3¢1263 X + a67C12823 X7,
M;’,3 = S6812823X7 + S7C67812823 X7 + 21212823 Y7
+ 323512023Y7 — 86781282327 + 3713123232/7,
N3 | = S1813Z] + S5¢12823Z — S6823¢7 — $7523C67C7 — 433X, + 267823 X7,
N/3/,2 = SISBX; + 52012823X/7 + S6823>_(/7 + S7823C71X/7 + 323023Z/7
—ag1803Y7 — ansp Yo,

1 ¥,
33 = —Sa812813Y7,

" 4 ¥4 4 i 7
3,1 = —51312023X7 - S6312<323X7 - S7312<323C71X7 — apCenZ, + 438128137,

+ a67512C23 Y7 + 7181223 Y7,

i ! 4
3.2 = S1812623Z7 — S6812€23¢7 — S7812€23C67C7 — a12C12¢3 X}

+ 23812823 X5 + 267512623 X7,
b3 = —S6C12€23X7 — $7€12€23C67X7 + a12812623 Y7 + a23C12823 Y7 + 2671262375
— a71C12623Z7 + 234834C45856 + 345C34845856 — A56C34Ca5Cs6,
P} | = Sic12823¢7 + S2823¢7 — S6C12823Z + S7€12823C71C7 — a12812823 %,

- _
+a3¢2¢3 X5 — a7,C12823 X7,

V4 v/ v/ 7

3.2 = —S51€12823X5 — 52823 X7 — S6€12523 X7 — S7€1252387 — 212812823€7 + 23C12€23€7,

Y74 ¥, 3, 3, v/
3.3 = S6812823 Y7 — $7812823871C7 — A12C12823 X7 — 23812623 X7 — 271812823 X7,
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17

v/ v/ !
31 = —S1813X5 — S2€12823X7 — S6823X7 — 5782387 + 223C23C7,

" 7 v/ Y
3.2 = —S1823¢7 — S2€12823¢7 + S823Z7 — S7823C71C7 — 22323 X5 + a7183 X7,

7" v
33 = S2812813 X7,

" 7 v/ v/
3.1 = S1812623¢7 — S6812€23Z7 + S7812€23¢71€7 + 212€12€23 X5 — ans12853 X7

—a71812€23X7,
” v/ !
3.2 = —S1812€23X7 — S6812623X7 — S7812€2387 + 212€12C23C7 — 223812823€7,
” ¥ % ¥ v/
33 = —S6C12€23 Y7 + S7€12€23871C7 — 21281223 X7 — a3C1283X7 + 2711263 X7,
(10.412)
o __pl v _ _ph "o __pr
41 = —F3 42 = —P3,, 43 = —P33,
" Y "o Y "o 0
1 =-Q5, 12 = —Q5,, 13 = Q55
"o oo oo
a1 = —R3,, 12 =—R3,,  0i;=-Rj,,
7 NAY VAR Y (4 i NAY
41 = M3, 42 = Mj,, 43 = My 3,
7N oo N o= N
41 = N3 1 42 = N325 43 = 1133, (10.413)
"o "o A "oy
4,1 — M3.1° R42 — Y319, 4,3 = O 2K17,
1" 1 1 N\ ON R a Y/
s = Ms, 510 =Ns, 5,0 = Us 2
— LA (- —_ oo
=M, =0, =N;;=0, =055=0,
I I I
51— CrasnYy, 52 = C12823X7, 5.3 = —S128132Z7,
Y4 i Y4
51 = snX7, 50=—%13Y7, 53 =0,
7/ ( 7
51 = sn2¢xsYy, 52 =812¢nX7,  R§; = c12¢33Z7 — C34Ca5Cs6, (10.414)
1 "o N 1 1 17
61 =Mg, =Mg; =0, Ng =N;,=N;,=00¢, =0, =0¢; =
/!
6.1 = 9112823 X7 + S2823X7 + S7€12823071X7 — a12812823 Y7 + 223C12€23 Y7
’
+ a67C1282375 — a71C 1280377,
/!
Pg, = —S1C12823Y7 — S2823Y7 + S7€12823867C7 — 212812823 X7 + 223€12€23 X7
il
+ ag7C12823X7,
S ¥,
Pg 3 = —S7812823871X7 — a12€12823Z7 — a3812623Z7 — 867512813 Y7 — 87181283 Y7,
1 il
6.1 = —51523Y7 — S2€12823 Y7 + S7823867¢7 + 223¢23 X7 + 67823 X7,
1 i
6.2 = —51823X7 — S2¢12823X7 — S7823¢71X7 — 223¢23 Y7 — 86752327 + 27182327,

"
6.3 = 9281282327,

R | = S1812¢23X7 + S7812¢23¢71X7 + 212€12€23 Y7 — 223812823 Y7 + 267812€23Z,

— 718126327,
é,’,z = —51512€23 Y7 4+ 57512€23867C7 + 212€12€23X7 — 223812823X7 + a67512023X/7,
Rg 3 = S7€12¢23871X7 — 212812623Z7 — 233€12823Z7 + 267€12€23 Y7 + a71€12623 Y7 + Koe,

(10.415)

MNI_M72_M”3_O 71_ 72_N”3_O 71'—0/,2“073_

7 1= = S6C12823Y7 — S7C12823871 + a67012523)(7,



262 Group 4 spatial mechanisms

/4
P75, = S6€12823X7 + a67€12823¢7 + a71€12823,

Y74 gt
P53 = —Si81283 — S¢812823Z7 — S$7812823C71 — 867812823X7,

4

7.1 = S6823X7 + 2678237 + a71823,

'

v/

72 = —S6823Y7 + S7823871 — 67823 X7,

V4

7.3 = 412823,

” =7
R7 | = Se812€23 Y7 — $7812C23871 + 867812€23X7,

"
R; 5 = S¢812€23X7 + 67812€23¢7 + a71812C23,

14
R7 3 = S1€12€23 + S2€23 + S3 + SaC34 + S5€34€a5 + S6€12€23Z7 + S7€12C23¢71

+ ag7¢12¢23X7, (10.416)
"o 1" AR \ /4 o\
g1 = Mg, 8.1 = Ng» 81 = Vs
=Ms; =0, =Ng3 =0, =05;=0,
sl = a3 X7, 52 = —a3Y7, 53 =0,
5.1 = —a3C12Y7, g2 = —ancXy, Qg; = a3spZs,

g1 = S2812Y7 +apXy,
8.2 = S2812X7 —apYs,
8.3 = 9127 + S2€12Z7 + S3C34C45Cs6 + SaCasCs6 + SsCs6 + S¢ + S7¢67 + a71X7,

(10.417)
’9"1 = M’9"2 = M’9"3 =0, N’9"1 = N’9"2 = Ng‘3 =0, 0’9"1 = 0’9’,2 = 0’9"3 =0,
o1 = a23(S6X7 + ag7¢7 + an),
P, = ax(—SeY7 + S7871 — a7 X5),
'9"3 = aj24az23,
6.1 = a23(—S6c12Y7 + S7C12871 — 867€12X7),
o2 = a23(—S6C12X7 — 267€12C7 — 271C12),
Q5 3 = a23(S1812 + Se812Z7 + 7812671 + A67512X7),
o1 = S6(S2812Y7 + a12X7) + S2(—S7812871 + a67812X5) + a12(agrcr + any),
Rg, = Se(S2812X7 — a12Y7) + S2(agr812¢7 + a71812) + a2 (S7871 — agrX5),
03 = S6(51Z7 + Sy¢12Z7 + S1¢67 + a1 X7) + S2(Si€12 + Sqcn267
+ ag7¢12X7) + S1(S7¢71 + 467 X7) + S3(—Sac34 — Ssc34€4s)
+ S3(—S4C34 — S5€34Ca5) — SaSscys + agrazc; — Ky + Ky, (10.413)
101 =Mjg, =Mjy; =0,
101 =Njg, =Njp; =0,

7" — 0 eV —
10,1 — 010‘2 - 010,3 - O’

7

il
To.1 = S1(S2823Y7 — $7€12523867C7 + a12812823X7 — 823€12C23X7 — A67C1283 X
7 v/
+ 82 (—S7823867¢7 — 023¢23X7 — 267823X5) + Se(S7C12823871 — 267C12823X5)

2 7
— S¢C12823 Y7 + S7(a12812823¢71 X7 — 223€12€23¢71 X7 — ag7C12823¢711 X5
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+ 71012523871 X7) + S7C12823¢67571 + a12 (23812623 Y7 + 26781252375
— a71812823Z7) + 23 (—267C1263Z7 + 371C12623Z7) + 267871C12523 Y7
+Ksc2823Y7,

To.2 = S1(82823X7 4+ S7€12823¢71X7 — 212812523 Y7 + 823€12623 Y7 + 267¢12837Z5
— a71C1283Z7) + S2(S7823¢711 X7 + a23¢23 Y7 + 26752327 — a71523Z7)
+ S6(—a7€12823C7 — a71C12823) — SeC12823X7 + S7(a12812523867¢7
— 3C12€23867C7 — 867C12523C67C7 — 871C12523Cq7) + A12(@23812€23 X7
+ 267812523 X5) — 23867€12623 X5 — 83,1252 X7 + Kac12823X7,

o3 = S1812823Z7 + S1(SeS12823 + S7812823¢67 + 7151283 X7) + Szs12823Z7
+ S6(S7812523¢71 + a67512823X7) + S3812823€67C71 + S7(a12€12823571 X7
+ a23812€23571 X7 + 867512523C67 X7 + 271512823671 X7) + ara(axcicnZy
+ a67¢12523 Y7 + 271€12523 Y7) + 223(a67812¢23 Y7 + 271812623 Y7)
+ ag7a71812513 25 — Ko81282375,

To.1 = S1(S2€12823X7 + S7823¢711X7 + a3 Y7 + 26752375 — a7153Z7)
+ S>(S7c12823¢71 X7 — 12812823 Y7 + @23€12¢23 Y7 + a67¢12823Z5
— a71012823Z7) — S5$23X7 + Se(—a67523¢7 — a71523) + S7(—223€23867C7
— 267523C67C7 — A71523C67) — 21,523 X7 — 42386723 X5 — 87,523 X7 + K2823X7,

To.2 = S1(—S2¢12823Y7 + $7823867¢7 + 023¢23X7 + 267523 X7) + S2(S7¢12823867¢7
—apps12823 X7 + 23¢12623X7 + 267€12823X5 ) + Sis23 Y7 + S (—S7823871
+ ag7823X5) — S7823¢67571 + S7(3¢23¢71X7 + 267523071 X7 — 271523871X7)
+a3,523 Y7 + a2 (a67023Z) — a7163Z7) — agran sz Y7 — Kosp Yy,

o3 = —S1212823Z7 + S3(—S78128238711 X7 — a1pC12823Z7 — 22381202327 — 867812823 Y 7
— 71812823 Y7) — Sea12523 — S7212823C67 — 21227153 X7,

To.1 = S1(—S7812¢23867¢7 — A12€12€23X7 + 23512823X7 — Ag751223X]) — S3s12¢23 Y7
—82a12623X7 — Sg512623 Y7 + S6(S7812€23871 — 867512623X5) + S7812€23C67571
+ S7(—a12¢12¢23671 X7 + 23512823671 X7 — 867512623671X5 + 271512623571 X7)
+ app(axci283 Y7 — ag7¢1260Z); + a71¢1203Z7) + a3 (agr812523Z5
— a71812523Z7) + 267871512623 Y7 + Kos12623 Y7,

To.2 = S1(S7812¢23611 X7 + 21212623 Y7 — 223812823 Y7 + 86781262325 — 271512623Z7)
—~ 83512623 X7 + Sr212¢23 Y7 — S£512623X7 + Se(—ag7812C23¢7 — a71512C23)
+ S7(—212€12C23867C7 + 23812823867C7 — 867512€23C67C7 — 871812C23C67)
+ 12 (23€12823X7 — a67€12¢ X)) + 823867512523C6757 — 83,S12C23X7
+ Kss 203X,

"

2
103 = —57€12¢13Z7 + S1(—S52623Z7 — S6C12€23 — S7€C12€23C67 — A71C12€23X7)

2 2
— S5¢12¢23Z7 + S2(—S6C23 — S7¢23¢67 — a71023X7) — SgC12€23Z
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< 2
+ S6(—S7¢12€23¢71 — ag7€12€23X7) — S5€12€23C67071 + S7(a12812€23871 Xy
+a23¢12823871 X7 — 867€12€23C671 X7 — 271€12€23¢71 X7) + A12(—2238128237

+ a67512€23 Y7 + 27181223 Y7) + 223(a67C 12823 Y7 + a71€12823Y7)

— ag7a71C1263Z; + Kac12623Z7 — Kag, (10.419)
N/I/{f,- = Pli_g).j Ngj = Qg O/i/fj = R{i_e)»
P =0, =0, R}, =0, (10.420)

i=11...16, j=1...3.

The vector b in Eq. (10.404) may be solved for by inverting the matrix A to yield

b=A"c. (10.421)
Using Eq. (10.408) to substitute for the vector ¢ gives

b =A"'T;a. (10.422)
Substituting this result into Eq. (10.284) yields

Tia=T,A 'Ta. (10.423)

This equation can be rearranged as

Ta =0, (10.424)
where
T=I[T, - T,A 'T;s]. (10.425)

The matrix T will have four rows and eighteen columns. All elements of this 4 x 18 matrix
are expressed in terms of the constant mechanism parameters and the input angle, 6.
Equation (10.424) represents four equations of the form

[(tiic1 + tias1 + ti3)Ca + (641 + ti581 + tig)S2
+ (ti7¢1 + tigs1 + tig)]xe + [(ti10¢1 + ti 1181 + ti12)C2
+ (t13¢1 +ti a1 Htis)s2 + (GieCr + 781 +6ig)] =0, i=1...4, (10.426)
where t;; represents the element from the i row and j* column of the matrix T. The
four equations of Eq. set (10.426) may be modified by substituting the tan-half-angle

expressions for the sines and cosines of 8, and 6,. The equations may be written as
follows after multiplying each by the product (1 + x3)(1 + x3):

[(ai,1x] + ai X1 + ai3)%3 + (biax] + bisx; + big)xa + (di7x] +disxi +dio)]xe
+ [(ei,IOX% + € 11X +ei,12)X§ + (fi,laxf + fi 14X +fi,15)X2
+ (giteX] + giorxi +gis)] =0, i=1...4, (10.427)
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where

21 =to—tiz—ti7+6,
a2 = 2(tig — ti2),
aiz="to—tiz+t;—ti1,
bia = 2(tis — tia),

bis = 4¢; 5,

bie = 2(ti6 + ti4),
di7="to+tiz—t7—t1,
dig = 2(ti s + 6 2),

dio =tio+tiz+ts+t,,
€i,10 = ti13 — G 12 — ti,16 + ti 10,
ei11 = 2(t17 — ti.11)s

€i,12 = ti,13 — ti12 + ti16 — G20,
fi13 = 2(t,15 — t.13)s

fi 14 = 46,14,

fi15 = 2(t;15 + 6.13),

816 = ti,18 + ti12 — ti 16 — G 10
gi17 = 2(t17 + ti 1),

gi.1s = ti1s + i1z + 616 + ti 10 (10.428)

Equation (10.427) represents four equations that are of the form of Eq. (10.1). The
input/output equation for the mechanism can be obtained from these equations as described
in Section 9.1. An 8 x 8 determinant is expanded to yield a sixteenth-degree polynomial
in the tan-half-angle of the output angle, ;.

10.2.10 Determination of 8, and 6

Section 9.3.2 describes how to determine the corresponding values for the tan-half-
angle of the angles 6, and 8; from the four equations of Eq. set (9.75) for each calculated
value of the tan-half-angle of the output angle, 6;. The procedure for solving for the
tan-half-angle of 6, and 6 for this mechanism is identical with the exception that x5 in Eq.
set (9.75) is replaced by x¢ in Eq. set (10.427). Following the solution method outlined
in Section 9.3.2, expressions for the tan-half-angle for the corresponding values of 6, and
6s may be written as

_ —|abeg||adgb| + |adgf||abed|
~ |abef||adgb| — |adge||abed|

(10.429)

= —|abef||adgf| + |adge||abeg|
™ |abef||adgb| — |adge||abed|

(10.430)
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10.2.11 Determination of 8, and 65

At this point of the analysis, corresponding values for the angles 6y, 6,, and 8¢ have
been determined. Thus, for each of these solution sets it is possible to determine numerical
values for the components of vector a as defined in Eq. (10.286). The vector a may then
be substituted into Eq. (10.422) to solve for the vector b. The sine and cosine of 84 and 65
are now known, as they are the eleventh, fourteenth, fifteenth, and sixteenth components
of vector b. Unique corresponding values for 64 and 65 can now be computed because the
sine and cosine of these angles are known.

10.2.12 Determination of 9,
Fundamental sine and sine—cosine laws for a spherical heptagon may be written as
Xs6712 = $3483, (10.431)
Ys6712 = $34C3. (10.432)

The sine and cosine of the corresponding value of 6; may be obtained by evaluating the
left-hand sides of these equations using the previously calculated solution set of angles.

10.2.13 Numerical example

The analysis of the 7R group 4 spatial mechanism has been completed, and it was
shown that a maximum of sixteen solution configurations exist. Table 10.1 shows data
that were used as input for a numerical example. The calculated values for the sixteen
configurations are listed in Table 10.2. Figure 10.2 shows the sixteen configurations of
the mechanism.

10.3 RRRSR spatial mechanism

A significant simplification in the solution of group 4 spatial mechanisms occurs when
special geometric conditions exist in the mechanism. The first case to be considered is
the RRRSR spatial mechanism that is shown in Figure 10.3 with link a;; fixed to ground.

Table 10.1. 7R mechanism parameters.

Link length, Twist angle, Joint offset, Joint angle,
cm. deg. cm. deg.

a;p; = 8.7 a; =90 S =30 6, = variable
a3 =2.5 ax; =90 S, =13 6, = variable
ay =9 w3 = 90 S3=07 6; = variable
as = 0.1 ass = 90 S;=34 64 = variable
ase = 8.2 ase = 90 Ss=0 65 = variable
agy = 7.1 g7 = 90 S¢=4.7 8¢ = variable

a7 = 3.7 a7 = 90 S7 =1.8 97 =278 (input)
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Table 10.2. Calculated configurations for the 7R spatial mechanism.

Solution 0;, deg. 0,, deg. s, deg. 04, deg. 0s, deg. 0Og, deg.
A —-97.56 105.97 14.43 —132.72 —6.80 30.15
B —90.68 ~166.91 7.78 138.09 —11.94 —144.51
C —63.36 22.39 —151.65 72.99 —177.58 177.11
D —62.07 -93.71 179.09 —-71.14 —151.34 77.06
E —31.38 —44.61 155.20 —134.21 —104.87 105.70
F 1.35 179.15 73.01 —30.02 162.09 118.78
G 5.37 164.37 -30.70 154.33 —67.30 —102.08
H 34.22 —23.83 —122.82 28.51 106.28 —113.47
I 117.34 —-70.97 —167.15 78.65 —23.09 —-717.78
J —147.03 157.60 —58.82 —11.98 —115.06 107.32
K 114.05 13.31 —162.78 —71.40 —13.94 —148.40
L —167.58 165.47 51.26 166.27 27.04 —-99.17
M 146.06 —41.07 176.07 30.20 —59.81 -97.72
N —134.71 —29.64 —102.22 —164.93 59.33 118.96
o 78.45 119.63 3.05 72.83 —165.38 —43.64
P 62.08 —161.89 29.35 —59.19 —-179.21 165.13

The ball and socket joint, which is designated by the letter S, is modeled in the figure by
three cointersecting revolute joint axes, S;, S3, and S4. The special geometric values for
this case are

Ar3 = Az4 = S3 =0. (10433)

In this analysis the angle 6; will be the known input value. The angle 8, will be solved
for first and is the output angle. Specifically, the problem can be stated as

given:
)2, X3, X34, Ay5, As6, U7, K71,
a2, 45, A56, A67, 471,
S1, 82,84, Ss, S¢, S7,
Ayz = A3q = S3 = 0, and
61,
find: 61,65, 63, 04, 05, and 6.

It will be shown that a maximum of eight solution configurations exist for this mechanism.

10.3.1 Determination of input-output equation

It will be shown that the input—soutput equation can be obtained from two equations
that contain the output angle, §;, and an extra angle, 65. Eliminating the angle 65 from the
pair of equations will result in a fourth-degree input—output equation in the tan-half-angle
of 91 .

The first equation is obtained from a projection of the vector loop equation onto the
direction of the vector S¢. Using set 10 from the table of direction cosines, this projection
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Figure 10.3. RRRSR spatial mechanism.

may be written as

S1Za345 + S2Z3as + S4Zs + Ss5¢s6 + S¢ + S7Z12345 + a12Un3456
+ a45Uss + a71U123456 = 0. (10.434)

Subsidiary and fundamental cosine laws for a spherical heptagon may be used to substitute
for the terms Zaags, Zass, and Zjags. Also, subsidiary and fundamental polar sine laws
for a spherical heptagon may be used to substitute for the terms Usjyse and Ujazssg to
give

S1Z7 + SyZ71 4+ S4Zs 4 Sscse + S¢ + S7ce7 + a12U 176 4 a4sUse + a7 U6 = 0.
(10.435)

Terms that contain the angle 85 are transferred to the right side of the equation to give

S1Z7 4 S2Z71 4 Sscs¢ + S¢ + S7¢67 + a12U176 + a71U76 = —SaZs — assUs.

(10.436)
Expanding Zs and Usg and then regrouping terms gives
S\Z7 + S2Z71 + Sacys¢s6 + SsCse + S + S7¢67 + 12U 176 + a71U7
= (S4845856)Cs — (Q45556)S5- (10.437)

The left side of Eq. (10.437) contains 6 as the only unknown parameter, whereas the
right side has 65 as the only unknown.

The second equation is obtained by taking a self-scalar product of the vector loop
equation. The vector loop equation may be written as

S6S6 + acra67 + S787 + an1a7 + S1S1 + apan + $12S;
= —(S4S4 + agsays5 + S5S5 + aseasg). (10438)
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The self-scalar product of both sides of Eq. (10.438) can be expressed in the form
L +S6Ss - (8787 + az1a71 +S1S1 +apa12 + S28,) + ag7a67 - (a7:871 +S518; +apag
+558;) + S$787 - (8181 + appag; + S58;) + a71a7; - (22212 + S287)
+S181 - (S282) = S48, - (8585 + aseas6) + 45245 - (as656), (10.439)

where L is defined as
L= (Si+a,+S3+aj, +ST+al, +S5—S; —aj; — ST —a3) /2. (10.440)

The scalar products of mutually perpendicular vectors, such as, for example, S¢ and ag7,
equal zero, and all these terms have been deleted from Eq. (10.439). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields

L + Se(S7¢67 + a11X7 + S1Z7 + 212X71 + S2Z71) + ag7(azic7 + $1X7 + a12Wy7

+S2Xi17) + S7(S1671 + 21Xy + S2Zy) + a71(ancr + S2X)
+ S1(82¢12) = S4(Ssc45 + a56X5) + a45a56Cs. (10.441)
Expanding the definition of the term X5 and rearranging this equation gives
L + S6(S7ce7 + an1X7 4 S1Z7 + a1nXq1 + $2Z71) + ag7(a71¢7 + $1 Xy

+ a;sWi7 + $2X17) + S7(S1c71 + 212X1 + S2Z1) + 271 (aacs + $:X))
+ S1(82€12) — S4Ss5C45 = as6[(S4845)s5 + (ass)cs]. (10.442)

Equations (10.437) and (10.442) may be written respectively as

Q71 = s56(S4845C5 — 458s5), (10.443)
Ry1 = a56(S484585 + a4s¢s), (10.444)
where

Q71 = 81Z7 + S12Z71 + S4cas¢s6 + SsCs6 + S + S7C67 + 12U 76 + a71Uss,

(10.445)
R71 =L+ S¢(S7¢67 + a711X7 + S1Z7 + a12X71 + S2Z71) + agr(anicy
+8:1X7 + an W17 + S:Xi17) + S7(S1c1 + Xy + $2Zy)
+a71(azer + S2X1) + S1(S2¢12) — SaSscus. (10.446)

The terms Q7 and Ry, contain the angle 6, as the only unknown parameter and can
thus be expressed in the form

Q7 = Kjc; + Kisy +Kj, (10.447)
Ry = Kyci + Kss1 + K, (10.448)
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where

K; = S2812Y7 +a;pXy,
Ko = S;812X7 —aYs,
K3 = ${Z7 4 Sy¢12Z7 + Sacss¢se + Sscse + S¢ + S7¢67 + a71 Xy,
K4 = Sy(S6812Y7 — S7812871 + a67812¢7187) + Se212X7 + a12(ag7¢7 + an),
Ks = S2(Ses12X7 + a67812¢7 + a71812) + a12(—Se Y7 + S7871 — a67¢7187),
K¢ =L + S1(Sz¢12 + S6Z7 + S7¢71 + 267X7) + S2(Sec12Z7 + S7c12071 + a67¢12X7)
— S4S5¢45 + S6(S7¢67 + a71X7) + agra71¢7. (10.449)

Subtracting as¢xs times Eq. (10.443) from ss¢ times Eq. (10.444), where x5 is the
tan-half-angle of 6s, gives

ss6R71 — as6XsQ71 = as6556[Sa845(ss — Xs5¢s) + ass(Cs + Xs585)]. (10.450)
Using the trigonometric identities listed in Eqs. (9.108) and (9.109) gives

856R71 — as6x5Q71 = a56556(S4845Xs5 + as5). (10.451)
Regrouping this equation gives

(—as6Q71 — S4as6845856)Xs + (Ss6R71 — assasesse) = 0. (10.452)
Adding ase times Eq. (10.443) to ssexs times Eq. (10.444) gives

as6Q71 + Ss6XsR71 = as56556[S4545(s5X5 + ¢5) + as5(c5%x5 — s5)]. (10.453)

Simplifying this equation by substituting the results of the trigonometric identities and
rearranging yields

(8s6R71 + a45856556)Xs5 + (a56Q71 — Sads6845856) = 0. (10.454)

Equations (10.452) and (10.454) can be factored into the form

(Ajci +Bisi +Di)xs + (Eic; + Fs1 +G) =0, i=1,2, (10.455)
where the coefficients A; through G; are defined as

Ay = —a5K,, B[ = —a5K;, D; = —assKs — Ssas¢s455s6,
E; = s56Ks, F1 = s5¢Ks, Gy = s56Ks — as5a568s6,

Ay =s56K4, Bz =35Ks, Dz =s56Ks + a45as568ss,

E> = a56K;, F> = a56K;, Gy = as6K3 — S4a56845856.

(10.456)

Substituting the tan-half-angle identities for the sine and cosine of 6, in Eq. (10.455)
and then multiplying throughout by (1 + x?) and regrouping gives

(aix] +bix; +di)xs + (eix] + fix; +g) =0, i=12, (10.457)
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where

a=D—A;, b=2B, d=D+A;

e = Gi — Ei, fi = 2Fi, g = Gi + Ei. (10458)

Equation (10.457) represents two equations that are linear in the variable xs. A common
solution for x5 will exist for these two equations only if they are linearly dependent (see
discussion in Section 8.2). Thus, for a common solution of x5 to exist, the coefficients of
Eq. set (10.457) must satisfy the condition

(aix}+bixi +di)  (eixt +fixi +g1)

=0. 10.459
(ax2 + boxy + dy)  (exx? + Boxi + 22) ( )

Expanding this determinant will yield the following fourth-degree input—output equation:
(ajez — aze))x] + (arf, — arf) + biey — by )x] + (a;g2 — arg1 + bifs — bafy + dies
—dae))x] + (bigz — bogy + dify — daf )x; + (dig2 — dag1) = 0. (10.460)

A corresponding value for 6, can be obtained for each value of x; from

6, = 2tan"'(x}). (10.461)

10.3.2 Determination of 5

The value of the x5 = tan(fs/2) that corresponds to each calculated value of 8, can be
found from either of the linear equations of Eq. set (10.457). Thus, x5 may be calculated
from

—(e1xt + fixi + &)
alx% + b1X1 + d1

Xs = (10.462)

or

—(ezx% + fox; + gz)
= . 10.463
s ax1 + box; +dy ( )

The value of #5 = 2tan~'(xs) (see Eq. (10.461)).

10.3.3 Determination of g

The corresponding value of s may be obtained from two projections of the vector loop
equation. Using set 6 from the table of direction cosines, the vector loop equation can be
projected onto the direction of the vectors ag7 and (S¢ X ag7) to yield

$1X7 + S2X17 4+ S4Xi217 + S5 Xu3217 + 212 W17 + a4s Waza17 + as6Ce + 267 + 27167 = 0,
(10.464)
S1Y7+82Y 17+ S4 Y3217 + S5 Yaz017 — Sy867 — a12U776
— a45U}35176 — @s6S6 + a71C6757 = 0. (10.465)
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Substituting fundamental and subsidiary spherical sine and sine—cosine laws for the terms
X3217, Xa3217, Y3217, and Y3217 and subsidiary polar sine—cosine and cosine laws for the
terms Wy3217 and Uj, 54 gives

$1X7 + S2X17 + SaXss + SsXe + a12W17 + 45sWsg + aseC + 867 + a71¢7 = 0,
(10.466)

$1Y7 4 8:Y17 — 84X + Ssss6c6 — S7567 — 212U776 + 245 Vss — ase86 + 2716787 = 0.
(10.467)

Each of these equations contains the sine and cosine of & as its only unknown parameter
and can be expressed in the form

[SsXs 4 agscs + asglce + [—SaYs + Sssse — a45Cs6551S6

+[S1X7 + $:X17 + a1 W7 + ag7 + a71¢7] = 0, (10.468)
[—S4Y5 + Ssss6 — as5¢s685]C6 + [—S4X5 — a45¢s — ase]ss
+ [SlY7 +S5Y17 — Sys¢7 — 312UT76 + a71067S7] =0. (10.469)

The expressions in brackets can be numerically evaluated, as they are defined in terms of
the constant mechanism parameters, the input angle, and the previously calculated joint
parameters. Equations (10.468) and (10.469) thus represent two linear equations in the
two unknowns, S and cg. Solving for s¢ and cg will yield the unique corresponding value
for the angle 5.

10.3.4 Determination of 6;

The following spherical cosine law may be written for a spatial heptagon:
Z1765 = Z3. (10470)
Expanding the definition of the term Z3 and solving for c; gives

-7
cy = C23C34 — Lav6s (10.471)
$23834

Because it is not possible to solve for a unique value for the sine of 65, two values of 65
will exist for each set of angles [0, 05, 65]. Thus, a total of eight solution configurations
will exist for the RRRSR spatial mechanism.

10.3.6 Determination of 6,

The following sine and sine—cosine laws may be written for a spherical heptagon:

Xse71 = Xa2, (10.472)
Y5671 = _X§2 (10473)
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Expanding X3, and X3, and rearranging gives

(X3)ex + (=Y3)82 + (—Xs671) = 0, (10.474)
(Y)sc2 + (X3)s2 + (Yser) = 0. (10.475)

All the terms in parentheses are defined in terms of the constant mechanism parameters
and the previously calculated joint angles. Thus, these two equations represent two lin-
ear equations in the unknowns s, and ¢;. A unique corresponding value for 6, can be
determined from the sine and cosine values.

10.3.6 Determination of 4,

The following fundamental sine and sine—cosine laws may be written for a spherical
heptagon:

X67123 = 84554, (10.476)
Y7123 = 845C4. (10.477)

Upon solving for the sine and cosine of 64, a unique corresponding value for this angle
can be obtained.

10.3.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RRRSR
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
of having a,; = a3y = S; = 0 greatly simplifies the analysis. A fourth-degree input/output
equation was obtained to solve for the angle 8;. Unique corresponding values were then
determined for the angles 05 and 8¢. Two values for the angles 6,, 65, and 84 were obtained
for each of the four sets of angles [0, 05, 8¢, thus giving a total of eight solutions.

The mechanism dimensions of a numerical example are listed in Table 10.3. The
resulting eight solution configurations are listed in Table 10.4 and are drawn in Figure 10.4.
It is apparent from the figure that there are four classes of solutions. For example, solution
B is the same as solution A except that 64 has been rotated an additional 180 degrees,

Table 10.3. RRRSR mechanism parameters.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
ap =99 o =60 S, =85 6, = variable
ay3; =0 o3 = 90 S, =2.0 6, = variable
ay =0 o34 =90 S;=0 6; = variable
a5 =17.6 45 =90 S, =283 0, = variable
ase = 8.0 s = 60 Ss =8.6 65 = variable
ag7 = 3.2 g7 =75 Se =4.9 f¢ = variable

a; =7.7 a7 =90 S;=8.6 67 = 21 (input)
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Table 10.4. Calculated configurations for the RRRSR spatial mechanism.

Solution 6y, deg. 6,, deg. 05, deg. 6,, deg. s, deg. 05, deg.
A —-114.34 —144.83 106.86 —12.35 —124.13 —53.55
B —114.34 35.17 —106.86 167.65 —124.13 —53.55
C —38.38 148.30 134.67 —52.23 10.29 —141.63
D —38.38 -31.70 —134.67 127.77 10.29 —141.63
E 134.78 80.24 63.10 —121.61 11.94 —82.62
F 134.78 -99.76 —63.10 58.39 11.94 —82.62
G —148.58 —79.59 112.94 —75.77 —124.61 —14.16
H —148.58 100.41 —-112.94 104.23 —124.61 —14.16

causing the vector S; to point in the opposite direction. The angle 0; is the negative of its
value for solution A, and 6, is advanced by 180 degrees.

10.4 RRSRR spatial mechanism

The RRSRR spatial mechanism is similar to the previous case in that the ball and socket
joint can be modeled by three intersecting revolute joint axes S3, S4, and Ss as shown in
Figure 10.5. The special geometric values for this case are

Ay =a45 =S4 =0. (10.478)

In this analysis, the angle 6; will be the known input value. The angle 8; will be solved
for first and will be referred to as the output angle. Specifically, the problem can be stated as

given:  aj, 23, Q34, Ass, Ase, A7, A71,
a2, 423, As6, 67, A71,
S1, 82, 83, S5, Se, S7,
az =a55 =S4 =0,
and 97,
find: 91,92,93,94,95, and 9(,.

A maximum of eight solution configurations exist for this mechanism also.

10.4.1 Determination of input/output equation

It will be shown that the input/output equation can be obtained from two equations
that contain the input angle 85, the output angle 8;, and the extra angle ¢,. Elimination of
8, from this pair of equations will result in a fourth-degree input/output equation in the
tan-half-angle of 9.

The first equation is obtained from a projection of the vector loop equation onto the
direction of the vector S¢. Using set 6 of the table of direction cosines, this projection
may be written as

8127 + $2Z17 + S3Za17 + S5Zaz217 + S + S1¢67 + 212U 176 + a3Uzi76 + 71Uz = 0.
(10.479)
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Figure 10.4. Eight configurations of the RRRSR spatial mechanism.

The fundamental cosine law Z43,17 = cs¢ is substituted to give

S1Z7 + S$2Z17 + S3Za17 + Sscse + Se + S7¢67 + a12Uj76 + 223Usy76 + 271Uz = 0.
(10.480)

The second equation is obtained by writing the vector loop equation as

a67867 + S787 + a71a71 + 5181 + apan + S28: + anax; + 5383
= —(8585 + aseass + S6S6) (10.481)
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Figure 10.5. RRSRR spatial mechanism.

and then taking the self-scalar product, which can be written as

L + ag7a67 - (a71a71 + 181 + ap2a12 + S$28; + az3a3 + S383) + 5787 - (S8,
+ apan + 528 + aan + S383) + anay - (apan + S28; + aza + S3S;3)
+ SiS1 - (8282 + az3323 + S383) + appa;2 - (a23a23 + 5383)
+ S5S; - S383 = S585 - S¢S, (10.482)

where L is defined as
L= (al, +S5+a}, +S}+al, +S; +a}, + S5 — S —aj; — S3)/2. (10.483)

The scalar product of mutually perpendicular vectors, such as, for example, as; and
S,, equals zero, and all these terms have been deleted from Eq. (10.482). Evaluating the
scalar products using the sets of direction cosines listed in the appendix yields

L + ag7(ancy + $1X7 + anWi7 + SoXi7 + a3sWair + S3Xa17) + S7(Sie71 + 212X
+ $2Z; + a3 X1 + S$3Z12) + a7 (aae; + S2Xy + asWay + S3X21) + Si(Sa¢i2
+ a3Xs + S3Z3) + ajp(a23¢2 + S3X2) + S283¢23 = Ss5Secse. (10.484)

Equations (10.482) and (10.484) may be factored into the form
(Aicl + Bisl + Di)Cg + (Eicl + Fisl + Gi)Sg + (Hicl + Iisl + Jl) = 0, (10485)
wherei =1, 2 and

A = S3¢12823Y7 + 223Xy,
By = Sscp0823X7 —anYy,
Dy = —S8381282377,

E; = S383X7 — a2 Y,
Fi = =S3823Y7 — apcpXy,
Gy = anspZy,

H; = S3810Y7 + S3s12€23 Y7 + ap Xy,
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I = Sp810Xy7 + Sasppen Xy — a2 Yy,
Ji = S1Z7 + Sa¢12Z7 + S3c12€23Z7 + Sscsg + S + S7¢e7
+ a71 Uy, (10.486)

A; = S3(=S7c1283871 + agc12823X5) + aza(agrcr + an),
B, = S3(a67¢12823¢7 + a71C12823) + a23(S7871 — 267X5),
Dy = S3(—Si812823 — S7812823¢71 — 867812823 X7) + Apzan3,
E; = S3(as1823¢7 + a71823) + a23(S7c12871 — agrei2Xy),
F, =83 (37523571 - 367523)_(/7) + ay3(—ag7c12¢7 — a71€12),
Gz = Szai823 + a23(S1812 + S7812671 + 267812X7),
H, = S3(—37512023571 + a67512C23)_(/7) + S2(—37512571 + 367512)-(/7) + app(agrcr + an),
I, = S3(a67512€23¢7 + 271812¢23) + S2 (2781207 + a71812) + a12(S7871 — a7 X5),
T2 = S3(S1€12¢23 + S2¢23 + S7¢12¢23¢71 + 267¢12623X7) + S2(S1€12 + Src12671
+ag7c12X7) + S1(S7¢71 + a67X7) — SsSeCss + agra71¢7 + L (10.487)
and where )_(’7 = C¢7187.

Substituting the tan-half-angle identities for the sine and cosine of 8, in Eq. set (10.485)
and then multiplying throughout by (1 + x3) gives the two quadratic equations

Lix3 +Mix; + N; =0, (10.488)
where 1 =1, 2 and

Li = (H; — Apec; + (; - Bs; + (J; — Dj),
M; = (2Ei)c; + (2F)s; + (2Gy), (10.489)
Ni = (Hi + Apci + (I + B)S; + J; + Dy).

The solution of two equations of the type represented by (10.488) was presented in
Section 8.2. According to Bezout’s solution method, which is described in Section 8.2.2,
the coefficients L;, M;, and N; must satisfy the following condition in order for the two
equations of Eq. set (10.488) to have a common solution for x,:

2

L M, =0. (10.490)

L, M,

M, N
M, N,

L N
L, N,

Typically, the tan-half-angle of the output angle, 6, is substituted into Eq. set (10.488) so
that the coefficients L;, M;, and N; can be expressed as second-degree polynomials in x;.
Expansion of Eq. (10.490) would then result in an eighth-degree input/output equation.
In this case, however, the three determinants in Eq. (10.490) will be expanded in terms
of the sine and cosine of 6, and it will be shown that each determinant expansion will
reduce to an expression that is linear in terms of the sine and cosine of 8;. Once these
linear expressions are obtained for each determinant, the tan-half-angle substitution will
be made for 6, and the resulting input/output equation will be of degree four.
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The first determinant may be written as

L, M,
L, M;

_ H; —Apci+d; —=Bpsi+ Ui =Dy (2Epei+ (2F)s; + (2Gy)
(Hz — Ayci+ Iz = By)si +(J, —Dy)  (2Ey)e; + (2F)si+ (2Gy) |
(10.491)

Expanding the determinant gives

L, M

L, M|~ 23 [Ey(H, — Ay) — Eq(H, — Ay)] + 2s3[Fo(l; — By) — Fi(I; — By)]

+2si¢1[Fo(Hy — Ap) + Ex(Ii — By) — Fi(Hz — Ap) — Ei(I; — By)]
+2¢i[E2(J1 — Dy) — E1(J2 — D2) + Go(Hy — Ap) — Gi(Hz — Ag)]
+281[F,(J1 — D1) — F1(J2 — Dy) + Gy (It — By) — Gi(I; — By)]
+2[G2(J; — D) — G1(J, — D). (10.492)

Substituting for the coefficients A; through J,, regrouping, and using the trigonometric
identities s? + ¢} = 1 and 87 + ¢ = 1 gives

L, M

L2 M2 = P101 + Q181 +R1, (10493)

where

Py = 2[E;(J; —D1) —Ei(J2 —Dy) + Go(H; — Ap) — Gi(Hy — Aj)l,

Qi = 2[F,(J; — Dy) = F1(J2 — Dy) + G2 (I; — B)) ~ Gi(I2 — By)],

Ri = 2[Gy(J; — D) — G1(Jy — D)1+ 2S3[(S7823871X7 + 267823 Y7 + 271523 Y7)
X ($12€23 — C12823)1 + 2835,[S7512823871 X7 + 267512823 Y7 + 271812823 Y 7]
+2a2,[—S7c1281 X7 — agren Y7 — anien Y]

+ 2a3a15[S7¢12871X7 + agrc12 Y7 +a71¢12 Y71 (10.494)

The second determinant in Eq. (10.490) may be written as

M; N;
M, N,

_ | QEne+ 2F)s1 +(2G)) Hi+Apca+di+Bpsi+Ji1+Dy)
(2Ey)ci+ 2Fy)s1 + (2G2) (Hy+Ax)ei+ I +By)si+ o +Dy) |

(10.495)

Expanding the determinant gives

M N

M, N,|= 2¢3[E;(H; + Ay) — Ey(H; + AD] + 253 [Fi(d; + By) — Fa(I; 4+ B))]

+ 2s1¢1[Fi(H; + A2) + Ei(I, + By) — F2(Hy + Ap) — Ex(I; + By)]
+2¢1[E1(J2 + D2) — E2(J1 + D1) + Gi(Hz + A) — Go(Hy + Ap)]
+2s1[F1(J2 + D2) — F2(J1 + D1) + Gi(I2 + B,) — Go(1; + By)]
+2[G,(J; + Dy) — G (J; + D). (10.496)
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Substituting for the coefficients A through J,, regrouping, and using the trigonometric
identity s? + ¢ = 1 and s? + ¢ = 1 gives

M1 N;

M2 N2 = P2C1 + Q251 + R2, (10497)

where

Py = 2[E1(J2+ D7) —E2(J; + D1) + Gi1(Ha + A2) — G2 (H; +Ap)],
Q2 = 2[F,(J2 + D2) — F;(J; + Dy) + Gi(I; + B2) — G2 (I; + By)],
Ry = 2[G1(J2 + D2) — G2(Jy + Dy)]
+ 283 [(—S7523871 X7 — 267823 Y7 — a71523Y7) X (S12€23 + C12823)]
+283S5[—S7812823571 X7 — a7812823 Y7 — a71812823 Y71 + 2a3,[—S7¢128711 X5
— ag7C12 Y7 — a71C12 Y] + 2a3a12[—S7c12871 X7 — agrc12Y7 — anicYo).
(10.498)

The third determinant in Eq. (10.490) may be written as

L N
L, N
H, — A +d ~Bsi+UJy —Dy) (Hi+Ape+ T +Bp)si +J +Dy)
(H; — A)er+ (I, — Bo)si + (Jo — Dy)  (Ha+Az)ei + (L +By)si+ 2+ Do)
(10.499)

Expanding the determinant gives

L Ny

L N = ¢i[(H; — A))(Ha + Az) — (Hz — A)(Hy + A1+ s3[(I; — By)
» N

x (In+By) = (I = B)d; + Bl +sic [y — B)(Hz + Ay)
+ H —ApI: +By) — (L - B2)(Hi + Ay) — (H; — Ay)(I; + By)]

+ ci[(H; — A2 +Dy) — (H2 — A))(J1 +Dy) + (J; — Dy)

x (Hy + Az) — (Jo = D2)(Hy + AT+ 1[0} — B1)J2 + Do)

— (I, =B)J, + D) + J; = D@2 + By) = (J, — D), + By)]

+ [, = D(J2+ Dy) — 3, — Dy){J; + Dy)l. (10.500)

Substituting for the coefficients A; through J,, regrouping, and using the trigonometric
identities s7 + ¢3 = 1 and 87 + ¢5 = 1 gives

Ll N1

LN = Psc; + Qss; + Rs, (10.501)
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where

Py =(H; — AU+ D2) — (H; — A)){J; +D1) + J1 —D)(H, + Ap)
= (2= Dy)(H; + Ay),
Q: = (I = B)J2 +D2) = (I, —B2)J; +D1) + (J; — D)2 + By)
— (J2 =Dy, +By),
R3 = (J; = D1)(J2 + D2) — (J2 — D2){J; + D) + 28323[S7812623871 X7
+ 2781223 Y7 + 871812623 Y7] + 2S3215[—S7¢12823871 X7 — ag7C12823 Y7
— a71¢12823 7] 4 285253[S7812871 X7 + agrs12 Y7 + an1s12Y7). (10.502)

The tan-half-angle identities for the sine and cosine of &; can be substituted into Egs.
(10.493), (10.497), and (10.501) to give

L, M, PiX] + qiX; + 1y
L, M, = —1_|T, (10.503)
M, N, pzx% + q2Xx1 + 12
M, No|= 142 (10-504)
Li N; P3Xi + qaX; +13
L N~ 14 (16:505)
where
pp=R—-P, ¢=2Q, =R +P, i=1...3 (10.506)

Substituting Egs. (10.503) through (10.505) into Eq. (10.490) and multiplying by (1+x3)*
gives the fourth-degree input/output equation

(P1X] + Qix; + 11) (P2X] + QoX2 + 1) — (p3X] + Gsx1 + r3)2 = 0. (10.507)

Corresponding values of ¢, for each value of x, that satisfies Eq. (10.507) can be obtained
from

6, = 2tan"!(x). (10.508)

10.4.2 Determination of 6,

Corresponding values of 6; will be obtained for each value of 6;,. As explained in
Section 8.2.2, the corresponding value for x, may be calculated from either

M1 Ny
M, N
xg = 2 721 (10.509)
L N,

L2 N,
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or

L, N;
L, N,
Xy = ——————=-, 10.510
2 L M, ( )

L, M,

The angle 8, is obtained from x, as follows:

6, = 2tan"!(x,). (10.511)

10.4.3 Determination of 4

A unique corresponding value of 6 can be obtained by projecting the vector loop
equation on the directions of vectors ag; and S¢ X ag;. Using set 6 from the table of
direction cosines gives the two equations

$1X7 + $2X17 + S3Xa17 + SsXazarr + a2 Wi7 + a3 Wai7 + aseCs + 267 +anc; =0,
(10.512)
S1Y7 + S2Y17 + S3Y217 + SsYas017 — S7567 — a1aUtg — a3Us56
— As56S6 + 2714787 = 0. (10.513)

Upon substituting the fundamental sine law X43517 = Ss6S¢ and sine—cosine law Y43317 =
$56C¢ for a spherical heptagon, these two equations may be expressed in the form

Kics + Kys6 + K3 =0, (10.514)

Kace + Kssg + K¢ = 0, (10.515)
where

K, = asg,

K; = Ssss6,

K; = SiX7 + $:X17 + S3Xa17 + annWy7 + a3 Wai7 + ag7 + a7167,
K4 = Ss8s56,
K5 = —asg,

Ke = S1Y7 + S, Y17 + S3Ya17 — Sy867 — anUlg — a23U3 56 + a71Cers7. (10.516)

Equations (10.514) and (10.515) are two linear equations in the variables s¢ and cg. Thus,
unique values for these parameters, and a unique value for ¢, can be determined for each
set of solutions for the angles 8, and 6,.

10.4.4 Determination of 8,

The following spherical cosine law may be written for a spherical heptagon:

Zy116 = Zy. (10.517)
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Expanding the definition of the term Z, and solving for c,4 gives

_ C34C45 — Zoyze

C4 (10.518)

834845

Two distinct values of 6 exist that satisfy this equation for each set of angles [6,, 8;, 6]
Thus, a total of eight solution configurations will exist for the RRSRR spatial mechanism.

10.4.5 Determination of 85

The following sine and sine—cosine laws may be written for a spherical heptagon:

X2176 = Xus., (10.519)
Yai76 = —Xjs. (10.520)

Expanding the definitions of X,s and X}, and rearranging gives

(Xq)es = (Ya)ss + (—=Xa176) = 0, (10.521)
(Yg)es + (Xg)ss + (Ya176) = 0. (10.522)

All the terms in parentheses are defined in terms of the constant mechanism parameters
and the previously calculated joint angles. Thus, these two equations represent two lin-
ear equations in the unknowns ss and ¢s. A unique corresponding value for 65 can be
determined from the sine and cosine values.

10.4.6 Determination of 4,

The following fundamental sine and sine—cosine laws may be written for a spherical
heptagon:

X17654 = $2383, (10.523)
Yi76s4 = $23€3. (10.524)

A unique corresponding value for 85 can be found by solving these equations for s3 and cs.

10.4.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RRSRR
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
of having as4, as5, and S4 equal zero greatly simplifies the analysis. A fourth-degree
input/output equation was obtained to solve for the angle #,. Unique corresponding
values were then determined for the angles 9, and 6. Pairs of values for the angles 6, 0,
and 65 were obtained for each of the four sets of angles [0}, 8,, 6s], thus giving a total of
eight solutions.

The mechanism dimensions of a numerical example are listed in Table 10.5. The
resulting eight solution configurations are listed in Table 10.6 and are drawn in Figure 10.6.
It is apparent from the figure that there are four classes of solutions. For example, solution
B is the same as solution A except that 0s has been rotated an additional 180 degrees,
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Table 10.5. RRSRR mechanism parameters.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
a;, =83 o = 60 S, =58 6, = variable
a, = 6.8 o3 = 60 S, =84 6, = variable
ay =0 o34 == 90 S;=9.0 63 = variable
a5 =0 a45 =90 S4=0 0, = variable
asg = 6.8 asg = 60 S5 =9.0 6 = variable
a7 = 8.3 ag; = 60 S¢ =84 0 = variable
a; =5.0 ay; =90 $; =58 6; = 289 (input)

Table 10.6. Calculated configurations for the RRSRR spatial mechanism.

Solution 0:, deg. 0,, deg. 63, deg. 0,, deg. 05, deg. 65, deg.

A —73.02 83.66 —161.30 65.57 —168.92 92.85
B —73.02 83.66 18.70 —65.57 11.08 92.85
C —23.85 155.71 84.16 49.81 —154.55 19.38
D —23.85 155.71 —95.84 —49.81 25.45 19.38
E —22.81 —37.85 —137.80 59.30 89.73 —175.37
F —22.81 —37.85 42.20 -59.30 -90.27 —175.37
G —6.47 164.44 53.06 53.78 —164.45 12.20
H —-6.47 164.44 —126.94 —53.78 15.55 12.20

causing the vector S, to point in the opposite direction. The angle 6, is the negative of its
value for solution A, and 6; is advanced by 180 degrees.

10.5 RSTR spatial mechanism

The ball and socket joint of the RSTR spatial mechanism can be modeled by three
intersecting revolute joints, and the Hooke joint can be modeled by two intersecting
revolute joints as shown in Figure 10.7. The special geometric values for this case
are

Ar3 = 45 = Asg — S5 =0. (10525)

In this analysis, the angle §; will be the known input value. The angle 6; will be solved for
first and will be referred to as the output angle. Specifically, the problem can be stated as

given: oy, 0623, 0134, Olus, Olsg, Ole7, 071,
412, a34, 67, A71,
S1, 82, S3, S4, S¢, S7,
A3 = A5 = as¢ = S5 = 0, and
67,

find: 91,92,93,94,95, and 96 .

It will be shown that a maximum of eight solution configurations exist for this mechanism.
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Figure 10.6. Eight configurations of the RRSRR
spatial mechanism.

10.5.1 Determination of input/output equation

The vector loop equation for the RSTR mechanism may be written as

Sﬁsﬁ + ag7ag7 + S7S7 + ay; a7 + 5181 + apap + SZSZ = —S3S3 — a33a34 — S4S4.
(10.526)

Evaluating the self-scalar product of each side of this equation yields

L + S6S6 - (5787 + azia7; + S1S1 + apap + S,8:) + agraer - (ania7 + 1Sy
+ apap + S,8) + 5587 - (5181 + apa + S28:) + az1a7; - (@papn + S28,)
+ SiS1 - (5:85) = S383 - S48, (10.527)
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Figure 10.7. RSTR spatial mechanism.

where L is defined as
L=(S;+a}+S>+a}, +S}+aj,+S5—S;—a}, —S}) /2. (10.528)

The scalar products of mutually perpendicular vectors, such as, for example, S¢ and ag;,
equal zero, and all these terms have been omitted from Eq. (10.527). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields
L + S6(S7¢e67 + an Xy + S1Z7 + a1nXq1 + S2Zn1)
+ agr(a71¢7 + S1X7 + a2 Wi7 + $:X17) + S7(S1e71 + X + $2Z1)
+ a7 (ape; + $2X)) + S1S2¢12 = S3S4ca4. (10.529)

Expanding all terms that contain the parameter 8; and rearranging the equation gives

[S2(Ses12Y7 — Sys12871 + ag7812X7) + a12(S6X7 + ag7c7 + a71)] ¢y
+ [S2(S6s12X7 + agrs12¢7 + a71812) + a12(—S6 Y7 + S7871 — a7 X7) |81
+ [S2(S1¢12 + Sec12Z7 + S7¢12671 + a67¢12X7) + S6(S1Z7 + S7ce7 + a71X7)
+ S1(S7¢71 + ag7X7) — 838434 + agragcy + L] = 0. (10.530)
All the expressions in brackets are defined in terms of the given constant mechanism
parameters and the input angle. Thus, Eq. (10.530) is the input/ output equation for

this mechanism, and it can be solved for two values of €; via the technique described in
Section 6.7.2(c).

10.5.2 Determination of 4,

Projecting the vector loop equation onto the direction of the vector S; using set 14 from
the table of direction cosines gives

Sici2 + S2 4+ S3Z4sert + a3aUaser12 + SaZser1 + SeZ71 + 27Uz
+ S7Zl + 3.71U12 =0. (10531)

Substituting the fundamental and subsidiary cosine laws Z4sg7; = ¢33 and Zsg7; = Z; and
the fundamental polar sine law Uysg712 = $2383 yields

SiC12 + Sz + S3¢23 + A3482383 + SaZ3 + S¢Z7; + a67U712 + S1Z; + a7 Uy = 0.
(10.532)
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Expanding Z; and regrouping gives

[—Sas23saales + [azas23]s3 + [Sic12 + Sz + S3c23 + Sacazcss + SeZs1 + ag U7z
+S:Z1 + a;1Upp] =0. (10.533)
All expressions in brackets are defined in terms of the given mechanism parameters, the

input angle 6;, and the output angle ;. Thus, for each of the two previously calculated
output angles, two corresponding values of 85 can be determined from Eq. (10.533).

10.5.3 Determination of 8,

Projecting the vector loop equation onto the direction of the vector a;; and S; x aj,
using set 14 from the table of direction cosines gives
apy + S3Xus671 + a3aWaser1 + SaXsen + SeX71 + agr W7 + S7X, +a71¢ =0,
(10.534)
S1812 — S3Yaser1 + a:aUjser1, — Sa¥sen — S Y71 +as7U37;, — S7Y1 — azicppst = 0.
(10.535)
Substituting the fundamental and subsidiary sine and sine—cosine laws Xus671 = $2382,
Xs611 = X32, Yase71 = S23¢2, and Ysg7; = —X3, and the subsidiary polar sine—cosine and
cosine laws U}, = — V32 and Wyser = W3, gives
a2 + S382352 + a3 W3 + SaXs2 + SeX71 +ag7Wo + $7: X +anc; =0,  (10.536)

%
Sis12 — S3523C2 — @34 V3 + S4X5, — Se Y71 + as7U7, — S7Y1 —azicias; = 0.

(10.537)
Expanding the terms W3, X3;, V3;, and X3, and regrouping yields
AC2 + B82 = Dl, (10538)
—BC2 + A82 = Dz, (10539)
where
A = S,X3 + acs,
B = S350 — S4Y; — au X,
3523 4Y3 — a3 X, (10.540)
D = —(S¢X71 + $7X| + a2 + a7 W71 4+ azicy),
D; = —Sis12 + Se Y71 + S7Y1 — ag U3, + an X
Adding B times Eq. (10.538) to A times Eq. (10.539) and solving for S, yields
BD,; + AD,
— 10.541
52 A2 + B2 ( )
Subtracting B times Eq. (10.539) from A times Eq. (10.538) and solving for ¢, yields
AD; —BD
g=—-—_= (10.542)

A2+B2
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The coefficients A, B, Dy, and D, can be evaluated numerically for each of the four sets of
values of [07, 8;, 05]. A unique corresponding value for 6, for each set can be determined
from the calculated values of the sine and cosine of 6, of Egs. (10.541) and (10.542).

10.56.4 Determination of 6

The following subsidiary cosine law may be written for a spherical heptagon:
Zyoy = Zs. (10.543)
Expanding Zs and solving for cs gives

-Z
o = 45656 = Lz (10.544)
845856

Thus, the cosine of 85 can be evaluated for each of the four sets of values of [6;, 9;, 65, 85].
Therefore, two values of 85 correspond to each of the previous four solution sets, and a
total of eight sets of values of [0, 6, 0, 63, 05] exist.

10.5.5 Determination of 6,
The following subsidiary sine and sine—cosine laws may be written for a spherical

heptagon:

X723 = Xs4, (10.545)
Y7123 = —X5,. (10.546)

Expanding Xs4 and X%, and rearranging yields
X504 — Y584 — X7123 = 0, (10547)
Xsss + Ysca + Yo = 0. (10.548)

These two equations may be solved for ¢4 and s4 for each of the solution sets [8;, 8;, 6;,
05, 05], and a unique cortresponding value for 6, is thus determined.

10.56.6 Determination of g
The following fundamental sine and sine—cosine laws may be written for a spherical

heptagon:

X43217 = 85656 (10.549)
Y3217 = S56Cs- (10.550)

Each of the eight solution sets [8;, 0y, 6>, 85, 8,, 0s] are substituted into these equations to
yield corresponding values for the sine and cosine of 6. A unique corresponding value
of G5 is thus determined.
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Table 10.7. RSTR mechanism parameters.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
a;; =23 o =60 S;=17.6 6, = variable
;=0 ay =90 S, =8.7 6, = variable
34 = 4.6 a3 = 65 S53=9.6 63 = variable
as =0 a5 =90 S4 =48 6, = variable
ase = 0 asg = 90 Ss=0 65 = variable
agy = 6.8 agr =175 Se =9.1 6s = variable
a; = 9.1 a7 =65 S7=6.2 67 = 322 (input)

Table 10.8. Calculated configurations for the RSTR spatial mechanism.

Solution 6, deg. 0,, deg. 05, deg. 04, deg. s, deg. 05, deg.

A 256.38 93.99 264.91 —107.78 125.36 -102.02
B 256.38 93.99 264.91 7222 —125.36 77.98
C 256.38 49.62 1.90 157.35 77.59 —45.16
D 256.38 49.62 1.90 —22.65 -71.59 134.84
E ~2.34 —28.13 206.68 42.14 77.26 —145.46
F —2.34 —28.13 206.68 —137.86 —71.26 34.54
G —2.34 —83.21 60.12 147.50 137.49 —66.79
H —2.34 —83.21 60.12 —32.50 —137.49 113.21

10.5.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RSTR spatial
mechanism. Although this is a group 4 spatial mechanism, the special geometry of having
a3, 445, 56, and Ss equal zero greatly simplifies the analysis. An input/output equation
was obtained that was linear in the sines and cosines of the angle 8;. Two corresponding
values for the angle 8; were next determined, followed by unique corresponding values for
the angle 8,. For each of the four solution sets of 6, 65, and 8;, two corresponding values
were computed for the angle 8s. Lastly, for each of the eight solution sets of 6;, 6,, 85,
and 65, unique corresponding values of 6, and 65 were computed.

The mechanism dimensions of a numerical example are listed in Table 10.7. The
resulting eight solution configurations are listed in Table 10.8 and are drawn in Figure 10.8.
It is apparent from the figure that there are four classes of solutions. For example, solution
B is the same as solution A except that 65 has been rotated by an additional 180 degrees,
causing the vector Ss to point in the opposite direction. The angle 65 is the negative of its
value for solution A, and 8, is advanced by 180 degrees.

10.6 RTTT spatial mechanism, case 1: ays =0

An RTTT spatial mechanism is shown in Figure 10.9 (see also Lin (1987)). In this
mechanism, the first and second, third and fourth, and fifth and sixth joint axes intersect
and the second through sixth joint offset distances equal zero. For the case to be analyzed
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Figure 10.8. Eight configurations of the RSTR spatial
mechanism.

here, the fourth and fifth joint axes will be assumed to be parallel. Also, the joint angles
of the Hooke joints, that is, o15, &34, and as6, Will be set equal to 90 degrees. Specifically,
the problem can be stated as

given: a3, Us7, 071,
a23, a453 a673 a713

Sl? S7’
a1 =034 = As¢ = /2,
ays =0,

ajp = a3 = as6 = Sy = S3 =S4 =S5 =S¢ = 0, and
6, (input angle),
find: 91, 92, 93, 94, 95, and 96 .
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Figure 10.9. RTTT spatial mechanism.

It will be shown that a maximum of sixteen solution configurations exist for this mech-
anism.

10.6.1 Determination of input/output equation

The vector loop equation for the RTTT mechanism may be written as
ag78¢67 + S787 + azja7; + S8 + azay = —agsays. (10.551)
Taking the self-scalar product of this equation gives

L + ag7a¢7 - (a7187; + SiS1 + a23823) + $787 - (S:S1 + az3a23) + a71a7; - ax3az3
+ SiS; - azaxs =0, (10.552)

where
L= (a% +S7+a% + S +a%;, —ak) /2. (10.553)

The scalar products of mutually perpendicular vectors, such as, for example, ag; and S,
equal zero, and all these terms have been omitted from Eq. (10.552). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields

L + agr(azic7 + S1X7 + a3 Wa12) + S7(Sicn + anXi2) + a(an W2 + $1Xz) = 0.
(10.554)

Expanding all terms that contain the parameter 6, and rearranging yields
A1C2+B182+D1 =0, (10555)
where

A = an(S$7X + ag7W7 +agicy),
By = a;(Sisi2 — S7Y; + agU%, — azicpps), (10.556)
D, =L + S;(ag; X7 + S7¢71) + agrazicy.

Expanding the terms that contain the parameter 6, and substituting the value of 7/2 for
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a1, and regrouping gives

A, =Fyc; + Fssy,

B; = an(S; + Syc71 + agrX7), (10.557)
D, =F,
where

Fi =L + Si(ag7X7 + S7¢71) + asrancy,
F, = an(agrcr + any), (10.558)

F3 = 253(S7871 — ag7¢7187).

A second equation that contains the output angle 6, and the angle 6, can be obtained
from the secondary cosine law

Zonz = Zeys. (10.559)
The right side of this equation may be expanded as

Zpss = s Y4as + SsS56Xas + a5 (—Ss6C5Z4 + Cs6Ya) + 34 Ysa + Sys34Xss.  (10.560)
Substituting S, = S5 = a3y = as¢ = 0 reduces this equation to

Zoas = a45(—856C524 + Cs56Y 4). (10.561)
Substituting the value of as¢ into this equation and the value of &34 and a5 into Z, yields

Zoss = 0. (10.562)

The left side of Eq. (10.559) may be expanded as

Zonz = an Y712 + Sas53 X712 + a3 Y71 — $2362Z71) + S (= X5 Xy — Xn1Y»)

+a67Y 217 + S7867X217 + a71(c67 Y21 — S67C7Z01). (10.563)

Substituting a;, = S; = 0 into Eq. (10.563) and equating it to zero reduces this equation
to
a3 Y712 + S1(— X5, Xz — X71Y2) + a67Y217 + S7867X217 + 271 (Co7 Y21 — 867¢7Z21) =0.
(10.564)
Expanding all terms that contain the parameter 6, and rearranging yields
A202 + B282 + D2 = O, (10565)

where

Az = Sic1a853X71 — S7823867U% 1, + anca3 o1 + agrsaa (—s12Y7 + € X5 X
+ ci2¢1Zy) + ansia(—sercr Y1 + cerZy),
By = —8;823X7, + S7823867W71 + a23¢23X71 — ag7823U7 76 + 2718238177,
D; = Si812¢23X71 + S7¢23867X17 — 223803771 + ag7¢3 Y 17
+ a1c03(—s67¢7Z1 + ce7Y1). (10.566)
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Substituting s;2 = | and c;; = 0 into these coefficients yields
Ay = —S3503567U5 1, + 03¢5 Y71 — 27823 Y7 + an1803(—56167 Y1 + ce1Z)),
By = —S1523X3, + S7823867 W71 + a23¢23X71 — a67523U7T56 + 2718238177, (10.567)
Dy = SicXr1 + $7623867X17 — a23823Z71 + a67¢23 Y17 + a71C23(—S67¢7Z1 + Ce7 Y 1).

Expanding the terms that contain the parameter 8, and substituting the value of 7 /2 for
o2 and regrouping gives

Ay =Gy,
B; = Gycy + Gasy, (10.568)
D, = Gyc; + Gssy,
where
Gy = —S7823867X7 — 2232377 — 267523 Y7 — a71523 Y7,

!
Gy = —Si823Y7 + S$7823867C7 + 22323 X7 + a67523X5,
v/ !
G3 = —S81803X7 — S7823867X5 — 22303 Y7 — a675237Z7 + a7152371,
v/ /
Gy = S1€23X7 + S7c03867 X — a23823Y7 + 267C23Z; — a71C03Z7,

Gs = —S1¢23Y7 + $7€23867C7 — a23823X7 + 26723 X (10.569)

Equations (10.555) and (10.565) represent two equations in the two variables 6; and 6,.
Substituting the tan-half-angle relations c; = (1 — x3)/(1 + x3) and s, = 2x,/(1 + x3),
where x, = tan(f,/2), into these equations, multiplying throughout by (1 + x3), and
regrouping gives

ax3 + bix; +d; = 0, (10.570)
wherei1 =1, 2 and

a; = —Fc; —~ F3s1 + Fy, by = 2By,
d; = Fyey + Fss; + F, ay = Gyey + Gss; — Gy, (10.571)
by = 2Gscy 4 2Gssy, d; = Gycy + Gss; + Gy

The variable x; can be eliminated from Eq. set (10.570) as discussed in Section 8.2.
According to Bezout’s solution method, the coefficients a;, b;, and d; must satisfy the
following condition in order for the two equations of Eq. set (10.570) to have a common
solution for x;:

2

4 b = 0. (10.572)

a b

b1 d1
b, d;

a d,
a d

The notation |jk| will be used to represent a determinant j; ll:; l . The determinants |ab|, |bd|,
and |ad| can be expanded using Eq. (10.571) as

lab] = o,

lbd| = o,

lad| = (—=2F,Gs)ct + (—2F3Gs)si + (—2F,Gs — 2F3Gy)s;c; + 2F, Gy, (10.573)
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where

o® = (—2F2G2)C% + (—2F3G3)S% + (—2F;:G; — 2F,Gy)si¢y

+ (2F1G2 — 2B1G4)Cl + (2F1G3 — 2B1G5)Sl + 2B1G1. (10574)

Substituting the tan-half-angle identities for s and ¢; into Eq. (10.573) and then regrouping

gives

lab] =

Ibd| =

lad} =

2
(1+—2)2 (B1G1 — F1G, + BG4 — F,Gy)xt 4+ 2(F,G; + F;G; — B, Gs
Xq
+F,G)x: + 2(B,G; — 2F;G3 + F,Gp)x? + 2(—F;G; — F,G3 — B,Gs
+Fi1G3)x1 + (B1Gy — F2G; + F1G, — B1Gy)], (10.575)
2
(1+ 2)2 [(B1G1 + F,G; — B,G, — F,Gy)x] + 2(F,G3 + F3G; + B Gs
Xq
—FiG3)X} + 2(B1Gy — 2F3G; 4 F2,G)x? + 2(—F3G, — F,Gs + B, Gs
—FiG3)x; + (BIGI —F,G, —F,G, + B1G4)], (10.576)
2
(1 + 2)2 [(FIGI - F2G4)X‘1‘ + 2(F,Gs + F3G4)X? + 2(F;G; + F,G,
Xq
_2F3G5)X% + 2(_F2G5 — F3G4)X1 + (FIGI — F2G4)] . (10577)

Substituting Eqs. (10.575) through (10.577) into Eq. (10.572) and then dividing through-
out by 4/(1 + x?)* and regrouping gives the following skew reciprocal polynomial':

8 7 6 5 4 3 2
moX] + m x| + mpX] + m3X] + myX; — max] + myx; —mx; +my =0, (10.578)

where

mo = B{G? + F5G} — F¥G} — FiG} — FiG; — BiG; + 2F,F,G,G, — 2B F,G,G;

m; =

m; =

ms; =

my =

+ 2F1B1G2G4,

4[~F,F3G; + B{G4Gs + F3G4Gs + F,F3G; — F5G,Gs3 + F;G,G; + B F,G G;
— B,FiG,Gs + B|F3G,G; — FiF3G,G, — FF,G,Gs — B/F;G;Gy],

4[F}(-G{ - G3) + Fy (=G} + G} + G} — G§) + F5(G3 — Gj) + B1(G{ ~ G3)
+ 2B (F1G3Gs — F3GGs3) + 2F3(2F,G:G; + F1G,Gs — 2F,G4Gs)],
4[F{G1G3 + 3F}(G2G3 — G4Gs) + 4F3(G4Gs — G,Gs) + BiG4Gs

+ F,F3(3G; — 4G; — 3G; + 4G?) + Fi(—B1G,Gs — B1G3G,

—FGiGy) + G (B1F,G3 — FIF,Gs + BiF;Gy)],

2[B}(3G] + G} — 4G:) + F{(—3G{ + G — 4G3)

+ F3(3G3— 4G5— 3G;+ 4G3 ) + F; (—4G;+ 8G3+ 4G; — 8G?)

+F,(8F;G,Gs + 8B,G3Gs — 2B,G,G4 — 2F,G,Gy)

+ F3(—8B,G,Gs + 16F,G4Gs — 16F,G,G3) + 2F;B,G,G;]. (10.579)

t This kind of polynomial was defined as skew reciprocal in Lin (1987) to distinguish it from an eighth-degree
polynomial Zio mix' = 0 where m; = mg_; (i = 0...3), which was defined as reciprocal by Todhunter

(1988).
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Dividing all terms in Eq. (10.578) by x} gives

mo (5t + L 3_ 1 L 1 _
o| X+ — ) +my| X 7] Tm{xi+ = ) +ms{x; +my =0.
X1 X1 X1 X1

(10.580)
This equation can be simplified by using the trigonometric identity
2X1
t) = —, (10.581)
1 —xi
where t; = tan§,. Rearranging Eq. (10.581) gives
1 2
X — — = ——. (10.582)
X] t
Squaring both sides of Eq. (10.582) gives
x2+1 -2 (10.583)
it =z .
Rearranging this equation gives
1 4
ﬁ+7=?+z (10.584)
X

1 1

Equating the product of the left sides of Eqs. (10.582) and (10.584) with the product of
the right sides of these equations gives

N/, L\ _ [ 2\(4
(=) +g) = (D) G +) R

Expanding this equation gives
XN—5=—35——+x——. (10.586)

Substituting Eq. (10.582) into the right side of Eq. (10.587) gives

, 1 8 6

gL __8_6 (10.587)
! ; 8

Squaring both sides of Eq. (10.584) and rearranging gives
1 16 16

4
X+ =o+—
Poxd g

+2. (10.588)
Substituting Eqs. (10.582), (10.584), (10.587), and (10.588) into Eq. (10.580) gives

16 16 8 6 4 2
my t_4+t—2+2 + my 5T +m; E+2 + m;y o +my =0.

1 1 1 1 1
(10.589)
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Multiplying throughout by t} gives

mg (16 + 16t + 2t1) + m; (—8t; — 6t;) +my (413 + 2t]) + m3(—2t)) + mut} = 0.

(10.590)
Rearranging this equation yields
(2mg + 2m, + my)t! + (—=6m; — 2m3)6 + (16mg + 4my)t2 + (—8my)t,
+ (16my) = 0. (10.591)

Equation (10.591) is a fourth-order input/output equation in terms of the tangent of the
output angle. Four values of t; may be determined from this equation. Two unique values
of 8; (which differ by 180 degrees) correspond to each value of t;, and thus a total of eight
distinct values of 8; exist.

10.6.2 Determination of 6,

Corresponding values of 6, can be obtained for each of the eight values of ;. As
explained in Section 8.2.2, the corresponding value for x, may be calculated from either

b dy
b, d2

a 4
a d

Xz =

(10.592)

or
a 4
a o

a by
a b

X =

(10.593)

The angle 6, is obtained from x; as follows:

6, = 2tan"!(x,). (10.594)

10.6.3 Determination of 9,

Using the direction cosines listed in the appendix for a spherical heptagon to project
the vector loop equation onto the direction of the vector S; yields

a7 X217 + S7Zp1 + a7 X1 + S1Z; + a45X4 = 0. (10.595)
Expanding the definition of the term X4 and solving for the sine of 8, gives
s4 = —(a7X217 + S7Z21 + anXa1 + $1Z2)/ ass. (10.596)

Two values of 6, exist that will satisfy this equation for each of the eight sets of values of
61 and 6,. Thus, a total of sixteen solution sets of the angles (6, 6, 8,) exist.
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10.6.4 Determination of 03

Using set 13 of the table of direction cosines to project the vector loop equation onto
the directions of the vectors a3 and (S; X ay;) gives

agr W72 + S$7X12 + an Wiz + 51X + 223 + a5 Wse712 = 0, (10.597)

a67U;123 — S7Y12 + a71UT23 — Sle + a45U§67123 =0. (10598)
Substituting the subsidiary polar sine—cosine and cosine laws Uy, = —Vy3 and W71, =
Wy gives

a7 Woi12 + 59X + a7 Wiz + 51X 4+ ays + asWa3 =0, (10.599)

a67U;123 - S7Y12 + a71U’{23 bt Sle bt a45V43 =0. (10600)

Expanding the definitions of V43 and W, substituting s3; = 1 and ¢34 = 0, and regrouping
gives

C3 = —(ag7Wq12 + $7 X2 + a7 Wig + S$1 X3 + a33) /(a45C4), (10.601)
s3 = —(a67U3 53 — $7Y 12 + a7/ U3 — S1Y2)/(assca). (10.602)

Thus, for each of the sixteen sets of solutions of (6;, 6, 64) a unique corresponding value
of 6; can be determined.

10.6.5 Determination of 0s

The following fundamental sine and sine—cosine laws may be written for a spherical
heptagon:

X71234 = 85685, (10.603)
Y71234 = 856Cs. (10.604)

Substituting o5¢ = /2 reduces these equations to

85 = X71234> (10.605)
Cs = Y71234. (10.606)

Thus, a unique corresponding value of 65 can be computed for each of the sixteen solution
sets of (01, 0,, 03, ;).

10.6.6 Determination of g
The following fundamental sine and sine—cosine laws may be written for a spherical

heptagon:

Xa3217 = 85656 (10.607)
Y3217 = 856C6- (10.608)
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Table 10.9. RTTT mechanism parameters, case 1.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
ap =0 o =90 S;=23 6, = variable
a» = 8.3 oy = 60 S, =0 6, = variable
ay =0 o3 = 90 S;=0 63 = variable
ay5 = 8.6 o5 =0 S4=0 64 = variable
ase =0 ase = 90 Ss=0 65 = variable
ags = 4.9 agr = 75 S¢=0 fs = variable
a; = 8.6 a7 = 65 S;=4.6 67 = 217 (input)

Substituting asg = 7 /2 reduces these equations to

s6 = X43217, (10.609)
C6 = Ya3217- (10.610)

Thus, a unique corresponding value of 65 can be computed for each of the sixteen solution
sets of (01, 02, 03, ;).

10.6.7 Numerical example

It has been shown that a total of sixteen solution configurations exist for the RTTT
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
greatly simplifies the analysis. An input/output equation was obtained which was fourth-
degree linear in the tangent of the angle ;. Eight distinct values of 9, correspond to these
four values of tan(¢;). A unique corresponding value for the angle 6, was next determined
for each value of ;. Two values of 6, were next calculated for each of the eight sets of
values (0, 6,). Unique corresponding values for 65, 65, and 95 were next determined for
each of the sixteen sets of values of (6;, 6, 9;).

The mechanism dimensions of a numerical example are listed in Table 10.9. The result-
ing sixteen solution configurations are listed in Table 10.10 and are drawn in Figure 10.10.
It is apparent in the figure that there are four classes of solutions. Each class has four
cases, that is, two configurations for the Hooke joint and two configurations for the ball
and socket joint.

10.7 RTTT spatial mechanism, case 2: a3 = ass = 90 deg.

An RTTT spatial mechanism is shown in Figure 10.11 (see also Lin (1987)). In this
mechanism, the first and second, third and fourth, and fifth and sixth joint axes intersect
and the second through sixth joint offset distances equal zero. For the case to be analyzed
here, the second and third joint axes and the fourth and fifth joint axes will be assumed to
be perpendicular. Also, the joint angles of the Hooke joints, that is, &1, &34, and &se, Will
be set equal to 90 degrees. Specifically, the problem can be stated as
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Table 10.10. Calculated configurations for the RTTT spatial mechanism, case 1.

Solution 6, deg. 6,, deg. 65, deg. 6,, deg. 65, deg. 6, deg.

A —61.29 —38.51 131.93 20.94 59.64 —-1.99
B —61.29 —38.51 —48.07 159.06 120.36 178.01
C 118.71 —141.49 —131.93 —-20.94 120.36 178.01
D 118.71 —141.49 48.07 —159.06 59.64 -1.99
E —20.09 —159.31 131.42 19.37 177.83 55.41
F —-20.09 —159.31 —48.59 160.63 2.17 —124.59
G 159.91 —20.69 —131.42 —-19.37 2.17 —124.59
H 159.91 -20.69 48.59 —160.63 177.83 55.41
I 65.16 —101.69 —137.46 32.12 67.94 —115.43
J 65.16 —101.69 42.54 147.88 112.06 64.58
K —114.84 —78.31 137.46 —-32.12 112.06 64.58
L —114.84 —78.31 —42.54 —147.88 67.94 —11543
M 55.32 126.17 153.56 —45.82 -39.39 —-31.36
N 55.32 126.17 —26.44 —134.18 —140.61 148.64
6] —124.68 53.83 —153.56 45.82 —140.61 148.64
P —124.68 53.83 26.44 134.18 —39.39 -31.36

giVCl’lZ U7, A7,

23, 45, Ag7, A71,
S1, S8y,
Ay = 03 = O3g = g5 = Usg = 7T/2,
a12=a34=a56=82=83:S4=S5:Sﬁzo,and
6, (input angle),

find: 61,6,,03,0,,05,and 65 .

It will be shown that a maximum of sixteen solution configurations exist for this mecha-
nism.

10.7.1 Determination of input/output equation
The input/output equation is obtained from a pair of equations of the form
aix; + bixo +di =0, (10.611)

where 1= 1, 2 and the coefficients a;, b;, d; are functions of the output parameter 6;. The
first equation is the same self-scalar product of the vector loop equation as was derived
in Section 10.6.1. This equation was expanded, and the coefficients a;, by, and d; are
defined in Eq. (10.571). The derivation of the second equation is more complicated, and
itis derived from three equations that contain the unknown joint variables 8y, 6,, 63, and 6;.

(i)  Projection of the Vector Loop Equation Along (S; x a;;)

The vector loop equation for the RTTT mechanism may be written as

67267 + S787 + an1a7; + S1S1 + anan + agsass = 0. (10.612)
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Figure 10.10. Sixteen configurations of the RTTT spatial mechanism.

Projecting this equation onto the direction of (S; x a;;) by using set 1 of the table of
direction cosines gives

—a57Ugs430; + S7Y65432 — a7151 + a3cp282 — assUjp, = 0. (10.613)

The spherical and polar sine—cosine laws Ygs430 = s71¢1 and Ugsyy,; = —V71 may be
substituted into this equation to give

ag7 V71 + S7871C1 — 27181 + a23C1282 — a4sUyy, = 0. (10.614)

Expanding U};,, and substituting the value of w /2 for the twist angles «/, through ass
reduces this equation to

367V71 + S7S7101 — 7181 — A4583C4 = 0. (10615)

This equation may be rewritten as

P, = a4583C4, (10616)



302 Group 4 spatial mechanisms

Figure 10.11. RTTT spatial mechanism.
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where
P] = a67V71 + S7S71C1 — a718;. (10617)

The term P; may be factored as

P, = P¢y + Pypsy + Py, (10.618)
where
P, = S78791 — ag7¢7187, Py = —agc; — sy, Py =0. (10.619)

(ii)) Secondary Cosine Law

A secondary cosine law for a spatial heptagon may be written as

Zonz = Zos. (10.620)
The term Zys may be written as

Zos = —Ss845556Ss + s Ys + as6 Ys. (10.621)

Substituting S5 = ass = O and expanding Y5 and substituting values for s and ase
gives

Zos = 0. (10.622)
The term Zy7,,3 may be expanded as

Zori2s = 834 Y7123 + S3834X7123 + 03(C34 Y712 — 83463 Z712) + S2 (=X X5, — YaXon)
+ap(Zn X%, + YnZs) + Si(=X7X%, — Y7Xa21) + 267 Yaonr + 7867 X217
+ a71(Ce7 Y321 — S67C7Z321). (10.623)

Substituting S, = S3 = a;, = a3y = 0 reduces this equation to

Zo123 = 03(C34 Y712 — 834€3Z712) + S1 (X7 X3y — Y7X321) + 267 Y3217 + S7567 X217
+ a71(c67 Y321 — 867€7Za21). (10.624)

Equating this equation to zero, expanding all terms that contain 6, and 83, and regrouping
gives

Qics + Qa3 =0, (10.625)
where
Qi = Pacy + P3sy + Py, (10.626)

Q2 = Pscy + Pes, (10.627)
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and where
Py = —anYy,
Py = —anXy,

Py = —51X51 + S1861V71 + a1(8672Z1 + Ce7(—s187 + €17¢71))
+ a71(s67¢7Z1 + C67¢71€1),
Ps = —S5:1X5; + $9867 W11 + ag7(—s67 X1 — C67V17) + an1(Cere7181 — 867€7X1),
Ps = S7867U71 + a67(S67Y1 — C67571C7) + a71(S67C7 Y1 — Ce7871)- (10.628)

The terms P, through P¢ may be factored into the form

Pi = Piacl + Pibsl + Pic, (10629)
wherei=12...6 and

P2a = O,

Py, =0,

Py = a33Z,

P, = —a33Xy,

Py, = a3 Y7,

P3C = O,

Pjy = =51X7 = S1011 X7 — a2 + anZy,

Pyp = S1Y7 — 578677 — a67C6787, (10.630)

Py =0,

Ps, = —Pyp,

Psp = Py,,

P5C == O,

P, =0,

Pg, = 0,

Pe = Sys11X7 + a7 Y7 + an Y7.
(iii) Self-Scalar Product of the Vector Loop Equation
The vector loop equation for the mechanism may be written as
467867 + S787 + a71a7; + S1S1 = —azan — assaus. (10.631)

Taking the self-scalar product of each side of this equation gives

K + agra67 - (a71271 + S181) + 5757 - SiS1 = anan - agsays, (10.632)
where
K= (a, + S5 + a3, + ST — a3, — a}5) /2. (10.633)

The scalar products of mutually perpendicular vectors, such as, for example, ag; and S,
equal zero, and all these terms have been omitted from Eq. (10.632). Evaluating the scalar
products using the sets of direction cosines listed in the appendix yields

K + ag7(a71¢7 + S1X7) + S1S7¢71 = apsassWas. (10.634)
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Expanding the definition of W43 and substituting c34 = 0 gives the result

P7 = A3a45C3C4, (10635)
where
P; = K + agr(azic7 + S1X7) + S1S7c71. (10.636)

The second equation that contains 8; and 8, as the only unknown parameters will next
be obtained by manipulation of Eqs. (10.616), (10.625), and (10.636). Multiplying Eq.
(10.616) by a3c3 and Eq. (10.635) by —s4 and adding gives

P1323C3 - P7S3 =0. (10637)

Equations (10.625) and (10.637) are linear homogeneous equations in the variables s3 and
c3. A solution will exist only if the equations are linearly dependent (note that the trivial
solution of s3 =c3 =0 is not physically possible). Because the two equations must be
linearly dependent, it may be written that

apP1Q: + Q/P; = 0. (10.638)
Expanding Q; and Q; using Eqgs. (10.626) and (10.627) and regrouping gives
(a23P(Ps5 + P7P2)c; + (a23P1Pg + P7P3)s2 + P;P, = 0. (10.639)

Substituting the expressions for P; through Pg, that is, Eqs. (10.618) and (10.629), and
regrouping gives

(Hic? + Hos{ + Hisicy + Hy)oa + (Hsey + Hgsy)sz + (Hyey + Hgs)) =0, (10.640)
where

H; = —a3P,Pa,
H; = a23P1Paa,
H; = 253(P1aP4s — P1oPap),

Hy = PPy,

Hs = a33P,Pe. + P1,P7, (10.641)
He = a23P1,Pgc + P3pPy,

H; = Ps4,Py,

Hg = Py,P5.

Substituting the tan-half-angle identities s, = 2x,/(1 + x3) and ¢; = (1 — x3)/(1 + x3)
into Eq. (10.640), multiplying throughout by (1 + x3), and regrouping gives

;X3 + byxy + dy = 0, (10.642)
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where

a; = (Hyc; + Hgsy) — (Hicl + Hast + Hsicp + Hy),

by = 2(Hscy + Hes1), (10.643)

d; = (Hycy + Hgsy) + (Hici + Hasi + Hisiey + Hy).

Equation (10.643) will be paired with the first equation from the previous section,
that is, Eq. (10.570), whose coefficients a;, b;, and d, are defined in Eq. (10.571). The
variable x; can be eliminated from Eqgs. (10.570) and (10.642) as discussed in Section 8.2.
According to Bezout’s method, the coefficients a; through d; must satisfy the following
condition in order for the two equations to have a common solution for x;:

|ab|[bd| — |ad|* =0, (10.644)

where the notation |jk| is used to represent the determinant ‘jl t; l The determinants

|ab], |bd|, and |ad| are expanded as

|ab| = 5,
Ibd] =87, (10.645)
lad| = 2(FH, — F;H;)c? + 2(FH, — F3Hy)s?

+ 2(F H; — F;Hg — FsHy)sic; + 2(F Hy),

where
8% = 2(B1H; — FHs)c} + 2(B H, — FsHe)st + 2(B H; — F;Hg — F3Hs)s ¢
+2(—BH; + F Hs)c; &+ 2(—B;Hg + F;Hg)s; + 2B H,. (10.646)

Substituting the tan-half-angle identities for s, and ¢, into the determinants of Eq. (10.645)
and then regrouping gives

|ab] = ={[Bi(H, + Hs + Hy) — Hs(F, + Fy)Ix} + [—2B;(H; + Hg)

2
(1+x7)
+2Hg(F; + Fy) + 2F;H;s1x3 + [2B,(—H, + 2H, + H,) + 2F,H;

— 4F3Hg]x? + [2B,(H; — Hg) + 2Hg(F; — Fy) — 2F3Hs]x,

+[Bi(H; + Hs — Hy) + Hs(F; — Fy)1}, (10.647)
|bd| = _i—z{[Bl(Hl + Hs — Hy) + Hs(F, — Fo)Ix} 4 [2B,(—H; + Hy)
(1+x7)

+ 2H¢(—F, + Fy) + 2F3H;]x + [2B(—H; + 2H, + H,) 4+ 2F,H;

— 4F3Hg]x] + [2B(H; + Hs) — 2He(F; + F,) — 2F;H;s[x,

+[B;(H; + Hs + Hy) — Hs(F, + Fy)[}, (10.648)

lad| = = {[Fi(H; + Hs) — FHy1x{ + 2[—F,H; + F,Hg + F3Hylx3

2
(1+x})
+ [2F;(—H; + H, + Hs) + 2F,H; — 4F;H;]x]

+ 2[F,H3 — F,Hg — F3H;]x; + [Fi(H; + Hy) — F2H7]}. (10.649)
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Substituting Eqs. (10.647) through (10.649) into Eq. (10.644) and then dividing through-
out by 4/(1 + x3)* and regrouping gives the following skew reciprocal polynomial:

mox? + mlx'l’ + mzx? + m3x? + m4x‘1‘ - m3x? + mzxf —mx;+mg=0, (10.650)
where

m, = B} (H + H; — H? + 2H,H,) + 2B,Hs(F H; — F,H, — F,H;) + F{(—H{ — H;
—H3 — 2H,H,) + 2F,F,H;(H, + Hy) + F5(H; — H3),

m; = 4B}(—H,H; — H3H, + H;H;) + 4B, [Hs(—F,Hg + F;H, + F;H; + F3Hy)
+ He(—F Hy + FoH; + FoHy)] + 4F] (HH; + H3Hy + HsHe)
+4F,[F,(—HHg — H3H; — HyHg) + F3H7(—H; — Hy)]
+ 4F;(H7Hg — HsHe) + 4F,F; (H; — H3),

m, = 4F (H} — Hj — H; — H; — 2H,H, — 2H,H,) + 8F,[F,(—H,H; + H,H;
+ H;Hs) + F3(HHg + H3H; + HyHg) + B HgHg] + 4B (—H} + Hj + H;
— H; + 2H;H, + 2H,H,) + 8B, [F,(—H,Hs — H3Hs + H,Hs)
+F3(—H;He — H3Hs — HyHg)] + 4F3 (-HZ + HZ + H2 — H2)
+ 16F,F3(HsHg — HyHs) + 4F; (H2 — H3),

mj3 = 4F}(H3Hy + HsHg — 3H,H; + 4H,H3) + 4F, [F,(3H;H; + 3H, Hy — 4H,Hy
—H4Hg) — By (HsHg + HgH7) + F3(3H;H; — 4H3Hg — 4H,H; — HyHy)]
+ 4B3(—H3H, + HyHg + 3H,H; — 4H,H3) + 4B, [F, (4H,Hg — 3H;H;
+ HyHg — 3H, Hg) + F3(H4Hs + 4H3;Hg — 3H,Hs + 4H,Hs)] + 12F%(HsHs
— H7Hs) + 16F;(H;Hs — HsHe) + 4F,F;(—4HZ — 3H3 + 4H3 + 3H?),

my = 2F; (—3H] — 3H; — 8H; + H: + 4H; — 4H; + 8HH, — 8H,H, + 2H,H,4)
+ 4F,[F,(—H4H; — 4H,H; + 3H, H; — 4H;Hy) + B, (4HgH; — HsHy)
+ F3(—4H;H; — 4H,H; + 8H,Hg + 4H,H3)] + 2B} (3H; — 4H; — 4H;
+ 8H; + 3H7 + H3 + 8H,H, — 8H;H, — 2H;H,) + 4B, [F,(4H;Hs — 3H;Hs;
+ H;Hs + 4H,Hs) + F3(—4H4H¢ + 4H3Hs + 4H,H¢ — 8H,He)]
+ 2F;(—3H3 + 3H; — 4H; + 4H;) + 32F,F;(H;H; — HsHg)
+ 8F; (H; — 2H; + 2H; — H3). (10.651)

It was shown in Section 10.6.1 how a skew reciprocal polynomial of the form of Eq.
(10.650) may be written in the form

(2mo + 2m, + my)t} + (—6m; — 2m3)t] + (16mp + 4my)t + (—8m,)t,
+ (16mp) =0, (10.652)

where t; is equal to tan(#;). Equation (10.652) is a fourth-order input/output equation in
terms of the tangent of the output angle. Four values of t; may be determined from this
equation. Two unique values of ; (which differ by 180 degrees) correspond to each value
of t;, and thus a total of eight distinct values of 8; exist.
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Table 10.11. RTTT mechanism parameters, case 2.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
ap, =0 o =90 S =5 6, = variable
ayp =7 o3 =90 S;=0 6, = variable
ay =0 a3 =90 S3=0 6; = variable
as =7 o5 =90 S4=0 64 = variable
as6 =0 ase = 90 Ss=0 65 = variable
ag7 =35 g7 =55 S¢e=0 6 = variable
a; =10 an =175 S;=17 67 = 190 (input)

10.7.2 Determination of remaining joint angles

The joint parameters 8, through 64 can be determined using the same equations listed
in Sections 10.6.2 through 10.6.6. The current values of «y3 = as5 = 90 degrees are now
substituted into the definitions of the terms in these equations.

10.7.3 Numerical example

It has been shown that a total of sixteen solution configurations exist for the RTTT
spatial mechanism. Although this is a group 4 spatial mechanism, the special geometry
greatly simplifies the analysis. An input/output equation was obtained that was fourth-
degree linear in the tangent of the angle 6,. Eight distinct values of 8, correspond to these
four values of tan(6;). A unique corresponding value for the angle 6, was next determined
for each value of 8;. Two values of 9, were next calculated for each of the eight sets of
values (8, 6;). Unique corresponding values for 63, 85, and 8¢ were next determined for
each of the sixteen sets of values of (6,, 8>, 64).

The mechanism dimensions of a numerical example are listed in Table 10.11. The
resulting sixteen solution configurations are listed in Table 10.12 and are drawn in Fig-
ure 10.12. It is apparent in the figure that there are two classes of solutions. Each class has
eight cases, that is, two configurations for each of the three Hooke joints of the mechanism.

10.8 RRR-R-RRR spatial mechanism

An RRR-R-RRR spatial mechanism is shown in Figure 10.13. The notation R-R-R is
used to indicate that the third, fourth, and fifth joint axes are parallel. Specifically, the
problem can be stated as

given: o2, A3, Use, X7, 471,
a2, 423, 434, 445, As6, A67, A71,
Sl, Sz, S3, S4, S5, S6, S7, 03 = Oly5 = O, and
&
(input angle),
find: 0,, 65, 65,0y, 05, and 6.

It will be shown that a maximum of eight solution configurations exist for this mechanism.
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Table 10.12. Calculated configurations for the RTTT spatial mechanism, case 2.

Solution 6y, deg. 6,, deg. 65, deg. 64, deg. 65, deg. 05, deg.

A 38.65 175.86 69.05 —69.53 —95.35 156.26
B 38.65 175.86 —-110.95 —-110.47 —84.65 -23.74
C —141.35 4.14 —69.05 69.53 —84.65 -23.74
D —141.35 4.14 110.95 11047 —95.35 156.26
E 53.29 173.27 6.94 —82.77 —107.95 —156.79
F 53.29 173.27 —173.06 —-97.23 —-72.05 23.21
G —126.71 6.73 —6.94 82.77 —72.05 23.21
H —126.71 6.73 173.06 97.23 —107.95 —156.79
I 78.52 —105.69 —-76.28 58.20 —176.79 127.65
J 78.52 —105.69 103.72 121.80 -3.21 —52.35
K —101.48 —74.31 76.28 —58.20 -3.21 —52.35
L —101.48 —74.31 —-103.72 —121.80 -176.79 127.65
M —88.14 —70.90 80.63 —39.88 —-241 —47.18
N —88.14 —70.90 —99.37 —140.12 -177.59 132.82
(0] 91.86 —109.10 —80.63 39.88 -177.59 132.82
P 91.86 —109.10 99.37 140.12 —-241 —47.18

10.8.1 Determination of 6

The angle 8¢ will be solved for first for this mechanism. It will be shown that a fourth-
degree polynomial in the tan-half-angle of 6 is obtained from two equations that contain
the unknown joint parameters 65 and 6.

The first equation is obtained from a projection of the vector loop equation onto the
direction of Ss. The vector loop equation may be written as

SiS1 4+ apan + S28; + axaxs + 5383 4 aza3 + S48S4 + assa45 + SsSs + asease
+ S6S6 + ag7a67 + S7S7 + ana;; = 0. (10.653)

Using set 5 from the table of direction cosines for a spherical heptagon, the projection of
the vector loop equation may be written as

S1Zs6 + a12U 1765 + S2Z176 + a23U21765 + S3Z3176 + a34U321765 + SaZszi76 + Ss
+ S¢Cse6 + ag7Ues + S726 + a71U765 =0. (10654)

The spherical cosine laws and polar sine laws Z7¢ = Zsa, Zy176 = Z4, Z32176 = a5, U765
= Ujaas, Uj176s = Usgs, and Usy ;765 = Uys are substituted into this equation to give

S1Z76 + a12Un45 + S2Z34 + a23Us45 + S3Z4 + a34Uss + Sucas + Ss + Secse
+ ag7Ugs + S726 + a7; U765 = 0. (10.655)

Expanding Ujs4s, Z34, Uass, Z4, and Uys and substituting o34 = a4 = 0 simplifies this
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Figure 10.12. Sixteen configurations of the RTTT spatial
mechanism.

equation to

S1Z76 + a12Uaz + Sz¢23 + S3 + S4 + Ss + Secse + ag7Uss + S7Z¢ + a71Uzes = 0.

(10.656)
Expanding Z;6, U,3, Uss, Zs, and Uzgs and regrouping gives
As; +B =0, (10.657)
where
A = a(3873,
12523 (10.658)

B = BIC6 + BZS6 + B3
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Figure 10.12. (cont.)

and where

B| = Si856Y7 — S7856867 + a7556C6757,

B, = Sis56X7 + a678s56 + a71856C7,

B3 = 8105627 + 82023 + S3 + S4 + Ss + 86056 + S7056067 + a71056X7.

The second equation is obtained from the subsidiary cosine law
Zis = L.

Expanding Z,34 and substituting ¢34 = a45 = 0 gives
Zse = Zs.

Expanding Z,¢ and Z, and regrouping gives
De, + E =0,

(10.659)

(10.660)

(10.661)

(10.662)
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Figure 10.13. RRR-R-RRR spatial mecha-
nism.

where

D = s2823,
E= E1C6 + EzS6 + E3

and where
E| =s5Y7,
E; = 556Xy,

E3 = c56Z7 — Ci20n3.

(10.663)

(10.664)

The parameter 6, may be eliminated from Eqs. (10.657) and (10.662) by subtracting

a12X; times Eq. (10.662) from s;> times Eq. (10.657) to give
S;2As; — a;px,Dey +51oB — appx;E = 0.

Because s;;A = ap;D, this equation may be written as
S1pA(Sy — X2€3) + 812B — a;pxE = 0.

Because (s; — X3¢3) = X (see Eq. (9.108)),
(s12A — apE)x; + (s12B) = 0.
Adding s;>x, times Eq. (10.657) to a|, times Eq. (10.662) gives
S12X2As; + a;,De; + s12x,B + apE = 0.

Again, because s;;A = a),D, this equation may be written as
$12A(X287 + ¢3) + s1pxoB + apE = 0.

Because (x,s; + ¢;) = 1 (see Eq. (9.109)),
(si2B)x2 + (s12A + aRE) = 0.

(10.665)

(10.666)

(10.667)

(10.668)

(10.669)

(10.670)
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Equations (10.667) and (10.670) are linear in the variable x;. In order for there to
be a common value of x, that satisfies the two equations, the equations must be linearly
dependent. As such, the coefficients of these two equations must satisfy the following
expression:

(s12A — apE)(s12A + apE) — (sB)* = 0. (10.671)
Multiplying the first terms gives
s;,A? —al,E? — 3, B? = 0. (10.672)

Substituting Eqs. (10.658) and (10.663) for B and E and regrouping gives

Fycg + Fasg + FiseCe + Facs + Fsse + Fg =0, (10.673)
where

Fi = —a},Ef — s}, BY,

F, = —a},E} — s1,B3,

F; = —2(a},EE, + s1,B1B,),
F, = —2(a%,E,E3 + s2,B/B;),
Fs = —2(a},E,E; + s1,B2B3),
Fo = —a},E} + s},(A% — BY).

(10.674)

Substituting the trigonometric identities s = (2x¢)/(1 + x2) and ¢6 = (1 — x2)/(1 + x2)
for the sine and cosine of 65, multiplying throughout by (1 + x2)?, and regrouping gives

fux§ + f3xg + faxg + fixe + fo = 0, (10.675)
where

fy =F —Fy + Fe,

f; = —2(F; — Fs),

f; = 2(=F, + 2F; + F¢), (10.676)

f; = 2(F; + Fs),

fo = F1 + F4 + Fe.
Equation (10.675) is a fourth-order equation that can be solved for x¢. Four values of x¢
and thereby four distinct values of 6 can be obtained from this equation. It is interesting

to note that this equation does not contain the link lengths as4 and ays, the perpendicular
distances between the parallel axes.

10.8.2 Determination of 6,

A corresponding value of 6; may be obtained for each value of 8¢ from either Eq.
(10.667) or Eq. (10.670). Numerical values for B and E can be obtained for each calculated
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value of 6. The tan-half-angle of 8, may then be obtained from either

X, = ﬁ (10.677)
or
X2 = ——(SMLE). (10.678)
s;2B
The angle 6, is obtained from x; via the equation
6, = 2tan"! (xp). (10.679)

10.8.3 Determination of 9,
The following sine and sine—cosine laws may be written for a spherical heptagon:
Xe112 = Xa3, (10.680)
Yer12 = — X (10.681)
Expanding the right sides of this pair of equations and substituting o34 = g5 = 0 yields

Xe712 =0, (10.682)
Yer12 = 0. (10.683)

Expanding the definitions of the terms Xg7,, and Y¢7,, and regrouping gives

[X67¢2 — ci2Yers2]ct + [—Ye702 — ci2Xers2)s1 + [8125:Z67] = O, (10.684)
[c23 (X752 + €12 Y67€2) — s12823Ye7)er + [€23(— Y6752 + €12X67€2) — S12823X67]81
+ [—S12€23Z67C2 — C12523Z67] = 0. (10.685)

All the terms in brackets may be numerically evaluated for each set of solution values
of (65, 6,). Equations (10.684) and (10.685) thus represent two linear equations in the
variables c¢; and s;. The solution of these two linear equations will yield the unique
corresponding value for the sine and cosine of 6,, and thus a unique value for the angle 6,.

10.8.4 Determination of 6,

Projecting the vector loop equation onto the direction of asg and (S5 x as¢) using set 5
of the table of direction cosines yields

S X716 + a12Wi76 + S2 X176 + 223 Wai76 + S3X0176 + 234 Waz176 + S4X32176
+ a45C5 + asg + ag7Ce + S7)_(6 + a;; W7 =0, (10.686)
S1Y76 — a12Ul765 + S2Y 176 — a23U5 1765 + S3Y 2176 — a34U% 1765 + S4Y 32176

— 4555 — SgSs6 + 867Cs656 + S7 Y6 — a7 Ules = 0. (10.687)
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Substituting the spherical and polar sine and sine—cosine laws X3;176 = S4585, Waz176 =
Was, Y3p176 = 845Cs, and U3, 465 = —Vas gives

S1X76 + a12Wi76 + S2X176 + a23Wa176 + S3Xo176 + 234 Was + S48458s

+ a45Cs + asg + a67C6 + S7X6 + a71Was = 0, (10.688)
S1Y76 — a12U%765 + S2Y 176 — 223U3 765 + S3 Y2176 + 234 Vas + S4s4sCs
— 4555 — S6Ss6 + 867Cs656 + S7Y6 — a7 U%gs = 0. (10.689)

Expanding V45 and Wy5 and substituting o34 = a45 = 0 yields

S1X76 + a12Wi76 + S2 X176 + 323Wai76 + S3X0176 + 234(C4C5 — S485) + a45Cs
+ as6 + a67C6 + S7 X6 + a71 Wy = 0, (10.690)
S1Y76 — a12UT565 + S2Y176 — 23U5, 65 + S3Y2176 — 234(85C4 + C584) — AusSs
— Se8s6 + a67Cs686 + S7Y6 — a7 Ules = 0. (10.691)
Introducing the notation s4, s = sin(f, + 65) and ¢4, 5 = cos(fs + 05) and recognizing that
sin(fs + 05) = s4C5 + €485 and cos(By + 5) = c4C5 — 8485 gives
S1X76 + a12Wi76 + S2X 176 + 223 W2176 + S3X0176 + 234Ca15 + 245Cs + ass
+ ag7¢6 + S7X6 + 271 W16 = 0, (10.692)
S1Y76 —ainUj65 + S2Y 176 — a23U7 765 + S3Y2176 — 2348445 — 24585 — S6Ss6

+ a67C56S6 + S7Y6 - a71U§65 =0. (10693)

These equations may be rearranged as

A34C445 + a45C5 = Py, (10.694)
2348445 + 4585 = Qa176, (10.695)
where
P16 = —S1X76 — a12Wi7s — S2X176 — a23Wai76 — S3Xo176 — 256 — a67Cs
- S7X6 - a71W76, (10696)
Q2176 = S1Y76 — a12U7 765 + S2 Y176 — 223U5 765 + S3Y2176 — S6Ss6 + 267C5656
+5;¥6 — ay Ukgs. (10.697)

The terms P,176 and Qz;7¢ can be numerically determined for each of the four solution sets
of (6, 6,, 61).
Squaring and adding Eqgs. (10.694) and (10.695) yields
ata+2 + ) = P2 2 e (10.698)
A3y T Ayg 234845 (C445C5 + S445S5 2176 T Q2176

Because the cosine of the difference of two angles o and 8 may be written as cos(a — ) =
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CoCp + S¢S, this equation may be written as

a3, + ag5 + 2a34a45 cos((04 + 65) — 65) = PPy, + Qe (10.699)
which thus reduces to

a3, + a3s + 283424504 = P36 + Q3. (10.700)
Solving this equation for ¢4 gives

2 2 2 2
_ Piye + Q176 — a3, — g5
2a34a45

(10.701)

Two distinct values of 6, will satisfy Eq. (10.701) for each of the four sets of solutions
(65, 62, 61). Thus, a total of eight solution configurations exist for this mechanism.

10.8.6 Determination of 95
Equations (10.694) and (10.695) may be expanded as
a34(C4C5 — 8485) + a45C5 = Py, (10.702)
34(84Cs + C485) + A4585 = Qa17. (10.703)
Regrouping these equations gives
(234C4 + a45)Cs — (A3484)85 = P2yzs, (10.704)
(a3484)C5 + (@34C4 + as5)s5 = Qy176. (10.705)

These two equations that are linear in the variables ss and c5; can be used to determine
unique corresponding values of 65 for each of the eight solution sets (6, 6;, 6,, 04).

10.8.6 Determination of 63

The following fundamental sine and sine—cosine laws may be written for a spherical
heptagon:

X17654 = $2383, (10.706)
Y7654 = $23C3. (10.707)
Numerical values can be determined for X;7654 and Y7654 for each of the eight solution

sets (6s, 01, 0, 04, 05). The calculated values of s3 and c; yield the unique corresponding
value for 65.

10.8.7 Numerical example

It has been shown that a total of eight solution configurations exist for the RRR-R-RRR
spatial mechanism. Although this is a group 4 spatial mechanism, the special geome-
try of having three parallel joint axes greatly simplifies the analysis. Several industrial
manipulators incorporate this geometry for this reason.
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G H

Figure 10.14. Eight configurations of the RRR-R-RRR
spatial mechanism.

The mechanism dimensions of anumerical example are listed in Table 10.13. The result-
ing eight solution configurations are listed in Table 10.14 and are drawn in
Figure 10.14. It is apparent in the figure that there are four classes of solutions. Each
class has two configurations for the three parallel joint axes.

10.9 Summary

Robot manipulators that contain six revolute joints are very common. This is because
rotary electric and hydraulic actuators are readily available. The reverse analysis of
a general six-revolute robot, however, will require the solution of a general group 4
spatial mechanism once the close-the-loop step is accomplished. The solution of this
mechanism is very complicated, and a computer program is available from the authors. The
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Table 10.13. RRR-R-RRR mechanism parameters.

Link length, cm.

Twist angle, deg.

Joint offset, cm.

Joint angle, deg.

ap =109
a3 =99
as = 10.6
a5 = 9.8
asg = 11.2
agy = 10.5
a; =5.2

ap =139
oy = 80
a3y =0
s =0
56 = 243
agr = 307
o =34

S =4.6
S, =75
S; =175
Sy =40
Ss=175
S¢ =9.6
S7=118

6, = variable
6, = variable
6; = variable
64 = variable
65 = variable
6 = variable
6; = 20 (input)

Table 10.14. Calculated configurations for the RRR-R-RRR spatial mechanism.

Solution 6, deg. 6, deg. 63, deg. 6y, deg. Os, deg. O, deg.
A 147.64 —37.31 —36.68 93.13 11541 -20.73
B 147.64 -37.31 51.71 -93.13 —146.72 —20.73
C 177.69 14.00 50.49 107.98 4433 14.44
D 177.69 14.00 152.29 —107.98 158.49 14.44
E 127.24 32.29 131.03 80.95 —24.74 71.30
F 127.24 32.29 —151.86 —80.95 60.03 71.30
G —69.32 —75.75 36.85 143.93 —65.07 140.08
H —69.32 —75.75 167.04 —143.93 92.59 140.08

reverse-analysis computations require approximately 0.2 seconds when run on a Unix
workstation with a MIPS 4400 CPU operating at a speed of 150 MHZ.

To simplify the reverse-analysis procedure, specialized geometries are typically incor-
porated into robot manipulators that contain six revolute joints. Most common are the
cases where three axes intersect at a point or three axes are parallel. Sections 10.3 through
10.8 show how the reverse analysis is simplified for these cases, and Chapter 11 will

present specific examples of industrial manipulators.

10.10 Problems

1. An RTTT spatial mechanism has the following dimensions (angles are in degrees,
lengths are in cm):

A2 = 90
Us56 = 90
app = 0
asg = 0
Sy =56
6; =235

a3 = 60
Ag7 = 75
a3 = 5.8
A7 = 4.5

S;=83=8,=S5=8=0

U3y = 90
a7 = 65
a3y = 0

ay = 6.6

45 =0

A5 = 8.2

S;7=25

Determine the sets of values for the angles 8, through 6.
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2. An RSTR spatial mechanism has the following dimensions (angles are in degrees,

lengths are in cm):

a1y = 60 ar3 = 90
Os56 = 90 Og7 = 75

ap = 5.1 a3 = 0
asg = 0 as7 = 2.8
S; =93 S, =9.7
Ss =0 Se = 3.9
6; =18

Determine the sets of values for the angles 6; through 6.

a3y = 65
a7 = 65
axyg = 4.3
an = 8.0
S; = 8.8
S7=62

Oy5 = 90
a5 =0
S; =94

3. The directions of the fourth, fifth, and sixth joint axes of a 7R spatial mechanism
are parallel. The value of 6; is given. Explain how to solve for the remaining joint

parameters, 6; through 6.
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11.1 Introduction

The majority of industrial robots contain six revolute joints. Closing the loop will yield
a one-degree-of-freedom 7R spatial mechanism with the angle 6; known. The general 7R
spatial mechanism is a group 4 mechanism that is computationally difficult to solve. It
will be shown, however, that most industrial robots have special geometries that greatly
simplify the reverse analysis process. Examples of special geometries are joint axes that
are parallel or that intersect. Three common industrial robots and two other manipulators
will be analyzed in this chapter.

11.2 Puma industrial robot

The Puma 560 robot is shown in Figure 11.1. A kinematic model of this robot with joint
axis and link vectors labeled is shown in Figure 11.2. The constant mechanism parameters
are listed in Table 11.1.

The parameter S¢ is a free choice that must be made in order to specify the location
of the origin of the sixth coordinate system. One input to the reverse-analysis problem
is the location of the tool point measured in terms of the sixth coordinate system. This
cannot be specified if the physical location of the origin of the sixth coordinate system is
not known. A value of S¢ equal to four inches is selected to locate the origin of the sixth
coordinate system at the center of the robot’s tool mounting plate.

The reverse-analysis problem statement is as follows:

given: S¢ and the direction of ag; relative to S¢ in order to establish the sixth coordinate
system,
®Pyq1: the location of the tool point in the sixth coordinate system,
FPyoi: the desired location of the tool point in the fixed coordinate system, and
FSs, Fagy: the desired orientation of the robot end effector,
find: ¢1, 05, 03, 04, 05, 65 the joint angle parameters that will position and orient the
end effector as desired.

The solution to this problem proceeds as described in Chapter 5. From the given
information, Eq. (5.3) can be used to determine the position of the origin of the sixth
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Figure 11.1. Puma robot.

Figure 11.2. Kinematic model of Puma robot.

coordinate system measured in the fixed coordinate system. A hypothetical closure link
is then created to form a closed-loop spatial mechanism. The link length a4; and the twist
angle «g; were arbitrarily selected as zero and ninety degrees respectively. With these two
choices, the direction of the vector Sy is known in terms of the fixed coordinate system.
Further, the hypothetical seventh joint axis is known to pass through the origin of the sixth
coordinate system.
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Table 11.1. Mechanism parameters for Puma robot.

Link length, in.

Twist angle, deg.

Joint offset, in.

Joint angle, deg.

ap =0 o =90 ¢1 = variable
ay =17 a3 =0 S, =59 6, = variable
az = 0.8 U3y = 270 S3 =0 93 = variable
Q5 = 0 g5 = 90 S4 =17 94 = variable
asg =0 ase = 90 Ss=0 05 = variable

6 = variable

Table 11.2. Mechanism parameters for closed-loop Puma mechanism.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.

ap =0 a2 =90 S, =C.L. ¢ = variable
a; =17 a3 =0 S, =59 6, = variable
azy = 0.8 U3y = 270 S3 =0 93 = variable
ays =0 oy = 90 S4=17 64 = variable
asg = 0 Os6 = 90 Ss=0 05 = variable
ag; = 0% g = 90* Sg = 4* 0 = variable
a;; = C.L. a7y = C.L. S; =C.L. 6; =C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure

Chapter 5 shows how the six close-the-loop parameters (S;, Sy, a1, 67, a1, and )
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.2 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.

11.2.1 Solution for 8, and ¢,

The vector loop equation for the closed-loop Puma mechanism is as follows:
S181 + S285 + axzas + azsa34 + S4S84 + SeS¢ + S7S7 + ajja; = 0. (11.1)

Expressing the vectors in terms of set 14 of the table of direction cosines for the spatial
heptagon yields

0 0 c; Wisen Xse71
Si{ =S} +S2 |0 +ay | —s2| +au | —Ulsegrn | +Sa| Ysen
€12 1 0 Uyser12 Zs¢n
X7] X1 Cq 0
+Ss | Yn | +S71Y ) +an|sicn}=1]0}). (11.2)

Zy Z, U, 0
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Subsidiary spatial and polar sine, sine—cosine, and cosine laws can be used to simply the
terms for the vectors as; and S4. Thus, Eq. (11.2) can be written as

0 0 ) W, X3
Sl (—812) + Sz (0) + ax (—Sz) + asy <V32) + S4 (_X§2)
c12 1 0 Uz, y2)
X71 Xj Ci 0
+ S Y71) +5S; (Yl) +ay (51012) = (0> . (11.3)
Zy Z Uz 0

The Z component equation (which is equivalent to projecting the vector loop equation
onto the S, axis) is

Siciz + S, +ayUs + 5423 + S¢Z7;1 + S7Z; + a;;Up, = 0. (11.4)

Now, Uz, =s35,3, and because a3 =0, then U, =0. Similarly, Z3 = c34Cp3 — $34523C3,
and because op3 = 0 and o34 = 270°, Z; = 0. Further, ¢;; = 0 because o, = 90°. Thus,
Eq. (11.4) reduces to

S2 + S6Z71 + S7Z; + an U, = 0. (11.5)
This equation contains 6, as its only unknown. Expanding Z;, Z,, and U, yields

Sy + Se[s12(X781 + Y7¢1) + c12Z7] + Sqlcizer — siesnici] + anlsisi2] = 0.
(11.6)

The equation can be simplified by substituting s;, = 1 and ¢, = 0. Thus, Eq. (11.6) may
be written as

Sz + Se[X781 + Yq¢1] 4+ S7[—sqici] +anlsi11 = 0. 117
Grouping the s; and ¢, terms yields
[S6Y7 — S7s71lct + [SeX7 + a7(]s; + [S,] = 0. (11.8)

The terms within the brackets in Eq. (11.8) can be calculated from the known values.
Thus, Eq. (11.8) represents an equation of the form Ac; + Bs; + D = 0, where A, B, and
D are constants. It was shown in Section 6.7.2 how this type of equation can be solved
to yield two values of 6y, that is, 0;, and 6;,. Figure 11.3 shows the solution tree for
the mechanism thus far. The two associated values for the angle ¢; can be calculated as
(012 — v1) and (01, — 1)

9,

/N

ela e1I:c

Figure 11.3. Puma
solution tree.
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11.2.2 Solution for 65

Substituting for s;; = 1 and ¢j» = 0 into the X and Y components of Eq. (11.3) yields

a3C) + a34W32 + S4X32 + SﬁX71 + S7X1 + az;ic; = 0, (1 19)
—S;] — a8, +auVy — S4X§2 +S¢Y71 + S,Y, =0. (11.10)

All terms that do not contain the unknown variables 8, and 6; will be moved to the
right-hand side of Egs. (11.9) and (11.10) to give

3¢y + a34W32 + S4X32 = A, (1 1.1 1)

— a338; + a3 Vs — S4X§2 =B, (11.12)
where

A = —S6X71 — $7X; — aj¢y, (11.13)

B=S;—-S¢Y7; — S$7Y,. (11.14)

Expanding W3,, V32, X3, and X3, gives
a23C + a34[C2C3 — $283C3] + Sa[(83483)C2 + (S23C34 + C23834C3)$2] = A, (11.15)
— @382 — A34[82C3 + C283C23] — Sal(83483)82 — (823C34 + €23824C3)C2] = B. (11.16)
Substituting for o3 = 0° and o34 = 270° gives
a23C2 + a34[C203 — $283] + Sy[—83¢2 — c352] = A, (11.17)
— 23387 — @34[57C3 + €283] — S4[—838; + ¢3¢2] = B. (11.13)
These equations can be written as
a3C2 + a34Ca43 — SyS243 = A, (11.19)
— 2238 — 348243 — S4C243 = B, (11.20)

where S, 3 and c,43 represent the sine and cosine of (6, 4 63) respectively.

Equations (11.19) and (11.20) represent two equations in the two unknowns 6, and 6;.
These variables will be solved for by adding the squares of Eq. (11.19) and Eq. (11.20).
Squaring the equations gives

2.2, .22 2.2 _ A2

a33¢; + a34C5, 3 + Si85, 3 + 2223834C2C213 — 2a2354C28243 — 283454C2438243 = A”,

(11.21)
23383 + 83,53,3 + S3¢3, 5 + 2223234528245 + 22235482C243 + 2234548243243 = B?
(11.22)

and adding yields

a3y + a3, + S5 + 2a2234[C20243 + 8282431 + 222384526243 — C28243] = A% + B2

(11.23)
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Now, [c2€243 + S28243] = cos[(62 +63) — 6:] = c3 and [s2¢243 — C25243] = sin[B, — (6, +
63)] = sin(—#;) = —s3, which gives

a§3 + a§4 + Si + 2323334C3 — 2323S4S3 = A2 + Bz. (1 124)
Regrouping this equation gives
cs[2az3a34] + s3[—2a23S4] + [a3; + a3, + S — A> —B*] = 0. (11.25)

This equation contains only 63 as an unknown. Values for A and B will first be obtained
for 8, = 6,,. Two corresponding values for 85 will then be found by solving Eq. (11.25).
Next, values for A and B will be obtained for 8, = 6,,. Two additional corresponding
values for 83 will then be found. The current solution tree is shown in Figure 11.4

11.2.3 Solution for 4,

Equations (11.17) and (11.18) can be used to solve for the angle 8,. Regrouping these
equations gives

C2[a23 + asacs — Sas3] + sa[—asss3 — Sscs] = A, (11.26)
Sa[—az; — @343 + Sys3] + co[—asss3 — Sscs] = B. (11.27)

Equations (11.26) and (11.27) represent two equations in the two unknowns ¢, and s;.
Thus, a unique corresponding value of 6, can be found for each 8;, 6; pair. In other
words, 61, and 83, will be substituted into the equations to yield 6,,. Similarly, 6,, and 63,
will be substituted into the equations to yield 6,,. The current solution tree is shown in
Figure 11.5.

e3a eSb e3c e3d
| | 1
eZa eZb eZc eZd

Figure 11.5. Puma solu-
tion tree.
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11.2.4 Solution for 85

The angle 65 can be readily determined from the spherical equation

Zoos = Zs. (11.28)
Expanding the right-hand side of this equation and substituting for a5 and as¢ yields

cs = —Zq123. (11.29)

Thus, for each combination of 8;, 6, 63, and 6>, a value for c5 and thereby two values for
5 can be determined. The solution tree for this analysis is now shown in Figure 11.6.

11.2.6 Solution for 8,

Corresponding values for 8, can be obtained from the following two subsidiary spherical
equations:

Xss = X713, (11.30)
X% = =Y. (11.31)

Expanding the left-hand sides of these equations yields

Xscs — Ysss = X3, (11.32)
Xsss + Ysc4 = =Y. (11.33)

Expanding X;s and Ys gives

(S5685)C4 + (S45Cs6 + C45856C5)8s = X7123, (11.34)

(85685)84 — (845Cs6 + C45856C5)Cq = —Y7123. (11.35)
Inserting the values a4s = asg = 90° yields

85¢4 = X7123, (11.36)
S584 = —Y7123. (1137)
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Figure 11.7. Puma solution tree.
Solving for s4 and c4 gives
X
cy = B (11.38)
85
Y
= — 12 (11.39)
85

Substituting the previously calculated values for the eight sets of corresponding values for
0, 61, 65, 05, and 05 will yield a corresponding value for 6,. The current solution tree is
shown in Figure 11.7. It should be noted that the solution for 6, becomes indeterminate if
05 equals 0 or 180 degrees. This special case will be discussed in Section 11.5.

11.2.6 Solution for 6
The angle 6 is the last remaining joint angle to be determined. It will be calculated
from the following two fundamental spherical sine and sine—cosine laws:
X43217 = 85656 (11.40)
Y43217 = S56Cs. (1141)

Because s = 90°, these equations reduce to

s¢ = X43217, (11.42)
Ce = Y3217 (11.43)
Thus, a corresponding value for 6 can be found for each of the eight sets of values for

07,61, 05, 6>, 05, and ;. The final solution tree for the Puma robot is shown in Figure 11.8.
The solution of the reverse analysis for the Puma robot is complete.
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Figure 11.8. Final Puma solution tree.

11.2.7 Numerical example

As a numerical example, the following information was specified for the Puma manip-
ulator:

5 24.112
S =4in., °Poy = [3]| in, FPoy = |[20.113] in,,
7 18.167
0.079 0.997
FSe = [-0.787|, Fag; = | 0.064
0.612 —0.047

This specified position and orientation is identical to that which was calculated in the
numerical example of the forward analysis for the Puma robot in Section 4.2. Thus, one
of the solution sets for this reverse-analysis problem must be identical to the input data used
previously in the forward-analysis procedure. Table 11.3 shows the results of the reverse-
position analysis. Solution set 1 matches the input data used in the forward-analysis
example in Section 4.2.

The eight configurations of the Puma robot that position and orient the end effector as
specified are shown in Figure 11.9. It is apparent in the figure that four classes of solutions
exist, with each class having two configurations for the ball and socket joint.

11.3 GE P60 manipulator

The GE P60 manipulator is shown in Figure 11.10. A kinematic model of the manipula-
tor showing joint axis and link vectors is shown in Figure 11.11. The constant mechanism
parameters are listed in Table 11.4.

The value of the offset distance S¢ is a free choice that will define the location of the
origin of the sixth coordinate system. A value of 15.24 cm will be used, as this value will



11.3 GE P60 manipulator 329

Table 11.3. Eight solution sets for the Puma robot (angles in degrees).

Solution ¢| 92 93 94 95 96
A —135.0 150.0 —60.0 45.0 60.0 -30.0
B —135.0 150.0 —60.0 -135.0 —60.0 150.0
C —135.0 177.321 —114.611 38.370 80.585 —49.186
D —135.0 177.321 —114.611 —141.630  —80.585 130.814
E 66.072 2.679 -60.0 —156.158 75.676 —67.944
F 66.072 2.679 —60.0 23.842 —75.676 112.056
G 66.072 30.0 —114.611 —149.846 51.230 —54.193
H 66.072 30.0 —114.611 30.154  —51.230 125.807
a
45 2
x X, Xg
F X,
Ir a5 Ye i Yr Ays Yr
A B C D
a, A,
Xg X
X
Yr F Xe Ye v Yr
a; A5
E F G H

Figure 11.9. Eight solution configurations of the Puma robot.

locate the origin of the sixth coordinate system at the center of the tool mounting plate of
the manipulator.

The reverse-analysis problem statement is identical to that for the Puma robot. This
problem statement is repeated as

given:  Sg and the direction of a¢; relative to S in order to establish the sixth coordinate
system,
Py the location of the tool point in the sixth coordinate system,
FP.oi: the desired location of the tool point in the fixed coordinate system, and
FSe, Fagy: the desired orientation of the robot end effector,
find: @1, 62, 63, 04, 05, B the joint angle parameters that will position and orient the
end effector as desired.
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Figure 11.10. GE P60 robot.

Figure 11.11. Kinematic model of GE P60 robot.

As with the Puma robot, the solution to this problem proceeds as described in Chapter 5.
From the given information, Eq. (5.3) can be used to determine the position of the origin
of the sixth coordinate system measured in the fixed coordinate system. A hypothetical
closure link is then created to form a closed-loop spatial mechanism. The link length ag;
and the twist angle og; were arbitrarily selected as zero and ninety degrees respectively.
With these two choices, the direction of the vector S; is known in terms of the fixed
coordinate system. Further, the hypothetical seventh joint axis is known to pass through
the origin of the sixth coordinate system.

Chapter 5 shows how the six close-the-loop parameters (S;, Sy, a1, 67, &7, and y;)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.5 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.
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Table 11.4. Mechanism parameters for the GE P60 robot.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
ap, =0 ap =270 ¢, = variable
a;3; =70 o3 =0 S;=0 6, = variable
ay =90 o3 =0 S;=0 63 = variable
ays =0 ays = 270 S4=928 0, = variable
asg =0 ase = 90 Ss=14.5 65 = variable

6 = variable

Table 11.5. Mechanism parameters for closed-loop GE P60 mechanism.

Link length, cm. Twist angle, deg. Joint offset, cm. Joint angle, deg.
a;; =0 o =270 S, =C.L. ¢, = variable
a =70 oan =0 S, =0 6, = variable
asy = 90 o3 =0 S; = 65 = variable
ays =0 s = 270 S4=9.8 6, = variable
asg =0 Osg = 90 Ss = 14.5 05 = variable
ag7 = 0* g7 = 90* S¢ = 15.24* 6 = variable
a7 = C.L. o7 = C.L. S7 =C.L. 97 =C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure

11.3.1 Solution for 67 and ¢4

The vector loop equation for the closed-loop mechanism is
SiS1 + a3 + a34a34 + S484 + S585 + S6S¢ + S7S7 + az1a7, = 0. (11.44)

As was the case with the Puma robot, the vector loop equation will be projected on the S,
direction. This is accomplished as follows:

Si(Si - 82) + a3(@3 - So) + azs(a34 - S2) + S4(S4 - S2)
+ S5(Ss - S2) + S6(S6 - S2) + S7(S7 - S2) + azi(az; - S2) = 0. (11.45)

It is apparent from the geometry shown in Figure 11.10 that

S-S, =0, (11.46)
a;-S; =0, (11.47)
a3-S, =0, (11.48)
S:- S, =1, (11.49)
Ss-S, = 0. (11.50)

Equation (11.45) thus reduces to

Sy 4+ S6(S6 - S2) + S7(S7 - S2) + a7 (@7 - S2) =0. (11.51)
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Set 14 from the direction cosine tables for a spherical heptagon as listed in the appendix
is used to evaluate the remaining scalar products. Equation (11.51) can then be written as

S4 + S6Z71 + S$7Z1 + a7Upp = 0. (11.52)
This equation contains 6; as its only unknown. Expanding Z7;, Z;, and Uy, yields

S4 + Sel[s12(X781 + Ys¢1) + c12Z7] 4+ Sqlcizer — sizszici] + ani[sisiz] = 0.

(11.53)
Because o, = 270°, this equation can be simplified as
S4 + S[—X381 — Yc1] + S7snici] +an[—si1] =0. (11.54)
Grouping the s; and ¢, terms yields
Ci[=SeY7 + S7871] + 1[—S6X7 — an] + [S4] = 0. (11.55)

The terms within the brackets in Eq. (11.55) can be calculated from the known values.
Thus, Eq. (11.55) represents an equation of the form Ac; + Bs; +D = 0, where A, B, and
D are constants. It was shown in Section 6.7.2 how this type of equation can be solved
to yield two values of 6y, that is, 6, and 6;,. Figure 11.12 shows the solution tree for
the mechanism thus far. The two associated values for the angle ¢, can be calculated as
(612 — y1) and (B1p — ¥1).

11.3.2 Solution for 95

A planar representation of the closed-loop spatial mechanism and its equivalent spher-
ical mechanism is shown in Figure 11.13. Because the vectors S;, S3, and S, are parallel,
the equivalent spherical mechanism will be a spherical pentagon for which the angle
between the second and third links will equal (6, + 65 + 64).

From the equivalent spherical pentagon, the following spherical cosine law can be
written:

Zy7 =Zs. (11.56)

It should be noted that this equation can be readily obtained from the spherical cosine law
for a spherical heptagon, Z;; = Zsy3, with ap3 = o34 = 0.
Expanding the right side of Eq. (11.56) yields

Z17 = Cs56C45 — S56545Cs. (11.57)
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Figure 11.14. GE P60 solution tree.

Upon substituting the values ogs = 270° and as¢ = 90°, this equation reduces to
217 = Cs. (1158)

The previously solved-for value of 8, will be substituted into Eq. (11.58) to yield two
corresponding values of 8s. The process is repeated by using the calculated value for 8y, in
the equation to yield a further two other corresponding valued for 5. The current solution
tree for the problem is shown in Figure 11.14.

11.3.3 Solution for 6

The following two equations may be written for the equivalent spherical pentagon
shown in Figure 11.12:

X7 = Xss, (11.59)
Y7 = —X5. (11.60)
Expanding the right sides of these equations yields

X7 = Xs5¢6 — YsSe, (11.61)
Y7 = —Xs586 — YsCs. (11.62)

Substituting the definitions for X5 and Y5 gives

X17 = (54585)Ce + (S56C4s + C56545Cs)S6, (11.63)

Y17 = —(54585)S6 + (S56C45 + C56545C5)C6- (11.64)
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Substituting values for ays = 270° and asg = 90° yields

X7 = —$s5Cs, (11.65)
Y17 = S$58¢. (1166)

Solving for c¢ and s¢ gives

X
.. (11.67)
Ss
Y
sg = —. (11.68)
Ss

Substituting the previously calculated values for the four sets of corresponding angles
61, 6, and 05 will yield a corresponding value for 95. The current solution tree is shown
in Figure 11.15.

It should be noted that the solution for 6 will be indeterminate when 65 =0° or
0s = 180°. This special case, which also occurred for the Puma robot, will be discussed
in Section 11.5.

11.3.4 Solution for 6,

At this point of the analysis, all joint angles are known except for 6,, 05, and 6;. These
are the angles for the three joint axes that are parallel. From Figure 11.11 it would appear
logical to determine the coordinates of the intersection point of the vectors S4 and as4 in
terms of the first coordinate system and then solve a planar triangle (two sides of which
are a3 and as4) for the angle #;. Once 0, is known, corresponding values for 6, and 6,
would be computed.

Following this method, the solution will proceed by obtaining two equations that are
projections of the vector loop equation (Eq. 11.44). These two equations are obtained
by projecting the loop equation onto a;, (the X axis of the first coordinate system) and a
vector perpendicular to S, and a,, (the vector Sy, the Z axis of the first coordinate system).
Using sets 1 and 14 of the sets of direction cosines for a spherical heptagon as listed in the
appendix, the projection of the vector loop equation onto the vector a;; may be written as

a3C2 + 834 W32 + SaXs2 + SsXe71 + SeX71 + S7X + az¢cp = 0. (11.69)
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Similarly, set 14 is used to obtain the projection of the vector loop equation onto the vector
perpendicular to S; and a;; as follows:

—Si812 — 42382 — 34U s671 + SaYs671 + SsYe71 + S Y71 + S7Y 1 + agisicip = 0.

(11.70)
The subsidiary equations
as6712 = — V32 (11.7DH
and
Ysen = —X35, (11.72)
are substituted into Eq. (11.70) to yield
—SiS12 — @238 + 234 Va2 — SaX3, + SsYe71 + S¢Y71 + S7Y1 + agnisicip = 0.
(11.73)

The terms X3, in Eq. (11.69) and X3, in Eq. (11.73) equal zero after their definitions are
expanded and the constant mechanism dimensions are substituted. Equations (11.69) and
(11.73) may now be rearranged to yield respectively

a23¢; + a3y W3y = —S5Xg71 — S6X71 — $9X — a7i¢y, (11.74)
—ansy +auVi = —S; — S5Ye — S6Y71 — S7Y. (11.75)

The right-hand sides of these equations will be denoted by K; and K, and thus

K| = —S5X671 — S¢X71 — $7X1 — azi¢y, (11.76)
K2 = —Sl - SSY671 - S6Y71 - S7Y1. (1 177)
Because K; and K; are defined only in terms of constant mechanism parameters and
previously calculated joint angles, these values can be numerically calculated for each of

the four solution sets thus far.
Expanding the left sides of Eqs. (11.74) and (11.75) yields

a23C7 + a34(C2C3 — $283¢23) = K, (11.78)

—ansy — a3 + ¢28363) = Ks. (11.79)

Because o3 =0, these equations reduce to

3¢y + a3(Cc3 — :283) = Ky, (11.80)

—a38; — a34(52¢3 + €283) = Ky (11.81)
or

ax3C + a3C243 = Ky, (11.82)

—a238; — aus+3 = Ky, (11.83)
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where the abbreviations s;,3 and ¢;,3 have been introduced as
Sp43 = sin(f; + 63), (11.84)
Cry3 = COS(92 + 93) (1 1.85)
Squaring and adding Eqs. (11.82) and (11.83) gives
353(85 + C%) + a§4(s§+3 + C%+3) + 2323334(Czc2+3 + SzSz+3) = K% + K% (1 186)

Now, (s3 4+ ¢3) = (83,3 + ¢3,3) = 1. The third term in parentheses equals the cosine of
[0, — (6> + 05)], which equals the cosine of [—0;]. Thus, Eq. (11.86) may be written as

a2, + a3, + 2aas cos(—0;) = Kj + K3. (11.87)
Because cos(—#63) = cos 83,

a§3 + a§4 + 2ay3a34¢3 = Kf + K%. (11.88)
Solving for c3 gives

2 22 2
s = Ki+Kj—a3; —a,

(11.89)
2a3234

Equation (11.89) can be used to determine two values for 6; for each of the four sets
of values for &;, 61, and 8. The current solution tree for the manipulator is shown in
Figure 11.16.

11.3.6 Solution for 6,

The angle 6, can be obtained from Eqs. (11.80) and (11.81). Regrouping these equations
gives

C2(az3 + a34c3) + s2(—ays3) = Ky, (11.90)
Ca(—azs3) + s2(—az — acs) = Ks. (11.91)

These two equations contain two unknowns, thatis, ¢, and s,. Input of sets of the previously
calculated joint parameters will yield values for the corresponding sine and cosine of 6,.
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robot.

A unique corresponding value for 6, is then determined. The solution tree for the problem
thus far is shown in Figure 11.17.

11.3.6 Solution for 6,
The corresponding value for the angle 6, will be obtained from the following two

fundamental sine and sine—cosine laws:

X67123 = S4554, (11.92)
Y7123 = $45C4. (11.93)

Substituting 45 = 270° results in the following solution for the sine and cosine of 6;,:

s4 = —Xe7123, (11.94)
¢4 = —Yg7123. (11.95)

Thus, a unique corresponding value for 6, can be determined for each set of previously
calculated joint parameters. The final solution tree for the GE P60 robot is shown in
Figure 11.18.
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Table 11.6. Eight solution sets for the GE P60 robot (angles in degrees).

Solution ¢] 62 63 64 65 66

A —139.443 142.825 73.355 60.073 144.493 —52.334
B —139.443 —133.183 —73.355 122.790 144.493 —52.334
C —139.443 123.396 103.879 —131.022 —144.493 127.666
D —139.443 114585 —103.879 —45.284 —144.493 127.666
E 30.730 —-63.241 103.385  —149.362 37.692 143.774
F 30.730 58.127 —103.385 —63.960 37.692 143.774
G 30.730 —48.562 73.855 45.490 —37.692 —36.226
H 30.730 36.027 —73.855 108.610 —37.692 -36.226

Table 11.7. Mechanism parameters for the Cincinnati Milacron
13-776 robot.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.
ap, =0 o =90 ¢ = variable
a3 = 44 03 = 0 S = 0 62 = variable
a3y = 0 U3g = 90 S3 =0 63 = variable
a5 =0 oys = 61 S4=255 64 = variable
asg =0 s = 61 Ss=0 65 = variable

6s = variable

11.3.7 Numerical example

As a numerical example, the following information was specified for the GE P60
manipulator:

2 80.0
S¢ = 15.24cm., SP,,; = 3| cm., PPy, = |80.0| cm.,
5 18.0
—0.5774 0.4082
FS¢ = | 05774|, Fa, = | 0.8165
0.5774 —0.4082

Table 11.6 shows the results of the reverse-position analysis.

11.4 Cincinnati Milacron T3-776 manipulator

The Cincinnati Milacron T3-776 robot is shown in Figure 11.19. A kinematic model of
this robot with joint axis and link vectors labeled is shown in Figure 11.20. The constant
mechanism parameters are listed in Table 11.7. It is apparent that the geometry of this
manipulator is very similar to that of the Puma robot, that is, the second and third joint
axes are parallel and the last three joint axes intersect at a point. The detailed solution
will therefore be very similar to that for the Puma robot. This solution will be followed
by a general discussion of a geometric solution that does not require that the hypothetical
closure link be determined.
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Figure 11.20. Kinematic model of Cincinnati Milacron T3-
776 robot.

As before, the parameter Sg is a free choice that must be made in order to specify the
location of the origin of the sixth coordinate system. One input to the reverse-analysis
problem is the location of the tool point measured in terms of the sixth coordinate system.
This cannot be specified if the physical location of the origin of the sixth coordinate system
is not known. A value of S¢ equal to six inches is selected, as this positions the origin of

the sixth coordinate system at the center of the robot’s tool mounting plate.
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Table 11.8. Mechanism parameters for closed-loop T3-776 mechanism.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.
ajp = 0 O = 90 S] =C.L. ¢| = variable
A3 = 44 ayn =0 S;=0 6, = variable
a3y =0 o3 =90 S3=0 @3 = variable
ays =0 o5 = 61 Sy =55 64 = variable
s = 0 Qs = 61 Sj =0 95 = variable
a7 = 0* Qg1 = 90* Sﬁ = 6* 96 = variable
a;; = C.L. a7 = C.L. S;=C.L. 6, = C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure

The reverse analysis problem statement is repeated again as follows:

given:  Sg and the direction of ag relative to S¢ in order to establish the sixth coordinate
system,
Pyo1: the location of the tool point in the sixth coordinate system,
FPwor: the desired location of the tool point in the fixed coordinate system, and
FSe, Fag7: the desired orientation of the robot end effector,
find: @1, 02, 03, 04, 05, 65 the joint angle parameters that will position and orient the
end effector as desired.

The solution to this problem proceeds as described in Chapter 5. From the given
information, Eq. (5.3) can be used to determine the position of the origin of the sixth
coordinate system measured in the fixed coordinate system. A hypothetical closure link
is then created to form a closed-loop spatial mechanism. The link length ag; and the twist
angle ag; were arbitrarily selected as zero and ninety degrees respectively. With these two
choices, the direction of the vector S; is known in terms of the fixed coordinate system.
Further, the hypothetical seventh joint axis is known to pass through the origin of ihe sixth
coordinate system.

Chapter 5 shows how the six close-the-loop parameters (S;, Si, a7, 87, a71, and ;)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.8 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.

11.4.1 Solution for 6; and ¢,

The vector loop equation for the closed-loop Cincinnati Milacron T3-776 mechanism
is as follows:

51S1 + axpax; + S4S4 + SﬁSﬁ + S7S7 + ana; = 0. (1 196)

Expressing the vectors in terms of set 14 of the table of direction cosines for the spatial
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heptagon yields
0 C2 Xs71
S (—512) + a3 (—Sz) +S4 <Y5671)
Ci2 0 Zsen
X71 X1 Ci 0
+S6 (Yn) +S7 (Yl) + an (81012> = (0) . (1197)
Zy Z U, 0

Subsidiary spatial and polar sine, sine—cosine, and cosine laws can be used to simply the
terms for the vector S4. Thus, Eq. (11.97) can be written as

0 %) X3
Si (—512> +an (—Sz> +S4 (_X*g)
Ci2 0 23
X7 X1 C1 0
+ S¢ (Yn) +S; (Yl) +ayn (51012> = (0> . (11.98)
Zy Z Uiz 0

The Z component equation (which is equivalent to projecting the vector loop equation
onto the S, axis) is

Siciz + S423 + S¢Z71 + S7Z1 + a7 U = 0. (11.99)

Because a3 = 0° and a3, = 90°, Z; = 0, and because o, = 90°, ¢, = 0, Eq. (11.99)
thus reduces to

S¢Z7 + S7Z; +a71Upp = 0. (11.100)
This equation contains 6, as its only unknown. Expanding Z,, Z;, and U, yields

Sels12(X781 + Y7¢1) + €12Z7] + Sq[c12671 — s12871€1] + an[s1812] = 0. (11.101)
This equation can be simplified by substituting s;; = 1 and ¢;; = 0 and may be written as

S¢[X781 + Y7¢1] + S7[—s71¢1] +an[s;] = 0. (11.102)
Grouping the s; and c; terms yields

[S6Y7 — Sy871]ct + [SeX7 +a7]s; = 0. (11.103)
Upon expanding X; and Y with a7 = 90°, Eq. (11.103) may be written as

[—Sec7¢71 — Sy8711ct + [Ses7 +anls; = 0. (11.104)

The terms within the brackets in Eq. (11.104) can be calculated from the known values.
Rearranging this equation gives

s1 (Secicr + Sys71)
tanf; = — =

¢t (Sesy+an)

(11.105)
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ela elb

Figure 11.21. T3-776 so-
lution tree.

Two distinct values of 6, will satisfy Eq. (11.105). Figure 11.21 shows the solution tree
for the mechanism thus far. The two associated values for the angle ¢, can be calculated
as (61 — y1) and (61, — y1).

11.4.2 Solution for 6;

Substituting s;» = 1 and ¢;» = 0 into the X and Y components of Eq. (11.98) yields

3¢y + SaXz + SeXq; + S9X; +azc; =0, (11.106)
'—Sl — a8y — S4X§2 + S6Y71 + S7Y1 = 0. (11107)

All terms that do not contain the unknown variables 8, and 6; will be transfered to the
right-hand side of Eqs. (11.106) and (11.107) to give

a3Co + S4X32 = A, (1 1108)

a8, + S4X%, =B, (11.109)
where

A= -—S6X71 - S7X1 — an €y, (11110)

B=-S,+S¢Yn +S;Y;. (11.111)

Expanding X3, and X3, gives

a23Cy + S4l(83483)C2 + (S23C34 + C23834C3)82] = A, (11.112)
a2382 + S4[(53483)82 — ($23C34 + C€23834¢3)C2] = B. (11.113)

Substituting for a3 = 0° and a3y = 90° gives

az3Cy + S4[S302 + 0382] = A, (1 1.1 14)
a3sy + S4[S382 — 0302] = B. (11115)

These equations can be written as

3¢y + S4S2+3 =A, (11116)
a38y — S402+3 = B, (11117)

where s,,3 and c,.3 represent the sine and cosine of (6, + 0;) respectively.
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eSa eSb e 3c eSd

Figure 11.22. T3-776 solution
tree.

Equations (11.114) and (11.115) represent two equations in the two unknowns 6, and
65. These variables will be solved for by adding the squares of Egs. (11.116) and (11.117).
Squaring the equations gives

a§3c§ + SiS%_H + 2323S4C2S2+3 = A2, (1 1.1 18)

a2,s3 + S3c, 5 — 225384820043 = B2 (11.119)
Adding yields

333 + Si + 2ay35,4[C28243 — S2C243] = A? + B2. (11.120)

Recognizing that [c28;43 — $2¢243] = sin[(62 + 6;) — 6:] = sin(;) = s3 gives
2 2 A2 2
323+S4+2323S483 = A"+ B". (11121)
Solving this equation for s3 gives

A’ 4+ B — a2, —S?
$3 = )
’ 2354

(11.122)

Two values for 95 exist that satisfy this equation. The current solution tree is shown in
Figure 11.22.

11.4.3 Solution for 6,

Equations (11.114) and (11.115) can be used to solve for the angle 6,. Regrouping
these equations gives

Calazs + Sus3] 4 s2[Ssc3] = A, (11.123)
S>lazs + S4S3] + Cz[—S4C3] = B. (11124)

Equations (11.123) and (11.124) represent two equations in the two unknowns ¢, and
s2. Thus, a unique corresponding value of 6, can be found for each 6,, 65 pair. In other
words, 8}, and 85, will be substituted into the equations to yield 6,,. Similarly, 6;, and 63,
will be substituted into the equations to yield 6,,. The current solution tree is shown in
Figure 11.23.
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Figure 11.23. T3-776 solu-

tion tree.
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Figure 11.24. T3-776 solution tree.

11.4.4 Solution for 65

The angle 65 can be readily determined from the spherical equation

Zyy = Zs. (11.125)
Expanding the right-hand side of this equation yields

Z7123 = Cs6C45 — S56545Cs- (11.126)
Solving this equation for cs yields

_ Cs6Cas — Ly

o5 = (11.127)

856545

Thus, for each combination of 6;, 8y, 83, and 8,, a value for cs and thereby two values for
65 can be determined. The solution tree for this analysis is now shown in Figure 11.24.

11.4.5 Solution for g,

Corresponding values for 8, can be obtained from the following two subsidiary spherical
equations:

Xs4 = X7123, (11.128)
X§4 = —Yq12s. (11.129)
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Figure 11.25. T3-776 solution tree.

Expanding the left-hand sides of the above equations yields

Xscs — Yss4 = Xq123, (11.130)

Xsss + Yscs = —Yo103, (11.131)
where

Xs = 55655, (11.132)

Ys = — (84556 + CasSs6Cs)- (11.133)

Equations (11.130) and (11.131) represent two equations in the two unknowns, s4 and c4.
Substituting the previously calculated values for the eight sets of corresponding values for
07, 64, 6,, 65, and 65 will yield a corresponding value for 64. The current solution tree is
shown in Figure 11.25.

It should be noted that the solution for 84 becomes indeterminate if 5 = 180°. In this
case, Xs = Ys = 0 (Y5 = 0 because a4s = ass). When this case occurs, the vector Sg
becomes collinear with the vector S4. This special case will be discussed in Section 11.5.

11.4.6 Solution for g

The angle 6 is the last remaining joint angle to be determined. It will be calculated
from the following two fundamental spherical sine and sine—cosine laws:

X43217 = 85656+ (11.134)
Y43217 = 856C6- (11.135)

Thus, a corresponding value for 8¢ can be found for each of the eight sets of values for
64, 0,, 63, 65, O5, and 04. The final solution tree for the Cincinnati Milacron T3-776 robot
is shown in Figure 11.26. The solution of the reverse analysis for the manipulator is
complete.
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Table 11.9. Eight solution sets for the T3-776 robot (angles in degrees).

Solution ¢| 6, 6; B4 B 96

A 36.945 84.358 —23.095 70.853 127.506 100.818
B 36.945 84.358 —23.095 —-136.036 —127.506 —106.070
C 36.945 —47.830 —156.905 163.422 97.464 —6.476
D 36.945 —47.830 —156.905 —62.672 —97.464 127.430
E —143.055 —-132.170 —23.095 —16.578 97.464 —6.476
F —143.055 -132.170 —23.095 117.328 —97.464 127.430
G —143.055 95.642 —156905 —109.147 127.506 100.818
H —143.055 95.642 —156.905 43964 —127.506 —106.070

e7
0 1a 0 1b
T~ N
e3a e3b 030 esd
| | I |
9, 0 0, 02
NV N NN
OSa eSb eSc eSd eSe eSf eSg 0511
I e
e‘h e‘ﬂ) e|4c O‘M e|4e 9‘“ eldg e|4h
ela eéb 060 eéd eGe er 0 0

Figure 11.26. Final solution tree for T3-776 robot.

11.4.7 Numerical example

As a numerical example, the following information was specified for the T3-776 ma-
nipulator:

5 55.0
S = 6in., °Pyy = |3| in,, Py = [33.0] in.,
7 23.0
1.0 0.0
FSe = 10.0], Fag = [0.707
0.0 0.707

Table 11.9 shows the results of the reverse-position analysis.
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11.4.8 Geometric solution

It is possible to directly calculate the joint angle values for the Cincinnati Milacron
T3-776 manipulator for the reverse-analysis problem statement without performing the
close-the-loop step. This direct geometric solution is possible because of the simplicity
of the geometry of the manipulator, that is, the first two joint axes intersect, the last three
joint axes intersect, the second and third joint axes are parallel, and the vectors S;, a;,, as3,
and S, are coplanar.

The geometric analysis begins by first obtaining the coordinates of the point at the center
of the ball and socket joint in terms of the fixed coordinate system. This is accomplished
by first using Eq. (5.3) to obtain the coordinates of the origin of the sixth coordinate
system measured with respect to the fixed system. The coordinates of the center of the
ball and socket joint (the point of intersection of the vectors S4, Ss, and S¢), FPgs, are then
determined as

FPgs = "Pgorig — S6 " Ss- (11.136)

Figure 11.27 shows the kinematic diagram of the T3-776 manipulator with the vector
Pgs drawn. It is apparent in the figure that the vectors a),, a3, S;, S4, and Pgg all lie in
the same plane. Because of this, the vector Fa;, must equal a unit vector that is parallel or
antiparallel to the vector FPgg with its Z component subtracted. This can be written as

FPBS - (FPBS . k)k

E
-+ .
N2 = FFpys — (FPps - K)K|

(11.137)

Alternately, if the vector FPgg is written as FPpgyi + FPpsyj + FPps,k, Eq. (11.137) can be
written as

FPpsxi + FPpsyj
|FPps«d + FPasyd|

Fap, =+ (11.138)

Figure 11.27. Modified kinematic diagram
of the T3-776 manipulator.
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Figure 11.29. Planar triangle.

Figure 11.27 shows the manipulator for the “plus” case of Eq. (11.138), and Figure 11.28
shows the “minus” case. The sine and cosine of ¢, that correspond to each of the two
configurations can be calculated from

cos(¢y) = Fay - i (11.139)
and
sin(¢y) = (i x Fap) - k. (11.140)

The two unique values for ¢, are thus determined.

The angle 6; will be determined next. Because the vector Pgg is known in terms of
the fixed coordinate system, the magnitude of this vector represents the scalar distance of
the center of the ball and socket joint from the origin. A planar triangle is formed whose
three sides are all known as shown in Figure 11.29 (S, and S5 point out of the page in the
figure).

A cosine law for the planar triangle is written as

[Pos|” = ad; + S} — 222384 cos(65 + 7/2). (11.141)
Recognizing that cos(8; + 7 /2) equals —s; and then solving for s; yields

2 2 2

- |PBS| - a23 - S4

3 — .
222354

(11.142)
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2
A \]PBSx+PéSy

Figure 11.30. Planar triangle.

Two values of 85 will satisfy this equation. It is interesting to compare this result with
Eq. (11.122). Further, it is interesting to note that the values for 6; are not dependent on
¢1.

The angle 6, can be determined for the case where a,, points towards the ball and socket
joint by again considering the planar triangle, which is redrawn in Figure 11.30 with the
vectors S; and S; coming out of the page. Projecting two sides of the triangle onto the
vectors aj; and S| yields the following two equations:

az3¢y + Sq cos(0r + 0; — m/2) = 1/ Pgg, + Pig,, (11.143)

2738, + Sy sin(f; + 03 — w/2) = Pgg;. (11.144)

Recognizing that cos(6; + 0; — 7 /2) = sp43 and that sin(6; + 85 — 7/2) = —cpy43, these
two equations may be written as

a3¢y + S4Sz+3 = VPIZBSX + P]23$y1 (1 1145)

a2382 — S4C243 = Pgg;. (11.146)

These two equations may be used to determine the unique corresponding value of 8, for
each of the two previously calculated values of 85. Itis interesting to compare Eqs. (11.145)
and (11.146) with Egs. (11.116) and (11.117). A similar solution can be obtained by
projection of 9, for the case where a,, points away from the ball and socket joint.

The remaining angles to be determined are 6y, 65, and 8¢. In Sections 11.4.4 through
11.4.6, the angles were readily found from appropriate spherical sine, sine—cosine, and
cosine laws. However, if the close-the-loop step is not performed, then the previous
approach is not valid because the angle 8; is not known.

The solution can proceed, however, by writing the general transformation equation as

T =1T,TiT TITT. (11.147)
The orientation part of this equation may be written as
R ="R,R3RIRIR:R. (11.148)

The matrix ER is known because the orientation of the sixth coordinate system relative to
the fixed system was given in the reverse-analysis problem statement. The general rotation
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matrix Ji-R, where j = i + 1, was given as the upper left 3 x 3 matrix in Eq. (3.7) and is
repeated here as

G —S§;j 0
}R = [8€C; GGy Sy - (1 1.149)
8iSij  CiSj5 Cjj
The rotation matrix fR was given as the upper 3 x 3 matrix in Eq. (3.9) as
cos(¢;) —sin(¢;) O

'R = [sin(¢)) cos(¢) Of. (11.150)
0 0 1

Because values are known for the angles ¢,, 6>, and 6, the rotation matrices fR, éR, and
%R are fully defined. Moving these matrices to the left side of Eq. (11.148) yields

SRIRIRER = RIR:R. (11.151)

All terms on the left-hand side of Eq. (11.151) are known, and the resulting 3 x 3 matrix
can be computed for each of the combination of values for the angles ¢y, 6,, and 8;. This
resulting matrix is equal to ;R, and Eq. (11.151) is rewritten as

;R =iRIR]R. (11.152)

This equation is rearranged by moving the matrix R to the left-hand side and then ex-
panding the matrices }R, {R, and ;R and substituting the numerical value for a3, to yield

Cy 0 S4 Cs —Ss 0 Ce —Sg 0
3
—S4 0 Cq 6R = [|S5Cs5 Cs5C45 —S45 S6Cse  CeCs6  —Sse | (1 1153)
0 -1 0 85845 CsSas  C45 | [Se6Ss6  CeSse  Cs6

The matrix R is known and will be written as
a d
R=|e f g|. (11.154)
h J

Performing the matrix multiplication on both sides of Eq. (11.154) and equating the third-
row, third-column element of the results yields the following equation:

—8 = —856845C5 + Cs56Cas5.- (1 1155)

This equation can be solved for the cosine of 85, which indicates that two values of 65 will
exist for each combination of ¢, 6>, and 6;.

Equating the first-row, third-column elements and the second-row, third-column ele-
ments of Eq. (11.153) results in the following two equations:

dC4 +jS4 = 85856, (11156)

—dS4 +jC4 = —C45856C5 — S45Cs6. (1 1157)
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These two equations can be used to solve for the corresponding values for the sine and
cosine of ;.

Equating the first-row, first-column elements and the second-row, first-column elements
of Eq. (11.153) results in the following two equations:

acy + hS4 = C5C¢ — S586Cs6, (l 1158)

—as, + hC4 = 85CCa5 + C45C56CsCe- (1 1159)

These two equations can be used to solve for the corresponding values for the sine and
cosine of 6.

At this point, the geometric solution of the reverse-analysis problem for the Cincinnati
Milacron T3-776 manipulator is complete. It was shown that it is possible to perform the
reverse-analysis without performing the close-the-loop step. However, it should be noted
that the geometric solution was successful in large part because of the simple geometry
of the robot being analyzed.

Performing the close-the-loop step allows for the use of the spherical equations derived
in Chapter 6. Without these spherical equations, one is left with the task of expanding
the transformation matrices in Eq. (11.147) (which is more general than expanding the
rotation matrices of Eq. (11.148)) and then rearranging the matrices, performing the matrix
multiplications, and looking for corresponding elements that yield appropriate solution
equations. Although this approach will work for simple manipulators, it will not be
sufficient for more complex cases.

11.5 Special configurations

It was noted for the Puma robot that when sin 85 = 0, the solution for 8, is indeterminate
(see Section 11.2.5). When this case occurs, the joint axis vectors S, and S¢ become
collinear. The reverse position analysis can proceed, however, by selecting any arbitrary
value for 8;. The corresponding calculated value for 8¢ will orient the end effector as
specified.

A similar situation occurred for the Cincinnati Milacron manipulator. It was noted in
Section 11.4.5 that the solution for the angle 6, became indeterminate when 65 = 180°.
For this case, the joint axis vectors S; and S¢ again become collinear. The analysis can
proceed by selecting an arbitrary value for 6, and then solving for the corresponding value
of 06 .

A special configuration of the GE P60 manipulator occurred when sinfs = 0 (see
Section 11.3.3). In this case, four joint axis vectors become parallel. Because only three
parallel joint axes are necessary to position and orient an object in the plane perpendicular
to the joint axes, the fourth parallel joint axis is redundant. An arbitrary value can be
selected for 65, and corresponding values for 6, 63, and 64 can be determined.

At each of the special configurations, the joint axes of the manipulator became linearly
dependent. In each case, the reverse-position analysis could continue, however, by making
an arbitrary selection for the appropriate joint parameter. Examples of when the joint axes
of a manipulator become linearly dependent are when four axes intersect at a point, four
axes are parallel, or two joint axes are collinear.
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It is important to be able to identify all the cases where the joint axes become linearly
dependent for a particular manipulator (and to avoid these configurations when possible).
When a manipulator is in such a linearly dependent configuration, it will in most cases
not be able to move its end effector at the user-commanded velocity. In an attempt to
control the velocity of the end effector, some joint velocities may approach infinity. This
topic is discussed in detail in a companion book to this text that introduces the screw
theory technique and details the forward-and reverse-velocity analyses for a serial robot
manipulator.

11.6 Space station remote manipulator system (SSRMS)

The conceptual design of a SSRMS is shown in Figure 11.31. As shown in the figure,
this is a seven-axis manipulator in which the first and second joint axes intersect; the
third, fourth, and fifth joint axes are parallel; and the sixth and seventh joint axes intersect.
The kinematic diagram for the manipulator is shown in Figure 11.32, and the constant

Elbow Transmon—‘_, ™ — Elbow Joint

Piece
Camera, Light &
_ Pan/Tilt Unit
Backup Drive \Booms/ ) ; 7
Unit (BDU) scar / o oo
( X" / e »\Latching
#/ N End Effector
Camera, Light & / § e
Pan/Tilt Unit —» .4/ Hinge f Camera, &
= f ) Light Assembly
RO Arm Computer Joints
By ] Units (ACU) (Pitch, Yaw, Roll)

Video Distribution
Units (VDU)

Hinge

Joints
(Roll, Yaw,Pitch)

Z b'\End "B" Indicator Stripe

: \/ Joint Electronics Unit (2 per joint)
o f Camera & Light Assembly
EED- [ 'Atching End-Effector "B"

L

Figure 11.31. Space station remote manipulator system.
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Table 11.10. Mechanism parameters for the SSRMS.

Link length, mm. Twist angle, deg. Joint offset, mm. Joint angle, deg.
a;pp = 0 Ay = 90 ¢] = variable
a; = 380 oy = 270 S, = 635 6, = user input
asg — 6850 Q34 = 0 S3 = 504 93 = variable
ags = 6850 o5 =0 S4 =504 64 = variable
ase = 380 U5 = 90 S5 =504 95 = variable
a7 =0 ag; = 90 S¢ = 635 6 = variable

6; = variable

Figure 11.32. SSRMS kinematic diagram.

mechanism parameters are listed in Table 11.10. The manipulator is classified as being
redundant because only six joint axes are necessary to position and orient the end effector
arbitrarily in space. The reverse kinematic position analysis will proceed, however, by
having the user specify one of the joint angle parameters in addition to specifying the
desired position and orientation of the end effector (see Crane (1991)).

In the present analysis, the user must specify 6, in addition to the desired end effector
position and orientation. This strategy offers a distinct advantage in that the parameter 6,
has a physical meaning for the operator. This angle governs the orientation of the longest
links of the manipulator (as4 and a4s in Figure 11.32) with respect to the XY plane through
the base of the robot. The prior specification of 6, will enable the user to take better
advantage of the redundancy of the system by being able to position the longest links of
the manipulator to move over or around obstacles in the work space.

As with the other manipulators, the parameter S, is a free choice that must be made in
order to specify the location of the origin of the seventh coordinate system. A value of
800 mm will be used for this analysis.
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The reverse-analysis problem statement is presented as follows:

given: S, and the direction of a;g relative to S; in order to establish the seventh coordinate
system,
"Pyo1: the location of the tool point in the seventh coordinate system,
FPoor: the desired location of the tool point in the fixed coordinate system,
FS,, Fasg: the desired orientation of the robot end effector, and
6,: the redundancy parameter,
find: @1, 03, 04, 05, B6, B7: the joint angle parameters that will position and orient the
end effector as desired.

The solution to this problem proceeds as described in Chapter 5. From the given
information, a slightly modified version of Eq. (5.3) can be used to determine the position
of the origin of the seventh coordinate system measured in the fixed coordinate system.
A hypothetical closure link is then created to form a closed-loop spatial mechanism. The
link length a;g and the twist angle «;3 were arbitrarily selected as zero and ninety degrees
respectively. With these two choices, the direction of the vector Sg is known in terms of
the fixed coordinate system. Further, the hypothetical eighth joint axis is known to pass
through the origin of the seventh coordinate system.

Chapter 5 shows how the six close-the-loop parameters (Sg, S|, ag), 05, @31, and y;)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.11 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism.

11.6.1 Development of an equivalent
six-degree-of-freedom manipulator

The first step of this reverse kinematic analysis is to reduce the manipulator to an
equivalent six-degree-of-freedom device. Shown in Figure 11.33a is a close-up drawing
of the first three joints of the manipulator. The value of 6, has been specified by the user,
and joint 3 becomes, in effect, the second unknown joint angle of the system. For this

Table 11.11. Mechanism parameters for closed-loop SSRMS mechanism.

Link length, mm. Twist angle, deg. Joint offset, mm. Joint angle, deg.
ap = 0 Ay = 90 Sl =C.L. ¢] = variable
a,; = 380 o3 = 270 S; =635 6, = user input
Ay = 6850 U3y = 0 S3 = 504 93 = variable
a5 = 6850 Ogs5 = 0 S4 =504 64 = variable
as¢ = 380 ase = 90 Ss =504 05 = variable
ag7 = 0 g7 = 90 Sﬁ = 635 06 = variable
an = 0* 73 = 90* S7 = 800* 97 = variable
ag; = C.L. o3 = C.L. Sg =C.L. 98 =C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure
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Figure 11.33. Development of equivalent
six-axis manipulator.
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Figure 11.34. Determination of S| and S,.

reason, the axis S; has been relabeled as S, in Figure 11.33b. It is now necessary to
determine

(1) the perpendicular distance between the joint axes S; and S)(a),),
(2) the twist angle between the two axes S; and S;(«},),

(3) the current effective link length S/, and

(4) the current effective link length S}

as a function of the input parameter 6,. With knowledge of these four values, an equivalent
six-axis manipulator can be modeled.

Figure 11.34 shows a drawing of the first three joints of the manipulator with the axis
S, coming out of the page. It can be seen in the figure that the lengths d; and d, are given
by

d] = —a23/tan02, (11160)
d2 = 323/ SiIl@Q. (11161)
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Table 11.12. Mechanism parameters for modified closed-loop

SSRMS mechanism.

Link length, mm. Twist angle, deg. Joint offset, mm. Joint angle, deg.
aj; =635 ap =6 S =CL~+d” ¢ = variable
ay; = 6850 o =0 Sy =504 4 d7* 6, = variable
a3y = 6850 ay =0 S; =504 03 = variable
ass = 380 s = 90 S4 =504 64 = variable
A5 = 0 Ose = 90 S5 = 635 05 = variable
ag7 = 0* g = 90* Se¢ = 800* 65 = variable
a; =C.L. a7 = CL. S;=C.L. ¢ =C.L.

*

= User-selected value
C.L. = Calculated during the close-the-loop procedure
** = Calculated as a function of the original input angle 6,

The new effective link lengths S, and S| can be determined as

S, =S;+4d,, (11.162)
S| =S +d,. (11.163)

From Figure 11.33Db, it can be seen that

a, =S, (11.164)
o), = 6, (11.165)
¢ = ¢, — 270°, (11.166)
63 = 65 — 90°. (11.167)

By applying Egs. (11.160) through (11.167), a new equivalent six-axis manipulator is con-
structed where certain link length and offset values are a function of 6,. This manipulator
is shown in Figure 11.35 without the use of the primed notation used in the equations.
Table 11.12 shows the mechanism parameters for the equivalent six-axis manipulator after
the close-the-loop procedure has been completed. Also, it should be noted that the values
d, and d, approach infinity when 6, is near 0 or 180 degrees. If 6, approaches one of these
values, the manipulator is in a special configuration because four joint axes are parallel.
No solutions to the reverse kinematic problem are determined for this case.

11.6.2 Calculation of ¢qactual

Throughout the remaining sections of the kinematic analysis, the primed notation for
the equivalent six-axis manipulator will be discontinued. The joint angle values of the
actual SSRMS will be distinguished from the joint angle numbers of the equivalent six-
axis manipulator by writing the actual angles with an additional subscript, actual. For
example, the fourth joint angle of the actual SSRMS will be written as 84,¢a. The symbol
6, will refer to the value of the fourth joint angle of the equivalent six-axis manipulator.
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v/

Figure 11.35. Equivalent six-axis manipulator.

The vector loop equation of the equivalent closed-loop spatial mechanism can be written

S1S1 4+ S28; + 5385 4+ S4S4 + SsSs + SeSe
+ 5787 + apap + axja + aays + agsass + agay = 0. (11.168)
This equation can be projected onto the vector S; (set 14 of the table of direction cosines
for a spherical heptagon in the appendix) to give the following equation:
SeZ1 + SsZe71 + SaZser + S3Zaserr + Sz
+Sici2 4+ S7Z; + a45Use712 + @34Uasse712 + a7 U2 = 0. (11.169)

Because the vectors S, S3, and S, are parallel, Eq. (11.169) may be rewritten as

S¢Z71 + SsZg71 + (S2 + S3 + S4) + Sici2
+ S7Z; + a45Us6712 + a34Usse712 + a7 U2 = 0. (11.170)

Substitution of the SSRMS mechanism parameters of the equivalent six-axis manipulator
reduces Eq. (11.170) to the following expression:

C1[—SeS12€71€7 — S7512871] + S1[S6S1287 + a71512]

+ [Sz + S3 + S4 + Slclz — 8601287107 + S7C12C71] =0. (11171)

Equation (11.171) is the input/output equation for the closed-loop mechanism. The only

unknown in the equation is ;. Two values of 6, can be determined that satisfy this

equation. The solution tree of the manipulator to this point is shown in Figure 11.36.
The angle ¢, can be calculated by subtracting the close-the-loop variable y; from each
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Figure 11.36. SS-
RMS solution tree.
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Figure 11.37. SSRMS solution
tree.

value of 6;. The angle ¢1,cua, the first joint angle of the actual manipulator, can then be
found from Eq. (11.166), where the angles ¢| and ¢; in that equation are respectively the
angles ¢; and ¢4cwa referred to here.

11.6.3 Calculation of 05 (@gactual)

s can be determined from the following spherical cosine law for a spatial heptagon:

Zy23 = Zs. (11.172)
This equation reduces to the following result because the vectors S,, S;, and S, are parallel:

Zy = Zs. (11.173)

Substitution of the mechanism parameter values into Eq. (11.173) yields the following
expression for 6s:

cs = —812[8781 — c71¢7¢1] + Ci287107. (11.174)

Two values of 65 can be determined that satisfy this equation. The current solution tree
for the manipulator is shown in Figure 11.37.

11.6.4 Calculation of 8 (87actual)

Two equations that contain 6 can be written as follows:

X7 = Xs6, (11.175)
Y, = —X5,. (11.176)
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Figure 11.38. SSRMS solution
tree.

These equations are spherical sine and sine—cosine laws for a spherical pentagon and can
be used in this case because vectors S,, 83, and S, are parallel.

Substitution of the mechanism parameters into Eqs. (11.175) and (11.176) and solving
for the sine and cosine of §¢ gives

c6 = Xi7/8s, (11.177)
S¢ = —Y17/S5. (11178)
One value of 8¢ will simultaneously satisfy Eqs. (11.177) and (11.178). The solution
tree for the manipulator is shown in Figure 11.38. It must be noted that these equations

cannot be solved for 6 if 65 equals O or 7. If this occurs, four axes of the manipulator
will become parallel and the manipulator is in a special configuration.

11.6.5 Calculation of 93 (B4actual)

The vector loop equation for the closed-loop mechanism was written as Eq. (11.168). In
order to solve for 6y, this equation was projected onto the S, vector. In order to solve for 65,
Eq. (11.168) will be projected onto the a;, vector and also onto a direction perpendicular
to aj; and S,. These two equations may be written as

SeX71 + SsXe71 + S7X1 + assWse71 + a2 + a71¢; = —a3aWasern — ancy,  (11.179)

S6Y71 +SsYe71 — Si812 +S7Y 1 — a4s U5, +anisicry = aulUjserp +a23se. (11.180)
The left sides of Eqgs. (11.179) and (11.180) contain only known mechanism parameters
and joint angle values. The right sides of the equations contain 6, and 6;.

Two new terms, Psg;; and Qse71, will represent the left-hand sides of Eqs (11.179) and
(11.180) and are defined as follows:

Pse71=S6X71 + SsXe71 + S7X1 + assWser1 + a1z + aznicy, (11.181)

Qs671=S6 Y71 + S5 Y671 — Sys12 + S7Y | — a45Usgy, + a7isicia. (11.182)

The terms on the right-hand side of Eqs. (11.179) and (11.180) may be expanded as
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Figure 11.39. SSRMS solution tree.

follows:
Ulser12 = — V32 = 263 + €283C23, (11.183)
Wiser1 = Wiz = €3C3 — 5283023, (11.184)

Substitution of these terms with o3 = 0° into Eqs. (11.179) and (11.180) results in the
following two equations:

Psg71 = —a34Ca43 — an3ca, (11.185)
Qse71 = 2345243 + 22352, (11.186)

where ¢, 3 and s; 3 represent the cosine and sine of (6, + 63).
Squaring and adding Eqs. (11.185) and (11.186) gives

Pl + Qi = a3, + a3; + 2asancs. (11.187)

Equation (11.187) may be solved to yield the value of cos 85. Two values of 6; can satisfy
this equation, and the current solution tree for the manipulator is shown in Figure 11.39.

11.6.6 Calculation of 8,(935ctual)

Equations (11.185) and (11.186) can be used to determine corresponding values for
6,. Multiplying Eq. (11.185) by —(assc; + a,3) and Eq. (11.186) by (as4s3) and summing
gives

[(@s4cs + ax3)* + (33483)2] €y = —(a@34C3 + a23)Pse71 + (23453)Qs671. (11.188)

Multiplying Eq. (11.186) by (ascs + a3) and Eq. (11.185) by (ays;) and summing
gives

[(as4cs + 23)” + (a3453)*]s2 = (a34C3 + a23)Qs671 + (a3483)Pser. (11.189)

Equations (11.188) and (11.189) can be used to calculate a corresponding value for 6,.
Equation (11.167) is then used to determine the angle 3,cnal, Where the angles 6, and 93
in that equation are respectively the angles 6, and @s,cna referred to here. The current
solution tree for the manipulator is shown in Figure 11.40.
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Figure 11.40. SSRMS solution tree.
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Figure 11.41. Final solution tree for the SS-
RMS.

11.6.7 Calculation of 84 (9sactual)

The final joint parameter can be determined from the following sine and sine—cosine
laws for a spherical heptagon:

X67123 = 4554, (11.190)
Ye7123 = 845C4. (11.191)

Substituting azys = 90° gives

sS4 = Xe7123, (11.192)
Cq4 = Y67123. (11193)

A corresponding value of 84 can be found from these two equations. The final solution
tree shown in Figure 11.41 indicates that there are eight possible configurations of the
manipulator.

The reverse kinematic analysis of the SSRMS is complete. It has been shown that eight
solution configurations exist for a given value of 6, and a given position and orientation
of the manipulator. A similar outcome of eight solution configurations will result if a
different angle from 6, is given as an input parameter, again assuming that 8, is not close
to 0 or 180 degrees.



362 Case studies

Table 11.13. Eight solution sets for the SSRMS (angles in degrees).

Solution &1 65 64 s 65 6;

A 167.297 -90.076 54.169 —98.092 73.628 —37.030
B 167.297 —35.907 —54.169 —43.923 73.628 —37.030
C 167.297 —103.164 68.847 80.317 —73.628 142.970
D 167.297 -34.317 —68.847 149.164 —73.628 142.970
E 23.873 51.782 39.154 —52.505 28.260 11.479
F 23.873 —269.065 —39.154 —13.352 28.260 11.479
G 23.873 45.626 38.338 134.466  —28.260 —168.521
H 23.873 83.964 —38.338 172.804 —28.260 —168.521

11.6.8 Numerical example

As a numerical example, the following information was specified for the SSRMS:

100 —600.0
S;=800mm., "Pyy= |50 mm., FP,, = |12400.0| mm.,
60 3500.0
0.5774 0.2673
S, = | 0.5774|, Fa,z= [0.5345
—0.5774 0.8018

The angle 8, was chosen to be 30.0 degrees. Table 11.13 shows the results of the reverse-
position analysis.

11.7 Modified flight telerobotic servicer (FTS) manipulator system

The original design for the flight telerobotic servicer (FTS) manipulator system con-
sists of a series of links connected by seven revolute joints. The first and second joint
axes intersect; the third, fourth, and fifth axes are parallel; and the sixth and seventh joint
axes intersect (see Figure 11.42). The configuration of this manipulator is very similar
to that of the space station remote manipulator system that was analyzed in the previous
section.

A modification was made to the basic FT'S manipulator design whereby the first and
second joint axes would still intersect when only the third and fourth axes are parallel,
and then the fifth and sixth axes would intersect. A drawing of this new configuration is
shown in Figure 11.43.

Because the modified FTS manipulator system is a seven-degree-of-freedom device, it
will be assumed that the angle 6; is specified along with the desired position and orientation
of the end effector and that the remaining joint angles (¢, 6;, 83, 84, 65, and 65) must be
solved for.

A kinematic model of the modified FTS is shown in Figure 11.44, with joint axis vectors
and link vectors labeled. The mechanism parameters are listed in Table 11.14.
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Figure 11.43. Modified flight telerobotic servicer.

As with the other manipulators, the parameter S7 is a free choice that must be made in
order to specify the location of the origin of the seventh coordinate system. A value of
zero will be used for this analysis.

The reverse analysis problem statement (see Crane (1992)) is presented as follows:

given: S; and the direction of a;g relative to Sy in order to establish the seventh coordinate
system,
"Pol: the location of the tool point in the seventh coordinate system,
FPo1: the desired location of the tool point in the fixed coordinate system,
FS,, Fasg: the desired orientation of the robot end effector, and
67: the redundancy parameter,
find: @1, 61, 05,04, 05, 0 the joint angle parameters that will position and orient the
end effector as desired.
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Table 11.14. Mechanism parameters for modified FTS.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.
app = 0 djp = 90 ¢1 = variable
a) =9 o3 =90 S, =6.55 0, = variable
A3 = 18 A3y = 0 S3 =0 93 = variable
a5 = 2.62 oys = 90 Sy =0 6, = variable
asg = 0 Us56 = 90 SS =18 05 = variable
Ae7 = 4 Qg7 = 90 S6 =0 06 = variable

67 = user input

Figure 11.44. Kinematic diagram of modified FTS.

11.7.1 Development of an equivalent six-degree-of-freedom
manipulator

The solution to the reverse position problem will proceed as described in Chapter
5. From the given information, a slightly modified version of Eq. (5.3) can be used to
determine the position of the origin of the seventh coordinate system measured in the fixed
coordinate system, FP7oy,, as follows:

F F 7 AF A\F F F
P7orig = Ptool - ( Ptool ) l) arg — (7Ptool ) J) S7 X " azg — (7Ptool : k) S7- (1 1194)
With these coordinates known, the transformation matrix 5T can be written as

F F F F F
ags Sy xTag S7 "Poogg

T
0 0 0 1

(11.195)

The transformation that relates the sixth coordinate system to the fixed can be calculated
from

T =STFT, (11.196)
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where ST is defined by Eq. (3.7) as

¢y —$7 0 a7
$7C c7C —s —8¢7S
gT: 7C67  C7C67 67 677 (11.197)
$78¢7 C7S67  Ce1  —Ce6757
0 0 0 1

Because the matrix T is known, the coordinates of the origin of the sixth coordinate
system are known in terms of the fixed coordinate system, that is, FP60rig. Also, the
orientation vectors Fag; and FSq are known.

The reverse-analysis problem statement can now be restated as follows:

given:  FPgq,: the location of the origin of the sixth coordinate system measured with
respect to the fixed coordinate system and
FSs, Fag;: the orientation of the sixth coordinate system,
find: @1, 6, 65,04, 05, G5: the joint angle parameters that will position and orient the
sixth coordinate system as desired.

For typical six-axis manipulators such as the Puma, GE P60 , and Cincinnati Milacron
T3-776 manipulators, the values of g7 and ag; are free choices that may be arbitrarily
selected. The same condition holds true in this case, and the twist angle «g; will be selected
as ninety degrees and the link length as; will be chosen as zero.

Chapter 5 shows how the six close-the-loop parameters (S;, S;, ay;, 67, &1, and ;)
can now be determined. The analysis will proceed assuming that values for these six
parameters have been calculated. Table 11.15 shows the mechanism parameters for the
newly formed closed-loop spatial mechanism. Note that the calculated value for 6; from
the close-the-loop procedure will be used in future calculations as opposed to the original
user-inputted value of 6, for the original manipulator.

Table 11.15. Mechanism parameters for closed-loop modified
FTS mechanism.

Link length, in. Twist angle, deg. Joint offset, in. Joint angle, deg.
ap =0 a2 =90 S, =C.L. ¢ = variable
;=9 axs =90 S, =6.55 6, = variable
a3y = 18 ay =0 S;=0 03 = variable
a5 =2.62 ays =90 Sy = 04 = variable
ase =0 ase = 90 S5 =18 05 = variable
ag; = 0* g7 = 90* S¢=0 0s = variable
a; = C.L. a7 =C.L. S; =C.L. 6; =C.L.

* = User-selected value
C.L. = Calculated during the close-the-loop procedure
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11.7.2 Expansion of required equations

In order to solve for the joint angle parameter ¢, it is necessary to obtain an equation
that contains 6; as its only unknown. Subtracting the known value y; from each of the
values of 6, that satisfy this equation will yield the possible values for ¢;.

The analysis begins by listing the following seven equations that contain the unknowns
01, 02, 04, and 06:

(i)  Projection of vector loop equation on the vector Ss.

The vector loop equation for the closed-loop spatial mechanism can be written as
S181 + S28; + S585 + S787 + azzaz; + assa34 + agsags +anan =0. (11.198)

Projecting this equation onto the vector S; and expanding the scalar products using the
direction cosines of a spatial heptagon (set 13 and set 3 of the appendix) gives the equation

S1Zs + Sa¢23 + SsZ4 + S$7Z12 + a35Usz + a7;Upp3 = 0. (11.199)
Substituting the constant mechanism parameters reduces Eq. (11.199) to

—Sic2 + S7(8182871 — €2¢71) + ansacy = 0. (11.200)
Rearranging this equation yields

(a71¢1 + S781871)82 + (—=S; — S7¢q1)c, = 0. (11.201)

(i) Secondary sine law.
A secondary sine law may be written as
Xog712 = Xo43- (11.202)

The right-hand side of Eq. (11.202) can be expanded as follows:

Xoaz = —S3(X4s3 + Yac3) + c3Xos — 83 Y04, (11.203)
where

Xos4 = S4(845C4) + A4s(CasS4), (11.204)

You = Sa(c3484584) + ag5(S34845 — C34Ca5C4) — 234(C3aCas — S34845C4). (11.205)

Substituting the constant mechanism parameters yields Xos3 = 0.
The left side of Eq. (11.202) can be expanded as follows:

Xos712 = S2(—Xe7182 — Y671€2) + C2Xo671 — 82 Y 0671, (11.206)
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where
Xos71 = S1(—Xg781 — Yg7¢1) + C1X067 — 81 Y0675 (11.207)
Yoer1 = Sic12(Xer¢1 — Yer81) — a1t + c12(Xoe781 + Yoe7€1) — S12Zgsy,  (11.208)
Xo7 = S7(—Xes7 — Yec7) + c7X06 — 57 Y06, (11.209)
Yoe7 = S7¢71(XeC7 — Y657) — a711Z67 + ¢71(Xo0687 + Yo06€7) — 871206, (11.210)
Zogr = S7571(X6c7 — Yo57) + a71 Y67 + 571(Xo6S7 + YosC7) + 71206, (11211
Xos = SgS56C6 + 856C5656, (11.212)
Yoo = SeC755656 + as6(S67856 — C67€56C6) — 6726, (11.213)
Zos = SeSe755656 + as6 Y6 + 67 Yo (11.214)

Substitution of the constant mechanism parameters into Eqs. (11.206) through (11.214)

reduces Eq. (11.202) to

Sa[c2(8715687 — €71C6) + S2(—S6C7C1 + S1(C715657 + $71C6))] + Sicalci(—C718687

—571C6) — 86€751] + S7lca(—c18657 — 81C7186€7) + $287156C7]

+ a71[C281(5715687 — €71C6) + S2(C718687 + $71C6)] = 0.
Regrouping this equation gives

[S2(—secr¢1+ 51 (C718657 + 571C6)) +5757186C7 + a71(C715657+ $71C6)]S2
+ [S2(5718687 — €71C6) + S1(C1(—C71S657 — $71C6) — S6C751)

+ S7(—c18687 — $1€7186€7) + 871818718687 — C71¢6)]c2 = 0.

(iii) Secondary cosine law.
A secondary cosine law may be written as
Zogn = Zoas.
The right side of Eq. (11.217) may be expanded as follows:

Zogs = ay3(ca3(Xyss + Yac3) — $23Z4)
+ S3823(Xacs — Ya83) + 823 (Xouss + Yoacs) + c23Z04,

where

Zos = S4(83454554) — a34(S34C45 + C34545C4) — A45(C34545 + $34C45C4)

(11.215)

(11.216)

(11.217)

(11.218)

(11.219)

and the terms Xo4, and Y, are defined in Egs. (11.204) and (11.205). Substitution of the

constant mechanism parameters yields Zgy; = 0.
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The term Zgg7, can be expanded as follows:
Zoer1 = Si812(Xg7¢1 — Yeo751) + 212 Ye71 + 512(Xos781 + Yoer€1) + c12Zoe7,  (11.220)

where the terms Xoe7, Yos7, and Zgg; are defined in Egs. (11.209) through (11.211).
Substitution of the constant mechanism parameters into Eq. (11.220) yields

Si[secr¢1 — 81(C718687 + 871€6)] + S7lc7186C7C1 — 868781]
+a7;¢1[—8718687 + C71¢6] = 0. (11.221)
Rearranging this equation yields
[Si(crer — s1e7187) + Sq(Cr1c7¢1 — 8781) + an(—cis7187)Ise
+ [=Sisis71 +ancicyles = 0. (11.222)
(iv) Spherical cosine law.
A spherical cosine law may be written for the closed-loop mechanism as
Zerz = Za. (11.223)

The right-hand side of this equation reduces to zero upon substitution of the constant
mechanism parameters. Substituting the constant mechanism parameters into the left side
of this equation yields

(86c7C1 — (C718687 + $71C6)81)82 + (—8718687 + €71C6)c2 = 0. (11.224)
(v) Projection of the vector loop equation on the vector Ss.

The vector loop equation for the closed-loop mechanism is listed in Eq. (11.198).
Projecting this equation onto the vector Ss and expanding the scalar products using the
direction cosines of a spherical heptagon (set 11 and set 5 of the appendix) gives the
equation

S1Zs6 + S7Z.176 + Ss 4+ S7Z6 + a23Uz 765 + a34Uss + a7, Uzes = 0. (11.225)

Substituting the constant mechanism parameters into this equation and transfering the
term as4Uys to the right-hand side yields

Si[8718687 — €71€6] + Sal(sic7 + cr1€187)86 + $71€1C6] 4+ S5 — S7¢6 + azs[s2(—cocy)
+ 8687871) + C2(—81C6S71 — S15657C71 + C186C7)] + @7186C7 = —a3454. (11.226)
(vi) Secondary cosine law.

A secondary cosine law for the closed-loop mechanism may be written as

Zogr12 = Zog. (11.227)
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The right-hand side of Eq. (11.227) may be expanded as follows:

Zoy = S4(84583484) — 45(845C34 + C45534C4) — 834(Cys5834 + $45C34C4). (11.228)
Substitution of the constant mechanism parameters reduces Eq. (11.228) to

Zoy = —ay5 — a34Cy. (11.229)

Expanding the left side of Eq. (11.227) yields

Zognz = S2823[Xe71€2 — Ye7182] + 223 Y6712 + 523(Xog7182 + Yo671€2) + €23Z0671-
(11.230)
The terms Xoe71 and Y(e;; are defined in Egs. (11.207) and (11.208), whereas Zys7, is
defined in Eq. (11.220).

Substitution of the constant mechanism parameters into Eq. (11.230) and equating the
result with that of Eq. (11.229) yields

a3[—86C781 — €1(C718687 + $71C6)] + C2[Sa(s6C7€1 — 81(C718657 + $71C6))
— 5787186C7 — a71(C718687 + $71C6)} + 82[S2 (8718687 — €71C6)
+ S1(—86¢781 — €1(C718687 + $71C6)) + S7(—C18687 — 81C7186C7)

+ a7;51 (5718687 — €71C6) | = — @45 — a14C4. (11.231)
(vii) Self-scalar product.
Equation (11.198), the vector loop equation, may be rearranged as
SiS1 + S282 + S787 + aaxs + anay = —assa3; — agsags — SsSs. (11.232)
Projecting the left and right sides of Eq. (11.232) upon themselves, dividing both sides

of the equation by two, and expressing the individual scalar products according to the
direction cosines listed in the appendix yields

K+ Si1(S2ci2 + S7¢c71 4+ a3Uap) + S2(S7Z1 + a7 Uyp)
+ a5 (57X + a71Wi2) = as(agscs + SsUys), (11.233)

where
1
K=3(ST+S3+87+a, +a7, — a5, —ajs = 55). (11.234)
Substitution of the constant mechanism parameters reduces Eq. (11.233) to

K+ S1(S7¢71 + @2382) + S2(—=S7s71¢1 + a7181)
+ a23(S7(s2¢71 + 81C2871) + a71¢1€2) = a3a(assCs + Ss84). (11.235)
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11.7.3 Determination of ¢,

The analysis proceeds by manipulating Egs. (11.201), (11.216), (11.224), (11.226),
(11.231), and (11.235) until they reduce to one equation that contains the variables 6, and
8. This new equation, when used together with Eq. (11.222) (which also only contains
8, and 6), will yield a sixteenth-degree input/output equation in the variable 6.

The procedure begins by multiplying Eq. (11.224) by S, and adding it to Eq. (11.216)
to yield

[S787186C7 + a71(C715687 + $71€6)182 + [S1(C1(—C715687 — $71C6) — 86C751)

+ S7(—c18687 — 81C7186C7) + a7181(8718687 — €71C6) ]2 = 0. (11.236)
Adding c, times Eq. (11.236) to s, times Eq. (11.231) gives

7181 (8687871 — C6C71) + S7(—C18687 — 5156C7C71) + S1(—C1 (868771 + $71C6) — S156C7)
2
+ 22387 (—8186C7 + €1 (—8687C71 — C6871)) + S2 (8657571 — C6C71)83 + (C186C7
— 81(C6S71 + 8657€71))82€2] = — (45 + a34C4)Ss. (11.237)

Subtracting S>c, times Eq. (11.224) from Eq. (11.237) yields

7181 (8657571 — C6C71) + S7(—C18687 — 8186C7C71) + S1(—C1(8687¢71 + $71C6) — S186C7)
+ 2382 (—5156C7 + C1(—8657C71 — C6871)) + S2(S657571 — C6C71) = — (s + 234C4)$5.

(11.238)

The analysis proceeds by multiplying Eq. (11.226) by s, and Eq. (11.224) by —asc,.
Summing the results and substituting s3 + ¢ = 1 gives
$2[S1(8718687 — €71C6) + S2((s1€7 + €71€187)86 + $71€1C6) + S5 — S7C6 + a7186C7]

+ a23(—C6C71 + 8687871) = —234848;. (11.239)
Subtracting a,3¢; times Eq. (11.201) from s, times Eq. (11.235) yields

$2[K + S1S7¢71 + Sza7181 — S387871¢1] + @2357¢7; + Sqaz3
= a45(234C482) + S5(a348482). (11.240)

The terms (a34¢45;) and (a34848;) in Eq. (11.240) may be replaced by direct substitution
of Eqgs. (11.238) and (11.239) to yield the result

$2[K + S1S7¢71 + Sza7i81 — S2S7871€1] + 22357671 + Siaz
= —ays5{a7;81(8687571 — C6C71) + S7(—C18687 — $186C7C71) + S1(—C1(8687C71 + $71C6)
— 8186C7) + 2382 (—8186C7 + C1(—8687C71 — C6571)) + S2(8687571 — C6C71) + As582}
—Ss5{s2[S1(s718687 — €71¢6) + S2((s1¢7 + €71€187)86 + $71€1C6) + S5 — S7C6

+ a7186¢7] + a23(—C6C71 + S687571)}. (11.241)
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This equation may be regrouped and written in the form
A1652 = —B16, (1 1242)
where

Ag = K+ S1S7¢71 + Sra7151 — S257871€1 + 24523 (—5156C7 + C1(—S657C71 — C6571))
+ a5 + Ss[S1(s715687 — ©71C6) + S2((s1¢7 + €71€157)86 + $71C1C6)
+ S5 — S7Cﬁ + a71S6C7] (1 1243)

and

Bis = a2387¢71 + S1ax3 + ass[a7181 (8687871 — €6C71) + S7(—C 15657 — $186C7C71)
+ Si(—ci1(s657¢71 + $71C6) — $186C7) + S2(S687871 — C€6€71)]
+ Ssax(—ceCy1 + S657571). (11.244)

Equation (11.242) is significant in that it contains only the joint angle parameters 6, 6,,
and 6. The parameter 6, has been eliminated from a manipulation of previous equations.
Subtracting s, times Eq. (11.236) from c, times Eq. (11.231) yields

2
223C2(—s6C781 — €1(C718657 + $71C6)) + S2C5(S6c7C1 — $1(C718687 + 571C6))

+ S,82¢2(5715657 — €71C6) — S787186C7 — @71(C718687 + $71C6) = —Ca(A45 + 234C4).
(11.245)

Adding S;s; times Eq. (11.224) to Eq. (11.245) and substituting s3 + c% =1 gives

23¢2(—386C781 — €1(C718657 + 571C6)) + Sa(s6c7C1 — 51(C715657 + $71C6))

— S757186C7 — a71(C718687 + $71C6) = —C2(ass + a34C4). (11.246)
Now, Eq. (11.224) may be written as
(sec7c1 — (718687 + $71C6)S1)S2 = (8718687 — €71C6)Ca. (11.247)
Multiplying this equation throughout by s,/c, gives
(sec7ci — (c718687 + S71C6)SI)S§/CZ = (8715657 — €71C6)S2. (11.248)
Replacing term s3 by (1 — c2), Eq. (11.248) is then regrouped to give

(sec7€1 — (C715657 + 871C6)S1)/C2 = (8718687 — €71C6)S2

+ (s¢c7¢1 — (C718687 + $71C6)S1)C2. (11.249)
Multiplying throughout by c, yields

(sec7ci — (718657 + $71C6)S1) = (8715687 — €71C)$2C2

+ (560701 - (C71$6$7 + S7106)Sl)C§. (1 1250)
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Upon multiplying Eq. (11.226) by c,, the right-hand side of Eq. (11.250) may be substituted
into the result to give
C2[S1(8718687 — €71¢6) + S2((s1¢7 + €71C187)86 + $71€1C6) + S5 — S7¢6 + a7156¢7]

+ axl(s6c7¢1 — (€718657 + $71C6)81)] = —azs4cy. (11.251)
Adding ay3s; times Eq. (11.201) to ¢, times Eq. (11.235) gives

C2[K + S1S7¢71 4+ S2(=S7s871¢1 + a7181)] + axs(agicy + S781871)
= a45(a34C4C2) + Ss(a3484¢C2). (11.252)
The terms (azscycy) and (assS4c2) in the previous equation may be directly substituted
using the results of Eqs. (11.246) and (11.251). This gives
ca[K + S1S7¢71 + Sa(=S7871€1 + a7181)] + a(azicp + S781871)
= —ay5{a23C2(—86C781 — C1(C718687 + $71C6)) + S2(S6C7C1 — $1(C718657 + $71C6))
— 57871867 — a71(C718657 + $71C6) + AasCa} — Ss{ca[S1(s718687 — €71C6)
+ S2((s1c7 + €71€187)86 + 871€1C6) + S5 — S7C + a7156C7]

+ az3[(sec7c1 — (C718687 + $71€6)81) 1} (11.253)
This equation may be regrouped and written as
Aj6C2 = —Dys, (11.254)
where A is defined in Eq. (11.243) and
D16 = ax(asicy + Sysi871) + a45S2(s6¢7¢1 — 81(C715687 + 871€6)) + as5(—S787186¢7
— a71(c718657 + 871C6)) + a23Ss5(sgc7C1 — (C715657 + $71C6)S1). (11.255)
Summing the squares of Eqs. (11.242) and (11.254) in order to eliminate 8, yields
A}, = B, + Di. (11.256)

Equation (11.256) contains only the parameters 6; and 6, but it must be noted that the
equation is not linear in the sines and cosines of these variables.
The terms Ajq, Bis, and Dy¢ are expressed in the following form:

Ae = (Nascy + Nazs; + Na3)ce + (Nasc1 + Nassi + Nae)se
+ (Na7c; + Nags; + Nao),
Bis = (Npjc1 + Npas; + Na3)ce + (Npsc1 + Nass; + Npe)se
+ (Ngyci + Npgsi + Npo),
D16 = (Npici + Np2s; + Np3)es + (Npaci + Npss; + Npeg)se
+ (Np7c1 + Npgs; + Npo), (11.257)
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where

Nai = S2Ss5871 — azaqssyi,

Nas = —81Ss5¢71 — S557,

Nas = S;S5¢7 — az3agscy,

Na7 = —S2S7571,

Nag = K+ S% + a2, + S;Sy¢q1,
Ng; = —Sja45571,

Na2 =0,

Nas = —223845¢7187 + S$,Ss¢7187,
Nas =S1S587187 + Ssagcr,

Nag =Ssa7,

Ng; = —aysa71¢71,

Ng3 = —Ssass¢7; — Ssa3071, Np4 = —S1a45¢7187 — Sqa4s87,
Nps = —S7a45¢71¢7 + 4527157187 Npg = S»a4557157 + Ssaz357;57,
— Sjagscr,
NB7 =0, NB8 =0,
Npo = S7253¢7; + Siass,
Np; =0, Np2 = —Ssa45871 — Ssa3871,
ND3 = —a45a71571, ND4 = S5323C7 + SZa4507’
Nps = —S»a45¢7157 — @2355¢7157, Npg = —S7a45871¢7 — ass5371¢7187,

Np7 = azar, Npg = Sqaz3871,

Npg = 0. (11.258)

To convert Eq. (11.256) to a polynomial form, a tan-half-angle substitution is made in
Eq. set (11.257) by letting

X; = tan —21 (11.259)

and
6

X¢ = tan 56 (11.260)

The sines and cosines of 6; and 8, can then be replaced by the trigonometric identities
2Xi 1— X~2
i = ) i = 5 i=1,6. 11.261
T TE x2 T 1T x? ! ( )

Substituting the trigonometric identities into Eq. set (11.257) and then multiplying each
equation by (1 + x?)(1 + x2) results in

Asg = (na1X] + nasx) + 0a3) X3 + (DagX] + nasx; + Nag)Xs
+ (HA7X% + NagX| + Nag),

Bis = (npiX} + NpoX; + np3)xZ + (Npax? + npsx; + Ngs ) X6
+ (HB7X% + nggx; + HB9),

Dy = (npiX] + npoX; + np3) X3 + (npax? + Npsx; + Nps ) X6
+ (HD7X% + npgX; + nD9)7 (11.262)

where the coefficients in Equation set (11.262) are defined in a similar way to those
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developed in Section 8.2. These coefficients are defined as follows:

Ny = N;p — Neg — Ny + Ny, n;y =2(Ngg — Nio),
n;3=—N;1 — N¢3 + Ne7 + Noo, ;4 =2(Ngs — Nea),
n;s =4N;s, 06 =2(Nge + Nia), (11.263)

ng7 =—N;; + N3 — Ng7 + Neo, neg =2(Ngg + N;2),

1’1;9 = N;l + N;3 + N;7 + N;g,
where ¢ equals A, B, or D.

Now that the terms Ajq, Bis, and D14 have been expressed as nested second-order
polynomials in the variables x; and X¢, the squares of these terms will be nested fourth-

order polynomials in the same variables. The square of the Ajs term is presented as
follows:

2 2 .4 3 2 2 2 1.4
Al = [n3x] + 2na1np0x] + (0%, + 2na1043)X] + 2na2043%; + 053] Xe

+ [2narnasx] + (2na2na4 + 20a1045)X] + (2Na2nas + 20a30a4 + 2041 0p6)X]
+ (2na3nas + 2na2na6)X1 + 2nasnae|Xg + [(nd4 + 2narna7)x]

+ (2na4nas + 2na1nag + 2n2047)X] + (035 + 2043047 + 20a10A0

+ 2na2nag + 2nA4nA6)X% + (2naanag + 2nasnae + 2na3nag)X;

+ 2na3nag + nfm] X% + [2DA4DA7X‘1‘ + (2na4nas + 2nasna7)X;

+ (2nasa7 + 20aanp0 + 20asNag)X] + (20asNa9 + 2NaeNas)X1 + 2NaeNA0] Xe
+ [n3,x] + 2na7nasx] + (n%g + 2na7na0)X] + 2nasnaoX: + nhe].  (11.264)

Similar expressions can be obtained for B, and D3.
Rearranging Eq. (11.256) yields

AX — Bl — D% =0. (11.265)

Because (11.265) is a nested fourth-order equation in the variables x; and xe, it may be
written as

Axg + Bx; + Cx; +Dxg + E =0, (11.266)

where

A=A} + A3 + Ax? + Ajx; + Ao,
B =Byx} + B3x} + Byx? + Bix; + By,
C =Cyx} + C3x} + Cx? + Cix; + Co, (11.267)
D =Dsx} + D3x} + D,x3 + Dyx; + Do,
E =Egx{ + Esx} + Exx? + E;x; + Eo.
Equation (11.266) contains only the variables ¢; and 5. This equation will be used

in conjunction with Eq. (11.222), which also contains only these variables, in order to
eliminate 6 from the pair of equations. The result will be an input/output equation that
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contains ¢, as its only unknown. The tan-half-angle substitutions listed in Eq. (11.261)
are substituted into Eq. (11.222) to yield

Fx; + Gxs — F =0, (11.268)
where

F =F2X% + Fix, + Fy,

G=Gyx? + Gyx, + Go. (11.269)
The terms F, through Gy are defined as follows:

F, = asjcqp, Fi = 28871, Fy = —F,,

G, = —28,¢7 + 2a7,87187 — 257¢71¢7, (11.270)

G| = —4Sc7187 — 45787,
Gy = —Gs.

The parameter 8¢ can be eliminated from Eqgs. (11.266) and (11.268) by multiplying
Eq. (11.266) by 1 and x¢ and Eq. (11.268) by 1, X, xé, and xg. In this manner, a total of six
equations are created that contain five unknowns (X, X2, X3, X¢, and x3). These equations
can be written in matrix form as

Mx =0, (11.271)
whe:e

[0 A B C D E 'xf{

A B C D E 0 x‘é

0 0 O F G -F xg

M= and x =

0 0 F G -F 0 xé

0 F G —-F 0 0 X6

IF G —F 0 0 0 | | 1]
(11.272)

The condition that must exist in order for these six equations to have a common set of
roots is that the set of equations be linearly dependent. This will occur if the determinant
of the matrix M equals 0. Expansion of the determinant of M yields

M| = 0= — (AEG*) + FG*(—AD + BE) + F*G*(—AC + BD — 4AE — CE)
+ F’G(—AB + BC — 3AD — CD + 3BE + DE) + F*(—A? 4+ B2 — 2AC
—C? 4+ 2BD + D? — 2AE — 2CE — E?). (11.273)

Because the coefficients A through E are fourth-degree polynomials in the tan-half-
angle of 6, and the coefficients F and G are second-degree polynomials in the tan-half-angle
of 8y, Eq. (11.273) represents a sixteenth-degree input/output equation. Upon solving this
equation for the tan-half angle of #;, a maximum of sixteen real solutions can exist.
Corresponding values for the parameter ¢; can be found by subtracting the close-the-loop
variable y; from each real value of 6.
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11.7.4 Determination of g

A unique corresponding value of 5 for each value of 6; is found by first substituting
0; into the Eq. sets (11.267) and (11.269). Thus, numerical values are obtained for the
coefficients A through G in Egs. (11.266) and (11.268). Because Eq. (11.268) is quadratic
in the tan-half-angle of 6, the two values of x4 that satisfy this equation are solved for.
Each of these two values of X are then substituted into Eq. (11.266). In general, only one
of the solutions to Eq. (11.268) will also satisfy Eq. (11.266). In this manner, the value of
X that simultaneously satisfies both Eq. (11.266) and Eq. (11.268) is easily solved for.

11.7.56 Determination of 9,

The determination of 6, begins by substituting known values of 6; and 6¢ into
Eqgs. (11.243), (11.244), and (11.255) to obtain numerical values for the terms Aiq, B1g,
and Dyg. Equations (11.242) and (11.254) are then used to determine values for the sine
and cosine of &, (and thus the unique corresponding value of 8,) as follows:

s2 = —Bis/Ars, (11.274)
¢ = —Dis/Ass. (11.275)

11.7.6 Determination of 85

At this point, sets of values for the angles 9;, 6, and 8, have been determined. Corre-
sponding values for 85 are found by utilizing the spherical sine and sine—cosine equations

X2176 = Xas (11.276)
and
Ya176 = —Xjs- (11.277)

Expanding the terms in these equations and substituting the constant mechanism param-
eters reduces these two equations to

S5 = Cq(52€1C7 — (€715281 + $71€2)87) + S6(S718182 — €71C2), (11.278)

Cs = —C18287 — (C718182 + S71C2)C7. (11.279)

The corresponding value for 8s is readily found from these two equations.

11.7.7 Determination of 6,

At this point, values for the parameters 6y, 6¢, 9>, and 65 are known. Corresponding
values for 8, can be found by using the following two secondary cosine laws:

Xo21765 = 34C3484 (11.280)
and
Yo21765 = 834C24C4. (11.281)

The right-hand sides of these equations have been simplified because s34 equals zero.
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The following terms in Eq. (11.280) are defined as follows:

Xo21765 = —S5(X217685 + Y2176C5) + C5Xo02176 — S5 Y 021765
Yoo1765 = Ss5¢45(X2176C5 — Y217655) — a45[545(X217655 + Y2176C5) + CasZai7s]
+ C45(Xo217655 + Yo02176C5) — Sa5Zo2176, (11.282)

Xo2176 = —S6(X21786 + Y217C6) + C6Xo0217 — 86 Y0217,

Yo2176 = S6¢s56(X217¢6 — Y21786) — ase[856(X21786 + Y217C6) + ¢56Z217]
+ ¢56(Xo021786 + Y0217C6) — S56Z0217,

Zpp116 = S6856(X217C6 — Y21786) + ase[Cs6(X21786 + Y217¢6) — 856Z217]

+ 856(Xo021786 + Y0217C6) + Cs56Z0217, (11.283)

Xo217 = —S7(X2187 + Y21¢7) + ¢1Xo21 — 7Y o021,
Yo217 = S7¢67(X2167 — Y2187) — ag7[867(X2187 + Y21¢7) + C67Z21]
+ ¢671(Xo2187 + Yo21€7) — 8672021,
Zop17 = S1867(Xa167 — Y2187) + a67[C67(X2187 + Y21¢7) — 8672211
+ 567(X02187 + Yo21€7) + C67Z021, (11.284)

Xoa1 = —S1(Xps1 + Ya¢1) + ¢ X0z — 81 Yoo,
Yoo = Sic1(Xaer — Yas1) — an[s71(Xasi + Yae1) + cn1Zs]
+ c11(Xozst + Yoze1) — 11202,
Zoo1 = Sisn(Xacr — Yas1) +anfen (Xost + Yac1) — s11Zs]
+ sn(Xozs1 + Yooc1) + 71202, (11.285)

Xoz = S2523¢2 + 3232352,
Yoo = S7C1282352 — 12(C12C23 — $12523C2) + 823(S12823 — €12€23C2),

Zoy = S281252382 — a12(S12C23 + €12823€2) — A23(C12823 + $12€23€2). (11.286)

Substitution of the constant mechanism parameters into Egs. (11.280) and (11.281) using
Eq. (11.282) to Eq. (11.286) yields

3484 = S1(—C5C6C78281 + C58687152C1 — C5C657€7152€1 + 85€7C7182C1 — $5578281)
+ Sg(—C5C6S7C71C281 + $5587C1Co + C5C657587182 + C5C6C7C1Co + C586571C281
+ 85C7C71C281 + C586C7152 — S5C787182) + S5(—85C682C1C7 + $5C657C715281
+ S5C6S875871C2 — S5565715281 + $586C71C2 + C582C187 + C5€7C718281 + C5€7871€C2)
+ S7(—8587C718281 — S587571C2 — C€5C6S2C187 — C5C6C7CT718281 — C5C6C7871C2
+ 8582€1C7) + A23(—C5C687C71C1 — 858781 — C5C6C781 + C586871C1 + S5C7C71€1)
+ a71(C5S6571C2 + C586C715281 — S5C78718281 + $5€7C71C2

+ C5C6S75718281 — C5C687€71C2), (11.287)
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234C4 = S1(C6S7152C1 + S657C7152€1 + S6C75281) + S2(8657C71€281 — S6€7C1Co
+ C6571C281 — 865757182 + C6C7182) + S7(S652€157 + S6C7C715281 + S6C7571C2)
+ 223(8657C71C1 + S6C781 + C6871C1) + A45(—55C652C1C7 + 85C657C715281
+ 85C657571C2 — 85565718281 + S586C71C2 + C582C187 + C5C7C71828)
+ C5C7871C2) + 271(8657C71C2 + C6C718281 + C6571C2 — S6878718281).  (11.288)

Equations (11.287) and (11.288) can be used to solve for the unique corresponding
value of 0,.

11.7.8 Determination of 4,

At this point in the analysis, all the joint angle parameters except for 8; have been
solved for. This remaining parameter can be determined from the following two spherical
sine and sine—cosine laws:

X17654 = $2383, (11.289)
Y7654 = $23C3. (11.290)

Substitution of the constant mechanism parameters into the definitions reduces Egs.
(11.289) and (11.290) to the following:

83 = sa[c1(s657C71 + C6571) + S186C7]

+ calci(csce87€71 — 586871 — 85€7€71) + 81(C5C6€7 + 8587)], (11.291)
c3 = 84[C1(C5C687C71 — C586571 — $5C7€71) + 81(C5C6C7 + 8587)]

+ calci(—S687¢71 — C6871) — S156C7]. (11.292)

The corresponding value for 65 can be determined directly from the preceding two equa-
tions.

At this point the kinematic analysis of the modified flight telerobotic servicer manip-
ulator system is complete. It has been shown that a maximum of sixteen manipulator
configurations can position and orient the end effector at some specified position and
orientation.

11.7.9 Numerical example

As a numerical example, the following information was specified for the modified flight
telerobotic servicer robot:

4.5 -1
S; =0in., "Pog= (22| in., FPuq=1| 2| in,
1.5 -1
—0.0864 0.9670
FS, =1 07197 |, Fa;3=|-0.1058|, 6;,=0°
0.6889 0.2318

Table 11.16 shows the results of the reverse position analysis.
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Table 11.16. Sixteen solution sets for the modified flight telerobotic servicer
robot (angles in degrees).

Solution ¢ 0, 05 A Os O

A —104.482 —49.826 72.184 —118.649 175.212 121.049
B —106.983 135.225 97.660 —139.822 2.462 30.827
C —75.843 —136.779 —124.485 —-79.201 —85.125 —86.359
D —-56.188 —156.038 67.593 —108.187 63.242 92.721
E —97.802 —68.174 —125.186 —75.985 —156.442 —81.131
F —109.592 139.633 —121.969 —55.800 —6.261 —106.611
G —15.375 —165.079 4.587 —84.478 47.445 91.812
H 77213  —126.224 —172.724 —154.508 8.704 —71.679
1 —131.262 —22.198 69.601 —106.368 —152.935 89.528
J 71.617 42311 174.740 —166.342 175.644 —116.373
K 73947 —133.449 —46.450 —42.875 —2.328 164.278
L —120.974 —28.026 —120.607 —85.177 160.163 —92.269
M 18.375 —164.565 —163.085 —129.971 —38.727 —88.911
N 73.726 46.120 —71.569 —30.520 —177.783 —4.451
(0} 139.894 —18.261 —165.291 —138.865 124.830 —87.700
P 186.478 —14.673 3.033 —81.689 —138.102 91.380

11.8 Summary

Several examples of the reverse position analysis have been presented in this chapter.
The first three examples were of industrial robots comprising six revolute joints. The last
two examples were seven-axis manipulators, one of whose joint angles was specified in
addition to the desired position and orientation of the end effector.

Each of the manipulators would be classified as a group 4 mechanism once the hy-
pothetical closure link is determined. However, many special conditions exist for these
manipulators, such as parallel or intersecting joint axes. These special conditions greatly
simplify the solution technique. For the cases of the Puma, GE, and Cincinnati Milacron
robots, the eight solutions can be obtained via three separate two-solution equations. Each
of these equations can be solved very rapidly via computer. As a result, the overall reverse
position analysis can be performed rapidly, that is, in “real time.”

The last example of the modified flight telerobotic servicer (FT'S) manipulator demon-
strates how a relatively simple geometry (two axes intersecting, followed by two parallel
axes, followed by two intersecting axes) can in fact be relatively complex to solve. The
solution of the modified manipulator is much more complex than that of the original
FTS. This complexity will affect the controllability of the manipulator, as more computa-
tion time will be required to perform the reverse position analysis. The complexity of the
resulting solution should be taken into account during the design phase of the manipulator.

11.9 Problems

1. Write a computer program that performs the reverse analysis for each of the following
industrial robots:
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5~

Figure 11.45. Robot manipulator.

(a) Cincinnati Milacron T3-776
(b) GE P60
(¢) Puma 560

Check your results by performing a forward analysis of each solution set.

2. A 6R manipulator is shown in Figure 11.45. The following facts are known:

(i) The first and second axes intersect and are perpendicular.
(ii) The second and third axes intersect and are perpendicular.

(iii) The third, fourth, and fifth axes are parallel. The fourth and fifth offset values are
zZero.

(iv) The fifth and sixth axes intersect and are perpendicular.

(a) Tabulate the mechanism dimensions (link lengths, offsets, and twist angles). Indi-
cate which of these values are equal to zero.

(b) Assume that the coordinates of point A are given together with the direction cosines
of Sg and ag; (all in terms of the fixed coordinate system). List the names of the
variables that become known when you close the loop.

(c) Write the vector loop equation for the mechanism.

(d) Obtain an equation that contains only the variables 67 and 6. Expand the equation
as far as necessary in order to show that the only unknowns in the equation are 6,
and 6. How many values of 0¢ will satisfy this equation?
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12.1 Rigid-body rotations using rotation matrices

In Chapter 2 it was shown how to represent the position and orientation of one coordinate
system relative to another. Further, it was shown how to transform the coordinates of a
point from one coordinate system to another.

The techniques introduced in Chapter 2 can also be used to define the rotation of a rigid
body in space. Any rigid body can be thought of as a collection of points. Suppose that
the coordinates of all the points of a body are known in terms of a coordinate system A.
The body is then rotated y degrees about a unit vector m that passes through the origin of
the A coordinate system. The objective is to determine the coordinates of all the points in
the rigid body after the rotation is accomplished (see Figure 12.1).

This problem is equivalent to determining the coordinates of all the points in a rigid
body in terms of a coordinate system B that is initially coincident with coordinate system
A but is then rotated —y about the m axis vector (see Figure 12.2). This problem was
solved in Chapter 2 using rotation matrices.

An alternate solution using quaternions will be introduced in this chapter. Quaternions
in many instances may represent a more computationally efficient method of computing
rotations of a rigid body compared to the rotation matrix approach. An increase in compu-
tational efficiency implies that fewer addition and multiplication operations are required.
Quaternions and quaternion algebra will be discussed in the next sections, followed by
their application to the rigid-body rotation problem.

12.2 Quaternions

A real quaternion is defined as a set of four real numbers written in a definite order.
Two quaternions, q, and q,, may be written as

q = (dy, a, by, ¢1),

(12.1
Q2 = (dy, a2, by, ¢2).

The quaternion q; will equal q, if and only if d; = d;, a; = a;, by = b,, and ¢; = ¢,.
The sum of q; and q; is defined as

Q1+ q2=(d; +dz, a1 + a3, by + by, ) + ), (12.2)
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Figure 12.1. Rotation of a rigid body 70 degrees
about the Z axis.

Figure 12.2. Rigid-body rotation repre-
sented by rotating coordinate system B
—70 degrees about the Z axis.

whereas the difference of the two quaternions is defined as
q1 —q2 = (di —dz,a; —az, by — bz, ¢ —¢y). (12.3)
A quaternion q; that is multiplied by a scalar » may be written as
Aqr = (Ady, Aap, Aby, Acy). (12.4)
Multiplying a quaternion by —1 results in
—1q; = —q; = (—di, —a;, —b;, —¢y). (12.5)

Lastly, the zero quaternion is defined as (0, 0, 0, 0) and is simply written as 0.

12.3 AQuaternion algebra

From the definitions presented in the previous section, it should be apparent that quater-
nions will observe the following algebraic rules (let p, q, and r be quaternions and A and
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u be real scalars):

p+q=q+p,
(p+@+r=p+(q+n),
AQ = gi,

(12.6)
(An)q = A(uq),

(A +n)q = 2rq+ uq,
Ap+q) = Ap+ Aq.

Quaternion multiplication must yet be defined. In order to simplify the resulting ex-
pression, the following four quaternion units are defined:

1=(1,0,0,0),
i=1(0,1,0,0),
. ( ) (12.7)
1=10,0,1,0),
k=1(0,0,0,1).
Thus, any quaternion may now be written in the form
q=(d,a,b,c) =dl +ai+ bj +ck. (12.8)
The product of the two quaternions q; and q, will now be written as
qiqz = (dll + a1i + blj + Clk)(dzl + a2i + b2_] + Czk). (129)

Applying the distributive law as in regular algebra yields

192 = dida (1)(1) + aja;(i)(1) + bib2(5)(G) + crca(k)(k) + d; 1(azi + byj + c2k)
+ ali(dzl + sz + ¢,k) + blj(dzl + ai+ ck) + cik(d, 1 + azi + sz),

(12.10)
q1q2 = dida(1)(1) + a2 (D) (i) + bib2 () + crc2(k)(k) + d1azli + diby 1
+ d]Czlk + a1d2il + a1b2ij + alczik + bldz_]l + b1a2ji + b1C2jk
+Cld2kl +Clazki+C1b2kj. (1211)
The individual quaternion products in this equation are defined as follows:
ij=k, ji= -k,
jk=1i, kj = —i,
ki=j, ik = —j,
li =i, il =1, (12.12)
=i jl=i

Ik =Kk, kl =Kk,
= 1, i=-1, kk=-1, (D)=L
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With these definitions, the quaternion product q;q2 may be written as

qi1q2 = d;d, — aja, — byby — ¢1¢y + d;(a2i + byj + k) + da(aji + byj + ¢1k)

ik
+1la; by ¢f. (12.13)
a b o

In general, the product qiq2 # q»q;. The exception is when the final determinant in
Eq. (12.13) vanishes.

A quaternion q, where q = d + ai + bj + ck, can be considered as the sum of a scalar,
d, and a vector, v = ai + bj + ck. The symbols S, and V, will be used to represent the
scalar and vector parts of quaternion q. Thus

Sq =d,
Vq =ai+bj+ck, (12.14)
q=S5¢+V,

From Eq. (12.13) it is apparent that q;q, = q>q; only when one of the vector parts of the
quaternions equals zero or when the vector parts of the two quaternions are proportional.
Either case causes the determinant to vanish.

Multiplication of two vectors, v; and v,, which are in effect two quaternions with no
scalar component, is defined from Eq. (12.13) as

i ok
ViVy = —aja; — b1b2 —cCiCy + |a; b] Cil, (1215)
ap bz Co

where it is apparent that the scalar part of the result is equal to —v; - v, and the vector part
is equal to v; X v,.

Lastly, it is apparent (and left to the reader to prove) that quaternion multiplication is
associative and distributive with respect to addition as follows:

(p@)r = p(qr),
p(q+r1) =pq+pr, (12.16)
(p+@r=pr+qr.

12.4 Conjugate and norm of a quaternion

The conjugate of a quaternion q = d + ai + bj + ck will be denoted by K, and it is
defined as

K, = Sq— Vg =d —ai — bj — ck. (12.17)

Because the vector parts of a quaternion and its conjugate differ only in sign, the quaternion
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product of a quaternion and its conjugate is commutative. That is,
qK, = Kqq = &* + 2% +b> + ¢ (12.18)
This quaternion product is a scalar and will be defined as the norm of g, that is, Nq. Thus,
N, = qKq = d* +a> + b* + 2. (12.19)

When N, = 1, then q is referred to as a unit quaternion.
The product of a pair of quaternions q = q;qz, where q; = (d;, a;, b;,¢;) and q; =
(dz, a2, by, ¢2), is given by (see Eq. (12.13))

q =d;d; —aja; — bby — 1o + di(azi + byj + c2k) + da(aji + byj 4+ ¢1k)

i j k
+la by cyf. (12.20)
az b2 Cy

The conjugate of q may be written as

Ky = did; — aja; — biby — ¢j¢; — dy(azi + byj + ¢2k) — da(aji + byj + ¢1k)

i j k
—lar by cif. (12.21)
az b2 Cy

Exchanging the last two rows of the determinant and multiplying them by —1 gives

Kq = d1d2 —aja; — b1b2 —Ci¢y + d](—azi - sz - Czk) + d2(—a1i - b]] - C]k)

ik
+ |—a, —by —c;]. (12.22)
—a; —b1 —C

The right-hand side of Eq. (12.22) is equal to Ky, K, , and thus

Kq = KoKy, - (12.23)

Hence, the conjugate of the product of two quaternions is equal to the product of their
conjugates taken in reverse order.
The norm of q is equal to the product qK;. This norm may be written as

Ny = gKy = (@192) (Kq. Ky, )- (12.24)
Regrouping the order of multiplication gives
Ng = qKq = a1(2Kq, ) Ky (12.25)

Now, Ny, = q»K,, and thus N, may be written as

Ny = q1(Ng, ) Ky, (12.26)
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Because the norm of a quaternion is a scalar quantity,

Ny =Ng, (qiKq,)- (12.27)
Lastly, Ng, = q1K,, and thus

Ng = Ng,Ng,.- (12.28)
The norm of the product of two quaternions is therefore equal to the product of the

individual norms.

12.5 Quaternion division

The definition of a norm of a quaternion was presented in the previous section as

N, = Kqq, (12.29)
and therefore

K,

—g=1, 12.30

qu ( )

provided Ny # 0. Because the vector parts of q and K, are parallel,

K,
— =1 12.31
qu ( )
The term gi is defined as the reciprocal of q and is written as
L _Kq
e 12.32
q N, ( )
From Egs. (12.30) and (12.31) it is apparent that
qq'=qlq=1. (12.33)

From Eq. (12.28), the norm of (qq~") must equal NjN-1, which equals one. Therefore,
Ng-+ = —. (12.34)

To divide a quaternion p by a nonzero quaternion ¢, it is necessary to solve either the
equation

nqg=p (12.35)
or
qr; =p (12.36)

for the result r; or r;. In general, the solutions for the two equations will be different.
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Postmultiplying both sides of Eq. (12.35) by q~! gives

rn =pq}, (12.37)
and premultiplying both sides of Eq. (12.36) by q~! gives

r,=q"'p. (12.38)

Because the two solutions r; and r, are different, the symmetrical notation p/q cannot be
used. Rather, the notation of Eqgs. (12.37) or (12.38) will be used. These may be called
the left-hand quotient of p divided by q and the right-hand quotient of p divided by q
respectively. These two quotients are defined whenever q # O.

It is interesting to note that the norm of the two solutions r; and r, are equal. Taking
the norms of both sides of Eqs. (12.37) and (12.38) and using the result of Eq. (12.34) will
result in

Np

N, =N, = N, (12.39)
It may thus be stated that the norm of either quotient of two quaternions is equal to the
quotient of their individual norms.

Lastly, it will be shown how to obtain the inverse of a multiple product of quaternions.
Suppose that q is defined as

qd=q19293 - - qa- (12.40)
The inverse of q may be written as
9 =Qq@q ) = NE’ (12.41)
g
q—l — an ‘e quKme _ qn—l . 'qii_lqz_lql_l' (12‘42)

Nqn T NCISNQZNQI B

Thus, the inverse of a multiple of quaternions is equal to the product of the inverses of the
individual quaternions taken in reverse order.

12.6 Rigid-body rotation

Figure 12.3 shows a vector r drawn from a point O that is to be rotated about the unit
vector s by an angle of 20. In this way the vector r will be transformed to the vector
r’. It will be shown in this section that this transformation can be accomplished by the
quaternion operator q( )q~! and

r =qrq !, (12.43)

where q is defined by the unit quaternion (cos 8 + s sin 6) and where V, = r and S, = 0.
The quaternion r and the unit quaternion q may be written as

q = c08 0 + sin (sl + syj + 8,k), (12.44)
I =rd+rj+rk (12.45)
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Figure 12.3. Rotation of vectorr to position

/

r.
The quaternion, r’, is now defined by the expression
¥ =qrq .
Firstly, let the quaternion t = qr. Therefore,

t = qr = —sinO(scry + SyTy + S;07) + €08 O (x,d + 1yj + 1,k)

i j k
+sinf sy sy 8y,
Iy I, I,
t = —sin O (scrx + syIy + S.1,) + i[r, c0s O 4+ sin O(syr, — s,1y)]

+ jlry cos & + sin (s, — sx1,)] + k[r, cos 6 + sin 0 (s,ry — sy15)].

The quaternion t will now be written as
t =d + ai + bj + ¢k,
where

d = —sinO(scry + syIy + s,1,),
a =1,C0s 6 + sin O(s,r, — s;1y),
b =1,c0s6 + sin O(s, 1, — S,17),

C =1,€086 + sinO(s,ry — sy1y).

(12.46)

(12.47)

(12.48)

(12.49)

(12.50)

The quaternion q~' =K, because Ny = 1, as q is a unit quaternion. Equation (12.46) may

now be written as

' = tKq = (d 4+ ai + bj + ck)[cos# — sin 8 (s,i + syj + s.K)].

(12.51)
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This may be expanded as

I = dcos @ + sinf(as, + bsy +cs;) + dsin € (—si — syj — s;k) + cos 6 (ai + bj +ck)
i j k
+ sinf | a b c . (12.52)
=S¢ —Sy —S§,
The scalar part of I’ can be written as

Sy = dcos@ + sinf(as, + bsy + cs,). (12.53)

Substituting the expressions from Eq. set (12.50) gives

Sy = —sinf cos O (sxrx + SyTy + S.1;) + sin Os, (1, cos 6 + sin O (syr, — s,1y))

+ 5y (ry cos 8 + sin O (s,r, — s417)) + 5,(r, cos @ + sin O (s,ry — syr,))],  (12.54)

which reduces to S, = 0. Thus, it has been shown that r’ is a quaternion with no scalar
component.

The norm of the right and left sides of Eq. (12.46) can be written as
Ny = NgN:Ng-1. (12.55)

The order of multiplication can be rearranged on the right side of this equation. Further,
from Eq. (12.34), the product NNy~ will equal one, Eq. (12.55) simplifies to

Ny =N, (12.56)

and the norm of r equals the norm of r'. Because r’ and r have no scalar components, it can
be said that the sum of the squares of the vector components of r' will equal the sum of
the squares of the vector components of r. Interpreting r and r’ as vectors, it can be stated
that the magnitude of the vector r’ will equal the magnitude of the vector r. Thus, it is
now known that the operator q( )q~! transforms a vector to a vector of equal length. This
must be the case if the operator represents a pure rotation of a vector, where the vector
represents the coordinates of a point in a rigid body.

The task at hand is still to show that the quaternion operator q(r)q~" will rotate the
vector r about the s axis by an angle of 26 if q equals (cos @ + ssin@). At present all that
is known 1is that the result of the operation will be a vector of the same magnitude as r.
Equation (12.52) will now be expanded to show that the operation does indeed result in a
rotation of the vector about the s axis.

Substituting Eq. (12.50) into Eq. (12.52) and regrouping gives

r = i{sin® O[8x(sxTx + SyIy + 8,1;) + 8y (scIy — IySy) + 8, (ST, — Sz0y)]
+2sin6 cos O (syr, —1y8,) + cos’0r,) +j{sin2 Olsy(Sxrx + SyTy + S,17)
+ Sy (SyIx — SxTy) + S;(8yT; — S,1y)] + 28in6 cos O (s,rx — s,1,) + cos? 0 1y}
+ k{sin? O[5, (s¢Ix + SyTy + $,1,) + 85 (8,05 — $xT7) + 8y(S,1y — 8y1,)]

+ 25in6 cos O (s,ry — Sy1y) + cos’ 0 r,). (12.57)
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Rearranging this equation gives

r' = i{ sin” O [sx(sxTx + 28,1y + 25,1,) + rx(—s§ —s2)] + 2sin @ cos O (sy1,
—1y8;) + cos? Or, | + j{ sin® O [sy(2s,0x + syTy + 25,1,) + 1y (—s2 — s2)]
+25in 6 cos (s,Ix — cI,) + cos” Oy } + k{ sin® 0 [s,(2s41¢ + 28,1y + 5,1,)
+1,(—s} — sg)] + 25in 6 cos (s,Iy — 8yTx) + cos® Or, }. (12.58)

The axis vector, s, is a unit vector, and therefore the expressions —s§ — st =8 -1,
—s; —s; =s; —1,and —s; — s} = s; —1 may be substituted into Eq. (12.58) to give

' = i{sin® Ofs. (25,1, + 28,1y + 28,1,) — 1] + 2 5in6 cos O (s,r, — 1y8,) + cos’ 01}
+j{sin2 Ofsy (28,1 + 281y + 25,1,) — 1y] + 28in 6 cos O (s,I, — $x1,) + cos® o 1y}
+ k{sin® O{s,(25,Ix + 28,1y + 28,1,) — I,] +25in @ cos 8 (8,1, — syTx) + cos” 1},
(12.59)

which is the result of the quaternion operation q(r)q".

In Section 2.8.1 the rotation matrix was developed for the case where one coordinate
system was rotated about an axis by a specified angle relative to the other. Assuming
that coordinate systems A and B are initially aligned, and B is then rotated about the
axis s (which passes through the origin) by the angle 26, the rotation matrix 3R is (see
Eq. (2.59))

sf(l — cos 26) + cos 20 8xSy(1 — c0s20) —s,5in20  s,8,(1 — cos28) + s, sin 26
QR = |5,8y(1 — cos20) + 5, sin 26 si(l — c0s20) + cos 20 Sys;(1 — cos 20) —s,sin26 | .
xSz (1 — c0s 20) — sy 5in 26 sy5,(1 — cos 26) + s, sin 26 s§(1 — €08 26) + cos 268

(12.60)

The coordinates of a point that has been rotated by 26 about the axis s can be determined
by calculating the coordinates of the point in terms of a coordinate system that has been
rotated by an angle of —26 about the axis s. The rotation matrix §R, which relates
coordinate systems C and D where they are initially aligned and then D is rotated —26
about the axis s, is given by

s2(1 — cos26) + cos 26 xSy (1 — cos20) +5,5in28  s,5,(1 — cos20) — sy sin 26
gR = |5,8,(1 — c0s20) —s,sin26 s§(1 — co0s26) + cos 26 Sys; (1 — €05 26) +s,5in 20 | .
8¢8.(1 — c0s28) +s,5in20  sys,(1 — cos 20) —s, sin 26 sg(l — c0s20) + cos 26

(12.61)

Assuming that the coordinates of a point R in the C coordinate system are “Pr =
[ry, 1y, r,]7, the coordinates of this point in the D system are calculated from

PP = 2R Py, (12.62)
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where 2R is the transpose of SR . Expanding Eq. (12.62) gives

Ix (si(l — ¢0s260) + cos 29) + 1y (5x8y (1 — €08 20) — 5, 5in 20) + 17(5x5, (1 — c0s 20) + sy sin 20)
DPR = | 1x(sx8y(1 — c0s26) + 5, 5in 20) +1y (s§(1 — c0s260) 4+ cos 29) +17(8ysz(1 — c0s20) —s,sin26) | .
1x(sxSz(1 — €08 20) — sy 5in 20) + ry(sys; (1 — c0s20) + s, sin20) + 1, (s%(l — c0s20)+ cos 26)

(12.63)
Rearranging the terms in Eq. (12.63) gives
(1 — c0820) (1,82 4+ 1ys,Sy +1,5:8,) + €08 20 1+ sin 20(syr, — S,1y)
DPr = | (1 — cos20) (rys§ + IySy8y + rzsysz) + 0820 1y + sin 20(s,1, — s4I;)
(1 — c0820) (1,82 + 1,848, +1y8yS;) + €020 1, + sin 20(s,ry — sy1y)
(12.64)

Substituting the trigonometric identities sin 26 = 2 sin cos 6 and cos 260 = cos? 6 —sin* @
gives

(1 — cos? 6 + sin? 0) (rxsi +rysxsy + rzsxsz) + (cos? 6 — sin? O)ry +2sin@ €0s 0 (syrz — S;Ty)

DPR = | (1= cos?6 + sin® 9) (rys§ + rcSxSy + rzsysz) + (cos? 6 — sin? 0)ry + 2 sin 0 cos O(s;rx — SxIz)
(1 = cos? @ + sin? ) (rzs% + 1¢8xSz + rysysz) +(cos? 0 — sin® O)r, +25sin €0s 0 (sxry — SyIx)
(12.65)

Substituting 1 — cos?§ = sin’ 8 into Eq. (12.65) and rearranging gives

sin® O[s,(2r,s, + 2rysy 4 2r,8,) — 1, ]+ 2sin 6 cos O(syr, — s,1,) + cos? Or,
Dpp = |sin® O1sy(2rysy + 21,8, + 2r,8,) — 1,1 +25in 6 cos 6 (s,1, — S.1,) + cos? ory
sin® O[s, (21,8, + 21,8, + 2ry8y) —1,] + 25in 6 cos O(scry — syry) + cos? Or,

(12.66)

Comparing Egs. (12.66) and (12.59), it is apparent that the quaterion operator q( )q~!,
where q = cos6 + ssinf, is equivalent to a rotation about the axis s by the angle 26.
Thus, this operator may be used to transform points of a rigid body that undergo rigid-body
rotation.

12.7 Example problems
12.7.1 Problem 1

The rigid body shown in Figure 12.4 is rotated about the axis m; = (3i + 2j) by an
angle of sixty degrees. It is then rotated about the axis m, = (—j + 2k) by an angle of
115 degrees. Both axis m; and m, are measured with respect to the fixed coordinate
system shown in the figure. Determine the coordinates of the point (5, 2, 3)T after the two
rotations have been accomplished.

Figure 12.5 shows the rigid body at its original position and after each of the two
rotations. The quaternion operator that models the first rotation is q,()q; "', where

1
= ¢0s8(30°) + —sin(30°)(3i + 2j). 12.67
qai (30%) 73 (30°)( j) ( )
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Figure 12.4. Rigid-body rotation.

Az

m,

X m,

Figure 12.5. Two successive rigid-body rotations.
The operator that models the second rotation is q2()q; ! where

1
= ¢c0s(57.5°) + — sin(57.5°)(—j + 2k). 12.68
Q2 ( ) NG ( (=) ) ( )

The coordinates of the point (5, 2, 3)T after the two rotations may be calculated as
q2q1 (51 + 2j + 3k)q; 'q; (12.69)
The solution is (—3.054, 4.624, 2.701)T.

12.7.2 Problem 2

For the previous problem, determine the axis and angle of rotation that will return the
rigid body to its original position.

The quaternion operator that transformed a point in the previous problem was g»q;
()q;'qs', where q; and g, were defined in Eqgs. (12.67) and (12.68). Performing the
multiplication q,q; gives

q2q1 = 0.5699 4 0.01431 + 0.1362j + 0.8102k. (12.70)
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This product can be interpreted as representing the net rotation of the body about a single
axis. The scalar part of the result equals the cosine of half the net angle of rotation. The
magnitude of the vector part of the product will equal the sine of half the net angle of
rotation. Letting 8 equal the angle of rotation, the cosine and sine of #/2 may be written
as

cos(8/2) = 0.5699, (12.71)
sin(6/2) = 0.8217. (12.72)

The angle 6/2 equals 55.255 degrees, and € equals 110.51 degrees. Equation (12.70) can
now be written as

Qi = c0s(55.255°) + sin(55.255°)[0.0174i + 0.1658] + 0.9860K]. (12.73)

By inspection, it is apparent that the net motion is a rotation of 110.51° about the axis
(0.0174i + 0.1658j 4+ 0.9860k). The rigid body can be returned to its original position by
rotating it —110.51° about the same axis vector.

12.7.3 Problem 3

Show that the quaternion multiplication in example problem 1 transforms the points of
the rigid body shown in Figure 12.4 as if they have first been rotated about the m; axis by
115 degrees and then about the m; axis (measured in terms of a coordinate system that
has been modified by the first rotation) by 60 degrees.

The quaternion operator that is being described in this problem is

R TOL P (12.74)

where q; and q; are given in Eqs. (12.67) and (12.68).

The new interpretation for the quaternion operator is shown graphically in Figure 12.6.
In (b), the original object has been rotated 115° about the vector my. In (c), the modified
coordinate system is shown, and in (d) the object has been rotated about the vector m;,
which is defined in terms of the modified coordinate system. The final position and
orientation of the rigid body is the same as that shown in Figure 12.5.

The most straightforward means of demonstrating the result will be to use rotation
matrices to calculate the coordinates of a general point that has been rotated as given by
the problem statement and then comparing the results to the coordinates of the point that
have been transformed by the quaternion operator of Eq. (12.74).

In Section 2.8.1, it was shown how to form the rotation matrix that would describe the
relationship between two coordinate systems, A and B, that were initially coincident. Co-
ordinate system B was then rotated about the unit vector m by an angle of 8. The resulting
rotation matrix that relates the A and B coordinate systems was shown in Eq. (2.59) to be

m2vé + ¢ mymy vl — m,s6 mym,vo + mys
AR = |mum,v6 + m,sf m§v9 +ch mym,vé — m,sé | , (12.75)
mym,v0 — mysé m,m,vé + mysd m2ve + cf

where s@ and c6 represent the sine and cosine of the angle of rotation and v8 = (1 — c0).
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Yl

(©) (d)

Figure 12.6. Interpretation of successive
rotations.

The coordinates of a point that has been rotated about the axis m; by an angle of 115
degrees is equivalent to the coordinates of a stationary point as seen in a new coordinate
system that has been rotated by —115 degrees about the vector m,. Thus, the coordinates
of a general point that has been rotated 115° about the m, axis can be determined from
the equation

Bp, = ER*P,, (12.76)

where AP| represents the initial coordinates of the point, BP; represents the coordinates of
the point after rotation, and BR is evaluated as the transpose of Eq. (12.75)* with 6 equal
to —115° as

—0.4226 —0.8106 —0.4053
BR=| 08106 —0.1381 -0.5690] . (12.77)
0.4053 —0.5690  0.7155

Figure 12.7(a) shows the original object, and Figure 12.7(b) shows the object with the
original A coordinate system and the modified B coordinate system.

The second transformation is defined as a rotation of sixty degrees about the vector
m;, where this vector is measured in terms of the modified coordinate system. It must
be noted that the modified coordinate system is the A coordinate system and that the
reference, or stationary, coordinate system is the B coordinate system. Thus, the next axis
of rotation is 3i + 2j as measured in the A coordinate system. This axis of rotation can
be calculated in the B coordinate system by transforming two points on the vector line

* The transpose is needed because we want to take a point known in the A coordinate system and determine
its coordinates in the B coordinate system.
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X

(@)

Figure 12.7. Rotated coordinate system.

Figure 12.8. Two successive rotations.

from the A coordinate system to the B coordinate system and then calculating the vector
direction as the difference between these two points. The points on the axis of rotation to
be transformed are arbitrarily selected as [3, 2, 0]T and [0, 0, 0], and the transformation
equation to be used is given in Eq. (12.76). These two points transform to [—0.8013,
0.5979, 0.0216]" and [0, 0, 0]7. Thus, the next axis of rotation as measured in the B
coordinate system is —0.8013i + 0.5979j + 0.0216k.

Again, the coordinates of a point that is rotated can be calculated as being the coordinates
of a stationary point as seen in a coordinate system that is rotated in the opposite direction.
Figure 12.8(a) shows the m; vector, which is the next axis of rotation, and Figure 12.8(b)
shows a new coordinate system C, which was initially aligned with B and was then rotated
minus sixty degrees about the axis of rotation. The transformation that relates the B and
C coordinate systems can be calculated from the transpose of Eq. (12.75) using —0.8013i
+ 0.5979j 4 0.0216k as the direction of the axis vector m and minus sixty degrees for
the rotation angle 8. This transformation matrix can be written as

0.8210 —0.2582 0.5091
SR=[-02208 0.6787 0.7004] . (12.78)
—0.5264 —0.6875 0.5002

The coordinates of a point after the two specified rotations may now be written as

Cp, ZCRER AP, (12.79)
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Substituting Eqgs. (12.77) and (12.78) into this equation yields

—0.3500 —0.9196 0.1784
CpP, = | 09274 —-0.3133 0.2044| P;. (12.80)
—0.1321  0.2370 0.9625

Writing the vector 2P, as [x, y, z]7, the transformation becomes

—0.3500x — 0.9196y + 0.1784z
P, = | 0.9274x —0.3133y + 0.2044z | . (12.81)
—0.1321x + 0.2370y + 0.9625z

It is necessary to show that the quaternion operator q,q; ( )ql_lqz_ ! transforms a general
point P; in the same manner as the transformation Eq. (12.81). The product q»q; was
calculated in Eq. (12.70) as

Q@qi = 0.5699 + 0.0143i + 0.1362j + 0.8102k. (12.82)

Because q; and g, are both unit quaternions, the inverse of this product will equal the
conjugate of the product. Thus,

q;'q5" = 0.5699 — 0.0143i — 0.1362j — 0.8102k. (12.83)
Writing the vector Py as [X, y, z]T, the overall transformation may now be written as
Qqi (xi + yj + zk)q; 'q5 " = (0.5699 + 0.0143i + 0.1362j + 0.8102k)(xi + yj + zk)
x (0.5699 — 0.0143i — 0.1362j — 0.8102k). (12.84)
Expanding the first product q»q;(xi+yj+zk) yields
q2q1 (xi + yj + zk) = (—0.0143x — 0.1362y — 0.8102z)
+1i(0.5699x + 0.1362z — 0.8102y)

+j(0.5699y + 0.8102x — 0.0143z)
+ k(0.5699z + 0.0143y — 0.1362x). (12.85)

Writing this product as
Qqxi+yj+zk) =d; +ai+bj+ck (12.86)
allows Eq. (12.84) to be expressed as

Q@ (xi + yj + zk)q'q; ' = (0.5699d; + 0.0143a, + 0.1362b; + 0.8102¢;)
+0.5699(a;i + byj +c1k)
+ d; (— 0.0143i — 0.1362j — 0.8102k)
i j k
+ ai b] C1 . (1287)
—0.0143 —-0.1362 —-0.8102
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Expanding this expression yields

q2q1(xi + yj + zk)q; 'q; ' = i(—0.3500x — 0.9196y + 0.1784z)
+j(0.9274x — 0.3133y + 0.2044z)
+k(—0.1321x + 0.2370y + 0.9625z). (12.88)

Equation (12.88) shows that the point [x, y, z]T has been transformed to the point
[(—0.3500x — 0.9196y + 0.1784z), (0.9274x — 0.3133y + 0.2044z7), (—0.1321x +
0.2370y + 0.9625z)]". This is the same transformation as listed in Eq. (12.81).

12.8 Summary

It has been shown in this chapter that rigid-body rotations can be modeled by quater-
nions. Itis a very simple procedure to determine the quaternion q that will rotate a point
about an arbitrary axis vector by the quaternion operator q( )q~!. Fewer mathematical
operations are needed to compute q compared to the rotation matrix of Eq. (2.59). For
this reason, quaternion algebra is often employed in many applications, as, for example,
in computer graphics. Quaternions are introduced in this chapter because they elegantly
quantify rigid-body rotations, which are the cornerstone of the spatial kinematics discussed
throughout this book.

12.9 Problems

1. Prove that successive rotations by the angles ¢, 7 radians, and ¢ respectively about the
X, y, and z axes are equivalent to a single rotation of 7 radians about the y axis.

2. The quaternions q; and g, are given as
sin(30°)

q1 = cos(30°) + (31 +4k),

sin(60°) .
= ¢0s(60°) + ——=(5j — 2k).
qz = cos(60°) + 75 (5j )

Solve the following equation for the quaternion qs3:
9193 = Q241

3. q; is a unit quaternion, and p is a quaternion with no scalar component. Under what
conditions will p = q;(p)q;'?

4. A box is moved from position 1 to position 2 and then to position 3 as shown in
Figure 12.9. Determine the axis and angle of rotation that would move the box directly
from position 1 to position 3.

5. A box has been rotated forty degrees about an axis parallel to 2i 4+ j + k. It was then
rotated sixty degrees about an axis parallel to i + 3j — 2k (measured with respect to
the fixed coordinate system). You wish to return the box to its original orientation with
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Figure 12.9. Two successive rotations.
)2

) sition
/Er\d“"g po

Figure 12.10. Rigid-body rotation.

one rotation. Determine the angle and axis of rotation (measured with respect to the
fixed coordinate system) that will accomplish this.

6. Line segment AB is rotated minus seventy-five degrees about an axis parallel toi+j+k
that passes through point C as shown in Figure 12.10. The coordinates of points A, B,
and C are as follows:

A (5,2,0)
B: (1,3,0)
C: (0,2,2)

Use quaternions to determine the coordinates of the endpoints of line segment AB after
the rotation is accomplished.
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(a) Assume the quaternions p and q are given as follows:
p=(1,-12,3) q=1(-3,2,1,0.5)

What is the product pq? What is qp? What is p~!q?

(b) Under what circumstances would the product pq equal qp? List all cases.

(¢) What is the result of the quaternion product ijk?
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Equations for a Spherical Triangle Equations for a Polar Triangle
Xi=s135s Yi=s3c Z =cp Up=s383 Viz=s3c3 Wp=c;
Xo =s31853  Yy=s3103 Zp, =c3 Uy =si831 Vau=sc33 Way=c
Xs=sps1 Yy=spc, Zy=cp Usp =881 Vai=sc2 Wii=c;
Xi=sm3s3 Yi=s3c3 Z =cp Uy =s3831 Va=scs Wi =c3
Xo=s381 Yas=s3C Zy=c3 Up =582 Vp=sicp Wn=c
X3=5p8s Yz=spe Zi=cp Us=ss13 Viz=smc3 Wp=c

Direction Cosines — Spatial Triangle

Set 1
S, (O,
S, (0,
S; (Xa,

Set 2
S, (0,
S; (0,
S; (X,

Set 3
S; (0,
S, (0,
S, (X,

Set 4
S, (0,
S; (0,
S, (X3,

Set 5
S; (0,
S, (0,
S, (Xa,

Set 6
S, (0,
S, (0,
S; (X,

0, 1)
jslz, C_12)
Y., Zy)
0, 1)
j823, C_23)
Ys, Z3)
0, 1
—S31, C31)
Y. 2y
0, 1)
S31,  C31)
-Ys3, Zs3)
0, D
$23,  €23)
YY), Z»)
0, 1)
S12, C12)
Y, Zy)

a;, (1,
.a.23 (C27
331 (C17

23 (1,
a3 (Cs,
ap, (co,

331 (l’
app (¢,
a,3 (C3,

331 (17
ax (C3,
ap (1,

a (1,
ap (e,
a3 (Cs,

g12 (17
331 (Cl7
a3 (C2,

0, 0)
saciz, Uz
—S1, 0)
0, 0)
s3¢p3,  Us)
—82, 0)
0, 0)
sicsi,  Up)
—S3, 0)
0, 0)
—s3c31, Usp)
St 0)
0, 0)
—$2C23, Uns)
S3, 0)
0, 0)
—sici2, Up)
S2, 0)
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Equations for a Spherical Quadrilateral

Fundamental Formulas:

Xi2 = su8; Yo = 834¢3 Ly =y
Xo3 = 84154 Yo3 = s41C4 Zyy =cy
X34 = 81281 Y4 = sp2¢ Zay =cp2
X4 = ;3% Y41 =530 Zy = C23
Xo1 = S84 Y21 = sucy Ly =cCu
X32 = 84181 Y3 = 84104 Zy =cy
X4 = 81282 Y3 = sppc Zy =co2
X4 = 82383 Yi4 = $23€3 Zyy =3
Subsidiary Formulas:
X1 = X5 =X, =Y, Z, =124
X =Xy X4 =Y, Zy =24
X34 = Xl —X§4 = Yl Z3 = Zl
X4 =X, X5 =Y Zy=12,
X, = X, X3 =Ys 7, =7,
X32 = X1 —X;2 = Yl Z3 = Z1
X =X, —X23 =Y Zy =1,
X14 = X3 —XT4 = Y3 Zl = Z3
Equations for a Polar Quadrilateral
Fundamental Formulas:
Uiz = 54834 Vi = 84C34 Wiz =c4
Ujss = 81841 Vi34 = s1C41 Was =
Usy = 52812 Vi = s:cp2 Wi =c2
Us1z = 83823 Vii2 = 83003 Wi =c3
Uz = s4841 Vi1 = ssCar Wi =c¢4
Uji4 = 83834 Va4 = s3C34 Woa =¢3
Ujsz = 82823 Vias = 803 Wiz = ¢
Uyzo = 81812 Vi = sicpp Wiy = ¢
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Subsidiary Formulas:

Uz = Ug
Uy = Uy
Uiy = Uy
Uga = Uy,
Usz = Uy
Uzis = Uyg
Ujgs = Uy
Usz, = Uy

Ul = —Va
Uy = —Vig
Ul =—Va
Ul =-Vn
U =—Va
Vb=~V
UT43 =—Va
Ui ==V

Wi =Wy
Wa =Wy
Wiy = Wy,
Wi =Wy
Wi = Wy
Wy =Wy
Wiy =Wy
Wi =Wy

Half-Tangent Laws for a Quadrilateral

Set 1
X X34 Y34 —si2 X X3 Y32 — sa1
1= = — = — —
Y +s12 X34 Y32 + 843 X3
X4 Yar — i3 X4 Yo — si2
X2 = = — X2 = = —
Ya1 + 823 X4 Yo+ si2 X4
Xi2 Y2 — s34 X4 Y4 — 523
X3 = o= - X3 = = —
Yio+ 53 Xk Yis + 523 X4
X23 Y23 —sa1 X2 Yo — s34
X4 = = — X4 = = —
Yo + 541 X3 Y2 + 534 Xai
Set 2
= X4—Xo Y4+ Y,
"TY Y, X+ X
o — X —X;3 __Y1+Y3
TY, =Y X+ X
o X, —- X4 __Y2+Y4
TYL, Y, X+ Xy
_ X=X Ya+Y,
Y; - Y, X; + X,
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Direction Cosines — Spatial Quadrilateral
Set 1
S, (0, 0, 1 ap(, 0, 0)
3, (0, —S12, c)  aple $2C12, Ua1)
S; (Xa, Y2, Zy) 334 (W3, =Uj,s Uszp)
Sy (Xa2, Ys2, Z3) ay (cq, —sy, 0)
Set 2
S, (0, 0, 1)  an(l, 0, 0)
S; (0, —S23, c3) @y (cs, 83C23, Us)
Sy (X3, Ys, Z3) a5 (Wy3, —Ulss Uss2)
S) (X43, Y3, Z43) a;; (¢, —$2, 0)
Set 3
S; (0, 0, 1) a3 (1, 0, 0
S, (O, —S34, C34) 2y (cq, 84C34, Uys)
S; (X4, Ya, Zy) a, (Wi, —Uls» Uig3)
S, Xi4, Y4, Z14) 23 (C3, —$3, 0)
Set 4
S, (0, 0, 1) ay (1, 0, 0)
S, (0, —Sa1, ca)  aple, $1Ca1s Ui4)
S, Xi, Y1, Z1) 2, (Wy, Ul Uai4)
S; Xa1, Yo, Zy)  ax(cs, —S4, 0)
Set 5
Sl (09 09 1) Y (1’ 09 O)
S, (0, 841, C41) 234 (C4, —84Ca1, Uai)
53 (X4, -Ys, Zy) a3 (W3, U§41’ Usar)
S; (X34, —Y34, Z34) ap (cq, S, 0)
Set 6
§4 (09 09 1) §34 (1’ 09 O)
S; (0, $345 Cu)  anl(e, —83C34, Usq)
S, (X3, -Y;, Z3) a; (Was, Ulays Usss)
S| (Xas, —Yo3, Zy) (e, S4, 0)
Set 7
§3 (09 09 1) §23 (19 09 O)
S, (0, $23, c3)  ap(e, —$2C23, Uy)
S; (X, -Y>, Zy)  ay (Wi, Ul Ui23)
Sy Xy, Y2, Z1y)  a3(cs, 83, 0)
Set 8
SZ (09 09 1) ng (1 ’ 09 O)
S, (0, S125 ci2) Ayl —81Cq25 Ujp2)
Sy (X, =Y, Zy) 234 (Way, Ui, Uyrz)
S; (Xar, —Ya, Z41) 23 (C2, S2, 0)
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Equations for a Spherical Pentagon

Fundamental Formulas:

X123 = 84584

X234 = 85185

X345 = 81281

Xi51 = 82382

Xs12 = 83483

X321 = S4585
X432 = 85181

Xs43 = S1282

X154 = $2383

Xo15 = 83484

Subsidiary Formulas:

Set 1

Set 2

Xy =Xy
Xoa = X
Xas = X
Xas1 = Xz
Xsi2 = X3
X3 = Xs
Xa32 = X
Xsai3 = X
Xis4 = X3
X215 = X4
X1 = Xa3
X2 = Xs4
X34 = X5
Xas = Xn1
Xs1 = Xxn
X3 = Xs1
X =Xn2
Xs4 = X3
Xis = X
Xo1 = Xys

Y123 = 845C4

Y234 = 851C5
Yia5 = 812€)
Yas1 = 823¢2
Ys12 = 834C3
Y321 = 845Cs
Y32 = 851€1

Ys43 = 812C2
Yis4 = 823C3

Yars = 834C4

—Xip = Y,
— X034 = YS
—Xus = Y
—Xis1 = Y2
X5 = Y;
X =Ys
X =Y
_X§43 =Y,
—Xss = Y3
— XG5 = Ya
Yo =—Xi
Yo3 = —X5,
Yae = =X
Yas = =X5
Y51 = —X3
Y5 = —X5,
Ya = —Xj,
Ysa = —X3
Yis = =X,

Zips = Cy5
Zy34 = Cs1
Zys =cpp
Zysi =3
Zs;y = Cx
Zy1 = C45
Zyzy = cs1
Zs3 = Cp2
Zisa = Cp3
Zys = Cq
Zn=12
Zyy = Zs
Zy =12,
Zis=1,
Zsi =17,
Ly =Zs
Zyy =17,
Zsq =2,
Zis =15
Zy =214
Zin=124
Zyn=1s
Zu=12,
Zis =17,
Zsi =1,
Zy =7Zs
=7,
Lss =1,
Zis=15
Zy =24
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Equations for a Polar Pentagon

Fundamental Formulas:

U234 = S5845
Ujass = 51851
Usssy = 82812
Uysiz = $3823
Usi23 = 8483
Uy3az1 = 8585
Uszis = 84845
Ujis4 = 83834
Ujsgz = 82823
Usszz = 8812
Subsidiary Formulas:
Setl Ujxg = U54
Uzgs = Uss
Usgsi = Uy
Ussip = Uy
Usizz = Uss
Ugzz) = Usy
Uszis = Uss
Ujziss = Usg
Ujsgz = Uy
Usszz = Uy,
Set2  Ups = Uss;
Uz =Uss
Usgs = Uys
Usys) = Usyg
Uspp = Usa
Ugz, = Uspp
Uz = Ussy
Uszis = Usgs
Uiss = Upss
Usgz = Upas

Vi =

Voass
Vasi
Visiz

V5123

\ZE
Vs
Vaiss
Visa3

Vsa3z

*®
1234 —
*
2345 —
*
3451 —
*®
U4512 -

*
5123 —

* —
U4321 -

*
3215

* —
U2154 -

*
1543

*
5432 —

85Ca5

= §1Cs)
= $2C12

= 83C3

S4C34

= 85Cs51
= 84C45

= 83C34

$2C23

= S81C12

— *
- _U512

_ *
—U451

_IT*
345

— _T7J*
- 234

*
—-U123

Wins = ¢s
Woags = ¢
Wigsi = ¢
Wiysio =¢3
Wsiz = ¢4
Wiz =5
W35 = ¢4
Waiss = €3
Wissz = ¢
Wsaz = ¢
Wi =Wy
Woy = Wys
Wass = Wy
Wis1 = Wy,
Wsio = W3
Wiz, = Wy
Wip = Wys
Wiois = Wy
Wiss = W3
Wsiz = Wy,
Wiz =Wy
Wag = Wis
Wigs = Wy
Wisp = Wy
Wsio = Wys
Wiz = Wy
Wiy = Wys
Wois = Wy
Wiss = Wo3
Wiz = W,
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Half-Tangent Laws for a Pentagon

Set 1
< = X345 Y45 — s12 X Xazz  _ Ya —S8si
1= =— 1 -
Yias + s12 X5 Y432 + 851
X451 Y51 — 523 Xsa3 Ysa3 — s12
X2 = = — X2 = —
Y451 + s23 Xus1 Ysa3 + 512
Xs12 Ys12 — su Xis4 Yiss — 23
X3 = =- X3 = -
Ysi2 + s34 Xs12 Yisa + 23
X123 Y23 — 45 Xo1s Yoi5 — 834
X4 == = — X4 fnac) —_—
Y123 + Sas X123 Youis + s34
X234 Y214 — 851 X321 Y321 — 845
X5 = = — XS = = —
Y34 + 851 X234 Y1 + 845
Set 2 ~ )
< X5 — X2 Yis+ Y, < X3 — Xs Y+ Ys
1= = — — 1= — —
Yas — Y, Xus + Xo Yn—Ys X3+ Xs
< X5 = X5 Y51+ Y; < _Xp=Xi _ Yu+Y,
) = — = — = ) = =-
Y51 — Y3 Xs1 + X3 Y —Y, X+ X4
< _X12—X4_ Yio+Y, < X=X Ysa+ Y,
3= — = — = 3= =—
Yio—Yy X2+ Xy Ysa— Y, Xs4 + X
< _Xn—-Xs  Yu+Ys X4_X15—X3_ Yis+Y;
4 = — = — — = [
Y —Ys X3+ Xs Yis—Y3 X5 + X3
< _X34—)_(1_ Y+ Y, < X0 — Xy Y +Ys
5 = = = — = 5= =—
Y — Y, X+ Xy Yo — Yy Xo1 + X4
Direction Cosines — Spatial Pentagon
Set 1
§1 (07 07 1) 212 (17 07 O)
S, (0, —S12, C2) (e, $2€12, Uz1)
S; (X, Y., Zy) a3, (Wa, UL, Usz1)
S, (X, Y32, Zn) a5 (Was, ~UZsis Uss21)
S5 (X432, Y32, Ziyy) a5 (¢, —Sp, 0)
Set 2
§2 (07 07 1) §23 (17 07 O)
S, (0, —$23, C23) a3 (ca, $3C23, Us)
S, (Xs, Ys, Z3) a4 (Wy, —=Ulsp, Usaz)
S5 (Xy3, Y43, Zy) a5y (Wsss, —US4325 Usazz)
S; (Xs43, Ysa3, Zsq3) ap, (cy, —$2, 0
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Set3
S5 (0, 0, 1) a5, 0, 0
S, (0, —S34, C34) 45 (Cq, $4C34, Us)
Ss (Xa, Ya, Zy) a5 (Wsg, =U%,ss Usa4a)
S; Xs4, Ysa, Zsq) a;p (Wise, —Ufss Uis43)
S, Xis4, Yisa, Zisq) a5 (ca, —S3, 0
Set 4
S4(0, 0, 1) as(l, 0, 0)
S; (0, —S45, Css) a5 (Cs, $5C45, Usy)
S, Xs, s, Zs) ap(Wis, —Ulsys Uisa)
S, (Xis, Yis, Zis)  ay3(Ways, —UZis45 Usis4)
S; (Xais, Yais, Zy5)  as(cq, —$4, 0
Set5
S; (0, 0, 1) a5 (1, 0, 0
S, (0, —$s1, cs1) 2 (Ch, $1Cs1, Uis)
S, (X1, Yy, Z1) 2, (Wy, Ulsss Uyis)
S3 (Xa1, Yo1, Zy1) a3 (W3, U35 Uszis)
S, (X321, Y1, Zy1) s (cs, —Ss, 0
Set 6
S, (O, 0, 1) a5 (1, 0, 0
S5 (0, 851, Cs1) a5 (Cs, —85Csy, Usy)
S, (Xs, ~Ys, Zs) a3 (Wys, 3500 Ussy)
S3 (Xss, —Ya4s, Zys)  ay3(Wags, Ulssy Usssi1)
S, (Xaas, —Yass, Zys)  ap(cr, 81, 0)
Set7
S5 (0, 0, 1) a(l, 0, 0)
S, (0, 8455 C45) A4 (C4y —84Cys, Uys)
S; (X4, Y, Zy) 2,3 (Wag, Uls, Usys)
S, (X34, ~Ya4, Z3s) 25, (Wasg, Ulsss Uzass)
S Xa34, -Y234, Z34) as;(cs, 85, 0)
Set 8
S, (0, 0, 1) as(1, 0, 0
S5 (0, $34, Cas) 23 (Cs, —$3C34, Usq)
S, (X5, -Ys, Z3) a;p(Was, Ulsso Upss)
S; Xas, ~Yo3, Zy3) a5 (Wi, Ulsas Ui234)
Ss (X123, ~Yi2, Zy3)  ays(cy, 84, 0)
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Set 9
S5 (0, 0, 1) (1, 0, 0)
S, (0, $23, C3)  apl(c, —8$2C23, Uss)
S, (X3, -Y,, Zs) a5 (Wia, U, Uiz3)
S5 X1, Y1, Z1) a5 (Wsio, Us 103, Usi23)
S, (Xs12, —Ys12, Zs12) 2z (cy, 83, 0)
Set 10
S, (O, 0, 1) ap(l, 0, 0)
S, (0, S12, cn)  as(cy, —$1C12, Up)
S5 (X, =Y, Zy) a5 (Ws, Uz, Usiz)
S, Xs1, =Ys, Zs1) 231 (Wasi, Ulsias Ussin)
S; (X451, —Yus1, Zss1)  ay(cy, $2, 0)
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Equations for a Spherical Hexagon

Fundamental Formulas:

X234 = 85685
X345 = 6186
X3456 = S1281
Xys61 = 82382
Xs612 = $3483

X6123 = 54554

X4321 = 85686
Xs432 = 86181
X543 = 81282
Xigss4 = 82383
Xo165 = $3454

Xa216 = $458s5

Subsidiary Formulas:
Setl X = )—(5

Il
>

Xo3s

6
Xuse = X
Xaser = Xa
Xser2 = X3
X123 = X4
Xz = X6
Xsa3 = Xy
Xesaz = Xo
Xi6sa = X3
Xa16s = X4
X216 = Xs

Set 2 X123 = X54

X234 = Xes
Xass = X6
Xas6 = Xa1
Xs61 = X2
Xe12 = Xg3

Yo =

Yous

Y3456 =
Yise1 =

Ys12 =

Ye123

Y4321

Ysa32 =
Yes543 =
Yiesa =
Yaie5 =

Yanis =

*
—-X 1234
_Y*

2345
XYX*

3456

*
_X4561

Y%
5612 —
*
——X6123 -

_Y*
4321

* —
- X5432
* —
_X6543
——— * o
1654
—_X* —
2615

—X* —
3216

Yis =

856Cs
S61C6
S12€1
823C2
$34C3

S45C4

= S56C6

S61C1
S12€2
$23C3
834C4

845Cs

o
:< ;<| J<'

Ziy34 = Cs6
Zous = Ce1
Z34s6 = C12
Zyse1 = Cn3
Zsg12 = C34
Ze123 = Cu5
Zyz) = Csp
Zs43p = Ce1
Zssaz = C12
Ziess = Cn3
Zr165 = C34
Z316 = Cas
Zis =Zs
Ly =1
Zass =7,
Zis¢ =2,
Zse1 =27,
Zein =Z4
Zyy =Zs

N
wh
+
(8]

1
=

N
(=
X

Il
N

N
[
i
[=

]

N
2
1
N N NN N

N
w
D
=

I
h

Zis =Z7s
Zyg =7
Zys =7,
Zase = Z»
Zsoy =275
Loy =24
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Set3 Xin =

Y32 = —X§,
Ysa3 = —X],
Yeosa = — X35
Yies = — X5,
Yai6 = — X5
Yi1 = X5
Xl = Yssa
X5y = Y
—X3s = Y16
—Xiss = Y21
- ?61 =Yax
—X§12 = Ya3
—Xizn = Ye
~Xsi3=Yn
‘X254 =Y
—XTes = Y4
—X316 = Yas
—X5 = Ys6

Zyy» =1Ls
Zsyz =7
Zesa =7,
Zies =273
Zrie =24
Ly =1Zs
Zi, =1
Ly =Z¢s
Zyy =76
Zys =27y
Zse = Z3;
Zsi =2y
Zyy =72
Zsy =7y,
Zes =1np
Zig =2y
Zy =Zsgs
Zy =Zs

Equations for a Polar Hexagon

Fundamental Formulas:

Ui2345
Ujaase

Usase

Usssiz =

Use123

Usip4 =

Usazp =
Usazis =
Usies =
Usess =
Ulesaz =

Usgsazr =

= S6356

81861
82812

83823

= 84834

85845

86561
85856
84845
83834
825823

81812

V12345

Voause =

V34561

V45612 -

V56123 =

V1214

V54321

Vizie =

Vaies

V21654 =

Viesa3

Vesaz

= 86Cs6

81C61

= $2C12

83C23
84C34

85C45

= S6Ce1

85Cs6

= 84C45

83C34

= 8$2C3

81€C12

Wiaass = C6
Waasse = €1
Wasser = C2
Wise12 = €3
Wss123 = ¢4
Wei24 = Cs
Wsa31 = €6
Wiz = Cs
Wizies = ¢4
W65 = C3
Wigsaz = C2

Wisazz = C1
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Subsidiary Formulas:

Set 1

Set 2

Set 3

Ui23ss = Uss
Unse = Ui
Usase1 = Uz
Ugsg1o = Usp
Usg12s = Ugs
Us23s = Usq
Uss3z1 = Usy
Uysaz16 = Usg
Uszi65 = Ugs
Usies4 = Uy
Ujgsaz = U
Ussaz2 = Upp
Ui23s = Ugsa
Unas = Usss
Usyse = Uaig
Usser = Usyg
Use1z = Usn
Us123 = Usas
Usyz = Uer2
Ugzz1 = User
Usai6 = Usse
Uzi6s = Usas
Ujess = Uz
Usgsas = U
Uy = Usgsy
Upsss = Usss
Usase = Uae
Usser = Usn
Usgrz = Uszz
Us123 = Usqs

*
12345 —

*

U23456
*
34561

*
45612

*
U56123 -

*
61234

* —
54321 —

*
U432 16

*
32165

*
21654 —

*
U 16543

*
U65432

V1234 =

V2 345 —

V3456

Vise1 =

Vse12

V123

Vs =

V432 1

V3216

Vaies =

V1654

Vesaz =

X
U1234 -
X
2345 —
x
U3456
*
4561 —
*
U5612

*
6123 —

Wi23s = Wes
Wosss = Wi
Wigse = Wy
Waser = Wi
Wse12 = Was
Wei2z = Wy
Wiz = We
Wi = Wse
Wizie = Was
Waies = Wi
Wiesa = Was
Wesaz = Wi
Wi23g = Wes
Waags = Wig
Wisse = Wy
Waiser = Wi,
Wse12 = Wa3
Weizz = Wsg
Wiz = Wey
Wiz = Wse
Wazie = Was
Waies = Wag
Wiesa = Was
Wesaz = Wi
Wiz = Wesy
Wazg = Wigs
Wigs = Wage
Wise = Wiy
Wse1 = W3y
We12 = Wsas
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Usgzz = Uenz
Uyzz1 = User
Usz16 = Usse
Uszi65 = Usgs
Ujgsa = Uzzg
Usgsas = Uizs

U§432 = —Ven2
Ulzr = —Vse
Uli6 = — Vase
Usies = — Vs
Ulgss = — Va3

* —
U6543 =—Viz

Wiz = Wep2
Wiz = Wsgy
Wi = Wyse
Waie = Wiys
Wies = Wasy
Wess = W23

Half-Tangent Laws for a Hexagon

Set 1
= Xsase _ Yzuse —Si2
= -
Yass6 + S12 X3456
X — X4561 _ Y4561 — 823
, = - _
Yaiser + s23 X4s61
o Xse1z Yseio—su
;= - —
Yse12 + S34 Xs612
= Xe12s  Ye123 — 45
= - _
Ye123 + 845 Xe123
e o 1234 Y1234 — Ss6
s = —
Y1234 + 856 X234
Xg = X345 _ Yous — a1
Y2345 + Se1 X345
Set 2
< = Xus6 — X2 . Y+ Yo
| = L= ~
Yise — Y2 Xus6 + Xa
) = 561~ X35 Y1+ Y3
- o —
Yse1 — Y3 Xs61 + X3
= Xe12 — X4 . Yen + Y4
3 — — —_— —
Ye12 — Y4 Xe12 + X4
 — Xinm—Xs  Yiz+Ys
4 — — —_— —
Yin—Ys X+ Xs
e — Xoss — X Yo+ Ye
5 — — —_— 3
Y24 — Ys X4 + X
xg = Xas =Xi _ Yas+Y,
Yaus — Y, X5 + X1

X1 =

Xy =

X4

X6

X1

X2

X3

X4

Xs

X6

Xsazz _ Ysa3 —Sel
Ysa32 + S61 Xsa32
Xesa3  _ Yesa3 —Si2
Yes43 + S12 Xes43
_ Xies4 Y1654 — 823
s = _
Y1654 + S23 X 1654
_ Xoes  _ Yaies —Su
Y2165 + S34 X165
e = 3216 Y3216 — S45
s= _
Y3216 + Sas X116
X _ Yy31 — 856
Y321 + Ss6 X4321
X —Xs . Yan+Ys
Y32 — Y5 Xy32 + X6
_ X3 =Xy Yz + Y
Ysa3 — Y, Xs43 + X,
_ Xesa — X2 Yess + Yo
Yesu — Y3 Xesa + X,
_ Xies — X3 Yigs + Y3
Yies — Y3 Xies + X3
_ Xue— X4 Yas+ Yy
Yai6 — Y4 Xo16 + X4
_ X —Xs . Yo+ Ys
Y1 —Ys X391 + X5
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Set3
0 — Xs6 — X2 Ys6+ Y3
= - _
Ys6 — Y32 Xs6 + X3
0 = Xe1 —X43 Y1+ Ya3
, = - _
Y61 — Yas Xe1 + Xa3
X; = Xp—Xss Y+ Yy
Yi2—Ysa X2+ Xsq
= X3—Xes _ Yu+Ye
W= - _
Y23 — Yes Xa3 + Xes
e — Xu—Xi6 Y+ Yie
s = -
Yz — Y6 X3+ X6
xg = Xos—Xo1 _ Yas+ Yy
Yis — Yo Xas + X1
Direction Cosines — Spatial Hexagon
Set 1
S, (O, 0, 1) ap, (1, 0, 0)
S, (0, —S12, C12) 2,3 (Cy, $2C12, Uy)
S; (Xa, Y2, Z2) 234 (W3, -U30, Usi)
Sy (Xaz, Y3, Z3) a5 (W, o R Uizz1)
S5 (X432, Yz, Z432) as6 (Wsa32, U1 Ussz21)
S¢ (Xs4325 Ysas2, Zs437) ag (¢, —S1, 0)
Set 2
_S_2 (Os Oa 1) 323 (13 Oa O)
S;3 (0, —823, C23) a3, (c3, 83C23, Usi,)
S, (Xs, Ys, Z3) 5 (Wa3, Ul Ussz)
S5 (X435 Y3, Zg3) 256 (Wsg3, Ul Uss32)
Se (Xs43, Ys43, Zs43) a6 (Wesas, —Ugsuzas Usgsazz)
S| (X543, Yes43, Zess3) ap, (cy, —$, 0)
Set 3
§3 (Os 07 1) 234 (17 Os O)
S, (0, —S34, C34) 5 (Cq, 84C34, Us)
S5 (X, Y, Zy) a6 (Wsg, ~Uss Usss)
S6 (Xs4, Ysa, Zs4) a5 (Wesa, —Usass Usgsas)
S; (Xes4» Yesa, Zgsa) a1, (Wiesa, —Ulesa3 Ujgs43)
S; (X654, Y 6545 Zi6sa) a3 (c3, —Ss3, 0)
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Set 4
S, (0, 0, D s, 0, 0)
S5 (0, —84s, C4s) s (Cs, 85C4s, Usq)
Ss (Xs, Ys, Zs) ag) (Wes, —Ugss Usss)
S; (Xes, Yes, Zes) a2 (Wies, —Ulgsas Uiesa)
S, (Xiess Yies, Zigs) 2,3 (W2g6s, —U3 6545 Usi6s4)
S; (Xa16s, Y1655 Zyies)  az(Cas —S4, 0)
Set 5
S5 (0, 0, 1) as6 (1, 0, 0)
S (0, —$56 Cs6) A (Ce, 86Cs65 Uss)
S, (X, Y, Zs) ap (Wi, —Ulss> Uies)
S, X, Y, Zig)  ay3(Was, —Uliess Uai6s)
S; (Xa16s Y216, Z16) 234 (W3216, =Uli6s5 Uszi6s)
S, X216 Y32165 Zye)  ys(cs, —Ss, 0)
Set 6
S (0, 0, ) a1, 0, 0)
S, (0, —S61, Co1)  ap(cr, $1C61, Uss)
S, (X, Y1, Z1) Wy, =Ulses Uai6)
S; (Xa1, Yo, Zy) a3 (W3, U6 Usa16)
Sy (X321, Y321, Z31) 5 (Waza1, —Ulnie Uss216)
S5 (X4321, Y21, Z4321) as4 (Cs, —S¢, 0)
Set 7
S, (O, 0, ) a1, 0, 0)
Se (0, S615 C61) s (Cos —86C61, Us1)
S;5 (X6, —Ye, Zs) 245 (W, Ul Use1)
S; (Xss, —Ys6, Zss) a3 (Wass, 561> Usse1)
S; (Xuse, — Y456, Z4s6) 253 (Wasse, Uliser Usase1)
S, (X456, =Y3as6, Zyse)  ap(cr, S1, 0
Set 8
S (0, 0, 1) as6 (1, 0, 0)
S5 (0, 8565 Cs6) s (Cs, —85Cs6, Use)
S, (Xs, -Ys, Zs) a34 (Wys, Ulses Usse)
S; (Xas, ~Yas, Zys) Ay (Wags, Ulsses Uaase)
Sy (Xsas, —Y s, Z345) ap; (Wos, Ulsuse Usaase)
S; (Xasas, =Y 235, Zyas) g (Cs, S65 0)
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Set 9
S; (0, 0, ) as(l, 0, 0
S, (0, S45, C45) 234 (Cy, —84C45, Uss)
S; (X4, =Y, Zy) 253 (Wi, U, Usss)
S, (X4, ~Y34, Z34) a; (Was, Ulsuse U23s5)
S; (X234, —Yo1s, Z534) ag (Wi2as, Ulsasse Ujaass)
Se (X234, =Yi24, Zipa)  ase(cs, S5, 0
Set 10
S4(0, 0, 1) ay(, 0, 0
S5 (0, $34, Ciq)  anlcs, —83C34, Usq)
S, (X3, -Y;, Z3) 2, (Was, Ul Uz34)
S (Xas, —Yo3, Z23) ag) (Wi, Ul Ui234)
S¢ (X123, —Y 123, Zy23) as6 (Wei23, U§ 12340 Us1234)
S5 (X6123, —Ye123, Zeiz)  ays(cy, 84, 0
Set 11
S5 (0, 0, ) a,(, 0, 0
S, (O, 823, c3)  ap(c, —$2€23, Uas)
S, (Xs, -Y2, Z3) ag (Wi, 1230 Ui23)
S¢ (X2, Y2, Z12) ase (W12, | B)SPY Usi23)
S5 (Xe12, —Ys12, Zs12) a5 (Wser2, 561230 Use123)
S, Xse12, =Ys612, Zsg12)  ag(cs, 83, 0
Set 12
S, (0, 0, D apd, 0, 0
S, (0, S12, C2) 3 (e, —81C12, Up)
Se (X1, -Yy, Zy) a56 (We1, Ut Us12)
S5 (Xe1s —Yo1, Zs1) a5 (Wsey, Uss12s Use12)
Sy Xse1, —Ys61, Zs1) a3, (Wase1, Ulse120 Usssi2)
S; (Xase1, —Yas61, Zss61) ay (¢, 82, 0)
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Equations for a Spherical Heptagon

Fundamental Formulas:

Xi2345

Xoss6 =

X34567
Xas671
Xs6712
Xe7123

X71234

Xs4321
Xes5432
X76543
X17654

X21765

X32176 -

X317

86786
87187
81281
82382
$3483
84584

85685

= 86757

87181
81282
82383
83484
84585

85656

Y 12345
Y3456
Y4567
Yase71
Yse712
Yeo7123

Y1234

Y4321
Yes432
Y543
Y 17654
Y21765
Y3217

Y3217

S67C6
871C7
$12€1
$23C2
$34C3
845C4

856Cs

= $¢7C7

871C1
812C2
$23C3
834C4
845Cs

856C6

Subsidiary Formulas:

Set 1

Xizas = X
Xaase = X7
Xauser = X1
Xaser1 = Xz
Xser12 = X3
Xers = X4
X714 = Xs
Xsa31 = X7
Xosaz2 = X4
X76s43 = X2
Xi7654 = X3
Xo176s = X4
Xs2176 = X5
Xaz17 = Xe

—Xuser = Y
—Xiser1 = Y2
—XS6712 = Y3
—X27123 =Y,

. o
_X71234 =Ys

—X541 = Y7
—Xosa32 = Y1
—X6s43 = Y2
_XT7654 =Y3
—X6715 = Y4
—X%176 = Ys

* —
_X43217 - Y6

Ziy3s = Ce7
L3456 = €71
ZL3ss1 = C12
Zyse11 = O3
Zsg712 = Ca4
Ze7123 = C45
Z71234 = Cs6
ZLss3o1 = Cey
Zgsazs = C11
Zyes43 = C12
Zi7654 = C23
Zy1765 = C34
L3176 = C45
Z43217 = Cs6
Zips = Zs
Zosss =2y
Zasse = 2,
Zissr =2,
Zsen = Zy
Zeya =24
Zy=1Zs
Lsyzy = 24
Losaz =7y
Zogsa =1y
Zizes = Zs
Lore =2y
Ly =Zs
Ly = Zs
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Set 2

Set3

Set 4

X123 = Xes
Xa34s = X716
X3as6 = X17
Xaser = Xa1
Xs611 = X32
Xer12 = Xa3
X7123 = Xs4
Xs432 = X71
Xesa3 = X2
X654 = X3
X165 = X34
Xa176 = Xas
X3217 = Xs6
X321 = Xe7
X1234 = Xes
X345 = X716
X356 = X17
Xase7 = Xa1
Xsen1 = X3
Xem2 = Xa3
X7123 = X54
Xs43 = X711
Xes43 = X12
X654 = X3
X765 = X34
Xa176 = Xas
X317 = Xs6
X321 = Xe7
X123 = Xesa
X234 = X765
X345 = X176
Xss6 = Xa17
Xs67 = X321
Xen = Xa3
X712 = X543

Yi23a = —X5s
Y45 = — X3
Yias6 = — X7y
Y567 = =X,
Yser1 = —X3,
Yer2 = —X33
Y723 = —X§,4
Y43 = — X3,
Yesa3 = — X7,
Y654 = — X33
Yies = —X3,
Yai176 = = X5
Ya217 = — X5
Y1 = —X§;
—Xi234 = Yes
_X§345 = Y76
—X3as6 = Y17
_X2567 =Yz
—X5671 = Y32
X2 =Ya3
— X013 = Ys4
_X§432 =Y
—Xgs3 = Y12
_X§654 =Y
—Xi76s = Y34
X376 = Yas
—X%17 = Yse
—Xi = Yo7
Yis = —XGs4
Yo = —Xgs
Y5 = —Xis6
Yase = — X317
Yse7 = _X321
Yo = =X,

Zizss = Zs
Zyus =27,
Zasss = Z,
Ziss1 =2,
Zser = Z3
Zeio = Z4
Znos =Zs
Zsyzy =74
Zesiz =7,
Zagsa =12y
Zyes =23
Lype =24
Ly =1Zs
Zyn = Zs
Ly = Zgs
Zys =Zs6
Zys=1n
Zsse = 2y
Zsgy =1,
Zen =1y
Zyy =Zs4
Zsyz =7y
Zess =1
Zags = ZLn3
Zyre = Zsg
Zyyy =Zss
Z3 =Zss
Ly =1
Ziys = Zss
Zyzs = Zys
Zys=1p
Zyse = 7o
Ls; =1,
Zen =1y
Zyyy =Zsy
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Xsa3 = X712
Xesa = X123
X765 = Xp34
X176 = X345
Xa17 = Xase
X321 = Xse7
X432 = X1

Y53 = —X7,
Y654 = _XTB
Y65 = — X334
Yirs = —Xs
Y217 = —Xis
Yau = —X5¢;
Yaz2 = —X§7

Lsyz =Ly
Zesa = Z12
Zres = ZLn3
Zize = Zay
Loy = Zys
Ly =Zss
Ly =Ze;

Equations for a Polar Heptagon

Fundamental Formulas:

Uiz3ss6 =

Usaaser
Usgse71
Usser12
Use7123
Usg71234
U712345

Usgsazzi

U543217 =

Usz2176
Usz1765
Us 17654
U\76543

U765432

87867
$1871
82812
83823
84834
85845

= S¢Ss56

= $7871

86567
855856
84845
83834
82823
81812

Subsidiary Formulas:
Set 1 Ujgse = Uze

Usasse7 = Uz

Uagse71 = Uy

Usser12 = U3y

Usgri2s = Uas

Ug71234 = Usy

U712345 = Ugs

Usgsazzr = Uy

Us43217 = Usy

Usszi76 = Use

Usz1765 = Uss

Uszi76sa = Uz

Ui7es43 = Usz

Uses432 = Uy

Viase =

Vosase7

Vias671

V4567 12

V567123
V671234 =

V712345

Vesaz =
Vsazoir =
Vanize =

V321765

V2 17654

\4 176543

V765432

* —
U 123456 —
*
234567
* —
U34567 1=
* —
456712 —
* —
U567 123 —
* —
671234 —

*
712345 —

* —
U654321 -

U*543217 =

* —

U432176 -
*
321765
* —
217654 —
* —

U176543 -

*
765432 —

87C67
$1C71
82C12
83C23
84C34
85Cas

= S¢Cs6

$7C71
86C67
S5Cs6
84C45
83C34
$2C23
81C12

Wiziss6 = €7
Wauser = ¢
Wigserr = €2
Waser12 =
Wser123 = C4
Wer1234 = Cs
Wii2a4s =

Wesazar = &

Wsa3217 = Cs
Wazi76 = Cs
Wizires = Ca4
Wai7es4 = C3

Wizesazs = €2
Wiesazn = €

Winaas = W
Waagse = Wy
Wasser = Wy
Waser1 = Way
Wser12 = Wy3
Wer123 = Wsy
Wri234 = Wes
Wesaz = Wy
Wsa321 = Wey
Wisz17 = Wse
Wizire = Was
Warres = Wiy
Wizess = W3
Wigsas = Wy
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Set 2

Set 3

Set 4

Ui2345 = Uzes
Uszzss6 = Urrs
Ussse7 = Uy
Uysert = Uz
User1iz = Usgsz
Ugri2z = Usaz

U71234 = Uss4

Usgsaz2 = Unnz
Usszz1 = Ugny
Usaoi7 = Usgr
Us176 = Usse
Usi76s = Usss
Ujzes4 = Uzzg

U76s43 = Uiz

Uj23ss = Uses
Uzsase = Urzs
Ussser = Uapr
Usgsert = Usyy
Usgr1z = Uss,
Ug7123 = Usss

U71234 = Usss

Usgsazz = Urpz
Usyz21 = Ugny
Usz217 = Usgy
Usz176 = Usse
Usi7es = Usss
Ui76ss = Uz
Uzgsaz = Unas

U2z = Uzess
Uzss = Uyres
Ussse = U176
Usser = Uspyy
Usgrr = Usa
Ug712 = Usaaz

U7123 = Ugsaz

Vigss =

Voss6 = —

Vigser
Vasenn
Vse712
V7123

V71234

Vesaz2 =

V4321
Vinir
V32176
Vai76s
V17654

V76543

* —

12345 —

* —
U23456

* —
U34567

* —

45671

* —

56712 —

* —
U67 123

*
71234

* —_—

65432 —

* —_—

54321

* —
U43217

* —_—
32176

*
21765

* —
17654

*
76543 —

I AE
765

Wizas = Wy
Wasgse = W17
Wisser = Wa
Wiser1 = Waz
Wser12 = Wa3
Wer123 = Wiy
W71234 = Wes
Wesazz = Wr
Wsa31 = Wer
Wasz17 = Wse
W3i76 = Ws
Wai76s = Wiy
Wizess = Wp3
Wiesaz = Wi
W34 = Wies
Waiss = Wygs
Wisse = Wary
Waser = Wiy
Wsert = Wz
Wer12 = Wsgz
W73 = Wesy
Wesaz = Wrpp
Wsa32 = Wy
Wiz = Wser
W17 = Wase
W76 = Wags
Wizes = Wang
Wiess = Win
Wi = Wres
Waigs = Wyrs
Wisse = Wary
Wiser = Wi
Wser1 = Wz
Wer12 = Wsg3
W73 = Wesq
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Ussaz = U7123
Usazz = Ugrnz
Ugzz1 = Usent
Uz17 = Usser
U376 = Usass
Uj76s = Uaas

Us7gss = Uine

— _IT*
[J7123

— _IT*
[J6712

— __IT*
5671

— _TIT*
4567

— _IT*
3456

— _1I*
[J2345

— _T7*
1234

Wesaz = Wopo
Ws432 = Wery
Wiz = Wsgr
W17 = Wayse
W76 = Wags
Wizes = Waxg
Wogsa = Wiz

Half-Tangent Laws for a Heptagon

Set 1

X1

X2

X3

X4

Xs

X6

X7

Set 2

X1

X2

X3

X4

Xs

X6

X7

i

Xaas67  _ Yaase7 —Si
Y4567 + S12 X34567
Xas671 _ Yuser1 —Sx3
Yase71 + $23 X45671
Xs6712 _ Yse710 — 834
Ys6712 + 834 Xs6712
X67123 _ Ye7103 — S4s
Y7123 + S4s Xe67123
X7z Y71234 — Ss6
Y71234 + Ss6 X71234
Xigaas  _ Yiozs —S¢7
Y 12345 + S¢7 X12345
Xosase  _ Yozss — 871
Yosse + 571 X23456
Xessr = X2 Yawser + Y,
Yaser — Y2 Xaser + X2
Xson — X3 Ysen +Y;
Ysen — Y3 Xser1 + X3
Xez—Xe _ Y+ Y4
Yoro — Yo Xemo + X4
X7123 — X _ Yus+ Ys
Y7123 — Ys X713 + Xs
X223 — X Y+ Yo
Yo — Y X234 + X6
Xosas — X7 _ Yos + Y,
Yous — Y7 Xos + X5
Xaas6 — Xi _ Yaus6 + Yi
Yass — Y1 Xaase + X4

X =

Xy =

X3 =

X5 =

X =

X7 =

X1 =

Xy =

X3 =

X5 =

X =

X7 =

Xesa32  _ Yesa32 — 871
Yes432 + 71 Xe6s5432
X76543 _ Y7e543 — S12
Y6543 + 812 X76543
Xizesa _ Yizess — 823
Y7654 + 23 X 17654
_ Xuzes  _ Youzes —Su
Y1765 + S34 Xo1765
Xnre Y3716 — Sas
Y3716 + $45 X32716
Xagoi7  _ Yami7 —Ss6
Y3217 + Ss6 Xa3217
Xsaso1  _ Ysa31 — S¢7
Ysaso1 + 867 Xsa321
Xsan = X7 Ysap+ Y7
Yz — Y7 Xsam + X7
Xesas — X1 Yesaz + Y4
Yeos43 — Y1 Xesa3 + X4
X765 — X2 Y7654 + Y2
Y7654 — Y2 X654 + X2
_ Xites — X3 Yires + Y3
Yi76s — Y3 X765 + X3
Xoirs = X4 Yo+ Ya
Yoie — Ya  Xouze + X4
Xair—Xs _ Yo+ Ys
Yir—Ys  Xau7+ Xs
Xagon — X6 Yz + Y5
Yai —Ye  Xazn + Xo
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Set 3
oS Xn Yo+ ¥Yn - Xm—Xg Yt Ye
1= = - 1= = -
Yse7 — Y32 Xs67 + X32 Y2 — Yo7 Xz + X7
X, = Xen—Xs Yo+ Yas 0 = Xss = X1 Ysa3+ Y7
= - ) = -
Yer1 — Ya3 Xe71 + Xa3 Ysis — Y7 Xsa3 + X71
o — X2 —Xsa Y2+ Ys4 o Xesa — X2 Yesa+ Yo
3= == 3= = —
Y712 — Ys4 xX712 + Xs4 Yes4a — Y12 Xesa + X12
oo Zm = Xes _ Yim+ Yes Xy = X76s — X2z Y65 + Yo3
= _ _ _ - _
Y23 — Yes X123 + Xes Y765 — Y3 X765 + Xo3
e — Xoss — X7 ~ Yo34+ Yoe e — Xi76 — X34 Yize + Ya
> You — Yrs Xo3s + X6 > Yi6— Y X176 + X34
xg = X5 — X7 Yaus+ Yy xg = Xor —Xas _ Yorr + Yas
Yas — Y17 Xas + X7 Y217 — Yas Xo17 + Xas
< — Xaso — Xo1  Yaso + Yo < X321 — Xs6 Y31 + Yse
7] = - - 6 — = —
Yase — Yo Xas6 + Xo1 Y321 — Yse X1 + Xs6
Direction Cosines — Spatial Heptagon
Set 1
§1 (O’ O, 1) _a_12 (13 O, O)
S, (0, ~S12, C12) 23 (C2, $2C12, Usp)
S5 (Xa, Y2, 7)) 2, (W3,  =Uj,, Usy)
Sy (X3, Ya, Z3) 45 (Wazn,  —Ujsyps Ussz1)
Ss(Xaz,  Yaso, Zsi32) 256 (Wsazp, —Ulp,  Usang)
Se(Xsazz, Ysazn, Zsan) 267 (Wesazz, —Ufsannyr Ussason)
S; (Xesazn, Yesazz, Zesazn) a7 (cy, ~$y, 0)
Set 2
§2 (O, O, 1) 223 (19 Os O)
S; (0, —S73, C23) 234 (C3, $3C23, Uszy)
S, (X3, Y, Z3) a5 (Was,  —Uj,, Uss)
Ss(Xaz,  Ya3, Z43) 256 (Wsaz,  —Uysy, Usa)
S (Xsaz,  Ysas, Zsa3) 267 (Wesaz, —Ugsszn,  Usgsaso)
S;(Xesaz, Yesas,  Zesaz) a7, (Waesa3, —Ulesszn, U7esan)

S (X543, Y7543, Z76543) ap, (¢, —$9, 0)
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Set 3

Set 4

Set 5

Set 6

S5 (0,

S, (0,

S5 (X,

S¢ (Xs4,
Sy (Xes4,
S (X654
S, (X176545

S, (0,

S (0,

S5 (Xs,

S; (Xes,
S; (X765,
S; (X176s>
S5 (X21765>

S5 (0,

S¢ (0,

S; (Xe,
S1 (X6
Sz (X176,
S3 (Xa176,

Sy (X321765

S6 (0,

S; (0,

S, X7,

S, (X7,
S3 (X217,
Sq (X3217,
S5 (X43217,

0, 1)
—S34, C34)
Y, Zy)
Y4, Zsy)

Yes4, Zssa)
Y7654,  Zr6sa)

Y7654, Zi7654)

0, 1)
—S45, C45)
Ys, Zs)
Yes, Zgs)

Y65, Z6s)
Yi76s,  Zies)
Y21765, Z21765)

0, 1)
—$s6, Cs6)
Ys. Z)
Y76, Zs6)

Y176, Z176)
Yo7, Z2176)

Y32176,  Z32176)

0, 1)
—S67, C67)
Y, Z7)
Y17, Zy7)

Y217, Z517)
Y3217, Zs7)

Y217, Zazo17)

a3, (1,

s (Cq,

256 (Wsg,
257 (Wesa,
a7, (Wresa,
215 (Wyr6sa,

2,3 (C3,

a5 (1,

s (Cs,

257 (Wes,
a7 (Woes,
21, (Wy7es,
253 (W75,

23, (Cq,

a6 (1,

ag; (C6,

a7 (W,
a5, (Wyrs,
3 (Way76,
a3, (W76,

s (cs,

a7 (1,

ay; (c7,

2, (Wys,
253 (Way7,
a3, (W37,
s (Wasa17,

as6 (Co,

0, 0)
$4C34, Uys)
—Usss, Uss3)
—Ugsas» Uégsa3)

*
_U76543 B U76543 )

*
_U176543, U176543)

_539 O)
0, 0)
S5Cas, Us,)
_Uz54y U654)
—UZgoas Uqes4)

*
_U17654a U17654)

*
—U217654, U217654)

—S4, O)
0, 0)
$6Cs65 Uss)
—UZgss Uges)

—Ulzs Uy7s)
*
—U21765, U21765)

—U%196s»  Us2i76s)

—S8s, O)
0, 0)
$7C67, Usy)
=Ul Ui7)

*

—U2176, U2176)
*

—U32176, U32176)

—Uls176: Uanize)
—S6, O)
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Set 7
S, (O, 0, ) a;(, 0, 0)
S, (0, =871, c71) a;, (¢, 81€71, U7)
S, (X1, Y Z) 3 (Way, U3, Usi7)
S3 (X2, Yoy, Zy1) 34 (W3, U3, 5, Usi7)
S4 (X321, Y31, Z331) a5 Wazoi, —Ulss Usnoir)
Ss (X321,  Yazar, Zy321) as6 (Wsa21, —USszp17, Usazarr)
Se (Xsaz21, Ysanat,  Zsazz1)) 267 (Cr, —87, 0)
Set 8
S, (0, 0, 1) a,, 0, 0)
S; (0, $71, c71) a7 (¢, —87C71, Usp)
Se (X7, -Y7, Z7) 256 (Wer,  Ugyy, Us71)
Ss Xe7»  —Yer, Zs7) a5 (Wse7,  Usgys Use71)
Sy Xser,  —Yser, Zse7) 234 (Wyse7,  Ulserps Uyse71)
S; Xase7, —Yaser,  Zaser) 273 (Waase7, Ulgsers Usasent)
S; Xaaser, —Yaaser, Zaaser) — app(cr, 81, 0)
Set9
S; (0, 0, 1) a7 (1, 0, 0)
S6 (0, $67, Ce1)  ase (Co, —86C67, Uer)
S5 (X6, —Ys, Zs) a5 (Wss, U, Usg7)
S; Xse,  —Yse, Zse) 234 (Wass,  Ulsers Uyser)
S3 (Xase,  —Yase, Zys6) 23 (Wagss, Ulysers Usss67)
Sy Xagses —Yause,  Zaass) 217 Wassss, Ulysser,  Unzaser)
S (Xazase» —Yasase, Zouse) 7 (C, $7, 0)
Set 10
S (0, 0, 1) as(l, 0, 0)
S5 (0, 8565 Cse)  5(Cs, —85Cs6, Use)
S, (Xs, -Ys, Zs) a3, (Wys, Ul Usse)
S3(Xas,  —Yygs, Zss) B3 (Wags,  Ujyses Usase)
S, Xaas,  —Yus, Zsss) 2, Wass,  Ulyyees Usause)
S; Xazas, —Yoaas,  Zos) a7 Wiaus, Ulsagses  Uizaase)
S; (Xi23as, —Yizsas, Zioass) 867 (Cos S6 0)
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Set 11

Set 12

Set 13

Set 14

S5 (0,

S, (0,

S; (X4,
S, (X34,
S| Xo34,
S; (X234,

S¢ (X71234,

S, (0,

S5 (0,

S, (X3,

S| (Xa3,
S; (Xi23,
S¢ (X7123,
Ss (Xe7123

S5 (0,

S, (0,

S, (Xa,

S; Xi2,
Se (X712,
Ss (Xe712
S, (Xse712,

S, (O,

S, (O,

S; (X1,

S (X71,
S5 (X671,
S, (Xs6715
S3 (Xas671,

0, 1)
845, C45)
~Y4, Zs)
Y34, Z34)

=Y 34, Z334)

~Yi34,  Zi2za)

—Y71234, Z71234)

0, 1)
834, C34)
-Ys, Z3)
~Y23, Z53)

=Y 23, Z153)
=Y,  Zzs)

—Ys7123, Ze7123)

0, 1)
$23, 23)
-Yo, Z,)
—Yi2, Zy2)

—Y712, Z712)

—Yes712,. Zsn12)

—Ys6712, Zse712)

0, 1)
S12, C12)
=Yy, Zy)
=Y, Zyy)

—Ye71, Zs1)
~Yse71.  Zsen)

—Yaser1, Zase1)

a5 (1,

a3, (Cq,

a3 (W,
a1, (Wasg,
27; (Wiaa4,
257 (W71234,

g56 (CS ’

a (1,

ay (c3,

2, (Was,
a7 (W3,
ag7 (W73,
256 (Wer123,

s (€45

ay (1,

a); (¢,

a7 (W,
ag (Waia,
256 (Wer12,
s (Wsgr12,

a3, (3,

a,, (1,

a; (¢,

257 (Wyy,
256 (Werl,
s (Wser1,
234 (Waser1,

253 (2,

0,
—54Cys,
Ulss,
Ul
Ul

*
Ul 123450
85,

0,
—83C34,
Ul
Ulzas
U 12345
Ug12340

84,

0,
—52C23,
Uiy,
Ul
Ug1230
User123-

83,

0,
—81C12,
Ul
Ug125
User125
Ulser120

82,

0)
Uys)
Usss)
Usj34s)
Ul2345)

U712345)
0)

0)

Usy)
Upsa)
Ui2s4)
U71234)

U671234)
0)

0)
Uss)
Uix)
U7i23)
Ug7123)

Usgr123)
0)

0)
Up)
Una)
Ugr12)
Usg712)

U456712)
0)
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Bezout’s solution method, 109-110 half-angle-laws, 163164
Hooke joint, 26
CCC Spatial Manipulator, 99-102 hypothetical closure link, 46-51
Cincinnati Milacron T3-776 robot, 338-351
classification of spatial mechanisms, 56-59 industrial robots:
close-the-loop, 47-51 Cincinnati Milacron T3-776, 338-351
compound transformations, 9—10 G.E. P60, 328-338
coordinate transformations, 4—17 Puma, 4041, 320-328
cylindric joint, 23 inverse of a transformation, 7-9

iterative solution techniques, 45-46
degrees of freedom, 4, 22-24, 26, 54-56

dual angles, 114-115 joints:

dual numbers, 112-114 Hooke joint, 26
plane joint, 24-25

elimination, 107-110, 162, 204, 375 prismatic joint, 22-23

equivalent spherical mechanism, 53-54 revolute joint, 21-22
screw joint, 23

forward kinematic analysis, 3941 spherical joint, 26-27

4 4 transformation matrices, 7
kinematic chain, 27-31, 57-58

G.E. P60 robot, 328-338 kinematic inversion, 57

general transformations, 13-17 Kotelnikov, 115

Group 1 Spatial Mechanisms:
RCCC, 99-102 labeling of kinematic chain, 27-31
RCPCR, 92-95 LaPlace’s theorem, 175-176
RRPRPPR, 95-99

Group 2 Spatial Mechanisms: mobility, 54-58
RCRCR, 117-124 Modified Flight Telerobotic Servicer robot, 362-379
RRCCR, 124-128
RRRPCR, 129-133 plane joint, 24-25
RRPRCR, 133-139 point transformations, 5-6
RRPRRPR, 139-157 polar polygons:

Group 3 Spatial Mechanisms: heptagon, 87
RCRRRR, 164-178 hexagon, 87
RRPRRRR, 178-202 pentagon, 84

Group 4 Spatial Mechanisms: quadrilateral, 83-84
7R, xii, 2, 204-266 triangle, 73-75
RRRSR, 266-276 polar sine, sine-cosine, and cosine laws:
RRSRR, 276-285 heptagon, 87
RSTR, 285-290 hexagon, 87
RTTT, case 1 290-299 pentagon, 84
RTTT, case 2 299-308 quadrilateral, 83-84

RRR-R-RRR, 308-317 triangle, 73-75
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principle of transference, 115
prismatic joint, 22-23
projection of vector loop equation, 111
Puma robot:
forward displacement analysis, 4041
reverse displacement analysis, 320-328

quaternions:
algebra, 382-384
conjugate, 384
definition, 381-382
division, 386-387
norm, 385-386
rigid body rotations, 387391

RCPCR mechanism, 92-95
RCRCR mechanism, 117-124
RCRRRR mechanism, 164-178
recursive notation:

U, V, W definitions, 65-67

X, Y, Z definitions, 60, 62, 64, 187
reverse displacement analysis problem statement, 44
revolute joint, 21-22
rigid body rotation, 387-391
rotation matrix, 1317
RRCCR mechanism, 124-128
RRPRCR mechanism, 129-133
RRPRPPR mechanism, 95-99
RRPRRPR mechanism, 139-157
RRPRRRR mechanism, 178-202
RRRPCR mechanism, 129-133
RRRSR mechanism, 266-276
RRR-R-RRR mechanism, 308-317
RRSRR mechanism, 276-285
RSTR mechanism, 285-290
RTTT mechanism, 290-308

screw joint, 23
secondary cosine laws, 112-117

self-scalar product, 111-112
7R mechanism, xii, 2, 204-266

Space Station Remote Manipulator System,

352-362
spatial link, 20-21
spherical joint, 26-27
spherical link, 53
spherical polygons:
heptagon, 86-89
hexagon, 86-87
pentagon, 84-86
quadrilateral, 75-84
triangle, 68-75

spherical sine, sine-cosine, and cosine laws:

heptagon, 86-87
hexagon, 86-87
pentagon, 84
quadrilateral, 75-76
triangle, 68-70

standard link coordinate systems, 33-34

standard transformations, 10-11

subsidiary sine, sine-cosine, and cosine laws:

heptagon, 86-87
hexagon, 86-87
pentagon, 84
quadrilateral, 82-83
Sylvester’s solution method, 108-109

tan-haif-angle solution, 77-78
tan-half-angle laws, 163-164
transformations:

between standard coordinate systems, 34-36

compound, 9-10

coordinate, 4—17

general, 13-17

inverse, 7-9

point, 5-6

standard, 10-11
trigonometric solution, 78-79



