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Preface

Mechanisms and robots have been and continue to be essential components of me-
chanical systems. Mechanisms and robots are used to transmit forces and moments
and to manipulate objects. A knowledge of the kinematics and dynamics of these
kinematic chains is most important for their design and control. MATLAB® is a
modern tool that has transformed the mathematical calculations methods because
MATLAB not only provides numerical calculations but also facilitates analytical
calculations using the computer. The present textbook uses MATLAB as a tool to
solve problems from mechanisms and robots. The intent is to show the convenience
of MATLAB for mechanism and robot analysis. Using example problems the MAT-
LAB syntax will be demonstrated. MATLAB is very useful in the process of deriv-
ing solutions for any problem in mechanisms or robots. The book includes a large
number of problems that are being solved using MATLAB. The programs are avail-
able as appendices at the end of this book.

Chapter 1 comments on the fundamentals properties of closed and open kine-
matic chains especially of problems of motion, degrees of freedom, joints, dyads,
and independent contours. Chapter 2 demonstrates the use of MATLAB in find-
ing the positions of planar mechanisms using the absolute Cartesian method. The
positions of the joints are calculated for an input driver angle and for a complete
rotation of the driver link. An external m-file function can be introduced to calcu-
late the positions. The trajectory of a point on a link with general plane motion is
plotted using MATLAB. In Chap. 3 the velocities and acceleration are examined.
MATLAB is a suitable tool to develop analytical solutions and numerical results for
kinematics using the classical method, the derivative method, and the independent
contour equations. In Chap. 4, the joint forces are calculated using the free-body di-
agram of individual links, the free-body diagram of dyads, and the contour method.
MATLAB functions are applied to find and solve the algebraic equations of motion.
Problems of dynamics using the Newton—Euler method are discussed in Chap. 5.
The equations of motion are inferred with symbolical calculation and the system of
differential equations is solved with numerical techniques. Finally, the last chapter
uses computer algebra to find Lagrange’s equations and Kane’s dynamical equations
for spatial robots.
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Chapter 1
Introduction

1.1 Degrees of Freedom and Motion

The number of degrees of freedom (DOF) of a mechanical system is equal to the
number of independent parameters (measurements) that are needed to uniquely de-
fine its position in space at any instant of time. The number of DOF is defined with
respect to a reference frame.

Figure 1.1 shows a rigid body (RB) lying in a plane. The distance between two
particles on the rigid body is constant at any time. If this rigid body always remains
in the plane, three parameters (three DOF) are required to completely define its
position: two linear coordinates (x,y) to define the position of any one point on the
rigid body, and one angular coordinate 0 to define the angle of the body with respect
to the axes. The minimum number of measurements needed to define its position are
shown in the figure as x,y, and 0. A rigid body in a plane then has three degrees of
freedom. The particular parameters chosen to define its position are not unique.
Any alternative set of three parameters could be used. There is an infinity of sets
of parameters possible, but in this case there must always be three parameters per
set, such as two lengths and an angle, to define the position because a rigid body in
plane motion has three DOF.

Six parameters are needed to define the position of a free rigid body in a three-
dimensional (3-D) space. One possible set of parameters that could be used are

Fig. 1.1 Rigid body in planar
motion with three DOF:
translation along the x-axis,
translation along the y-axis,
and rotation, 0, about the
z-axis
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three lengths, (x,y,z), plus three angles (6y, 6y,0,). Any free rigid body in three-
dimensional space has six degrees of freedom.

A rigid body free to move in a reference frame will, in the general case, have
complex motion, which is simultaneously a combination of rotation and translation.
For simplicity, only the two-dimensional (2-D) or planar case will be presented. For
planar motion the following terms will be defined, Fig. 1.2:

pure rotation

pure rotation

pure rectilinear translation

pure rectilinear translation

pure curvilinear translation

pure curvilinear translation
(e, O
R E
R

general plane motion general plane motion

()

Fig. 1.2 Rigid body in motion: (a) pure rotation, (b) pure translation, and (c) general motion



1.2 Kinematic Pairs 3

1. pure rotation in which the body possesses one point (center of rotation) that has
no motion with respect to a “fixed” reference frame, Fig. 1.2a. All other points
on the body describe arcs about that center;

2. pure translation in which all points on the body describe parallel paths, Fig. 1.2b;

3. complex or general plane motion that exhibits a simultaneous combination of
rotation and translation, Fig. 1.2c.

With general plane motion, points on the body will travel non-parallel paths, and
there will be, at every instant, a center of rotation, which will continuously change
location.

Translation and rotation represent independent motions of the body. Each can
exist without the other. For a 2-D coordinate system, as shown in Fig. 1.1, the x and
y terms represent the translation components of motion, and the 8 term represents
the rotation component.

1.2 Kinematic Pairs

Linkages are basic elements of all mechanisms and robots. Linkages are made up
of links and joints. A link, sometimes known as an element or a member, is an
(assumed) rigid body that possesses nodes. Nodes are defined as points at which
links can be attached. A joint is a connection between two or more links (at their
nodes). A joint allows some relative motion between the connected links. Joints are
also called kinematic pairs.

The number of independent coordinates that uniquely determine the relative po-
sition of two constrained links is termed the degree of freedom of a given joint.
Alternatively, the term degree of constraint is introduced. A kinematic pair has the
degree of constraint equal to j if it diminishes the relative motion of linked bodies
by j degrees of freedom; i.e. j scalar constraint conditions correspond to the given
kinematic pair. It follows that such a joint has (6 — j) independent coordinates. The
number of degrees of freedom is the fundamental characteristic quantity of joints.
One of the links of a system is usually considered to be the reference link, and the
position of other RBs is determined in relation to this reference body. If the refer-
ence link is stationary, the term frame or ground is used.

The coordinates in the definition of degree of freedom can be linear or angular.
Also the coordinates used can be absolute (measured with regard to the frame) or
relative.

Figures 1.3a and 1.3b show two forms of a planar, one degree of freedom joint,
namely a rotating pin joint and a translating slider joint. These are both typically
referred to as full joints. The one degree of freedom joint has 5 degrees of con-
straint. The pin joint allows one rotational (R) DOF, and the slider joint allows one
translational (T) DOF between the joined links.

Figure 1.4 shows examples of two degrees of freedom joints, which simultane-
ously allow two independent, relative motions, namely translation (T) and rotation
(R), between the joined links. A two degrees of freedom joint is usually referred to
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One degree of freedom joint Schematic representation

1
R
/

0
1 2
1 2 v
1
2

~— R ~—~ R

T/ ?
- (b)

Fig. 1.3 One degree of freedom joint, full joint (cs): (a) pin joint, and (b) slider joint

T
s
1
2

<\

two DOF joint

(0)

Fig. 1.4 Two degrees of freedom joint, half-joint (c4): (a) general joint, (b) cylinder joint, (c) roll
and slide disk, and (d) cam-follower joint

as a half-joint and has 4 degrees of constraint. A two degrees of freedom joint is
sometimes also called a roll-slide joint because it allows both rotation (rolling) and
translation (sliding).

Figure 1.5 shows a joystick, a ball-and-socket joint, or a sphere joint. This is
an example of a three degrees of freedom joint (3 degrees of constraint) that allows
three independent angular motions between the two links that are joined. Note that to
visualize the degree of freedom of a joint in a mechanism, it is helpful to “mentally
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Fig. 1.5 Three degrees of z
freedom joint (c3): ball and Schematic representation
socket joint R

disconnect” the two links that create the joint from the rest of the mechanism. It is
easier to see how many degrees of freedoms the two joined links have with respect
to one another.

The type of contact between the elements can be point (P), curve (C), or surface
(S). The term lower joint was coined by Reuleaux to describe joints with surface
contact. He used the term higher joint to describe joints with point or curve contact.

The order of a joint is defined as the number of links joined minus one. The com-
bination of two links has order one and it is a single joint, Fig. 1.6a. As additional
links are placed on the same joint, the order is increased on a one for one basis,
Fig. 1.6b. Joint order has significance in the proper determination of overall degrees
of freedom for an assembly. Bodies linked by joints form a kinematic chain. Kine-
matic chains are shown in Fig. 1.7. A contour or loop is a configuration described
by a polygon consisting of links connected by joints, Fig. 1.7a.

The presence of loops in a mechanical structure can be used to define the follow-
ing types of chains:

o closed kinematic chains have one or more loops so that each link and each joint
is contained in at least one of the loops, Fig. 1.7a;

one-pin joint
C
1
2

two-pin joints

D—,_M_’* D 3
(b) --_-__- ' 1
1 2 3

Fig. 1.6 Order of a joint: (a) joint of order one, and (b) joint of order two (multiple joints)
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5
link

7777,
ground ™

0
ground ground

end-effector

3
link

joint

0
(b) ground

Fig. 1.7 Kinematic chains: (a) closed kinematic chain, (b) open kinematic chain, and (c) mixed
kinematic chain

e open kinematic chains contain no closed loops, Fig. 1.7b. A common example of
an open kinematic chain is an industrial robot;
e mixed kinematic chains are a combination of closed and open kinematic chains.

Figure 1.7c shows a robotic manipulator with parallelogram hinged mechanism.

A mechanism is defined as a kinematic chain in which at least one link has been
“grounded” or attached to the frame, Figs. 1.7a and 1.8. Using Reuleaux’s definition,
a machine is a collection of mechanisms arranged to transmit forces and do work. He
viewed all energy, or force-transmitting devices as machines that utilize mechanisms
as their building blocks to provide the necessary motion constraints. The following
terms can be defined, Fig. 1.8a:

e acrank is a link that makes a complete revolution about a fixed grounded pivot;
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joint of order two (two-pin joints)
(multiple joint)

link 4 (coupler or connecting rod)

link 1 (crank) —
v

link 3 (rocker)
( —/

(ground)

link 0 link 0

(ground)

(ground)

(a)

end-effector

moving
\' platform

sphere

— e
7

»: 0 / joint

(b) (c)

Fig. 1.8 (a) Mechanism with five moving links, (b) parallel link robot, and (c) Stewart mechanism

e a rocker is a link that has oscillatory (back and forth) rotation and is fixed to a
grounded pivot;

e a coupler or connecting rod is a link that has complex motion and is not fixed to
ground.

Ground is defined as any link or links that are fixed (non-moving) with respect to
the reference frame. Note that the reference frame may in fact itself be in motion.
Figure 1.8b illustrates a five-bar linkage consisting of five links, including the
base link 0, connected by five joints. The mechanism can be viewed as two link
arms (1, 2 and 3, 4) connected at a point C. It is a closed kinematic chain formed
by the five links. The position of the end-effector is determined if two of the five
joint angles are given. Figure 1.8c shows the Stewart mechanism, which consists of
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a moving platform, a fixed base, and six powered cylinders connecting the moving
platform to the base frame. The position and orientation of the moving platform are
determined by the six independent actuators. This mechanism has spherical joints
(three degrees of freedom joints).

The concept of number of degrees of freedom is fundamental to the analysis of
mechanisms. It is usually necessary to be able to determine quickly the number of
DOF of any collection of links and joints that may be used to solve a problem.

The number of degrees of freedom or the mobility of a system can be defined as:
the number of inputs that need to be provided in order to create a predictable system
output, or the number of independent coordinates required to define the position of
the system.

The class f of a mechanism is the number of degrees of freedom that are elimi-
nated from all the links of the system.

Every free body in space has six degrees of freedom. A system of class f consist-
ing of n movable links has (6 — f) n degrees of freedom. Each joint with j degrees of
constraint diminishes the freedom of motion of the system by j — f degrees of free-
dom. The number of joints with k degrees of constraint is denoted as cy. A driver
link is that part of a mechanism that causes motion. An example is a crank. The
number of driver links is equal to the number of DOF of the mechanism. A driven
link or follower is that part of a mechanism whose motion is affected by the motion
of the driver.

1.3 Dyads

For the special case of planar mechanisms (f=3) the number of degrees of freedom
of the particular system has the form

M =3n—2c5 —cy, (1.1)

where n is the number of moving links, c¢5 is the number of one degree of freedom
joints, and ¢4 is the number of two degrees of freedom joints.

There is a special significance to kinematic chains that do not change their de-
grees of freedom after being connected to an arbitrary system. Kinematic chains
defined in this way are called system groups or fundamental kinematic chains. Con-
necting them to or disconnecting them from a given system enables given systems to
be modified or structurally new systems to be created while maintaining the original
degrees of freedom. The term system group has been introduced for the classifica-
tion of planar mechanisms used by Assur and further investigated by Artobolevski.
Limiting to planar systems from Eq. 1.1, it can be obtained as

3n—2¢5=0, (1.2)

according to which the number of system group links 7 is always even. In Eq. 1.2
there are no two degrees of freedom joints because a c4 joint (two degrees of free-
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dom joint) can be substituted with two one degree of freedom joints and an extra
link.

The simplest fundamental kinematic chain is the binary group with two links
(n=2) and three one degree of freedom joints (cs = 3). The binary group is also
called a dyad. The sets of links shown in Fig. 1.9 are dyads and one can distinguish
the following classical types:

rotation rotation rotation or dyad RRR as shown in Fig. 1.9a;
rotation rotation translation or dyad RRT as shown in Fig. 1.9b;
rotation translation rotation or dyad RTR as shown in Fig. 1.9¢;
translation rotation translation or dyad TRT as shown in Fig. 1.9d;
translation translation rotation or dyad RTT as shown in Fig. 1.9e.

Nk L=

T, R 3

C, D
particular case
L3=CD=0

(d) TRT (e) RTT
Fig. 1.9 Types of dyads: (a) RRR, (b) RRT, (c) RTR, (d) TRT, and (e) RTT
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The advantage of the group classification of a system lies in its simplicity. The
solution of the whole system can then be obtained by composing partial solutions.

1.4 Independent Contours

A contour is a configuration described by a polygon consisting of links connected
by joints. A contour with at least one link that is not included in any other contour
of the chain is called an independent contour. The number of independent contours,
N, of a kinematic chain can be computed as

N=c—n, (1.3)

where ¢ is the number of joints, and n is the number of moving links.

Planar kinematic chains are presented in Fig. 1.10. The kinematic chain shown
in Fig. 1.10a has two moving links, 1 and 2 (n = 2), three joints (¢ = 3), and one
independent contour (N = ¢ —n = 3 —2 = 1). This kinematic chain is a dyad. The
kinematic chain shown in Fig. 1.10b has three moving links, 1, 2, and 3 (n = 3),
four joints (¢ = 4), and one independent contour (N =c—n =4 -3 =1). A closed
chain with three moving links, 1, 2, and 3 (n = 3), and one fixed link 0, connected
by four joints (¢ =4) is shown in Fig. 1.10c.

(a) (b) ()

Fig. 1.10 Planar kinematic chains with contours

This is a four-bar mechanism. In order to find the number of independent contours,
only the moving links are considered. Thus, there is one independent contour (N =
c—n=4-3=1).

1.5 Planar Mechanism Decomposition

A planar mechanism is shown in Fig. 1.11. This kinematic chain can be decom-
posed into system groups and driver links. The number of DOF for this mechanism
iSM =3n—2c5 —c4 =3n—2cs5. The mechanism has five moving links (n = 3).
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Fig. 1.11 Planar R-RTR-RTR mechanism

To find the number of c¢s a connectivity table will be used, Fig. 1.12a. The links
are represented with bars (two node links) or triangles (three node links). The one
degree of freedom joints (rotational joint or translation joint) are represented with
a cross circle. The first column has the number of the current link, the second col-
umn shows the links connected to the current link, and the last column contains the
graphical representation. The link 1 is connected to ground O at A and to link 2 at B,
Fig. 1.12a. The link 2 is connected to link 1 at B and to link 3 at B. Next, link 3 is
connected to link 2 at B, link 0 at C, and link 4 at D. Link 3 is a ternary link because
it is connected to three links. At B there is a joint between link 1 and link 2 and a
joint between link 2 and link 3. Link 4 is connected to link 3 at D and to link 5 at
D. The last link, 5, is connected to link 4 at D and to O at A. In this way the table in
Fig. 1.12a is obtained. At A there is a multiple joint, two rotational joints, one joint
between link 1 and link 0, and one joint between link 5 and link O.

The structural diagram is obtained using the graphical representation of the table
connecting all the links Fig. 1.12b. The c5 joints (with cross circles), all the links,
and the way the links are connected are represented on the structural diagram. The
number of one degree of freedom joints is given by the number of cross circles.
From Fig. 1.12b it results that cs = 7. The number of DOF for the mechanism is
M =3(5)—2(7) =1.If M = 1, there is just one driver link. One can choose link
1 as the driver link of the mechanism. Once the driver link is taken away from the
mechanism the remaining kinematic chain (links 2, 3, 4, 5) has the mobility equal to
zero. The dyad is the simplest system group and has two links and three joints. On
the structural diagram one can notice that links 2 and 3 represent a dyad and links
4 and 5 represent another dyad. The mechanism has been decomposed into a driver
link (link 1) and two dyads (links 2 and 3, and links 4 and 5).

Another graphical construction for the connectivity table, shown in Fig. 1.12a, is
the contour diagram, that can be used to represent the mechanism in the following
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way: the numbered links are the nodes of the diagram and are represented by circles,
and the joints are represented by lines that connect the nodes. Figure 1.12¢ shows the
contour diagram for the planar mechanism. The maximum number of independent
contours is given by N = c —n =7 —5 =2, where ¢ = 7 is the number of joints and
n =15 is the number of moving links. The connectivity table, the structural diagram,

link connected to representation
2
2 1 3 B @=——— B
3 D
4 3 5 D®——4—® D
5 0 4 Deo—0O 5 4

structural diagram contour diagram

(©)

Fig. 1.12 Connectivity table, structural diagram, and contour diagram for R-RTR-RTR mechanism

and the contour diagram are not unique for this mechanism. Using the structural
diagram the mechanism can be decomposed into a driver link (link 1) and two dyads
(links 2 and 3, and links 4 and 5). If the driver link is link 1, the mechanism has the
same structure no matter what structural diagram is used.

Next, the driver link with rotational motion (R) and the dyads are represented
as shown in Fig. 1.13. The first dyad (BBC) has the length /, = Ipp equal to zero,
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Ipp =0, Fig. 1.13b. The second dyad (DDA) has the length /4 = Ipp equal to zero,
Ipp =0, Fig. 1.13c.

Using Fig. 1.13b, the first dyad (BBC) has a rotational joint at B (R), a transla-
tional joint at B (T), and a rotational joint at C (R). The first dyad (BBC) is a rotation
translation rotation dyad (dyad RTR). Using Fig. 1.13c, the second dyad (DDA) has
a rotational joint at D (R), a translational joint at D (T), and a rotational joint at A
(R). The second dyad (DDA) is a rotation translation rotation dyad (dyad RTR). The
mechanism is a R-RTR-RTR mechanism.

driver R

()

dyad RTR
(b)

dyad RTR
(©)
Fig. 1.13 Driver link and dyads for R-RTR-RTR mechanism



Chapter 2
Position Analysis

2.1 Absolute Cartesian Method

The position analysis of a kinematic chain requires the determination of the joint
positions, the position of the centers of gravity, and the angles of the links with the
horizontal axis. A planar link with the end nodes A and B is considered in Fig. 2.1.
Let (x4, y4) be the coordinates of the joint A with respect to the reference frame
x0y, and (xp, yp) be the coordinates of the joint B with the same reference frame.
Using Pythagoras the following relation can be written

(x —xa)* + (yp —ya)? = AB* = L}, 2.1)

where Lyp is the length of the link AB. Let ¢ be the angle of the link AB with the
horizontal axis Ox. Then, the slope m of the link AB is defined as

(2.2)

Let n be the intercept of AB with the vertical axis Oy. Using the slope m and the
intercept n, the equation of the straight link, in the plane, is

y=mx+n, 2.3)

where x and y are the coordinates of any point on this link.

Fig. 2.1 Planar rigid link with
two nodes
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2.2 Slider-Crank (R-RRT) Mechanism

Exercise

The R-RRT (slider-crank) mechanism shown in Fig. 2.2a has the dimensions: AB =
0.5 m and BC = 1 m. The driver link 1 makes an angle ¢ = ¢; = 45° with the
horizontal axis. Find the positions of the joints and the angles of the links with the
horizontal axis.

Fig. 2.2 (a) Slider-crank (R-RRT) mechanism and (b) two solutions for joint C: C; and C,

Solution
The MATLAB® program starts with the statements:

[o)

clear all % clears all variables and functions

[

clc % clears the command window and homes the cursor

o)

close all % closes all the open figure windows

The MATLAB commands for the input data are:
AB=0.5; BC=1l.;

The angle of the driver link 1 with the horizontal axis ¢ = 45°. The MATLAB com-
mand for the input angle is:
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phi=pi/4;
where pi has a numerical value approximately equal to 3.14159.

Position of Joint A
A Cartesian reference frame xOy is selected. The joint A is in the origin of the
reference frame, that is, A = O,

XA = 07 YA = 07
or in MATLAB:
xA=0; yA=0;

Position of Joint B

The unknowns are the coordinates of the joint B, xp and yp. Because the joint A is
fixed and the angle ¢ is known, the coordinates of the joint B are computed from the
following expressions:

xg =ABcos¢ = (0.5) cos45° = 0.353553 m,
yg =ABsing = (0.5) sin45° = 0.353553 m. 2.4)

The MATLAB commands for Eq. 2.4 are:

xB=AB*cos (phi);
yB=AB*Sin (phi);

where phi is the angle ¢ in radians.
Position of Joint C

The unknowns are the coordinates of the joint C, xc and yc. The joint C is located
on the horizontal axis yc = 0 and with MATLAB:

The length of the segment BC is constant
(8 —x¢)* + (yg —yc)* = BC?, 2.5)

or
(0.353553 — x¢)* + (0.353553 — 0)> = 12.

Equation 2.5 with MATLAB command is:

egnC=’ (xB-xCsol) "2+ (yB-yC) "2=BC"2’;
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where xCsol is the unknown. To solve the equation, a specific MATLAB command
will be used. The command:

solve ("eqnl’,’eqgn2’, ..., eqnN’,’"varl’,'var2’, ... varN’)
attempts to solve an equation or set of equations  egqnl’, "eqn2’, ..., eqnN’
for the variables ' eqnN’ , " varl’,’var2’, ...’ varN’. The set of equations

are symbolic expressions or strings specifying equations. The MATLAB command
to find the solution xCsol of the equation:

egnC=’' (xB-xCsol) "2+ (yB-yC) "2=BC" 2’
is
solC=solve (egnC, "xCsol’);

Because it is a quadratic equation two solutions are found for the position of C. The
two solutions are given in a vector form: solC is a vector with two components
solC (1) and solC (2). To obtain the numerical solutions the eval command
has to be used:

xCl=eval (solC(1));
xC2=eval (solC(2));

The command eval (s), where s is a string, executes the string as an expression
or statement. The two solutions for x¢, as shown in Fig. 2.2b, are:

xc, =1.289m and xc, =—0.5819 m.

To determine the correct position of the joint C for the mechanism, an additional
condition is needed. For the first quadrant, 0 < ¢ < 90°, the condition is x¢ > xB.
This MATLAB condition for xC located in the first quadrant is:

if xCl > xB xC = xCl; else xC = xC2; end
The general form of the i f statement is:
if expression statements else statements end

The x-coordinate of the joint C is x¢c = xc, = 1.2890m. The angle of the link 2 (link
BC) with the horizontal is
YB—JYC

¢, = arctan .
XB —XC
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The MATLAB expression for the angle ¢ is:
phi2 = atan((yB-yC)/ (xB-xC));

The statement atan (s) is the arctangent of the elements of s. The numerical so-
lutions for B, C, and ¢, are printed using the statements:

fprintf('xB = %g (m) \n’, xB)
fprintf(‘yB = %g (m) \n’, yB)
fprintf ('xC = %g (m) \n’, xC)
fprintf ('yC = %g (m) \n’, yC)
fprintf (‘phi2 = %g (degrees) \n’, phi2x180/pi)

The statement fprintf (£, format, s) writes data in the real part of array s to
the file £. The data is formated under control of the specified format string. The
results of the program are displayed as:

xB = 0.353553 (m)

yB = 0.353553 (m)

xC = 1.28897 (m)

yC = 0 (m)

phi2 = -20.7048 (degrees)

The mechanism is plotted with the help of the command plot. The statement
plot (x,y,c) plots vector y versus vector x, and c is a character string. For
the R-RRT mechanism two straight lines AB and BC are plotted with:

plOt ( [XAI XB] ’ [yA, YB] ’ "r-o’ ’ [XBI XC] ’ [YB, yC] 14 "b-o0")
The line AB is a red (r red ), solid line (- solid), with a circle (o circle) at each
data point and the line BC is a blue (b blue ), solid line with a circle at each data
point. The graphic of the mechanism obtained with MATLAB is shown in Fig. 2.3.

The x-axis and y-axis are labeled using the commands:

xlabel ("x (m)’)
ylabel ('y (m)’)

and a title is added with:
title ('positions for \phi = 45 (deg)’)
On the figure, the joints A, B, and C are identified with the statements:

text (xA,yA,’ A'),
text (xB,yB,’” B’"),...
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positions for ¢ = 45 (deg)
T T T

0.4 *

0.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 14
x (m)

Fig. 2.3 MATLAB graphic of R-RRT mechanism

text (xC,yC,” C"), ...
axis([-0.2 1.4 -0.2 1.4]), ...
grid

The commas and ellipses (. . .) after the command are used to execute the com-
mands together. Otherwise, the data will be plotted, then the labels will be added
and the data replotted, and so on.

The statement axis ( [xMIN xMAX yMIN yMAX]) sets scaling for the x and
y axes on the current plot. To improve the graph a background grid was added with
the command grid.

The MATLAB program for the positions is given in Appendix A.1.

2.3 Four-Bar (R-RRR) Mechanism

Exercise

The considered four-bar (R-RRR) planar mechanism is shown in Fig. 2.4. The driver
link is the rigid link 1 (the element AB) and the origin of the reference frame is at A.
The following data are given: AB=0.150 m, BC=0.35 m, CD=0.30 m, CE=0.15 m,
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Fig. 2.4 Four-bar (R-RRR)
mechanism

xp=0.30 m, and yp=0.30 m. The angle of the driver link 1 with the horizontal axis
is ¢ = ¢; = 45°. Find the positions of the joints and the angles of the links with the
horizontal axis.

Solution

The Cartesian reference frame xyz with the unit vectors [1, J, k| is shown Fig. 2.4.
Since the joint A is the origin of the reference system A = O the coordinates of A are
x4 = 0, y4 = 0 and the position vector of A is r4 = x41+ y4J. The position vectors
r4 and rp are introduced in MATLAB as:

rA = [xA yA 0];
rD [xD yD 0];

In the MATLAB environment, a three-dimensional vector v is written as a list of
variables v.= [ x y z ], where x, y, and z are the spatial coordinates of the
vector v. The first component of the vector v is x=v (1), the second component is
y=v (2), and the third component is z=v (3) .

Position of Joint B

The unknowns are the coordinates of the joint B, xp and yp. Because the joint A is
fixed and the angle ¢ is known, the coordinates of the joint B are computed from the
following expressions:

xp=ABcos¢ =0.106m, yp=ABsing =0.106m.
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The position vector of B is rp = xp1+ypJ. The MATLAB program for this part is:
xB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];

Position of Joint C

The unknowns are the coordinates of the joint C, x¢ and yc. Knowing the positions
of the joints B and D, the position of the joint C can be computed using the fact that
the lengths of the links BC and CD are constants

(xc —xp)*+ (yc —yp)* = BC?,
(xc —xp)* + (yc —yp)* = CD?,

or

(xc —0.106)* 4 (y¢ — 0.106)* = 0.350%,
(xc —0.300)2 + (yc — 0.300)? = 0.300°. (2.6)

Equations 2.6 consist of two quadratic equations. Solving this system of equations,
two sets of solutions are found for the position of the joint C. These solutions are

xc, =0.0401m, yc, =0.4498m and xc, = 0.4498m, yc, = 0.0401 m.

The MATLAB program for calculating the coordinates of Cy and C; is:

eqgnCl "( xCsol - xB )"2 + ( yCsol - yB )
egqnC2 = ' ( xCsol - xD )"2 + ( yCsol - yD )
solC = solve(eqnCl, eqnC2, ’'xCsol, yCsol’);

xCpositions = eval (solC.xCsol);

yCpositions = eval (solC.yCsol);

% first component of the vector xCpositions

xCl = xCpositions(1l);

% second component of the vector xCpositions
xC2 = xCpositions (2);

% first component of the vector yCpositions

yCl = yCpositions(1l);

% second component of the vector yCpositions
yC2 = yCpositions(2);

= BC"2';

"2
"2 Ch"2';

The points C; and C, are the intersections of the circle of radius BC (with the center
at B) with the circle of radius CD (with the center at D), as shown in Fig. 2.5.
To determine the correct position of the joint C for this mechanism, a constraint
condition is needed: xc < xp. Because xp = 0.300 m, the coordinates of joint C
have the following numerical values:

xc=xc, =0.040lm and yc=yc, =0.4498m.
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0»6 T T T T
Circle of radius DC' and center at D

04r

03F

02r

01r

Circle of radius BC' and center at B

1 1 1 1 1 1

1 1
-0.2 -0.1 0 0.1 02 0.3 04 0.5 0.6

Fig. 2.5 Two solutions for the position of joint C

The MATLAB program for selecting the correct position of C is:

if xC1 < xD
xC = xCl; yC=yCl;

else
xC = xC2; yC=yC2;
end
rC = [xC yC 0]; % Position vector of C

Position of Point E
The unknowns are the coordinates of the point E, xg and yg. The position of the
point E is determined from the equation

(xg —xc)* + (ye —yc)* = CE?, 2.7)

or
(xg —0.0401)% + (yg — 0.4498)% = 0.15°.
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The joints D, C and E are located on the same straight element DE. For these points,
the following equation can be written

Yp—YCc _ YE—)YC
Xp —XC XE—)CC,

(2.8)

or
0.300 - 0.4498  yp —0.4498

0.300 — 0.0401 = xg —0.0401"

Equations 2.7 and 2.8 form a system from which the coordinates of the point £ can
be computed. Two solutions are obtained, Fig. 2.6, and the numerical values are

xg, = —0.0899m, yg, = 0.5247m,
xg, =0.1700m, yg, = 0.3749m.

The MATLAB program for calculating the coordinates of E; and E; is:

egqnkEl "( xEsol - xC )"2 + ( yEsol - yC )"2 = CE"2 ’;
eqnE2 = '’ (yD-yC) / (xD-xC)=(yEsol-yC )/ (xEsol-xC)"’;
solE = solve(eqnEl, eqnE2, ’'xEsol, yEsol’);

Circle of\radius C'F and center at C' |

01F

0 : &
-0.2 -0.1 | 0.1 0.2 0.3 0.4

Fig. 2.6 Two solutions for the position of point £
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xEpositions=eval (solE.xEsol);
yEpositions=eval (solE.yEsol);
xEl = xEpositions(l); xE2 = xEpositions(2);
vE1 yEpositions (1); yE2 yEpositions (2);

For continuous motion of the mechanism, a constraint condition is needed, xg < xc.
Using this condition, the coordinates of the point E are

xg =xg, = —0.0899m and yg=yg =0.5247m.
The MATLAB program for selecting the correct position of E is

if xE1 < xC
xE = xEl1; yE=yEl;

else
xE = xE2; yE=yE2;
end
rE = [xE yE 0]; % Position vector of E

The angles of the links 2, 3, and 4 with the horizontal are

fprintf ('phi2 %g (degrees
fprintf ("phi3 = %g (degrees

¢, = arctan B Je —yc7 ¢3 = arctan YD —JyC yc’
XB — XC XD —XC
and in MATLAB
phi2 = atan ((yB-yC)/ (xB-xC)) ;
phi3 = atan((yD-yC)/ (xD-xC));
The results are printed using the statements:
fporintf ("rA = [ %9, %g, %9 ] (m) \n’, rA)
fporintf ("D = [ %9, %g, %9 ] (m) \n’, rD)
fporintf ("rB = [ %9, %g, %9 ] (m) \n’, rB)
fprintf('rC = [ %g, %g, %9 1 (m) \n’, rC)
fprintf ('rE = [ %g, %g, %9 ] (m) \n’, rE)
( =9 ) \n’, phi2+180/pi)
( )\

o

n’, phi3%180/pi)
The graph of the mechanism using MATLAB for ¢ = 7 /4 is given by:

plot ([xA,xB], [yA,yB],’'k-0o’,’LineWwidth’,1.5)
hold on % holds the current plot

plot ([xB,xC], [yB,yC], "b-0o’,’LineWidth’,1.5)
hold on

plot ([xD,xE], [yD,yE],’r-o’,’LineWidth’,1.5)
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positions for ¢ = 45 (deg)

0.6 T T T T T T

0.5

0.3r- D-=-ground

y (m)

0.2

0.1

01 | | ] | ] |

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Fig. 2.7 MATLAB graphic of R-RRR mechanism

% adds major grid lines to the current axes
grid on, ...

xlabel ('x (m)’"), ylabel('y (m)’"),...
title('positions for \phi = 45 (deg)’), ...
text (xA,yA,’\leftarrow A = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xB,yB,” B"),...

text(xC,yC,’\leftarrow C = ground’, ...
"HorizontalAlignment’,’left’), ...
text(xD,yD,’\leftarrow D = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xE,yE,’ E’), axis([-0.2 0.45 -0.1 0.6])

The graph of the R-RRR mechanism using MATLAB is shown in Fig. 2.7. The
MATLAB program for the positions and the results is given in Appendix A.2.
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2.4 R-RTR-RTR Mechanism

Exercise

The planar R-RTR-RTR mechanism considered is shown in Fig. 2.8. The driver
link is the rigid link 1 (the link AB). The following numerical data are given: AB =
0.15m, AC=0.10m, CD =0.15 m, DF = 0.40 m, and AG = 0.30 m. The angle of
the driver link 1 with the horizontal axis is ¢ = 30°.

Fig. 2.8 R-RTR-RTR mechanism

Solution
The MATLAB commands for the input data are:

AB=0.15; AC=0.10; CD=0.15; % (m)
phi=pi/6; % (rad)
DF=0.40; AG=0.30; % (m)

A Cartesian reference frame xOy is selected. The joint A is in the origin of the ref-
erence frame, thatis, A= 0, x4 =0, y4 =0.

Position of Joint C
The position vector of C is r¢c = xc1+yc)=0.1 Jm.

Position of Joint B

The unknowns are the coordinates of the joint B, xp and yp. Because the joint A is
fixed and the angle ¢ is known, the coordinates of the joint B are computed from the
following expressions:
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xp=ABcos¢ =0.15cos30° =0.1299m, yg = AB sin¢ = 0.15 sin30° = 0.075 m,

and rp = xg1+ yp). The MATLAB statements for the positions of the joints A, C,
E, and B are:

XA =0 ; yA =0 ; rA = [xA yA 0] ; % Position of A
xC 0 ; yC = AC ; rC [xC yC 0] ; % Position of C

% Position of B
xB=AB*cos (phi); yB=ABxsin(phi); rB=[xB yB 0];

Position of Joint D
The unknowns are the coordinates of the joint D, xp and yp. The length of the
segment CD is constant:

(xp —xc)*+ (yp — yc)* = CD?, 2.9

or
(xp —0)>+ (yp —0.10)> = 0.15>.

The points B, C, and D are on the same straight line with the slope

~_ (B—yc)  (p—yc)
" ws—x0)  (p—xc)’ (2.10)

or
(0.075—0.1)  (yp—0.1)

(0.1299—-0.0)  (xp—0.0)"
Equations 2.9 and 2.10 form a system from which the coordinates of the joint D can
be computed. To solve the system of equations the MATLAB statement solve will
be used:

eqnDl=’ ( xDsol - xC )"2 + ( yDsol - yC )"2 = CD"2 ’;
eqnD2=' (yB - yC)/(xB - xC)=(yDsol - yC)/(xDsol - xC)’;
solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);
xDpositions = eval (solD.xDsol);

yDpositions = eval (solD.yDsol);

)

% first component of the vector xDpositions
xD1 = xDpositions(1l);

[

% second component of the vector xDpositions
xD2 = xDpositions(2);
% first component of the vector yDpositions
yD1l = yDpositions(1l);

% second component of the vector yDpositions
yD2 = yDpositions (2);
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AV
I

Fig. 2.9 Graphical solutions for joint D

These solutions Dy and D, are located at the intersection of the line BC with the
circle centered in C and radius CD (Fig. 2.9), and they have the following numerical
values:

xp1 = —0.1473 m, yp; = 0.1283 m,
Xp2 = 0.1473 m, ypp = 0.0717 m.

To determine the correct position of the joint D for the mechanism, an additional
condition is needed. For the first quadrant, 0 < ¢ < 90°, the condition is xp < xc.
This condition with MATLAB is given by:

if xD1 <= xC
xD = xD1; yD=yDI1;
else
xD = xD2; yD=yD2;
end
rD = [xD yD 0]; % Position of D

Because x¢ = 0, the coordinates of the joint D are:

xp =xp; = —0.1473m and yp =yp; =0.1283 m.
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The angles of the links 2, 3, and 4 with the horizontal are

YB —YC

¢ = arctan = =@,
and in MATLAB:
phi2 = atan ((yB-yC)/ (xB-xC)) ;
phi3 = phi2;
phid4 = atan (yD/xD) +pi;
phi5 = phi4;

The points F and G are calculated in MATLAB with:

xF = xD 4+ DF«cos(phi3) ; yF =

rF = [xF yF 0]; % Position vector of F
xG = AGxcos (phib5) ; yG = AGxsin (phib)
rG = [xG yG 0]; % Position vector of G

The results are printed using the statements:

¢4 = arctan )yc—z +7m, ¢s=

4

fprintf('rA = [ %g, %g, %9 1 (m) \n’, rA)
fprintf('rC = [ %g, %g, %9 1 (m) \n’, rC)
fprintf ("rB = [ %9, %g, %9 ] (m) \n’, rB)
fporintf ("D = [ %9, %g, %9 ] (m) \n’, rD)
fprintf ('phi2 = phi3 %g (degrees) \n’
fprintf (‘phi4 = phi5 = %g (degrees) \n’
fprintf ('rF = [ %9, %9, %g ] \n’
fprintf (‘rG = [ %9, %g, %9 ] \n’
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04,

yD + DFxsin(phi3) ;

phi2*180/pi)
phidx180/pi)

The graph of the mechanism in MATLAB for ¢ = 7/6 is given by:

plot ([xA,xB], [yA,yB],"k-0o’,’LinewWidth’,
hold on % holds the current plot

plot ([xD,xC], [yD,yC], 'b-0o’,’LineWidth’, 1.
hold on

plot ([xC,xB], [yC,yB],’b-0o’,’LineWidth’,1
hold on

plot ([xB,xF], [yB,yF],’b-0o’,’LineWidth’, 1.
hold on

plot ([xA,xD], [yA,yD],’r-o’,’LineWidth’, 1.
hold on

plot ([xD,xG], [yD,yG], " r-0o’,’LineWidth’, 1.
grid on, ...

xlabel ("x (m)’), ylabel('y (m)’),...
title ('positions for \phi = 30 (deg)’),

1.5)



2.5 R-RTR-RTR Mechanism: Complete Rotation 31

text(xA,yA,’\leftarrow A = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xB,yB,’” B"),...

text (xC,yC,"\leftarrow C = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xD,yD,’” D’),...

text (xF,yF,’ F’'), text (xG,yG,’” G'),...
axis([-0.3 0.3 -0.1 0.31)

The MATLAB program for the positions and the results for the R-RTR-RTR mech-
anism for ¢ = 30° is given in Appendix A.3.

2.5 R-RTR-RTR Mechanism: Complete Rotation

For a complete rotation of the driver link AB, 0 < ¢ < 360°, a step angle of 60° is
selected. To calculate the position analysis for a complete cycle the MATLAB state-
ment for var=startval:step:endval, statement end is used. It repeatedly evalu-
ates statement in a loop. The counter variable of the loop is var. At the start, the
variable is initialized to value startval and is incremented (or decremented when
step is negative) by the value step for each iteration. The statement is repeated until
var has incremented to the value endval. For the considered mechanism the follow-
ing applies:

for phi=0:pi/3:2xpi, Program block, end;

2.5.1 Method I: Constraint Conditions

Method I uses constraint conditions for the mechanism for each quadrant. For the
mechanism, there are several conditions for the position of the joint D. For the angle
¢ located in the first quadrant 0° < ¢ < 90° and the fourth quadrant 270° < ¢ < 360°
(Fig. 2.10), the following relation exists between xp and xc:

xp < xc=0.

For the angle ¢ located in the second quadrant 90° < ¢ < 180° and the third quadrant
180° < ¢ < 270° (Fig. 2.11), the following relation exists between xp and x¢:

XDZ)CC:O.

The following MATLAB commands are used to determine the correct position of
the joint D for all four quadrants:
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Fig. 2.10 R-RTR-RTR mechanism for 0° < ¢ < 90° and 270° < ¢ < 360°
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Fig. 2.11 R-RTR-RTR mechanism for 90° < ¢ < 180° and 180° < ¢ < 270°
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if (phi>=0 && phi<=pi/2) || (phi >= 3xpi/2 && phi<=2xpi)
if xD1 <= xC xD = xD1l; yD=yDl; else xD = xD2; yD=yD2;
end
else
if xD1 >= xC xD = xD1; yD=yDl; else xD = xD2; yD=yD2;
end
end

where | | is the logical OR function. The MATLAB program and the results for
a complete rotation of the driver link using method I is given in Appendix A.4.
The graphic of the mechanism for a complete rotation of the driver link is given in
Fig. 2.12. To simplify the graphic the points E and G are not shown on the figure.

positions for ¢ = 0 to 360 step 60 (deg)
03 T T T T T T T T T T T

0.25

0.2r

_02 1 1 1 1 1 1 1 1 1 1 1
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x (m)

Fig. 2.12 MATLAB graphic of R-RTR-RTR mechanism for a complete rotation of the driver link
0° < ¢ <360°

Another way of plotting the simulation of the mechanism for a complete rotation
of the driver link is:

plot ([xA,xB], [yA,yB],’k-0o’, [xB,xC], [yB,yC], 'b-0", ...
[xC,xD], [yC,yD], "b-0o’, [xD,xA], [yD,yA], ' r-0"), ...
hold off % resets axes properties to their defaults
text (xA,yA,’ A'), text(xB,yB,’ B’'),...

text (xC,yC,”’ c’), text(xD,yD,’ D"), ...

axis([-0.3 0.3 -0.2 0.3]),9rid, ...

pause (0.8)



2.5 R-RTR-RTR Mechanism: Complete Rotation 35

The MATLAB command hold off resets the axes properties to their defaults
before drawing new plots and the command pause (T) pauses execution for T
seconds before continuing.

2.5.2 Method I1: Euclidian Distance Function

Another method for the position analysis for a complete rotation of the driver link
uses constraint conditions only for the initial value of the angle ¢. Next for the
mechanism, the correct position of the joint D is calculated using a simple function,
the Euclidian distance between two points P and Q:

d =/ (xp—x0)* + (yp —0)* @11)
In MATLAB, the following function is introduced with a m-file (Dist.m):

function d=Dist (xP,yP,xQ,yQ);
d=sqrt ( (xP-xQ) "2+ (yP-yQ) "2) ;
end

For the initial angle ¢ = 0°, the constraint is xp < x¢, so the first position of the joint
D, that is, Dy, is calculated for the first step D = Dy = Dy.. For the next position of the
joint, Dy 1, there are two solutions ch 4 and Dﬁr 1»k=0, 1, 2,.... In order to choose
the correct solution of the joint, Dy, |, the distances between the old position, Dy,
and each new calculated positions D, and D{/, ,. The distances between the known
solution Dy, and the new solutions Di 41 and D21+1 are d,ﬁ and d,ﬁ’ are compared. If the
distance to the first solution is less than the distance to the second solution, d,{ <d7,

then the correct answer is Dy11 = D£+1’ orelse Dy = DiIH (Fig. 2.13).
Dk

dj 17
Dy

— Nl
Dk+17 Dk+1

Fig. 2.13 Selection of the correct position: d]i < d,{’ = Dy = Di .l

The following MATLAB statements are used to determine the correct position of
the joint D using a single condition for all four quadrants:
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% at the initial moment phi=0 => increment = 0
increment = 0 ;

% the step has to be small for this method
step=pi/6;
for phi=0:step:2xpi,

xB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];
fprintf('rB = [ %g, %g, %g ] (m)\n’, rB)

egnDl1=' ( xDsol - xC )"2 + ( yDsol - yC )~"2=CD"2’;
eqnD2=' (yB-yC) / (xB—xC) = (yDsol-yC)/ (xDsol-xC)';
solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);
xDpositions = eval (solD.xDsol);

yDpositions = eval (solD.yDsol);

xD1 = xDpositions(l); xD2 = xDpositions(2);

yD1 yDpositions (1l); yD2 = yDpositions(2);

select the correct position for D
only for increment == 0

the selection process is automatic
for all the other steps

o° 0P o o

if increment == 0
if xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end

else

distl = Dist (xD1l,yD1l,xDold,yDold);
dist2 = Dist (xD2,yD2,xDold,yDold);
if distl < dist2 xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end
end
xDold=xD;
yDold=yD;

increment=increment+1;

rD = [xD yD 01];
end

At the beginning of the rotation the driver link makes an angle phi=0 with the hor-
izontal and the value of counter increment is 0. The MATLAB statement:

increment=increment+1;

specifies that 1 is to be added to the value in increment and the result stored back
in increment. The value increment should be incremented by 1.
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positions for ¢=0 to 360 step 30 (deg)
03 T T T T T T T T T T T

0.25

0.2r

_0.2 1 1 1 1 1 1 1 1 1 1 1
-025 -02 -0.15 -0.1 -0.05 O 005 0.1 0.15 02 0.25

x (m)

Fig. 2.14 MATLAB graphic of R-RTR-RTR mechanism for a complete rotation of the driver using
the Euclidian distance

With this algorithm the correct solution is selected using just one constraint relation
for the initial step and then, automatically, the problem is solved. In this way, it is
not necessary to have different constraints for different quadrants.

For the Euclidian distance method the selection of the step of the angle ¢ is very
important. If the step of the angle has a large value the method might give wrong
answers and that is why it is important to check the graphic of the mechanism.

The MATLAB program for a complete rotation of the driver link using the sec-
ond method is given in Appendix A.5. The graph of the mechanism for a complete
rotation of the driver link (the step of the angle is 30°) is given in Fig. 2.14 (the
points E and G are not shown).

2.6 Path of a Point on a Link with General Plane Motion

Exercise: R-RRT Mechanism

The mechanism shown in Fig. 2.2a has AB = 0.5 m and BC = 1 m. The link 2 (con-
necting rod BC) has a general plane motion: translation along the x-axis, translation
along the y-axis, and rotation about the z-axis. The mass center of link 2 is located



38 2 Position Analysis

at Cy. Determine the path of point C; for a complete rotation of the driver link 1.

Solution
The coordinates of the joint B are

xp=ABcos¢ and ygp=ABsing,

where 0 < ¢ < 360°. The coordinates of the joint C are

xc=xg+1/BC*—y% and yc=0.

The mass center of the link 2 is the midpoint of the segment BC

_xpt+xc _ystyc
Xc, = 5 and yc, = 5

The MATLAB statements for the coordinates of C, are:

AB = .5; BC =1; xA = 0; yA = 0; yC = 0;
incr = 0;
for phi=0:pi/10:2*pi,

xB = AB*cos (phi); yB = ABxsin (phi);

xC = xB + sqrt (BC"2-yB"2);

incr = incr + 1;

xC2 (incr) = (xB+xC) /2; yC2(incr)=(yB+yC)/2;

[

end % end for

For the complete rotation of the driver link AB, 0 < ¢ < 360°, a step angle of 7/10
was selected. For the coordinates of C; two vectors:

xC2=[xC2 (1) xC2(2) ... xC2(incr) ... ]
yC2=[yC2 (1) yC2(2) ... yC2(incr) ... ]

are obtained. The first components xC2 (1) and yC2 (1) are calculated for phi=0
and incr=1. The path of C; is obtained by plotting the vector yC2 in terms of xC2:

plot (xC2, yC2, ’'-ko’),...
xlabel ('x (m)"), ylabel('y (m)’),...
title('Path described by C2’), grid

Figure 2.15 shows two plots: the mechanism for 0 < ¢ < 360° and the closed path
described by the point C, on the link 2 in general plane motion. The plots are ob-
tained using the program in Appendix A.6.
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-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
X (m)

Path described by C2
0.4 T T T T T T T T T

Fig. 2.15 (a) R-RRT mechanism, AB = 0.5 m, BC = 1.0 m, and BC; = C,;C; (b) MATLAB plots:
mechanism for 0 < ¢ < 360° and closed path described by point C;

R-RRR Mechanism

The mechanism shown in Fig. 2.4 has the dimensions given in Sect. 2.3. The link 2
(link BC) has a general plane motion. The positions of the mechanism for 0 < ¢ <
360° and the closed path described by the mass center C; of the link 2 are shown in
Fig. 2.16. The plots are obtained using the program in Appendix A.7.
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Positions of the mechanism

-0.2r
-0.2

0.35
0.3F
0.251

g 0.2r
> 0.15F
0.1

0.051

O 1
-0.1 -0.05 0 0.05 0.1

Fig. 2.16 Positions of the R-RRR mechanism for 0 < ¢ < 360° and closed path described by the
mass center C of link 2.

2.7 Creating a Movie

The R-RTR-RTR mechanism shown in Fig. 2.8 has the dimensions given in Sect. 2.4.
This example illustrates the use of movies to visualize the positions of the mecha-
nism for 0 < ¢ < 360°.

The statement moviein is used to create a matrix large enough to hold 12
frames:

M = moviein (12);

The program has the structure

AB=0.15; AC=0.10; CD=0.15; % (m)

xA = 0; yA = 0; xC =0 ; yC = AC;

% allocate/initialize the matrix to have 12 frames
M = moviein (12);
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incr = 0;

for phi=0:pi/180:2*pi,

xB = AB*cos (phi); yB = ABxsin (phi);

eqnD1l=' (xDsol-xC) "2+ (yDsol-yC) "2=CD"2’;
eqnD2=' (yB-yC) / (xB-xC) = (yDsol-yC)/ (xDsol-xC)’;
solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);

xDpositions = eval (solD.xDsol);

yDpositions = eval (solD.yDsol);

xD1 = xDpositions(l); xD2 = xDpositions(2);

yD1l = yDpositions(l); yD2 = yDpositions(2);

if (phi>=0 && phi<=pi/2) || (phi >= 3%pi/2 && phi<=2*pi)
if xD1 <= xC xD=xD1; yD=yDl; else xD=xD2; yD=yD2;
end

else
if xD1 >= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end

end

plot ([xA, xB], [
[xB,xC], [yB,yC],"b-0", ...

[xC,xD], [yC,yD],"b-0", ...

[xD, xA], [yD,yA]l,"r=0"), ...

text (xA,yA,’ A’), text(xB,yB,’” B’'),...

text (xC,yC,” C’'), text(xD,yD,’ D’), grid;

vyA,yB],"k-0o’, ...

% xlim([Xmin Xmax])

% sets the x limits to the specified wvalues
x1im([-0.3 0.31);

ylim([Ymin Ymax])

sets the x limits to the specified wvalues
ylim([-0.3 0.31);

%
%

incr = incr + 1;

o

M(:,incr) = getframe; % record the movie
end % end for

movie2avi (M, " RRTRRTR.avi’) ;

The statement, get frame returns the contents of the current axes, exclusive
of the axis labels, title, or tick labels. After generating the movie, the statement,
movie2avi (M,’ filename.avi’) creates the AVI movie £ilename from
the MATLAB movie M. The £ilename input is a string enclosed in single quotes.
In this case the name of the movie file is RRTRRTR. avi.



Chapter 3
Velocity and Acceleration Analysis

3.1 Introduction

The motion of a rigid body (RB) is defined when the position vector, velocity and
acceleration of all points of the rigid body are defined as functions of time with
respect to a fixed reference frame with the origin at Oy.

Let 19, Jy, and ko, be the constant unit vectors of a fixed orthogonal Cartesian
reference frame xpygzo and 1,J and k be the unit vectors of a body fixed (mobile or
rotating) orthogonal Cartesian reference frame xyz (Fig. 3.1). The unit vectors 19, Jg,
and kg of the primary reference frame are constant with respect to time.

A

2 Y
’ (RB) \
w \o
) J
M r
(@]
r
! ro 1
koA
0o . T yo}
1o Jo

To

Fig. 3.1 Fixed orthogonal Cartesian reference frame with the unit vectors [19, Jo, Kol; body fixed
(or rotating) reference frame with the unit vectors [1, J, K]; the point M is an arbitrary point,
M €(RB)

43
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A reference frame that moves with the rigid body is a body-fixed (or rotating)
reference frame. The unit vectors 1,J, and k of the body-fixed reference frame are
not constant, because they rotate with the body-fixed reference frame. The location
of the point O is arbitrary.

The position vector of a point M, M € (RB), with respect to the fixed reference
frame xoyozo is denoted by ri = ro,y and with respect to the rotating reference
frame Oxyz is denoted by r = rpy. The location of the origin O of the rotating
reference frame with respect to the fixed point Oy is defined by the position vector
ro =rop,o- Then, the relation between the vectors ry, r and r is given by

ri=ro+r=rp+x1+yj+zKk, 3.1

where x, y, and z represent the projections of the vector r = rgy, on the rotating
reference frame r = x1+y) + zk.

The magnitude of the vector r = rpys is a constant as the distance between the
points O and M is constant, O € (RB), and M € (RB). Thus, the x, y and z compo-
nents of the vector r with respect to the rotating reference frame are constant. The
unit vectors 1, J, and k are time-dependent vector functions. The vectors 1, J and k
are the unit vector of an orthogonal Cartesian reference frame, thus one can write

11=1, 3. 3=1, k-k=1, 3.2)

1-J=0, k=0, k-1=0. 3.3)

3.2 Velocity Field for a Rigid Body

The velocity of an arbitrary point M of the rigid body with respect to the fixed
reference frame x(yozo, is the derivative with respect to time of the position vector r

_dni_droy _dro  dr
T odr  dt dr o dt
@ dy dk dx dy dz

- N P P 3.4
V0+xdt+ —I— dt+ +dt+ , (3.4

where vp = Ip represent the velocity of the origin of the rotating reference frame
O1x1y1z1 with respect to the fixed reference frame Oxyz. Because all the points in
the rigid body maintain their relative position, their velocity relative to the rotating
reference frame xyz is zero, i.e., x =y =z=0.
The velocity of point M is
dy

d dk
V=vVotx oty otz =vo+xi+yj+zk.

The derivative of the Egs. 3.2 and 3.3 with respect to time gives
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1 dj dk
—a=0, =3=0, — k=0
a T aVT w ’
and d d d dk dk d
1 ] ] 1
S 1= =0, Zk+y— =0, —a+k-— =
dt )+t dt Todt I dt Todt 1

For Eq. 3.6 the following notation is used

a __,a_,
adT VT
dj dk

k=00
dt I o
dk d1

- . :_ki: N
ar " a

where @y, w, and @, may be considered as the projections of a vector w

w = 0+ 0y + k.

d_]dik

d1
To calculate —, —,
ocacuaedt o dr

v=via+nj+vk=(v-1)1+(v-)))+ (v-k) k.
Using Eq. 3.8 and the results from Eqgs. 3.5 and 3.6 one can write

ﬂ—ﬂll-i-é +ﬂkk
dt  \dt al)? dt

= (0)1+ (@) — (o) k

1 ] k
= |0 0y 0| =wX1,
1 00
d) d) d) d)
== - kK
dt (dt ! l+<dr 1)t dt
= (—@:)1+(0)y+ (o) k
1 )] k
=0 0 0| =wx],
010

the relation for an arbitrary vector v will be used

45

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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1 ] k
= |0, 0y 0| =wxk.
0 0 1
The relations 4 4 Ik
1 J
i . = K. 3.10
r X1, I w X], 7 w X ( )

are known as Poisson formulas and w is the angular velocity vector. Using Egs. 3.4
and 3.10 the velocity of the point M on the rigid body is

V=vot+xwX1+ywXxXj+zwxk=vp+wx (x1+y]+zk),

or
V=Vp+wXTr. (3.11)

Combining Eqgs. 3.4 and 3.11 it results that

d
d—::i‘:wxr. (3.12)

Using Eq. 3.11 one can write the components of the velocity as
Vy = Vox +20y —y @y,
Vy = Voy +X0; — Z 0y,
Vz = VoY 0r — X Wy.

The relation between the velocities vy and vp of two points M and O on the rigid
body is

Vi =Vo+w XTroy, (3.13)
or
Vi = Vo + Vi, (3.14)

where vlrf,lo is the relative velocity, for rotational motion, of M with respect to O and

is given by
Vi = vio = w x roy. (3.15)
The relative velocity vy is perpendicular to the position vector rou, Varo L You,

and has the direction given by the angular velocity vector w. The magnitude of the
relative velocity is |Vyo| = vmo = @ rou.

3.3 Acceleration Field for a Rigid Body

The acceleration of an arbitrary point M €(RB) with respect to a fixed reference
frame Ogyxoyozo, represents the double derivative with respect to time of the position
vector ry
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a=F —v—ﬂ—i(v —H.uxr)—dﬁ—i—d—w><r+<.u><ﬂ
I T Al Cdt dt dt
=Vo+wXr+wxr. (3.16)

The acceleration of the point O with respect to the fixed reference frame Oyxgyozo
is
30=V0=f0. (3.]7)

The derivative of the vector w with respect to the time is the angular acceleration
vector & given by

dw do, do, do, a1 dj dk
=—= — ~k+ 0y — —+ 0w, —
ar a T a T a TG TYy T
= 01+ oy)+ K+ 0w X1+ oyw X )+ o,w xkK
= o1+ o)+ o k+wxw=o1+ 0]+ ok, (3.18)
d .9 d y d . . .
where o, = ﬂ,(xy: d—at)), and o, = &.In the previous expression the Poisson

formulas have been used. Using Egs. 3.16-3.18 the acceleration of the point M is
a=aptaxr+wx (wxr). (3.19)
Using Eq. 3.19 the components of the acceleration are

ax = aox+ (20 —y o)+ oy (Yo, —xy) + 0, (x0c —x @),
ay = aO}""(xaz_ZaX)+wz(zwy_ywz)+wx(xwy_ywz)a
a; = ap;+ (YO —x 0y ) + 0 (X0, — 20;) + @y (Y O, —2@y) .

The relation between the accelerations ay; and ap of two points M and O on the
rigid body is
ay =ap+aXroy+wx (wWXroy). (3.20)

In the case of planar motion
w X (WX roy) = -0 o,
and Eq. 3.20 becomes
ay :ao+a><r0M—a)2r0M. (3.21)
Equation 3.21 can be written as

ay =ap+aly, (3.22)

where af\?,lO is the relative acceleration, for rotational motion, of M with respect to O

and is given by

ajo = ayo = ajyp +aj,. (3.23)
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The normal relative acceleration of M with respect to O is
ay ) =w X (Wxroy), (3.24)

is parallel to the position vector rop, aj,|[roym, and has the direction towards the
center of rotation, from M to O. The magnitude of the normal relative acceleration
is
2 szwo
lako| = ayo = © rom = ——.
rom

The tangential relative acceleration of M with respect to O
2o = Q& X Top, (3.25)

is perpendicular to the position vector royy, ajwo 1 ropm, and has the direction given
by the angular aceeleration cx. The magnitude of the normal relative acceleration is

t !
a0l = dyo = Arom-
Remarks:

1. If the orientation of a rigid body (RB) in a reference frame RFy depends on only
a single scalar variable C, there exists for each value of ¢ a vector w such that the
derivative with respect to € in RFy of every vector ¢ fixed in the rigid body (RB)
is given by

de

dg
where the vector w is the rate of change of orientation of the rigid body (RB) in
the reference frame RFy with respect to ¢. The vector w is given by

=wXxec, (3.26)

da db

iV Sl
w= M, (3.27)
da
¢
where a and b are any two non-parallel vectors fixed in the rigid body (RB). The
vector w is a free vector, i.e. is not associated with any particular point. With
the help of w one can replace the process of differentiation with that of cross
multiplication. The vector w may be expressed in a symmetrical relation in a and
b

da_db db da

[ d¢”d¢ | d¢ ™ d¢

| T, | (3.28)
d¢ d¢
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2.

The first derivatives of a vector p with respect to a scalar variable ¢ in two refer-
ence frames RF; and RF; are related as follows

= ——+wi; Xp, 3.29
& = ag TwixPp (3.29)
where wj; is the rate of change of orientation of RF; in RF; with respect to ¢ and
dg
The angular velocity of a rigid body (RB) in a reference frame RF is the rate of
change of orientation with respect to the time ¢

is the total derivative of p with respect to { in RF;.

da db db da

U 2 %20 X3 | 1 axb Bxa
w=_ |4 __dt  dr_dt | __ a_x L oxa)
2 @b @-a 2\ ab b-a
dt dt

The direction of w is related to the direction of the rotation of the rigid body
through a right-hand rule.

Let RF;,i=1,2,...,n be n reference frames. The angular velocity of a rigid body
r in the reference frame RF;,, can be expressed as

Wiy =Wyl +W2+wW3+... +Wru—1-

Proof
Let p be any vector fixed in the rigid body. Then,

OF]

dlp =Wr XPp
(i_l)dp
di = Wyi-1 XP.
On the other hand,
D (i-1)gq
dtp T ar - Wi X P

Hence,

Wi XP =Wri—1 XP+Wii—1 XP,

as this equation is satisfied for all p fixed in the rigid body
Wy = Wpji-1+Wji 1. (3.30)
With i = n, Eq. 3.30 gives

Wi = Wrp—1+Wnn-1- (3.31)
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Withi =n—1, Eq. 3.30 gives

Wrn—1=Wrp2+Wn_ 1,2 (3.32)
Substitute Eq. 3.32 into Eq. 3.31

Wrp = Wrp-2 + Wh—1,n-2 + Whn—1-

Next use Eq. 3.30 with i = n — 2, then with i = n — 3, and so forth.

3.4 Motion of a Point that Moves Relative to a Rigid Body

A reference frame that moves with the rigid body is a body-fixed reference frame.
Figure 3.2 shows a rigid body (RB) in motion relative to a primary reference frame
with its origin at point Oy, xpyozo. The primary reference frame is a fixed reference

frame or an Earth-fixed reference frame. The unit vectors 19, J, and ko of the primary
reference frame are constant.

-
-
ftaannm=="

Fig. 3.2 Rigid body in motion; the point A is not assumed to be a point of the rigid body, A ¢ (RB)
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The body-fixed reference frame, xyz, has its origin at a point O of the rigid body
(O € (RB)), and is a moving reference frame relative to the primary reference. The
unit vectors 1,J, and k of the body-fixed reference frame are not constant, because
they rotate with the body-fixed reference frame.

The position vector of a point P of the rigid body (P € (RB)) relative to the origin,
0, of the body-fixed reference frame is the vector rpp. The velocity of P relative to
Ois 4

;(;P = V;?lo = w XTIop,
where w is the angular velocity vector of the rigid body.

The position vector of a point A (the point A is not assumed to be a point of the
rigid body, A ¢ (RB)), relative to the origin Og of the primary reference frame is,
Fig. 3.1,

ra=rop-+r,

where
r=ros =x1+yJ+zk

is the position vector of A relative to the origin O, of the body-fixed reference frame,
and x,y, and z are the coordinates of A in terms of the body-fixed reference frame.
The velocity of the point A is the time derivative of the position vector ry4

dro dr )
Via=——+—=vVo+Vy
di " dr 040

+dx n d1+dy n d_]+d2k+ dk
=V —1t+x—+ — -+ — —.
0 dt dt dtJ ydt dt Zdz

Using Poisson formulas, the total derivative of the position vector r is

L

— =r=x1+yjJ+zk+wxr.

dt
The velocity of A relative to the body-fixed reference frame is a derivative in the
body-fixed reference frame

el Wdr dx dy | dz

VA(xyz) 7 1)+

= K=y, (3.33)

A general formula for the total derivative of a moving vector r may be written as

dr  dr

T +wxr, (3.34)
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where ﬂ Odr
dt  dt
(v2) gy

is the derivative in the fixed (primary) reference frame (0)

(x0Y020), and is the derivative in the rotating (mobile or body-fixed) ref-

erence frame (xyz).
The velocity of the point A relative to the primary reference frame is

Vi=Vo+ vjf(lxyz) +wxr. (3.35)

Equation 3.35 expresses the velocity of a point A as the sum of three terms:

o the velocity of a point O of the rigid body;
o the velocity v'e(l 2 of A relative to the rigid body; and

o the velocity w x r of A relative to O due to the rotation of the rigid body.

The acceleration of the point A relative to the primary reference frame is obtained
by taking the time derivative of Eq. 3.35

as = ap +ayo
iao+af(l 2w re(lx}Z)Jraerrwx(wxr), (3.36)

where

(v2) g2 ¢ d2 d2 d2
1 _ y <
is the acceleration of A relative to the body-fixed reference frame or relative to the
rigid body. The term

cor _ rel
AUlwyz) = 2w x Va(xyz)

is called the Coriolis acceleration. The direction of the Coriolis acceleration is ob-
tained by rotating the linear relative velocity V‘c(1 2) through 90° in the direction of
rotation given by w.

In the case of planar motion, Eq. 3.36 becomes

ay = ap+apy

= ag+ay, ) +2wW XV Faxr—wr. (3.38)

XYz A(xyz

The motion of the rigid body (RB) is described relative to the primary reference
frame. The velocity v4 and the acceleration a4 of a point A are relative to the pri-
mary reference frame. The terms v} (1 2) and aff(lxyz) are the velocity and acceleration
of point A relative to the body-fixed reference frame, i.e., they are the velocity and
acceleration measured by an observer moving with the rigid body, Fig. 3.2. [f Ais a
point of the rigid body, A € (RB), v re(lx)z) =0and are(lx\z) =0.

Motion of a Point Relative to a Moving Reference Frame
The velocity and acceleration of an arbitrary point A relative to a point O of a rigid
body, in terms of the body-fixed reference frame, are given by Eqgs. 3.35 and 3.36
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VAo = Vo -i-V;f(]) + W XTroa, (3.39)
aA:a0+af(l)+2w><v,‘fé+a><r0A+w><(werA). (3.40)

These results apply to any reference frame having a moving origin O and rotating
with angular velocity w and angular acceleration ¢ relative to a primary reference
frame (Fig. 3.2). The terms v4 and a4 are the velocity and acceleration of an ar-
bitrary point A relative to the primary reference frame. The terms V;f(') and af(') are
the velocity and acceleration of A relative to the secondary moving reference frame,
i.e., they are the velocity and acceleration measured by an observer moving with the
secondary reference frame. The Coriolis acceleration is ajy, = 2w x foé.

3.5 Slider-Crank (R-RRT) Mechanism

Exercise
The R-RRT (slider-crank) mechanism shown in Fig. 3.3 has the dimensions: AB =
1 m and BC = 1 m. When the driver link 1 makes an angle ¢ = ¢; = 7/6 rad with
the horizontal axis the instantaneous speed and the angular acceleration of the link
1 are =1 rad/s and a=—1 rad/s>.

Find the velocities and the accelerations of the joints and the angular velocities
and accelerations of the links for the given driver-link angle.

Solution
The point A is selected as the origin of the xyz reference frame. The position vectors
of the joints B and C are:

3 1
rg =Xxpl+yp) = glJrE']m and r¢c =xc1+yc) :\@1+0_] m.

The MATLAB® statements for the positions of the mechanism are:

AB=1; BC=1;

Fig. 3.3 Slider-crank (R-RRT) mechanism
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phi = pi/6; % input angle

xA = 0; yA = 0; rA = [xA yA 0];

xB = AB*cos (phi); yB = ABxsin (phi);
rB = [xB yB 0];

yC = 0; xC = xB+sqgrt (BC"2-(yC-yB) "2);
rC = [xC yC 0];

Velocity of Joint B
The velocity of the point B = B on the link 1 is

VB =Vp =V4+ VB4 = V4 + W] XI'gp = W] XTI,
where v4 = 0 is the velocity of the origin A = O. The angular velocity of link 1 is
wi=w=0 k=1k rad/s.

The velocity of point B, on the link 2 is v, = vp, because the links 1 and 2 are
connected at a rotational joint. The velocity of B; = B, is

1] k 1 Jk /3
0 01 1 3
VB=Vp =Vp,=|0 0 o= V31 *—514—7.] m/s
w0550

The magnitude of the velocity vp is
|[vg|=vg=1 m/s.

The velocity vp is perpendicular to the position vector rp and has the direction given
by the angular velocity w; as shown in Fig. 3.4. The MATLAB commands for the
velocity of the joint B are:

omegal = [0 0 1 1; % (rad/s)
vA = [0 0 0 ]; % (m/s) % velocity of A (fixed)

% A and B=Bl are two points on the rigid link 1

vBl = vA + cross(omegal,rB); % velocity of Bl
vB2 = vBl;

vB = norm(vBl); % norm() is the vector norm

fprintf ("omegal = [ %g, %g, %g ] (rad/s)\n’, omegal)
fprintf (' vB=vB1=vB2 = [ %g, %g, %g ] (m/s)\n’, vBl)
fprintf (' |vB|= %g (m/s)\n’, vB)

The command dot (u, v) calculates the scalar product (or vector dot product) of
the vectors u and v. The command cross (u, v) performs the cross product of the
vectors u and v.

Velocity of Joint C
The points B, and C, are on the link 2 and
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Fig. 3.4 Velocity field for the R-RRT mechanism

Ve =V, = VB+ Ve =Vp, + Wi XIpgc =Vg+w; X (l‘c — 1'3), (3.41)

where the angular velocity of link 2 is w, = @k (@, is unknown).
On the other hand, the velocity of C is along the vertical axis (x-axis) because the
slider 2 translates along the x-axis

Ve =V, =vel (3.42)
Equations 3.41 and 3.42 give
Vp+w; X (l‘c —rB) =cl,

or

1 J k
vp+ 0 0 w|=vclL (3.43)
xc—xgyc—yp 0

Equation 3.43 represents a vectorial equation with two scalar components on x-axis
and y-axis and with two unknowns @, and v¢

vy — @2 (yc —YB) = v, (3.44)
Vpx + (Dz()CC —)CB) =0, (3.45)

or
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Thus,
@, = —1rad/s and vec = —1 m/s.

The relative velocity of point C with respect to B is

J
0 0 —1 1 V3

Vep =wy X (re—rp) = Jio1 =-—51=5 m/s.

The relative velocity vcp is perpendicular to rpc and has the direction given by the
angular velocity w, as shown in Fig. 3.4.

In MATLAB the sym command constructs symbolic variables and expressions.
The commands:

omegalz = sym(’omega2z’,’real’);
vCx = sym('vCx’, " real’);

create a symbolic variables omegaZ2z and vCx for the unknowns @, and v¢. The
commands sym (’ omega2z’,’real’) and sym(’'vCx’,’real’) also as-
sume that omega2z and vCx are real numbers. The vectors w; = @, k and ve = vl
are expressed in MATLAB with:

omegaz = [
vC = [ vCx

omegalz 1;

00
00 1;

Equation 3.43 or v¢ = vg+w; X (r¢ —rp) in MATLAB is

eqvC = vC - (vB2 + cross(omega2,rC-rB));

This vectorial equation has a component on:

e x-axis given by Eq. 3.44, or in MATLAB, eqvC (1) ; and
e y-axis given by Eq. 3.45, or in MATLAB, eqvC (2).

The two algebraic equations can be solved using the command solve:

eqgqvCx = eqvC (1) ; % equation component on x—-axis
eqvCy = eqvC(2); % equation component on y-axis

solvC = solve (egvCx,eqvCy) ;
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with the solutions:

omega2zs = eval (solvC.omega2z);
vCxs = eval (solvC.v(Cx);

The angular velocity of the link 2 and the velocity of C in vectorial form are:

Omega?2 = [0 0 omegaZ2zs];
VC = [vCxs 0 0];

The relative velocity of point C with respect to B is:

vCB

cross (Omega2, rC-rB) ;

To display the correct expression for the equations eqvCx and eqvCy the follow-
ing MATLAB statements can be used:

qgqvCx = vpa (eqvCx, 6);

fprintf (' x—axis: %s = 0 \n’, char(qvCx))

qgvCy = vpa(eqvCy, 6);

fprintf ('y-axis: %s = 0 \n’, char (gqvCy))

The command vpa (S, D) uses variable-precision arithmetic (vpa) to compute each
element of S to D decimal digits of accuracy and the command char () creates a
character array (string).

Acceleration of Joint B
The acceleration of the point B = Bj on the link 1 is

ap =ap =ap, =as+ 0y Xrg+w; x (W) Xrp) =0 xrB—w%rB

1)k 1 ) k
3 1
=10 0 —wer_ \9?? —12<\§1+2J>
XB YB 0 - _
2 2
1 V3 V3
- <2_2> - <2+2>J m/s”.
The angular acceleration of link 1 is c¢; = —1k rad/s?. The normal acceleration of

the point B is

=—~"1— - m/s%.

Vil V31
B L D B
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acp
A at lr
i’ AN \C B BC

I’ \\ t

N ! acp

acp ¥
:

......................... ac ;

asp | T'pe

Fig. 3.5 Acceleration field for the R-RRT mechanism

The normal acceleration aj is parallel to the vector rp and the orientation is toward
the center of rotation A (from B to A) as shown in Fig. 3.5. The tangential accelera-
tion of the point B is

1)k 1 ] k
_ 1 3
ay=a;xrp=|0 0 o |= 0 0-1 :fl—i.] m/s%.
V31 2 2
xpyp 0 5 3 0

The tangential acceleration af is perpendicular to the vector rp and the orientation
given by the vector av; as shown in Fig. 3.5. The MATLAB commands for the ac-
celeration of the joint B are:

alphal = [0 0 -1 1; % (rad/s"2)
aA = [0 00 ]; % (m/s"2) acceleration of A

aBl = aA + cross(alphal, rB) - dot (omegal, omegal) *rB;
aB2 = aBl;
aBn = - dot (omegal,omegal) *xrB;

aBt = cross(alphal, rB);

Acceleration of Joint C
The points C, and B, are on the link 2 and

ac =ac, = ap, + O Xrpc — 0)22 I'pc = ag+ 0 X (I'C—I'B) — CO22 (I'C—I‘B), (3.46)

where the angular acceleration of link 2 is aty = ok (@ is unknown). The slider C
has a translational motion along x-axis and

ac =ac; =acl. (347)
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Equations 3.46 and 3.47 give
ag+ Qp X (I’Cfl‘B) — (022 (I‘Cfl'B) =acl,

or

1 J k
ap + 0 0 oy | — (1)22 [(xc —xB)H— (yc —yB)‘]} =dacl. (3.48)
xc—xgyc—yp 0

Equation 3.48 represents a vectorial equation with two scalar components on the

x-axis and y-axis and with two unknowns o, and o3

apx — 0 (yc — yg) — @3 (xc —xp) = ac,

agy + 0 (xc —xp) — (Ozz(yc —yg) =0,

or
(}‘f) — (o—;> —(—1)? (f-f) _ac,
- (;ﬁf) +o (xf—*f) —(=1)? (o—;> =
Thus,

=1 rad/s> and ac=1-— V3 m/s>.

The normal relative acceleration of point C with respect to B is

aly = —wWirpc = —0; (rc —rp)
= —3 (rc—rp) = —03 [(xc —xg)1+ (yc —yp))]

= (-1 Kf f)'*(oiw

V3 o1 )
=——F7—14+ 7] m/s".
5 1+ 5) m/
The normal relative acceleration of point C with respect to B, ajp, is parallel to the
vector rgc and the orientation is toward the center of rotation B (from C to B) as
shown in Fig. 3.5. The tangential relative acceleration of the point C with respect to
Bis
1 J k
alCB = O XTpCc = 0 0 (07)
xc—xpyc—yg 0
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The tangential relative acceleration al, is perpendicular to the vector rpc and the
orientation given by the vector c; as shown in Fig. 3.5.
To calculate &y, ac, and acp the following commands are used with MATLAB:

alpha2z=sym(’alpha2z’,’real’);
aCx=sym(’aCx’,’real’);
alpha2 = [ 0 0 alpha2z ]; alpha3z unknown
aC = [aCx 0 0 71; aCx unknown
eqgaC=aC- (aBl+cross (alpha2,rC-rB)-...

dot (Omega2,Omegal) » (rC-rB) ) ;

o\

o\

eqaCx = eqaC(1l); % equation component on x—axis
egqaCy = eqaC(2); % equation component on y-axis
solaC = solve (egaCx,eqaCy);

alpha2zs=eval (solaC.alpha2z);

aCxs=eval (solaC.aCx);

Alpha2 = [0 0 alpha2zs];

aCs = [aCxs 0 0];

aCB=cross (Alpha2, rC-rB) -dot (Omega2, Omega2) » (rC-rB) ;
aCBn=-dot (Omegaz2, OmegaZz?) = (rC-rB) ;

aCBt=cross (Alpha2, rC-rB);

The MATLAB program for the velocities and accelerations is given in Appendix B.1.
The results are shown at the end of the program.

3.6 Four-Bar (R-RRR) Mechanism

Exercise
The planar R-RRR mechanism is shown in Fig. 2.4. The following data are given:
AB=0.150 m, BC=0.35 m, CD=0.30 m, CE=0.15 m. x4=y4=0, xp=0.30 m, and
yp=0.30 m. For ¢ = ¢ =45° the positions of B, C, and D are xp=yp=0.106066 m,
xc=0.0400698 m, yc=0.449788 m, xg=—0.0898952 m, and y£=0.524681 m. The
driver link 1 rotates with a constant angular speed n=n;=60 rpm (revolutions per
minute).

Find the velocities and the accelerations of the mechanism at the moment when
the driver link 1 makes an angle ¢ = ¢; =45° with the horizontal axis.

Solution
The angular velocity of link 1 is
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n 7(60)
“r=mk=5 30

k = 6.28319k rad/s.

The angular acceleration of link 1 is oty = w; = 0.
The MATLAB statements for the angular velocity and acceleration of link 1 are:

n = 60; omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 O ];

Velocity and Acceleration of Joint B
The velocity of the point B = B on the link 1 is

VB = VB, =VA+W]| XIyp =W XIp,

where v4 = 0 is the velocity of the origin A = O. The velocity of point B, on the
link 2 is vg, = vp, because between the links 1 and 2 there is a rotational joint. The
velocity of B=B| = Bj is

1 J k 1 J k
vp=vp =Vg, =|0 0 0|= 0 0 6.28319
xgyp 0 0.106066 0.106066 0

—0.6664321+0.666432) m/s.

The acceleration of the point B= B| = B; is

ap =ap, =ap, =as+ 0oy XIrp+w; X (W) Xrp) =0 xrgfw%rg

= —(6.28319)%(0.1060661+0.106066)) = —4.187321—4.18732) m/s>.

The MATLAB statements for the velocity and acceleration of the driver link 1 are:

vA = [0 0O O ]; aA = [0 O O 7;

vBl = vA + cross(omegal, rB);

vB2 = vBl;

aBl = aA + cross(alphal, rB) - dot (omegal, omegal) *rB;
aB2 = aBl;

Velocity of Joint C
The points B, and C, are on the link 2 and

Ve, = VB, + Wi X Tpe = Vp+ws X (rc —rp), (3.49)

where the angular velocity of link 2 is w, = @ k (@, is unknown).
The points D3 and C3 are on the link 3 and

Ve, = Vpy + W3 X Ipc = w3 X (r¢ —rp), (3.50)

where vp = vp, = 0 and the angular velocity of link 3 is w3 = w; k. The numerical
value of w3 is unknown.
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Equations 3.49 and 3.50 give (v¢, = v¢)

VB + Wy X (l’cfl'B) = w3 X (l‘cfl‘D),

or
1 J k 1 J k

vs+| O 0 wm|=| 0 0 . (3.51)
xc—xpyc—yp 0 Xxc—xpyc—yp 0

Equation 3.51 represents a vectorial equation with two scalar components on the
x-axis and y-axis and with two unknowns @, and w3

Ve — 2 (Y —yB) = —@3(yc — YD),
vBy + 0 (xc — xp) = 03(xc —xp),

or
—0.666432 — 0,(0.449788 —0.106066) = —w3(0.449788 —0.3),
0.666432 + @,(0.0400698 — 0.106066) = w3(0.0400698 —0.3).
Thus,
w, = —3.43639 rad/s and w3 = —3.43639 rad/s.
The velocity of C is

Ve =Vp+w3 X (rc—rp) = —a3(yc —yp)1+ @3 (xc —xp))
= —(—3.43639)(0.449788 — 0.3) 1+ (—3.43639)(0.0400698 — 0.3) )
= 0.5147281+0.893221} m/s.

The MATLAB commands for the angular velocities of links 2 and 3, and the veloc-
ity of C are:

omegalz = sym(’omegal2z’,’real’);

omega3z = sym(’omega3z’,’'real’);

omega2 = [ 0 0 omegalz ];

omega3 = [ 0 0 omega3z ];
eqvC=vB2+cross (omega2, rC-rB) - (vD+cross (omega3, rC-rD)) ;
eqvCx = eqvC(l); eqvCy = eqvC(2);

solvC = solve (eqvCx,eqvCy) ;

omega2zs=eval (solvC.omega2z) ;
omega3zs=eval (solvC.omega3z) ;
Omega2 = [0 0 omega2zs];

Omega3 = [0 0 omega3zs];

vC = vB2 + cross (Omega2,rC-rB);
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Velocity of Point E
The points E3 and D3 are on the link 3 and

VE = VE; = Vp, + W3 X I'pg = W3 X (rg —Ip)
= —w3(yg —yp)1+ 3(xg —xp)})
= —(—3.43639)(0.524681 — 0.3)1+ (—3.43639)(—0.0898952 — 0.3)
= 0.7720921+ 1.33983) m/s,

or in MATLAB:
vE = vD + cross(Omega3, rE-rD);

Acceleration of Joint C
The points C, and B, are on the link 2 and

ac, = ap, +Qu Xrpc — @3 rpc = ap -+ x (rc—1p) — @3 (rc —1p), (3.52)

where the angular acceleration of link 2 is ax; = o k (0 is unknown).
The points C3 and D3 are on the link 3 and

ac, =ap, + Q3 XIpc— a)32 rpc =3 X (rc—rp) — a)32 (re—rp), (3.53)

where ap = ap, = 0 and the angular velocity of link 3 is &3 = o3 k. The numerical
value of a3 is unknown.
Equations 3.52 and 3.53 give

ag+ oy X (rC—r;_z;)—a)z2 (re—rp) = a3 % (rC—rD)—w32 (re—rp),

or
1 J k
ag+| 0 0 |- 3 [(xc—xp)1+ (yc —yp)J]
xc—xgyc—ys 0
1 J k
= 0 0 o3|—03F[(xc—xp)1+(c—yp)j- (3.54)

Xxc—xpyc—yp 0

Equation 3.54 represents a vectorial equation with two scalar components on the
x-axis and y-axis and with two unknowns o, and o3

apx — 0 (yc — yp) — 03 (xc —xg) = — a3 (yc — yp) — @3 (xc —xp),
apy + 0o (xc —xp) — @3 (yc — yg) = 03 (xc —xp) — @3 (yc — yp),

or

—4.18732 — 0(0.449788 — 0.106066) — (—3.43639)2(0.0400698 — 0.106066)
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= —3(0.449788 — 0.3) — (—3.43639)%(0.0400698 — 0.3),
—4.18732 + 052(0.0400698 — 0.106066) — (—3.43639)2(0.449788 — 0.106066)
= 03(0.0400698 — 0.3) — (—3.43639)2(0.449788 — 0.3).

Thus,
o, = —8.97883 rad/s® and o3 = 22.6402 rad/s”.

The acceleration of C is

ac = o x (rc —rp) — @3 (rc —rp)
= [—os(yc —yp) — @3 (xc —xp) 1+ [0 (xc —xp) — @3 (v — )]y
= [—(22.6402)(0.449788 — 0.3) — (—3.43639)7(0.0400698 — 0.3)]1
+ [(22.6402)(0.0400698 — 0.3) — (—3.43639)2(0.449788 — 0.3)]
= —0.3217671—7.65368) m/s”.

The MATLAB commands for the angular accelerations of links 2 and 3, and the
acceleration of C are:

alpha2z = sym(’alpha2z’,’real’);

alpha3z = sym(’alpha3z’,’real’);

alpha2 = [ 0 0 alpha2z ]; alpha3 = [ 0 0 alpha3z ];

eqaC2 = aB2+cross(alpha2,rC-rB)-...
dot (Omega2,Omegaz) = (rC-rB) ;

eqaC3 = aD+cross (alpha3, rC-rD)-...
dot (Omega3, Omegal) * (rC-rD) ;

eqgqaC = egaC2 - eqgaC3;

egaCx = eqaC(l);

eqaCy = eqaC(2);

solaC = solve (egaCx,eqaCy);

alpha2zs = eval (solaC.alpha2z);

alpha3zs = eval (solaC.alpha3z);
Alpha2 = [0 0 alpha2zs];
Alpha3 = [0 0 alpha3zs];

aC=aB2+cross (Alpha2, rC-rB) —dot (OmegaZ2, Omega2) » (rC-rB) ;

Acceleration of Point E
The points E and D are on the link 3 and the acceleration of E is

ap = ap+ Q3 XPDE—(DZZ I'peg = Q3 X (I‘E—I‘D)—(D32 (I‘E—I‘D)
= [~o3(ye —yp) — @3 (xg — xp) |1+ [03(xg —xp) — @3 (Y — yp)])
= [—(22.6402)(0.524681 — 0.3) — (73.43639)2(70.0898952 —0.3))
+ [(22.6402)(—0.0898952 — 0.3) — (—3.43639)2(0.524681 —0.3)])

= —0.482651— 11.4805) m/s”.
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The MATLAB command for the acceleration of E is
aE=aD+cross (Alpha3, rE-rD) -dot (Omega3, Omegal3) » (rE-rD) ;

The MATLAB program with the results for the velocities and accelerations is given
in Appendix B.2.

3.7 Inverted Slider-Crank Mechanism

Exercise
The following dimensions are given for the inverted slider-crank mechanism (shown
in Fig. 3.6): AC=0.15 m and BC=0.2 m. The length AD is selected as 0.35 m (AD =
AC + BC). The driver link 1 rotates with a constant speed of n = n; = 30 rpm.

Find the velocities and the accelerations of the mechanism when the angle of the
driver link 1 with the horizontal axis is ¢ = ¢; = 60°.

Bjon link (1)
Point B { Bson link (2)
Bson link (3)

section TT

Fig. 3.6 Inverted slider-crank mechanism

Solution

A Cartesian reference frame with the origin at A is selected and the coordinates
of joint A are x4 = y4 = 0. The coordinates of the joint C are xc = AC = 0.15 m
and yc = 0. The coordinates of joint B for ¢ = ¢ = 60° are xp=0.113535 m and
yp=0.196648 m. The position of joint B is calculated from the equations

tan @ = iﬁ and (xg—xc)?+ (ya —yc)* = BC2.
B
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The MATLAB commands for the position vector of B are

egBl = 'xBsol*sin(phi) = yBsolxcos (phi)’;
egB2 = ’'yBsol"2+ (xC-xBsol) "2-BC"2 = 0';
solB = solve(egBl, egB2, ’'xBsol, yBsol’);
xBpositions = eval (solB.xBsol);

yBpositions = eval (solB.yBsol);

xBl = xBpositions(l); xB2 = xBpositions(2);

yBl = yBpositions(l); yB2 = yBpositions(2);

if (phi>=0 && phi<= pi)

if yBl >= 0 xB=xBl; yB=yBl; else xB=xB2; yB=yBR2;
end end

if (phi>pi && phi<=2xpi)

if yBl < 0 xB=xBl; yB=yBl; else xB=xB2; yB=yB2;
end end
rB = [ xB, yB, 0 ];

The magnitude of the angular velocity of the driver link 1 is

_Am ZGOIPM) 5y pad s,

0= =9(1) =~ 30

The angular velocity of link 1 is
w=w;=wk=3.141k rad/s.

The link 2 and the driver link 1 have the same angular velocity w; = w». The angu-
lar acceleration of link 1 is a¢; = w; = 0.

Velocity and Acceleration of By
The velocity of the point By on the link 1 is

VB, =VA+ W] XTIp=W| XTIp,

where v4 = 0 is the velocity of the origin A = O.
The velocity of By is

1 J k 1 J k
vg, =10 0 0| = 0 0 3.141| = —-0.617787140.356679) m/s.
xgyp 0 0.113535 0.196648 0

The acceleration of the point B on the link 1 is

ap, = as+oy Xrp+wp X (W) Xrp) =0 xrB—w%rB

= —wirg = —3.141%(0.11353514-0.196648)) = —1.120541— 1.94083) m/s>.
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Angular Velocity of Link 3
The velocity of the point B on the link 2 is equal to the velocity of the point B3 on
the link 3 (link 2 and link 3 are connected with a rotational joint).

The points B3 and C are on the link 3 and

VB, = Vp, = Ve + W3 XTep = w3 X (rg—re), (3.55)

where v¢ = 0 and the angular velocity of link 3 is w3 = w3 k. The angular velocity
of link 3 @3 is to be calculated.

The velocity of the point B; on the link 2 is calculated in terms of the velocity of
the point B; on the link 1

rel
VB, = VB, +Vp,p, = VB, +Va,,, (3.56)

where V%e; B, = VBy Is the relative acceleration of B, with respect to By on link 1.

This relative velocity is parallel to the sliding direction AB, vp,, ||AB, or
VBy, = VB, COSP11+Vp, singy], (3.57)
where ¢; = 45°. Equations 3.55-3.57 give

1 J k
0 0 3| =vp +Vp, cosP1+vp, sing]. (3.58)
xp—xcyp—yc 0

Equation 3.58 represents a vectorial equation with two scalar components on the
x-axis and y-axis and with two unknowns @3 and vp,,

_CO3()’B _YC) = vle +V321 COS¢1)
(1)3()63 —)CC) =By, +VB,, sin ¢1,

or

—3(0.196648 — 0) = —0.617787 + vp,, c0s60°,
®3(0.113535 —0.15) = 0.356679 + v, sin60°.

Thus,
@3 =4.69102 rad/s and vp, = —0.609381 m/s,

or in vectorial form
w3 =4.69102k rad/s and vp, = —0.304691—0.527739) m/s.
The velocity of B3 (or By) is
1 J k

VB, = Vg, = 0 0 3.903 | = —0.9224771—0.171063 m/s.
0.113535—-0.15 0.196648
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Fig. 3.7 Velocity field for the |IAB/'

inverted slider-crank mecha- R

nism bt

VBB

The MATLAB commands for the ws, vp,,, and vp, are:

Q

omega3z = sym(’omega3z’,’real’); % omega3z unknown

omega3 = [ 0 0 omega3z ];

vB21l = sym(’'vB21’,’real’); % vB21 unknown
vB2B1 = [ vB2lxcos (phil) vB2lxsin(phil) 0 1;
vC = [0 0 0 ];

% vB2 = vB3 = vC + omega3 x (rB-rC)

vB3 = vC + cross(omega3,rB-rC);
vB2 = vB3;

% vB2 = vB1l + vB2Bl1

eqvB = vB2 - ( vBl + vB2B1l );
egvBx = eqvB(l); eqgvBy = eqvB(2);
solvB = solve (eqvBx, eqvBy);
omega3zs = eval (solvB.omega3z);
vB21ls = eval (solvB.vB21);

Omega3 = [0 0 omega3zs];

VB21 = vB2lsx[cos(phil) sin(phil) O0];
VB3 = vC + cross (Omega3, rB-rC);

The velocity field for the inverted slider-crank mechanism is shown in Fig. 3.7.

Angular Acceleration of Link 3
The points Bs and C are on the link 3 and

2 2
ag, =ap, = ac + Q3 X rcg — W3Tcp = (3 X Iep — W3TCR, (3.59)
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where ac = 0 and the angular acceleration of link 3 is cx3 = oz k. The angular
acceleration of link 3 ¢ is to be calculated.

The acceleration of the point B, on the link 2 is calculated in terms of the accel-
eration of the point By on the link 1

_ rel cor __ cor
ap, =ap, +ag,p +app =ap +ap, +ag,, (3.60)

where a%e; B, = AB, Is the relative acceleration of B, with respect to By on link 1.

This relative acceleration is parallel to the sliding direction AB, ag,, ||AB, or
ap,, = dap,, cosPi1+ap, sin@ ). (3.61)
The Coriolis acceleration of B, relative to B; is
1 J k
ap =2Wi X Vg, =2W) X Vg, =2 0 O. )
VB,, COS @1 VB, sing; O
=2(— VB, sin@; 1+ w;vp,, cos P ]
=2[-3.141(—0.609381) sin60°1+ 3.141(—0.609381) cos 60° ]
=3.315881— 1.91443) m/s>. (3.62)

Equations 3.59-3.62 give

1 J k
0 0 o3|—wi(rz—rc)
xg—xcyg—yc 0
=ap, +ag,, (cos Pr1+sinP1)) +2 wy X vp,,. (3.63)

Equation 3.63 represents a vectorial equations with two scalar components on the
x-axis and y-axis and with two unknowns a3 and ag,,

-0 (yB —yc) — (1)32()63 —xc) =dap,, +a321 CcoSs (Pl — 2(1)11/321 sin (}51,

2 .
03 (xp —xc) — @5 (yB — yc) = ap,, + ag,, sin ¢1 + 20 vp,, cos 1,

or
—03(0.196648 — 0) — 3.9032(0.113535 —0.15)
= —1.12054 +ap,, cos60° 4-3.31588,
03(0.113535—0.15) — 3.9032(0.196648 -0)
= —1.94083, +ap,, sin60° —1.91443.
Thus,

03 = —6.38024 rad/s® and ap,, = —0.276477 m/s’.
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The relative acceleration of B, with respect to By is

ap,, = —0.276477cos60°1—0.276477sin60°) = —0.1382391—0.239436 m/s?,

and the acceleration of B3 is

ag, = ap, = Q3 X Icp — OTCp =
—6.38024k x [(0.113535 — 0.15)1+ (0.196648 — 0))]
4.691022[(0.113535 — 0.15)14 (0.196648 — 0)] =
2.05711—4.0947) m/s>.

The MATLAB commands for the &3, ag,,, and ag, are
alpha3z = sym(’alpha3z’,’real’); % alpha3z unknown
alpha3 = [ 0 0 alpha3z ];
aB21 = sym(’aB21l’,’'real’); % aB21 unknown
aB2B1 = [ aB2lxcos(phil) aB2lxsin(phil) 0 1;
acC = [ 000 1;

aB3=aC+cross (alpha3, rB-rC) —-dot (Omega3, Omega3) x (rB-rC) ;
aB2 = aB3;

% aB2Blcor = 2 omegal x VvB2Bl1

aB2Blcor = 2«cross (omegal,VB21l);

% aB2=aBl+aB2Bl+aB2Blcor

eqaB = aB2 - ( aBl + aB2Bl + aB2Blcor );
egaBx = egaB(1l);

egaBy = eqgaB(2);

solaB solve (eqaBx, egaBy) ;
alpha3zs = eval (solaB.alpha3z);
aB2ls = eval (solaB.aB21);

Alpha3 = [0 0 alpha3zs];
AB21 = aB2lsx[cos(phil) sin(phil) O0];

AB3=aC+cross (Alpha3, rB-rC) -dot (Omega3, Omegal) x (rB-rC) ;
The relation between the angular velocities of link 2 and link 3 is
Wy = W3 +wy3,
and the relative angular velocity of link 2 with respect to link 3 is

Wy =wy—w3 =3.141k—4.69102k = —1.54942k rad/s.



3.8 R-RTR-RTR Mechanism 71
The relative angular acceleration of link 2 with respect to link 3 is
03 =y — a3 = —a3 = 638024k rad /s,

where oy = a; = 0.

\ cor

NAB

Fig. 3.8 Acceleration field Al L. i
for the inverted slider-crank
mechanism C

The MATLAB program and the results for the velocities and accelerations anal-
ysis are given in Appendix B.3.

The acceleration field for the inverted slider-crank mechanism is shown in
Fig. 3.8.

3.8 R-RTR-RTR Mechanism

Exercise
The planar R-RTR-RTR mechanism is shown in Fig. 2.8. The following numerical
data are given: AB=0.15m, AC=0.10m, CD = 0.15 m, DF = 0.40 m, and AG =
0.30 m. The constant angular speed of the driver link 1 is 50 rpm.

Find the velocities and accelerations of the mechanism when the angle of the
driver link 1 with the horizontal axis is ¢ = ¢ = 30°.

Solution

A Cartesian reference frame xQy is selected. The joint A is the origin of the reference
frame, that is, A = O, and x4 = 0, y4 = 0. The coordinates of the joint C are: x¢c =
0, yc = AC = 0.1 m. The coordinates of the joint B, for the given angle ¢; = 30°,
are xp = AB cos 1 = 0.129904 m and yp = AB sin¢; = 0.075 m.
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The coordinates of the joint D are xp = —0.147297 m and yp = 0.128347 m. The
angle of links 2 (or link 3) and 5 (or link 4) with the horizontal axis are ¢, = ¢3 =
—0.1901 rad = —10.8934° and ¢4 = ¢5 = 2.4248 rad = 138.933°.

The angular velocity of link 1 is constant and has the value

n 7(50)

wlzwlk:%k: 30

k =5.23599k rad/s.
The angular acceleration of link 1 is a1 = w; = 0.

Velocity and Acceleration of B1 = B;
The velocity of the point By on the link 1 is

VB, = VA +W| XIqp =W XIp,

where v4 = 0 is the velocity of the origin A = O and rg = xg1+yg]) = 0.1299041+
0.075) m.

The velocity of point B, on the link 2 is vp, = vp, because between the links 1
and 2 there is a rotational joint. The velocity of By = B, is

1 J k 1 J k
0 0w|l= 0 0 5.23599
xpyp 0 0.129904 0.075 O

—0.392699 1+ 0.680175 3 m/s.

VB] = VB2

The acceleration of B; = B5 is
ap, =ap, =a4 + oy Xrg+w; x (W) Xrp) =) xrBfw%rB

= —wirg = —5.23599%(0.12990414-0.075)) = —3.561391—2.05617) m/s>.

Angular Velocity of Link 3
The velocity of the point B3 on the link 3 is calculated in terms of the velocity of the
point B, on the link 2

|
VB, = Vg, + VrBsz = VB, +V3,,, (3.64)

where vf%l B, = VB3, is the relative acceleration of B3 with respect to B, on link 3.

This relative velocity is parallel to the sliding direction BC, vg,, ||BC, or

VB3, = VB3, COS @21+ Vg, Sinh ], (3.65)

where ¢, = 4.715° is known from position analysis. The points Bz and C are on the
link 3 and

VB; = VC + W3 XTcp = W3 X (I‘B — rc), (3.66)

where v¢ = 0 and the angular velocity of link 3 is w3 = as k.
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Equations 3.64-3.66 give

1 J k
0 0 3| =vp,+Vvp,CcosPr1+Vp,,sing,]. (3.67)
xp—xcyg—yc 0

Equation 3.67 represents a vectorial equations with two scalar components on the
x-axis and y-axis and with two unknowns @3 and v,

_0)3(_)73 _yC) = VByx +VB32 Ccos ¢2a
(L)3(XB *XC) = VB,y =+ VB3, sin (Pz,
or

—3(0.075—0.1) = —0.392699 + vp,, cos(—10.8934°),
@3(0.129904 — 0) = 0.680175 + v, sin(—10.8934°).

Thus,
w3 = =4.48799 rad/s and vp,, =0.514164 m/s,

or in vectorial form
w3 = wy =4.48799k rad/s and vg,, = 0.5048991—0.0971678) m/s.

The MATLAB commands for the w3 and vg,, are:

omega3z=sym ('’ omega3z’,’ real’);
vB32=sym (' vB32’,"real’);

omega3 = [ 0 0 omega3z ];

% omegal3z unknown (to be calculated)
% vB32 unknown (to be calculated)

vC = [0 0 0 ]; % C is fixed
% vB3 = vC + omega3 x rCB
vB3 = vC + cross(omega3, rB-rC);

vB3B2 = vB32x[ cos(phi2) sin(phi2) 0];

% vB3 = vB2 + vB3B2 (vectorial equation)

egvB = vB3 - vB2 - vB3B2;

egvBx = eqvB(l); eqvBy = eqvB(2);

% two equations eqvBx & eqvBy with two unknowns
% solve for omega3z and VvB32

solvB = solve (eqvBx,eqvBy) ;
omega3zs=eval (solvB.omega3z); vB32s=eval (solvB.vB32);
Omega3 = [0 0 omega3zs]; Omega2 = Omega3;

VB32 = vB32sx[cos(phi2) sin(phi2) 0];
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Angular Acceleration of Link 3
The acceleration of the point B3 on the link 3 is calculated in terms of the accelera-
tion of the point B, on the link 2

_ rel cor __ cor
apg, =ap, +-agp +agp =ap, +ap;, +ag, , (3.68)

where af,ile = ag,, is the relative acceleration of B3 with respect to B on link 3.
This relative acceleration is parallel to the sliding direction BC, ag,, ||BC, or

ap,, = ag,, COs Y1+ ap,, sin@ ). (3.69)
The Coriolis acceleration of B3 relative to B; is

1 k
a§§2:2w3XVB32:2w2><vB32:2 0 8 w3
VB;, COS o Vg, singy 0
= 2(— w3V, sin a1+ W3vp,, cos P ])
= —2(4.48799)(0.514164) sin(—10.8934°)1
+2(4.48799)(0.514164) cos(—10.8934°)
=0.8721761+4.53196) m/s>. (3.70)

The points B3 and C are on the link 3 and
ap, = ac + Q3 X Icp — WITCE, (3.71)

where ac = 0 and the angular acceleration of link 3 is

a3z = oz k.
Equations 3.68-3.71 give
1 J k
0 0 o3|—wi(rg—rc)
xp—xc yp—Yyc 0
= ap, +ap,, (cos Pa1+sin ¢o]) +2 w3 X Vpy,. (3.72)

Equation 3.72 represents a vectorial equations with two scalar components on the
x-axis and y-axis and with two unknowns @3 and ag,,

_053()78 _YC) - a)32(xB _XC) = aBzx+aB32 COS@ - 2(1)3‘}332 Sin¢27
[04) (xB —xc) — (1)32 (yB — yc) =ap,yt+ag, sin ¢, + 2(031/332 cos (]b,

or

—a3(0.075 —0.1) — 4.48799%(0.121 — 0)
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— —3.56139+ ag,, cos(—10.8934°) — 2(4.48799)(0.514164) sin(—10.8934°),
03(0.129904 — 0) — 4.487992(0.075 — 0.1)
— —2.05617 + ag,, sin(—10.8934°) +2(4.48799)(0.514164) cos(—10.8934°).

Thus,
03 = 0 = 14.5363 rad/s* and ap,, = 0.44409 m/s*.

The MATLAB commands for the <3 and ag,, are:
% Coriolis acceleration
aB3B2cor = 2+%cross (Omega3,VB32);
alpha3z=sym(’alpha3z’,’real’); % alpha3z unknown
aB32=sym(’aB32’,’real’); % aB32 unknown
alpha3 = [ 0 0 alpha3z ];
aC = [0 0 0 ]; % C is fixed
aB3=aC+cross (alpha3, rB-rC) —dot (Omega3, Omega3) » (rB-rC) ;
aB3B2 = aB32x[ cos(phi2) sin(phi2) 01];
% aB3 = aB2 + aB3B2 + aB3B2cor
egaB = aB3 - aB2 - aB3B2 - aB3B2cor;
egaBx = eqgaB(l); egaBy = egaB(2);
solaB = solve (egaBx,eqgaBy) ;
alpha3zs=eval (solaB.alpha3z);
aB32s=eval (solaB.aB32);
Alpha3 = [0 0 alpha3zs];
Alpha2 = Alpha3;
AB32 = aB32sx[cos (phi2) sin(phi2) 0];

Velocity and Acceleration of D3 = Dy
The velocity of D3 = Dy is

Vp; =Vp, = Ve + W3 XIcp = w3 X (I‘D—I‘C)

1 J k 1 J k
= 0 0 wm|= 0 0 4.48799
xp—xcyp—yc O —0.147297-00.128347—-0.1 0O

= —0.1272231—0.6610683 m/s.
The acceleration of D3 = Dy is

ap, =ap, = ac+ Q3 X Icp — W3rcp = Q3 X (rp —r¢) — 03 (rp —r¢)

1 ] k
- o0 0 o3|—F[(xp—xcn+(yp—yo)
xp—xcyp—yc 0
1 J k
_ 0 0 14.5363

—0.147297—-00.128347—-0.1 0O
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—4.48799% [(—0.147297 — 0)1+ (0.128347 — 0.1)]
—=2.55481—2.71212) m/s%.

The MATLAB commands for the velocity and acceleration of D3 = Dy are:

% D3 & C points on link 3

vD3 = vC + cross (Omega3, rD-rC);

vD4d = vD3;

aD3=aC+cross (Alpha3, rD-rC) —dot (Omega3, Omega3) x (rD-rC) ;
ab4 = aD3;

Angular Velocity of Link 5
The velocity of the point D5 on the link 5 is calculated in terms of the velocity of
the point D4 on the link 4

Vps =Vp, +Vpg,- (3.73)

This relative velocity of D5 with respect to Dy is parallel to the sliding direction DA,
Vps, ||DA, or

VDs, = VDs, COS P51+ Vp,, sin@sJ. 3.74)
The points D5 and A are on the link 5 and
VDs = Va4 +Ws5 X TIp, (3.75)

where v4 = 0 and the angular velocity of link 5 is

ws; = s k.
Equations 3.73-3.75 give
1 ] k
0 0 ws|=vp,+vp,,(cosPs1+sings]). (3.76)
xpyp 0

Equation 3.76 represents a vectorial equations with two scalar components on the
x-axis and y-axis and with two unknowns @s and vp,,

—Wsyp = vD4X + VD54 Cos ¢57
Ws5Xp = Vp,y + VDs, sin ¢s,

or

—5(0.128347) = —0.127223 4 vp,, cos(138.933°),
©s5(—0.147297) = —0.661068 + vp, sin(138.933°).
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Thus,
s = w4 =2.97887 rad/s and vp,, = 0.338367 m/s.

The MATLAB commands for the ws and vp,, are:
omegabz=sym(’ omegabz’,’real’); % omegabz unknown
vD54=sym(’vD54’, " real’); % vD54 unknown
omegabS = [ 0 0 omegabz ];
vD5 = vA + cross(omegab, rD);
vD5D4 = vD54x[ cos(phib) sin(phib5) 0];

% vD5 = vD4 + vD5D4

eqvD = vD5 - vD4 - vD5D4;

eqvDx = eqvD(l); eqgvDy = eqvD(2);
solvD = solve (eqvDx,eqvDy);
omegabzs=eval (solvD.omegabz) ;
vD54s=eval (solvD.vD54) ;

Omegab = [0 0 omegabzs];

Omegad Omegab;

VD54 = vD54sx[cos (phi5) sin(phi5) 0];

Angular Acceleration of Link 5
The acceleration of the point Ds on the link 5 is calculated in terms of the accelera-
tion of the point D4 on the link 4

ap; = ap, +ap,, + a§§5‘4, (3.77)
This relative acceleration ag,, is parallel to the sliding direction DA, ap, ||DE, or
ap,, = aps, Cos Ps1+ap,, sin Ps]. (3.78)
The Coriolis acceleration of D5 relative to Dy is
1 J k
a}')‘)5‘4:2w4><v1354:2w5><vD54:2 0 0. s
VD, COS @5 Vps, sings 0
= 2(—wsvpy, Sin P51+ Wsvp,, cos Ps )

= 2[—2.97887(0.338367) sin(138.933°)1-+2.97887(0.338367) cos(138.933°) ]
= —1.324341—1.51987) m/s. (3.79)

The points D5 and A are on the link 5 and
ap, = a4 + Qs X rp — W, (3.80)
where a4 = 0 and the angular acceleration of link 5 is

as = os k.
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Equations 3.77-3.80 give

1 ] k
0 0 o5 —G)SZI‘D
xp yp 0
=ap, +ap,, (cosPs1+sin@s)) +2 ws X vp,, . (3.81)

Equation 3.81 represents a vectorial equations with two scalar components on the
x-axis and y-axis and with two unknowns a5 and ap,,

2 .
—05yp — W5Xp = ap,x + Aps, COS 05 — 2(1.)5VD54 sin ¢s,

2 .
OlsXp — 2w5yD = ap,y t+aps, s 05 + 2(1)51/]_)54 cos ¢s,

or
—05(0.128347) — 2.978872(—0.147297)
=2.5548 + ap,, cos(138.933°) —2(2.97887)(0.338367) sin(138.933°),
ag(—(ll47297)——2.978872(0.128347)
= —2.71212+ap,, sin(138.933°) +-2(2.97887)(0.338367) cos(138.933°).
Thus,

o5 = oy = 12.1939 rad/s® and ap,, = 1.97423 m/s’.

The MATLAB commands for the a5 and ap,, are:
% Coriolis acceleration

aD5D4cor = 2xcross (Omegab, VD54

alphabz = sym(’alphabz’,’real’

14

—_ -

;% alphabz unknown

aD54 = sym(’aD54’,"real’); % aD54 unknown
alpha5 = [ 0 0 alphabz ];
aD5 = aA + cross(alpha5,rD) - dot (Omegab5,Omegab) xrD;

aD5D4 = aD54x[ cos(phib) sin(phib) 01;
egaD = abD5 - ab4 - aD5D4 - aD5D4cor;
egaDx = eqgaD(l); egaDy = egaD(2);
solaD = solve (egaDx,eqgaDy) ;

alphab5zs = eval (solaD.alphabz);

aD54s = eval (solaD.aD54);

Alphab5 = [0 0 alphabzs];

Alpha4 Alphab;

AD54 = aD54sx[cos (phib) sin(phib) 0];

The MATLAB program and the results for the velocities and accelerations analysis
are given in Appendix B.4.
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3.9 Derivative Method

Another method for obtaining the velocities and/or accelerations of links and joints
is to compute the derivatives of the positions and/or velocities with respect to time.

Exercise: R-RTR-RTR Mechanism
The derivative method will be explained using the planar R-RTR-RTR mechanism
considered in Sect. 3.8 and shown in Fig. 2.8.

Solution

The angular velocity of link 1 is constant and has the value

; 5
n=50rpmand ® = ¢ = % = 771: rad/s,
or in MATLAB

n = 50 ; % rpm of the driver link (constant)

[o)

omega = nx*pi/30; % rad/s

The velocity is obtained taking the derivative of the position with respect to time, ¢.
The symbolic variable ¢ is introduced in MATLAB with the statement sym:

t = sym('t’,’'real’);

The coordinates of the joint B are xg(r) = AB cos ¢(¢) and yg(r) = AB sin¢(¢), and
the position vector of B is rp = xp1+xp]. To calculate symbolically the position of
the joint B, the following MATLAB commands are used:

xB ABxcos (sym('phi(t)’));

yB = ABxsin(sym('phi(t)’));

% position vector of B in terms of phi (t)
rB = [ xBvyB 0 ];

The statement sym (’ phi (t)’) represents the mathematical function ¢(¢) and is
introduced with the command sym that constructs symbolic numbers, variables and
objects. The function phi has one argument, the time t. To calculate numerically
the position of the joint B, the symbolic variables need to be substituted with the
input data. To apply a transformation rule to a particular expression expr, type
subs (expr, lhs, rhs).

The statement subs (expr, Lhs, rhs) replaces 1hs with rhs in the sym-
bolic expression expr. For the mechanism, the numerical values for the joint B are:

xBn = subs (xB, 'phi(t)’, pi/6); % xB for phi(t)=pi/6
yBn subs (yB, ’'phi(t)’, pi/6); % yB for phi(t)=pi/6
rBn = subs(rB, ’'phi(t)’, pi/6); % rB for phi(t)=pi/6
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The numerical values of the vector rBn are printed with:
fprintf('rB = [ %g, %g, %g 1 (m) \n’, rBn)
The linear velocity vector of By = B; is
VB = Vg, = Vp, = Xpl+)yg],

where 4 p
Xp = % = —AB¢sing and yp= % =AB¢cos ¢,

are the components of the velocity vector of By = B;. To calculate symbolically the
components of the velocity vector using the MATLAB the command diff (f, t)
is used, which gives the derivative of £ with respect to t. The symbolical expression
of the velocity vector of B; = B, is obtain with the statement

% vB=vBl=vB2 in terms of phi(t) and diff (phi(t),t)
vB = diff (rB,t);

The components, vB (1) and vB (2), of the vector vB are symbolic expressions in
terms of phi (t) and diff (phi (t),t):

-3/20*sin (phi(t))*diff (phi(t),t)
3/20%cos (phi(t))*diff (phi(t),t)

The numerical values for the components of the velocity of B; = B; are

x5 =—0.15 (57/3)sin30° = —0.392699 m/s,
¥ =0.15 (57/3)cos30° = 0.680175 m/s.

To obtain the numerical values in MATLAB firstdi £ £ (' phi (t) ', t) isreplaced
with omega and then phi (t) is replaced withpi/6

% replaces diff ('phi(t)’,t) with omega in vB
vBnn = subs (vB,diff('phi(t)’,t),omega);

% replaces phi(t) with pi/6 in vBnn
vBn = subs (vBnn,’'phi(t)’,pi/6);

Instead of replacing diff (' phi (t)’,t) with omega and then replacing
"phi (t)’ with pi/6, a list with the symbolical variables ' phi (t)’,
diff (‘phi(t)’,t),anddiff ('phi(t)’,t,2) iscreated:

slist={diff (‘phi(t)’,t,2),diff ("phi(t)’,t), phi(t)’};



3.9 Derivative Method 81

Next, a list with the numerical values for s1ist is introduced:

3
—
o
)]
s

= {0, omega, pi/6}; % numbers for slist
diff (phi(t)’,t,2) -> 0

diff ('phi(t)’,t) —-> omega

"phi(t)’ -> pi/6

o° oo o°

The velocities and accelerations need to be calculated at the moment when the driver
link makes an angle ¢ (t) = 7/6 with the horizontal and ¢ (t) = ® and ¢ (t) = & = 0.
To obtain the numerical value for the symbolic vector rB the following statements
are introduced:

% replaces slist with nlist in vB
vBn = subs (vB,slist,nlist);
$converts the symbolic vBn to a numeric object
VB = double (VvBn) ;
fprintf ("vBl = vB2 = [ %g, %g, %g ] (m/s) \n’ , VB)

The statement double (S) converts the symbolic object S to a numeric object.
The magnitude of the velocity vector vg, = vp, is

VB = VB, = |VB|‘ = |V32‘ =V x%f+y%?

= \/(—0.392699)2 +0.6801752 = 0.785398 m/s.

The MATLAB command norm (v) calculates the magnitude of a vector v. The
magnitude of the velocity vector vg, = v, in MATLAB is:

VBn = norm(VB) ;
fprintf (/' |vBl| = |vB2| = %g (m/s) \n’, VBn)

The linear acceleration vector of B; = B; is

ag, = ag, = Xp1+ ),

where
. de ) .
Xp=—"= —AB ¢~ cos¢p —AB¢ sing,
dy . .
§ip = % = —AB¢? sing +AB§ cos ¢,
and

ap, = ap, = ‘aBl| = |aBz| =V xlza"_ﬁ?'
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For the considered mechanism the angular acceleration of the link 1 is ¢ = @ = 0.
The numerical values of the acceleration of B are

ig = —0.15 (51/3)? cos 30° — 0.15 (0)sin30° = —3.56139 m/s?,
jg = —0.15 (57/3)%s5in30° 4-0.15 (0) cos 30° = —2.05617 m/s>.

The MATLAB command used to calculate symbolically the acceleration vector is:
aB = diff (vB,t); % acceleration of B1=B2
The numerical value for the vector aB is obtained with

% numerical value for aB

aBn = double (subs(aB,slist,nlist));

fprintf("aBl = aB2 = [ %g, %g, %g ] (m/s”"2) \n’, aBn)
ABn = norm(aBn);

fprintf (' |aBl| = |aB2| = %g (m/s"2) \n’, ABnN)

The coordinates of the joint D are xp and yp. The position of the joint D is calculated
from the following equations

[p (1) = xc]* + (1) —yc]* = CD?,
y8(t) —yc _ yp(t) —yc
)CB(l‘ —

xc XD (l ) —Xc '
The MATLAB commands used to calculate the position of D are:

eqnDl = ’ ( xDsol - xC )"2 + ( ybsol - yC )"2 = CD"2 ’;
eqnD2 " (yB-yC) / (xB-xC) = (yDsol-yC)/ (xDsol-xC)’;
solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);

Two sets of solutions are found for the position of the joint D that are functions of
the angle ¢(¢) (i.e., functions of time):

xDpositions = eval (solD.xDsol);
yDpositions = eval (solD.yDsol);
xD1 = xDpositions(l); xD2 = xDpositions(2);
yD1l = yDpositions(l); yD2 = yDpositions(2);

To determine the correct position of the joint D for the mechanism, an additional
condition is needed. For the first quadrant, 0 < ¢ < 90°, the condition is xp < xc.
This condition using the MATLAB command is:

xD1n = subs (xD1,’phi(t)’,pi/6); % xD1 for phi(t)=pi/6
if xD1ln < xC
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xD = xD1; yD = yD1;
else
xD = xD2; yD = yD2;
end
% position vector of D in term of phi (t)
rD = [ xD yD 0 1;

The numerical solutions are printed using MATLAB

xDn = subs (xD,’phi(t)’,pi/6); % xD for phi(t)=pi/6

yDn = subs (yD,’phi(t)’,pi/6); % yD for phi(t)=pi/6
rDn = [ xDn yDn 0 ]; % rD for phi( )=pi/6
fprintf('rD = [ %9, %9, %9 ] ) \n’, rDn)

The linear velocity vector of the joint D3 = D4 (on link 3 or link 4) is
Vp, = Vp, =Xpl+Yp),

where
. dxp d v dyp
Xp=— an = -
D dt YD dt )

are the components of the velocity vector of the joint D, respectively, on the x-axis
and the y-axis. The magnitude of the velocity is

vpy =vp, = |Vp,y| = |Vp,| = \/ x123+y%)'

To calculate symbolically the components of this velocity vector the following
MATLAB commands are used:

% vD in terms of phi(t) and diff ('phi(t)’,t)
vD = diff (xD,t);

The numerical solutions are printed using MATLAB:

[

% numerical value for vD

vDn double (subs (vD, slist,nlist));
fprintf ('vD3 = vD4 = [ %g, og, $g 1 (m/s) \n’, vDn)
fprintf (' |vD3| = |vD4| = %g (m/s) \n’, norm(vDn) )

For the considered mechanism the numerical values are
p=—0.127223 m/s and yp = —0.661068 m/s.
The linear acceleration vector of D3 = Dy is

ap, =ap, =ipl+¥p),
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where
. dip d ¥ dyp
ip=—— an ==
P D=
The magnitude of the acceleration is

ap; = dp, = |aD3| = |aD4| = x%)erzD

To calculate symbolically the components of the acceleration vector the following
MATLAB commands are used:

aD = diff(vD,t);
The numerical values for the acceleration of D3 = Dy are
¥p =2.5548 m/s’ and jp=—2.71212 m/s?,
and can be printed using MATLAB:

% numerical value for abD

aDn = double (subs(aD,slist,nlist)
fprintf ("abD3 = aD4 = [ %g, og, %9
fprintf ('’ |aD3| = |ab4| = %g /s”2

) ;
] (m/s”2) \n’, aDn)
) \n’, norm(aDn))

The angle ¢»(¢) = ¢3(¢) is determined as a function of time ¢ from the equation of
the slope of the line BC:

yB(t) —yc
XB(I) —)CC.

tan @, (1) =tan ¢z (¢) =

The MATLAB function atan (z) gives the arc tangent of the number z and the
angle ¢ is calculated symbolically:

phi2 = atan ((yB-yC)/ (xB-xC));
The numerical value is given by:

phi2n = subs (phi2, ’phi(t)’,pi/6);
The numerical solution is printed using MATLAB:

fprintf ('phi2 = phi3 = %g (degrees) \n’, phi2n*180/pi)
The angular velocity @, (t) = @s(¢) is the derivative with respect to time of the angle

M (1)
_dp(t)
dt
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Symbolically, the angular velocity @, = @; is calculated using MATLAB:

)

% omega2 in terms of phi(t) and diff (‘phi(t)’,t)
dphi2 = diff (phi2,t);

and is the numerical value is printed using the MATLAB statements:

dphi2nn = subs(dphi2,diff (‘phi(t)’,t),omega);
dphi2n = subs (dphi2nn, "phi(t)’,pi/6);
fprintf (' omega2 = omega3 = %g (rad/s) \n’, dphi2n)

The angular acceleration o (¢) = o3 (¢) is the derivative with respect to time of the
angular velocity @, (t):
dan(t)
on(t) = .
(1) dt

Symbolically, using MATLAB, the angular acceleration ¢, is:

ddphi2 = diff (dphi2,t);
The numerical solution is printed using MATLAB:
ddphi2n = double (subs (ddphi2, slist,nlist));
fprintf (‘alpha2 = alpha3 = %g (rad/s "2) \n’, ddphi2n)

The numerical values of the angles, angular velocities, and angular accelerations for
the links 2 and 3 are:

¢ = @3 = —10.8934 rad, @, = w3 =4.48799 rad/s, o = o3 = 14.5363 rad/s’.

The angle ¢4(¢) = ¢s(¢) is determined as a function of time ¢ from the following
equation:
yo(t) —YE
tanQ4(f) =tanQs(t) = —————,
0u(0) = tangs(e) = 222
and symbolically using MATLAB:
ddphi4 = diff (dphi4,t);

The angular velocity @y () = ws(¢) is the derivative with respect to time of the angle

P4 (1)
_ dgu(t)

dt
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To calculate symbolically the angular velocity s using MATLAB, the following
command is used:

dphi4 = diff (phid4,t);

The angular acceleration au4(t) = os(r) is the derivative with respect to time of the
angular velocity @ (t):
_ doy (l‘ )

a4(t) - dt ’

and it is calculated symbolically with MATLAB:

ddphi4 = diff (dphid,t);

The numerical values of the angles, angular velocities, and angular accelerations for
the links 5 and 4 are:

0s = 05 = 138.933 rad, ws= o, =2.97887 rad/s, o5 = oy = 12.1939 rad/s>.

The numerical solutions printed with MATLAB are:

dphidn = double (subs(dphid4,slist,nlist));

fprintf (" omegad = omegab5 = %g (rad/s) \n’ , dphidn)
ddphid4n = double (subs (ddphid4, slist,nlist));

fprintf (’alphad4 = alpha5 = %g (rad/s”2) \n’, ddphi4n)
The MATLAB program for velocity and acceleration analysis and the results are
given in Appendix B.5.

Exercise: Inverted Slider-Crank Mechanism
The mechanism considered in Sect. 3.7 (shown in Fig. 3.6) will be analyzed using
the derivative method. The dimensions of the links are AC=0.15 m and BC=0.2 m.
The driver link 1 rotates with a constant speed of n = n; = 30 rpm.

Find the velocities and the accelerations of the mechanism when the angle of the
driver link 1 with the horizontal axis is ¢ = ¢; = 60°.

Solution

A Cartesian reference frame with the origin at A is selected. The coordinates of joint
A are x4 = y4 = 0. The coordinates of the joint C are xc = AC = 0.15 m and yc = 0.
The position of joint B is calculated from the equations

tan¢(t) = and [xB(t)—xC]2+[yB(t)—yC]2:BCZ,

or
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xp(t) sin (1) = yp(r) cos (1),
[xp(t) —xc]* + [yg(t) —yc]* = BC. (3.82)

The coordinates of joint B are xg = 0.113535 m and yp = 0.196648 m. The MAT-
LAB statements for the positions are:

0.20 ; xA =0 ; yA =0 ;

xC = AC ; yC = 0 ;
n = 30 ; omega = nxpi/30;
t = sym('t’,’'real’) ;

phi = sym(‘phi(t)’) ;
xB = sym('xB(t)’") ;
yB = sym('yB(t)") ;

egBl = xBxsin(phi) - yBxcos (phi) ;
egB2 (xB - xC )"2 + (yB - yC )"2 - BC"2 ;

sp = {"phi(t)’,"xB(t)’,"yB(t)"} ;
np = {pi/3,’xBn’,’yBn’} ;

egBlp = subs(egBl, sp,np) ;

egB2p = subs (egB2, sp,np) ;

solBp = solve (egBlp, egB2p) ;

xBpositions = eval (solBp.xBn) ;
yBpositions = eval (solBp.yBn) ;
xBl = xBpositions(l); xB2 = xBpositions(2) ;

yBl = yBpositions(l); yB2 yBpositions (2) ;
if yBl > 0 xBp = xBl; yBp = yBl;
else xBp = xB2; yBp = yB2; end
rB [(xBp yBp O] ;
fp = {pi/3,xBp,yBp} ;

The linear velocity of point B on link 3 or 2 is
VB, = VB, = Xgl+ Y],

where

. dxp d v dyg
Xp = —— an =
B dt B dt

The velocity analysis is carried out by differentiating Eq. 3.82:

ip sing +xp @ cos = yp cosd —yp d sing,
xg(xg —xc) +yp(yg —yc) =0,

or
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Xp sin@ +xp W cosP = yp cos P —yp W sin ¢,
xp(xp —xc) +yp(yp —yc) = 0. (3.83)

The magnitude of the angular velocity of the driver link 1 is

wny  7(30 rpm)

w:wlzq):W: 30 =3.141 rad/s.

The link 2 and the driver link 1 have the same angular velocity w; = w». For the
given numerical data Eq. 3.83 becomes

x5 $in60° +0.113535 (3.141) cos60° = ¥ cos60° — 0.196648 (3.141) sin60°,
x5(0.113535 —0.15) + y5(0.196648 — 0) = 0. (3.84)

The solution of Eq. 3.84 gives
xp=—-0.922477 m/s and ygp=—0.17106 m/s.
The velocity of B is

Vg, = Vg, = —0.9224771—0.17106) m/s,

[Vy] = [va,| = \/(~0.922477)2 + (~0.17106)* = 0.938203 m/s.
The MATLAB statements for the velocity of B, = B3 are:

deqBl = diff (egBl,t) ;

degB2 = diff (egB2,t) ;

sV = .

{diff ("phi(t)’,t),diff ("xB(t)’,t),diff ("yB(t)’,t)};
nv = {omega,’vxB’,’'vyB'} ;

degBlp=subs (degBl, sv,nv) ;
degBln=subs (degBlp, sp, fp)
degB2p=subs (degB2, sv,nv) ;
degB2n=subs (degB2p, sp, fp) ;

solvB = solve (degBln, degB2n) ;
vBx = eval (solvB.vxB) ;
vBy = eval (solvB.vyB) ;

fv = {omega, vBx,VBy} ;

The acceleration analysis is obtained using the derivative of the velocities given by
Eq. 3.83:



3.9 Derivative Method

¥p sin @ +xp @ cos P +xp @ cos p — xp W? sin P
= Jp cosP — yp @ sind — yp @ sin @ + yg 0> cos ,
Xp(xp —xc) + 1%+ Yp(vs —yc) + 5 = 0.

The magnitude of the angular acceleration of the driver link 1 is
a=0=¢=0.

Numerically, Eq. 3.85 gives

¥p $in60° 42 (—0.922477) (3.141) cos 60° — 0.113535(3.141)? sin60°

89

(3.85)

= jig cos45° — 2 (—0.17106) (3.141) sin60° +0.196648 (3.141)? cos 60°,

¥5(0.113535 — 0.15)§5(0.196648 — 0)
+(-0.922477)% + (—0.17106)* = 0.

The solution of Eq. 3.86 is
ip=2.0571 m/s* and jp=—4.0947 m/s*.
The acceleration of B on link 3 or 2 is

ap, = ap, = ipl+jp) = 2.05711—4.0947) m/s,

a5, = lag, | =/ (2.0571)2 + (~4.0047)2 = 4.58238 m/s”.

The MATLAB statements for the acceleration of B, = B3 are:

ddegBl = diff (degBl,t) ;
ddegB2 diff (degB2,t) ;

sa={diff (‘phi(t)’,t,2),diff ("xB(t)’,t,2),...
diff ("yB(t)’,t,2)};

na={0,’axB’,’ayB’} ;

ddegBlp=subs
ddegBln=subs
ddegBlf=subs
ddegB2p=subs
ddegB2n=subs
ddegB2f=subs

ddegB1l, sa,na) ;
ddegBlp, sv, fv) ;
ddegBln, sp, fp) ;
ddegB2, sa,na) ;
ddegB2p, sv, fv) ;
ddegB2n, sp, fp) ;

—~ o~ o~ o~ o~ o~

solaB = solve (ddegBlf, ddegB2f) ;
aBx = eval (solaB.axB) ;

(3.86)
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aBy = eval (solaB.ayB) ;
fa = {0, aBx, aBy};

The slope of the link 3 (the points B and C are on the straight line BC) is

£ —
tan ¢3(1) = M7
or
[xp(t) —xc] sings(¢) = [ya(t) — yc] cos ¢3(2). (3.87)
The angle ¢5 is computed as follows:
YB—Yc 0.196648 — 0

= —79.4946°.

03 = arctan = = ATClAN G e e 0 1S

The derivative of Eq. 3.87 yields

xp sin@s + (xg — xc) @3 cos ¢3 = yp cos @3 — (yg — yc) @3 sin @3,

or

Xp sins + (xp — xc) @3 cos g3 = yp cos ¢3 — (yp —yc) w3 sing3,  (3.88)

where @3 = ¢5.
Numerically, Eq. 3.88 gives

—0.922477 sin(—79.4946°) + (0.113535 — 0.15) @3 cos(—79.4946°)
= —0.17106 cos(—79.4946°) — (0.196648 — 0) 3 sin(—79.4946°),

with the solution w3 = 4.69102 rad/s.
The angular velocity of link 3 is

w3 =3k =4.69102k rad/s.

The MATLAB statements for the angular velocity of link 3 are:

phi3 = atan((yB-yC)/ (xB-xC)) ;

phi3n subs (phi3, sp, fp) ;

dphi3 diff (phi3,t) ;

dphi3nn = subs (dphi3, sv, fv) ;

dphi3n = subs (dphi3nn, sp, fp) ;

fprintf (" omega3d = %g (rad/s) \n’, double (dphi3n))

The angular acceleration of link 3, o3 = @3 = (}53, is obtained using the derivative of
Eq. 3.88:
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¥p sin @3 + xp w3 cos ¢3
+ip w3 cos 3 + (xp — x¢) @3 cos @3 — (xp — x¢) a)32 sin ¢s
= Jip cos ¢3 — yp 3 sin @
—yp @3 sin¢3 — (v — yc) @3 sin ¢3 — (v — yc) @3 cos ¢3,

or

Xp sin@3 +2xp @3 cos ¢ + (xp — x¢) a3 cos ¢z — (xp — x¢) a)32 sin ¢3
= i cos ¢3 — 2yp @3 sin¢3 — (yz — yc) 03 sin 3 — (v — y¢) ©F cos 3.

Numerically, the previous equation becomes

2.0571 sin(—79.4946°) + 2 (—0.922477) (4.69102) cos(—79.4946°)
+(0.113535 —0.15) a3 cos(—79.4946°)
—(0.113535 — 0.15) (4.69102)? sin(—79.4946°)
= —4.0947 cos(—79.4946°) — 2 (—0.17106) (4.69102) sin(—79.4946°)
—(0.196648 — 0) 03 sin(—79.4946°)
—(0.196648 — 0) (4.69102)2 cos(—79.4946°),

with the solution a3 = —6.38024 rad/s>. The angular acceleration of link 3 is
o3 = ask = —6.38024k rad/s’.
The MATLAB statements for the angular acceleration of link 3 are:

ddphi3 = diff (dphi3,t) ;

ddphi3nnn = subs (ddphi3, sa, fa) ;

ddphi3nn = subs (ddphi3nnn, sv, fv) ;

ddphi3n = subs (ddphi3nn, sp, fp) ;

fprintf (‘alpha3 = %g (rad/s"2 ) \n’, double (ddphi3n))

The MATLAB program for velocity and acceleration analysis and the results using
the derivative method are given in Appendix B.6.

Exercise: R-RTR Mechanism
The R-RTR mechanism shown in Fig. 3.9 has the dimensions: AB = 0.1 m, AC =
0.1 m, and CD = 0.3 m. The constant angular speed of the driver link 1 is ® = @, =
7 rad/s.

Find the velocities and the accelerations of the mechanism using the derivative
method when the angle of the driver link 1 with the horizontal axis is ¢ = ¢; =
/4 =45°.

Solution
The origin of the fixed reference frame is at C = 0. The position of the fixed joint A
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Fig. 3.9 R-RTR mechanism

isx4 =0and y4 = AC = 0.1 m. The position of joint B is
xg(t) =xa+ABcosd(t), yp(t)=ya+ABsing(t),
and for ¢ = 45°, the position is
xg =0+0.1cos45° =0.07071 m, yg =0.1+0.1sin45° =0.17071 m.
The linear velocity vector of By = B; is
VB, = Vg, = Xg1+Yg]J,

where

. dxp P . dyg P
XBZWZ—AB(PS‘“‘P’ yB:%:AB(PCOS(D.

With ¢ =45° and ¢ = @ = = 3.141 rad/s:

Xp = —0.17sin45° = —0.222144 m/s,
yg =0.17 cos45° = —0.222144 m/s,

vg, =g, = |Vg,| = |Vg,| = \/x% + % = 0.222144V/2 mis.
The linear acceleration vector of B = B> is
ap = apg, = ip1+p),

where
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di . )
g = if — —AB¢? cos¢ —AB§ sing,
)’B

I —AB¢?sing +AB @ cos ¢.

VB =
The angular acceleration of link 1 is ¢ = @ = a = 0. The numerical values for the
acceleration of B are

i = —0.17>cos45° — 0 = —0.697886 m/s?,
yp = —0.17%5in45° +0 = —0.697886 m/s?,

ag, = ap, = |ag,| = |ap,| = /i3 + 7% = 0.6978861/2 m/s>.
The MATLAB statements for the velocity and acceleration of B; = B, are:

AB = 0.1; AC = 0.1; CD = 0.3; % (m)
phil = pi/4; omega = pi; alpha = 0;
xC = 0; yC = 0;
xA = 0; yA = AC;

t = sym('t’,’real’);
xBl = xA + AB%*cos(sy
s

m('phi(t)’));
yBl = yA + AB*sin(sym

"phi(t)’));

(

(
rB = [ xB1 yB1 0 ]; symbolic function of phi (t)
xBn = subs (xB1, phl(t) ,pi/4); % xB for phi(t)=pi/4
yBn = subs(yBl,’phi(t)’,pi/4); % yB for phi(t)=pi/4
rBn = subs(rB phl(t)’,p1/4) % rB for phi(t)=pi/4
fprintf ("rB = [ %9, %g, %9 1 (m)\n’, rBn)

vB = diff (rB,t); %differentiates rB with respect to t
%1list for symbolical variables phi’’,phi’,phi

slist={diff (‘phi(t)’,t,2),diff ('phi(t)’,t), phi(t)’};
%$list for numerical values of phi’’ (t),phi’ (t),phi(t)
nlist={alpha, omega,phil}; %numerical values for slist

vBn = double (subs(vB,slist,nlist));
fprintf (vBl = vB2 = [ %g, %g, %g ] (m/s)\n’, vBn)
fprintf (' [VB1| = |VvB2| = %g (m/s)\n’, norm (vBn) )

%acceleration of B1=B2
aB = diff(vB,t); %differentiates vB with respect to t

aBn = double (subs(aB,slist,nlist));
fprintf (aBl = aB2 = [ %g, %g, %g ] (m/sAZ)\n’, aBn)
fprintf (' |aBl| = |aB2| = %g (m/sAZ)\n’, norm(aBn) )

The points B and C are located on the same straight line BCD:

yB(t) —Yc — [XB(I) —xd tan¢3(t) =0. (3.89)
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The angle ¢3 = ¢, is computed as follows:

¢3 = ¢ = arctan 2L —yc’
XB — XC
and for ¢ = 45° is obtained as
0.17071 -0
=arctan ————— = 67.5°.
93 = aretn g 2671 =0
The derivative of Eq. 3.89 yields
1

yB —yc — (Xp —xc) tan ¢z — (xp —XC)M ¢3=0. (3.90)

The angular velocity of link 3, @3 = @, = ¢s, is computed as follows

cos® 3y — ye — (kg —kc) tan¢3)

W3 = W =
XB — XC
_ cos? ¢3[yp — xp tan @3]
XB ’
and
cos? 67.5°(0.222144 + 0.222144 tan 67.5°)

= =1.5708 rad/s.
@ 0.07071 racss

The angular acceleration of link 3, a3 = o = @3, is computed from the time deriva-
tive of Eq. 3.90

Y —¥e — (g —fc)tan g3 — 2(ip —c) - o ¢
singz ., .
(x5 = xc) cos3 3 05 — (x5 —xc) cos2 @3 ¢3=0

The solution of the previous equation is
03 = o = [jip —Jc — (¥p —¥c) tan ¢3 — 2(dip —ic) 3

sin ¢3 .2] cos? 3
cos33 > xg—xc’

1
cos? @3

—2()6 B — xc)
and for the given numerical data:

1
o3 = o = [—0.697886 + 0.697886tan 67.5° +2(—0.222144) ———1.5708

cos267.5°
sin67.5° cos?67.5°

—2(0.07071) ——— =0 rad/s2.
( ) cos767.5° 0.07071 rads

(1.5708)?]
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The MATLAB statements for the angular velocity and acceleration of links 2 and 3
are:

xB = sym(’xB(t)’); % xB(t) symbolic
yB = sym("yB(t)’); % yB(t) symbolic
% list for the symbolical variables of B
% xB’’ (t), yB’’ (t), xB’ (t), yB’ (t), xB(t), yB(t)
sB={diff ("xB(t)’,t,2),diff ("yB(t)',t,2),...

diff ("xB(t)’,t),diff ("yB(t)’,t), ' xB(t)’,"yB(t)’};
% list for the numerical values of the sB list
nB={aBn (1),aBn(2),vBn(l),vBn(2),xBn, yBn};
phi3 = atan ((yB-yC)/ (xB-xC)) ;
phi3n = subs (phi3, sB, nB);
fprintf (' phi2=phi3=%g(degrees)\n’, ...

double (phi3nx180/pi))

dphi3 = diff (phi3,t);
dphi3n = subs (dphi3, sB,nB) ;
fprintf (! omega2=omega3=%g (rad/s)\n’,double(dphi3n))
ddphi3 = diff (dphi3, t);
ddphi3n = subs (ddphi3, sB, nB);
fprintf(’alpha2=alpha3=%g(rad/sAZ)\n’,double(ddphi3n))

The MATLAB program for velocity and acceleration analysis, for the R-RTR mech-
anism using derivative method and the results are given in Appendix B.7.

For the R-RRR mechanism, shown in Fig. 2.4 and presented in Sect. 3.6,
the MATLAB program for velocity and acceleration analysis using the derivative
method is given in Appendix B.8.

3.10 Independent Contour Equations

This section provides an algebraic method to compute the velocities and acceler-
ations of any closed kinematic chain. The classical method for obtaining the ve-
locities and accelerations involves the computation of the derivative with respect to
time of the position vectors. The method of contour equations avoids this task and
uses only algebraic equations [Atanasiu (1973), Voinea et al. (1983)]. Using this ap-
proach, a numerical implementation is much more efficient. The method described
here can be applied to planar and spatial mechanisms.

Figure 3.10 shows a monocontour closed kinematic chain with #n rigid links. The
joint A;, i =0,1,2,...,n is the connection between the links (i) and (i — 1). The last
link #z is connected with the first link O of the chain. For the closed kinematic chain,
a path is chosen from link O to link n. At the joint A; there are two instantaneously
coincident points: the point A; ; belonging to link (i), A;; € (i), and the point A, ;_;
belonging to link (i — 1), A;;— € (i—1).
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The velocity equations for a simple closed kinematic chain are

Zwi,i,l =0 and ZrAi X W1 +ZVA”.71 =0, (3.91)
O] (@) ()

where

wi i—1 is the relative angular velocity of link (i) with respect to link (i — 1);

ry, is the position vector of the joint A;;

VA = Vﬁf}‘[ Aiiy is the relative velocity of A;; on link (/) with respect to A; ;|
on link (i — 1). The acceleration equations for a simple closed kinematic chain are

Zai,i—l +Zwi X wj;-1 =0and

() (i)
ZrAi X (0t j—1 +wi X Wjj—1) +ZaA,»,,-,, + Zaf‘?ﬁ_]
(i) (@) (@)

+Zw,~ X (wi X rAiAi+1) =0, (3.92)
U]

where
«; ;1 is the relative angular acceleration of link (i) with respect to link (i —1);
w; is the absolute angular velocity of the link (i), or the angular velocity of link
(i) with respect to the “fixed” reference frame Oxyz, w; = w;p;
a,, = afili 4;;, 1s the relative acceleration of A;; on link (i) with respect to
A;ji—ponlink (i —1);
af“l?ﬁil =2w; 1 X VA; i
FA; 1A = TA; — T4 -
For a closed kinematic chain in planar motion the acceleration equations are

is the Coriolis acceleration;

Fig. 3.10 Monocontour closed kinematic chain
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Za,-,,-_l =0 and

(0
Yora xouii+Y an,  + YA | —oraa,, =0. (3.93)
) (0 (@)

For planar motion the following relations exist

2
Wi X (w,- X rAiAi+1) = —O;TAAL, and w; X Wii-1 = 0.
A systematic procedure, using the contour method, is presented below. The equa-
tions for velocities and accelerations are written for any closed contour of the mech-
anism. However, it is best to write the contour equations only for the independent

loops of the diagram representing the mechanism.

1. Determine the position analysis of the mechanism.

2. Draw the contour diagram representing the mechanism and select the indepen-
dent contours. For the contour diagram the numbered links are the nodes of the
diagram and are represented by circles, and the joints are represented by lines
that connect the nodes. Determine a path for each contour.

3. For each closed loop write the contour velocity relations, Eq. 3.91, and contour
acceleration relations, Eq. 3.92. For a closed kinematic chain in planar motion
Eq. 3.91 and Eq. 3.93 will be used.

4. Project on a Cartesian reference system the velocity and acceleration equations.
Linear algebraic equations are obtained where the unknowns are:

the components of the relative angular velocities w; j_1;
the components of the relative angular accelerations & ;_1;
the components of the relative linear velocities vy j—1;

the components of the relative linear accelerations a4; j1.

Solve the algebraic system of equations and determine the unknown kinematic
parameters.

5. Determine the absolute angular velocities w; and the absolute angular acceler-
ations a¢;. Compute the velocities and accelerations of the characteristic points
and joints.

Exercise: R-RTR-RTR Mechanism

For the planar R-RTR-RTR mechanism considered in Sect. 3.8 and shown in
Fig. 3.11 the contour equations method will be applied and a MATLAB program
for velocity and acceleration analysis will be presented.

Solution

The mechanism has five moving links and seven full joints. The number of inde-
pendent contours is n, = ¢ —n =7 —5 =2, where c is the number of joints and n
is the number of moving links. The mechanism has two independent contours. The
contour diagram of the mechanism is represented in Fig. 3.11. The first contour /
contains the links 0, 1, 2, and 3, while the second contour /I contains the links 0, 3,



98 3 Velocity and Acceleration Analysis

I

Fig. 3.11 R-RTR-RTR mechanism and contour diagram

4, and 5. Clockwise paths are chosen for each closed contours I and /1.

Contour I: 0-1-2-3-0
Figure 3.12 shows the first independent contour / with:

rotational joint R between the links 0 and 1 (joint AR);
rotational joint R between the links 1 and 2 (joint Br);
translational joint T between the links 2 and 3 (joint Br);
rotational joint R between the links 3 and O (joint CR).

The angular velocity @jq of the driver link is known:

©  S0rm
0p=0=0= ’;—O =30 rad/s =5m/3 rad/s.
The origin of the reference frame is at the point A(0,0). For the velocity analysis,
using Eq. 3.91 the following equations are obtained

wio+ w2 +woz =0,
rp X W)t +Tc X wo3 + Vg, =0, (3.94)

where rg = xp1+ygp), rc = xc1+yc), and

wio = Dok, wr = o1k, woz = a3k,
1 .
VB, = VB3, = VB3, COS o 1+vpy, singy ).
The unknowns are the relative angular and linear velocities: @1, @p3, and vp.,.
The sign of the relative angular velocities is selected arbitrarily as positive. The
numerical computation will then give the correct orientation (the correct sign) of
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N

Fig. 3.12 First independent contour of R-RTR-RTR mechanism

the unknown vectors. The components of the vectors rp and r¢, and the angle ¢, are
already known from the position analysis of the mechanism. Equation 3.94 becomes

ook + w1 k4 wy3 k=0,
1 ] k 1 )k
xg y8 0 |+|xc yc O |+vp;,cos¢ri+vp,sing2)J=0. (3.95)
0 0 0 0 o3

The unknown relative velocities are introduced with MATLAB as:

4

omega2lv [ 0O 0 sym(’omega2lz’,’'real’) ]
omegal3v = [ 0 0 sym(’omegal03z’,’ real’) ]
n

7
v32v = sym(’'vB32’,’real’)x[ cos(phi2) sin(phi2) 01];
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Equation 3.95 represents a system of three equations and with MATLAB commands
gives:

egqlomega = omegall + omega2lv + omegal3v;
eqlvz=eglomega (3);
eqlv = cross (rB,omega2lv) + cross (rC,omegal3v) + v32v;

egqlvx=eqlIv(l);
eglvy=eqlv (2);

To display the equations the following MATLAB statements are used:

Ivz=vpa(eqlvz,6);
fprintf(‘%s = 0 \n’, char(Ivz))
Ivx=vpa (eqglvx, 6);
fprintf('%s = 0 \n’, char(Ivx))
Ivy=vpa (eqlvy, 6);
fprintf(‘%s = 0 \n’, char (Ivy))

The system of equations can be solved using the MATLAB commands:

solIv=solve (eqlvz,eqlvx,eqglvy);

omega2l = [ 0 0 eval(solIv.omegaz2lz) 1];

omegal03 = [ 0 0 eval(solIv.omegaO3z) ];

vB3B2 = eval(sollIv.vB32)x[ cos(phi2) sin(phi2) 01];

and the following numerical solutions are obtained
w1 = —0.747998 rad/s, @p3 = —4.48799 rad/s, and vp,, =0.514164 m/s.

To print the numerical values, the following MATLAB commands are used:

fprintf (' omega2l = [ %g, %9, %g] (rad/s)\n’, omega2l)
fprintf (' omegal3 = [ %g, %g, %g] (rad/s)\n’, omega03)
fprintf (' vB32 = %g (m/s)\n’, eval (solIv.vB32))
fprintf (vB3B2 = [ %g, %9, %d] (m/s)\n’, vB3B2)

The absolute angular velocities of the links 2 and 3 are
Wy = w30 = —wp3 =4.48799Kk rad/s.
The absolute linear velocity of D3 = Dy is

Vp, = Vp, = V¢ +w3g X rep = —0.1272231—-0.661068) m/s,
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where v = 0 and rcp = rp — rec. The MATLAB commands for the absolute veloc-
ities are:

omega30 = - omegal3;

omega20 = omega30;

vC = [0 O O 71;

vD3 = vC + cross (omega30, rD-rC);

fprintf (' omega20=omega30=[%d, $d, $g] (rad/s)\n’, omega30)
fporintf ('vD3 = vD4 = [ %9, %9, %9] (m/s)\n’, vD3)

For the acceleration analysis, using Eq. 3.93 the following equations are obtained
Qo+ o+ o3 =0,
rp X Q1 +Te X Q3+ Al +aiy — ofras — 03rsc =0, (3.96)
where

oo = ok, an = a1k, s = apsk,

1 .
afg‘sz = ap,, = ap,, COsPr1+ag,, sing ],
cor —_ af _
33332 = 3332 = 2wy X VB3, -
The driver link has a constant angular velocity and a9 = @9 = 0. The unknown
acceleration vectors using the MATLAB commands are:

alpha2lv = [ 0 0 sym(’alpha2lz’,’real’) 1;
alphaO3v = [ 0 0 sym(’alphaO03z’,’real’) 1;
a32v = sym(’aB32’,’'real’)*[ cos(phi2) sin(phi2) 0];

Equation 3.96 represents a system of three equations and using MATLAB com-
mands gives:

eqglalpha = alphalO + alpha2lv + alphaO3v;
egqlaz=eqglalpha (3);
eglal=cross (rB,alpha2lv) +cross (rC,alphal3v)+a32v+...
2xcross (omega20,vB3B2) ;
eqla2=-dot (omegal, omegal) xrB-...
dot (omegaz20, omegaz20) x (rC-rB) ;
egqla=eqglalt+eqla2;
eglax=eqla(l); eqlay=eqgqla(2);

The equations are displayed with the statements:
Taz=vpa (eqlaz,6);

fprintf(‘%s = 0 \n’, char(Iaz))
Iax=vpa (eqlax, 6);
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\n’, char(Iax))

4

\n’, char(Iay))

The unknowns are 01, 03, and ap,, or alpha2lz, alpha03z, and aB32. The
system of equations is solved using the MATLAB commands:

solIa=solve (eqlaz,eqlax,eqglay);

alpha2l = [ 0 0 eval(solIa.alpha2lz) 1;

alpha03 = [ 0 0 eval(solIa.alpha03z) 1;

aB3B2 = eval (sollIa.aB32)*[ cos(phi2) sin(phi2) 0];

The following numerical solutions are then obtained
01 = 14.5363 rad/s?, o3 = —14.5363 rad/s?, and ap,, = 0.44409 m/s>.

To print the numerical values, the following MATLAB commands are used:

fprintf ("alpha2l=[ %9, %9, %g] (rad/sAZ)\n’ , alpha2l)
fprintf ("alphal03=[ %g, %9, %g] (rad/sA2)\n’ , alpha03)
fprintf ('aB32 = %g (m/s°2)\n’, eval(solIa.aB32))
fprintf ('aB3B2 = [ %g, %g, %d] (m/s"2)\n’, aB3B2)

The absolute angular accelerations of the links 2 and 3 are
Q0 = Q30 = —0tp3 = 14.5363k rad/s>.
The absolute linear acceleration of D3 = Dy is obtained from the following equation
ap, =ap, =ac+ Q39 XIrcp — a);%orCD =2.55481—2.71212) m/527
where ac = 0. In MATLAB the absolute accelerations are:

alpha30 = - alpha03;
alpha20 = alpha30;
acC = [0 0 0 1;
aD3=aC+cross (alpha30,rD-rC)—-...
dot (omegaz20, omegaz20) « (rD-rC) ;
fprintf (" alpha20=alpha30=[%d, $d, $9] (rad/s“2)\n’,...
alpha30)
fprintf (’aD3=aD4= [ %g, %9, %g] (m/s"2)\n’, aD3)

Contour II: 0-3-4-5-0
Figure 3.13 depicts the second independent contour /1:

e rotational joint R between the links 0 and 3 (joint CRr);
e rotational joint R between the links 3 and 4 (joint DR);
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K

Fig. 3.13 Second independent contour of R-RTR-RTR mechanism

e translational joint T between the links 4 and 5 (joint Dr);
e rotational joint R between the links 5 and O (joint AR).

For the velocity analysis, the following vectorial equations are used

w30+ w4z +wps =0,
Irc X W3g+rp X Wy3 +ra X Wos +VB;D4 =0, (3.97)

where rp =xp1+ypJ,ra =xa1+y4) =0, and

w30 = W30k, wa3 = i3k, wos = sk,

rel — i
VDsD, = VDsy = VDs, COS a1+ Vpg, Sin@s).
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The sign of the relative angular velocities is selected arbitrarily positive. The numer-
ical computation will then give the correct orientation of the unknown vectors. The
components of the vectors rp and the angle ¢4 are already known from the position
analysis of the mechanism.

The unknown vectors with MATLAB commands are:

omegad3v = [ 0 0 sym(’'omegad3z’,’'real’) 1;
omegal5v = [ 0 0 sym(’omegal5z’,’real’) 1;
vb54v = sym(’vD54’,"’real’)x[ cos(phi4) sin(phi4d) O0];

Equation 3.97 becomes

30k + w3 K+ sk =0,
1 )k 1) k

xc yc O |+|xp yp O |[+vps cosPsr+vp,, sings)J=0. (3.98)
0 0 w3 0 0 (g3

Equation 3.98 projected onto the “fixed” reference frame Oxyz gives

@30 + W43 + Wps = 0,
Yc 030 +Yp W43 + Vp, €08 Py = 0,
—Xc (030 — Xp W43 + Vpg, sin¢gg = 0. (3.99)

The above system of equations using the following MATLAB commands becomes:

eqllomega = omega30 + omegad3v + omegalbv;
eqglIvz=eqglIomega (3);

egqlIv=cross (rC,omega30)+cross (rD, omegad3v) +v54v;
eqlIvx=eqlIv(l);

eqglIvy=eqllIv(2);

Equation 3.99 represents an algebraic system of three equations with three un-
knowns: @43, @os, and vp,,. The system is solved using the MATLAB commands:

solIIv=solve(eqllvz,eqllvx,eqlIvy);

omegad3 = [ 0 0 eval(solIlv.omega43z) 1;

omegal05 = [ 0 0 eval(solIIv.omegalObz) 1 ;

vD5D4 = eval (solIIv.vD54)*[ cos(phi4) sin(phid) 0];

The following numerical solutions are obtained:
043 = —1.50912 rad/s, wys = —2.97887 rad/s, and vp,, = 0.338367 m/s.

To print the numerical values with MATLAB, the following commands are used:
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fprintf (' omegadl3 = [ g, %9] (rad/s)\n’, omega43)
fprintf (' omegal5 = [ %g, %9, %g] (rad/s)\n’, omegalb)
fprintf (' vD54 = %g (m/s)\n’, eval(solIIv.vD54))

( [

)
fprintf (' vD5D4 = %g, %d] (m/s)\n’, vD5D4)
The absolute angular velocities of the links 4 and 5 are
Wy = wsp = —wps = 2.97887k rad/s,

and with MATLAB commands, they are:

omega50 = - omegal5;

omegad0 = omegab0;

fprintf (! omegadO0=omega50=[%d, $d, $g] (rad/s)\n’,...
omegab0)

For the acceleration analysis, the following vectorial equations are used:

Q30+ Q3+ os = 0,
rel cor 2 2
rc X Q30 +Tp X Oig3 +Try X Ops +aDSD4 +aBSB4 — W3rcp — Wirpa = 0, (3.100)

where

a3 = ok, oz = auzk, as = as K,

rel .
aDSD4 = aps, = Aps, COS ¢4 1+ aps, Sm ¢4.]7

cor __
aD54 = ZW4() X VDsy-
The unknown acceleration vectors using the MATLAB commands are:

4

alphad43v = [ 0 0 sym(’alpha43z’,’real’) ]
alphalOb5v [ 0 0 sym(’alpha05z’,’real’) ]
ab4v = sym(’aD54’,’'real’)*[ cos(phi4) sin

(phid) 0];
Equation 3.100 becomes

ook + oz k+ apsk =0,

1 ] k 1 3 k
xc yc O |+|xp yp O |+ap, cosds1+aps, singy)
0 0 (021 0 0 043
1 J k
+ 0 0 @10 | — @3 [(xp —xc)1+ (¥p —¥c)))]
VDs, COSQs  Vpg, singg 0
—j[(xa —xp)1+ (ya —yp)3] = 0. (3.101)

Equation 3.101 can be rewritten as
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030 + 043 + s = 0,

Y 030 + Yp 03 + asq oS Pg — 240 V54 Sin @y

— 03 (xp — xc) — @(0—xp) =0,

—XC 030 — Xp 043 + As4 SIN Q4 + 2040 V54 COS Py

— 35 (yp — yc) — 5o (0—yp) = 0. (3.102)

The contour acceleration equations using MATLAB commands are:

egllalpha = alpha30 + alphad43v + alphalO5v;
eqglIlaz=egIIalpha(3);
egllal=cross (rC,alpha30)+cross (rD, alpha4d3v) +ab4v;
eqlla2=2xcross (omega40,vD5D4);
eqlIla3=-dot (omega30, omega30) *x (rD-rC) —

dot (omega4(0, omegad0)  (-rD) ;
eqlla=egllal+egllaz2+eqglIal3;
egqllax=eqlIla(l); eqgllay=eqglla(2);

The unknowns in Eq. 3.102 are o3, 0gs, and aps, . To solve the system, the follow-
ing MATLAB command is used:

solITa=solve(eqllaz,eqllax,eqgllay);

alphad43 = [ 0 0 eval(solIIa.alpha43z) 1;

alpha05 = [ 0 0 eval(solIIa.alphaOb5z) 1 ;
(

aD5D4 = eval (solIIa.aD54)x[ cos(phi4) sin(phid) 01];

The following numerical solutions are obtained:
ou3 = —2.3424 rad/s?, s = —12.1939 rad/s*, and ap,, = 1.97423 m/s”.

The MATLAB commands for displaying the solutions are:

fprintf ("alphad43 = [ %g, %9, %9] (rad/sAZ)\n’,alpha43)
fprintf ("alphal05 = [ %g, %9, %g] (rad/s“Z)\n’,alphaOS)
fprintf ('ab54 = %g (m/s"2)\n’, eval(solIla.aD54))
fprintf ('ab5D4 = [ %g, %9, %d] (m/s"2)\n’, aD5D4)

The absolute angular accelerations of the links 4 and 5 are
Q0 = Qis) = —0rps = 12,1939k rad/s?,
and with MATLAB they are:

alpha50 = - alphaO5;
alphad0 alphab0;
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fprintf(’alpha40=alpha50=[%d,%d,%g](rad/sAZ)\n’,...
alphab0)

The MATLAB program and results for the velocity and acceleration analysis using
the contour method are given in Appendix B.9.



Chapter 4
Dynamic Force Analysis

4.1 Equation of Motion for General Planar Motion

The friction effects in the joints are assumed to be negligible. Figure 4.1 shows an
arbitrary body with the total mass m. The body can be divided into n particles, the
n

ith particle having mass, m;, and the total mass is m = Z m;.

i=1
A rigid body can be considered as a collection of particles in which the number
of particles approaches infinity and in which the distance between any two points
remains constant. As N approaches infinity, each particle is treated as a differential
mass element, and the summation is replaced by integration over the body m =

/ dm. The position of the mass center of a collection of particles is defined by

Fig. 4.1 Rigid body divided into particles

109
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12
rc =—

n;

1
m;r; or rc= —/rdm7 (41)
1 m

where r; = rpp, = rp, is the position vector from the origin O to the ith particle. The
time derivative of Eq. 4.1 gives

N dzl‘,' dzl'c

Y mi— =m——= =mac, 4.2)

where ac is the acceleration of the mass center. Any particle of the system is acted
on by two types of forces: internal forces (exerted by other particles that are also part
of the system) and external forces (exerted by a particle or object not included in the
system). Let f;; be the internal force exerted on the jth particle by the ith particle.
Newton’s third law (action and reaction) states that the jth particle exerts a force
on the ith particle of equal magnitude, and opposite direction, and collinear with
the force exerted by the ith particle on the jth particle f; = —f;;, j # i. Newton’s
second law for the ith particle must include all of the internal forces exerted by all
of the other particles in the system on the ith particle, plus the sum of any external
forces exerted by particles, objects outside of the system on the ith particle

dzl’,'

2 J#i 4.3)

Y fi+F =m
J

where F$*' is the external force on the ith particle. Equation 4.3 is written for each
particle in the collection of particles. Summing the resulting equations over all of
the particles from i = 1 to N the following relation is obtained

Y Y £+ ) Fi =mac, j#i. (4.4)
l J 1

The sum of the internal forces includes pairs of equal and opposite forces. The sum
of any such pair must be zero. The sum of all of the internal forces on the collection
of particles is zero (Newton’s third law) ZZf =0, j#£Ii

iJ

The term Y F$*' is the sum of the external forces on the collection of particles
i

ZF?’“ = F. The sum of the external forces acting on a closed system equals the

1
product of the mass and the acceleration of the mass center
mac =F. 4.5)

Equation 4.5 is Newton’s second law for a rigid body and is applicable to planar and
three-dimensional motions.
Resolving the sum of the external forces into Cartesian rectangular components

F=Fa+F)+FEK,
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and the position vector of the mass center
re =xc(t)1+yc(t)) +zc(t)k,
Newton’s second law for the rigid body is
mic=F, 4.6)
or
mic =F;, myjc=F, mic=F,. 4.7

Figure 4.2 represents the rigid body moving with general planar motion in the (x,y)
plane. The origin of the Cartesian reference frame is O. The mass center C of the
rigid body is located in the plane of the motion. Let Oz be the axis through the fixed
origin point O that is perpendicular to the plane of motion of the rigid body. Let Cz
be the parallel axis through the mass center C. The rigid body has a general planar
motion and the angular velocity vector is w = @wk. The sum of the moments about
O due to external forces and couples is

dHo d

ZMO = ek E[(rc X ch) +Hc]. (4.8)

Fig. 4.2 Rigid body moving with general planar motion in the (x,y) plane
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The total angular momentum of the system about O is Hp, the total angular momen-
tum of the system about C is H¢, and v¢ = ¢ is the velocity of C. The magnitude
of the angular momentum about Cz is Hc = Zm, r . The summation Zml r or the

integration over the body [ % dm is defined as the mass moment of 1nert1a Ic; of the
body about the z-axis through C

2
ICz = Zmiri .
i

The term r; is the perpendicular distance from d¢ to the P, particle. The mass mo-
ment of inertia /¢, is a constant property of the body and is a measure of the rota-
tional inertia or resistance to change in angular velocity due to the radial distribution
of the rigid body mass around the z-axis through C. The angular momentum of the
rigid body about Cz (z-axis through C) is

HC :[CZ(D or HC :ICZa)k:ICZw

Substituting this expression into Eq. 4.8 gives

d
ZMO = E[(l’c X ch) +Ic; w} = (I‘C X mac) +Ic; o “4.9)
The rotational equation of motion for the rigid body is
Ieae=Y Mc¢ or Ic.ak=) Mck. (4.10)

For general planar motion the angular acceleration is & = w = 6 k, where the angle
0 describes the position, or orientation, of the rigid body about a fixed axis. If the
rigid body is a plate moving in the plane of motion, the mass moment of inertia of
the rigid body about the z-axis through C becomes the polar mass moment of inertia
of the rigid body about C, I, = I¢. For this case the Eq. 4.10 gives

Ica=Y Mc. 4.11)

Consider the special case when the rigid body rotates about a fixed point O as shown
in Fig. 4.3. The acceleration of the mass center is

aC:ao+a><rC—w2rC:axrc—a)zrc.

The relation between the sum of the moments of the external forces about the fixed
point O and the product I, v is given by Eq. 4.9

ZMO =rcxmac+lc;x
or

ZMO = I‘me(axrc—a)zl‘c)-i-lcza



4.1 Equation of Motion for General Planar Motion 113

Fig. 4.3 Rotation about a fixed point O

=mrc X (Oﬁ X rc) +Ic; o
=m|(rc-rc)a— (rc-a)re]+Ic; o
=mrio+ e, = (mri+Ic;) .

According to parallel-axis theorem
Loz = I —|—mré7

where I, denotes the mass moment of inertia of the rigid body about the z-axis
through O. For the special case of rotation about a fixed point O one can use the
formula

IOZa = ZMo. (412)
The general equations of motion for a rigid body in plane motion are (Fig. 4.3)

F= mac or F= m'l"c,
ZMC = ICz o, (413)

or using the Cartesian components

mic = ZF;U
m.j}C = ZF;a
Ie:6 =Y Mc. (4.14)

Equations 4.13 and 4.14, also known as the Newton—Euler equations of motion, are
for plane motion, and are interpreted in two ways:
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1. The forces and moments are known and the equations are solved for the motion
of the rigid body (direct dynamics).

2. The motion of the rigid body is known and the equations are solved for the forces
and moments (inverse dynamics).

The dynamic force analysis in this chapter is based on the known motion of the
mechanism.

4.2 D’Alembert’s Principle

Newton’s second law can be written as
F+(—mac) =0, or F+F;, =0,

where the term F;, = —mac is the inertia force. Newton’s second law can be re-
garded as an “equilibrium” equation.
The total moment about a fixed point O is

ZMO = (r¢ xmac) +Ic; o,
or
Y Mo+ [re x (—mac)] + (—Ic; o) = 0. (4.15)

The term M, = —I¢; o is the inertia moment. The sum of the moments about any
point, including the moment due to the inertial force —ma acting at the mass center
and the inertial moment, equals zero.

The equations of motion for a rigid body are analogous to the equations for static
equilibrium:

The sum of the forces equals zero and the sum of the moments about any point
equals zero when the inertial forces and moments are taken into account.

This is called D’Alembert’s principle. The dynamic force analysis is expressed
in a form similar to static force analysis

Y F+Fj, =0, (4.16)
Y Mc+M;, =0, 4.17)
where Y F is the vector sum of all external forces (resultant of external force), and
Y M¢ is the sum of all external moments about the center of mass C (resultant

external moment).
For a rigid body in plane motion in the (x, y) plane,
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aC:XCl+yCJ7 a:ak7
with all external forces in that plane, Eqs. 4.16 and 4.17 become

Y EitFne =) F+ (—mic) =0,
Y Byt Fny = ) F+(—mjc) =0,
ZMC+Min = ZMc—F (—Ica) =0.

With d’Alembert’s principle the moment summation can be about any arbitrary
point P

ZMP+Min+rPC X Fip =0,

where Y Mp is the sum of all external moments about P, Mj, is the inertia moment,
F;, is the inertia force, and rp¢ is a vector from P to C.

The dynamic analysis problem is reduced to a static force and moment balance
problem where the inertia forces and moments are treated in the same way as exter-
nal forces and moments.

4.3 Free-Body Diagrams

A free-body diagram is a drawing of a part of a complete system, isolated in order
to determine the forces acting on that rigid body.

The following force convention is defined: F;; represents the force exerted by
link i on link j. Figure 4.4 shows the joint forces for one degree of freedom joints.

rotational joint translational joint

IFI=F

unknowns Fy unknowns

y

Fig. 4.4 Joint forces for one degree of freedom joints
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1
1

1

]

B L}

Fig. 4.5 Free-body diagrams

Figure 4.5 shows various free-body diagrams that are considered in the analysis
of a R-RTR mechanism. In Fig. 4.5b, the free body consists of the three moving links
isolated from the frame 0. The forces and moments acting on the system include an
external driven moment M, and the forces transmitted from the frame at joint A,
Fo1, and at joint C, Fo3. Figure 4.5c is a free-body diagram of the two links 1 and 2
and Fig. 4.5d is a free-body diagram of the two links 0 and 1.

The force analysis can be accomplished by examining individual links or a sub-
system of links. In this way the joint forces between links as well as the required
input force or moment for a given output load are computed.

4.4 Force Analysis Using Dyads

4.4.1 RRR Dyad

Figure 4.6 shows an RRR dyad with two links 2 and 3, and three pin joints, B, C,
and D. First, the exterior unknown joint reaction forces are considered

Fio = Fiox1+Fiay) and Faz = Fasc1+ Fazy ).
To determine F, and F43, the following equations are written:
e sum of all forces on links 2 and 3 is zero

ZF(2&3) N
mpac, +myac, = Fp + G2+ Gy +Faus,
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NEWTON-EULER C
(Kinetic Diagram)

M2 ac, m3 ac,

Free-Body Diagram (FBD)

Fig. 4.6 RRR dyad: (a) kinetic diagram and (b) free-body diagram

or
ZF(2&3) s
maac, +m3dac,, = Fiox+ Fiay, (4.18)
ZF(Z&S) )=
ma ac,, +m3ac,, = Fiay —my g —m3 g + Fagy. (4.19)

e sum of moments of all forces and moments on link 2 about C is zero

e —
Ic, oty +rcc, X mpac, =rep X Fi2 +rec, X Go. (4.20)

e sum of moments of all forces and moments on link 3 about C is zero
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rme =
Ic; a3 +rcc, X mzac, =rep X Fyz +rec; X Gs. 4.21)

The components Fiyy, Fiay, Fa3x, and Fy3, are calculated from Egs. 4.18—4.21.
The reaction force F3p = —F,3 is computed from the sum of all forces on link 2

ZF(Z):>mzac2 =F1+Gy+F3 or F32:mzac2—F12—G2.

Figure 4.6a is a kinetic diagram (or Newton—Euler diagram) that represents the dy-
namic effects as specified by Newton—Euler equations of motion in terms of trans-
lational terms, mac, and rotational terms, Ic &. Representation of mac and Ic o
from the kinetic diagram will guarantee that the force and moment sums determined
from the free-body diagram are equated to their proper resultants. The equivalence
between the kinetic diagram and the free-body diagram will be employed in the
solution of dynamical problems.

4.4.2 RRT Dyad

Figure 4.7 shows an RRT dyad with the unknown joint reaction forces Fy;, F43, and
F,3 = —F3,. The joint reaction force Fy43 is perpendicular to the sliding direction
F43 1L Aor

Fy3-A = (Fi3:1+ Fu3,)) - (cos 01+ 5sin 0)) = 0. 4.22)

In order to determine F > and F43 the following equations are written:

e sum of all the forces on links 2 and 3 is zero
ZF(2&3) = mpac, +mszac, = Fi2+ Gy + Gs + Fys,
or

ZF(2&3) 1=> myac,, +m3ac,, = Fiox + Fi3x, (4.23)
Y FOY = maac,, +msac, = Foy—mg—msg+Fiay.  (424)

e sum of moments of all the forces and the moments on link 2 about C is zero
2
ZMé) — IC2 Qi +rec, X mpac, =rcep X Fi» +rcc, X Go,. (4.25)

The components Fiay, Fi2y, Fa3x, and Fy3, are calculated from Eqgs. 4.22-4.25.
The reaction force components F3;, and F3», are computed from the sum of all
the forces on link 2

ZF(z) = mpac, = Fio+Gy+F3 or Fy3p=mp ac, —Fi2 — Gy
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NEWTON-EULER
(Kinetic Diagram)

my ac,

Free-Body Diagram (FBD) c Ey

VB

Fig. 4.7 RRT dyad

4.4.3 RTR Dyad

119

The unknown joint reaction forces F, and Fy43, as shown in Fig. 4.8, are calculated

from the relations:

e sum of all the forces on links 2 and 3 is zero

ZF(2&3) = mac, +mzac, = Fio+Go+Gs+Fas,

or

ZF(2&3> ‘1= mpac,, +mzac,, = Fox + Fy3y,

ZF(2&3> ) = maac, +m3ac,, = Fioy —myg —m3 g+ Fy3y.

(4.26)
(4.27)
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NEWTON-EULER Free-Body Diagram (FBD)
(Kinetic Diagram)

Fig. 4.8 RTR dyad

e sum of the moments of all the forces and moments on links 2 and 3 about B is
Zero
(2&3)
ZMB = lc, ay +Ic; 3 +rpe, X maac, +rpe; X m3ac,
=rpp XxFy3+ Ipcy X Gs+ rpc, X G;. (4.28)

e sum of all the forces on link 2 projected onto the sliding direction A = cos 81+
sin 0] is zero

Y F?.A = (F+F,) - (cos 61+sin ) = 0. (4.29)

The components Fiyy, Fi2y, Fa3x, and Fy3, are calculated from Egs. 4.26-4.29.
The force components F3,, and F3;, are computed from the sum of all the forces
on link 2

ZF<2) = mac, = Fi,+Gy+F3 or Fi = mpac, — (F12 +G2).

4.5 Force Analysis Using Contour Method

An analytical method to compute joint forces that can be applied for both planar
and spatial mechanisms will be presented. The method is based on the decoupling
of a closed kinematic chain and writing the dynamic equilibrium equations. The
kinematic links are loaded with external forces and inertia forces and moments.
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A general monocontour closed kinematic chain is considered in Fig. 4.9. The
joint force between the links i — 1 and i (joint A;) will be determined. When these
two links i — 1 and i are separated, the joint forces F;_;; and F;;_; are introduced
and Fi*l,i + Fi7,',1 =0.

Fi—lﬂl

Fig. 4.9 Monocontour closed
kinematic chain

It is helpful to “mentally disconnect” the two links (i — 1) and i, which create
joint A;, from the rest of the mechanism. The joint at A; will be replaced by the joint
forces F;_1; and F; ;_1. The closed kinematic chain has been transformed into two
open kinematic chains, and two paths I and I are associated. The two paths start
from A;.

For the path I (counterclockwise), starting at A; and following I the first joint
encountered is A;_1. For the link i — 1 left behind, dynamic equilibrium equations
are written according to the type of joint at A;_;. Following the same path I, the
next joint encountered is A;_. For the sub-system (i — 1 and i — 2) equilibrium con-
ditions corresponding to the type of joint at A;_, can be specified, and so on. A sim-
ilar analysis is performed for the path /I of the open kinematic chain. The number
of equilibrium equations written is equal to the number of unknown scalars intro-
duced by joint A; (joint forces at this joint). For a joint, the number of equilibrium
conditions is equal to the number of relative mobilities of the joint.

4.6 Slider-Crank (R-RRT) Mechanism

Figure 4.10 is a schematic diagram of a R-RRT (slider-crank) mechanism comprised
of a crank 1, a connecting rod 2, and a slider 3. The mechanism shown in the figure
has the dimensions: AB = 1 m and BC = 1 m. The driver link 1 rotates with a
constant speed of n = 30/m rpm. The point A is selected as the origin of the xyz
reference frame. The moment when the driver link 1 makes an angle ¢ = ¢; =
7 /4 rad with the horizontal axis will be considered for the dynamic force analysis.
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Fig. 4.10 Slider-crank (R-RRT) mechanism

The position vectors of the joints B and C, for ¢ = ¢, = n/4 rad, are

2 2
rg =Xxgl+yp] = %1+ %_] m and rec = xc1+yc) = \/ElJrO.] m.
The angular velocities of links 1 and 2 are w; = @w; k = 1k rad/s and wy, = @, k =
—1k rad/s. The angular accelerations of link 1 and 2 are o¢; and ;. For this par-
ticular configuration of the mechanism o¢; = a; = 0. The velocity and acceleration
of B are

Vp=—-——1+--)Jm/s and ag=———1——) m/s>.

V2 V2 V2 V2
22 2 2

The velocity and acceleration of C are
Ve = —v21 m/s and ac = —v21 m/s.

The center of mass of link 1 is Cj, the center of mass of link 2 is C;, and the center
of mass of slider 3 is C. The position vectors of the C;, i = 1,2,3 are

V2 V2
re, =rp/2 =Xxc 1+yc ) = T\ m
3vV2 V2
rc, = (rp+re)/2 =xc1+yc, 1 = TH— TJ m,
rc3:rC:xc31+yC3J:\/§1 m.
The acceleration vectors of the C;, i = 1,2,3 are
V2 V2
ac, =ap/2 =ac, 1+ac, ) = ERRL RS m/s,
3v2 V2
ac2:(aB+ac)/2:ac2X1+aczy.]:—Tl—TJ m/sz,

ac; =ac =ac,1+acg) = —V21 m/s%.
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The MATLAB® commands for the kinematics of the mechanism (positions, veloc-
ities, and accelerations) are:

AB = 1; BC = 1; phi = 45%(pi/180);

XA = 0; vA = 0;

rA = [xA yA 0];

XB = AB*cos (phi); yB = ABxsin (phi);
rB = [xB yB 0];

yC = 0; xC = xB+sqgrt (BC"2-(yC-yB) "2);
rC = [xC yC 0];

n = 30/pi;

omegal = [ 0 0 pixn/30 ];

alphal = [0 0 O ];

vA = [0 00 ]; aA = [0 0 0 1;

vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl=aA+cross (alphal, rB) —dot (omegal, omegal) xrB;
aB2 = aBl;
omegalz = sym(’omegal2z’,’real’);
vCx = sym(’'vCx’,"real’);
omega2 = [ 0 0 omega2z ]; vC = [ vCx 0 0 ];
eqvC = vC - (vB2 + cross(omega2,rC-rB));
eqvCx = eqvC(l); eqvCy = eqvC(2);
solvC = solve (eqvCx,eqvCy) ;
omega2zs=eval (solvC.omega2z) ;
vCxs=eval (solvC.vCx); vCs = [vCxs 0 0];
Omega2 = [0 0 omega2zs];
alpha2z = sym(’alpha2z’,’real’);
aCx = sym(’aCx’,’real’);
alpha2 = [ 0 0 alpha2z ]; aC = [aCx 0 0 ];
egaC = aC-(aBl+tcross(alpha2, rC-rB)—...

dot (Omega2,Omegal) » (rC-xrB)) ;
egqaCx = eqgaC(l); egaCy = eqgaC(2);

solaC = solve (egaCx,eqaCy);

alpha2zs = eval (solaC.alpha2z);

aCxs = eval (solaC.aCx);

alpha20 = [0 0 alpha2zs]; aCs = [aCxs 0 0];
alpha30 = [0 O 0];

rCl = (rA+rB)/2;

fprintf ("rCl = [ %g, %9, %9 ] (m)\n’, rCl)
rC2 = (rB+rC)/2;

fporintf ("rC2 = [ %9, %9, %9 ] (m)\n’, rC2)
rC3 = rC;

fprintf('rC3 = [ %g, %g, %g ] (m)\n’, rC3)

aCl = aBl/2;

fprintf (‘aCl = [ %g, %g, (m/s"2\n’, aCl)

o
Q
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aC2 = (aBl+aCs)/2;

fprintf(‘aC2 = [ %9, %9, %9 ] (m/s"2)\n’, aC2)
aC3 = aCs;

fprintf(’aC3 = [ %9, %9, %9 ] (m/s"2)\n’, aC3)

The external driven force Fex applied on link 3 is opposed to the motion of the link
(opposed to v¢). Because ve = —+/2 1 m/s, the external force vector will be

Fext = [—Sign(vc)] 1001 = 1001 N.
The MATLAB commands for the external force on link 3 are:

fe = 100;
Fe = -sign(vCs(1l))x[fe 0 01;

The signum function in MATLAB is sign (x) . If x is greater than zero sign (x)
returns 1, if x is zero sign (x) returns zero, and if if x is less than zero sign (x)
returns —1.

The height of the links 1 and 2 is 2 = 0.01 m. The width of the links 3 is
Welider = 0.01 m and the height is Agiger = 0.01 m (Fig. 4.11). All three moving
links are rectangular prisms with the depth d = 0.001 m. The acceleration of gravity
is g = 10 m/s>. The MATLAB commands are:

h = 0.01; d = 0.001; hSlider = 0.01; wSlider = 0.01;

L hslider
Jommmoo o I
ay” .

Wslider

Fig. 4.11 Geometry of the links (not a scale drawing)

4.6.1 Inertia Forces and Moments

Link 1
The mass of the crank 1 is
my = plAB/’ld7

where the density of the material is p;. For simplicity of calculation m; = 1 kg.
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The inertia force on link 1 at Cj is

V2 V2
Fini =-—mjac, = Tl-ﬁ-TJ N.

The gravitational force on crank 1 at Cy is
G, =-myg)=-10j N.
The mass moment of inertia of the link 1 about Cj is
Ic, = my (AB* +h*)/12 = 0.0833417 kg m*.
The moment of inertia on link 1 is
Min = —Ic, 1 = 0.

Link 2
The mass of connecting rod 2 is

my = szChd,

where the density of the material of link 2 is p,. For simplicity of calculation my =
1 kg. The inertia force on link 2 at C; is

W2 V2

Fino = —mpac, = TI—I— TJ N.

The gravitational force on link 2 at C; is
G, =—-mpg)=-—103 N.
The mass moment of inertia of link 2 about C; is
Ic, = my (BC? +h*) /12 = 0.0833417 kg m.
The moment of inertia on link 2 is
My = —Ic, ax = 0.

Link 3
The mass of the link 3 is

m3 = P3 hglider Wslider d

where the density of the material of link 3 is p3. For simplicity of calculation m3 =
1 kg. The inertia force on link 3 at C3 = C is

Fin3 = —m3ac; = \/El N.
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The gravitational force on link 3 at C3 = C is
G3=-m3g)=-—103 N.

The mass moment of inertia of slider 3 about C3 = C is

Iy = m3 (Wiger + Waiger) /12 = 0.0000166667 kg m>.
The moment of inertia on slider 3 is

Miy3 = —Ic; a3 = 0.

The MATLAB commands for the forces and moments of inertia are:

ml = 1;
IC1 = ml* (AB"2+h"2)/12;
Gl = [ 0 -ml*xg 0 ];

Finl = - ml*xaCl;
Minl = - IClxalphal;
m2 = 1;

IC2 = m2%(BC"2+h"2)/12;
G2 = [ 0 -m2+xg 0 1;

Fin2 = - m2%aC2;
Min2 = - IC2xalpha20;
m3 =1 ;

IC3 = m3% (hSlider”"24+wSlider~2)/12;
G3 = [ 0 -m3%xg 0 1;

Fin3 = - m3%aC3;

Min3 = - IC3xalpha30;

For a given value of the crank angle ¢ (¢ = /4) and a known driven force Fey find
the joint reactions and the drive (equilibrium) moment M on the crank.

4.6.2 Joint Forces and Drive Moment

4.6.2.1 Newton—Euler Equations of Motion

Figure 4.12 shows the free-body diagrams of the crank 1, the connecting rod 2, and
the slider 3. For each moving link the dynamic equilibrium equations are applied
(Newton—Euler equations of motion)

mac=Y F and Ic a=Y Mc,

where C is the center of mass of the link.
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Fig. 4.12 Free-body diagrams

The force analysis starts with the link 3 because the external driven force Fey on
the slider is given.

The reaction joint force of the ground O on the slider 3, Fy3, is perpendicular
to the sliding direction, x-axis: Foz L 1 (Fig. 4.13). The application point Q of the
reaction force Fy3 is determined using the Euler’s moment equation

Ic3a3:rCQ><F03 or OZI'CQXF03 — I‘CQZO or C:Q.

It results that the reaction force Fy3 acts at C. For the slider 3 the vector sum of the
net forces (external forces Fey, gravitational force G3, joint forces F»3, F3) is equal
to m3ac, (Fig. 4.13)

m3ac; = Fa3 + G3 + Fex, + Fos,

Free-Body Diagram (FBD)

3

NEWTON-EULER ms ac,
(Kinetic Diagram) : ° =

m3 acs; = F23 + G’3 + Fext + F03

Fig. 4.13 Newton—Euler equations for slider 3
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where Fy3 = Fa3.1+ F23,) and Fo3 = Fy3y ). Projecting the previous vectorial equa-
tion onto x and y axes gives

m3ac,, = Fazx + Fext,
m3ac,, = Fp3y —m3 g + Fosy,

or numerically

(1)(=V2) = Fy3+ 100, (4.30)
0 = Fa3y — (1)(10) + Fo3y. 4.31)

There are two equations Eqgs. 4.30 and 4.31 and three unknowns Fo3y, /23, and F3y
and that is why the analysis will continue with link 2.
The MATLAB commands for Newton-Euler equations for slider 3 are:

FO3 = [ 0 sym('FO3y’,’real’) 0 1;

F23 [ sym('F23x’,’'real’) sym('F23y’,’'real’) 0 1;
eqglF3 = FO03+F23+Fe+G3-m3*aC3;

eglF3x = eqF3(1);

eqF3y = eqF3(2);

For the connecting rod 2 (Fig. 4.14), Newton’s equation gives
moac, = F3+Go +Fia.

The previous equation can be projected on x and y axes

NEWTON-EULER FBD

(Kinetic Diagram) Fy Fyy
y

C

maac, = F3 + Go + Fyy Fi,

Iesar = ro,o X F32+I‘CQB>< Fo T :

Fig. 4.14 Newton—Euler equations for link 2
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maac,, = Fax + Fioyx,
myac,, = Fay —ma g + Fiay,

or numerically

32
(U(*Tf) = P+ Fiox, (4.32)

2
(U(—%) = F32y — 1(10) + Fia. (4.33)

For the link 2 a moment equation can be written with respect to C,

Ic, oy =rc,c X Fao 41,3 X Fia,

or
1 J k 1 J k
Ic, o kK= |xc —xc, yc—yc, 0|+ |xp—xc, yp—Yc, 01,
Fox Fpy 0 Frox Fay O
or

Ic, 0 = (X — x¢y ) F32y — (Yo — Yo, ) F32x + (x8 — x¢, ) Fiay — (vB — Yy ) Fi2x,

or numerically

0=(v2- %)Fm - (*?)Fm
+(?—¥)F12y—(?—?)ﬂzx- (4.34)

The MATLAB commands for the Newton—Euler equations for link 2 are:

F32 = -F23;

F12 = [ sym('Fl2x’,"’real’) sym('Fl2y’,’real’) 0 1;

egF2 = F32+F12+G2-m2*xaC2;

egF2x = eqF2(1);

eqF2y = eqF2(2);

egM2 = cross (rB-rC2,F12)+cross (rC-rC2,F32)—...
IC2xalpha20;

egM2z = egM2 (3);

Equations 4.30—4.34 form a system of 5 equations with five scalar unknowns. The
system can be solved using the solve statement:

sol32 = solve(egF3x,eqF3y,eqlF2x,eqF2y,eqM2z) ;
FO3ys eval (sol32.F03y);
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F23xs = eval (s0l32.F23x)
F23ys = eval (sol32.F23y);
Fl2xs = eval (sol32.F12x)
Fl2ys = eval (s0l1l32.F12y);
F03s = [ 0, FO3ys, 0 1;
F23s [ F23xs, F23ys,
Fl2s [ Fl2xs, Fl2ys,

The numerical values for the joint forces for the links 3 and 2 are

32

Fozy = —85—
03y )

N,

3
Fr3y = —100— V2 N, Bw—%+\[

Eh:—ﬂmmﬁ¢®N,ﬂ@:ﬂM+V®N
or

3
Fyz = |F03| —85+i N,

/38063
Py = |Fo3| = \[F33 + Fy = 7—#485\[ 2 N,
12 =|Fpa| = ﬂg+ﬁg=?mmw+mm¢§N

For the crank 1 (Fig. 4.15), there are two vectorial equations

miac, = F21 + G +Fo,
Ic, oy =r¢,p X Fay +1cia X For + M,

where M, is the input (motor) moment on the crank, Fp; = —F 2, and Fo; = Fyp,1+
Fo1y). The above vectorial equations give three scalar equations on x, y, and z

myac,, = F21x+ Foix,

myac,, = Fa1y —m g+ Foy,

1 J k 1 J k
Iciou k= |xp—xc; yp—yc; 0|+ |xa—xc; ya—yc, 0
Fx By 0 Foix Fory 0O

+Mk=0,
or

myac,, = F21x + Folx,
m aCU, = F21y —my g+F01ya
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NEWTON-EULER
(Kinetic Diagram)

mi1ac, = Fg + Fip1 + Gy + Foy

Ioyo = ro X For+10,px For + M

Fig. 4.15 Newton—Euler equations for link 1

Ic, o = (xg — x¢, ) Fo1y — (Ve, — e, ) Poix
+(xa —xc; ) Fory — (ya — yc, ) Foix + M,

or numerically

1(—?) = %(400+7\f2) + Fotx, (4.35)
1<_% 2844V~ 1(10)+ Fo, (4.36)
0= (? - g) {2(84+\/§)] - (? - ?) E(400+7f2)]

—?F()]y + gF()ly +M=0. 4.37)

The MATLAB commands for the Newton—Euler equations for the crank 1 are:

FOl=ml+xaCl-G1l+F1l2s;
Mm=-cross (rB,-F12s) -cross (rCl,Gl-ml*aCl)-ICl*alphal;

Equations 4.35-4.37 give

Foie = —2(50+V2) N, Fy,=1154+V2 N,
M =3+105v2 Nm,

or
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For = [For| = \/F3, + F, = \/ 23235+ 630v2 N,

M=|M|=3+105V2 Nm.

Another way of calculating the moment M required for dynamic equilibrium is to
write the moment equation of motion for link 1 about the fixed point A

IAalk:rAcl X Gl +r8XF1 +M — M:I'BXFQ*I'CI x Gy,

where Iy = Ic, +m; (AB/ 2)2. The reaction force Fy; does not appear in this moment
equation.

The MATLAB program using Newton—Euler equations and the results are given
in Appendix C.1.

4.6.2.2 D’Alembert’s Principle

For each moving link the dynamic equilibrium equations are applied (d’ Alembert’s
principle)

YF+Fin=0 and ) Mc+M;, =0,

where C is the center of mass of the link. With d’ Alembert’s principle the moment
summation can be about any arbitrary point P

ZMP+Min+rPC X Fip =0.

The force analysis starts with the link 3 because the external driven force Fey is
given. For the slider 3 the vector sum of all the forces (external forces Fey,, gravita-
tional force G3, inertia forces Fj, 3, joint forces F»3, F3) is zero (Fig. 4.16)

ZF<3) =F23+Fin3 + G3+ Fext + Fo3 = 0,

D’ALEMBERT

ZF(3) =Fu3+Fiuns+Gs+For +Fo3=0

Fig. 4.16 D’ Alembert’s principle for slider 3
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where Fa3 = 3,1+ F23y) and Fo3 = Fy3y). Projecting this force onto x and y axes
gives

ZF ‘1= Fos+ (—m3ac,,) + Fexc = 0,

ZF )= F3y —m3 g+ Fozy =0,

or numerically

P+ (—1)(—v2) +100 =0, (4.38)
F23y — (1)(10) +F03y =0. (4.39)

The MATLAB commands for slider 3 are:

FO3 = [ 0 sym("FO3y’,"real’) 0 1;

F23 = [ sym('F23x’,"real’) sym('F23y’,’real’) 0 ];
egF3 = FO3+F23+Fe+G3+Fin3;

eglF3x = eqF3(1);

egF3y eqF3(2);

For the connecting rod 2 (Fig. 4.17), the sum of the forces is equal to zero
Y F® =F3+Finy + Gy +Fpy =0,

The previous equation can be projected on x and y axes

Fino = —maag,

Min 2= —Ic2 ap

D’ALEMBERT

S F® =Fsp+Fio+ Gy +F;3=0
EM(Q (r¢ —1p) X Fyo 4 (rg2 —rp) X (Fing + G2) + Mijn2 =0

Fig. 4.17 D’ Alembert’s principle for link 2
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ZF ‘1= Fyy+ (—maac, )+ Fiax =0,
Y F@ .y =Fp,+ (=maac,,) —ma g+ Fizy =0,

or numerically

3v2
F32x+(—1)(—\7[)+F12x =0, (4.40)
2
F32y+(*1)(*%) —1(10) 4 Fiz, = 0. (4.41)

For the link 2 a moment equation can be written with respect to C,

2
ZM(Cz) =rc,c X Faa+rep X Fio +Mijpp = 0.

Instead of the previous equation the sum of the moments with respect to B can be
used

ZM(BZ) =rpc X F32 + 130, X (Fin2 +G2) +Miyz =0,

or
1 ] Kk 1 J k
xc—xpyc—ys 0|+ | xc, —xp Yc, —YB 0
Fp  Fpy 0 —maac, —mdc,, —myg 0
_ICZ apk= 0,
or

(XC XB)} 32y ()’C )’B)I 32x (-xCZ XB)( madac,, —ny g)
y
(YCQ YB)( my aclx) Ic, 0 = 0,

or numerically

(f—g)Fy)—( \f)F32x+(3:(—\2F)[ (—\f)—l(lo)]
V2 V2 3v2
*(7*7) - (4)1 -0=0 (4.42)

For the connecting rod 2 the MATLAB commands are:

F32 = -F23;

F12 = [ sym('Fl2x’,"’real’) sym('Fl2y’,’real’) 0 ];
eqgF2 = F32+F12+G2+Fin2;

eqlF2x = eqF2(1);

eqF2y = eqF2(2);
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egM2 = cross (rB-rC2,F12)+cross (rC-rC2,F32) +Min2;

egM2z = egM2 (3);

For the crank 1 (Fig. 4.18), there are two vectorial equations

Y F) =Fy +Fipy + Gy +Fo =0,
ZM/(;) =rg xF1 +rc, X (Fin1 +G1) + M +M =0,

where M = |[M] is the magnitude of the input moment on the crank, Fy; =

and Fo; = Fora+ Foy).
The above vectorial equations give three scalar equations on x, y, and z

ZF(I) 1= P+ (—miac,,) + Foixr =0,
Y FW .y =By + (—myac,,) —mi g+ Fory =0,

1 ] k 1 J k
xg yp 0|+ Xc, ye 0
Py 21, 0 —myac,, —miac,, —mi g 0

—Ic,u k+Mk = 0,

135

—Fpo,

or
Py +(—myac,,) + Foix =0,
Py + (=myac,,) —mi g+ Fory =0,
xgFa1y — ypFa1x + xc, (—my ac,, —m g) —vye,(—=myac,, ) —Ic, 01 +M =0,
D’ALEMBERT
Fi1=—m acy
Min1=—1c1o

ZF(1>:F21+Fin1+G1+F01:0
ZME;)ZI‘BXF21+I'C1 X (Fin1+G1)+ My, +M=0

Fig. 4.18 D’ Alembert’s principle for link 1
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or numerically

%(400+7\f2)+ —1(—%) + Fyir =0, (4.43)
72(84+ﬁ)+ 1(\?)11(10)+F01y0, (4.44)
?[—(84 f)} ‘[[ (400+7f)}

V2 V2 V2 V2

e [—1(—4)—1(10)1 -7 —1(—4)]
—0+M=0. (4.45)

For the crank 1 the MATLAB commands are:

FO1l =

Mm =
eqgFl

[ sym('FO1lx’,’'real’) sym('FOly’,’real’”) 0 1;
[ 0O 0 sym('Mmz’,"real’) 1;
= FO1l+Finl+G1-F12;

egFlx = eqFl(1);

eqfFly

egMl
egqMlz

Equations

= eqFl(2);
= cross (rB-rCl,-F12)+cross (rA-rCl,F01) +Minl+Mm;
= eqMl(3);

4.38-4.45 form a system of 8 equations with eight scalar unknowns.

The MATLAB commands for solving the system of equations are:

sol32

FO3ys
F23xs
F23ys
Fl2xs
Fl2ys
FOlxs
FOlys
Mmzs

1 = solve(egF3x,eqF3y,eqt2x,eqF2y,eqM2z, ...
eqlFlx,eqFly,eqgMlz) ;

= eval (so0ol321.F03y);
= eval (s0l321.F23x);
= eval (so0l321.F23y);
(s0l321.F12x);

(

(

)

)
= eval )
sol321.F12y);

)
)

= eval
= eval (s0l321.F01x);
= eval (so0l321.F01ly);
= eval (s0l321.Mmz) ;

The following numerical solutions are obtained

3v2
Fozy = —85— T‘f N,

32

Fp3,=—100—V2 N, P, =95+ 5

N,
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1 5
F12x=—1(400+7ﬁ) N, Fipy= Z(84+ﬁ) N,
Foie = —2(50+V2) N, Fy, =115+v2 N,
M=3+105v2 Nm.

The MATLAB program using D’Alembert principle and the results are given in
Appendix C.2.

4.6.2.3 Dyad Method

BrCrCt Dyad

Figure 4.19 shows the dyad Bgr Cr Ct with the unknown joint reactions F, and
Fo3. The joint reaction Fj3 is perpendicular to the sliding direction Foz3 L. A =10r
Fo3 = Fo3y). The following equations are written to determine Fy> and Fo3

e Newton’s equation for links 2 and 3, ¥ F(2&3) —

maac, +mzac; = Fp+ G2+ G3 +Foz + Fex,

or
madc,, +m3ac,, = Fiox + Fext,
myac,, +msac,, = Foy —mp g —m3 g+ Fozy —maac,,,
or
NEWTON-EULER Free-Body Diagram (FBD)

(Kinetic Diagram)

Dyad RRT

Fig. 4.19 Newton—Euler diagrams for dyad Br Cr Ct
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Flor+102.475 =0, (4.46)
Fioy + Fozy —19.6464 = 0. 4.47)

e Euler equation of moments for links 2 about Cg, ):M(C2 ) -
Ic, ax +rce, x myac, =rcp X Fio +rcec, X Gy,
or
—0.707105 Fi2, — 0.707105 Fi +3.03552 = 0. (4.48)
Equations 4.46-4.48 give
Fio, = —102.475 N, Fipy, =106.768 N, and Fp3, = —87.1213 N.
The joint reaction force F3; is calculated from
F3, = myac, — (G2 +Fi2) = 101.4141—-97.1213) N.
The MATLAB commands for finding the unknowns using the dyad method are:

FO3 = [ 0 sym('FO3y’,"’real’) 0 ];

F12 = [ sym('Fl2x’,"real’) sym('Fl2y’,’real’) 0 1;

eqglF23 = FO03+Fe+G3+F12+G2-m3*xaC3-m2xaC2;

eqF32x = eqF32(1);

eqF32y = eqF32(2);

egM2C = cross (rB-rC,F12)+cross (xrC2-rC,G2)—...
IC2*xalpha20-cross (rC2-rC,m2*aC2) ;

egM2Cz = egM2C(3);

sol32=solve (eqF32x,eqF32y,eqM2Cz) ;

FO3ys=eval (so0l32.F03y);

Fl2xs=eval (s0l32.F12x);

Fl2ys=eval (s0l32.F12y);

F03s = [ 0, FO3ys, 0 1;

Fl2s = [ Fl2xs, Fl2ys, 0 1;

F32 = m2xaC2- (F12s+G2);

The moment M required for dynamic equilibrium is calculated from the moment
equation of for link 1 (Fig. 4.20) about the fixed point A

ZMI(AI) = Ic, 1 +r¢, xmiac, =rg xF1 +G1 +M.
Thus, M = 151.492 N m. The joint reaction force Fy; is calculated from

ZF“) = miac, = —F12+G1 +Fpy,
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NEWTON-EULER
(Kinetic Diagram)
B

Iciog 1

myacy
Driver R

Fig. 4.20 Newton-Euler diagram for driver link

and Fo; = —102.8281+4116.414) N. The MATLAB program for the dyad method
and the results are given in Appendix C.3.

D’ Alembert’s principle can be applied for the dyad method using the diagrams
shown in Fig. 4.21.

Dyad RRT

Min2 F. 9
in

Driver R

Fig. 4.21 D’ Alembert’s principle for the dyad method

4.6.2.4 Contour Method

The diagram representing the mechanism is shown in Fig. 4.22 and has one contour,
0-1-2-3-0. The dynamic force analysis can start with any joint.
Reaction Fy3
The reaction force Fo3 is perpendicular to the sliding direction of joint Ct (Crranslation)
as shown in Fig. 4.23

Fo3 = Fosy)-
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OO
Cr

contour diagram

0 0

Fig. 4.22 Contour diagram representing the mechanism

The application point of the unknown reaction force F3 is computed from a moment
equation about Cr (Crotation) for link 3 (path 7), as shown in Fig. 4.23

ZM(C?) =Trcp X F03 = (I'P—l‘c) X F03 = 0,
or
xFosyZO =x=0.

The application point of the reaction force Fo3 is at C (P = C).
The magnitude of the reaction force Fpzy is obtained from a moment equation
about By for the links 3 and 2 (path I)

c B
path I:  Fy W
3 3&2
Mg SoMp*

Fig. 4.23 Diagram for calculating the reaction force Fo3
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ZMES&Z) =rpc X (Fo3 + Fin3 + G3 + Fext)
+1pc, X (Fin2 +G2) + M2 =0,

or
1 J k 1 J k
Xc—XB yc —YB O0|+|xc,—xp yo,—yp O
Finzx + Fext F03y+Fin3y_m3g 0 Finax FinZy_mZg 0
+Minok =0,
or numerically
3 5 Fosy
S +445V2+ 2 =0.
2 V2 V2
The reaction Fp3y is
3v2
Fozy = —85— T\[ N.

The MATLAB statements for finding Fo3 are:

% Joint C.T

FO3=[ 0 sym('FO03y’,"real’) 0 1;

egM32B=cross (rC-rB,F03+G3+Fin3+Fe) +. ..
cross (rC2-rB,Fin2+G2) +Min2;

egM32Bz=egM32B (3) ;

fprintf ("%s = 0 (1)\n’, char (vpa (eqM32Bz, 6) ) )

fprintf ('Eg(l) => FO03y \n’)

solF03=solve (egM32Bz) ;

FO3ys=eval (solF03);

FO03s=[ 0, FO03ys, 0 ];

fprintf ('F03 = [ %9, %9, %g ] (N)\n’, FO03s)

Reaction F3
The pin joint at Cr, between 2 and 3, is replaced with the reaction force (Fig. 4.24)

Fo3 = —F3; = P31+ Fa3y).

For the path I, an equation for the forces projected onto the sliding direction of the
joint Cr is written for link 3

Y F® 1= (F23+ Fin3 + G3 + Fex) 1
:F23x+En3x+cht:F23x+100+\6:0- (449)

For the path 1, shown Fig. 4.24, a moment equation about By is written for link 2
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Cr
path I: Fys e 0
(3)
F

A

Br
path IT:  F,
Z M(Q)

Fig. 4.24 Diagram for calculating the reaction force Fo3

ZME;) =rpc X (—F23) + 10, X (Fin2 +G2) +Min2 =0,

1 J k 1 J k
xc—xgyc—yg 0|+ |xc,—x8 yo,—yp O|+Min2k=0,
—F3y —F3y 0 Finox  Finoy—m2g 0

or numerically

1 52 _ FozV2 _ F23y\/§

2 2 2 2

=0. (4.50)

The joint force F»3 is obtained from the system of Eqs. 4.49 and 4.50

3v2
Fy3x=—100—v2 N and F23},:95+T\f N.
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The MATLAB statements for finding F»3 are:

% Joint C.R

F23 = [ sym('F23x’,"real’) sym('F23y’,’real’) 0 1;
egF3 = F23+Fe+G3+Fin3;

egF3x = eqF3(1);

egM2B = cross (rC-rB,-F23) +cross (rC2-rB,Fin2+G2) +Min2;

eqM2Bz = qM2B(3),
fprintf (' %s = 2)\n’, char (vpa(egF3x,6)))
fporintf (’ %s \n , char (vpa(egqM2Bz, 6)))

fprintf (' Egs (2 ) ( ) => F23x, F23y \n’)
solF23=solve (eqF3x,eqM2Bz) ;
F23xs=eval (solF23.F23x%);
F23ys=eval (solF23.F23y);
F23s = [ F23xs, F23ys, 0 ]

fprintf ('F23 = [ %g, %g, %g 1 (N)\n’, F23s)

Reaction Fi,
The pin joint at Br, between 1 and 2, is replaced with the reaction force (Fig. 4.25)

Fi2 = —F21 = Fio1+ Fioy).

For the path 7, shown in Fig. 4.25, a moment equation about Cr is written for link 2

Gs

Fig. 4.25 Diagram for calculating the reaction force Fj,
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ZME;D =rcp x Fi2 +rcc, X (Fin2 +G2) +Min2 = 0,

1 ] k 1 J k
xg—xcyg—yc 0|+ |xc, —xc yo,—yc O|+Min2k=0,
Fiox  Fiay 0O Finax  Finzy—m2g 0
or numerically
1 5v2 F 2 FpyW2
1 \[_ 12x\[_ 12)\[:0' @51

2 2 2 2

Continuing on path 7, an equation for the forces projected onto the sliding direction
of the joint Cr is written for links 2 and 3

ZF(2&3> 1= (F12+Fin2 + G2 + Fin3 + G3 + Fext) -1
3\f
= Fiox + Finae + Fnse + Foxe = Pay + 1004+ V2 + == =0. (4.52)

The joint force Fi; is obtained from the system of Egs. 4.52 and 4.51

1 5
Fioy = —Z(4oo+7\f2) N and Fip, = 1(84+\f2) N
The MATLAB statements for finding F, are:

% Joint B.R

F12 = [ sym('Fl2x’,"real’) sym('Fl2y’,’real’) 0 1;
egqM2C = cross (rB-rC,F12)+cross (rC2-rC,Fin2+G2)+Min2;
egM2Cz = egM2C (3);

eqF23 = (F12+Fin2+G2+G3+Fin3+Fe);

eqF23x = eqF23(1 )

fprintf('%s = 0 (4)\n’, char (vpa(eqgM2Cz,6)))
fprintf("%s = 0 (5)\n’, char (vpa (eqF23x,6)))
fprintf ('Egs (4) - (5) => Fl2x, Fl1l2y \n’)
solFl2 = solve(eqMZCz eqF23x);

Fl2xs = eval (solF1l2.F12x);
Fl2ys = eval (solF12.F12y);
Fl2s = [ Fl2xs, Fl2ys, O
fprintf ('F12 = [ %g, %g,

4

g 1 (M)\n’, Fl2s)

o0 1 ~e

Reaction Fo1 and Equilibrium Moment M
The pin joint A, between 0 and 1, is replaced with the unknown reaction (Fig. 4.26)
Foi = Foix1+ Foy).-

The unknown equilibrium moment is M = M K. If the path I is followed (Fig. 4.26)
for the pin joint Br, a moment equation is written for link 1
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path I
BR CVR CT

(1&2) (1&2&3)
— My~ yml S E,

Fig. 4.26 Diagram for calculating the reaction force Fo;

ZM(BU =rpa X Fo1 +rpc, X (Fin1 +G1) +Min1 +M =0,

1 ) k 1 J k
—xp —yp 0|+ Xc, —XB  Yc; —YB 0|+Mk=0,
Foix FOly 0 Fin1x Finlyfmlg 0
or numerically
5vV2 K 2 FyyVv2
\Zf + 01;\[ + 01’2\[ M =0. (4.53)

Continuing on path / the next joint encountered is the pin joint Cr, and a moment
equation is written for links 1 and 2

&2
ZM(CI ) = rca x For +rce; X (Fin1 +G1) + My +M
+rce, X (Fin2 +G2) + M =0,

1 ) k 1 J k
—xc —yc 0|+ |xc, —x¢ yc,—yc O|+Mk
Foix F()ly 0 Finix Finly_mlg 0
1 J k

+|xc, —xc Yo, —yc O|+Minnk=0,
Fian Fin2y_m2g0

or numerically

~V2Fy+M—1+410v2=0. (4.54)
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Continuing on path / the next joint encountered is the slider joint Cr, and a force
equation is written for links 1, 2, and 3

Y FU243) 5 — (Fo; +Finy +G1 +Fina + Go + Fin3 + G + Fexg) 1
3V2

— Fotet Fante + Fnae + Finte + Foxt = Figg + 100+ V2 4 = =0. (455)
From Egs. 4.53-4.55 the components Fyiy, Fo1y and M are computed

Folx = —2(50+ \@) N and Fy,= 115+\6N,
M =3+105v2Nm.

The MATLAB statements for finding Fo; and M are:

% Joint AR

FO1l = [ sym('FO01x",’real’) sym('FOly’,"real’) 0 1;
Mm = [ 0 O sym('Mmz’,’real’”) 1;

egM1lB = cross(-rB,F01l)+cross (rCl-rB,Finl+Gl)+Minl+Mm;
egM1lBz = egM1B(3);

egqMl2C=cross (-rC,F01) +cross (rCl-rC,Finl+Gl)+Minl+...
Mm+cross (rC2-rC,Fin2+G2) +Min2;

egM1l2Cz = egM12C(3);

fprintf (' Eq (6)—(8) => F0lx, FOly, Mmz \n’
solF01 solve (egM1lBz,eqM12Cz, eqFl23x) ;
FOlxs = eval (solF01.F01x);

eqgFl23 = (FOl+Finl+Gl+Fin2+G2+Fin3+G3+Fe);

eqFl23x = qF123(1);

fporintf (' %s = 6\n , char (vpa(egqM1Bz,6)))

fprintf (' %$s = \n , char (vpa(eqM12Cz,6)))

fprintf (' %s = 8)\n’, char (vpa(eqF123x,6)))
( )

FOlys = eval (solF01.FO01ly);

Mmzs = eval (solF01.Mmz);

FOls = [ FOlxs, FOlys, 0 ];

Mms = [ 0, 0, Mmzs ];

fporintf ("F01 = [ %9, %9, %9 ] (N)\n’, FOls)
fprintf ('Mm = [ %g, %g, %g ] (N m)\n’, Mnms)

The MATLAB program using the contour method and the results are given in Ap-
pendix C.4.
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4.7 R-RTR-RTR Mechanism

Exercise

The planar R-RTR-RTR mechanism considered is shown in Fig. 4.27. The following
numerical data are given: AB=0.15m, AC=0.10m, CD = 0.15 m, DF = 0.40 m,
and AG = 0.30 m. The height of the links 1, 3, and 5 is # = 0.010 m. The width of the
links 2 and 4 is wgjiger = 0.050 m, and the height is Agjiger = 0.020 m. All five moving
links are rectangular prisms with the depth d = 0.001 m. The angular velocity of the
driver link 1 is n = 50 rpm. The density of the material is Pg;ee; = p = 8000 kg/m?.
The gravitational acceleration is g = 9.807 m/s. The center of mass locations of the
links i =1, 2,..., 5 are designated by C;(xc;, yc;,0).

The external moment applied on link 5 is opposed to the motion of the link:
Misexy = —Sign(®s) [Mex¢| k where |Mex;| = 100 N m and s is the angular velocity
of link 5.

Find the motor moment M,,, required for the dynamic equilibrium and the joint

T
reaction forces when the driver link 1 makes an angle ¢ = 3 rad with the horizontal

axis.

Fig. 4.27 R-RTR-RTR mechanism

Solution
The position vectors (in meters) of the joints were calculated in Sect. 2.4:

position of joint A: ry = 0;

position of joint B: rg = xg 1+ yp J = 0.12990414-0.075;
position of joint C: r¢c =yc ) =0.1};

position of joint D: rp = xp1+yp J = —0.14729714-0.128347;
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e position of F: rr = xp 1+ yr J = 0.2454951+ 0.0527544 ); and
e position of G: rg =xg1+ys )= —0.2261821+0.197083 .

The angles of the links with the horizontal are ¢, = ¢3 = —10.8934° and
@4 = ¢5 = 138.933°. The position vector of the center of mass of link 1 is

rc, =x¢, 14y, ) = %B 1+ yEB 3= 0.06495191+0.0375) m.
The position vector of the center of mass of slider 2 is
rc, =Xxg, 1+Yc, ) =TIB.

The position vector of the center of mass of link 3 is

re, =Xoy 1+ ey ) = xD;xF 1+yD;yF 3= 0.0490991+0.0905509) m.

The position vector of the center of mass of slider 4 is

rC4 = XCy 1+)’C4.] =TIp.

The position vector of the center of mass of link 5 is

re, = xc 14 ye, ) = % 1+y7GJ = —0.1130911+0.0985417) m.

The velocity and acceleration analysis was carried out in Sect. 3.8:

acceleration of joint B: ag, = ag, = —3.561391—2.05617 m/s2;
acceleration of joint D: ap, = ap, = 2.55481—2.71212) m/s?;
acceleration of joint F: ap = —4.2581+4.52021) m/s;

acceleration of joint G: ag = —0.3961441—4.50689 In/sz;

angular velocity of link 5: ws = 2.97887k rad/s;

angular acceleration of link 1: o = Ok rad/s?;

angular acceleration of links 2 and 3: a; = vz = 14.5363k rad/sz; and
angular acceleration of links 4 and 5: vy = as = 12.1939k rad/s>.

The acceleration vector of the center of mass of link 1 is

ac, = a—gl — 1780691 1.02808) m/s2.

The acceleration vector of the center of mass of slider 2 is
ac, = ap, = —3.561391-2.05617) m/s’.

The acceleration vector of the center of mass of link 3 is

ac, — w = —0.85161+0.904041) m/s’.

The acceleration vector of the center of mass of slider 4 is
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ac, = ap, = 2.55481—2.71212) m/s".
The acceleration vector of the center of mass of link 5 is

ac, = 25 — _0.1980721—2.25344) m/s.

The MATLAB program for positions, velocities, and accelerations is:

AB=0.15; AC=0.10; CD=0.15; DF=0.40; AG=0.30;
phi = pi/6;

XA = 0; yA = 0; rA = [xA yvA 0];
xC = 0; yC = AC; rC = [xC yC 0];
XB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];

egqnD1l=' (xDsol-xC) "2+ (yDsol-yC) "2=CD"2’;

eqnD2=' (yB-yC) / (xB-xC) = (yDsol-yC) / (xDsol-xC)’;
solD = solve(eqgnDl, egnD2, ’'xDsol, yDsol’);
xDpositions = eval (solD.xDsol);

yDpositions = eval (solD.yDsol);

xD1 = xDpositions(l); xD2 = xDpositions(2);

yD1l = yDpositions(1l); yD2 yDpositions (2);

if (phi>=0&&phi<=pi/2) || (phi >= 3%pi/2&&phi<=2*pi)
if xD1 <= xC xD=xD1l;yD=yDl; else xD=xD2;yD=yD2;end
else

if xD1 >= xC xD=xD1l;yD=yDl; else xD=xD2;yD=yD2;end
end

rD = [xD yD 01];

phi2 atan ( (yB-yC)/ (xB-xC)); phi3 = phi2;

phi4 atan ( (yD-yA) / (xD—-xA) ) +pi; phi5 = phi4;

XF = xD+DFxcos (phi3); yF = yD+DFxsin (phi3);

rF = [xF yF 0];

xG = xA+AG+*cos (phib); yG = yA+AGxsin(phib);

rG = [xG yG 0];

xCl = xB/2; yCl = yB/2; rCl = [xCl yCl 0];

rC2 = rB;

xC3 = (xD+xF)/2; yC3 = (yD+yF)/2; rC3 = [xC3 yC3 0];
rC4 = rD;

xC5 = (xA+xG)/2; yC5 = (yA+yG)/2; rC5 = [xC5 yC5 0];
n = 50.;

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 ];

vA = [0 0 0 ]; aA = [0 0 O 1;

vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl = aA + cross(alphal, rB) - dot (omegal, omegal) *rB;
aB2 = aBl;

omega3z = sym(’omega3z’,’real’);

alpha3z = sym(’alpha3z’,’'real’);
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vB32 = sym(’'vB32’,’real’);
aB32 = sym(’aB32’,"real’);

omega3 = [ 0 0 omega3z ];
vC = [0 00 I;
vB3 = vC + cross (omega3,rB-rC);

vB3B2 = vB32x[ cos(phi2) sin(phi2) 0];
eqvB = vB3 - vB2 - vB3B2;
egvBx = eqvB(l); egvBy = eqvB(2);

solvB = solve (eqvBx, eqvBy);

omega3zs = eval (solvB.omega3z);

vB32s = eval (solvB.vB32);

Omega3 = [0 0 omega3zs]; Omega2 = Omega3;

v32 = vB32sx*[cos (phi2) sin(phi2) 01];
vD3 = vC + cross (Omega3,rD-rC); vD4 = vD3;

aB3B2cor = 2xcross (Omega3,v32);
alpha3 = [ 0 0 alpha3z ];
aC = [0 0 0 ];

aB3 = aC + cross(alpha3, rB-rC) -

dot (Omega3, Omegal) x (rB-rC) ;
aB3B2 = aB32x[ cos(phi2) sin(phi2) O01;
egqaB = aB3 - aB2 - aB3B2 - aB3B2cor;
egaBx = egaB(l); egaBy = eqgaB(2);
solaB = solve (egaBx,egaBy);
alpha3zs = eval (solaB.alpha3z);
aB32s = eval (solaB.aB32);
Alpha3 = [0 0 alpha3zs]; Alpha2 = Alpha3;
aD3 = aC + cross(Alpha3, rD-rC) -

dot (Omega3, Omega3) x (rD-rC) ;

aD4=aD3;
omegabz = sym(’omegabz’,’real’);
alphabz = sym(’"alphabz’,’real’);

vD54 = sym(’'vD54’, " real’);

aD54 = sym(’aD54’,"real’);

omegabS = [ 0 0 omegabz ];

vD5 = vA + cross(omegab,rD-rA);

vD5D4 = vD54x[ cos(phib) sin(phib5) 0];
eqvD = vD5 - vD4 - vD5D4;

eqvDx = eqvD(1l); eqvDy = eqvD(2);

solvD = solve (eqvDx,eqvDy) ;
omegabzs = eval (solvD.omegabz);
vD54s = eval (solvD.vD54);
Omega5 = [0 0 omegabzs];

v54 = vD54sx*[cos (phib5) sin(phi5) 01];
Omega4d4 = Omegab;
aD5D4cor = 2+cross (Omegab,vb54);
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alpha5 = [ 0 0 alphabz ];
aD5 = aA + cross(alpha5,rD-rE) -
dot (Omegab5,Omegab) x (rD—rA) ;

aD5D4 = aD54x[ cos(phib) sin(phib) 01;
egqaD = abD5 - ab4 - aD5D4 - aD5D4cor;
egaDx = eqgaD(1l);
egaDy eqgaD (2) ;
solaD = solve (egaDx,eqgaDy);
alphab5zs = eval (solaD.alphabz);
aD54s = eval (solaD.aDb54);
Alphab5 = [0 0 alphabzs]; Alpha4 = Alphas;
aF = aC + cross (Alpha3, rF-rC) -

dot (Omega3, Omegal) x (rF-rC) ;
aG = aA + cross (Alphab, rG-rA)

dot (Omegab5,Omegab) x (rG—rA) ;
aCl = aBl1/2;

aC2 = aB2;
aC3 = (ab3+aF)/2;
aC4 = aD3;
aC5 = (aA+aG)/2;

The external moment applied on link 5 is opposed to the motion of the link

Msey = —Sign(@s) [Mey |k = —Sign(2.97887) (100)k = —100k Nm.

4.7.1 Inertia Forces and Moments

Link 1
The mass of the link is

m; = p AB hd =8000(0.15)(0.01)(0.001) = 0.012 kg.
The inertia force of driver 1 at Cy is
Fin1 = —my ac, = —0.012(—1.780691—1.02808)) = 0.02136831+0.0123373 N.
The gravitational force on link 1 at C is
G| =-m; g)=-0.012(9.807)y = —0.117684) N.
The mass moment of inertia of link 1 with respect to Cy is

Ic, = my (AB* +h*)/12 = 0.012(0.15% +0.01%)/12 = 2.26 x 10> kgm®.
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The moment of inertia of driver 1 is
Minl = 7101 Q) = 0.

To calculate the inertia force and the moment the following MATLAB commands
are used:

ml = rho*ABxhxd;

Finl = —-ml+aCl;

Gl = [0,-mlxqg,0];

ICl = ml*x (AB"2+h"2)/12;
Minl = -IClxalphal;

Link 2
The mass of the slider 2 is

my = P hglider Wslider d = 8000(0.02)(0.05)(0.001) = 0.008 kg.
The inertia force of slider 2 at C, is
Fino = —mpac, = —0.008(—3.561391—2.05617)) = 0.0284911140.0164493) N.
The gravitational force of slider 2 at C; is
G, =—mpg)=—0.008(9.807)3 = —0.0784563 N.
The mass moment of inertia of slider 2 with respect to C; is
Ic, = my (hger + Wiiger) /12 = 0.008(0.02% +0.05%) /12 = 1.93333 x 107® kgm?.
The moment of inertia of slider 2 is
Miys = I, = —1.93333 x 1070 (14.5363) k = —2.81035 x 10>k Nm.

The MATLAB commands to calculate the inertia force and the moment are:

m2 = rhoxhSlider*wSlider=d;

Fin2 = -m2xaC2;

G2 = [0,-m2%qg,0];

IC2 = m2* (hSlider”"24+wSlider~2)/12;
Min2 = -IC2xAlpha2;

Link 3
The mass of the link is

ms = p DF h d = 8000(0.4)(0.01)(0.001) = 0.032 kg.
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The inertia force of link 3 is
Fin3 = —m3 ac, = —0.032(—0.85161+0.904041)) = 0.02725121—-0.0289293) N.
The gravitational force of link 3 is
G; = —m3 g)=—0.032(9.807)y = —0.3138243 N.
The mass moment of inertia with respect to Cs is
Ic, = m3 (DF* 4+ 1*)/12 = 0.032(0.4% +0.01%) /12 = 0.000426933 kgm?.
The inertia moment on link 3 is
M3 = —Ic; a3 = —0.000426933(14.5363) k = —0.00620602k Nm.

Link 4
The mass of the link is

ma = P Nlider Wslider d = 8000(0.02)(0.05)(0.001) = 0.008 kg.
The inertia force is
Fin4a = —my4 ac, = —0.008(2.55481—2.71212)) = —0.02043841+0.021697) N.
The gravitational force is
Gy =—my g)=—0.008(9.807)) = —0.0784563 N.
The mass moment of inertia with respect to Cy is
Ic, = ma(h3iger + Waiider) /12 = 0.008(0.022 +-0.05%) /12 = 1.93333 x 10 ® kgm?.
The moment of inertia is
Mins = —Ic, oy = —1.93333 x 1070 (12.1939) k = —2.35748 x 10’k Nm.

Link 5
The mass of the link is

ms = p AG h d = 8000(0.3)(0.01)(0.001) = 0.024 kg.
The inertia force is
Fins = —ms ac, = —0.024(—0.1980721—2.253443) = 0.0047541+0.054083 ) N.
The gravitational force is

Gs = —ms gJ = —0.024(9.807)j = —0.235368, ) N.
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The mass moment of inertia with respect to Cs is
Icg = ms (AG* +h?*)/12 = 0.024(0.3% +0.01%) /12 = 0.0001802 kgm?.
The moment of inertia is
Miy5 = —Ic; s = —0.0001802 (12.1939) k = —0.00219734k Nm.

The MATLAB commands to calculate the inertia force and the moment for links
3,4, and 5 are:

m3 = rho*DFxhxd;

Fin3 = -m3xaC3;

G3 = [0,-m3%qg,0];

IC3 = m3x(DF"2+h"2)/12;
Min3 = -IC3xAlpha3;

m4 = rhoxhSlider*wSlider=d;

Find = -mdxaC4;

G4 = [0,-mdxqg,0];

IC4 = md* (hSlider”"2+wSlider"2)/12;
Min4 = -IC4xAlpha4;

m5 = rho*AGxhxd;

Fin5 = -m5+xaC5;

G5 = [0,-mb5xqg,0];

IC5 = m5% (AG"2+h"2)/12;
Min5 = —-IC5xAlphab;

4.7.2 Joint Forces and Drive Moment

4.7.2.1 Newton—Euler Equations of Motion

The force analysis starts with the link 5 because the external moment My, is given.
Figure 4.28 shows the free-body diagram of the link 5. The joint reaction force of
the ground O on the link 5 at the joint F is Fos = Fys1 + Fpsy). The joint reaction
force of the link 4 on the link 5 is F45 = Fys,1 + Fis,). The application point of the
force Fy4s is P(xp, yp) and the position vector of P is rp = xp1+ ypJ.

The symbolical six unknowns Fysy, Fosy, Fasx, Fasy, xp, and yp are introduced in
MATLAB using the commands:
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NEWTON-EULER FBD
(Kinetic Diagram)

G

msac; = Fos + Gy + Fys

I, a5 = ro g x Fos+Togp X Fas+ Mgy

Fig. 4.28 Link 5 of the R-RTR-RTR mechanism

FOSx=sym('F05x’,"'real’);
FOSy=sym('FO05y’, "' real’);
(' )
)

4

F45x=sym('F45x’, "' real’
F45y=sym(’'F45y’, ' real’
xP=sym (' xP’,"real’);

yP=sym('yP’,’real’);
FO5=[F05x,F05y,0]; unknown reaction of 0 on 5
F45=[F45%x,F45y,0]; % unknown reaction of 4 on 5
rP=[xP,yP,0]; % unknown application point of F45

4

oo ™

The point P, the application of the force Fs, is located on the direction DE, that is
(rp—r4) X (rp—r4) =0 or rpxrp=0, (4.56)

or
—0.128347xp — 0.147297yp = 0.

Equation 4.56 is written in MATLAB as:

egP=cross (rD-rA, rP-rA);
egPz=eqgP (3);

The direction of the unknown joint force Fys is perpendicular to the sliding direction

I'pa
F45 ‘Tpg = 0 or F45 ‘rp = 0. (4.57)
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Numerically Eq. 4.57 is
—0.147297 Fys5, +0.128347 Fy5, = 0.

Equation 4.57 in MATLAB is:
eqF45DE=dot (F45, rD-rA) ;

For the link 5 the vector sum of the net forces, gravitational force Gs, joint forces
Fos, F4s, is equal to ms ac, (Fig. 4.28)

msacy; = Fos +F45 + Gs,
or using MATLAB commands:
egF5=F05+F45+G5-m5%aC5;
Projecting the previous vectorial onto x and y axes gives

msacs, = Fosx + Fusy, (4.58)
msacs, = Fosy + Fisy —ms g, (4.59)

or
Fosy + Fasy + (0475373) 1072 =0and FOSy +F45y —0.181285 = 0.

Equations 4.58 and 4.59 in MATLAB are:

egF5x=eqF5(1l); % projection on x-axis
eqglFby=eqF5(2); % projection on y-axis

The vector sum of the moments that act on link 5 with respect to the center of mass
Cs is equal to Ic, ais (Fig. 4.28)

Ic; s = rega X Fos +1esp X Fas + Msexy, (4.60)
or

0.113091 Fys, +0.0985417 Fosy + (xp +0.113091) Fys
—(yp —0.0985417) Fys, — 100.002 = 0.

Equation 4.60 in MATLAB is:

egMC5=cross (rE-rC5,F05) +cross (rP-rC5,F45) +Me—. ..
IC5«Alpha5;
egMC5z=egMC5 (3); % projection on z-axis
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There are five equations (Eqgs. 4.56—4.60) and six unknowns, and that is why the
analysis will continue with the slider 4. The diagrams of the slider 4 are shown
in Fig. 4.29. The joint reaction force of the link 3 on the slider 4 at D = C; is
F34 = F34,1+ F34y) and the joint reaction force of the link 5 on the slider 4 is Fs4 =
—F45 = —Fys5:1 — Fisy).

NEWTON-EULER FBD
(Kinetic Diagram)

\
G

\
5/\\

I,

4

\
my a
\ 4 Ay

\
AN

myac, = Fay 4+ Gy + Fyy

IC4 ay = I‘C4p>< F54

Fig. 4.29 Slider 4 of the R-RTR-RTR mechanism

The MATLAB commands are:

F34x=sym('F34x’,'real’);

F34y=sym('F34y’,’'real’);

F34=[F34x,F34y,0]; % unknown joint force of 3 on 4
F54=-F45; % joint force of 5 on 4

For the slider 4, according to Newton’s equations of motion, the vector sum of the
net forces, gravitational force Gy, joint forces F34, Fs4), is equal to ms ac,

myac, = F34+Fs4 + Gy,
or using MATLAB commands:
eqF4=F34-F45+G4-m4xaC4;
Projecting the previous vectorial onto x and y axes gives

myac,, = Fasx + Fsay, (4.61)
my ac,, = Fay + Fsay —ma g, (4.62)
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Using MATLAB the previous equations are:

egF4dx=eqF4 (1) ;
egF4y=eqF4 (2);

Equations 4.61 and 4.62 can be written numerically as
F34r — Fi5, — 0.0204384 = 0 and F34y — F45, — 0.0567590 = 0.

The vector sum of the moments that act on slider 4 with respect to the center of mass
D = Cyisequal to I, a4
Ic, 0ty = ¢ p X Fsq, (4.63)

or in MATLAB:

egMC4=cross (rP-rC4,F54)-IC4xAlpha4;
egMC4z=egMC4 (3) ;

The numerical expression of Eq. 4.63 is
—(xp +0.147297) Fysy + (yp — 128347) Fys, — (0.235748) 1074 =0.

There are eight equations (Egs. 4.56—4.63) with eight unknowns Fosy, Fosy, Fisy,
Fysy, xp, yp, F34x, and F34y. The system is solved using MATLAB:

sol45=solve (eqgFb5x,eqFby,eqMC5z,eqgF45DE, egPz, ...
eqF4x,eqF4y,eqgMC4z) ;

FO5xs=eval (s0l45.F05x) ;

FOSys=eval (s0l45.F05y) ;

FO05s=[ FO05xs, FO0b5ys,

F45xs=eval (s0ld5.F45x

F45ys=eval (s0ol45.F45y);

)
0 1;
)
)
F45s=[ F45xs, F4bys, 0 ];
)
)
0

4

14

F34xs=eval (s0l45.F34x
F34ys=eval (sol45.F34y
F34s=[ F34xs, F34ys,
yPs=eval (sol4d5.yP);
rPs=[xPs, yPs, 0];

14

1i

The following numerical solutions are obtained

Fos = 336.1921+386.015) N,

Fu5 = —336.1971—385.834) N,

F34 = —336.1761—385.777) N, and
rp = —0.1472971+0.128347) m.
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The force analysis continues with the link 3. Figure 4.30 shows the diagrams of
the link 3. The joint reaction force of the link 4 on the link 3 is Fq3 = —F34 =
336.1761+385.7773 N. The joint reaction force of the ground 0 on the link 3 at the
joint C is Fo3 = Fozx1+ Fozy ). The joint reaction force of the link 2 on the link 3
is F423 = F23,1+ F3,). The application point of the force F»3 is Q(xg, yp) and the
position vector of Q isrg =xg1+yg].

NEWTON-EULER
(Kinetic Diagram)

M3 acy

mgacy = F43 + F03 + G3 + F23

Fig. 4.30 Link 3 of the R- IC;g a3 = rC;gD X F43 + re,c X F03+ r'e,Q X F23
RTR-RTR mechanism

The symbolical six unknowns Fosx, Fo3y, F23x, F23y, Xg, and yg are introduced in
MATLAB using the commands:
FO3x=sym('F03x’,'real’);
FO3y=sym('F03y’,'real’);
F23x=sym ('F23x’,"'real’);
F23y=sym('F23y’,'real’)
xQ=sym(’'xQ",’real’);
yQ=sym('yQ’,’'real’);

4

FO3=[F03x,F03y,0]; % unknown joint force of 0 on 3
F23=[F23%x,F23y,0]; % unknown joint force of 2 on 3

% unknown application point of force F23
rQ=[x0,y0Q,0];
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The point Q, the application of the force F,3, is located on the direction BC, that is
(I‘B — rc) X (I’Q — rc) =0. (4.64)

Equation 4.64 is written in MATLAB as:

egQ=cross (rB-rC, rOo—-rC);
eqgQz=eqQ (3) ;

and numerically is
0.129904 yp +0.025x9 — 0.0129904 = 0.
The direction of the unknown joint force F53 is perpendicular to the sliding direction

I'pc
F23 ‘Tpc = 0, (4.65)

or in MATLAB:
eqgF23BC = dot (F23,rB-rC);
Equation 4.65 can be written numerically as

0.129904 Fo3, +0.025 Faz, = 0.

For the link 3 the vector sum of the net forces, gravitational force G3, joint forces
F43, Fo3, Fa3, is equal to m3 ac, (Fig. 4.30)

m3ac, = F43 +Fo3 + F23 4 G3,
or using MATLAB commands:
eqF3=F43+F03+F23+G3-m3*aC3;
Projecting the previous vectorial onto x and y axes gives

m3ac,, = Fuzx + Fozx + a3y, (4.66)
m3acs, = Faze + Fozy + Fazy —m3 g, (4.67)

or using MATLAB:

egF3x=eqF3(1l); % projection on x-axis
eqgF3y=eqF3(2); % projection on y-axis

Equations 4.66 and 4.67 can be written numerically as

Fozx + F23, +336.203 = 0 and Fy3y + F23, +385.435=0.
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The vector sum of the moments that act on link 3 with respect to the center of mass
Cs is equal to Ic, a3 (Fig. 4.30)

Ic, a3 =re;p X Faz +rec X Foz +rey0 X Fas, (4.68)

or in MATLAB:

egMC3=cross (rD-rC3,F43) +cross (rC-rC3,F03) +. ..
cross (rQ-rC3,F23)-IC3xAlpha3;
egMC3z=egMC3 (3); % projection on z-axis

The numerical expression of Eq. 4.68 is

—88.4776 — 0.0490990 F, + 0.00944911 Fys,
+(xQ — 0.049099) Fy3, — (yg — 0.0905509) Fy3, = 0.

There are five equations (Egs. 4.64—4.68) and six unknowns, and that is why
the analysis will continue with the slider 2. The diagrams of the slider 2 are
shown in Fig. 4.31. The joint reaction force of the link 1 on the slider 2 at B
is Fi2 = Fiox1+ Fi2y) and the joint reaction force of the link 3 on the slider 2 is
F3; = —F23 = —F>3,1 — F23). The MATLAB commands are:

Fl2x=sym('F12x’,"'real’);

Fl2y=sym('F12y’,'real’);

Fl2=[ Fl2x, Fl2y, 0 ]; % unknown Jjoint force of 1 on 2
F32=-F23; % joint force of 3 on 2

NEWTON-EULER FBD
(Kinetic Diagram)

< B=C,
S~._F
/ I, as h

ma ac,

maac, = Fay + Ga + Fio

I, = ro,gx Fsy

Fig. 4.31 Slider 2 of the R-RTR-RTR mechanism
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For the slider 2 the vector sum of the net forces, gravitational force G», joint forces

F3;, F12,is equal to mp ac,
myac, =F»n+Fio+Go,
or using MATLAB commands:
eqF2=F32+F12+G2-m2*aC2;
Projecting the previous vectorial onto x and y axes gives

maac,, = Faox + Fiox,
myac,, = Fyy + Fioy —ma g,

or using MATLAB:

eglF2x=eqF2 (1) ;
eqF2y=eqF2 (2) ;

Equations 4.69 and 4.70 can be written numerically as

—F3, + F12,+0.0284911 =0 and — F3y + Fi2y —0.0620067 = 0.

(4.69)
(4.70)

The vector sum of the moments that act on slider 2 with respect to the center of mass

B = (G, is equal to Ic, o
Ic, 0ty =rc,0 X F3z,

or in MATLAB:

egMC2=cross (rQ-rC2,F32) -IC2xAlpha2;

egqMC2z=egqMC2 (3); % projection on z-axis

The numerical expression of Eq. 4.71 is given by

—(xg —0.129904) Fy3, + (yo — 0.075) Fas, — (0.281035) 10~* = 0.

4.71)

There are eight equations (Eqs. 4.64-4.71) with eight unknowns Fosx, Fozy, 3y,

3y, X0, Y0, Fi2x, and Fyy. The system is solved using MATLAB:

sol23=solve (eqF3x,eqF3y,egMC3z,eqgF23BC, eqQz, . ..

egF2x,eqF2y,eqMC2z) ;
FO03xs=eval (s0l23.F03x);
FO3ys=eval (s0l23.F03y);
FO03s=[ F03xs, FO03ys, 0 ];
F23xs=eval (s0l23.F23x);
)
0

4

F23ys=eval (s0l23.F23y

F23s=[ F23xs, F23ys, 1;
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4

Fl2xs=eval (s0l23.F12x)
Fl2ys=eval (so0l23.F12y);
Fl2s=[ Fl2xs, Fl2ys, 0 1;
xQs=eval (s0l23.x0Q);
yQs=eval (s0l23.yQ);
rQs=[xQs, yQs, 0];

The following numerical solutions are obtained

Fo3 = —431.0271—878.152) N,
Fp3 = 94.82341+ 492717y N,

Fi, = 94.79491+492.779) N, and
ro = 0.1299041+0.075) m.

The force analysis ends with the driver link 1. Figure 4.32 shows the diagrams of
the link 1. The joint reaction force of the link 2 on the link 1 is Fy; = —F» =
—94.79491—492.7793 N. The joint reaction force of the ground O on the link 1 at
the joint A is Fo; = Foix1+ Fopy). For the link 1 the vector sum of the net forces,
gravitational force G, joint forces Fo1, F21, is equal to m; ac, (Fig. 4.32)

miac, =Fo1 —Fp+G; = For =mjac, +F12 -Gy,
or with MATLAB:

FOl=ml+aCl+F12s-G1;

The vector sum of the moments that act on link 1 with respect to the center of mass
Cy is equal to Ic, oy

NEWTON-EULER FBD
(Kinetic Diagram)

miac; = Fog + Gy + Fyy

Io, 00 = v axFor+ro X Fat+ M,

Fig. 4.32 Driver link 1 of the R-RTR-RTR mechanism
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Ic, ap =104 X Fo1 — 1 p X Fi2 + My,

and the equilibrium moment (motor moment) is
Mot = Ic; @1 —rcia X For +r¢; g X Fia.

In MATLAB the equilibrium moment is:

Mm=IClxalphal-cross (rA-rCl,F01)+cross (rB-rCl,F1l2s);

Another way of calculating the equilibrium moment is to take the sum of the mo-
ments that act on link 1 with respect A

Ic, oy +r¢; xmyac, =rc; X Gy +rp X (—F12) + Mg,
and the equilibrium moment is
Mo =1 X Fio+r¢, X (myac, —Gy) +1Ic,
or in MATLAB:
Mm=cross (rB,F12s)+cross (rCl,ml*xaCl-Gl)+ICl+xalphal;

The joint reaction force of the ground O on the link 1 is Fo; =94.77361+492.884) N,
and the equilibrium moment is My,o; = 56.9119k N m.

The MATLAB program for the R-RTR-RTR mechanism using Newton—Euler
equations of motion and the results are given in Appendix C.5.

4.7.2.2 Dyad Method

The dynamic force analysis starts with the last dyad (links 5 and 4) because the ex-
ternal moment Mgy on link 5 is known.

ER DT DR Dyad

Figure 4.33 shows the forces and the moments that act on the dyad Er Dt Dr. The
unknown joint reaction forces are Fos = Fosy1+ Fosy), Faa = F3ac1+ F34y), o1 in
MATLAB

FO5x=sym('F05x’,'real’
FOS5y=sym('F05y’, ' real’
F34x=sym('F34x’,’ real
F34y=sym('F34y’, ' real’
F05=[ FO05x, FO05y, 0 ]
F34=[ F34x, F34y, 0 ]
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NEWTON-EULER FBD
(Kinetic Diagram)

Fig. 4.33 ERr Dt Dr dyad of the R-RTR-RTR mechanism

Newton’s equation for links 5 and 4

msac; +maac, =Fos + G5+ G4 +F3y =
ZF(5&4) =Fos + G5+ Gy +F3g —msac, —mgac, = 0. 4.72)

Equation 4.72 has a component on the x-axis, XF(5&4) -1, a component on the y-axis,
Y FG&Y . and the MATLAB commands are:

eqlF45=F05+G5+G4+F34-m5«aC5-m4*aC4;
% projection on x-axis
egqF45x=eqF45(1);

% projection on y-axis
eqF45y=eqF45 (2);

Euler’s equation of moments for links 5 and 4 about Dr gives

Ic; s +rpeg X msacg + I, Ot = rpa X Fos + Ipcs X Gs+Msexy —
5&4
ZME, ) = (ra—rp) x Fos + (rcs —1p) X (Gs —msac,) +Msex
_IC5 Q5 — IC4 ay=0. 4.73)

The MATLAB commands for Eq. 4.73 are:
egMD45=cross (rA-rD,F05) +cross (rC5-rD, G5-m5xaC5) +. ...
Me-IC5xAlphab-IC4*xAlpha4;

% projection on z-axis
egqMD45z=egMD45 (3) ;

Newton’s equation for link 4 projected on the sliding direction AD is
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(msac,) vap = (F34+Gs+Fsy) - 14p =
Y F@ rap = (Fas + Gy —myac,) - (rp —14) =0. (4.74)

The force of the link 5 on link 4 is Fs4 and Fs4 - rgp = 0. The MATLAB command
for Eq. 4.74 is:

eqF4DA=dot (F34+G4-m4+xaC4, rD-rA);

There are four equations (Egs. 4.72-4.74) with four unknowns Fosy, Fosy, F3ax, F34y.
The system is solved using MATLAB:

solDI=solve (eqF45x, eqF45y , eqMD45z, eqF4DA);
FO5xs=eval (solDI.F05x);

FO5ys=eval (solDI.F05y);
F34xs=eval (solDI.F34x);
F34ys=eval (solDI.F34y);
FO05s=[ FO05xs, FO0bys, 0 1];
F34s=[ F34xs, F34ys, 0 ];

4

The force of the link 4 on link 5, Fys, is calculated from Newton’s equation for link 5

msacy = Fos + Gs+F45s —
F45 = msac, — Gs —Fos,

and the MATLAB command is:
F45=m5%*aC5-G5-F05s;

The application point of the joint force F4s is P(xp, yp). The point P is on the line
AD or

rap Xrap=0 or (rD —rA) X (l'P —I'A) =0,
and with MATLAB:

egP=cross (rD-rA, rP-rA);
egPz=eqgP (3) ;

The second equation needed to calculate xp and yp is the moment equation on link
4 about D = Cy

IC4 Oy =rc,p X (7F45).
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The previous equation with MATLAB is:

egM4=cross (rP-rC4,-F45)-IC4xAlpha4;
egM4dz=eqgM4 (3) ;

The coordinates xp and yp are calculated using the MATLAB commands:
solP=solve (egPz,eqM4z) ;
xPs=eval (solP.xP);
yPs=eval (solP.yP);
rPs=[xPs, yPs, 0];

CR BT BR Dyad

167

Figure 4.34 shows the forces and the moments that act on the dyad Cr Bt Br
(links 3 and 2). The unknown joint reaction forces are Fo3 = Fy3,1+4 Foszy), Fio =

F12x1+F12yJ, or in MATLAB:
FO3x=sym('FO03x’,"'real’);
FO3y=sym('F03y’,’'real’);

(r )
)

Fl2x=sym('F12x’,'real’);
Fl2y=sym('F12y’,'real’);

FO03=[ FO03x, FO03y, 0 ]; Fl2=[ Fl2x, Fl2y, 0 ];

NEWTON-EULER
(Kinetic Diagram)

m3acy

IC.; Q3
3

Fig. 4.34 CR BT BR dyad of
the R-RTR-RTR mechanism
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The joint force F43 = —F34 was calculated from the previous dyad EDD
F43=-F34s;
The sum of all the forces that act on links 3 and 2 is

m3zac, +moac, =Fi3+F3+G3+Gr +F; —
ZF(3&2) =Fp3+Fo3+G3+G2+Fp —m3ac, —maac, = 0. (4.75)

Equation 4.75 has a component on the x-axis, ):F(3&2) -1, a component on the y-axis,
Y F(G%2) .3 and the MATLAB commands are:

egF23=F43+F03+G3-m3xaC3+G2-m2+xaC2+F12;

egF23x=eqF23(1l); % projection on x-axis
eqF23y=eqF23(2); % projection on y-axis

The sum of moments of all the forces and moments on links 3 and 2 about By is
Zero
Ic, a3 +rpc; X mzac; +1c, 0y =rgp X Fa43+rpe X Foz +1pe; X Gz =
3&2
ZME; ) = (rp —rg) X Faz + (rc —rp) x Fo3 + (rc; —rp) X (G3 —m3ac;,)
—IC3 o — ICZ a, =0. 4.76)
The MATLAB commands for Eq. 4.76 are:

egMB3=cross (rD-rB,F43) +cross (rC-rB,F03) +
cross (rC3-rB, G3—-m3%aC3) ;

egqMB2=-IC3xAlpha3-IC2xAlpha2;

egMB23=egMB3+eqMB2;

egMB23z=egMB23 (3) ;

The sum of all the forces on link 2 projected on the sliding direction BC is

(my acz) -rgc = (F12+G2+Fx) -rpc =
ZF ‘Ypc = F12 + Gy —my acz) (l’c — I‘B) =0. 4.77)

The force of the link 3 on link 2 is F3, and F3, - rgc = 0. The MATLAB command
for Eq. 4.77 is:

egF2BC=dot (F12+G2-m2xaC2, rC-rB);
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There are four equations (Eqs. 4.75-4.77) with four unknowns Fo3x, Fo3y, Fi2x, Fi2y.
The system is solved using MATLAB:

solDII = solve(eqF23x, eqF23y , eqMB23z, eqgF2BC);

FO03xs=eval (solDII.F03x);
FO3ys=eval (solDII.F03y);

Fl2xs=eval (solDII.F12x);
Fl2ys=eval (solDII.F1l2y);

FO03s=[ F03xs, FO03ys,
Fl2s=[ Fl2xs, Fl2ys,

1;

0
0 1;

The force of the link 3 on link 2, F35, is calculated from the sum of all the forces on

link 2

myac, =F»+G,+Fp, =
F3 =myac, — Gy —Fyy,

and the MATLAB command is:
F32=m2+*aC2-G2-F12s;

The application point of the joint force F3, is Q(xg, yo). The point Q is on the line
BC or

Ipc X I'QC =0 or (I'Cfl'B) X (I'Q 7rc) = 0,
and with MATLAB:

egQ=cross (rC-rB, rOo—-rC);
eqQz=eqQ (3) ;

The second equation needed to calculate xp and yo is the sum of all the moments
on link 2 about B =C,

Ic, 0ty =r1¢,0 X F3z,

and with MATLAB:

egM2=cross (rQ-rC2,F32)-IC2*xAlpha2;
egM2z=eqM2 (3) ;

The coordinates xg and yg are calculated using the MATLAB commands:
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solQ=solve (eqgQz,eqM2z) ;

xQs=eval (s0lQ.xQ);
yOs=eval (s0lQ.yQ);

rQs=[xQs, yQs, 0];
The joint reaction force of the ground on the link 1 and the equilibrium moment
(drive moment) shown in Fig. 4.32 are calculated using the procedure presented in

the previous sub-section. The MATLAB program using the dyad method and the
results are given in Program C.6.

D’ALEMBERT

Fig. 4.35 D’Alembert’s principle for AR Dt Dr and Cr Bt Br dyads

D’Alembert’s principle can be applied for the dyad method using the diagrams
shown in Fig. 4.35.
4.7.2.3 Contour Method

The contour diagram representing the mechanism is shown in Fig. 4.36. It has two
contours 0-1-2-3-0 and 0-3-4-5-0.

Reaction Force Fos
The rotation joint Ag between the links 0 and 5 is replaced with the unknown reac-
tion force Fs (Fig. 4.37)

Fos = Fosx+ Fpsy).
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Fig. 4.37 Diagram for calculating the reaction force Fos

With MATLAB, the force Fs is written as:
FO05=[ sym('F05x’,’real’), sym('FO5y’,’real’), 0 1;
Following the path 7, as shown in Fig. 4.37, a force equation is written for the trans-

lation joint Dr. The projection of all forces, that act on the link 5, onto the sliding
direction rpy is zero

ZF<5) -Tpa = (Fos + Gs + Fiys) -rpsa =0, (4.78)

where rps = r4 —rp. Equation 4.78 with MATLAB becomes:

egARl=dot (F05+G5+Fin5, rA-rD) ;
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where the command dot (a,b) gives the scalar product of the vectors a and b.
Continuing on the path I, a moment equation is written for the rotation joint Dg

4&5
Y MG = rps x Fos +Tpcy X (Gs+Fins) +Ming +Mins +Meg = 0, (4.79)
where rpc, = r¢; —rp. Equation 4.79 with MATLAB gives:

egAR2=cross (rA-rD,F05) +cross (rC5-rD, G5+Finb5) +. ..
Me+Min4+Minb5;
egAR2z=egAR2 (3) ;

The system of two equations is solved using MATLAB commands:

solF05=solve (egARl, eqgAR2z) ;
FO05s=[ eval (solF05.F05x), eval(solF05.F05y), 0 1;

The following numerical solution is obtained
Fos =336.1921+386.015) N.

Reaction Force Fys
The translation joint Dt between the links 4 and 5 is replaced with the unknown
reaction force Fyu5 (Fig. 4.38)

Fy5 = —Fs4 = Fys1+ Fisy).
The position of the application point P of the force F45 is unknown

rp=Xxpl+yp]J,

> MY A

1

Ar

d
Cr Br

a

Fig. 4.38 Diagram for calculating the reaction force Fys
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where xp and yp are the plane coordinates of the point P. The force F45 and its point
of application P with MATLAB is written as:

F45=[ sym('F45x’,’real’), sym('F45y’,’real’), 0 1;
F54=-F45;
rP=[ sym(’'xP’,’'real’”), sym(’'yP’,’real’), 0 1;

Following the path I (Fig. 4.38), a moment equation is written for the rotation joint
Er

ZMEZS) =rap X Fas5 +rac; X (Gs +Fins) +Mins + Msex = 0, (4.80)

where rpp = rp —ry and ryc; = reg —ra. One can write Eq. 4.80 using the MAT-
LAB commands:

egqDTl=cross (rP-rA,F45) +cross (rC5-rA, G5+Finb5) +Me+Minb5;
egDT1z=egDT1 (3);

Following the path I (Fig. 4.38), a moment equation is written for the rotation joint
Dr
Y My = rpp x Fsg + Mipa =0, “381)

where rpp =rp —rp and Fs4 = —F45. Equation 4.81 with MATLAB is:

eqgqDT2=cross (rP-rD,F54) +Min4;
egqDT2z=egDT2 (3) ;

The direction of the unknown joint force Fys is perpendicular to the sliding direction

r'aDp
Fy5-rap =0, (4.82)

and using the MATLAB command:
egqF45DA=dot (F45, rD-rA) ;
The application point P of the force Fys is located on the direction AD, that is
(rp—r4) X (rp—ry) =0. (4.83)
One can write Eq. 4.83 using the MATLAB commands:

egP=cross (rD-rA, rP-rA);
eqgPz=eqgP (3);

The system of four equations is solved using the MATLAB command:
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solF45=solve (eqDTlz,eqDT2z,F45DA, eqPz) ;
F45s=[ eval (solF45.F45x), eval(solF45.F45y), 0 ];
rPs=[ eval (solF45.xP), eval(solF45.yP), 0 ];

The following numerical solutions are obtained
F45 = —336.1971—385.834) N and rp = —0.1472971+0.1283473 m.

Reaction Force F34
The rotation joint Dr between the links 3 and 4 is replaced with the unknown reac-
tion force F34 (Fig. 4.39)

F34 = —F34 = B340+ F4y),
and with MATLAB:

F34=[ sym('F34x’,"real’), sym('F34y’,’'real’), 0 1;
F43=-F34;

Following the path I, a force equation can be written for the translation joint Dr.
The projection of all forces, that act on the link 4, onto the sliding direction AD is

Zero
Y F® rap = (F3 + Gy +Fing) - tap =0, (4.84)

where r4p = rp —r4. Equation 4.84 using MATLAB gives:
egDR1=dot (F34+G4+Fin4, rD-rA);

Continuing on the path I (Fig. 4.39), a moment equation is written for the rotation
joint Ar

Fig. 4.39 Diagram for calculating the reaction force Fz4
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ZMr&S) =rac, X (G4+Fina) +rap X F34 +Miny
+racs X (Gs +Fins) + Mips +Msey = 0, (4.85)

where rac; =rc; —ra, and rac, = rc, —ra. Equation 4.85 with MATLAB becomes:

egDR24=cross (rC4-rA,G4+Find) +cross (rD-rA,F34) +Min4;
egDR25=cross (rC5-rA, G5+Finb5) +tMe+Minb5;
egDR2=egDR24+egDR25;

egDR2z=egDR2 (3) ;

The system of two equations is solved using the MATLAB commands:

solF34=solve (egDR1l, egDR2z) ;
F34s=[ eval (solF34.F34x), eval(solF34.F34y), 0 1;

The following numerical solution is obtained
F34 = —336.1761—385.777) N.
Reaction Force Fys
The rotation joint Cg between the links 0 and 3 is replaced with the unknown reac-

tion force Fo3 (Fig. 4.40)
Fo3 = Fozx1+ Fozy)-

With MATLAB the force Fg3 is written as:
FO3=[ sym('FO03x’,"real’), sym('FO03y’,’'real’”), 0 1;

Following the path I (Fig. 4.40), a force equation is written for the translation joint
Br. The projection of all forces, that act on the link 3, onto the sliding direction CD

(e Fins

Fig. 4.40 Diagram for calculating the reaction force Fo3
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is zero
Y F® rep = (Foz + Faz + Gs + Fin3) - xcp =0, (4.86)

where rcp = rp —rc. Equation 4.86 with the MATLAB command is
eqCR1l=dot (FO3-F34s+G3+Fin3, rD-rC) ;

Continuing on the path /7 (Fig. 4.40), a moment equation is written for the rotation
joint Br

3&2
ZME; = r5c; X (G3+Fin3) +rpc X Foz +1ap X Fa3 + Mina + Minz = 0, (4.87)

where I'BC3 = I'C3 —Irp,'pc =rc—1rIp, and I'pp =Tp —Ip. With MATLAB Eq. 4.87
gives:

eqCR2=cross (rC3-rB, G3+Fin3) +cross (rC-rB,F03) +. ..
cross (rD—-rB, -F34s) +Min2+Min3;
eqCR2z=eqCR2 (3) ;

To solve the system of two equations the MATLAB commands are used:

solF03=solve (eqCR1l,eqCR2z) ;
F03s=[ eval (solF03.F03x), eval(solF03.F03y), 0 1;

The following numerical solution is obtained
Fo3 = —431.0271—878.152) N.

Reaction Force Fo3
The translation joint Bt between the links 2 and 3 is replaced with the unknown
reaction force Fp3 (Fig. 4.41)

Fo3 = —F3 = B30+ F23y).
The position of the application point Q of the force F,3 is unknown
rg =x91+y9J,

where xp and y¢ are the plane coordinates of the point Q. The force F,3 and its point
of application Q are written in MATLAB as:

F23=[ sym('F23x’,"real’), sym('F23y’,"’real’”), 0 1;
F32=-F23;
rQ=[ sym(’'xQ’,’real’), sym('yQ’","real’), 0 I;

Following the path I (Fig. 4.41), a moment equation is written for the rotation joint
Cr
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Fig. 4.41 Diagram for calculating the reaction force Fy3

ZMS) =rco X Fo3 +recy X (G +Fin3) +rep X Faz + M3 =0, (4.88)

where rcg =rg—rc,rcc; =rc, —rc, and rcp =rp —rc. Using MATLAB, Eq. 4.88
is written as:

egqBTl=cross (rQ-rC,F23) +cross (rC3-rC,G3+Fin3) +. ..
cross (rD-rC,-F34s)+Min3;
egBT1lz=egBT1 (3);

Following the path /7 (Fig. 4.41), a moment equation is written for the rotation joint
Br
Y MY = rgp x Fip +Mips =0, (4.89)

where rpg = rg — rg. Equation 4.89 with MATLAB becomes:

egBT2=cross (rQ-rB,F32)+Min2;
egBT2z=egBT2 (3) ;

The direction of the unknown joint force F53 is perpendicular to the sliding direction
BC. The following relation is written

F23-rpc =0,
or with MATLAB, it is:
egF23BC=dot (F23, rC-rB) ;
The application point Q of the force F»3 is located in the direction BC, that is

(rg—rc) x (rg—rc) =0. (4.90)



178 4 Dynamic Force Analysis

Equation 4.90 with MATLAB gives:

egQ=cross (rB-rC, rQ-rC);
eqQz=eqQ (3) ;

The system of four equations is solved using the MATLAB command:

solF23=solve (eqBTlz,eqBT2z,F23BC,eqQz) ;
F23s=[ eval (solF23.F23x), eval(solF23.F23y), 0 1;
rQs=[ eval (solF23.xQ), eval(solF23.yQ), 0 1;

The following numerical solutions are obtained
Fr3 =94.82331+492.717) N and rg = 0.1299041+-0.075) m.

Reaction Force F i,
The rotation joint Bg between the links 1 and 2 is replaced with the unknown reac-
tion force F, (Fig. 4.42)

Fi2 = —F21 = Fiox1+Fioy).
With MATLAB it is written as:

F12=[ sym('Fl2x’',’real’), sym('Fl2y’,’real’), 0 1;
F21=-F12;

Following the path 7 (Fig. 4.42), a force equation is written for the translation joint
Brt. The projection of all forces, that act on the link 2, onto the sliding direction BC
is zero

ZF(Z) rpc = (F12+ G2+ Fin2) -1pc = 0. 4.9D)

2
G3 Fin 3 F

Fig. 4.42 Diagram for calculating the reaction force Fj,
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Using MATLAB it is written as:
egBRl=dot (F12+G2+Fin2, rC-rB) ;
Continuing on the path /, a moment equation is written for the rotation joint Cg

ZM(CZ&3) = rcp X Fi2 +ree, X (G2 + Fin2) + Min2
+rcc, X (G3+Fin3) +rep x Fa3 +Miy3 =0, (4.92)

where rcp =Yg —Ic, Yco, =T¥c, —Irc, Yce; =re; —I'c, and rcp =TIp—TIc. Using
the MATLAB, commands Eq. 4.92 gives:

egBR2=cross (rB-rC,F12) +cross (rC2-rC, G2+Fin2) +Min2. ..
+cross (rC3-rC,G3+Fin3) +cross (rD-rC, -F34s) +Min3;
egBR2z=egBR2 (3) ;

The system of two equations is solved using the MATLAB commands:

solFl2=solve (egqBRl,egBR2z) ;
F12s=[ eval (solFl2.F12x), eval(solF1l2.F12y), 0 1;

and the following numerical solution is obtained
Fi2 =94.79491+492.779) N.

Motor Moment Mo

The motor moment needed for the dynamic equilibrium of the mechanism is My,o; =
Mot Kk (Fig. 4.43). Following the path I (Fig. 4.43), a moment equation is written
for the rotation joint Ag

ZMI(A}) =15 X Fy1 +rac, X (Gl +Finl) +Min1 +Mpo = 0. (4.93)

1) M mot

ElRELEG
Agr
Foy
D+ Cr I
D B

N

Fig. 4.43 Diagram for calculating the motor moment My

w
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Equation 4.93 is solved using the MATLAB command:
Mlm=- (cross (rB, -Fl1l2s)+cross (rCl,Gl+Finl)+Minl) ;
The numerical solution is
Mpot =56.9119k Nm.
Reaction Force Fyy;

The rotation joint Ag between the links O and 1 is replaced with the unknown reac-
tion force Fy; (Fig. 4.44)

Fo1 = —F10 = Forx1+ Foyl,
With MATLAB it is written as:
FOl=[ sym('F0lx’,’real’), sym('FOly’,’real’), 0 1;

Following the path I (Fig. 4.44), a moment equation is written for the rotation joint
Br

ZME;) =rpa X Fo1 +13c; X (G1+Fin1) +Min1 +Mpot =0, (4.94)

where rps = —rp, and rpc, = rc, —rp. Equation 4.94 using the MATLAB com-
mands gives:

egAARl=cross (-rB,F01) +cross (rCl-rB,Gl+Finl) +Minl+Mlm;
egAARlz=egAARl (3);

Continuing on the path I (Fig. 4.44), a force equation is written for the translation
joint Bt.
Ar

F01
DT CR D BR ZMg)
Br

D
4 3 2
O \/Z ple) o

Fig. 4.44 Diagram for calculating the reaction force Fo;
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The projection of all forces, that act on the links 1 and 2, onto the sliding direction
BC is zero

Y FU&2) rpe = (For + Gi +Fint + G2+ Fina) - rpc =0, (4.95)
or with MATLAB it is:
egAAR2=dot (FO1+G1l+Finl+G2+Fin2, rC-rB) ;
The system of two equations is solved using the MATLAB commands:

solF0l=solve (egAARlz, egAAR2);
FOls=[ eval (solF01.F0lx), eval(solFO01l.FO0ly), O 1;

The following numerical solution is obtained
Fo1 =94.77361+492.884) N.

The MATLAB program for the dynamic force analysis is presented in Appendix C.7.



Chapter 5

Direct Dynamics: Newton—-Euler Equations of
Motion

The Newton—Euler equations of motion for a rigid body in plane motion are
mitc = ZF and I, = ZMC,
or using the Cartesian components

m)'c'c = ZFX, mjl'c = ZFV’ and Iszé = ZMc.

The forces and moments are known and the differential equations are solved for the
motion of the rigid body (direct dynamics).

5.1 Compound Pendulum

Exercise

Figure 5.1a depicts a compound pendulum of mass m and length L. The pendulum
is connnected to the ground by a pin joint and is free to swing in a vertical plane.
The link is moving and makes an instant angle 6(¢) with the horizontal. The local
acceleration of gravity is g. Numerical application: L = 3 ft, g = 32.2 ft/s?, G =
mg = 12 Ib. Find and solve the Newton—Euler equations of motion.

Solution

The system of interest is the link during the interval of its motion. The link in rota-
tional motion is constrained to move in a vertical plane. First, a reference frame will
be introduced. The plane of motion will be designated the (x, y) plane. The y-axis is
vertical, with the positive sense directed vertically upward. The x-axis is horizontal
and is contained in the plane of motion. The z-axis is also horizontal and is perpen-
dicular to the plane of motion. These axes define an inertial reference frame. The
unit vectors for the inertial reference frame are 1, J, and k. The angle between the x
and the link axis is denoted by 8. The link is moving and hence the angle is chang-
ing with time at the instant of interest. In the static equilibrium position of the link,

183
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Fle

(b)

Fig. 5.1 Compound pendulum

the angle, 0, is equal to —m /2. The system has one degree of freedom. The angle,
0, is an appropriate generalized coordinate describing this degree of freedom. The
system has a single moving body. The only motion permitted that body is rotation
about a fixed horizontal axis (z-axis). The body is connected to the ground with the
rotating pin joint (R) at O. The mass center of the link is at the point C. As the link
is uniform, its mass center is coincident with its geometric center.

Kinematics
The mass center, C, is at a distance L/2 from the pivot point O and the position
vector is

roc =rc = xcl+yc), (5.1

where x¢ and yc are the coordinates of C
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L L
Xc = ECOSQ and yc = Esin@. 5.2)

The link is constrained to move in a vertical plane, with its pinned location, O,
serving as a pivot point. The motion of the link is planar, consisting of pure rotation
about the pivot point. The directions of the angular velocity and angular acceleration
vectors will be perpendicular to this plane, in the z-direction.The angular velocity
of the link can be expressed as
do .

w=wk= 7 k = 0k, (5.3)
o is the rate of rotation of the link. The positive sense is clockwise (consistent with
the x and y directions defined above). This problem involves only a single moving
rigid body and the angular velocity vector refers to that body. For this reason, no
explicit indication of the body, 1, is included in the specification of the angular
velocity vector w = wj. The angular acceleration of the link can be expressed as

d*e

a=w=o0k=
« is the angular acceleration of the link. The positive sense is clockwise.
The velocity of the mass center can be related to the velocity of the pivot point

using the relationship between the velocities of two points attached to the same rigid
body

1 ) k
Vve=Vo+twXroc=|0 0 ow|= a)(—ycl+XCJ)
xc ye O
Lo L6
= 7(—sin61+cos 0)) = 7(—Sin91—|—cos 0y). (5.5)

The velocity of the pivot point, O, is zero. The acceleration of the mass center can be
related to the acceleration of the pivot point (ap = 0) using the relationship between
the accelerations of two points attached to the same rigid body

aC:ao+a><roc+w><(wxroc):a0+a><roc—a)2roc

1 )] k
=10 0 of-e’(xc1+yc)=a(—yc1+xc)) — O (xc1+yc))
xc yc O

= —(0tyc + @*xc ) + (oxc — @°yc))
L L
= fE(asinG + ®?cos0)1+ a(acose — 0’sinh)]

L L

5 ésin9+920036)1+2 écos@—ézsinG)J. (5.6)
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It is also useful to define a set of body-fixed coordinate axes. These are axes that
move with the link (body-fixed axes). The n-axis is along the length of the link,
the positive direction running from the origin O toward the mass center C. The unit
vector of the n-axis is n. The ¢-axis will be perpendicular to the link and be contained
in the plane of motion as shown in Fig. 5.1a.The unit vector of the ¢-axis is t and
n x t = k. The velocity of the mass center C in the body-fixed reference frame is

t k .
Ve=Vo+wXroc = 0 o ="t —t, 5.7
0 0

N ~No B

where roc = (L/2)n. The acceleration of the mass center C in the body-fixed refer-
ence frame is

La L Lo ., L
aC:a0+a><r0c—a)2r0c=Tt—wzin: Tt—ezin, (5.8)

or
ac = al+a},

with the components

L8 L6?

—t and aj=———n.
5 and ag 5 n

ac

Newton—Euler Equation of Motion

The link is rotating about a fixed axis. The mass moment of inertia of the link about
the fixed pivot point O can be evaluated from the mass moment of inertia about the
mass center C using the transfer theorem. Thus

L\* mI* mI*  mL?
1 — I — — —_—_— —_— = —, 5

0 C+’"<2> 27 3 69
The pin is frictionless and is capable of exerting horizontal and vertical forces on
the link at O

Fo1 = For.aa+ Fouyl, (5.10)

where Fy1, and Fp1, are the components of the pin force on the link in the fixed-axes
system.

The force driving the motion of the link is gravity. The weight of the link is acting
through its mass center and will cause a moment about the pivot point. This moment
will give the link a tendency to rotate about the pivot point. This moment will be
given by the cross product of the vector from the pivot point, O, to the mass center,
C, crossed into the weight force G = —mg].

As the pivot point, O, of the link is fixed, the appropriate moment summation
point will be about that pivot point. The sum of the moments about this point will be
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equal to the mass moment of inertia about the pivot point multiplied by the angular
acceleration of the link. The only contributor to the moment is the weight of the
link. Thus we should be able to directly determine the angular acceleration from
the moment equation. The sum of the forces acting on the link should be equal to
the product of the link mass and the acceleration of its mass center. This should be
useful in determining the forces exerted by the pin on the link.

The free-body diagram shows the link at the instant of interest, Fig. 5.1b. The
link is acted upon by its weight acting vertically downward through the mass center
of the link. The link is acted upon by the pin force at its pivot point. The motion
diagram shows the link at the instant of interest, Fig. 5.1c. The motion diagram
shows the relevant acceleration information. The Newton—Euler equations of motion
for the link are

mac = XF = G +Fy,, (.11
Ica=XM¢c =rco X For. (5.12)

Since the rigid body has a fixed point at O the equations of motion state that the
moment sum about the fixed point must be equal to to the product of the link mass
moment of inertia about that point and the link angular acceleration. Thus,

IanEMozl‘OCxG. (513)

Using Eqgs. 5.4, 5.9, and 5.13 the equation of motion is

12 1 J k
mL~ .. L L
?Gk: Ecose Esine 0f, (5.14)
0 —mg O
or
.. 3g
= —_—— . .1
0 2Lcos@ (5.15)

The equation of motion, Eq. 5.15, is a non-linear, second-order, differential equation
relating the second time derivative of the angle, 0, to the value of that angle and
various problem parameters g and L. The equation is non-linear due to the presence
of the cos 6, where 0(¢) is the unknown function of interest.

The force exerted by the pin on the link is obtained from Eq. 5.11

Fop =mac -G,

and the components of the force are

Fyix = mic = ——(Bsin0 + 6*cos 0),

mL
2
FOly:myC+mg:7(Bcos9—9 sin @) + mg. (5.16)
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Using the moving reference frame (body-fixed) the components of the reaction force
on n and t axes are

2

Foip = mag —mgsin@ = — +mgsin®,

L6
Foi; = map —mgcos 6 = mT +mgcos 6. (5.17)

If the link is released from rest, then the initial value of the angular velocity is
zero (t = 0) = w(0) = §(0) = 0 rad/s. If the initial angle is 6(0) = 0 radians,
then the cosine of that initial angle is unity and the sine is zero. The initial angular
acceleration can be determined from Eq. 5.15

é(O)za(O):—;—icose(O):—i—i:16.1rad/s2. (5.18)

The negative sign indicates that the initial angular acceleration of the link is coun-
terclockwise, as one would expect.
The initial reaction force components can be evaluated from Eq. 5.16

L.
="26(0) +mg = % =31b.

The equation of motion, Eq. 5.15, is obtained symbolically using the MATLAB®
commands:

syms L m g t

omega = [0 0 diff('theta(t)’,t)]1;
alpha = diff (omega,t);

c = cos(sym(’theta(t)’));

s = sin(sym(’theta(t)’));

xXC = (L/2) xc;

yC = (L/2) *s;

rC = [xC yC 0];
G = [0 —-mxg 0];
IC = mxL"2/12;
IO = IC + m*x(L/2)"2;

MO = cross (rC,G);
eq —-IOxalpha+MO;
eqz = eq(3);

The MATLAB statement diff (X,’t’) ordiff (X, sym(’t’)) differentiates
a symbolic expression X with respect to t, and the statement diff (X,’t’,n)
and diff (X, n,’t’) differentiates X n times, where n is a positive integer.

An analytical solution to the differential equation is difficult to obtain. Numeri-
cal approaches have the advantage of being simple to apply even for complex me-
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chanical systems. The MATLAB function ode45 is used to solve the differential
equation.

" 3
The differential equation 6 = —i cos 0 is of order 2. The equation has to be

re-written as a first-order system. Let x; = 6 and x; = 0, this gives the first-order
system

X = x,

Xy = ——gcosx
2 2L 1-

The MATLAB commands for the right-hand side of the first-order system are:

eql = subs(eqgz,{L,m,qg},{3,12/32.2,32.2});

eqll = subs(eql,diff(’theta(t)’,t,2),’ddtheta’);
eql2 subs (eqIl,diff ('theta(t)’,t),sym('x(2)"));
eql3 = subs(eql2,’theta(t)’,sym('x(1)"));

dxl = sym('x(2)");

dx2 = solve(eql3,’ddtheta’);

dx1ldt = char (dxl);

dx2dt char (dx2) ;

An inline function g is defined for the right-hand side of the first-order system.
Note that g must be specified as a column vector using [...; ...] (notarow
vector using [ ..., ...] ). Inthe definition of g, x (1) was used for x| and x (2)
was used for x,. The definition of g should have the form:

g = inline(sprintf ('’ [%$s;%s]’,dx1ldt,dx2dt),’'t’,’'x");

The statement has to have the form inline (...,"t’,’y’), evenif t does not
occur in your formula. The first component of g is x (2) . The statement sprint f
writes formatted data to string. The time t is going from an initial value t0 to a
final value f:

t0 = 0;
tf = 10;
time = [0 tf];

The initial conditions at fy = 0 are 8(0) = 7/4 rad and 8(0) = 0 rad/s or in MAT-
LAB:

x0 = [pi/4; 0]; % define initial conditions

The numerical solution of all the components of the solution for t going from t 0
to £ is obtained using the command:
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[t,xs] = oded5(g, time, x0);

where x0 is the initial value vector at the starting point t 0.

One can obtain a vector t and a matrix xs with the coordinates of these points
using ode45 command.

The vector of x1 values in the first column of x s is obtained by using xs (:, 1)
and the vector of x2 values in the second column of xs is obtained by using
xs(:,2):

x1l = xs(:,1);
X2 = xs(:,2);

The plot of the solution curves are obtained using the commands:

subplot (3,1,1),plot(t,x1,'x"),...
xlabel(’t’),ylabel(’\theta’),grid,...
subplot (3,1,2),plot(t,x2,"g"),
xlabel(’t’),ylabel(’\omega’),grid,...
subplot (3,1,3),plot (x1,x2), ...

xlabel (’\theta’),ylabel (' \omega’),grid

The plots using MATLAB are shown in Fig. 5.2. In general, the error tends to grow
as one goes further from the initial conditions. To obtain numerical values at specific
t values one can specify a vector tp of t valuesanduse [ts,xs] = oded5 (g,
tp, x0).The first element of the vector tp is the initial value and the vector tp
must have at least 3 elements. To obtain the solution with the initial values at t =
0, 0.5, 1.0, 1.5, ... , 10 onecanuse:

[ts,xs] = oded5(g, 0:0.5:10, x0);
[ts,xs]

and the results are displayed as a table with 3 columns ts, x1 = xs(:,1),
x2 = xs(:,1).

A MATLAB computer program to solve the governing differential equation is
given in Appendix D.1.

The differential equation can be solved numerically by m-file functions. First
create a function file, R . m as shown below:

function dx = R(t,x);
); % a column vector
32

dx = zeros (2,1

W= 12; L = 3; g = .2; m = W/g;
dx (1) = x(2);

dx (2) = -3xgxcos (x(1))/(2*L);
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_10 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
t
10 T T T T T T T T T
5 [ -
s of .
5F i
_10 1 1 1 1 1 1 1 1 1
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
0

Fig. 5.2 Plot of solution curves 8 and ® = 6

The ode solver provided by MATLAB (ode45) is used to solve the differential
equation:

tfinal=10;

time=[0 tfinal];

x0=[pi/4 0]; % x(1) (0)=pi/4; x(2) (0)=0
[t,x]=0ded5 (@R, time, x0);

The MATLAB program is given in Appendix D.2.
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5.2 Double Pendulum

Exercise

A two-link planar chain (double pendulum) is considered, Fig. 5.3a. The links 1 and
2 have the masses m; and my and the lengths AB = L; and BD = L,. The system
is free to move in a vertical plane. The local acceleration of gravity is g. Numerical
application: m;y =mp =1kg,L1 =1m, Ly =0.5m,and g =10 m/s2. Find and solve
the equations of motion.

Fig. 5.3 Double pendulum

Solution
The plane of motion is the (x,y) plane with the y-axis vertical, with the positive
sense directed upward. The origin of the reference frame is at A. The mass centers
of the links are designated by Ci (xc,,yc,,0) and C>(xc,,Yc,,0).

The number of degrees of freedom are computed using the relation
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M =3n—2c¢5—cy4,

where n is the number of moving links, ¢s is the number of one degree of freedom
joints, and c4 is the number of two degrees of freedom joints. For the double pendu-
lumn =2, ¢s =2, ¢4 =0, and the system has two degrees of freedom, M = 2, and
two generalized coordinates. The angles ¢ (¢) and g (¢) are selected as the general-
ized coordinates as shown in Fig. 5.3a.

Kinematics
The position vector of the center of the mass C; of the link 1 is
re, =xc1+yc)s
where x¢, and yc, are the coordinates of C
Ly Ly .
X, = ?cosql and yc, = ?smql.

The position vector of the center of the mass C; of the link 2 is

rCz = szl +yC2.]7

where x¢, and yc, are the coordinates of C;
L . L, .
xc, = Licosgi + 72 cosgy and yc, = Lising; + 72 singy.

The velocity vector of Cj is the derivative with respect to time of the position vector
of C]
Ve, = Fe, = Jdel e,
where
. L. . . L.
Xc, = —?ql sing; and yc, = 76]] cosq].
The velocity vector of C; is the derivative with respect to time of the position vector
of Cy
Ve, = Fo, = dey1+ Y0,

where

.. Ly, . . . L
Xc, = —L1g1singy — - 28ing2 and yc, = Ligicosq; + = 420842

The acceleration vector of C; is the double derivative with respect to time of the
position vector of Cy

ac, =¥¢, = X1+ ),

where
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L,

2 .
sing; .
) q1 q1

N Ly, . L, N Ly,

fc, = ——-g1sing; — —=-gycosqy and Jic, = —-G1cosq —
2 2 2

The acceleration vector of C, is the double derivative with respect to time of the

position vector of C,

ac, = i;CZ :XCZI_F.S}CZJ’

where

Xc, = —Li1g1sing; —qu%cosql — 7(12 singp — ECI% cosq,

.. .. 2 . L . L, , .
Ve, = L1gy cosq1 — L147sing; + 5 42€0592 = =g s .

The MATLAB commands for the linear accelerations of the mass centers C; and C;
are:

Ll =1; L2 = 0.5; ml =1; m2 = 1; g = 10;
t = sym('t’,’'real’);

xB = Llxcos(sym("gl(t)’));
yB Llxsin(sym('gql(t)’));
rB = [xB yB 0];

rCl rB/2;

vCl = diff (rCl,t);

aCl diff(vCl,t);

xD xB + L2xcos (sym(’'g2(t)
yD = yB + L2+sin(sym(’'g2(t)’));
rD [xD yD 0];

rC2 = (rB + rD)/2;

vC2 diff(rC2,t);

aC2 diff(vC2,t);

Il
Il
~
-
-
~

The angular velocity vectors of the links 1 and 2 are
wi; =¢gik and w; = ¢k.
The angular acceleration vectors of the links 1 and 2 are
o) =gk and oap =gk

The MATLAB commands for the angular accelerations of the links 1 and 2 are

omegal [0 0 diff('gl(t)’,t)];
alphal = diff (omegal,t);
omega2 = [0 O diff('g2(t)’,t)1;
alpha? diff (omega2,t);
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Newton—Euler Equations of Motion
The weight forces on the links 1 and 2 are

G, =-mg) and G; = —magj,

and in MATLAB:

Gl [0 -mlxg 0];
G2 = [0 —m2xg 0];

The mass moment of inertia of the link 1 with respect to the center of mass Cj is

mlL%
Ic, = 2

The mass moment of inertia of the link 1 with respect to the fixed point of rotation
Ais

i Ie + L1 2 mlL%
= m —_ == .
A = ¢ 5 3
The mass moment of inertia of the link 2 with respect to the center of mass C; is
I — I’)’IQL%
P

The MATLAB commands for the mass moments of inertia are:

ICl = ml«xL1°2/12;
IA = ICl + mlx(L1/2)"2;
IC2 = m2+L2°2/12;

The equations of motion of the pendulum are inferred using the Newton—Euler
method. There are two rigid bodies in the system and the Newton—Euler equations
are written for each link using the free-body diagrams shown in Fig. 5.3b.

Link 1
The Newton—Euler equations for the link 1 are

miac, = Fo1 +F21 + Gy,
Ic, a1 =14 X For +rc g X Fay,

where Fy; is the joint reaction of the ground O on the link 1 at point A, and F»; is
the joint reaction of the link 2 on the link 1 at point B

Fo1 = Foud+ Fory) and Fap = Fap1+ Fapy).
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Since the link 1 has a fixed point of rotation at A the moment sum about the fixed
point must be equal to to the product of the link mass moment of inertia about that
point and the link angular acceleration. Thus,

Iyay =150, X G +1a8 X Fap, (5.19)

or

1 J k 1 ] Kk

mL3}
3 1qlk: Xc hie) 0|+ xp yg 0],

0 -mg O By Fiy 0

or
mL} .
3 Lgik = (—migxc, + Fo1yxs — P1xy)K.

The equation of motion for link 1 is

2
miLy | Ly .
3 g1 = —m1g7 cosqi + Fa1yLy cosqy — Fo1.Lysingy | . (5.20)
Link 2
The Newton—Euler equations for the link 2 are
mpac, =F;2+ Gy, (5.21)
Ic,00 =rc,p X Fpa, (5.22)

where F|» = —Fj is the joint reaction of the link 1 on the link 2 at B. Equation 5.22
becomes

myic, = —Px,
myyc, = —Fay —ma g,
k
mL2 1 J
ik =|x—xc, y5—ye, 0], (5.23)
B -B;,, 0

or

. . L . . L
my (—Llch sing) — Li4} cosq) — 7 Gasingy — 761% COSC]z)

= Py, (5.24)
.. .2 . L L 2D s
my | Ligicosqy — Liqysing + 74]2 cosqy — qu singa
=—Fy—mg, (5.25)
ml3 L .
24y = = (—Faiycos gy + Faipsingy) (5.26)

12 2
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The reaction components %1, and F31, are obtained from Eqgs. 5.24 and 5.25

o U ) L2 U LZ )
o1y =my | L1g1sing; +L1g7cosqy + 7q2 singp + qu cosqa |,

.. .2 . L L, .2 .
Fr1y = —ma | Ligi1cosqy — Ligysing; + qucosqz - ?fh singy

+my g. (5.27)

The equations of motion are obtained substituting F>, and F31y in Eqgs. 5.20 and
5.26

mlL? Ly
= —mi12—COS
3 q1 1g2 q1

. 9. L . L, , .
—np <L1q1 cosqi —Li1¢7sing + - G2008q2 761% singy — g) Licosq

. . L, . L .
—my (Llc'jl sing +L1q% cosqy + 726]2 sing + Ezq% cos qz) Lisingy, (5.28)
mlL3 .
12 q2
my Ly .. o . L Ly 5 .
== (lecosql—hq%smqﬁr2qzcosqz—Zqﬁsqu—g) cosqa
my L ) . Ly . L . .
+ 22 2 <L16'1'1 singy + L1475 cosq +726]2 Slné]2+226]30056]2> singz. (5.29)

The equations of motion represent two non-linear differential equations. The initial
conditions (Cauchy problem) are necessary to solve the equations. At ¢ = 0 the initial
conditions are

q1(0) = q10, 41(0) = o,
72(0) = g20, 42(0) = ano.

The equations of motion for the mechanical system will be solved using MATLAB.
First the reaction joint force F»; is calculated from Eq. 5.21:

F21 = -m2*xaC2 + G2;
The moment equations for each link, Egs. 5.19 and 5.22, using MATLAB are:

EgA = -IAxalphal + cross(rB, F21) + cross(rCl, Gl);
Eg2 —-IC2%alpha2 + cross(rB - rC2, -F21);

Two lists s1list and nlist are created:



198 5 Direct Dynamics: Newton—Euler Equations of Motion

Slist={diff(’ql(t)',t,2),diff(’q2(t)',t,2),...
diff("gl(t)’,t),diff("q2(t)’,t), ql(t)’, g2 (t)"};
nlist={"ddql’, ’ddg2’, ’'x(2)’, ’'x(4)’, "x(1)’,"'x(3)’;

$ diff('gl(t)’,t,2) will be replaced by ’ddgl’
% diff('g2(t)’,t,2) will be replaced by ’ddg2’
diff('gl(t)’,t) will be replaced by "x(2)’

o° o

diff("g2(t)’,t) will be replaced by ’"x(4)’
"gl(t)’ will be replaced by ’"x (1)’
"g2(t)’ will be replaced by ’"x(3)’

o

o\°

In the equations of motion EgA and Eg2 the symbolical variables in s1list are
replaced with the symbolical variables in n1ist:

eql = subs(EgA(3),slist,nlist);
eq2 = subs(Eg2(3),slist,nlist);

The previous equations are solved in terms of ' ddgl’ and ' ddg2’

sol = solve(eql,eqg2,’ddgl, ddgz2’);
The second-order ODE system of two equations has to be re-written as a first-order
system.

Letx (1)=q(t), % (2) =4 (t), x (3) =q2(t), and x (4) =¢»(¢), this gives the first-

order system:

dlx(1)]1/dt
d[x(3)1/dt

x(2), d[x(2)]/dt = ddqgl,
x(4), dlx(4)]1/dt ddg2.

The MATLAB commands for the first-order ODE system are:

dxl = sym('x(2)");
dx2 = sol.ddql;
dx3 = sym('x(4)");
dx4 = sol.ddg2;
dx1ldt = char (dxl);
dx2dt = char (dx2);
dx3dt = char (dx3)
dx4dt = char (dx4)

4

The inline function g is defined for the right-hand side of the first-order system:

g = inline(sprintf ('’ [%s;%s;%s;%s]’,...
dx1ldt, dx2dt,dx3dt,dx4dt),’'"t’,’'x");
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The time t is going from an initial value t 0 to a final value f:
t0 = 0; tf = 5; time = [0 tf];

The initial conditions at #p = 0 are ¢;(0) = —n/4 rad, ¢1(0) = 0 rad/s, ¢2(0) =
—n/3 rad, ¢»(0) = 0 rad/s, or in MATLAB:

x0 = [-pi/4; 0; -pi/3; 0]; % define initial conditions

The numerical solution of all the components of the solution for t going from t 0
to f is obtained using the command:

[t,xs] = oded5(g, time, x0);

where x 0 is the initial value vector at the starting point t 0. The plot of the solution
curves g and g, are obtained using the commands:

x1l = xs(:,1);

x3 = xs(:,3);

subplot (2,1,1),plot (t,x1*180/pi,'r’),
xlabel ("t (s)’),ylabel ("gl (deg)’ ) grid,
subplot (2,1,2),plot (t,x3%x180/pi, 'b’),
xlabel ("t (s)’),ylabel (g2 (deg)’ ),grld

The plots using MATLAB are shown in Fig. 5.4 and the MATLAB program is given
in Appendix D.3.

Instead of using the inline function g the system of differential equations can
be solved numerically by m-file functions. The function file, RR.m is created using
the statements:

sol = solve(eql,eqg2,’ddqgl, ddgz2’);

dx2 = sol.ddql;

dx4 = sol.ddg?;

dx2dt = char (dx2);

dx4dt = char (dx4);

% create the function file RR.m

fid = fopen('RR.m’,’ ' wt+’);

fprintf (fid,’ function dx = RR(t,x)\n’)
fprintf (fid,’'dx = zeros(4,1);\n’)
fprintf (fid, 'dx (1 );\n")
fprintf (fid, ' dx (2

fprintf (£fid, dx2dt
fprintf (fid,’;\n’
fprintf (fid, "dx (3
fprintf (fid, "dx (4

4

)
)
) 4
)i
)
)
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q1 (deg)

q2 (deg)

-100

-120

-140

-160
0

Fig. 5.4 Plot of solution curves ¢g; and g,

fprintf (fid, dx4dt) ;
fprintf (fid, ;") ;
fclose (fid);

cd (pwd) ;

The terms dx2dt and dx4dt are calculated symbolically from the previous pro-
gram (Appendix D.3). The MATLAB command fid = fopen (file,perm)
opens the file file in the mode specified by perm. The mode ' w+’ deletes
the contents of an existing file, or creates a new file, and opens it for reading and
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writing. The statement fclose (fid) closes the file associated with file identifier
fid, the statement cd changes the current working directory, and pwd displays the
current working directory. The ode45 solver is used for the system of differential
equations:

t0 = 0; tf = 5; time = [0 tf];
x0 [-pi/4 0 -pi/3 01;
[t,xs] = oded5(Q@RR, time, x0);

The computing time for solving the system of differential equations is shorter using
the function file RR . m. The MATLAB program is given in Appendix D.4.

5.3 One-Link Planar Robot Arm

Exercise

The robot arm shown in Fig. 5.5 is characterized by the length L = 1 m. The mass
of the rigid body is m = 1 kg and the gravitational acceleration is g = 9.81 m/s.
The initial conditions, at t = 0 s, are 8(0) = /18 rad and §(0) = 0. The robot arm
can be brought from an initial state of rest to a final state of rest in such a way that 6
has the specified value 8y = /3 rad. In the case of the robot arm the set of contact
forces transmitted from O to 1 in order to drive the link 1 can be replaced with a
couple of torque Ty;. The expression of Ty, is

To1 = Toix1+ To1y) + Toik = Toi k.
The following feedback control law is used
Toi. = —BO—y(0 —0;) +0.5gLmcos6.

The constant gains are: B = 45 Nms/rad and y = 30 Nm/rad. Write a MATLAB
program for solving the equations of motion.

Solution
The equation of motion for the robot arm is obtained symbolically using the MAT-
LAB commands:

syms t

L=1; m=1; g = 9.81;

c cos (sym(’theta(t)’)); s = sin(sym(’theta(t)’));
xC = (L/2)*c; yC = (L/2)+*s;

rC = [xC yC 0];

omega = [0 0 diff('theta(t)’,t)]1;

alpha = diff (omega,t);

G = [0 —-mxg 0];
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Fig. 5.5 One-link robot arm

I0 = mxL"2/3;

beta = 45;
gamma = 30;
af = pi/3;
T0lz = -betaxdiff ('theta(t)’,t)-...

gammax* (sym(’theta(t)’)-qgf) +0.5xg*xLxmxc;
TO1l1 = [0 O TOlz];
eq = —-IOxalpha + cross(rC,G) + TO01;
eqz = eqg(3);

The equation has to be rewritten as a first-order system (x; = 6 and x, = 6):

slist = {diff('theta(t)’,t,2),diff ('theta(t)’,t), ...
"theta (t)’};

nlist = {’ddtheta’, 'x(2)" , 'x(1)'};

eql = subs(eqgz,slist,nlist);

dxl = sym('x(2)");

dx2 = solve (eql,’ddtheta’);

dx1ldt = char (dxl);

dx2dt = char (dx2);

An inline function g is defined for the right-hand side of the first-order system
g = inline(sprintf (' [%$s;%s]’,dx1ldt,dx2dt),’'t’,’'x");

and the solution is obtained using the commands:

time = [0 10];
x0 = [pi/18; 0]; % define initial conditions
[ts,xs] = oded45(g, 0:1:10, x0);
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plot (ts,xs(:,1)*180/pi,’LineWidth’,1.5), ...
xlabel ('t (s)’),ylabel(’\theta (deg)’ ), ...
grid,axis ([0, 10, 0, 70])

fprintf (' Results \n \n’)

fprintf (’ t(s) theta(rad) omega(rad/s) \n’)
[ts,xs]

The plot of 8 for the considered time interval, using MATLAB, is shown in Fig. 5.6.
The MATLAB program and the results are given in Appendix D.5.

The system of differential equations can be solved numerically by m-file func-
tions. The m-file function Rrobot . m is created:

function dx = Rrobot (t,x);

dx = zeros(2,1);
dx (1) = x(2);
dx (2) = —=135%x(2)-90*xx(1)+30xpi;

70 T T T T T T T T T

Fig. 5.6 Solution plot of 6
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The ode45 solver is used to solve the differential equations:

time = [0 10]; x0 = [pi/18 0];
[ts,xs] = oded5(@Rrobot, 0:1:10, x0);

and the MATLAB program is given in Appendix D.6.

5.4 Two-Link Planar Robot Arm

Exercise
A two-link planar robot arm is shown in Fig. 5.7. The lengths of the links are L; =
1 m and L, = 1 m. The masses of the rigid links are m; = 1 kg and my = 1 kg. The
gravitational acceleration is g = 9.81 m/s?. The generalized coordinates are g (¢)
and ¢ (¢) as shown in Fig. 5.7.

The initial conditions, at# =0's, are g; (0) = —7/18 rad, ¢ (0) = O rad/s, g»(0) =
7/6 rad, and ¢(0) = O rad/s.

The robot arm can be brought from an initial state of rest to a final state of rest in
such a way that ¢1 and g» have the specified values g1y = /6 rad and g»y = 7/3 rad.

The set of contact forces transmitted from O to 1 can be replaced with a couple of
torque To; = Ty k applied to 1 at A. Similarly, the set of contact forces transmitted
from 1 to 2 can be replaced with a couple of torque T, = Ti5;k applied to 2 at
B. The law of action and reaction then guarantees that the set of contact forces
transmitted from 1 to 2 is equivalent to a couple of torque — Ty, to 1 at B. The
following feedback control laws are given

Torz = —Po1 g1 — Y1 (g1 —qi1r) +0.5g Ly my cos(q1) +gLimy cos(q1),
Ti2; = —Bi2G2 — 712 (g2 — q25) + 0.5 g Ly my cos(q2).

The constant gains are: Sy; =450 Nms/rad, 9; = 300 Nm/rad, ;> = 200 Nms/rad,
and 712> = 300 Nm/rad.
Write a MATLAB program for solving the equations of motion.

Solution
The MATLAB commands for the kinematics of the robot arm are:

Ll =1; L2 =1; ml =1; m2 = 1; g = 9.81;

t = sym('t’,’real’);

xB = Llxcos(sym('gl(t)’)); yB = Llxsin(sym('gl(t)’));
rB = [xB yB 0];

rCl = rB/2; vCl = diff(rCl,t); aCl = diff(vCl,t);

xD = xB + L2*cos(sym('g2(t)’));

yD = yB + L2«sin(sym('g2(t)’));

rD [xD yD 0];
rC2 (rB + rD)/2; vC2 = diff (rC2,t);
aCz2 = diff(vC2,t);
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Fig. 5.7 Two-link robot arm

omegal = [0 O diff('gl(t)’,t)1;
alphal = diff (omegal,t);
omega2 = [0 O diff('g2(t)’,t)]1;
alpha2 = diff (omega2,t);
The weight forces on the links and the mass moment of inertia of the links are:
Gl = [0 —-mlxg 0]; G2 = [0 —-m2%g O0];
ICl=ml%L1"2/12; IA=IC1l + mlx(L1l/2)"2;
IC2=m2+12"2/12;
The joint reaction force Fy; is calculated with:

F21 = —m2*aC2 + G2;

The control torques are given by:

b0l = 450; g01 300;
b12 = 200; gl2 = 300;

qglf = pi/6;

g2f = pi/3;

TO0lz = -bO01l+diff('ql(t)’,t)-g0lx(sym('gl(t)’)—-qglf)...
+0.5+xg*Llxmlxcos(sym('gl(t)’))...
+g*xLl+«m2*xcos (sym('gl(t)’));

TO1l = [0 O TOlz];

Tl2z = -bla2xdiff('qg2(t)’,t)—-gl2«(sym('g2(t)’)-g2f) ...

+0.5%xg*L2*m2*xcos (sym (' g2 (t)’"));
T12 = [0 0 T1l2z];
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The moment equations for each link, Egs. 5.19 and 5.22, using MATLAB are:

EgA=-IAxalphal+cross (rB,F21)+cross (rCl,Gl)+T01-T12;

Eg2 = -IC2xalpha2 + cross(rB - rCz2, -F21) + T12;
slist = {dlff "gl(t)’,t,2),diff(’ q2( )y, t, 2)

diff (’ t)’,t),diff("qg2(t)’,t),"qgl(t)’, (t)’};
nlist = { ddql’ "ddg2’,’ (2)’,’x(4) "x (1)’ (3)’};

eql = subs(EgA(3),slist,nlist);
eg?2 = subs(Eg2(3),slist,nlist);
sol = solve(eql,eq2,’ddqgl, ddg2’);
dx2 = sol.ddql;

dx4 = sol.ddg2;

dx2dt = char (dx2);

dx4dt = char (dx4);

The equations of motion are complex and a m-file function RRrobot .m is con-
structed with the commands:

fid = fopen (' RRrobot.m’,’ w+’);
fprintf (fid,’ function dx = RRrobot (t,x)\n’)
fprintf (fid,’dx = zeros(4,1);\n’)

fprintf (fid, "dx (1) = x(2);\n’),
fprintf (fid,’dx(2) = ’);
fprintf (fid, dx2dt);

fprintf (fid, "dx (3 4);\n")

fprintf (fid, "dx (4
fprintf (fid, dx4dt
fporintf (£fid,’;");
fclose (fid); cd(pwd);

="7);

14

(

( )
( )
( )

fprintf (fid,’;\n");

( )
( )
( )
(

The system of differential equations is solved using ode45:

t0 = 0; tf = 15;

time = [0 tf];

x0 = [-pi/18 0 pi/6 0];

[t,xs] = oded5 (RRRrobot, time, x0);
x1l = xs(:,1);

X2 = xs(:,2);

x3 = xs(:,3);

x4 = xs(:,4);

subplot (2,1,1),plot (t,x1%x180/pi,'r’),
xlabel ("t (s)’),ylabel (gl (deg)’),grid,
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xlabel ("t (s)’),ylabel (g2 (deg)’),grid
[ts,xs] = oded5(@RRrobot,0:1:5,x0);

14

subplot (2,1,2),plot (t,x3%180/pi,'b"), ...
)
)

The plots of g; and ¢, for the considered time interval, using MATLAB, are shown
in Fig. 5.8 and the MATLAB program is given in Appendix D.7.

5 10

0 5 10

Fig. 5.8 Solution plots of ¢| and ¢»



Chapter 6
Analytical Dynamics of Open Kinematic Chains

6.1 Generalized Coordinates and Constraints

Consider a system of N particles: {S} = {P}, P», ... P;... Py}. The position vector
of the ith particle in the Cartesian reference frame is r; = r;(x;, ¥;,z;) and can be
expressed as

ri=xa+yj)+zk, i=1,2,...,N.

The system of N particles requires n = 3N physical coordinates to specify its po-
sition. To analyze the motion of the system in many cases, it is more convenient to
use a set of variables different from the physical coordinates. Let us consider a set
of variables g1, g2, . . . , g3y related to the physical coordinates by

x1 = x1(91,92,--,q3N) s
Y1 =1 (qlvq27"'vq3N)7
z1 = 21(91,92, - q3N) »

XN = 03N (91,92, -, q3N) »
V3N = y3N(¢]1,t]2,---,Q3N),
23v = 38 (91,92, q3N) -

The generalized coordinates, qi1, q2, . . . , q3n, are the set of variables that can
completely describe the position of the dynamical system. The configuration space
is the space extended across the generalized coordinates. If the system of N particles
has m constraint equations acting on it, the system can be represented uniquely by
p independent generalized coordinates qi, (k=1,2, ..., p), where p=3N —m =
n—m. The number p is called the number of degrees of freedom of the system.

209
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The number of degrees of freedom is the minimum number of independent coor-
dinates necessary to describe the dynamical system uniquely. The generalized veloc-
ities, denoted by ¢ (1) (k=1,2, .., n), represent the rate of change of the generalized
coordinates with respect to time.

The state space is the 2n-dimensional space spanned by the generalized coordi-
nates and generalized velocities.

The constraints are generally dominant as a result of contact between bodies,
and they limit the motion of the bodies upon which they act. A constraint equation
and a constraint force are related with a constraint. The constraint force is the joint
reaction force and the constraint equation represents the kinematics of the contact.

Consider a smooth surface of equation

f(xy,2,1) =0, (6.1)

where f has continuous second derivatives in all its variables. A particle P is sub-
jected to a constraint of moving on the smooth surface described by Eq. 6.1. The
constraint equation f'(x, y, z, t) = 0 represents a configuration constraint.

The motion of the particle over the surface can be viewed as the motion of an oth-
erwise free particle subjected to the constraint of moving on that particular surface.
Hence, f (x, y, z, t) = 0 represents a constraint equation.

For a dynamical system with n generalized coordinates, a configuration con-
straint can be described as

f(‘I175127-~-7f]n,t)=0- (62)

The differential of the constraint f, given by Eq. 6.1, in terms of physical coordinates
is
f af ~ df

9 e+ Ly 2 a0, (6.3)

f = dx dy 8 dt

The differential of the constraint f, given by Eq. 6.2, in terms of the generalized
coordinates is

of of

af af
—dq1 + =—— dg, +
dqi 7 Iq 4

df = d b= —dt =0. 6.4
f @+ + 90 5 (6.4)

Equations 6.3 and 6.4 are called constraint relations in Pfaffian form. A constraint

in Pfaffian form is a constraint that is represented in the form of differentials.

The constraint equations in velocity form (or velocity constraints or motion con-

straints) are obtained by dividing Eqgs. 6.3 and 6.4 by dt

df of. af  df, of

it Tt e =0, (6.5)

+—==0. (6.6)
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The velocity constraint given by Eq. 6.5 can be represented as
axx+ ayy+ a;z+ ap=0. 6.7)

For a dynamical system with n generalized coordinates subjected to m constraints
the velocity constraint given by Eq. 6.6 can be expressed as

Zajqu+dj0:07 j=12,..,m, (6.8)
k=1
where ajandajo G=1,2,...,m k=1,2,...,n)are functions of the generalized

coordinates and time.

A holonomic constraint is a constraint that can be represented as both a config-
uration constraint as well as velocity constraint. Constraints that do not have this
property are called non-holonomic (non-holonomic constraints cannot be expressed
as configuration constraints). When the constraint is non-holonomic, it can only be
expressed in the form Eqgs. 6.7 or 6.8, as an integrating factor does not exist to allow
expression in the form of Egs. 6.1 or 6.2.

A scleronomic system, f(q1, q1, - - -, gn) = 0, is an unconstrained dynamical sys-
tem or a system subjected to a holonomic constraint that is not an explicit function
of time. A rhenomic system is a system subjected to a holonomic constraint that is
an explicit function of time.

6.2 Laws of Motion

Consider the motion of a system {S} of v particles Py, ...,P, ({S} ={Pi,...,P,}) in
an inertial reference frame (0). The equation of motion for the ith particle is

F,' =m;a, (6.9)

where F; is the resultant of all contact and distance forces acting on P;; m; is the
mass of P;; and a; is the acceleration of P, in (0). Equation 6.9 is the expression of
Newton’s second law. The inertia force Fj,; for P; in (0) is defined as

Fini = —m;a;, (6.10)

then Eq. 6.9 is written as
F;+Fi,; =0. (6.11)

Equation 6.11 is the expression of D’ Alembert’s principle.

If {S} is a holonomic system possessing n degrees of freedom, then the position
vector r; of P, relative to a point O fixed in reference frame (0) is expressed as a
vector function of n generalized coordinates ¢y, ...,q, and time ¢

ri= ri(q17"'7QH7t)'
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The velocity v; of P; in (0) has the form

81‘, 8qr 8r, arl g i
Z 1 dq, 8t Z
or as " a
Vi = Z(Vi)r4r+7?7

r=1
where (v;), is called the rth partial velocity of P; in (0) and is defined as

ori _ oV
- dq, 9¢,

Next, replace Eq. 6.11 with

v
Z +F1m i r 0.
=1

(6.12)

(6.13)

(6.14)

If a generalized active force Q, and a generalized inertia force Kj,, are defined as

\4 \4 a i \4 a i
=L W) Fi= Y SR =Y
i=1 i=1 aQr i=1 aQr
and y y y
8ri 8v,»
= (V,) = Fini = — - Finj,
,; ; Iqr ; g,
then Eq. 6.14 can be written as
Qr+Kinr:07 I"Zl,...,l’l
Equations 6.17 are Kane’s dynamical equations.
Consider the generalized inertia force Kj,,
. )
Kinr:Zsz Zm,a, Vzr:*Zmiri’T
i=1 i=1 r
B i [d (mr Bri> . d <8ri)]
S ldr \'"' 9g, “dt\dgq )|’
Now
d <8r,~) N L (921’,' . 8 r; . (9V,'
dgar) = 9q, 9. ™ 3qr8t - g’

and, furthermore, using Eq. 6.12

8vi N (91‘,’
aqr N 361/

(6.15)

(6.16)

6.17)

(6.18)

(6.19)

(6.20)
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Substitution of Eq. 6.19 and Eq. 6.20 in Eq. 6.18 leads to

A4 d 8vi 8v,-
Kinr = — Z E <miVi : 8q> —m;Vv;- aqr]

49 (vl ) -2 [y L.y,
dtac], i:12 iVi®Vi af]r i:12 i¥i®Vi .

The kinetic energy T of {S} in reference frame (0) is defined as

1 \4
T==) mv;-v,.
2 ; v 1
P
Therefore, the generalized inertia forces Kj,, are written as

o d (T T
T de \ 9g, 2q,’

and Kane’s dynamical equations can be written as

d (0T oT
o5 (%) 5 °

d (dT _8T_Q
dt \ dg, dq,

or

The equations

d <8T) oT & dr; F ]
- _ _— = e r = goen
dt \ 9¢, g, i=1 gy

o d d Y, J
d T T Vi N
E (aqr) _aqr —l:1 aqr 'Fl) r= 17..

'7n7

are known as Lagrange’s equations of motion of the first kind.

6.3 Lagrange’s Equations for Two-Link Robot Arm

Exercise

213

(6.21)

(6.22)

A two-link robot arm is considered in Fig. 5.7. The bars 1 and 2 are homogeneuos
and have the lengths L; = L, = L = 1 m. The masses of the rigid links are m; =
my = m = 1 kg and the gravitational acceleration is g = 9.81 m/s?. To characterize
the instantaneous configuration of the system, two generalized coordinates g (¢)
and ¢»(¢) are employed. The generalized coordinates ¢; and ¢, denote the radian
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measure of the angles between the link 1 and 2 and the horizontal x-axis. The set
of contact forces transmitted from O to 1 is replaced with a couple of torque Ty, =
Toik applied to 1 at A, and the set of contact forces transmitted from 1 to 2 is
replaced with a couple of torque T» = T12.k applied to 2 at B.

The initial conditions, att = 0's, are ¢; (0) = m/18 rad, ¢; (0) = 0 rad/s, ¢2(0) =
7/6 rad, and ¢,(0) = 0 rad/s. The robot arm can be brought from an initial state of
rest to a final state of rest in such a way that ¢; and g, have the specified values
qif =m/6rad and goy = /3 rad.

L. Direct Dynamics
The following feedback control laws are given

Torz = —Bo1 41 — Y1 (g1 — q1) +0.5g L1 my cos g1 + gLy my cos g1,
Ti2; = —P12G2 — V12 (g2 — q25) +0.5g Lymy cos q>.

The constant gains are: Sp; =450 Nms/rad, 7 = 300 Nm/rad, 81, = 200 Nms/rad,
and 1> = 300 Nm/rad. Write a MATLAB® program for solving the equations of
motion.

1l. Inverse Dynamics
A desired motion of the robot arm is specified for a time interval 0 <t <7, = 15s.
The generalized coordinates can be established explicitly

0 (1) :q,(0)+"’(T")T;q’(O) [t—Tpsin (“’ﬂ =12,

with ¢,(T,) = g,f. Find Tp1.(¢) and Ty, (¢) for 0 <t < T, = 15s.

Solution

The solution for the two-link robot arm will start with the dynamics when the the
forces and moments are known and the equations are solved for the motion of the
links.

L. Direct Dynamics
The position vector of the mass center of link 1 is

rc, = 0.5L cosqi1+0.5L sing ],
and the position vector of the mass center of link 2 is
rc, = (Lcosgi +0.5L cosqr) 1+ (Lsing; +0.5L singy) 1.
The velocity of C is

_ drg,
Cdt

Ve, =1c, = —0.5Lq; sing11+0.5L4; cosqi}),
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and the velocity of C; is

= (—Lg; sing; —0.5Lg singz) 1+ (Lg; cosq +0.5LGy cosqy) J.
The angular velocity vectors of the links 1 and 2 are
wi; =¢i1k and w; = ¢k.
The MATLAB commands for the kinematics are:

syms t Ll L2 ml m2 g
gl = sym("qgl(t)");
g2 = sym('g2(t)")
cl = cos(gl); sl sin(qgl);

c2 = cos(g2); s2 sin(g2);

xB = Llxcl; yB = Llxsl; rB = [xB yB 0];

rCl = rB/2; vCl = diff(rxCl,t);

xD = xB + L2%c2; yD = yB + L2%s2; rD = [xD yD 0];
rC2 = (rB + rD)/2; vC2 = diff(rC2,t);
omegal = [0 O dlff(ql t)1;

omega2 = [0 0 diff(g2,t)];

” ~

Kinetic Energy
The kinetic energy of the link 1 that is in rotational motion is

1 1, 1ml* , ml* ,
1 3 AW - Wi 2 Aq1 273 q1 6 q1s

where I is the mass moment of inertia about the center of rotation A, Iy = mIL> /3.
The kinetic energy of the bar 2 is due to the translation and rotation and can be
expressed as

7IC2q2 +

1
L=Zlg,w -w + 2

7 M2 VC2 ) VCZ =

2 mave, - V¢, ,

2
where I, is the mass moment of inertia about the center of mass G, I¢c, = mL? /12,
and

PRI .
Ve, Vo, = Vg, = L4t + Zqu% +L% g1 g2cos(q2 — q1).
Equation 6.23 becomes
1mL* , 1
7= Bt ami? |G+ B+ i drcos(ar—ar)|

212 2 4



216 6 Analytical Dynamics of Open Kinematic Chains

The total kinetic energy of the system is

mL?
T=Ti+Th==" [441 +3d1 G2 cos(q2 —q1) + 3] -

The MATLAB commands for the kinetic energy are:

IA = Iml*L172/3; IC2 = m2xL2°2/12;

Tl = IAxomegalxomegal.’/2; % .’ array transpose
T2 = m2xvC2*vC2.’ /2 + IC2+omegal2+omegal.’/2;

T2 = simple(T2); % simplest form of T2

T = expand (Tl + T2); % total kinetic energy

The MATLAB statements A.’ is the array transpose of A and simple (exp)
looks for simplest form of the symbolic expression exp. The MATLAB command
expand (exp) expands trigonometric and algebraic functions.

The left-hand sides of Lagrange’s equations d7 /d¢;, i = 1,2 are

oT  ml? oT  ml?
— =—[8¢1+34¢2cos(q2—q1)] and —— = —— [3¢; cos(q2 —q1) +243].
dq 6 dg>

6
To calculate the partial derivative of the kinetic energy T with respect to the variable
diff ("gl(t)’,t) a MATLAB function, deriv, is created

function fout = deriv(f, qg)

% deriv differentiates f with respect to g=g(t)
% the variable g=g(t) is a function of time
syms t x dx

lg = {diff (g, t), g};

1x = {dx, x};

fl subs (f, 1lg, 1x);

f2 = diff(fl1, x);

fout = subs(f2, 1x, 1g);

The function deriv (£, g) differentiates a symbolic expression £ with respect to
the variable g, where the variable g is a function of time g = g (t). The statement
diff (f, " x’) differentiates £ with respect to the free variable x. In MATLAB the
free variable x cannot be a function of time and that is why the function deriv was
introduced.

The partial derivatives of the kinetic energy T with respect to ¢; or in MATLAB
the partial derivatives of the kinetic energy T with respectto diff (gl (t)’,t)
anddiff (‘g2 (t)’,t) arecalculated with:

Tdgl deriv (T, diff(gl,t));
Tdg2 = deriv (T, diff(gl,t));
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Next, the derivative of 97 /d¢; with respect to time is calculated

d (0T mlL>? .
— ( ) = — [841+ 342 cos(q2 — q1) — 342 (42 — q1) sin(q2 — q1)],

dt \ 9qy 6
d (dT mL? o )
7 <aq.2) = [3G1 cos(q2 —q1) — 341 (G2 — q1) sin(g2 — q1) +242] ,

and in MATLAB the terms i (87") are:
dt ac]i

Ttl = diff (Tdgl, t);
Tt2 diff (Tdg2, t);

The partial derivative of the kinetic energy with respect to g; are

oT mL*_ = . ml*

EFS = T3ﬁll g2 sin(q2 —q1) = — 1 sin(g2 — q1);

oT ml* ml?*

- 6 3G142sin(qa —q1) = — 5 d1a sin(q2 — q1),
and with MATLAB:

Tgl = deriv (T, gl);
Tg2 deriv (T, g2);

d (JdT aT
The left-hand side of Lagrange’s equations, — | =— | — =—, with MATLAB are:
dt \dq;) dqg;
LHS1 = Ttl - Tqgl;
LHS2 = Tt2 - Tq2;

Generalized Active Forces
The gravity forces on links 1 and 2 at the mass centers C; and C>

G =-mig)=-mg) and G, =-—mpg)=—mg].

The torque transmitted from O to 1 at A is To; = Ty k and the torque transmitted
from 1 to 2 at B is T1p = T12. k. The MATLAB commands for the net forces and
moments are:

Gl = [0 —mlxg O0];
G2 = [0 —m2xg 0];
syms TO0lz Tl2z

TO1 = [0 O TO1lz];
T12 = [0 0 T1l2z];
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There are two generalized forces. The generalized force associated to g is

8w2
g

or ow ow or,
01=G1- 52 4To =t —Tip =t + Gy =2 4Ty, -

dqi 94 dq dq
=-mg)-(—0.5Lsing114+0.5Lcosq1)) + To1; — Ti2;

—mg)-(—Lsingi1+Lcosq;)) = —1.5mgLcosq + To1; — Tia;.

The generalized force associated to g3 is

dre dw dw arc dwy

=G 29 Ty, G, 2 4

O = +Tor 945 25 +G 905 +T 90
= —mgJ-(—0.5L sing21+0.5L cosqz)) + Ti2;

= —0.5mgL cosqy + Ty

The MATLAB commands for the partial derivatives of the position vectors of the
mass centers,
8rc1 8rc2 81’6‘1 31‘C2

dqi’ dq1’ g’ Iq»

are:
rCl.1 = deriv(rCl, qgl);
rC2.1 = deriv(rC2, qgql);
rCl2 = deriv(rCl, g2);
rC2.2 = deriv(rC2, qg2);

The MATLAB commands for the partial angular velocities,

8w1 an 8(4)1 8w2
g1’ 9dq1’ 9¢qx’ Ign

are:

wl 1l = deriv(omegal, diff (gl,t)
w2_1 (omegaz2, diff(gl,t)
wl_2 deriv (omegal, diff (g2,t)
w2_2 = deriv(omega2, diff(g2,t)

)i
)i
)
)

deriv

4

14

The generalized active forces are calculated with the MATLAB commands:

01 rCl_1+xGl.’+wl_1+TO1l. ' 4+wl_1x(-T12.7)+...

rC2_1+xG2."+w2_1xT12.";

Q2 = rCl2+G1l."+wl 2+TO01l."+wl 2+ (-T12.")+...
rC2_2+xG2."+w2_2xT12.";
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The two Lagrange’s equations are

afory or_,
dt \ dq; ag ="

1.333mL? i +0.5mL? G cos(ga — q1) —0.5m L2435 sin(ga — q1)
+1.5mgLcosq; — To1;+ Ti2; = 0;

d (dT aT
( ) 7:Q27

dt \9qy) 9qa

0.5mL? iy cos(gr —q1) +0.333mL% Gy +0.5mL? ¢ sin(gy — q1)

+0.5mgL cosqy — Ti2, =0, (6.23)
or in MATLAB:

Lagrangel = LHS1-Q1;
Lagrange? LHS2-0Q2;

The feedback control laws are

Torz = —Bo1 41 — Y1 (g1 — q1) +0.5g Ly my cos g1 + gLy my cos g1,
T2, = —P12G2 — V12 (g2 — q25) +0.5g Ly my cos g2,
with Bo; = 450 Nms/rad, 9; = 300 Nm/rad, B2 = 200 Nms/rad, and ¥, =

300 Nm/rad.
The feedback control torques using MATLAB commands are:

300;
300;

b0l 450; g01
bl2 = 200; gl2
qlf = pi/6;
qg2f = pi/3;

TOlzc -b01xdiff (gl,t)-g0lx(gl-glf)+
0.5xgxLlxml*xcl+gxLl*m2xcl;

Tl2zc = -bl2+xdiff(g2,t)-gl2+«(g2-g2f)+0.5%xg*xL2+xm2*c2;
tor = {TOlz, TlZz};

torf = {TO0lzc, Tl2zc};
The feedback control torques are introduced into Lagrange’s equations:

Lagrangl = subs (Lagrangel, tor, torf);
Lagrang?2 = subs (Lagrange2, tor, torf);
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The numerical data for Ly, Ly, m;, my, and g are introduced in MATLAB with the
lists:

data {11, 12, ml, m2, g };
datn = {1, 1, 1, 1, 9.81};

and are substituted into Lagrange’s equations:

Lagranl subs (Lagrangl, data, datn);
Lagran2 = subs(Lagrang2, data, datn);

The two second-order Lagrange’s equations have to be rewritten as a first-order sys-
tem and two MATLAB lists are created:

gl={diff(ql,t,2),diff(g2,t,2),
diff(ql,t),diff(q2,t),ql,q2};
af={"ddql’,"ddqg2’, " x(2)"," x(4)", x(1)","x(3)"};

% gl agf

$ diff('gl(t)’,t,2) -> ’ddgl’
S diff (' q2( )',t,2) —-> "ddqg2’
% diff("gl(t)’,t) —> "x(2)’
% diff('g2(t)’,t) —> "x(4)’
% ’ql(t)’ -> 'x (1)’
% Tg2(t)’ > "x(3)’

In the expression of Lagrange’s equations:

diff(’ql(t)’, 2) is replaced by ' ddgl’,
diff("g2(t)’,t,2) isreplaced by ' ddg2’,
diff("gl(t)’, )1sreplacedby x(2)",
diff (g2 (t)’,t) isreplacedby ’'x (4)’
gl (t) "’ isreplaced by "x (1), and

g2 (t)’ isreplacedby ' x (3) '
or:

Lagral = subs(Lagranl, gl, gf);
Lagra2 subs (Lagran2, gl, gf);

Lagrange’s equations are solved in terms of * ddgl’ (§) and * ddg2’ (§»):

sol = solve(Lagral,Lagra2,’ddgl, ddgz’);
Lagrl = sol.ddgl; Lagr2 = sol.ddg2;
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The system of differential equations is solved numerically by m-file functions. The
function file, RR_Lagr . m is created using the statements:

dx2dt char (Lagrl);
dx4dt = char (Lagr2);

fid = fopen('RR.Lagr.m’,’w+’);
fprintf (fid,’ function dx = RR.Lagr (t,x)\n’)
fprintf (fid,’dx = zeros(4,1);\n’)

fprintf (fid,’dx (1) = x(2);\n")
fprintf (fid,"dx(2) = ");
fprintf (fid, dx2dt);

fprintf (fid, ' dx (3 ) ;i \n’

fporintf (£fid, "dx (4
fprintf (fid, dx4dt
fporintf (£id, " ;") ;
fclose (fid); cd(pwd);

(
( )
( )
( )
fprintf (fid,’;\n");
( )
( )
( )
(
The ode45 solver is used for the system of differential equations

t0 0; tf = 15; time = [0 tf];
x0 = [pi/18 0 pi/6 01;

[t,xs] = oded5(@RR_Lagr, time, x0);

x1l = xs(:,1);

X2 = xs(:,2);

x3 = xs(: ,3),

x4 = xs(:,4);

subplot (2,1,1),plot (t,x1%x180/pi,'r’),
xlabel ('t (s)’),ylabel (gl (deg)’),grid,
subplot (2,1,2),plot (t,x3*180/pi,'b"),
xlabel ("t (s)’),ylabel (g2 (deg)’),grid

[ts,xs] = oded5(@RR.Lagr,0:1:5,x0);

fprintf (' Results \n\n’)

fprintf ('t (s) gl (rad) dgl (rad/s) g2 (rad) dg2 (rad/s)\n’)
[ts, xs]

A MATLAB computer program for the direct dynamics is given in the Appendix E.1.

1. Inverse Dynamics
The generalized coordinates are given explicitly for0 <z <7, =155

(1) = q,(O)—I—M {r— T i (27”)] =12 (624)
T, T,
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The initial conditions, at t = 0 s, are ¢;(0) = n/18 rad and ¢,(0) = 7/6 rad. The
robot arm is brought from an initial state of rest to a final state of rest in such a way
that ¢; and ¢ have the specified values g1 ¢(7,) = w/6 rad and g2¢(7,) = /3 rad.
Figure 6.1 shows the plots of ¢ (¢) and ¢2(¢) rad.

The MATLAB commands for finding Lagrage’s equations are identical with the
commands presented in Direct Dynamics:

syms TO0lz Tl2z

TO01 = [0 O TO1lz];

T12 = [0 0 T12z];

Ql = rCl.1+xGl."+wl_1+«TO01. 4wl 1x(-T12.7)+...
rC2_1+xG2."+w2_1+T12.";

35 T T

5 10 15

30 i i
0

Fig. 6.1 Generalized coordinates ¢ (f) and g2 (¢)
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Q2 = rCl2xG1l."+wl 2+xT01."+wl 2% (-T12.")+...
rC2_2+G2."+w2_2+T12.";

Lagrangel = LHS1-Q1; Lagrange2 = LHS2-02;

data = {11, L2, ml, m2, g};

datn = {1, 1, 1, 1, 9.81};

Lagrl = subs(Lagrangel, data, datn);

Lagr2 = subs (Lagrange2, data, datn);

From Lagrange’s equations of motions the torques 7y, and 77,, are calculated:

sol = solve(Lagrl,Lagr2,’T0lz, Tl1l2z’);
TOlzc = sol.T01lz;
Tl2zc = sol.T1l2z;

The generalized coordinates, ¢g; and ¢, given by Eq. 6.24 and their derivatives,
41, 42, 41, g», are substituted in the expressions of Ty, and Ty;:

glf = pi/6 ; g2f = pi/3;

gls = pi/18; a2s pi/6;

Tp=15.;

gln = gls+(glf-gls)/Tp* (t—Tp/ (2*pi) *xsin (2«pi/Tpx*t));
a2n = g2s+(g2f-qg2s) /Tp* (t-Tp/ (2xpi) *sin (2xpi/Tp*t));
dgln = diff(gln,t);

dg2n = diff (g2n,t);

ddgln = diff (dgln,t);

ddg2n = diff (dg2n,t);

ql={diff(ql,t,2),diff (q2,t,2),...
diff(ql,t),diff(q2,t),ql,q2};
an={ddgln, ddg2n,dqln, dg2n,gln, g2n};

% gl an
$ diff('gl(t)’,t,2) —-> ddgln
& diff('g2(t)’,t,2) —-> ddg2n
% diff('gl(t)’,t) -> dgln
% diff('g2(t)’,t) -> dg2n
S "gql(t)” -> gln
% "g2(t)’ -> gln
TO0lzt = subs(TO0lzc, gl, agn);

Tl2zt = subs(Tl2zc, gl, gn);

The MATLAB statement ezplot (£, [min, max]) plots £ (t) over the domain
min < t < max. The plots of Tp;;(¢) and Tjy.(¢) are obtained with the help of
MATLAB function ezplot:
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subplot (2,1,1), ezplot(TOlzt, [0,Tpl),...
title(’’), xlabel ('t (s)’), ylabel('TO0lz (N m)’),grid

subplot (2,1,2),ezplot (T12zt, [0, Tp]l), ...
title(’'’), xlabel ('t (s)'), ylabel('Tl2z (N m)’),grid

Another way of plotting Ty, (7) and Tio.(2) is:

time = 0:1:Tp;

TOlt = subs (TO0lzt,’t’,time);

T12t subs (T1l2zt,’'t’,time);

subplot (2,1,1),plot (time, TO1t), ...

xlabel ("t (s)’),ylabel (TOlz (N m)’),grid
subplot (2,1,2),plot (time, T12t), ...

xlabel ("t (s)’),ylabel ('Tl2z (N m)’),grid

Figure 6.2 shows the control torques and the MATLAB program is given in Ap-
pendix E.2.

Fig. 6.2 Control torques
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6.4 Rotation Transformation

Two orthogonal reference frames, Oxyz and O'x'y'Z’, are considered. The unit vec-
tors of the reference frame Oxyz are 1, J, k and the unit vectors of the reference frame
O'x'y'7 areY', )y, K. The origins of the reference frames may coincide because only
the orientation of the axes is of interest O = O'.

The angles between the x’-axis and each of the x, y, z axes are the direction an-
gles a, B, and v (O < a, B,y < &) as shown in Fig. 6.3. The unit vector 1’ can be
expressed in terms of 1, J, k and the direction angles

=011+ )1+ -k)k =cosa1+cosf y+cosyk.

The cosines of the direction angles are the direction cosines and cos” & + cos> 8 +
cos?y=1.
With the notations cos & = ay,, cos 8 = a,, and cosy = a,, the unit vector 1’ is
= Ay 1+ ayy ) +ay, k.
In a similar way, the unit vectors " and k' are

!

J =ay1t+ay, ) tay K,
/!

K =ay1+ay, )tay K,

where a,., = a,y are the cosine of the angle between axis ' and axis s, with r and r
representing x,y, or z. In matrix form

Fig. 6.3 Direction angles
o, f,and y x
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where
Ayl y ax/y ayl,
R=|ay. ayyay,

Ayly Agly Aoy

The matrix R is the rotation transformation matrix from xyz to x'y'z’. The unit vec-
tors 1,J,K are an orthogonal set of unit vectors and the unit vectors 1,)',k’ are an
orthogonal set too. Using these properties it results that

R-R” =1,
where I is the identity matrix. Multiplication of Eq. 6.25 by R™! gives
R'=R".

The matrix R is an orthonormal matrix because R~! = R” .
Let R’ be the transformation matrix from1,),k tor',j’, kK’

1 1
J|=R"|J|. (6.25)
k k'

The matrix R’ is the inverse of the original transformation matrix R, which is iden-
tical to the transpose of R.

R' =R'=R".

Any vector p is independent of the reference frame used to describe its components,
o)

p=pcr+p+p.k=pot+p,y+p K,

or in matrix form as

Px! Px
WY K] |py| =[3Kk]|py
124 Pz

Using Eq. 6.25 and the fact that the transpose of a product is the product of the
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transposes the following relation is obtained

Py T Px
(Y K| py | =V K]RT] | py
124 Pz

With [R’]T = R the above equation leads to

Px! Px
py | =R |py
)24 Pz

227

When the reference frame x'y'7’ is the result of a simple rotation about one of the
axes of the reference frame xyz the following transformation matrices are obtained

(Fig. 6.4):

Fig. 6.4 x'y'7 as aresult of a
simple rotation about one of
the axes of xyz
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o the reference frame xyz is rotated by an angle 6, about the x-axis

1 0 0
R(x,0¢) =R(6x) = | 0 cosb; sinb, |,
0 —sin 6, cos 6,

o the reference frame xyz is rotated by an angle 8, about the y-axis

cos 6, 0 —sin6,
R(y,6,) =R(6)) = 0 1 o0 ,
sin@, 0 cos6,

o the reference frame xyz is rotated by an angle 6, about the z-axis

cosB, sinf, 0
R(z,0;) =R(6;) = | —sin6, cos 6, 0
0 0 1

The following property holds

R(s,—6;) =R (5,6,), s=ux,yz

6.5 RRT Robot Arm

Figure 6.5 is a schematic representation of a RRT robot arm consisting of three
links 1, 2, and 3. Let my, my, m3 be the masses of 1, 2, 3, respectively. Link 1 can
be rotated at A in a “fixed” reference frame (0) of unit vectors [1, Jo, ko] about a
vertical axis 1y9. The unit vector 1y is fixed in 1. The link 1 is connected to link 2 at
the pin joint B. The element 2 rotates relative to 1 about an axis fixed in both 1 and 2,
passing through B, and perpendicular to the axis of 1. The last link 3 is connected to
2 by means of a slider joint. The mass centers of links 1, 2, and 3 are C;, C,, and C3,
respectively. The distances L; = ACy, L = AB = 2L, and L, = BC, are indicated
in Fig. 6.5a The length of link 1 is 2L; and the length of link 2 is 2 L,. The reference
frame (1) of the unit vectors [11, J;, k1] is attached to link 1, and the reference frame
(2) of the unit vectors [1p, J,, k»] is attached to link 2, as shown in Fig. 6.5b.

6.5.1 Direct Dynamics

Generalized Coordinates and Transformation Matrices

The generalized coordinates (quantities associated with the the instantaneous posi-
tion of the system) are g; (¢), g2(¢), g3(t). The first generalized coordinate ¢; denotes
the radian measure of the angle between the axes of (1) and (0).
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Fig. 6.5 RRT robot arm
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The unit vectors 11, J;, and K; can be expressed as functions of 19, J,, and ko

11 =1,
J1 = c1)o +s1 Ko,
k; = —S1Jo+C1 ko, (6.26)
or
1 1 0 0 19
W|=|0 ¢ si| ]
k1 0 —851 (1 k()

where 51 = sing; and ¢; = cosqj. The transformation matrix from (1) to (0) is

1 0 O
R]() =10 C1 S| - (6.27)
0 —51 (1

The second generalized coordinate also designates a radian measure of the rotation
angle between (1) and (2). The unit vectors 12, J, and k; can be expressed as

I = 11 — 857k

= c2lp + 5152)9 — c152 Ko,

=
= c1)o +s1 ko,
ky, = so11 + o0k
= s21p — €251 ) + c1c2 Ko, (6.28)

where s, = sing; and ¢y = cosgy. The transformation matrix from (2) to (1) is

2 0 —52
Ry=|0 1 0 |. (6.29)
52 0 c2

The last generalized coordinate g3 is the distance from C, to C3. The MATLAB
commands for the transformation matrices are:

gl = sym("gl(t)’);
gz = sym('q2(t)’");
g3 = sym("qg3(t)");
cl = cos(gl);
sl = sin(ql);
c2 = cos(g2);
s2 = sin(g2);
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[

% transformation matrix from RF1 to RFO
R10 = [[1 0 0]; [0 ¢l s1]1; [0 =-s1 cl11;
% transformation matrix from RF2 to RF1
R21 = [[c2 0 -s2]; [0 1 01; [s2 0 c21]1;

Angular Velocities
Next, the angular velocity of the links 1, 2, and 3 will be expressed in the fixed
reference frame (0). The angular velocity of 1 in (0) is

w10 =4g111. (6.30)
The angular velocity of the link 2 with respect to (1) is

W =q2];-
The angular velocity of the link 2 with respect to the fixed reference frame (0) is

Wo = Wio + w21 =¢g111 +42)>.
With 19 =11 = 310 + 52 Ky the angular velocity of the link 2 in the reference frame
(0) written in terms of the reference frame (2) is
wy =qi(2n+5k)+¢:20, =qi1e2n+¢20; + 152 ko (6.31)

The link 3 has the same rotational motion as link 2, i.e., W3y = woo.

Angular Accelerations
The angular acceleration of the link 1 in the reference frame (0) is

a0 =411 (6.32)
The angular acceleration of the link 2 with respect to the reference frame (0) is

d @q @y
Qo = szo = ?wzo +woo X Wy = ?wzo,

@gq
where ar represents the derivative with respect to time in reference frame (2),
[12,]5,Kk2]. The angular acceleration of the link 2 is

@yq

oy = 7(6}1 ob+G2),+q152k)

=(Gic2—q14252) 2 +G2)r + (G152 +G1 g2 ¢2) k. (6.33)

The link 3 has the same angular acceleration as link 2, i.e., at39 = Q.
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The MATLAB commands for the angular velocities and accelerations are:

% angular velocity of link 1 in RFO
% expressed in terms of RF1 {il,jl1,k1}
wl0O = [diff(gl,t) O O 1;

angular velocity of link 2 in RFO
expressed in terms of RF1 {il,jl,k1l}
w201 = [diff(ql,t) diff(g2,t) 0];

% angular velocity of link 2 in RFO
% expressed in terms of RF2 {i2, j2,k2}
w20 = w201 * transpose(R21);

% angular acceleration of link 1
% in RF0O expressed in terms of RF1 {il,jl1,k1}
alphalO0 = diff(wl0,t);

% angular acceleration of link 2 in RFO
% expressed in terms of RF2 {i2,3j2,k2}
alpha20 = diff (w20,t);

Linear Velocities
The position vector of Cj, the mass center of link 1, is

rc, = Liky,
and the velocity of Cj in (0) is
d Na
Vo = pta = e T wio X xe,
u o) ki
=0+|g1 0 O|=-—qiLi);- (6.34)
0 0 L;

With MATLAB the position and velocity vectors of C; are:

position vector of mass center Cl of link 1
in RF0O expressed in terms of RF1 {il,31,k1}
rCl = [0 O L1];

%
%

% linear velocity of mass center Cl of link 1
% in RFO expressed in terms of RF1 {il,jl,kl}
vCl = diff(rCl,t) + cross(wl0O, rCl);
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The position vector of Cy, the mass center of link 2, is

rc, = Lgk| +Lok; = LB(fszlz + Cgkz) + Lk
= —Lpsrip + (LBC2 + Lz)kz,

where Lp = 2 L. The velocity of C; in (0) is

d @q
Ve, = El'c2 = Wl‘cz + W XIc,
0] b k)

= —Lpci1golr — Lpcagako + | g1z g2 q152
—Lgsy O Lgcr+1Lo

= Lrgo — (Lg+ L2c2)q1)s. (6.35)
The position and velocity vectors of Cp, with MATLAB, are:

% position vector of mass center C2 of link 2
% in RFO expressed in terms of RF2 {i2, j2,k2}
rC2 = [0 0 2«xLl]*transpose(R21) + [0 0 L2];

% linear velocity of mass center C2 of link 2
% in RF0 expressed in terms of RF2 {i2,3j2,k2}
vC2 = simple(diff (rC2,t) + cross (w20,rC2));

The position vector of C3 with respect to reference frame (0) is

re, = re, +qsko
= —Lpsokr + (Lca + Lo + g3)ko,

and the velocity of this mass center in (0) is

d OF
Ve, = EI‘Q = WI'Q, + W X Icy
5] J2 k)
= —Lpcagolr — (Leergo +@3)ko + | qica ¢ q152
—LBS2 0 LBCZ + L2 +qg3
= (Lz + q3)c]212 — (LB +Lrcr + Czqz)q'l_]z + ¢3ks. (6.36)

The position and velocity vectors of C3, with MATLAB, are:

% position vector of mass center C3 of link 3 in RFO
% expressed in terms of RF2 {i2, j2,k2}
rC3 = rC2 + [0 0 g3];
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o\

linear velocity of mass center C3 of link 3 in RFO
% expressed in terms of RF2 {i2, j2,k2}
vC3 = simple(diff (rC3,t) + cross(w20,rC3));

There is a point C3; on link 2 (C3; € link 2) that instantaneously coincides with Cs,
(C3 € link 3). The velocity of point C3; is

Ve, = Vo, + wyp X rC2C3 = Vo, +wyo X 6]3k2
= (Ly+¢3)gara — (L + Loca + c2g2)G1)s- (6.37)

The point C3; of link 2 is superposed with the point C3 of link 3. The velocity of
mass center C3 of link 3 in (0) can be computed in terms of the velocity of C3, using
the relation

Vo, = Vey, + g3k,
The velocity vector of C3p, with MATLAB, is:
vC32 = simple(vC2 + cross (w20, [0 0 g3]));

Linear Accelerations
The acceleration of Cj is

4 (g 1] J ki
ac, = Vo = ova +wio xve, = —LiGi)+ | ¢1 0 0
0 —-Lig1 O

= —LiGiyy — Ligiki. (6.38)

The linear acceleration of the mass center C, is

d 2d
ac, = Evc2 = WVCZ + woo X vg, - (6.39)
The linear acceleration of C, is symbolically calculated in the program given in

Appendix E.3. The acceleration of C; is

d 2)a
ZVQ = ——Vg; + Wi X Vg (6.40)

ac = dt

The linear acceleration of Ci, Cp, and C3 are symbolically calculated with MAT-
LAB:

aCl = simple(diff (vCl,t)+cross(wl0,vCl));
aC2 simple (diff (vC2,t)+cross (w20,vC2));
aC3 = simple(diff (vC3,t)+cross (w20,vC3));
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Generalized Forces

Remark: If a set of contact and/or body forces acting on a rigid body is equivalent
to a couple of torque T together with force R applied at a point P of the rigid body,
then the contribution of this set of forces to the generalized force, Q,, is given by

Qr:ain‘f'%

R, r=1,2,..
aqr aqr , T 9y < 9

where w is the angular velocity of the rigid body in (0), vp is the velocity of P in
(0), and r represents the generalized coordinates.

In the case of the robotic arm, there are two kinds of forces that contribute to the
generalized forces Q1, O, and Q3 namely, contact forces applied in order to drive
the links 1, 2, and 3, and gravitational forces exerted on 1, 2, and 3 by the Earth. The
set of contact forces transmitted from O to 1 can be replaced with a couple of torque
To; applied to 1 at A, Fig. 6.5c. Similarly, the set of contact forces transmitted from
1 to 2 can be replaced with a couple of torque T, applied to 2 at B, Fig. 6.5¢c. The
law of action and reaction then guarantees that the set of contact forces transmitted
from 1 to 2 is equivalent to a couple of torque — T, to 1 at B. Next, the set of contact
forces exerted by link 2 on link 3 can be replaced with a force F»3 applied to 3 at
(3, Fig. 6.5c. The law of action and reaction guarantees that the set of contact forces
transmitted from 3 to 2 is equivalent to a force —F33 applied to 2 at C3,. The point
C3; (C3; € link 2) instantaneously coincides with Cs, (C3 € link 3). The expressions
T()[, T12, and F23 are

To1 = Torat1 + To1yd; + TorzkK1, Tz = Tioaa + Tizyd, + Ti2:K2, and
Fo3 = Fozclp + Fozy)p + Fo3 ks,

The MATLAB statements for the contact torques and contact force are:

syms TOlx TOly TOlz Tl2x T1l2y Tl2z F23x F23y F23z

% contact torque of 0 that acts on link 1

% in RFO expressed in terms of RF1 {il,jl,kl}

TO1l = [TOlx TOly TOlz];

contact torque of link 1 that acts on link 2

in RFO expressed in terms of RF2 {i2, j2,k2}

T12 = [Tl2x Tl2y T1l2z];

% contact force of link 2 that acts on link 3 at C3
% in RFO expressed in terms of RF2 {i2,j2,k2}

F23 = [F23x F23y F23z];

o

o\

The external gravitational forces exerted on the links 1, 2, and 3 by the Earth, can
be denoted by G1, G7, and G3 respectively, Fig. 6.5c, and can be expressed as

G =-—mign, Gy =-mygy =—myg(c2nn+s2ky), and
G3 = —m3 gl = 7m3g(6212 +S2k2).
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The reason for replacing 11 with ¢c17 4 52 ks in connection with the forces G, and

v av,
.CZ and ,C3

g, dq,

G3 is that they are soon to be dot-multiplied with That have been

expressed in terms of 13, J,, and k.
The MATLAB statements for the gravitational forces are:

% gravitational force that acts on link 1 at C1
% RF0 expressed in terms of RF1 {il,jl1,kl1}
Gl = [-ml*g 0 0]

o

gravitational force that acts on link 2 at C2
in RF0 expressed in terms of RF2 {i2,j2,k2}
2 = [-m2xg 0 O]xtranspose (R21)
% gravitational force that acts on link 3 at C3
% in RFO expressed in terms of RF2 {i2,j2,k2}
G3 = [-m3xg 0 O]xtranspose (R21)

o\

)]

One can express (Q,)1, the contribution to the generalized active force Q, of all the
forces and torques acting on the particles of the link 1, as

0 0
Q1 = % (Tor—Ti2) + v

C
— -Gy, r=1,2,3.
94y

The contribution (Q,), to the generalized active force of all the forces and torques
acting on the link 2 is

_ 8w20 0 Yo, (9VC32
(QJZ—*@ET'TQ4-&qr'G2+ 4,

: (_F23)7 r= 1a2737

where v¢,;, = v¢; —g3ks.
The contribution (Q,)3, to the generalized active force of all the forces and
torques acting on the link 3 is

0 \[e}

8VC3
(Qr)3— aqr '

4,

Gs+ -Fp3, r=1,2,3.

The generalized active force Q, of all the forces and torques acting on the links 1,
2, and 3 are

0= (Qr)l + (Qr)Z + (Qr)3

8w10 aVc 8(.«)20 aVC 8vc
= (To1 =T L.G T 2.Gy+ —22.(—F
a0, (To1—Ti2) + 2, 1+ 24, 12+ 24, 2+ 24, (—F23)
J 0
VG Gyt 28 Ry, r=1,2,3.
g, g,

The generalized forces Q,, r = 1,2,3 are symbolically calculated in the program
given in Appendix E.3 and have the values
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01 = To1x,
O =Ty —gmlocry—gmzcr (Lo +¢q3),
03 = Fy3; —gm3s).

dwio
g, ’

The MATLAB statements for the partial velocity

wl 1l = deriv(wlO, diff(gl,t));

wl 2 = deriv(wl0, diff(g2,t));
wl 3 = deriv(wl0, diff(g3,t));
. .. dwy
The MATLAB statements for the partial velocity ER r=1,2 3 are:
qr
w21 = deriv (w20, diff(gl,t));
w2_2 = deriv (w20, diff(g2,t));
w2_3 = deriv (w20, diff(g3,t));
. . aVC2
The MATLAB statements for the partial velocity 3 r=1,2,3are:
qr
vCl1l = deriv(vCl, diff(gl,t));
vCl 2 = deriv(vCl, diff(g2,t));
vCl.3 = deriv(vCl, diff(g3,t));
. NCA Vet
The MATLAB statements for the partial velocity 3. r=1,2,3are:
qr
vC2_1 = deriv(vC2, diff(gl,t));
vC2_2 = deriv(vC2, diff(gz2,t));
vC2_.3 = deriv(vC2, diff(g3,t));
: : astz .
The MATLAB statements for the partial velocity 3. r=1,2,3 are:
qr

vC32_1 = deriv(vC32, diff(gql,t));
vC32_2 deriv(vC32, diff(g2,t));
vC32_3 deriv(vC32, diff(g3,t));

0 \{e}}

The MATLAB statements for the partial velocity 3
qr

,r=1,2,3are:

vC3_1 deriv(vC3, diff(gl,t));
vC3.2 = deriv(vC3, diff(g2,t));
vC3_.3 deriv(vC3, diff(g3,t));

r=1,2,3are:

237

(6.41)
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The generalized active force Qg is

8w10 aVC awzo 8VC 8vc
= Ty —T ! -T —=. 32 . (—F
0= 90 (Tor—Ti2) + 941 -G+ S0 12+ 4, G+ 41 (—F23)
8vC3 (9ch
D, F
941 3+ o 23,

and the MATLAB statement for the generalized active force Q is:

% generalized active force Q1

Ql = wl_1xT01." + vC1l_1xGl.’ +...
wl_ lxtranspose (R21) % (=T12.") +...
w2_1+xT12.’ 4+ vC2_1xG2.’ + vC32_1%(-F23.") +...
vC3_1xF23." + vC3_1xG3.’

The generalized active force Q is:

8w10 8vc 8w20 (9VC aVc
= Ty —T ! -T —=. 32 . (—F
0 = 90, (To1—Ti2) + 0, -G+ Ery 12+ 05 Gy + 0, (—F23)
v, ave
+ =2 -G3+ == -Fas,
9dr 3 9dr 23

and the MATLAB statement for the generalized active force Q> is:

% generalized active force Q2

Q2 = wl2+T01.’” + vC1l.2+xGl.’ +...
wl 2xtranspose (R21) *« (=T12.7) +...
w2 _2+xT12.7 4+ vC22xG2.’ + vC322%(-F23.") +...
vC3_2xF23." + vC3_.2xG3.’

The generalized active force Q3 is

awlo 8vc 8w20 aVC aVc
= To—T ! T+ 26 2. (_F
03 = Er (To1—T2) + Jds -G+ Er 12+ 45 G+ 45 (—F23)
8vc3 8vc3
9ds -G+ 90 -Fas,

and the MATLAB statement for the generalized active force Q3 is

% generalized active force Q3

Q3 = wl3+«T01l.” + vC1l.3%xGl.’” +...
wl 3xtranspose (R21) « (=T12.7) +...
w2_3xT12." + vC2.3xG2.’ + vC32_3%x(-F23.") +...
vC3_3xF23." + vC3_.3xG3.’
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Kinetic Energy
The total kinetic energy of the robot arm in the reference frame (0) is

o

T=Y'T1.

i=1

The kinetic energy of the link i, i = 1,2,3, is

1 1 -
T; = 5MMVG; VG + Ewi() (1;-wjp).

Remark: The kinetic energy for a rigid body is

Tiigidbody = %MVC “ve+ %w‘ (Ic-w),
where m is the mass of the rigid body, v¢ is the velocity of the mass center of the
rigid body in (0), w = @1+ @) + @K is the angular velocity of the rigid body in
(0), and I = (I,)1+ (1,))y + (Ik)k is the central inertia dyadic of the rigid body. The
central principal axes of the rigid body are parallel to 1, J, k and the associated mo-
ments of inertia have the values Iy, I, I, respectively. The inertia matrix associated
with [ is

~i
o o &
o~ O
S~ o O

The dot product of the vector w with the dyadic [ is

w- =1 w= o+ wl)+olk

The central moments of inertia of links 1 and 2 are calculated using Fig. 6.6. The
central principal axes of 1 are parallel to 11, J;, k; and the associated moments of
inertia have the values I, I1y, I1,, respectively. The inertia matrix associated with
link 1 is

my(2Ly)? m L3}
) . 0 0 —0n 0 0 3 0 0
L—|0 Ly 0|= mi(2Ly)? = mL3
0 0 I, 0 —0H = 0 0 0
0 0 0 0 0 0

The central principal axes of 2 and 3 are parallel to 1, J,, k> and the associated
moments of inertia have values Iy, Iy, I»;, and Iz, I3y, I3 respectively.
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z ml?
T="y
Ra na
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C ) Y
@ I,=0
ml?
/1 =
* 12
1
1 1[130
L L mi(2L,)°
| : : I e 0 0] | T 0 0
( 0) kl [1*> 0 Ily 0 = ml(2L1)2 0
A C, B I. 0 0 I 0 102 0
J1 ]ly
0
0
0

Fig. 6.6 Central moments of inertia
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The inertia matrix associated with link 2 is

my(2Ly)? myL3
B O s 00
L— |0 12y 0= m2(2L2)2 = mzL%
0 0 b 0 — 10 0 0 3 0
0 0 0 0 0 0

The inertia matrix associated with the slider 3 is

Ly, 0 O
L— |0 Ly, 0
0 0 I

The MATLAB commands for inertia matrices associated with the central inertia
dyadics are:

o

inertia mat. associated with central inertia dyadic
for link 1 expressed in terms of RF1 {il,jl1,k1}

1 = [mlx(2«L1)"2/12 0 0; 0 mlx(2%«L1)"2/12 0; 0 O 0];
inertia mat. associated with central inertia dyadic
for link 2 expressed in terms of RF2 12, j2,k2

2 = [m2%(2+xL2)"2/12 0 0; 0 m2x(2+L2)"2/12 0; 0 0 01;
inertia mat. associated with central inertia dyadic

% for link 3 expressed in terms of RF2 {i2, j2,k2}

syms I3x I3y I3z real

I3 = [I3x 0 0; 0 I3y 0; 0 O I3z];

H oe

o° o

H

o\°

The kinetic energy of link 1 is

1 1 - 1 . 1 . 2 .
= Fmve, Vo + 5 wWio- (I -wio) = §m1L1q%+ gmlLl‘I% = g””lLIQ%'

The kinetic energy of bar 2 is

1 1 -
T = 3Mave, Ve, + FwW- (I - wa)

m
= 5 (6L + L3 +6L1 Lacr + 15 cos2g2) G +2133)

The kinetic energy of link 3 is

1 1 _
;= FM3Ves Ve + Fw0- (I3 - wao)

1 . ) )
= 5{13’“ 341+ 25341 + By ds

+m3 (2L +Laca+c2q3)* 3+ (La+q3) &3 +67§} }
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The total kinetic energy of the robot arm is
T=T1+1+T1;,

and is symbolically calculated in the program given in Appendix E.3. The MAT-
LAB commands for the total kinetic energy of the robot arm are:

) *wlO0*I1l*wlO0.’
) *W20+«I2+w20.7
) *w20+I3%w20."
total kinetic energy

Tl (1/2) *ml*vClxvCl.” + (
T2 = (1/2)*m2*vC2+vC2." + (
T3 (1/2) *»m3*xvC3*vC3.’ + (
T = expand (Tl + T2 + T3); %

1/2
1/2
1/2

Lagrange’s Equations of Motion
The left-hand sides of Lagrange’s equations are

d (dT aT
d[<aqr>—aqr7 r:1,2,3.

To arrive at the dynamical equations governing the robot arm, all that remains to be
done is to substitute into Lagrange’s equations, namely,

d (0T aT
m(aqr>_aqr:Qr7 r:1a253'

The left-hand side of Lagrange’s equations are symbolically calculated in MATLAB
with:

% deriv(f, g(t)) differentiates f
% with respect to g(t)

Tdgl = deriv (T, diff(ql,t));

Tdg2 = deriv (T, diff(g2,t));

Tdg3 = deriv (T, diff(g3,t));

Ttl = diff(Tdgl, t);
Tt2 = diff(Tdg2, t);
Tt3 = diff(Tdg3, t);

Tgl = deriv (T, gl);
Tg2 = deriv (T, g2);
Tg3 = deriv (T, g3);

LHS1 = Ttl - Tql;
LHS2 = Tt2 - Tq2;
LHS3 = Tt3 - Tg3;
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Lagrange’s equations are symbolically calculated in MATLAB with:
Lagrangel = LHS1-Q1;

Lagrange?2 LHS2-02;
Lagrange3 = LHS3-Q3;

The following feedback control laws are used

Toix = —Porgr — Y1 (q1 — q17),
Tioy = —Bi2ge — V12(q2 — qof) +gma Ly ca + gmz c2 (Lo + q3),
s, = —Ba3qg3 — 13(q3 — q37) +gm3 2. (6.42)

The constant gains are: Sp; =450 Nms/rad, 7 = 300 Nm/rad, 81, = 200 Nms/rad,
Y12 = 300 Nm/rad, 8,3 = 150 Ns/m, and 753 = 50 N/m.
The MATLAB commands for the control torques are:

gqlf=pi/3; g2f=pi/3; g3£=0.3;
b01=450; g01=300;
b12=200; gl2=300;
b23=150; g23=50;
TOlxc = -b01lxdiff(gl,t)-g0lx(gl-glf);
Tl2yc = -bl2xdiff(g2,t)-gl2%(g2-g2f)+...
g* (m2*L2+m3* (L2+g3) ) xc2;
F23zc = -b23*xdiff (g3,t)-g23x(g3—-g3f)+g*xm3xs2;
tor = {Tle, T12y, F23z};
torf = {T0lxc,Tl2yc,F23zc};

Lagrange’s equations with the feedback control laws are:
Lagrangl = subs (Lagrangel, tor, torf);

Lagrang?2 subs (Lagrange2, tor, torf);
Lagrang3 = subs (Lagrange3, tor, torf);

Lagrange’s equations with the numerical values for input data are:

data = {11, L2, 1I3x, I3y, I3z, ml, m2, m3, g};
datn = {0.4, 0.4, 5, 4, 1, 90, 60, 40, 9.81};

Lagranl subs (Lagrangl, data, datn);
Lagran2 = subs (Lagrang2, data, datn);
Lagran3 = subs (Lagrang3, data, datn);

The three second-order Lagrange’s equations have to be rewritten as a first-order
system:
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gl = {diff(ql,t,2), diff(g2,t,2), diff(g3,t,2),
diff(ql,t), diff(g2,t), diff(g3,t), ql, 42, qa3};

gf = {’ddgl’, ’ddg2’, ’'ddg3’,...
"x(2)7, "x(4)", "x(6)", "x(1)", "x(3)", "x(5)"};

$ gl agf

& diff('gl(t)’,t,2) —> ’"ddgl’

$ diff('g2(t)’,t,2) -> "ddg2’

$ diff("g3(t)’,t,2) -> ’ddg3’

% diff('gl(t)’,t) —> "x(2)'

% diff("g2(t)’,t) —> "x(4)'

% diff("g3(t)’,t) —> "x(6)"

% rgl(t)” > 'x(1)'

% gz (t)’ -> "x(3)’

% "g3(t)’ > 'x(5)"

Lagral = subs(Lagranl, gl, gf);
Lagra?2 subs (Lagran2, gl, gf);
Lagra3 = subs(Lagran3, gl, gf);

% solve e.o.m. for ddgl, ddgz2, ddg3

sol = solve(Lagral,Lagra2,Lagra3,’ddqgl,ddg2,ddg3’);
Lagrl = sol.ddqgl;

Lagr2 = sol.ddg2;

Lagr3 = sol.ddqg3;

dx2dt = char (Lagrl);
dx4dt = char (Lagr2);
dx6dt = char (Lagr3);

The system of differential equations is solved numerically by m-file functions. The
function file, RRT_Lagr . m is created using the statements:

fid = fopen('RRT_Lagr.m’,’wt’);
fprintf (fid,’ function dx = RRT_Lagr (t,x)\n’);
fprintf (fid,’dx = zeros(6,1);\n’);
fprintf (fid, "dx (1) = x(2);\n’);
fprintf (fid, dx(2) = 7);
fprintf (fid, dx2dt);
fprintf (fid,’;\n’
(
(
(
(

14

)
fporintf (£id, " dx (3) x(4);\n’);
fprintf (fid,"dx(4) = ");
fprintf (fid, dx4dt)

fprintf (fid,’;\n");

14
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fprintf (fid, "dx (5) = x(6);\n’);
fprintf (fid,"dx(6) = ");
fprintf (fid, dx6dt) ;

fprintf (£id,’;’);

fclose (fid);

cd (pwd) ;

The ode45 solver is used for the system of differential equations:
t0 = 0;
tf = 15;
time = [0 tf];
x0 = [pi/18 0 pi/6 0 0.25 0];

[t,xs] = oded5(@RRT_Lagr, time, x0);

x1l = xs(:,1);
X2 = xs(:,2);
x3 = xs(:,3);
x4 = xs(:,4);
x5 = xs(:,5);
X6 = xs(:,6);

subplot (3,1,1),

plot (t,x1%180/pi,"r"),

xlabel ("t (s)’),ylabel('gl (deg)’),grid,
subplot (3,1,2),

plot (t,x3+«180/pi,'b’"),

xlabel ('t (s)’),ylabel (g2 (deg)’),grid,
subplot (3,1, 3)
plot (t,x5,"g")
xlabel ('t ( )’

) yylabel (g3 (m)’),grid
[ts,xs] = oded5(@RRT_.Lagr,0:1:5,x0);
fprintf (' Results \n\n’)

fprintf...

("t (s) gl(rad) g2(rad) g3(m) \n’)

[ts,xs(:,1),xs(:,3),xs(:,5)]

Figure 6.7 shows the plots of ¢; (), g2(¢), g3(¢) and a MATLAB computer program
for the direct dynamics is given in Appendix E.3.
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0

Fig. 6.7 Solution plots for the generalized coordinates ¢, (¢), g2(¢), and g3(¢)

6.5.2 Inverse Dynamics

A desired motion of the robot arm is specified for a time interval 0 <t <7, = 15s.
The generalized coordinates can be established explicitly

ol —a0) T (22

1) = 0 t— —
q-(t) = q-(0) + T, T,

o )], r=1,2,3, (643)
with g, (7)) = gy

The initial conditions, at# =0's, are ¢ (0) = w/18 rad, ¢»(0) = /6 rad, ¢3(0) =
0.25 m, and ¢;(0) = ¢2(0) = ¢3(0) = 0. The robot arm can be brought from an
initial state of rest in reference frame (0) to a final state of rest in (0) in such a way
that g1, g2, and g3 have specified values qi(T,) = q1r = n/3 rad, ¢2(T,) = q2f =
n/3 rad, and ¢3(7T),) = g3 = 0.3 m. Figure 6.8 shows the plots of g;(¢), ¢»(t), and
q3(t) rad.

The MATLAB commands for finding the Lagrage’s equations are identical with
the previous commands presented in Sect. 6.5.1:
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Fig. 6.8 Generalized coordinates g (t), g2(t), and g3(t)

syms TOlx TOly TOlz Tl2x T1l2y Tl2z F23x F23y F23z
TO1l = [TO1lx TOly TO01lz];
T12 [Tl2x T1l2y T1l2z];
F23 = [F23x F23y F23z];

Lagrangel=LHS1-Q1;
Lagrange2=LHS2-0Q2;
Lagrange3=LHS3-03;
data = {11, L2, 1I3x, I3y, I3z, ml, m2, m3, g};
datn = {0.4, 0.4, 5, 4, 1, 90, 60, 40, 9.81};

Lagral = subs(Lagrangel, data, datn);
Lagra2 = subs (Lagrange2, data, datn);
Lagra3 subs (Lagrange3, data, datn);
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From the Lagrange’s equations of motions the torques Ty1, and 7i2, and the force
Fp3; are calculated:

sol = solve(Lagral, Lagra2,lagra3,’T01lx, Tl2y, F23z");
TOlxc = simple(s0l.T01x);
Tl2yc = simple(sol.T12y);
F23zc simple (sol.F23z);

The generalized coordinates, g1, g2, and g3 given by Eq. 6.43 and their derivatives,
41, 42, 43, 41, G2, §3 are substituted in the expressions of Tyix, T12y, and F23;:

gls = pi/18; g2s pi/6; g3s = 0.25;

glf = pi/3 ; g2f = pi/3; g3f = 0.3;

Tp=15.;

qlt = gls+(glf-gls)/Tp* (t-Tp/ (2+pi) *sin (2+xpi/Tp*t));
g2t = g2s+(g2f-g2s) /Tp* (t-Tp/ (2xpi) xsin (2+xpi/Tp*t)) ;
g3t = g3s+(g3f-qg3s) /Tp* (t—Tp/ (2xpi) *sin (2xpi/Tp*t));
dglt = diff (qlt,t);

dg2t = diff (q2t,t);

dg3t = diff (g3t,t);

ddglt = diff (dqlt,t);

ddg2t = diff (dg2t,t);

ddg3t = diff (dg3t,t);

ql = {diff(ql,t,2), diff(q2,t,2), diff(q3,t,2),
diff(ql,t), diff(g2,t), diff(g3,t), ql, 42, q3};
gn = {ddglt,ddg2t,ddg3t,dqlt,dg2t,dqg3t,gqlt, g2t,g3t};

TO1lxt subs (TO1lxc, gl, gn);
Tl2yt = subs(Tl2yc, gl, an);
F23zt subs (F23zc, gl, gn);

The plots and the values of Ty1.(¢), Ti2,(7), and F»3.() are obtained with the MAT-
LAB commands:

time 0:1:Tp;

TO1lt subs (TO1lxt,’'t’,time);

T12t = subs(Tl2yt,’'t’,time);

F23t subs (F23zt,’'t’,time);

subplot (3,1,1), plot(time,TO01lt),...

xlabel ('t (s)’), ylabel ('TOlx (N m)’), grid,...

subplot (3,1,2), plot(time,T12t),...

xlabel ('t (s)’), ylabel ('Tl2y (N m)’), grid,...
subplot (3,1,3), plot(time,F23t),...

xlabel ('t (s)’), ylabel ('F23z (N)’'), grid
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fprintf ("t (s) TOlx(Nm) T12y (Nm) F23z (N) \n’)

[time’ TO1lt’ T12t’ F23t’]

Another way of plotting Ty, (t), Ti2,(), and F>3.(¢) is:

subplot (3,1,1), ezplot(TOlxt, [0,Tpl), ...
title(’’), xlabel('t (s)’), ylabel ('TO0lx

grid, ...

subplot (3,1,2), ezplot(Tl2yt, [0,Tpl), ...
title(’"), xlabel ('t (s)’), ylabel(’'Tl2y

grid, ...

subplot (3,1,3), ezplot(F23zt, [0,Tpl), ...
title(’’), xlabel('t (s)’), ylabel ('F23z
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grid

Figure 6.9 shows the control torques and force and the MATLAB program is given

in Appendix E.4.

m)

TO1x (N

15

15

t(s)

Fig. 6.9 Solution plots for the control torques and force

15
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6.5.3 Kane’s Dynamical Equations

The generalized coordinates ¢; and the generalized speeds u; are introduced:
% generalized coordinates gl, g2, g3
gl=sym("ql(t)’); g2=sym(’q2(t)’); g3=sym('q3(t)’);

% generalized speeds ul, uz2, u3
ul=sym(‘ul(t)’); u2=sym(‘u2(t)’); u3=sym('u3(t)’);

The generalized speeds, u1, us, us, are associated with the motion of a system, and
can be introduced as ¢; = u;, or:

dgl = ul;
dg2 = u2;
dg3 = u3;
gt = diff(gl,t), diff(g2,t), diff(g3,t);

qu = dqgl, dg2, dg3;

The velocities and the accelerations of the robot need to be expressed in terms of
qi, u; and u;:

cl=cos(gl); sl=sin(gl); c2=cos(g2); s2=sin(g2);
R10 = [[1 O 0]; [0 c1 s1]; [0 —-s1 cl111];
R21 [[c2 0 -s2]; [0 1 01; [s2 0 c2]1];

wl0 = [dgl, 0, 0 ]

w201 = [dgl, dg2, 0];

w20 = w201 * transpose (R21)

alphalO0 = diff(wl0,t);

alpha20 = subs(diff (w20,t), gt, qu);

rC1l [0 0 L1];
vCl = diff(rCl,t) + cross(wl0O, rCl);

rC2 = [0 0 2xLl]*transpose(R21) + [0 O L2];
vC2 = subs(diff(rC2, t), gt, gqu) + cross(w20,rC2);
rC3 = rC2 + [0 0 g3];

vC3 = subs(diff (xC3, t), gt, qu) + cross(w20,rC3);
vC32 = vC2 + cross (w20, [0 0 g3]);

aCl = diff(vCl,t) + cross(wl0,vCl);
aC2 diff(vC2,t) + cross(w20,vC2);
aC3 = subs(diff (vC3,t), gt, gqu) + cross(w20,vC3);
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The gravitational forces and the external moments and force are:

Gl = [-mlxg 0 0];

G2 = [-m2xg 0 O]*transpose (R21);
G3 = [-m3%g 0 O]xtranspose (R21);
TO0l = [TOlx TOly TOlz];

T12 [T1l2x Tl2y T1l2z];

F23 = [F23x F23y F23z];
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The partial velocities with respect to ul, u2, u3 are calculated using the func-

tion deriv:

wl_l = deriv(wl0, ul); w2_.1 = deriv (w20,
wl 2 = deriv(wl0, u2); w2_2 = deriv (w20,
wl_3 = deriv(wl0, u3); w2_.3 = deriv (w20,

vCl_1

deriv (vCl, ul),; vC2_.1

vC32_.1 = deriv (vC32, ul); vC3.1 = deriv(vC3,
deriv (vC3,
vC32_3 = deriv (vC32, u3); vC3_.3 = deriv(vC3,

vC32_2 = deriv (vC32, u2); vC3.2

The generalized active forces are:

01l = wl1+«TO01.’” 4+ vC1_1xGl.’" +...

wl_l+xtranspose (R21)x (-T12.") +...

deriv (vC2,
vCl_2 = deriv(vCl, u2); vC2_.2 = deriv(vC2,
vCl_3 = deriv(vCl, u3); vC2_.3 = deriv (vC2,

ul);
uz);
u3);

ul);
uz) ;
u3);

w2_1%«T12." + vC2_1xG2.’ + vC32_1x(-F23.") +...

vC3_1+xF23.7 + vC3_1xG3.’;

Q2 = wl2+T01.’" + vC1l.2xGl.’" +...

wl 2+«transpose (R21) x (-T12.") +...

w2 2+«T12." + vC2_2%xG2." + vC32_2«(-F23."7) +...

vC3_2xF23." + vC3_.2+%G3.';

03 = wl 3+«T01l.’” + vC1l.3*«Gl." +...

wl_3*xtranspose (R21) x (-T12.") +...

w2_3xT12." 4+ vC2_3xG2.’" + vC32_3%(-F23.") +...

vC3_3xF23.7 + vC3_.3xG3.’;

Generalized inertia forces

To explain what the generalized inertia forces are, a system {S} formed by v par-
ticles P, ..., P, and having masses mj,...,my is considered. Suppose that n general-
ized speeds u,, r = 1,...,n have been introduced. (For the robotic arm u, = ¢,, r =



252 6 Analytical Dynamics of Open Kinematic Chains

1,...,n.) Let vp; and ap, denote, respectively, the velocity of P; and the acceleration
of P; in a reference frame (0).
Define Fj, j, called the inertia force for P;, as

Finj =—m;j ap_/.
The quantities Kj, 1, ..., Kin,,, defined as

v v
b
Kinr:Z ) 'Finj7 r:1,...,n,
j=1 ot

are called generalized inertia forces for {S}.

The contribution to Kj,,, made by the particles of a rigid body RB belonging to
{S}, are
8vc w
TM,« : Fin+71xl,« . Min7 r= 1)"'7”7
where vc is the velocity of the center of gravity of RB in (0), and w = o+ @)+
.k is the angular velocity of RB in (0).

The inertia force for the rigid body RB is

(I{in r)R =

Fi, = —mac,

where m is the mass of RB, and ac is the acceleration of the mass center of RB in
the fixed reference frame. The inertia moment M;, for RB is

My, = —a-I-wx ([-w),

where & = w = o1+ 4) + ok is the angular acceleration of RB in (0), and I =
(La)1+ (1,))) + (Ik)k is the central inertia dyadic of RB. The central principal axes
of RB are parallel to 1, J, k and the associated moments of inertia have the values
Iy, Iy, I, respectively. The inertia matrix associated with I is

~i
o o5
o~ O
S~ o o

The dot product of the vector a¢ with the dyadic 7 is
a-I=I o= alda+al)+olKk,
and the cross product between a vector and a dyadic is
1 J k
wx(l-w)=| o o o
o, oy, .l
= -0, (I, — L — w0, — 1)) — o.0,(I — I,k
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The inertia moment of 1 in (0) can be written as
My = —auo-I1 —wio % (I - wio) = —T1xG11.

The inertia moment of 2 in (0) is

Minz = —0o - —wy x (I - wp).
Similarly the inertia moment of 3 in (0) is

Minz = Qg - I3 — wao X (I3 - wo).
The inertia force for link j =1, 2,3 is
Finj = —mjac;.

The contribution of link j = 1, 2, 3 to the generalized inertia force K, is

dvc, ow;
Jjo
(I(inr)j: W:'Finj+Tm'Minj, r= 1,2,3.

The three generalized inertia forces are computed with

3 /dvg; dwjo
:jzl(aur]'Finj aui 'Minj)7r:152737
or
8vc w 0 av, 8w20
Ky, = 8u1 (—myac,)+ 8u1 ‘Min1 5 2. (—=mpac,)+ 5
r r r r
8vc 8w30
8u: '(_m3aC3)+Tur'Min3a r=1,2,3.
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——— M2

The generalized inertia forces for the RRT robot arm are calculated with the follow-

ing MATLAB commands:

I1 = [mlx(2%L1)°2/12 0 0; 0 mlx(2%L1)"2/12 0;
12
I3

[I3x 0 0; 0 I3y 0; O O I3z]l;

% inertia force for link 1
% expressed in terms of RF1 {il, j1,kl1}
Finl= -ml=*aCl;

0 00
[m2* (2xL2) "2/12 0 0; 0 m2«%(2%«L2)"2/12 0; 0 0 0]

1;
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inertia force for link 2

expressed in terms of RF2 {i2,j2,k2}
in2= -m2*aC2;

inertia force for link 3

expressed in terms of RF2 {i2, j2,k2}
in3= -m3%xaC3;

inertia moment for link 1

expressed in terms of RF1 {il,jl,k1l}
Minl = -alphalO*Il-cross(wl0,wl0*I1);
% inertia moment for link 2

% expressed in terms of RF2 {i2, j2,k2}
Min2 = -alpha20%I2-cross (w20,w20%I2);
inertia moment for link 3

expressed in terms of RF2 {i2, j2,k2}
Min3 = -alpha20%I3-cross (w20,w20%I3);

o° o

B!

o° o°

]

o° o

%
%

[

% generalized inertia forces corresponding to gl
Kinl = wl_1+Minl.’” + vCl_1%Finl.’ +

w2_1xMin2.’ + vC2_1xFin2.’ +

w2_1%Min3.’ + vC3_1*Fin3.’;
% generalized inertia forces corresponding to g2
Kin2 = wl_2+«Minl.’ 4+ vCl.2xFinl.’ +

w2_2xMin2.’ + vC2_2xFin2.’ +

w2_2+«Min3.’ + vC3_2«Fin3.’;
% generalized inertia forces corresponding to g3
Kin3 = wl_3%«Minl.’ 4+ vC1_.3xFinl.’ +
w2_3xMin2.’ + vC2_3xFin2.’ +
w2_3+%Min3.’ + vC3_3*%Fin3.’;

To arrive at the dynamical equations governing the robot arm, all that remains to be
done is to substitute into Kane’s dynamical equations, namely,

Kinr+0,=0, r=1,2,3. (6.44)
Kane’s dynamical equations in MATLAB are:

Kanel = Kinl + Q1;
Kane2 = Kin2 + Q2;
Kane3 = Kin3 + Q3;

Using the same feedback control laws (the same as these used for Lagrange’s equa-
tions) Kane’s equations have to be rewritten:
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glf=pi/3; g2f=pi/3; g3f=0.3;
b01=450; g01=300; bl2=200; gl2=300; b23=150; g23=50;

TOlxc = -b01lxdgl-gO0lx (gl-glf);
Tl2yc = -bl2xdg2-gl2* (g2-g2f)+gx (m2*xL2+m3* (L2+g3) ) *xc2;
F23zc = -b23*xdg3-g23* (g3—-g3f) +gxm3*xs2;

tor = {Tle, T12y, F232};
torf = {I0lxc,Tl2yc,F23zc};

Kanl = subs (Kanel, tor, torf);
Kan2 = subs (Kane2, tor, torf);
Kan3 = subs (Kane3, tor, torf);

The Kane’s dynamical equations can be expressed in terms of iy, iy, and #3:

data = {11, L2, I3x, I3y, I3z, ml, m2, m3, g};
datn = {0.4, 0.4, 5, 4, 1, 90, 60, 40, 9.81};

Kal = subs(Kanl, data, datn);
Ka2 = subs (Kan2, data, datn);
Ka3 = subs (Kan3, data, datn);

gl = {diff(ul,t), diff(u2,t), diff(u3,t)
ul, u2, u3, ql, 42, q3};
gx = {’dul’, "du2’, ’'du3’,...

'x(4)7, "x(5)", 'x(6)", 'x(1)’", '"x(2)", "x(3)"};

Dul = subs(Kal, gl, gx);
Du2 = subs(Ka2, gl, gx);
Du3 = subs(Ka3, gl, gx);

% solve for dul, du2, du3

sol = solve(Dul, Du2, Du3,’dul, du2, du3’);
sdul = sol.dul;

sdu? sol.du2;

sdu3 sol.du3;

The system of differential equations is solved numerically by m-file functions. The
function file, RRT_Kane . m is created using the statements:

% system of ODE

dxl = char('x(4)’);
dx2 char ("x(5)");
dx3 = char('x(6)");
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dx4
dx5
dx6

fid
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char (sdul) ;
char (sdu2) ;
char (sdu3) ;

fopen (' RRT_Kane.m’ , "w+');

fprintf (fid,’ function dx = RRT,Kane(t,x)\n’);

fprintf (fid,’'dx =
fprintf (fid, "dx (1
fprintf (fid,’;\n’
fprintf (£id, "dx (2
fprintf (fid,’ ;\n’
fprintf (fid, "dx (3
fprintf (fid,’;\n’
fporintf (fid, " dx (4
fprintf (fid,’;\n’
fprintf (fid, "dx (5
fprintf (fid,’ ;\n’
fprintf (fid, "dx (6
fprintf (fid,’; ')

zeros (6,1);\n");
= 7); fprintf(fid,dx1);

= 7); fprintf(fid,dx2);

Il
~
-
~

fprintf (fid, dx3);

Il

~
-
~

fprintf (fid, dx4);

I
<
-
<

fprintf (£id, dx5);

= 7); fprintf (fid, dx6);

fclose (fid); cd(pwd);

The ode45 solver is used to solve the system of first-order differential equations:

t0 = 0; tf = 15; time = [0 tf];

x0 = [pi/18 pi/6 0.25 0 0 0];

[t,xs] = o0ded5 (QRRRT_Kane, time, x0);

x1l = xs(:,1);

X2 = xs(:,2);

x3 = xs(:,3);

x4 = xs(:,4);

x5 = xs(:,5);

X6 = xs(:,6);

subplot (3,1,1), plot(t,x1%180/pi,’'r’), ...
xlabel ("t (s)’), ylabel('gl (deg)’), grid,...
subplot (3,1,2), plot(t,x2x180/pi,’'b"),

xlabel ('t (s)’), ylabel('g2 (deg)’), grid,...
subplot (3,1,3), plot(t,x3,’g"),...

xlabel ('t (s)’), ylabel (g3 (m)’), grid

The MATLAB computer program for the direct dynamics using Kane’s dynamical
equations is given in Appendix E.5.
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6.6 RRTR Robot Arm

Figure 6.10 is a schematic representation of a robot (Kane and Levinson, 1983), with
four links 1, 2, 3, and 4. The mass center of the link i is designated C;, i = 1,2,3,4.
The dimensions AC, = L, AC1 = L, and C3C4 = L3 are shown in the figure. Link 1
rotates in a “fixed” Newtonian reference frame (0) about a vertical axis fixed in both
(0) and 1. The reference frame (0), RF0, has the unit vectors [19, Jy, Ko] as shown
in Fig. 6.10. The reference frame (1), RF1, of unit vectors [1, J;, k] is attached to
link 1. The vertical unit vectors J, and J; are fixed in both (0) and 1.

The first generalized coordinate g; denotes the radian measure of the angle be-
tween the axes of (0) and (1). Link 1 supports link 2, and link 2 rotates relative to 1
about a horizontal axis fixed in both 1 and 2. The reference frame (2), RF2, of unit
vectors [1p, J,, Ko is fixed in 2. The horizontal unit vectors 1; and 1, are fixed in both
1 and 2. The mass center C; is a point fixed in both 1 and 2.

The second generalized coordinate g, denotes the radian measure of the angle
between the axes of (1) and (2). The link 2 supports link 3, and link 3 has a transla-
tional motion relative to 2.

The generalized coordinate g4 is the distance between the mass centers, C, and
(3, of 2 and 3, respectively. The link 3 supports link 4, and link 4 rotates relative to
3 about an axis fixed in both 3 and 4. The reference frame (4), RF4, of unit vectors
[4, J4, K4] is fixed in 4. The unit vectors J, and J, are fixed in both 3 and 4. The mass
center Cy is a point fixed in both 3 and 4.

The generalized coordinate g3 is the radian measure of the rotation angle between
3 and 4. The reference frame (4), |14, J4, K4] is fixed in 4 in such a way that 19 =
4,)0 = )4, Ka =Ko when g1 = g2 =¢3 =0.

The generalized speeds, uy, u», u3, us, are associated with the motion of a system,
and can be introduced as

Uy = Wy 14,
Uy = W40 )4,
uz = wyo - Ky,
us = qa, (6.45)

where w4 denotes the angular velocity of 4 in (0). One may verify that
wio = (q15253 + g2c3)a+ (q102+G3)1s + (—q15263 + Gos3 ks, (6.46)
where s; and ¢; denote sing; and cosg;, i = 1,2, 3, respectively. Substitution into
Eq. 6.45 then yields
Uy = q15283 +42¢3,
up =qic2+4gs,

uz = —q152¢3 + 4253,
Uy = q4. (6.47)
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Jo? (0)

Schematic representation LK
of the robot in 3-D

Fig. 6.10 RRTR robot arm

—— 3
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Equation 6.47 can be solved uniquely for §1,¢2,43,q4. Specifically,

g1 = (u1s3 —usc3)/s2,

G = (ujc3 +ussz),

43 = up + (uzcs — u1s3)c2 /52,

Ga = ug, (6.48)

with singularities at g = 0° and ¢g» = 180° degrees posing no problem. Thus, u;, as
defined in Eq. 6.45 form a set of generalized speeds for the robot. The mass of link
rism,, r=1,2, 3, 4. The central inertia dyadic of link r, can be expressed as

I_r = (Irxlr) 1r + (Iry-]r)-]r + (IVZ k”) k"’ (649)

where I, I, I,; are the central principal moments of inertia of r =1, 2, 3, 4.

In the case of the robot, there are two kinds of forces that contribute to the gen-
eralized active forces Q,, r = 1,2, 3, 4 namely, contact forces applied in order to
drive links 1, 2, 3, 4, and gravitational forces exerted on the links.

Considering, the contact forces, the set of such forces transmitted from the New-
tonian frame (0) to link 1 (through bearings and by means of a motor) is replaced
with a couple of torque Ty; together with a force Fy; applied to 1 at C;.

Similarly, the set of contact forces transmitted from 2 to 1 is replaced with a
couple of torque T,; together with a force Fy; applied to 1 at C, (which is a point
fixed in 1). The law of action and reaction then guarantees that the set of contact
forces transmitted from 1 to 2 is equivalent to a couple of torque —T>; together
with the force —F,; applied to 2 at C,.

Next, the set of contact forces exerted on 2 by 3 is replaced with a couple of
torque T3, together with a force F3, applied to 2 at Csp, the point of 2 instanta-
neously coinciding with C3. The set of forces exerted by 2 on 3 is, therefore equiv-
alent to a couple torque —T3; together with the force —F3; applied to 3 at Cs.

Similarly, torque T43 and forces F43 come into play in connection with the inter-
actions of 3 and 4 at Cy. As for gravitational forces exerted on the links of the robot
by the Earth, these are denoted by G,, r = 1, 2, 3, 4, respectively.

The following notations are introduced

Toiy = To1 - 31 = ki(qir —q1) — k2 41,

Doy = Ta1 12 = k3(q2 — q25) +kaga + g[(m3 +ma)qa +ma Ls]sa,

Tizy = Tu3-33 = Taz )y = ks(q3 — q37) + ke 43,

Fyy = F32-)3 =F32- ) = k7(qa — qay) + kg ga — g(m3 +mg)c2,  (6.50)

where ki, ...,kg are constant gains ky =3.0Nm, k, =5.0 Nms, k3 =1.0 Nm, kg =
30Nms, ks =03Nm, k¢ =0.6 Nms, k=30 Nm, kg =41 N s, andq,f:ﬂ:/3
radr=1,2,3, while g4r = 0.1 m.

The initial numerical data are L; = 0.1 m, L, = 0.1 m, L3 = 0.7 m, m| = 9 kg,
my = 6 kg, m3y = 4 kg, my = 1 kg, I, = 0.01 kg m?, I;, = 0.02 kg m?, I;, = 0.01 kg
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m?, b, = 0.06 kg m?, Iy, = 0.01 kg m?, o, = 0.05 kg m?, I, = 0.4 kg m?, I3, = 0.01
kg m?, I5; = 0.4 kg m?, I, = 0.0005 kg m?, I, = 0.001 kg m?, and /4, = 0.001 kg m?.

Kane’s Dynamical Equations
The numerical data are introduced with the MATLAB statements:

L1=0.1; L2=0.1; L3=0.7;

ml=9.; m2=6.; m3=4.; mi=1.;

I1x=0.01; Ily=0.02; I1z=0.01;
I2x%x=0.06; I2y=0.01; I2z=0.05;

I3x=0.4; I3y=0.01; I3z=0.4;
I4x=0.0005; TI4y=0.001; TI4z=0.001;
k1=3.; k2=5.; k3=1.; k4=3.; k5=0.3;
k6=0.6; k7=30.; k8=41.; g=9.8;
gqlf=pi/3; qg2f=pi/3; g3f=pi/3; g4f=0.1;

The MATLAB commands for the generalized coordinates are:

syms t real
gl = sym("ql
g2 = sym(’' g2
g3 = sym('g3
g4 = sym(’'qg4

The transformation matrix from RF2 to RF1 is

1 0 0
Ry=1|0 ¢ s,
0 —s0

and the transformation matrix from RF4 to RF2 is

_C3 0 —S3
Rp=(0 1 0
_S3 0 Cc3 i

The MATLAB commands for the transformation matrices are:

c2 = cos(g2); s2 = sin(g2);
c3 cos (g3); s3 sin (g3);
% transformation matrix from RF2 to RF1
R21 = [[1 0 0]; [0 c2 s2]; [0 -s2 c21];
% transformation matrix from RF4 to RF2

°

R42 = [[c3 0 -s3]; [0 1 0]; [s3 0 c311;
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The generalized speeds, uy, up, u3, us, are associated with the motion of a system,
and can be introduced with:

ul = sym(‘ul(t)’);
uz2 = sym('u2(t)’);
u3 = sym('u3(t)’);
ud = sym('ud(t)’);

Equation 6.48 represents the derivatives, ¢1,42,43,4a, of the generalized coordi-
nates, function of the generalized speeds:

dgl (ul*s3-u3*xc3) /s2;

dg2 = ul*xc3+u3*s3;

dg3 u2+ (u3d3xc3-ul*s3)xc2/s2;
dg4 = u4;

The Kane’s dynamical equations are expressed in terms of the generalized coor-
dinates g1, g2, g3, g4, the generalized speeds ul, u2, u3, u4, and the time
derivatives of the generalized speeds. Two lists are introduced for the derivatives of
the generalized coordinates and the derivatives of the generalized speeds:

gt={diff(ql,t),diff(g2,t),diff(g3,t),diff (g4, t), ...
diff (ul,t),diff(u2,t),diff(u3,t),diff (ud, t)};
ut={dgl, dg2,dg3,dg4, ’dul’, 'du2’, 'du3’, ’'dud’};

% gt ut

$ diff(‘ql(t)’,t) -> dqgl
S diff (‘g2 (t)’,t) —-> dqg2
$ diff("g3(t)’,t) -> dg3
S diff('q4(t)’,t) -> dqg4
$ diff(‘ul(t)’,t) —-> ’'dul’
g diff(‘u2(t)’,t) —-> 'du2’
S diff(‘u3(t)’,t) —-> ’du3’
S diff(‘ud(t)’,t) —-> ’'dud’

Angular Velocities and Accelerations

The angular velocities of each link 1, 2, 3, 4, in RF0, involving the generalized
speeds, are expressed using a vector basis fixed in the body under consideration. The
angular velocity of link 1 with respect to RF0 expressed in terms of RF1 [1y, j;, k]
is wWig = ¢§1])y, or:

wl0l = [0, dgl, O0];
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The angular velocity of link 1 relative to RF0 expressed in terms of RF2 [1p, J,, ko]
is:

wl02 = wlOlxtranspose (R21);

The angular velocity of link 2 relative to RF1 expressed in terms of RF1 [uy, j;, k]
is Wy = g1y, Or:

w21l = [dg2, 0, 0];

The angular velocity of link 2 relative to RF1 expressed in terms of RF2 [1p, J,, ko]
iS Wy = g1, Or:

w212 = [dg2, 0, 0];

and the angular velocity of link 2 with respect to RFO expressed in terms of RF2
[12, J2, Ko] is wao = wio +wyy, or:

w202 = wl02 + w212;

The angular velocity of link 2 relative to RFO expressed in terms of RF4 |1, )4, K4]
is:

w204 = w202+transpose (R42);

The angular velocity of link 3 with respect to RFQ expressed in terms of RF2
12, 3o, Ka] is w30 = wno, or:

w302 = w202;

The angular velocity of link 4 relative to RF2 expressed in terms of RF2 [1,, J,, k»]
is wgy = §3),, or:

w422 = [0, dg3, 0];

The angular velocity of link 4 with respect to RF2 expressed in terms of RF4
14, 34, ka] is:

wi24 = wd22+transpose (R42);

The anglar velocity of link 4 with respect to RF0 expressed in terms of RF4
4, 14, k4] 18 wag = wog + w4, or:

w404 = w204 + wd24;



6.6 RRTR Robot Arm 263

The angular acceleration of link 1 with respect to RFO expressed in terms of RF1
(11,31, k] is ap = Wio, or:

alphalOl = subs(diff(wl01l, t), gt, ut);

The angular acceleration of link 2 with respect to RFO expressed in terms of RF2
12, 2, ko] is a0 = Wno, or:

alpha202 = subs(diff (w202, t), gt, ut);

The angular acceleration of link 3 with respect to RFO expressed in terms of RF2
[127 J2s k2] is:

alpha302 = alpha202;

The anglar acceleration of link 4 with respect to RFO expressed in terms of RF4
14, )4, Ka] 18 Q40 = Wy, or:

alpha404 = subs(diff (w404, t), gt, ut);

Remark: The angular velocity wig (w101) was expressed in terms of RF1, wyg
(w202) was expressed in terms of RF2, w3 (w302) was expressed in terms of
RF3=RF2, and wyo (w404) was expressed in terms of RF4.
Iwio will be in terms of RFI1, M will be in terms of
aur aur

dwyo

The partial velocity

(9(.030

RF2, will be in terms of RF4.

will be in terms of RF3, and
U u

The central principal axes of inertia of li;k 1 are parallel to 1y, ;, k{], link 2
are parallel to [1p, J,, k2], link 3 are parallel to [12, J,, k2], and link 4 are parallel to
[147 J4 k4] .

The angular velocities of each link are expressed using a vector basis fixed in the
body under consideration because the central principal axes of inertia of the body
are parallel to the vector basis fixed in the body.

For the velocities of C;, C;, C3, Cy4, the mass centers of links 1, 2, 3, 4, it is not
necessarily useful to work with RF1 in the case of velocity of Cy, with RF2 for the
velocity of Cy, and so forth. As an alternative, it is convenient to use any vector basis
that permits one to write the simplest expression.

Linear Velocities and Accelerations
The linear velocity of mass center C; of link 1 is zero since Cj is fixed in RFO:

vCl01l = [0, 0, O01;
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The position vector from Cj, the mass center of link 1, to C,, the mass center of link
2, expressed in terms of RF1 [11, 3, ki) isre,c, = Li1 + Loy, or:

rCl21 = [L1, L2, O0];

The linear velocity of mass center C, of link 2 with respect to RFO expressed in
terms of RF1 1, 3y, ki] is

d OF
ve, = El‘clcz = ?l‘clcz + Wi XIec,,

or:
vC201 = diff (rCl21, t) + cross(wl0l, rCl21);

The velocity of C,, which is “fixed” in RF1 can be computed also as:
vC201 = cross(wl01l, [L1, O, 0]);

The linear velocity of the mass center C, of link 2 with respect to RFO expressed in
terms of RF2 1, J,, ko] is:

vC202 = vC201lxtranspose (R21);

The position vector from Cj, the mass center of link 1, to C3, the mass center of link
3, expressed in terms of RF2 1, J,, Ko is r¢ ¢, = Te ¢, + ¢4y, or:

rCl32 = [L1, L2, O]xtranspose(R21) + [0, g4, 01;

The linear velocity of mass center C3 of link 3 with respect to RFO expressed in
terms of RF2 1, J,, ko] is

d 2q

Vo, = ErCIQ = ?rCIQ + W X Iecy,

or:
vC302 = subs(diff (rCl32,t),qgt,ut)+cross (w202, rC132);
Another way of computing the previous velocity is:
vC302 = vC202+diff([0,94,0],t]+cross (w202, [0,gq4,01);

The linear velocity of point C3, of link 2 with respect to RF0 expressed in terms of
RF2 [12, J,, ko] is

VCy, = Vo, T W20 X Tocy-
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The MATLAB command for vc;, is:
vC3202 = vC202 + cross (w202, [0, g4, 01);

The point C3y, of link 2, is superposed with the mass center C3, of link 3. The linear
velocity of mass center C4 of link 4 with respect to RFO expressed in terms of RF2

[127 J2s k2] is
Vo, = Vo +wao X L3),,

or:
vC402 = vC302 + cross (w202, [0, L3, 01);

The linear acceleration of mass center C; of link 1 with respect to RF0 expressed in
terms of RF1 [11, J;, kq] is:

acl101 = [0, 0O, 0O];

The linear acceleration of mass center C, of link 2 with respect to RF0 expressed in
terms of RF1 [, J;, ki] is

d Mg
EVCZ = ——V¢, +Wio X V¢,

ac, = dt

or:
aC201 = subs(diff (vC201, t),qgt,ut)+cross(wl01,vC201);

The linear acceleration of mass center C3 of link 3 with respect to RF0Q expressed in
terms of RF2 [1p, J,, ko] is

d @g
EVQ = ——V¢; + W2 X V¢,

ac = dt

or:
aC302 = subs(diff (vC302,t),qgt,ut)+cross (w202,vC302);

The linear acceleration of mass center C4 of link 4 with respect to RF0 expressed in
terms of RF2 1, J,, ko] is

d @d
ac, = EVC4 = ?VC} + Wy X \(o})
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The MATLAB command for ac, is:
aC402 = subs(diff (vC402,t),gt,ut)+cross (wd02,vC402);

The partial velocities with respect to u, (ul, u2, u3, u4)are

dwip dwy Jdwag

du, = Ju,  du,’

8vC, aVC2 8vc3 (9VC4 8VC32
du, ' du,’ Jdu,’ Ju,’ Jdu,’
r=1,2,3,4,

and in MATLAB are calculated using the function deriv:

wl.l = deriv(wl0l, ul); wl_2 = deriv(wl01l, u2)

wl 3 = deriv(wl01l, u3); wl_4 = deriv(wl01l, u4)

w2_1 deriv (w202, ul); w22 = deriv (w202, u2);
( ) ( )
( ) ( )
( ) ( )

w2_3 deriv (w202, u3); w2_4 = deriv (w202, u4
w41l = deriv (w404, ul); wd_2 = deriv (w404, u2
wi_3 ; wd_4 = deriv (w404, ui4

deriv (w404, u3

vCl_.1l = deriv
vCl_.3 = deriv
vC2_1 = deriv
vC2_.3 = deriv

vC1l01l, ul); vCl_2 = deriv

) vC1l01l, u2
vC1l01l, u3); vCl_4 = deriv

)

)

)

vC1l01l, u4d);
vC201, ul); vC2_2 = deriv )
vC201, u3 )

vC201, u2
vC201, u4

,\,\,\,\
—~ e~~~

; vC2_4 = deriv

vC3_.1l = deriv(vC302, ul); vC3_.2 = deriv(vC302, u2);
vC3_.3 = deriv(vC302, u3); vC3_.4 = deriv(vC302, ud);
vC4_1 = deriv(vC402, ul); vC4_2 = deriv(vC402, u2);
vC4_3 = deriv(vC402, u3); vC4.4 = deriv(vC402, ud);

vC32_1 = deriv (vC3202, ul)
vC32_2 = deriv(vC3202, u2);
vC32_3 = deriv(vC3202, u3)
vC32_4 = deriv (vC3202, ud)

Generalized Active Forces
Link 1
The following symbolical variables are introduced:

syms FOlx FOly FOlz TOlx TOly TOlz real
syms F21lx F2ly F21lz T21lx T2ly T2lz real
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The force applied by base O to link 1 at C; expressed in terms of RF1 is Fy;
Forxt1 + Foiy)y + For Ky, or:

FO1l = [FOlx FOly FOlz];

The torque applied by base O to link 1 expressed in terms of RF1 is Ty
To1x11 +To1y )y + Tor- Ky, or:

TO0l = [TOlx TOly TOlz];

The force applied by link 2 to link 1 at C, expressed in terms of RF2 is Fy
Py +Riy), + P ko, or:

F21 = [F21x F21ly F21z];

The torque applied by link 2 to link 1 expressed in terms of RF2 is To; = Th1x 1 +

Driy)y +Tai ko, or:
T21 = [T21x T2ly T21z];

The gravitational force that acts on link 1 at C; is G| = —mj gJg = —m1 gJ;, Or:
Gl = [0 —-mlxg O0];

The generalized active forces for link 1 are

0 Yo,

u,

Jw d
Q1= ero “(Tor +Tar) + a‘;crl

(G1+For) +

-F217 r= 17 2, 3,4.
The MATLAB statements for the generalized active forces for link 1 are:

Qlal=wl_1x(TO1l.’+R21."T21.")+vCl_ 1% (GLl."+F01.")+...
vC2_1*xR21."xF21.";

Qla2=wl_ 2 (TO1.’+R21."*T21.")+vCl 2+ (GL."+F01.")+...
vC2_2xR21."xF21.";

Qla3=wl 3% (TO1.’+R21."*T21.")+vC1l 3% (GL."+F01.")+...
vC2_3xR21."xF21.";

Qlad=wl_ 4% (TO1.’+R21."*T21.")+vCl_ 4% (GL."+F01.")+...
vC2_4xR21."xF21.";

Link 2
The following symbolical variables are introduced:

syms F32x F32y F32z T32x T32y T32z real
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The force applied by link 1 to link 2 at C; expressed in terms of RF2 is —F»;.
The torque applied by link 1 to link 2 expressed in terms of RF2 is —T,;. The
force applied by link 3 to link 2 at C3; expressed in terms of RF2 is F3p =
Fsoxp + F32y ), + F32: K2, or:

F32 = [F32x F32y F32z];

The torque applied by link 3 to link 2 expressed in terms of RF2 is T3y = T3o,1 +
T32y3, + T3z, k,, or:

T32 = [T32x T32y T32z];

The gravitational force that acts on link 2 at C, expressed in terms of RFI is
Gy =—mpgJ, or:

G2 = [0 —-m2*g 0];

The generalized active forces for link 2 are

i 8w20
Qo = Tur‘(TQ*Tzl)Jr

(9Vc32

u,

d Ve,

u,

(G2 —F2)+

‘F, r=1,2,3,4.
The MATLAB statements for the generalized active forces for link 2 are:

Q2al=w2_1% (T32."’-T21.’)+vC2_1*(G2."-R21."xF21.")+...
vC32_1xF32.7;

Q2a2=w2. 2% (T32."-T21.")+vC2 2% (G2."-R21."+xF21." ) +...
vC32_2%xF32.7;

Q2a3=w2_3% (T32."-T21.’)+vC2_3%(G2."-R21."xF21.")+...
vC32_3%xF32.7;

Q2ad4=w2_4% (T32."-T21.")+vC2_4% (G2."-R21."+xF21." ) +...
vC32_2xF32.7;

Link 3
The following symbolical variables are introduced:

syms F43x F43y F43z T43x T43y T43z real
The force applied by link 2 to link 3 at C3 expressed in terms of RF2 is —F3;.
The torque applied by link 2 to link 3 expressed in terms of RF2 is —T3;. The

force applied by link 4 to link 3 at C4 expressed in terms of RF2 is Fy3 =
Fu3xp + Fyzyp )y + Fyz Ko, or:

F43 = [F43x F43y F43z];
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The torque applied by link 4 to link 3 expressed in terms of RF2 is T43 = Tuz, 1o +
Ty3y)p + Taz ko, or:

T43 = [T43x T43y T43z];
The gravitational force that acts on link 3 at C3 expressed in terms of RF2 is:
G3 = [0 -m3%g O]xtranspose (R21);

The generalized active forces for link 3 are

(9(.020

d
814 (G3_F32)+ A 'F437 r= 1727374'

Q3r - aur

(T43—T3) +

A2
8u,
The MATLAB statements for the generalized active forces for link 3 are:

Q3al=w2_1% (T43."-T32.")+vC3_ 1% (G3.’'-F32.")+
vC4_1xF43.";

Q3a2=w2_2* (T43.’-T32.")+vC3_2% (G3."-F32.")+
vC4_2xF43.7;

Q3a3=w2_ 3% (T43.'-T32.7)+vC3.3*%(G3."-F32.")+
vC4_3xF43.7;

Q3ad=w2_4* (T43.’-T32.")+vC3_4% (G3."-F32.")+
vC4_4xF43.7;

Link 4

The force applied by link 3 to link 4 at C4 expressed in terms of RF2 is —F43. The
torque applied by link 3 to link 4 expressed in terms of RF2 is —T43. The gravita-
tional force that acts on link 4 at C4 expressed in terms of RF2 is:

G4 = [0 -md4xg O]xtranspose (R21);

The generalized active forces for link 3 are

dwyg

Cy
7240 (Gy—Fu3), r=1,2,3, 4.
u, (G4—F43), r

Q4r = aur

(=Ts)+

The MATLAB statements for the generalized active forces for link 4 are:

Qd4al = w4_1+R42x (-T43)." + vC4_1x(G4.’'-F43.7);
Qd4a2 = wd_2+«R42% (—-T43) .’ + vC4 2+ (G4.'-F43.");
Q4a3 = wld_3+«R42x (-T43) .’ + vC4 3%x(G4.’'-F43.7);
Qdad = wld_4+«R42+ (-T43)." + vC4_ 4« (G4.’'-F43.7);
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The total generalized active forces are

Qr:Q1r+Q2r+Q3r+Q4r7 r= 1,273747

or:
Ql = simple (Qlal+Q2al+Q3al+Q4al);
Q2 = simple (Qla2+Q2a2+Q3a2+Q4a2);
Q3 = simple (Qla3+Q2a3+Q3a3+Q4a3l3);
Q4 = simple (Qlad+Q2ad4+Q3ad+Q4ad);

Generalized Inertia Forces
The central inertia dyadic of link p, p = 1,2,3,4 is I, = (Ipx1,)1, + (Ipy),)1, +
(I,:kp)kp. The central principal axes of link p are parallel to 1p,),. Kp and the
associated moments of inertia have the values Iy, Iy, I,;, respectively. The inertia
matrix associated with I, is

or in MATLAB:

inertia
central
1 = [I1lx
inertia
central
2 = [I2x
inertia
central
3 = [I3x
inertia
central
[I4x

o° o

=

o° o

H

H o° o°

o° o

I4

matrix associated
inertia dyadic of
0 0; 0 Ily 0; 0 O
matrix associated
inertia dyadic of
0 0;, 0 I2y 0; 0 O
matrix associated
inertia dyadic of
0 0; 0 I3y 0; 0 O
matrix associated
inertia dyadic of
0 0; 0 I4y 0; 0 O

Define Fjj ,, the inertia force for link p, as

or in MATLAB:

Finl

Finp = —myac,,

with
link 1
I1z];
with
link 2
I12z];
with
link 3
I13z];
with
link 4
I4z];

r=1234,

inertia force Finl of 1linkl in RFO
expressed in terms of RF1
-ml%*aCl01;
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inertia force Fin2 of 1link2 in RFO
expressed in terms of RF1

2 = -m2+xaC201;

inertia force Fin3 of 1ink3 in RFO
expressed in terms of RF2

3 = -m3%xaC302;

inertia force Fin4 of 1link4 in RFO
expressed in terms of RF2

Find = -m4%aC402;

o° o

i

e
=]

o° oo

0|
jo]

i

o° o

The inertia moment Mjj, ,, for link p is
Min, = —0po - I —wpo % (Ip - wpo).
The MATLAB statements for the inertia moments are:

% inertia moment Minl of link 1 in RFO

% expressed in terms of RF1

Minl = —-alphalOl*Il-cross(wl01l,wl01+I1);
% inertia moment Min2 of 1link 2 in RFO

% expressed in terms of RF2

Min2 = -alpha202%I2-cross (w202,w202%I2);
% inertia moment Min3 of 1link 3 in RFO

% expressed in terms of RF2

Min3 = -alpha302%I3-cross (w202,w202%13);
inertia moment Min4 of link 4 in RFO
expressed in terms of RF4

Min4 = -alphad404*I4-cross(w404,w404«I4);

%
%

The generalized inertia force Kj,, is

4 8wpo
= Jdu,

4 aVc)
Knr: 'Minp+ZTI'Finp7 r:172a374'
P p=1 ltr

The MATLAB commands for the generalized inertia forces are:

Kinl = wl_1«Minl.’ + vCl_1xFinl.’ +
w2_1*Min2.’ + vC2_1xFin2.’ +
w2_1+*Min3.’ + vC3_1xFin3.’ +
w4_1+Mind.’” + vC4_1«Find.’ ;

Kin2 = wl_2+«Minl.’ + vCl.2xFinl.’ +
w2_2*Min2.’ + vC2_2+Fin2.’ +
w2_2*Min3.’ + vC3_2+xFin3.’ +
w4 _2+«Mind .’ + vC4_2«xFind.’ ;
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Kin3 = wl_3*«Minl.’ 4+ vCl1_.3xFinl.’ +
w2_3*Min2.’ + vC2_3%xFin2.’ +
w2_3xMin3.’ + vC3_.3xFin3.’ +
wi4_3«Mind .’ + vC4_3xFin4d.’ ;

Kin4d = wl_4+«Minl.’” + vCl.4xFinl.’ +
w2_4+«Min2.’ + vC2_4%xFin2.’ +
w2_4+*Min3.’ + vC3_4xFin3.’ +

+

wi4_4+«Mind.

vC4_4xFind.’ ;

The dynamical equations governing the robot arm are Q, + Kj,, =0, r=1,2, 3, 4.
Kane’s dynamical equations in MATLAB are:

Kanel = Q1 + Kinl;
Kane2 = Q2 + Kin2;
Kane3 = Q3 + Kin3;
Kane4 = Q4 + Kin4;

Using the feedback control laws Kane’s equations have to be rewritten and in MAT-

LAB:
TOlyc = klx(glf—-gl)-k2«dqgl;
T21lxc = k3% (g2-qg2f) +kdxdg2+gx ( (m3+m4) xg4+mi4«L3) *s2;
T43yc = k5% (g3—-g3f) +k6+dg3;
F32yc = k7% (g4-qg4f) +k8xdgd—g* (m3+m4) xc2;
tor = {TOly , T21x , T43y , F32y };
torf = {TOlyc, T2lxc, T43yc, F32yc };
Kanl = subs (Kanel, tor, torf);
Kan2 = subs (Kane2, tor, torf);
Kan3 = subs (Kane3, tor, torf);
Kan4 = subs (Kane4, tor, torf);

Kane’s dynamical equations are transformed into a first-order system of differential

equations:

gl

{al, g2, 93, g4, ul, u2, u3, u4,};

ge = {"x(1)","x(2)","x(3)","'x(4)",
"x(5)7,"'x(6)","x(7)","x(8)"};

% gl ge

$ rgl(t)’ —-> "x(1)’

$ Tg2(t)’ -> 'x(2)’

% 'g3(t)” > "x(3)'



6.6 RRTR Robot Arm 273

$ rga(t)’ —> "x(4)’
$ rul(t)’ —> 'x(5)’
S ru2(t)’ —> 'x(6)’
$ U3 (L)’ —> "x(7)’
$ rud(t)’ —> 'x(8)’

el = subs(Kanl, gl, ge)
e2 = subs(Kan2, gql, ge);
e3 = subs(Kan3, gl, ge)
e4 = subs(Kan4, gl, ge)

% system of ODE

dx1l = char (subs(dgl, gl, ge))

dx2 = char (subs(dg2, gl, ge));

dx3 = char (subs(dg3, gl, ge))

dx4 = char(subs(dg4, gl, ge))

dx5 = char (dulc
(
(
(

14

)
dx6 = char (du2c);
dx7 = char (du3c);
dx8 = char (dudc);

4

The system of differential equations is solved numerically by m-file functions. The
function file, RRTR . m is created using the statements:

fid = fopen('RRTR.m’,"'wt+’);
fprintf (fid,’ function dx = RRTR(t,x)\n’);
fprintf (fid,’dx = zeros(8,1);\n’);
fprintf (fid,"dx (1) = "); fprintf (fid,dx1);
fprintf (fid,’;\n’
fporintf (£fid, "dx (2
fprintf (fid,’;\n’
fprintf (fid, "dx (3
fprintf (fid,’ ;\n’
fprintf (fid, "dx (4
r

(

(

(

( = 7); fprintf (fid,dx2);
(

(

(

(

fprintf (fid,’;\n

(

(

(

(

(

(

(

(

Il
<
-
N

fprintf (fid, dx3);

Il

~
-
~

fprintf (fid, dx4);

Il

~
-
~

fprintf (£id, "dx (5 fprintf (£id, dx5);
fprintf (fid, !

fprintf (fid, "dx (6
fprintf (fid,’;\n’);
fprintf (fid, ' dx (7
fprintf (fid,’;\n’
fprintf (fid, "dx (8
fprintf (£fid, " ;") ;
fclose (fid); cd(pwd);

~

~.

_—
=]

= 7); fprintf(fid,dx6);

= 7); fprintf(fid,dx7);

Il

<
-
<

fprintf (fid, dx8);
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The ode45 solver is used for the system of differential equations:

t0 = 0; tf 15; time = [0 tf];

ql0=pi/6; g20=pi/12; g30=pi/10; g40=0.01;
ul0=0; u20=0; u30=0; u40=0;

x0=[gl0 g20 g30 g40 ul0 u20 u30 u4o0];
[t,xs]=0ded5 (RRRTR, time, x0);

x1l=xs(:,1); x2=xs(:,2); x3=xs(:,3); x4=xs(:,4);
x5=xs(:,5); x6=xs(:,6); x7=xs(:,7); x8=xs(:,8);

subplot (4,1,1)

xlabel ('t

subplot (4,1,2),plot (t,x2%x180/pi,'b’),

(s

,plot (t,x1x180/pi, 'r’"),

s)’),ylabel (gl (deg)’),grid,

xlabel ('t (s)’),ylabel('g2 (deg)’),grid,
subplot (4,1,3),plot (t,x3*180/pi,"'g’),
xlabel ('t (s)’),ylabel('g3 (deg)’),grid,
subplot (4,1,4),plot (t,x4,"'black’),
xlabel ("t (s)’),ylabel (g4 (m)’),grid
[ts,xs] = o0ded45(Q@RRTR,0:1:5,x0)

Figure 6.11 shows the plots of the generalized coordinates g, (), g2(¢), g3(¢), and

q4(t). The MATLAB computer program for the robot arm using Kane’s dynamical

equations is given in Appendix E.6.
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Fig. 6.11 Solution plots of the generalized coordinates g (), g2(1), g3(t), and qa(t)



Chapter 7
Problems

7.1 Problem Set: Mechanisms

The dimensions of the planar mechanisms, shown in Figs. 7.1-7.15, are given in
Tables 7.1-7.15, respectively. The angle of the driver link 1 with the horizontal axis
is ¢. The constant angular speed of the driver link 1 is # and is given in the tables.

1. Determine the type of motion (rotation, translation, and complex motion) for
each link, the connectivity table, the structural diagram, the contour diagram, the
independent contours, the number of degrees of freedom, the dyads, and the type
of the dyads.

2. Find the positions of the joints and the angles of the links with the horizontal
axis when the angle of the driver link 1 with the horizontal axis is ¢. Write a
MATLAB® program for the positions of the mechanism for the given angle ¢.

3. Write a MATLAB program for the positions of the mechanism for a complete
rotation of the driver link 1, ¢ € [0°,...,360°], using different methods.

4. Write a MATLAB program for the path of a point on a link with general plane
motion.

5. Write a MATLAB program for the animation (movie) of the mechanism for a
complete rotation of the driver link 1, ¢ € [0°,...,360°].

6. Find the velocities and the accelerations of the mechanism, using different meth-
ods, for the given position when the driver link 1 makes an angle ¢ with the
horizontal axis. The constant angular speed of the driver link 1 is n. Write a
MATLAB program for this.

7. The link bars of the mechanism are homogeneous rectangular prisms with the
width 2= 0.01 m and the depth d = 0.001 m. The sliders have the width wg;g., =
0.050 m, the height Agj;z., = 0.020 m, and the same depth d = 0.001 m. The links
of the mechanism are homogeneous and are made of steel having a mass density
Psteer = 8000 kg/m3. The gravitational acceleration is g = 9.807 m/s%. The driver
link 1 has a constant angular speed n. The external force or moment applied on
the last link 5 is opposed to the motion of the link and has the value: |Fs,,| =
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2000 N if the last link 5 has a translational motion or, |[Ms,,| = 3000 Nm if the
last link 5 has a rotational motion.

Determine the joint forces and the motor moment M,,, required for the dynamic
equilibrium of the considered mechanism when the the driver link 1 makes an
angle ¢ with the horizontal axis. Write MATLAB programs for different methods
of calculating the dynamical forces.

Table 7.1 Mechanism 1

No AB AD BC CD ¢ n
[m] [m] [m] [m] [°] [rpm]

0.08 0.19 0.21 0.12 60 500
0.10 0.24 0.26 0.14 120 600
0.18 0.43 0.47 0.27 210 700
0.15 0.36 0.40 0.21 330 800

AW =

Fig. 7.1 Mechanism 1
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Table 7.2 Mechanism 2

No AB BC CcD CE EF a b ¢ ) n
[m] [m] [m] [m] [m] [m] [m] [m] [°] [rpm]

0.15 0.40 0.37 0.23 0.23 0.30 0.45 0.37 330 500
0.10 0.27 0.25 0.15 0.15 0.20 0.30 0.25 120 800
0.12 0.32 0.30 0.18 0.18 0.24 0.36 0.30 240 900
0.20 0.55 0.50 0.30 0.30 0.40 0.60 0.50 300 1000

BSOS S

0

Fig. 7.2 Mechanism 2
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Table 7.3 Mechanism 3
No AB BC CD DE EF a b ¢ n
[m] [m] [m] [m] [m] [m] [m] [°] [rpm]
1 0.02 0.03 0.03 0.03 0.06 0.03 0.01 30 600
2 0.05 0.20 0.20 0.31 0.30 0.10 0.06 150 700
3 0.09 0.11 0.07 0.11 0.12 0.035 0.025 240 900
4 0.22 0.27 0.17 0.25 0.28 0.09 0.055 330 1100

Fig. 7.3 Mechanism 3
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Table 7.4 Mechanism 4

No AB BC CE CcD EF a b ¢ ) n
[m] [m] [m] [m] [m] [m] [m] [m] [°] [rpm]

1 0.09 0.40 0.25 0.12 0.21 0.22 0.35 0.40 60 400
2 0.15 0.67 0.45 0.22 0.32 0.33 0.60 0.65 135 600
3 0.22 1.00 0.65 0.35 0.60 0.55 0.90 1.20 240 800
4 0.16 0.70 0.50 0.25 0.48 0.40 0.60 0.70 300 1000
A
C
y

Fig. 7.4 Mechanism 4
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Table 7.5 Mechanism 5

No AB BC CcD CE EF a b ¢ ) n
[m] [m] [m] [m] [m] [m] [m] [m] [°] [rpm]

0.10 0.37 0.15 0.15 0.25 0.12 0.36 0.09 45 1000
0.08 0.30 0.12 0.12 0.20 0.10 0.30 0.08 135 1100
0.12 0.45 0.18 0.18 0.30 0.15 0.45 0.14 225 1200
0.06 0.24 0.09 0.09 0.18 0.075 0.225 0.070 315 1300

BSOS S

<
-«

Fig. 7.5 Mechanism 5
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Table 7.6 Mechanism 6

No AB AC BD DE EF a b ) n

[m] [m] [m] [m] [m] [m] [m] [°] [rpm]
1 0.06 0.18 0.27 0.12 0.08 0.02 0.01 225 600
2 0.08 020 030 016 0.11 0.025 0.13 45 750
3 0.05 0.12 0.18 0.10 0.065 0.017 0.085 135 950
4 0.04 0.10 0.6 009 0063 0.013 0.065 315 1150

Fig. 7.6 Mechanism 6

281
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Table 7.7 Mechanism 7

No AB AD BC a 0 n
(m] (m] [m] (m] [°] [rpm]

0.08 0.20 0.10 0.15 300 1000
0.06 0.15 0.08 0.50 210 1200
0.10 0.25 0.12 0.50 150 1300
0.12 0.30 0.15 0.50 30 1500

BSOS S

Fig. 7.7 Mechanism 7
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Table 7.8 Mechanism 8

No AB AD BC CE EF a ) n

[m] [m] [m] [m] [m] [m] [°] [rpm]
1 0.22 1.00 0.65 0.18 0.70 0.60 300 1000
2 0.25 .10 070 020 080  0.65 120 1200
3 0.20 1.00 0.55 0.15 0.60 0.52 60 1500
4 0.18 0.80 040 010 050 043 225 1800

Fig. 7.8 Mechanism 8
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Table 7.9 Mechanism 9

No AB AC CD DE ¢ n

[m] [m] [m] [m] [°] [rpm]
1 0.22 0.08 0.20 0.60 240 500
2 0.18 0.08 0.20 0.50 30 600
3 0.15 0.05 0.18 0.45 120 700
4 0.08 0.03 0.07 0.20 330 800

Fig. 7.9 Mechanism 9

7 Problems
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Table 7.10 Mechanism 10

285

No AB AE BC CD a ¢ n

[m] [m] [m] [m] [m] [°] [rpm]
1 0.03 0.07 0.05 0.08 0.05 30 400
2 0.10 0.25 0.17 0.30 0.09 120 600
3 0.12 0.30 0.20 0.35 0.10 200 800
4 0.09 0.35 0.25 0.40 0.12 300 1000

Fig. 7.10 Mechanism 10
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Table 7.11 Mechanism 11

No AB CD DE AC (0] n

[m] [m] [m] [m] [°] [rpm]
1 0.08 0.14 0.40 0.04 45 300
2 0.10 0.16 0.45 0.03 135 400
3 0.25 0.40 1.00 0.10 225 500
4 0.22 0.30 0.90 0.06 315 600

Fig. 7.11 Mechanism 11

7 Problems



7.1 Problem Set: Mechanisms 287

Table 7.12 Mechanism 12

No AB AC BD a b 0 n
(m] (m] [m] (m] (m] ] [rpm]

0.12 0.30 0.50 0.08 0.15 60 500
0.10 0.30 0.50 0.07 0.12 150 700
0.09 0.30 0.45 0.06 0.10 240 900
0.08 0.25 0.40 0.05 0.09 330 1100

BSOS S

Fig. 7.12 Mechanism 12
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Table 7.13 Mechanism 13

No AB BC CD a b ¢ n

[m] [m] [m] [m] [m] [°] [rpm]
1 0.20 0.21 0.39 0.30 0.25 45 500
2 0.18 0.17 0.35 0.27 0.26 135 1000
3 0.10 0.25 0.15 0.225 0.30 240 1500
4 0.22 0.23 0.45 0.30 0.32 315 2000

Fig. 7.13 Mechanism 13

7 Problems
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Table 7.14 Mechanism 14

No AB AC CD DE a 0 n
(m] (m] [m] (m] (m] ] [rpm]

0.10 0.20 0.12 0.08 0.13 20 500
0.08 0.15 0.10 0.10 0.12 110 600
0.15 0.30 0.20 0.14 0.25 200 700
0.07 0.15 0.10 0.06 0.11 290 800

BSOS S

Fig. 7.14 Mechanism 14
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Table 7.15 Mechanism 15

No AB AC a ¢ n
[m] [m] [m] [°] [rpm]

0.04 0.10 0.08 60 500
0.05 0.10 0.07 120 600
0.08 0.10 0.09 210 700
0.08 0.20 0.10 330 800

B Lo =

Fig. 7.15 Mechanism 15
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7.2 Problem Set: Robots

Schematic representations of a robot arm consisting of three links 1, 2, and 3 are
shown in Figs. 7.16-7.25. The mass centers of links 1, 2, and 3 are C;, C3, and C3,
respectively. The generalized coordinates (quantities associated with the instanta-
neous position of the system) are ¢;(¢), ¢2(¢), and ¢3(t).

The central principal axes of link p, p = 1,2,3 are parallel to 15, J,,, k;, and the
associated moments of inertia have the values Iy, Iy, I,;, respectively. The central
inertia dyadic of link p is

Iy = (Ipap)tp + (Ipyd ) )1, + Ik K.

If the joint between link p and link p+1is a
rotational joint consider a control vector moment

Tppt1 = Tp.pr1)dpt1 T Tppr)ydpit + Tippr1)Kp 1,
translational joint consider a control vector force

Fppt1 = Fppriydpt1 T Fppi1)ydpst T Fip pr1)Kp+1-

Select suitable numerical values for the input numerical data.

—

Find the transformation matrices R;;.

2. Calculate the angular velocities and accelerations of the links, w;; and o;;.

3. Determine the position vectors, rc;, the velocities, vc;, and the accelerations, ac,
of the mass centers C;.

4. Find the generalized (active) forces Q;.

5. Write a MATLAB program for the symbolical calculation of Lagrange’s equa-
tions of motion or/and Kane’s dynamical equations.

6. Find the numerical solutions for inverse dynamics and direct dynamics.
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Fig. 7.18 Robot 3
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Fig. 7.21 Robot 6
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Fig. 7.26 Robot 11
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Fig. 7.30 Robot 15
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Appendix A
Programs of Chapter 2: Position Analysis

A.

[

Slider-Crank (R-RRT) Mechanism

Al
Position analysis
R—-RRT

o oo o°

[)

clear % clears all variables from the workspace

[

clc % clears the command window and homes the cursor

[)

close all % closes all the open figure windows
% Input data

AB=0.5;

BC=1;

phi = pi/4;

% Position of joint A (origin)

XA = 0; yA = 0;

% Position of joint B - position of the driver link
xB = ABxcos (phi);

yB = AB*sin (phi);

% Position of joint C

yC = 0;

% Distance formula: BC=constant

egqnC = ' ( xB - xCsol )"2 + ( yB - yC )"2 = BC"2’;

% Solve the above equation
solC = solve(eqnC, "xCsol’);

% solve symbolic solution of algebraic equations
% Two solutions for xC - vector form

301
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% first component of the vector solC
xCl=eval (solC(1));
% second component of the vector solC
xC2=eval (s0lC(2));

Select the correct position for C

for the given input angle
f xCl > xB xC = xCl; else xC = xC2; end
% 1f conditionally executes statements

o° 0P o°

-

% Angle of the link 2 with the horizontal
phi2 = atan ((yB-yC)/ (xB-xC)) ;

fprintf ('Results \n\n’)

% Print the coordinates of B
fprintf ("xB = %g (m)\n’, xB)
fprintf ("yB = %g (m)\n’, yB)
% Print the coordinates of C
fprintf (! xC %g (m)\n’, xC)
fprintf ('yC = %g (m)\n’, yC)

% Print the angle phiZ2
fprintf ("phi2 = %g (degrees) \n’, phi2+180/pi)

C
C

[

% Graphic of the mechanism
plot ([xA,xB], [yA,yB]l, ' r-o’, ...
[xB,xC], [yB,yC],"b-0"), ...

xlabel('x (m)’), ...

ylabel ('y (m)"), ...

title('positions for \phi = 45 (deg)’),...

text (xA,yA," A’

text (xB,yB,’” B’
C

text (xC,yC,”’
axis([-0.2 1.4 -0.2 1.41),
grid
the commas and ellipses (...) after the commands

were used to execute the commands together
end of program

o o° oP

Results:
xB = 0.353553 (m)
yB = 0.353553 (m)
xC = 1.28897 (m)
yC = 0 (m)

phi2

-20.7048 (degrees)

A Programs of Chapter 2: Position Analysis

eval executes string as an expression or statement
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A.2 Four-Bar (R-RRR) Mechanism

B
N

osition analysis
—RRR

o 0P o°

o

clear all; clc; close all

% Input data
AB=0.15;
BC=0.35;
CD=0.30;
CE=0.15;
xD=0.30;
yD=0.30;
phi = pi/4 ; % (rad)

o0 o° o° o° o oe

XA = 0; yA = 0;
rA = [xA yA 0];
rD = [xD yD 0];
xB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];

% Position of joint C
% Distance formula: BC=constant

egqnCl = " (xCsol - xB) "2 + (yCsol - yB)"2 = BC"2 ’;
% Distance formula: CD=constant
egnC2 = ’ (xCsol - xD) "2 + (yCsol - yD)"2 = CD"2 ’/;

Q

% Simultaneously solve above equations
solC = solve(eqnCl, eqnC2, ’'xCsol, yCsol’);

% Two solutions for xC - vector form
xCpositions = eval (solC.xCsol);
% Two solutions for yC - vector form

yCpositions = eval (solC.yCsol);

[

% Separate the solutions in scalar form
% first component of the vector xCpositions
xCl = xCpositions(1l);

% second component of the vector xCpositions
xC2 = xCpositions(2);
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A Programs of Chapter 2: Position Analysis

% first component of the vector yCpositions
yCl = yCpositions(1l);

)

yC2 =

% second component of
yCpositions (2);

the vector yCpositions

% Select the correct position for C
% for the given input angle

if xC1
xC
else
xC
end
rC =

[xC

< xD
= xCl; yC=yCl;

= xC2; yC=yC2;

yC 0]; % Position vector of C

% Position of joint E
% Distance formula: CE=constant

egqnEl=' (xEsol-xC) "2+ (yEsol-yC) "2=CE"2’;

Slope formula:

E, C, and D are on the same straight line
eqnkE2=' (yD-yC) / (xD-xC) = (yEsol-yC) / (xEsol-xC) ' ;

o o

solE = solve(eqnEl, eqnkE2, ’'xEsol, yEsol’);
xEpositions = eval (solE.xEsol);
yEpositions = eval (solE.yEsol);
xEl = xEpositions(l); xE2 = xEpositions(2);
yE1l = yEpositions(l); yE2 = yEpositions(2);
if xE1 < xC

xE = xEl1; yE=yEl;
else

xE = xE2; yE=yE2;
end
rE = [xE yE 0]; % Position vector of E

% Angles of the links with the horizontal

phi2
phi3 =

= atan ((yB-yC)/ (xB-xC));

atan ( (yD-yC) / (xD-xC)) ;

fprintf (' Results \n\n’)

fprintf("rA = [ %9, %9, %9 1 (m)\n’, rAd)
fprintf("rD = [ %9, %g, %g ] (m)\n’ rD)
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fprintf (' rB =
fprintf ('rC = [ %g, %g,
fprintf (' rE =

(m)\n’, rB)
(m)\n’, rC)
(m)\n’, rE)

|

O

Q

o

Q

o0 o o
Q Q

|
o0
Q
o\°
Q
~
Q

fprintf ('phi2 = %g (degrees) \n’, phi2%180/pi)
fprintf (' phi3 %g (degrees) \n’, phi3*180/pi)

% Graphic of the mechanism

plot ([xA,xB], [yA,yB],’ k-0’ ,’LineWidth’,1.5)
hold on % holds the current plot

plot ([xB,xC], [yB,yC],'b-0o’,’LineWwidth’,1.5)
hold on

plot ([xD,xE], [yD,yE],’r-0o’,’LineWidth’,1.5)
% adds major grid lines to the current axes
grid on, ...

xlabel ("x (m)’), ylabel('y (m)’),...
title('positions for \phi = 45 (deqg)’),...
text (xA,yA, ' \leftarrow A = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xB,yB,’ B"), ...

text (xC,yC, " \leftarrow C = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xD,yD,’\leftarrow D = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xE, yE,’ E’), axis([-0.2 0.45 -0.1 0.61])
% end of program

Results:
rA = [ OI OI 0 ] (m)
rD = [ 0.3, 0.3, 0 ] (m)
rB = [ 0.106066, 0.106066, 0O 1 (m)
rC = [ 0.0400698, 0.449788, 0 1 (m)
rE = [ -0.0898952, 0.524681, 0 ] (m)
phi2 = -79.1312 (degrees)

phi3 -29.9532 (degrees)
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A.3 R-RTR-RTR Mechanism

e
w

Position analysis - input angle phi
R—-RTR-RTR

o 0P o°

clear all; clc; close all

% Input data
AB = 0.15; AC = 0.10; CD = 0.15; %(m)

phi = pi/6; % (rad)

% Select the dimensions
DF=0.40; AG=0.30; % (m)

XA = 0; yA = 0; rA = [xA yA 0]; % Position of A
xC = 0; yC = AC; rC = [xC yC 0]; % Position of C
% Position of B

xB = AB*cos (phi); yB = ABxsin(phi);

rB = [xB yB 0];

[

% Position of joint D
% Distance formula: CD=constant
eqnDl=' ( xDsol - xC )"2 + ( yDsol - yC )"2 = CD"2';

% Slope formula:
% B, C, and D are on the same straight line
eqnD2=' (yB-yC) / (xB-xC) = (yDsol-yC) / (xDsol-xC)’;

% Simultaneously solve above equations
solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);
% solve symbolic solution of algebraic equations

o\

Two solutions for xD - vector form

xDpositions = eval (solD.xDsol);

% eval execute string as an expression or statement
% Two solutions for yD - vector form

yDpositions = eval (solD.yDsol);

[}

% Separate the solutions in scalar form
% first component of the vector xDpositions
xD1 = xDpositions(1l);

% second component of the vector xDpositions
xD2 = xDpositions(2);
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% first component of the vector yDpositions
yD1 = yDpositions(1l);

% second component of the vector yDpositions
yD2 = yDpositions(2);

% Select the correct position for D
% for the given input angle

if xD1 <= xC
xD = xD1; yD=yDIl;

else
xD = xD2; yD=yD2;
end
rD = [xD yD 0]; % Position of D

% Angles of the links with the horizontal
phi2 = atan ((yB-yC)/ (xB-xC));

phi3 = phi2;

phi4 atan (yD/xD) +pi;

phi5 = phi4;

Q

% Positions of the points F and G

xF = xD + DF«cos
yEF = yD + DF#*sin
rF

phi3);
phi3);
[xF yF 0]; % Position vector of F

—_ o~

xXG = AGxcos (phib);
yG AG*sin (phib);
rG = [xG yG 0]; %

Position vector of G

fprintf ("Results \n\n’)

fprintf ("rA = [ %9, %g, %9 ] (m)\n’, rA)
fprintf('rC = [ %g, %g, %g ] (m)\n’, rC)
fprintf ('rB = [ %g, %g, %9 ] (m)\n’, rB)
fprintf('rD = [ %g, %9, %9 ] (m)\n’, rD)

fprintf ('phi2 = phi3 = %g (degrees) \n’,phi2x180/pi)
fprintf ('phi4 = phi5 = %g (degrees) \n’,phi4x180/pi)

fporintf (' rF =
fprintf ('rG = [ %9, %9,

rF)
] (m)\n’, rG)

|
\O
Q
\
Q
o o
Q «Q
3
~
jo]
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% Graphic of the mechanism

plot ([xA,xB], [yA,yB], k-0’ ,’LineWidth’
hold on % holds the current plot

plot ([xD,xC], [yD,yC], ’b-0o’,’LineWidth’
hold on

plot ([xC,xB], [yC,yB], 'b-0o’,’LineWidth’
hold on

plot ([xB,xF], [yB,yF], ’b-0o’,’LineWidth’
hold on

plot ([xA,xD], [yA,yD],’r-o’, " LineWidth’
hold on

plot ([xD, xG], [yD,yG], ' r-o’,’LineWidth’

grid on, ...
xlabel ("x (m)’), ylabel('y (m)’),...
title ('positions for \phi = 30 (deg)’)

text (xA,yA,’\leftarrow A = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xB,yB,’” B’'),...

text (xC,yC, " \leftarrow C = ground’, ...
"HorizontalAlignment’,’left’), ...

text (xD,yD,” D'),...

A Programs of Chapter 2: Position Analysis

2

text (xF,yF,’” F’), text(xG,yG,’ G'),...

axis([-0.3 0.3 -0.1 0.37])

Q

% end of program

Results:
rA = [ 0, 0, 01 (m)
rC =10, 0.1, 0 1 (m)
rB = [ 0.129904, 0.075, 0 ] (m)
rD = [ -0.147297, 0.128347, 0 1 (m)
phi2 = phi3 = -10.8934 (degrees)
phid4 = phi5 = 138.933 (degrees)
rF = [ 0.245495, 0.0527544, 0] (m)
rG = [ -0.226182, 0.197083, 0] (m)
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A.4 R-RTR-RTR Mechanism: Complete Rotation

g
S

Position analysis - complete rotation
R—-RTR-RTR

o 0P o°

clear all; clc; close all

Q

% Input data
AB=0.15; AC=0.10; CD=0.15; % (m)

xA = 0; yA = 0; rA = [xA yA 0];

xC = 0; yC = AC; rC = [xC yC 0];

fprintf ("Results \n\n’)

fprintf("rA = [ %9, %9, %9 1 (m)\n’, rA)

fprintf("rC = [ %9, %g, %9 1 (m)\n’, rC)
(

fprintf ("\n’)
% complete rotation phi=0 to 2xpi step pi/3
for phi=0:pi/3:2*pi,

[

% for repeat statements a specific number of times

fprintf ("phi = %g deegres \n’, phi*180/pi)

% Position of joint B - position of the driver link
XxB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];
fprintf("rB = [ %9, %9, %9 ] (m)\n’, rB)

Q

% Position of Jjoint D
eqgnD1=' (xDsol - xC)"2 + (yDsol - yC)"2 = CD"2 ’;
eqnD2=' (yB-yC) / (xB-xC) = (yDsol-yC)/ (xDsol-xC)’;

% Simultaneously solve above equations

solD = solve(egnDl, egnD2, ’'xDsol, yDsol’);
xDpositions = eval (solD.xDsol);
yDpositions = eval (solD.yDsol);

)

% Separate the solutions in scalar form
xD1 = xDpositions(l); xD2 = xDpositions(2);
yD1l = yDpositions(1l); yD2 yDpositions (2);

Select the correct position for D for the angle phi
see the drawings for each quadrant

%
%
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if (phi>=0 && phi<=pi/2) || (phi >= 3*pi/2 && phi<=2xpi)
if xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end
else
if xD1 >= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end
end

o° o

&& short-circuit logical AND
||  short-circuit logical OR

rD = [xD yD 0];
fprintf("rD = [ %9, %9, %g] (m)\n’, rD)

% Angles of the links with the horizontal

phi2 = atan((yB-yC)/ (xB-xC));

phi3 = phi2;

fprintf ("phi2 = phi3 = %g (degrees) \n’, phi2x180/pi)
phid4 = atan (yD/xD);

phi5 = phi4;

fprintf ('phi4 = phi5 = %g (degrees) \n’, phi4x180/pi)
fprintf (' \n’)

[

% Graphic of the mechanism

plot ([xA, xB], [yA,yB],’k-o’, [xB, xC], [yB,yC],"b-0o’
[xC,xD1], [yC,yD],"b-0")

hold on

plot ([xD,xA], [yD,yA],’r-0")

xlabel (x (m)’), ...

ylabel ('y (m)’),...

title ('positions for \phi=0 to 360 step 60 (deqg)’),

text (xA,yA,’” A"),.

text (xB, yB, B"),.

text (xC,yC,’ cr),.

text (xD, yD, D"),...

axis([-0.3 0.3 —0.2 0.31)

[

end % end for

[

% end of program

Results:
rA = [0, 0, 01 (m)
rC =110, 0.1, 0 1 (m)
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phi = 0 deegres

rB =1 0.15, 0, 0 ] (m)

rD = [ -0.124808, 0.183205, 0] (m)
phi2 = phi3 = -33.6901 (degrees)
phi4 = phi5 = -55.7355 (degrees)

phi = 60 deegres

rB = [ 0.075, 0.129904, 0 1 (m)

rD = [ -0.139333, 0.0444455, 0] (m)
phi2 = phi3 = 21.738 (degrees)

phi4 phib

-17.692 (degrees)

phi = 120 deegres

rB = [ -0.075, 0.129904, 0 1 (m)
rD = [ 0.139333, 0.0444455, 0] (m)
phi2 = phi3 = -21.738 (degrees)
phi4 = phib

17.692 (degrees)

phi 180 deegres

rB = [ -0.15, 1.83697e-17, 0 1 (m)
rD = [ 0.124808, 0.183205, 0] (m)
phi2 = phi3 33.6901 (degrees)
phi4 = phi5 = 55.7355 (degrees)

phi = 240 deegres

rB = [ -0.075, -0.129904, 0 1 (m)
rD = [ 0.0465207, 0.242604, 0] (m)
phi2 = phi3 = 71.9325 (degrees)
phi4 = phib

79.145 (degrees)

phi = 300 deegres

rB = [ 0.075, -0.129904, 0 1 (m)

rD = [ -0.0465207, 0.242604, 0] (m)
phi2 = phi3 = -71.9325 (degrees)
phi4 = phib5 = -79.145 (degrees)

phi = 360 deegres

rB = [ 0.15, -3.67394e-17, 0 1 (m)
rD = [ -0.124808, 0.183205, 0] (m)
phi2 = phi3 = -33.6901 (degrees)
prhid phi5 = -55.7355 (degrees)
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A.5 R-RTR-RTR Mechanism: Complete Rotation Using

Euclidian Distance Function

A5

Position analysis - complete rotation

R-RTR-RTR

Euclidian distance function

the program uses the function: Dist (x1,vyl,x2,vy2)
the function is defined in the program Dist.m
clear all; clc; close all

o® o0 d° o° o° oP

o\

Input data

AB=0.15; AC=0.10; CD=0.15; % (m)

XA = 0; yA = 0; rA = [xA yvA 0];

xC =0 ; yC = AC ; rC = [xC yC 0];

fprintf ("Results \n\n’)

fporintf (' rA = [ %9, %g, %g ] (m)\n’, rA)
fprintf('rC = [ %g, %g, %g ] (m)\n’, rC)

% at the initial moment phi=0 => increment = 0
increment = 0 ;

% the step has to be small for this method

step=pi/6;

for phi=0:step:2xpi,

fprintf ("phi = %g deegres \n’, phi*180/pi)

xB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];
fporintf (' rB = [ %9, %9, %g ] (m)\n’, rB)

egnD1=' ( xDsol - xC )"2 + ( yDsol - yC )~"2=CD"2’;

eqnD2=' (yB-yC) / (xB-xC) = (yDsol-yC)/ (xDsol-xC)';

solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);
xDpositions = eval (solD.xDsol);
yDpositions = eval (solD.yDsol);
xD1 = xDpositions(l); xD2 = xDpositions(2);
yD1 yDpositions (1); yD2 yDpositions (2);

select the correct position for D
only for increment == 0

the selection process 1is automatic
for all the other steps

o° o o° o

A Programs of Chapter 2: Position Analysis
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if increment == 0
if xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end

else

distl = Dist (xD1l,yD1l,xDold,yDold);
dist2 = Dist (xD2,yD2,xDold,yDold);
if distl<dist2 xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end
end

xDold=xD;
yDold=yD;

increment=increment+1;

rD = [xD yD 0];
fprintf("rD = [ %9, %9, %9 ] (m)\n’, rD)

phi2 = atan((yB-yC)/ (xB-xC)); phi3 = phi2;
fprintf (‘phi2 = phi3 = %g (degrees) \n’, phi2*180/pi)

phi4 = atan(yD/xD); phi5 = phi4;
fprintf ('phi4 = phi5 = %g (degrees) \n’, phidx180/pi)
fprintf ("\n’)

Q

% Graphic of the mechanism

plot ([xA, xB], [yA,yB],’k-0o’, [xB,xC], [yB,yC],'b-0", ...
[xC,xD], [yC,yD], "b-0")

hold on

plot ([xD, xA],
xlabel ("x (m)
ylabel ("y (m)

[
4

4
4

yD,yAl, " r-0")
) P
) I

title ('positions for \phi=0 to 360 step 30(deg)’),...
text (xA,vA,’ A’
text (xB,yB,’ B
text (xC,yC,” C’
text (xD,yD,’ D’

) s
Y, ..
Yy
)P

axis([-0.3 0.3 -0.2 0.3])

end

[

% end of program
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A.6 Path of a Point on a Link with General Plane Motion:
R-RRT Mechanism

A6

Position analysis

R—-RRT

Path of C2 (mass center of link BC)

o° o° o oe

clear all; clc; close all
AB = .5; BC = 1; xA = 0; yA = 0; yC = 0;

incr = 0 ;

for phi=0:p1i/10:2xpi,

xB = ABxcos (phi); yB = ABxsin(phi);
xC = xB + sqrt (BC"2-yB"2);

incr = incr + 1;

XC2 (incr) = (xB+xC) /2; yC2(incr)=(yB+yC)/2;
% Graphic of the mechanism

subplot (2,1,1),

plot ( [xA,xBl, [vA,yB]l, ' r=', ...

[xB,xC], [yB,yC],"b=" ), ...

hold on

xlabel ('x (m)’"), ylabel('y (m)’),...

title (' Graphic of the mechanism’),...
text (xC2,yC2,'C2"), ...
axis([-0.6 1.6 -0.6 0.61),...

)

end % end for

% Path of C2 (mass center of link 2)
subplot (2,1,2), ...

plot (xC2, yC2, ’'-ko’),...

xlabel('x (m)’"), ylabel('y (m)’"),...
title('Path described by C2’), grid

Q

% end of program
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A.7 Path of a Point on a Link with General Plane Motion:
R-RRR Mechanism

A7

R-RRR

Position analysis

Path of C2 (mass center of link BC)

o° o° o oe

clear all; clc; close all

AB=0.15; % (m)
BC=0.35; % (m)
CD=0.30; % (m)
CE=0.15; % (m)

xA=0; vyA=0;
xD=0.30; yD=0.30;

incr = 0;
for phi=0:pi/10:2*pi,
xB = AB*cos (phi); yB = ABxsin (phi);

eqnCl=’" (xCsol - xB)

"2 +(yCsol - yB) "2 =BC"2';
egnC2=' (xCsol - xD) "2 +

(yCsol - yD) "2 =CD"2’;

solC = solve(eqnCl, eqnC2, ’'xCsol, yCsol’);
xCpositions = eval (solC.xCsol);
yCpositions = eval(solC.yCsol);

xCl = xCpositions(l); xC2 = xCpositions(2);
yC1 yCpositions (1); yC2 yCpositions (2);

if xCl1 < xD xC = xCl; yC = yCl;
else xC = xC2; yC=yC2; end

eqnEl=’ (xEsol-xC) "2 + (yEsol-yC) "2=CE"2 ’;
eqnkE2=' (yD-yC) / (xD-xC) = (yEsol-yC) / (xEsol-xC) ' ;

solE = solve(eqnEl, egnE2, ’'xEsol, yEsol’);
xEpositions = eval (solE.xEsol);
yEpositions = eval (solE.yEsol);
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xEl = xEpositions(l); xE2 = xEpositions(2);
yE1l = yEpositions(l); yE2 = yEpositions(2);

if xE1 < xC xE = xEl1; yE=yEl;
else xE = xE2; yE=yE2; end

incr = incr + 1;

XC2 (incr) ( xB + xC )/2;

YC2 (incr) = ( yB + yC )/2;

% Graphic of the mechanism

subplot (2,1,1),...

plot ([xA,xB], [yA,yB]l, k=", ...

[xB,xC], [yB,yC],"b-", ...

[xD,xE], [yvD,vE],"r="), ...

hold on, ...

xlabel ('x (m)’), ylabel('y (m)’), grid,...
axis([-0.2 0.35 -0.25 0.71),...
title (' Positions of the mechanism’), ...
text (XC2,YC2,'C27), ...

end

% Path of C2 (mass center of link 2)
subplot (2,1,2), ...

plot (XC2, YC2, ’'-ko’),...

xlabel ("x (m)’), ylabel('y (m)’),...
title ('Path described by C2’), grid

[}

% end of program



Appendix B

Programs of Chapter 3: Velocity and
Acceleration Analysis

B.1 Slider-Crank (R-RRT) Mechanism

w

1
Velocity and acceleration analysis
R—-RRT

o° o

o

clear all; clc; close all
AB=1; BC=1;
phi = pi/6; % input angle

xA = 0; yA = 0; rA = [xA yA 0];

xB = AB*cos (phi); yB = ABxsin(phi);
rB = [xB yB 0];

yC = 0; xC = xB+sqgrt (BC"2-(yC-yB) "2);
rC = [xC yC 0];

phi2 = atan ((yB-yC)/ (xB-xC)) ;

fprintf ('Results \n\n’

)
fprintf ('phi = phil %g (degrees) \n’, phix180/pi)

fprintf ('rA = %9, %9, %9 1 (m)\n’, rA)
fprintf %9, %9 (m)\n’, rB)

m)\n’, rC)

(

(

( [
("rB = [ %gl
( [ (

( = \n’, phi2*180/pi)

]
fprintf (' rC = 59, %9, %9 ]
2 )

fprintf ('phi2 %g (degrees

% Graphic of the mechanism

plot ([0,xB], [0,yB],'r-0o", [xB,xC], [yB,yC],"b-0"), ...
xlabel ('x (m)’"), ylabel('y (m)’),...

title ('positions for \phi = \pi/6 (rad)’), ...

text (xA,yA,’ A’'),text (xB,yB,”’ B"), ...

text (xC,yC,”’ c")

317
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fprintf ('\n’)
fprintf (" Velocity and acceleration analysis \n\n’)

Q

% angular velocity of the driver 1link 1

omegal = [0 0 1 1; % (rad/s)
% velocity of A (fixed)
vA = [0 0 0 ]; % (m/s)

% A and B=Bl are two points on the rigid link 1
vBl = vA + cross(omegal,rB); % velocity of Bl

% between 1 & 2 there is a rotational joint B_R

vB2 = vBl;

vB = norm(vBl);

% norm() 1is the vector norm

fprintf (' omegal = [ %g, %9, %g ] (rad/s)\n’, omegal)
fprintf (' vB=vBl=vB2 = [ %9, %9, %g ] (m/s)\n’, vBl)

fprintf (' |vB|= %g (m/s)\n’, VvB)

velocity of C
sym constructs symbolic numbers and variables
sym(’'x",’real’) also assumes that x is real

o° o oP

omegalz=sym(’ omega2z’,’ real’);
vCx=sym(’'vCx’,’real’);

omega2 = [ 0 0 omegalz ];

vC = [ vCx 0 0 ];

% vC = vB + omega2 x rBC (B2 & C points on link 2)
eqvC = vC - (vB2 + cross(omega2,rC-rB));

% vectorial equation
eqvCx = eqvC(l); % equation component on x—axis
eqvCy = eqvC(2); %

equation component on y-axis
solvC = solve (eqvCx,eqvCy);

omegalzs=eval (solvC.omegalz) ;
vCxs=eval (solvC.vCx) ;

Omega2 = [0 0 omega2zs];
VC = [vCxs 0 07];
vCB = cross (Omega2, rC-rB);

print the equations for calculating
omega2z and vCx

fprintf ("vC = vB + omega2 x rBC => \n’)
gvCx=vpa (eqvCx, 6) ;

%
%
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% vpa(S,D) uses variable-precision arithmetic (vpa)
% to compute each element of S to D decimal digits
% of accuracy

fprintf (' x—axis: %s = 0 \n’, char (qvCx))

% char () creates character array (string)

gvCy=vpa (eqvCy, 6) ;

fprintf ('y-axis: %s = 0 \n’, char (gvCy))

fprintf ("=>\n")
fprintf (' omega2z = %g (rad/s)\n’, omega2zs)
fprintf (vCx = %g (m/s)\n’, vCxs)
fprintf (\n’)
fprintf (' omega2 = [ %g, %9, %g ] (rad/s)\n’, Omega2)
fprintf('vC = [ %g, %g, %g ] (m/s)\n’, VC)
fprintf ('vCB = [ %g, %g, %d 1 (m/s)\n’, vCB)
(

fprintf ("\n’)

o

% angular acceleration of the driver link 1

alphal = [0 0 -1 ]; % (rad/s"2)
fprintf ("alphal = [%g9, %9, %g] (rad/s"2)\n’,alphal)
aA = [0 00 1; % (m/s"2) acceleration of A

% acceleration of B

aBl = aA + cross(alphal, rB) - dot (omegal, omegal) *rB;
aB2 = aBl;

aBn = - dot (omegal,omegal) *rB;

aBt = cross(alphal, rB);

fprintf (" aB=aBl=aB2 = [%g, %g, %g] (m/s"2)\n’, aBl)
fprintf(’aBn = [ %g, %g, %d ] (m/s"2)\n’, aBn)
fprintf (‘aBt = [ %g, %9, %g ] (m/s"2)\n’, aBt)
fprintf ("\n’)

[

% acceleration of C
alpha2z=sym(’alpha2z’,’real’);
aCx=sym(’aCx’,’"real’);

alpha2 = [ 0 0 alpha2z ]; % alpha3z unknown
aC = [aCx 0 0 ]; % aCx unknown

eqgaC=aC- (aBl+cross (alpha2,rC-rB)-...

dot (Omega2,Omegal) » (rC-rB)) ;
eqgaCx = eqgaC(l); % equation component on x—-axis
eqaCy = eqgaC(2); % equation component on y—-axis
solaC solve (eqaCx,eqaCy) ;

[)
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alpha2zs=eval (solaC.alpha2z);
aCxs=eval (solaC.aCx) ;

Alpha2 = [0 0 alpha2zs];
aCs = [aCxs 0 0];

aCB=cross (Alpha2, rC-rB) —dot (Omega2, OmegaZ2)  (rC-rB) ;
aCBn=-dot (Omega2, Omega2) * (rC-rB) ;

aCBt=cross (Alpha2, rC-rB);

% print the equations for calculating alpha2z and aCx
fprintf...

("aC = aB + omega2 x rBC - (omega2.omega2)rBC =>\n’)
gaCx=vpa (eqgaCx, 6) ;
fprintf (' x—-axis: %s = 0 \n’, char (gaCx))

gaCy=vpa (eqgaCy, 6) ;

oo ~

fprintf (fy—-axis: s = 0 \n’, char(gaCy))

fprintf ("=>\n")

fprintf ("alpha2z = %g (rad/s"2)\n’, alpha2zs)
fprintf(aCx = %g (m/s"2)\n’, aCxs)

fprintf (‘\n’)

fprintf ('alpha2 = [%g, %9, %g] (rad/s"2)\n’, Alpha2)
fprintf(’aC = [ %g, %g, %g ] (m/s"2)\n’, aCs)
fprintf(aCB = [ %g, %g, %d ] (m/s"2)\n’, aCB)
fprintf("aCBn = [ %g, %g, %d ] (m/s"2)\n’, aCBn)

fprintf (’ |aCBn|

%$g (m/s"2)\n’, norm(aCBn))

fprintf ("aCBt = [ %g, %g, %d ] (m/s"2)\n’, aCBt)

fprintf (' |aCBt | %$g (m/s”2)\n’, norm(aCBt))

fprintf (‘'\n’)

[

% end of program
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Results:

phi = phil = 30 (degrees)

rA = [0, 0, O] (m)

rB = [ 0.866025, 0.5, 0 ] (m)
rC = [ 1.73205, 0, 0 1 (m)
phi2 = -30 (degrees)

Velocity and acceleration analysis

omegal = [ 0, 0, 1 ] (rad/s)

vB=vBl=vB2 = [ -0.5, 0.866025, 0 ] (m/s)
[vB|= 1 (m/s)

vC = vB + omega2 x rBC =>

x—axis: vCx+.500000-.500000«omega2z = 0

y—axis: —-.866025-.866025xomega2z = 0
=>

omegal2z = -1 (rad/s)

vCx = -1 (m/s)

omega2 = [ 0, 0, -1 ] (rad/s)
vC= [ -1, 0, 01 (m/s)
vCB = [ -0.5, -0.866025, 0 ] (m/s)

alphal = [ 0, 0, -1 ] (rad/s"2)

aB=aBl=aB2 = [ -0.366025, -1.36603, 0 ] (m/s"2)
aBn = [ -0.866025, -0.5, 0 ] (m/s"2)

aBt = [ 0.5, -0.866025, 0 ] (m/s"2)

aC = aB + omega2 x rBC - (omegaz2.omegal2)rBC =>
x—axis: aCx+1.23205-.500000%xalphaz2z = 0
y—axis: .866025-.866025«alpha2z = 0

=>
alpha2z = 1 (rad/s"2)
aCx = -0.732051 (m/s"2)

alpha2 = [ 0, 0, 1 ] (rad/s"2)
aC = [ -0.732051, 0, 0 ] (m/s"2)
aCB = [ -0.366025, 1.36603, 0 ] (m/s"2)

aCBn = [ -0.866025, 0.5, 0 ] (m/s"2)
laCBn| = 1 (m/s"2)
aCBt = [ 0.5, 0.866025, 0 ] (m/s"2)
[aCBt| = 1 (m/s"2)
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B.2 Four-Bar (R-RRR) Mechanism

o]
N

Velocity and acceleration analysis
R—-RRR

o 0P o°

clear all; clc; close all

AB=0.15; BC=0.35; CD=0.30; CE=0.15;

xA = 0; yA = 0; rA = [xA yA 0];

xD=0.30; yD=0.30; rD = [xD yD 0];

phi = pi/4 ; % (rad)

xB=AB*cos (phi); yB=AB*sin(phi); rB=[xB yB 0];
eqnCl=’ (xCsol - xB) "2 +(yCsol - yB)"2 =BC"2';
eqnC2=' (xCsol — xD) "2 +(yCsol - yD)" 2 =CD"2';
solC = solve(eqnCl, eqnC2, ’'xCsol, yCsol’);
xCpositions = eval (solC.xCsol);

yCpositions = eval (solC.yCsol);

xCl = xCpositions(l); xC2 xCpositions (2);
yCl = yCpositions(l); yC2 = yCpositions(2);
if xCl < xD xC = xCl; yC = yCl;

else xC = xC2; yC=yC2; end

rC = [xC yC 0];
phi3=atan ( (yD-yC)/ (xD-xC) ) +pi;

xE=xC+CExcos (phi3); yE=yC+CExsin (phi3);

rE = [xE yE 0];

fprintf ("Results \n\n’)
fprintf (‘phi = %g (deg)\n’, phi*180/pi

(

( )
fprintf('rA = [ %g, %9, %9 ] (m)\n’, rAd)
fprintf("rD = [ %9, %9, %9 1 (m)\n’, rD)
fprintf("rB = [ %9, %g, %9 ] (m)\n’, rB)
fprintf('rC = [ %g, %9, %9 1 (m)\n’, rC)
fprintf ('rE = [ %g, %g, %g ] (m)\n’, rE)

% Graphic of the mechanism
plot ([xA,xB], [yA,yB], k=", ...
[xB,xC], [yB,yC],"b=-", ...
[xD,xE], [yD,yE],"r="), ...
hold on, ...

xlabel ('x (m)’), ylabel('y (m)’), grid,...
axis([-0.2 0.45 -0.1 0.6]),...
title (' Four—-bar (R-RRR) mechanism’)
text (xA,yA,” A’), text(xB,yB,’ B’
text (xC,yC,” (C’), text(xD,yD,’” D
text (xE,yE,’” E’)

4

) s
)

4

B Programs of Chapter 3: Velocity and Acceleration Analysis
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fprintf ("\n’")
fprintf (' Velocity and acceleration analysis \n\n’)

n = 60; % (rpm) driver link
omegal = [0 0 pix*n/30]; alphal = [0 0 0];
fprintf (" omegal = [%g, %g, %g] (rad/s)\n’, omegal)
fprintf ("alphal = [%g, %9, %g] (rad/s"2)\n’, alphal)
fprintf ("\n’)
vA = [0 O 0]; aA = [0 O 01;
vBl = vA + cross(omegal,rB); vB2 = vBl;

)

aBl = aA + cross(alphal, rB
aB2 = aBl;

- dot (omegal, omegal) xrB;

fprintf (' vB=vBl=vB2= [ %g, %9, %g ] (m/s)\n’, vBl)
fprintf (" aB=aBl=aB2= [ %g, %g, %g ] (m/s"2)\n’, aBl)
fprintf (‘'\n’)

vD = [0 O O]; aD = [0 O 0O1];

% velocity of C

omegalz = sym(’omegalz’,’real’);

omega3z = sym(’omega3z’,’'real’);

omega2 = [ 0 0 omegal2z ];

omega3 = [ 0 0 omega3z ];

B2 & C points on link 2
vC = vC2 = vB + omega2 x rBC
B3 & D points on link 3
vC = vC3 = vD + omega3 x rDC
vC = vC2 = vC3
eqvC=vB2 + cross(omegal2,rC-rB)-...
(vD + cross (omega3, rC-rD));
eqvCx = eqvC(l); % equation component on x—axis
eqvCy = eqvC(2); % equation component on y-axis
solvC = solve (egvCx,eqvCy) ;
omega2zs=eval (solvC.omega2z) ;
omega3zs=eval (solvC.omega3z) ;
Omega2 = [0 0 omegalzs];
Omega3 = [0 0 omega3zs];

o0 o° o° o° oP

[

% print the equations for calculating
% omegazz and omega3z

fprintf...

("vC=vB + omega2 x rBC = vD + omega3 x rDC => \n’)
gvCx=vpa (eqvCx, 6) ;
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fprintf (" x—axis:\n’
fprintf (' $s=0\n’, char (qvCx) )
gvCy=vpa (eqvCy, 6) ;
fprintf(’y—axis-\n’

B Programs of Chapter 3: Velocity and Acceleration Analysis

fprintf (' $s=0\n’, char (gvCy))

fprintf ('=>\n")

fprintf (" omega2z = %g (rad/s)\n’, omegalzs)
fprintf (' omega3z = %g (rad/s)\n’, omega3zs)
fprintf ("\n’)

fprintf (' omega2 = [ %g, %9, %9 ] (rad/s)\n’, OmegaZ2)
fprintf ("omega3 = [ %g, %g, %g ] (rad/s)\n’, Omega3)
fprintf ('\n’)

vC = vB2 + cross (Omega2,rC-rB);

fprintf('vC = [ %g, %g, %9 ] (m/s)\n’, vC)
fprintf (" \n’

vE = vD + cross(Omega3, rE-rD);

fprintf ('vE = [ %g, %g, %9 ] (m/s)\n’ vE)
fprintf (" \n’)

% acceleration of C

alpha2z = sym(’alpha2z’,’real’);

alpha3z = sym(’alpha3z’,’real’);

alpha2 = [ 0 0 alpha2z ];

alpha3 = [ 0 0 alpha3z ];

% aC=aC2=aB + alpha2 x rBC - (omegaz2.omega2)rBC
% aC=aC3=aD + alpha3 x rDC - (omega3.omega3l)rDC

eqaC2 = aB2 + cross(alpha2,rC-rB) -
dot (Omega2,Omega?2) x (rC-rB) ;
aD + cross(alpha3, rC-rD) -...
dot (Omega3, Omega3) = (rC-rD) ;
egqaC = eqaC2 - eqgaC3;

[

()
Q
Q
Q
w
Il

egaCx = eqgaC(l); % equation component on x—axis

eqaCy = eqgaC (2

solaC solve (egaCx, eqaCy) ;
(
(

alpha2zs=eval (solaC.alpha2z);
alpha3zs=eval (solaC.alpha3z);
Alphaz [0 0 alpha2zs];
Alpha3 = [0 0 alpha3zs];

print the equations for calculating
alpha?2z and alpha3z
fprintf...

%
%

); % equation component on y-axis

("aC2=aB + alpha2 x rBC - (omega2.omega2)rBC \n’)
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fprintf...

("aC3=aDh + alpha3 x rDC -
fprintf("aC = aC2 = aC3 \n’)
gaCx=vpa (eqaCx, 6) ;
fprintf (' x—-axis:\n’)

fprintf (' $s=0\n’, char (gaCx) )
gaCy=vpa (egaCy, 6) ;

fprintf (y-axis:\n’)

(omega3.omega3) rDC \n’)

fprintf (' $s=0\n’, char (gaCy))
fprintf ("=>\n’)
fprintf ("alpha2z = $%g (rad/s"2)\n’, alpha2zs)
fprintf (’alpha3z = %g (rad/s”2)\n’, alpha3zs)
fprintf ("\n’)
fprintf ("alpha2 = [%g, %9, %g] (rad/s"2)\n’, Alpha2)
fprintf ("alpha3 = [%g9, %9, %g] (rad/s"2)\n’, Alpha3)
fprintf ("\n’)
aC = aB2 + cross(Alpha2,rC-rB) -...
dot (Omega2,Omega?2) x (rC-rB) ;
fprintf('aC = [ %g, %g, %9] (m/s"2)\n’, acC)
fprintf (' \n’)
aE = aD + cross (Alpha3,rE-rD) -—...
dot (Omega3, Omegal) x (rE-rD) ;
fprintf('akE = [ %g, %g, %g9] (m/s"2)\n’, aE)
% end of program
Results:
phi = 45 (deqg)
rA =10, 0, 01 (m)
rD = [ 0.3, 0.3, 01 (m)
rB = [ 0.106066, 0.106066, 0 ] (m)
rC = [ 0.0400698, 0.449788, 0 1 (m)
rE = [ -0.0898952, 0.524681, 0 ] (m)
Velocity and acceleration analysis
omegal = [0, 0, 6.28319] (rad/s)
alphal = [0, 0, 0] (rad/s"2)
vB=vBl=vB2= [ -0.666432, 0.666432, 1 (m/s)
aB=aBl=aB2= [ -4.18732, -4.18732, 0 1 (m/s"2)
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vC=vB + omegazZ2 x rBC = vD + omega3 x rDC =>

x—-axis:
-.666432-.343722xomega2z+.149788+omega3z=0
y—axis:
.666432-.659962e-1xomega2z+.259930+xomega3z=0
=>

omegalz = —-3.43639 (rad/s)

omega3z = -3.43639 (rad/s)

omega2 = [ 0, 0, -3.43639 ] (rad/s)
omega3l [ 0, 0, -3.43639 ] (rad/s)

vC = [ 0.514728, 0.893221, 0 ] (m/s)

vE = [ 0.772092, 1.33983, 0 1 (m/s)

aC2=aB + alpha2 x rBC - (omega2.omegal)rBC
aC3=aD + alpha3 x rDC - (omega3.omega3)rDC
aC = aC2 = aC3

xX—axis:

—-6.47744-.343722xalpha2z+.149788+xalpha3z=0
y—axis:
-6.47744-.659962e-1xalpha2z+.259930xalpha3z=0

=>
alpha2z = -8.97883 (rad/s"2)
alpha3z = 22.6402 (rad/s"2)

alpha2 = [0, 0, -8.97883] (rad/s"2)
alpha3 = [0, 0, 22.6402] (rad/s"2)

aC = [ -0.321767, -7.65368, 0] (m/s"2)

aE = [ -0.48265, -11.4805, 0] (m/s"2)

B.3 Inverted Slider-Crank Mechanism

o\

B3
Velocity and acceleration analysis
% Inverted slider-crank mechanism

o

clear all; clc; close all
AC = 0.15; BC = 0.2;
xA = 0; yA = 0;
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xC = AC; yC = 0;
phi = pi/3; phil=phi;
rA = [ xA, yA, 0 ]; xrC = [ xC, yC, 0 1;
AD = AC+BC;
xD=ADx*cos (phi); yD=ADxsin(phi); rD=[xD,yD,0];
% position of B
egBl = 'xBsol*sin(phi) = yBsolxcos (phi)’;
egB2 = ’'yBsol"2+ (xC-xBsol) "2-BC"2 = 0';
solB solve (egBl, egB2, ’'xBsol, yBsol’);
xBpositions = eval (solB.xBsol);
yBpositions = eval (solB.yBsol);
xBl = xBpositions(l); xB2 xBpositions (2);
yBl = yBpositions(l); yB2 = yBpositions(2);
if (phi>=0 && phi<= pi)
if yBl >= 0 xB=xBl; yB=yBl;

else xB=xB2; yB=yB2; end
end
if (phi>pi && phi<=2xpi)

if yBl < 0 xB=xBl; yB=yBl;

else xB=xB2; yB=yB2; end
end
rB = [ xB, yB, 0 ];
phi3 = atan ((yB- YC)/(XB xC) ) +pi;
fprintf (' Results \n\n’
fprintf ("phi = %g (degree
fprintf('rB = [ %9, %9,
fprintf (' rC [ %9, %9,

( [
( =

n’, phix180/pi)
(m)\n’, rB)
(m)\n’, rC)
(m)\n’, rD)

\n’, phi3*180/pi)

Il
Q

o° 0P o°
Q

«Q

)\
]
]
fprintf (' rD = %9, %9, ]
fprintf ('phi3 %g (degrees)

[}

% Graphic of the mechanism

plot ([xA,xD], [yA,yD],"k-0o", [xB, xC
text (xA,yA,’ A’),text (xB,yB,’ B
text (xC,yC,’” C’),text(xD,yD,’” D
axis([-0.05 0.35 -0.05 0.351);
fprintf (' \n’

fprintf (' Velocity and acceleration analysis \n\n’

n = 30; % (rpm) driver link
omegal = [ 0 0 pi*n/30 ]; omega2 = omegal;
alphal = [0 0 0 ]; alpha2 = alphal;

fprintf (' omegal = [ ] (rad/s)\n’, omegal)

% %g
fprintf ("alphal = [%g, %9, %g] (rad/s"2)\n’, alphal)

[yB,yC],"b-0"),

327



328 B Programs of Chapter 3: Velocity and Acceleration Analysis

fprintf ('\n’)

vA = [0 0 0 ]; aA = [0 0 O 1;

vC = [0 0 0 ]; aC = [0 O O 71;

vBl = vA + cross(omegal, rB);

aBl = aA + cross(alphal,rB) - dot (omegal,omegal) xrB;
fprintf ('vB = vBl = [ %g, %g, %g ] (m/s)\n’, vBl)
fprintf('aB = aBl = [ %9, %g, %g ] (m/s"2)\n’, aBl)
fprintf ("\n’)

% angular velocity of link 3

omega3z = sym(’omega3z’,’real’); % omega3z unknown
omega3 = [ 0 0 omega3z ];

vB21l = sym(’'vB21’,’real’); % vB21 unknown

[

% vB2Bl parallel to the sliding direction
vB2B1 = [ vB2lxcos(phil) vB2lxsin(phil) 0 1;
% vB2 = vB3 = vC + omega3 x (rB-rC)

vB3 = vC + cross (omega3,rB-rC);

vB2 = vB3;

eqvB = vB2 - (
eqvBx = eqvB(1l);
eqvBy = eqvB(2);

vBl + vB2B1l ); % vB2 = vB1l + vB2Bl1
equation component on x-—-axis
equation component on y-axis

%
%

solvB = solve (eqvBx,eqvBy) ;
omega3zs = eval (solvB.omega3z);
vB21ls = eval (solvB.vB21);

Omega3 = [0 0 omega3zs];

VB21 = vB2lsx[cos(phil) sin(phil) O0];
VB3 = vC + cross (Omega3, rB-rC) ;

% print the equations for calculating
% omega3z and vB21

fprintf ('vB2 = vBl1 + vB2B1 => \n’)
gvBx=vpa (eqvBx, 6) ;
fprintf (' x-axis:\n")

fprintf (' $s=0\n’, char (qvBx) )

gvBy=vpa (eqvBy, 6) ;

fprintf (y-axis:\n’)

fprintf (" $s=0\n’, char (qvBy) )
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fprintf (=>\n’)
fprintf (' omega3z = %$g (rad/s)\n’, omega3zs)
fprintf ('vB21 = %g (m/s)\n\n’, vB2ls)

fprintf (' omega3 = [%g9, %9, %g] (rad/s)\n’, Omega3l)
fprintf ("vB2B1 = [ %g, %g, %d ] (m/s)\n’, VB21)
fprintf ("\n’")
fprintf ("vB3 = [ %g, %g, %d 1 (m/s)\n’, VB3)

(

fprintf ("\n’)

% angular acceleration of link 3

alpha3z = sym(’alpha3z’,’real’); % alpha3z unknown
alpha3 = [ 0 0 alpha3z ];
aB21 = sym(’aB21’,’'real’); % aB21l unknown

% aB2Bl parallel to the sliding direction
aB2B1 = [ aB2lxcos(phil) aB2lxsin(phil) 0 1;
% aB2=aB3=aC+alpha3 x rCB- (omega3) "2 rCB
aB3=aC+cross (alpha3, rB-rC)-...

dot (Omega3, Omegal) x (rB-rC) ;
aB2 = aB3;

% aB2Blcor = 2 omegal x vB2Bl
aB2Blcor = 2xcross(omegal,VB21);

% aB2 = aBl + aB2B1 + aB2Blcor

egaB = aB2 - ( aBl + aB2B1 + aB2Blcor );
egaBx = eqgaB(l); %

egaBy eqaB (2) ;

equation component on x-axis

°
)
°

equation component on y-axis

solaB = solve (egaBx, eqgaBy);

alpha3zs = eval (solaB.alpha3z);
aB21ls = eval (solaB.aB21);

Alpha3 = [0 0 alpha3zs];
AB21 = aB2lsx[cos(phil) sin(phil) O0];

AB3=aC+cross (Alpha3, rB-rC)—...
dot (Omega3, Omegal) = (rB-rC) ;

% print the equations for calculating

% alpha3z and aB21

fprintf...

("aB2Blcor = [%g, %g, %d] (m/s"2)\n’, aB2Blcor)
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fprintf ('\n’)

fprintf...

("aB2 = aBl + aB2Bl1 + aB2Blcor => \n’)
gaBx=vpa (eqaBx, 6) ;
fprintf (' x—-axis:\n’)

fprintf (' $s=0\n’, char (gaBx) )

gaBy=vpa (egaBy, 6) ;

fprintf (y-axis:\n’)

fprintf (' $s=0\n’, char (gqaBy) )

fprintf ("=>\n’)

fprintf ("alpha3z =
fprintf ("aB21 = %g
fprintf ("\n’)

%g (rad/s”2)\n’, alpha3zs)
(m/s"2)\n’, aB2ls)

fprintf...

("alpha3 = [ %9, %9, %g ] (rad/s"2)\n’, Alpha3)
fprintf ("aB2Bl = [ %g, %g, %d ] (m/s"2)\n’, AB21)
fprintf("aB3 = [ %g, %g, %d ] (m/s"2)\n’, AB3)
fprintf (" \n’)

omegazl3 omega?2 - Omegal;
alpha23 = alpha2 - Alpha3;

fprintf...

("omega23 = [ %g, %g, %g ] (rad/s)\n’, omega23)
fprintf...

("alpha23 = [ %9, %9, %g ] (rad/s"2)\n’, alpha23)

)

% end of program
Results:

phi = 60 (degrees)

rB [ 0.113535, 0.196648, 0 1 (m)

rC = [ 0.15, 0, 0 ] (m)
[

rD 0.175, 0.303109, 0 ] (m)
phi3 100.505 (degrees)

Velocity and acceleration analysis

omegal = [0, 0, 3.14159] (rad/s)
alphal = [0, 0, 0] (rad/s"2)

vB = vBl = [ -0.617787, 0.356679, 0 ] (m/s)
aB = aBl = [ -1.12054, -1.94083, 0 ] (m/s"2)
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vB2 = vBl1 + vB2B1 =>

xX—axis:
-.196648+omega3z+.617787-.500000%vB21=0
y—axis:
-.364655e-1+xomega3z—-.356679-.866025xvB21=0
=>

omega3z = 4.69102 (rad/s)

vB21 = -0.609381 (m/s)

omega3 = [0, 0, 4.69102] (rad/s)
vB2Bl1 = [ -0.30469, -0.527739, 0 1 (m/s)

vB3 = [ -0.922477, -0.17106, 0 1 (m/s)
aB2Blcor = [3.31588, -1.91443, 0] (m/s"2)

aB2 = aBl + aB2B1 + aB2Blcor =>

Xx—axis:
-.196648%alpha3z-1.39290-.500000%aB21=0
y—axis:
-.364655e-1xalpha3z-.472095-.866025xaB21=0
=>

alpha3z = -6.38024 (rad/s"2)

aB21 = -0.276477 (m/s"2)

alpha3 = [ 0, 0, -6.38024 ] (rad/s"2)
aB2Bl = [ -0.138239, -0.239436, 0 ] (m/s"2)
aB3 = [ 2.0571, -4.0947, 0 ] (m/s"2)

omega23 = [ 0, 0, -1.54942 ] (rad/s)
alpha23 0, 0, 6.38024 1 (rad/s"2)

—

B.4 R-RTR-RTR Mechanism

4
Velocity and acceleration analysis
R—-RTR-RTR

o° o
o

o

clear all; clc; close all

AB = 0.15; AC = 0.10; CD = 0.15; % (m)
DF = 0.40; AG = 0.30; % (m)
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phi = pi/6 ; % (rad)
xA = 0; yA =0 ; rA =
xC = 0; yC = AC; rC
xB = AB*cos (phi); yB

egqnD1l=’" ( xDsol - xC

eqnD2=' (yB-yC) / (xB-xC) =

solD = solve(egnDl,
xDpositions = eval (s
yDpositions = eval (s

xD1=xDpositions (1) ;
yDl=yDpositions(1l);

if (phi>=0&&phi<=pi/2)

[xA yvA 0];
= [xC yC 0];
= AB*sin(phi); rB = [xB yB 0];
) "2 + ( yDsol - yC )"2 = CD"2’;
(yDsol-yC) / (xDsol-xC) '
eqnD2, ’xDsol, yDsol’);

olD.xDsol);

olD.yDsol);
xD2=xDpositions (2);
yD2=yDpositions (2);
(phi>=3%pi/2&&phi<=2xpi)

if xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end
else
if xD1 >= xC xD=xD1; yD=yDl; else xD=xD2; yD=yD2;
end
end
rD=[xD yD 0];

phi2=atan ( (yB-yC) / (xB-xC) ) ;

phid=atan (yD/xD) +pi;
xF=xD+DF+*cos (phi3) ;

rF=[xF yF 0];
xG=AG*cos (phi5) ;
rG = [xG yG 0];

fprintf ("Results \n\

phi3=phi2;
phib5=phi4;
yF=yD+ DF*sin (phi3);

yG=AG*sin (phi5) ;

n/

fprintf ('phi = phil = %g (degrees) \n’,phi*180/pi)
fprintf ("rA = [ %g, %g, %g ] (m)\n’, rh)

fprintf ("rC = [ %9, %9, %9 ] (m)\n )
fprintf("rB = [ %9, %9, %9 1 (m)\n’, rB)
fprintf("rD = [ %9, %9, %9 ] (m)\n’, )
fprintf...

("phi2 = phi3 = %g (degrees) \n’,phi2*180/pi)
fprintf...

("phi4 = phi5 = %g (degrees) \n’,phi4x180/pi)
fprintf ("rF = [ %9, %9, %g] (m)\n’, rF)
fprintf('rG = [ %9, %g, %9] (m)\n’, rG)

% Graphic of the mechanism

plot ([xA,xB], [yA,yB],"k-0o’, [xD,xF], [yD,yF],"b-0"’
[xA,xG], [VvA,yG],"r-0")

xlabel ('x (m)’), ylabel('y (m)’),...

title ('positions for \phi = 30 (deg)’),
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text (xA,yA,’ A
text (xC,yC,” C
text (xF,yF,’" F

([-0.3 0.3

"), text(xB,yB,’ B’),...
"), text(xD,yD,’” D’'),...
"), text (xG,yG,’” G"),...
axis -0.1 0.3]), grid

fprintf (‘\n’")

fprintf (' Velocity and acceleration analysis \n\n’)

n = 50.;

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 1;
fprintf...

("omegal = [ %9, %9, %g ] (rad/s)\n’, omegal)
fprintf...

("alphal = [ %g, %9, %9 ] (rad/s"2)\n’, alphal)

fprintf (" \n’)
vA = [0 0O O ]; aA = [0 O O 7;
vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl = aA + cross(alphal,rB) -
dot (omegal, omegal) »rB;

vB2 = vBl;

aB2 = aBl;

fprintf...

("vB = vBl = vB2 = [ %9, %g, %g ] (m/s)\n’,vBl)
fprintf...

("aB = aBl = aB2 = [ %g, %g, %g ] (m/s"2)\n’,aBl)

fprintf (’\n’)

omega3z=sym ('’ omega3z’,’ real’);
vB32=sym (' vB32’,"real’);

omega3 = [ 0 0 omega3z ];

omega3z unknown (to be calculated)
vB32 unknown (to be calculated)

vC = [0 0 0 ]; % C is fixed

vB3 = vC + omega3 x rCB

(B3 & C are points on link 3)

vB3 = vC + cross(omega3, rB-rC);

o
)
o
)

vB3 = vB2 + vB3B2

between the links 2 and 3 there is a
translational joint B_T

vB3B2 is the relative velocity of B3 wrt 2
vB3B2 is parallel to the sliding direcion BC
vB3B2 is written as a vector

A 0 o o° oo o° o

point B2 is on link 2 and point B3 is on link 3
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vB3B2 = vB32%[ cos(phi2) sin(phi2) 0];

vB3 = vB2 + vB3B2

eqvB = vB3 - vB2 - vB3B2;

%
%

vectorial equation
the component of the vectorial equation on x—-axis

eqvBx = eqvB (1) ;

the component of the vectorial equation on y-axis

eqvBy = eqvB(2);

two equations eqvBx and egvBy with two unknowns

solvB = solve (eqvBx,eqvBy) ;
omega3zs=eval (solvB.omega3z) ;
vB32s=eval (solvB.vB32) ;

Omega3 = [0 0 omega3zs]; Omega2 = Omegal3;
VB32 = vB32sx[cos (phi2) sin(phi2) 0];

S
°
%

print the equations for calculating
omega3 and vB32

fprintf...

("vB3 = vC + omega3 x rCB = vB2 + vB3B2 => \n’)

gvBx=vpa (eqvBx, 6) ;
fprintf (" x-axis: %$s = 0 \n’, char (qvBx))
gvBy=vpa (eqvBy, 6) ;
fprintf ('y—axis: %s = 0 \n’, char (qvBy))

fprintf ("=>\n’)

fprintf (" omega3z = %g (rad/s)\n’, omega3zs)
fprintf ("vB32 = %g (m/s)\n’, vB32s)

fprintf ("\n’")

fprintf...

(" omega2=omegal3 = [ %g,%g,%g ] (rad/s)\n’, Omega3)
fprintf ("vB3B2 = [ %g, %9, %g ] (m/s)\n\n’, VB32)

[

Coriolis acceleration

aB3B2cor = 2xcross (Omega3, VB32);

alpha3z=sym(’alpha3z’,’ real’);
aB32=sym(’aB32’,’real’); % aB32 unknown

alpha3 = [ 0 0 alpha3z ]; % alpha3z unknown
aC = [0 0 0 ]; % C is fixed

o

aB3 acceleration of B3

aB3 = aC + cross(alpha3, rB-rC) -...

o

dot (Omega3, Omegal) * (rB-rC);
aB3B2 relative velocity of B3 wrt 2
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% aB3B2 parallel to the sliding direcion BC

aB3B2 = aB32x[ cos(phi2) sin(phi2) 01];

% aB3 aB2 + aB3B2 + aB3B2cor

eqgaB = aB3 - aB2 - aB3B2 - aB3B2cor;

% vectorial equation

egaBx egaB(l); % equation component on x-axis
eqgqaBy = eqgaB(2); % equation component on y-axis
solaB solve (eqaBx, egaBy) ;

alpha3zs=eval (solaB.alpha3z);

aB32s=eval (solaB.aB32);

Alpha3 [0 0 alpha3zs];

Alpha2 = Alpha3;

AB32 = aB32sx[cos(phi2) sin(phi2) 0];

[

% print the equations for calculating
% alpha3 and aB32
fprintf...
("aB32cor = [ %g, %9, %d ] (m/s"2)\n’, aB3B2cor)
fprintf (" \n’)
fprintf (' aB3=aC+alpha3xrCB- (omega3.omega3) rCB\n’)
fprintf (" aB3=aB2+aB3B2+aB3B2cor =>\n’)
gaBx=vpa (egaBx, 6) ;
fprintf (' x-axis:\n’)
fprintf ('%s = 0\n’,char (gaBx))
gaBy=vpa (egaBy, 6) ;
fprintf (y-axis:\n’)
fprintf (’%$s = 0\n’,char (gaBy))
fprintf ("=>\n");
fprintf (’alpha3z = %g (rad/s)\n’, alpha3zs)
( (
(

fprintf ("aB32 = %g (m/s)\n’, aB32s)

fprintf (‘\n’)

fprintf...

("alpha2=alpha3 = [ %g,%g,%g ] (rad/s"2)\n’, Alpha3)
fprintf ("aB3B2 = [ %9, %9, %g ] (m/s”2)\n\n’, AB32)

% vD3 velocity of D3
% D3 & C points on link 3

vD3 = vC + cross (Omega3, rD-rC);
vD4 = vD3;
fprintf('vD3 = vD4 = [ %g, %9, %g ] (m/s)\n’, vD3)

Q

% aD3 acceleration of D3

aD3 = aC + cross(Alpha3, rD-rC)-...
dot (Omega3, Omegal) * (rD-rC);

ab4 = aD3;
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fprintf("abD3 = abD4 = [ %g, %g, %g ] (m/s"2)\n’, aD3)
fprintf ("\n’")

omegabz = sym(’omegabz’,’real’);

% omegabz unknown

vD54 = sym(’vD54’,’real’);

% vD54 unknown

omega5 = [ 0 0 omegabz ];

% vD5 velocity of D5

% D5 & A points on link 5

vD5 = vA + cross(omegab, rD);

vD5D4 relative velocity of D5 wrt 4
vD5D4 parallel to the sliding direcion DE
vD5D4 = vD54*[ cos(phib) sin(phib5) 0];
% vD5 = vD4 + vD5D4

eqvD = vD5 - vD4 - vD5D4;

[

% vectorial equation

o
Cl

o

<

egvDx = eqvD(l); % component on x-axis
eqvDy = eqvD(2); % component on y-axis
solvD = solve (egvDx,eqvDy) ;

omegabzs=eval (solvD.omegabz) ;
vD54s=eval (solvD.vD54);

Omegab = [0 0 omegabzs];

Omega4d4 = Omegab;

VD54 = vD54sx[cos (phi5) sin(phi5) 0];

% print the equations for calculating
% omegab and vD54

fprintf...

("vD5 = vA + omega5 x rD = vD4 + vD5D4 => \n’)
gvDx=vpa (eqvDx, 6) ;

fprintf ("x-axis: %$s = 0 \n’, char (qvDx))
gvDy=vpa (eqvDy, 6) ;
fprintf ('y-axis: %s
fprintf ("=>\n")

0 \n’, char(gqvDy))

(
fprintf (' omega5z = %g (rad/s)\n’, omegab5zs)
fprintf ('vD54 = %g (m/s)\n’, vD54s)
fprintf (\n’")
fprintf...
(" omegad=omega5 = [ %g, %g, %g ] (rad/s)\n’, Omegab)
fprintf ('vD5D4 = [ %9, %9, %g ] (m/s)\n’, VD54 )

fprintf (" \n’")

[

% Coriolis acceleration
aD5D4cor = 2«+cross (Omegab,VD54) ;
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alphab5z = sym(’alphabz’,’'real’);

aD54 = sym(’aD54’,"real’);

alphab5 = [ 0 0 alphabz ]; % alphabz unknown
ak = [0 0 O ];

% aD5 acceleration of D5
aD5=aE+cross (alphab, rD) -dot (Omega5, Omegab5) »rD;
% aD5D4 relative velocity of BS wrt 4

% aD5D4 parallel to the sliding direcion AD
% aD54 unknown

aD5D4 aD54« [ cos (phi5) sin(phib5) 01;

% aB5 = aB4 + aD5D4+ aDb5D4cor

egaD = abD5 - ab4 - aD5D4 - aD5D4cor;

Q

% vectorial equation

egaDx = eqgaD(l); % component on x-axis
egaDy = egaD(2); % component on y-axis

solaD = solve (egaDx,eqgaDy);
alphab5zs = eval (solaD.alphabz);
aD54s = eval (solaD.aD54);

Alphab [0 0 alphabzs];
Alpha4 = Alphab;
AD54 = aD54sx[cos(phi5) sin(phi5) 0];

% print the equations for calculating
% alphab and aD54

fprintf...

("aD54cor = [ %9, %9, %g ] (m/s"2)\n’, aD5D4cor)
fprintf ("\n’)

fprintf (' aD5=aA+alphabxrD- (omegab.omega5) rD=\n"')
fprintf (" aD5=aD4+aD5D4+aD5D4cor =>\n’)

gaDx=vpa (eqgaDx, 6) ;
fprintf (! x-axis: %s
gaDy=vpa (egaDy, 6) ;
fprintf ('y-axis:
fprintf ('=>\n")

0 \n’, char (gaDx))

oo~
)]
|

= 0 \n’, char (gaDy))

fprintf (" alphabz
fprintf (" aD54 = %g
fprintf ("\n’)

%$g (rad/s"2)\n’, alphab5zs)
(m/s”2)\n’, aD54s)

fprintf...
("alphad4=alpha5 = [ %g9,%g,%g ] (rad/s"2)\n’, Alphab)
fprintf("ab54 = [ %9, %9, %9 ] (m/s"2)\n’, AD54)

[

% end of program
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Results:

phi = phil = 30 (degrees)

rA =10, 0, 01 (m)

rC =110, 0.1, 01 (m)

rB = [ 0.129904, 0.075, 0 ] (m)

rD = [ -0.147297, 0.128347, 0 1 (m)
phi2 = phi3 = -10.8934 (degrees)
phi4 = phib = 138.933 (degrees)

rF = [ 0.245495, 0.0527544, 0] (m)
rG = [ -0.226182, 0.197083, 0] (m)

Velocity and acceleration analysis

omegal = [ 0, 0, 5.23599 ] (rad/s)
alphal 1 (rad/s"2)

Il
o
~
o
~
o

vB = vBl = vB2 -0.392699, 0.680175, 0 ] (m/s)
aB = aBl = aB2 = [ -3.56139, -2.05617, 0 ] (m/s"2)

—

vB3 = vC + omega3 x rCB = vB2 + vB3B2 =>
x—axis: .250000e-1xomega3z+.392699-.981983xvB32 = 0
y—axis: .129904+xomega3z-.680175+.188982%«vB32 = 0

=>
omega3z = 4.48799 (rad/s)
vB32 = 0.514164 (m/s)

omegal2=omegal3 = [ 0,0,4.48799 ] (rad/s)
vB3B2 = [ 0.504899, -0.0971678, 0 ] (m/s)

aB32cor = [ 0.872176, 4.53196, 0 ] (m/s"2)

aB3=aC+alpha3xrCB- (omega3.omega3l) rCB
aB3=aB2+aB3B2+aB3B2cor =>

x—axis:
.250000e-1*alpha3z+.726814e-1-.981983xaB32 = 0
y—axis:

.129904+alpha3z-1.97224+.188982%aB32 = 0

=>

alpha3z = 14.5363 (rad/s)

aB32 = 0.44409 (m/s)

alpha2=alpha3 = [ 0,0,14.5363 ] (rad/s"2)
aB3B2 = [ 0.436088, -0.0839252, 0 ] (m/s"2)

vD3 = vD4 = [ -0.127223, -0.661068, 0 ] (m/s)
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aD3

ab4 = [ 2.5548, -2.71212, 0 1 (m/s"2)

vD5 = vA + omegab x rD = vD4 + vD5D4 =>

x—axis: —-.128347xomegabz+.127223+.753939+vD54 = 0
y—axis: —-.147297xomegabz+.661068-.656945xvD54 = 0
=>

omegabz = 2.97887 (rad/s)

vD54 = 0.338367 (m/s)

omegad=omega5 = [ 0, 0, 2.97887 ] (rad/s)

vD5D4 = [ -0.255108, 0.222288, 0 ] (m/s)

aD54cor = [ -1.32434, -1.51987, 0 ] (m/s"2)
aD5=aA+alphabxrD- (omegab.omegab) rD=
aD5=aD4+aD5D4+aD5D4cor =>

x—axis: —.128347xalphabz+.766057e-1+.753939xabh54 = 0
y-axis: -.147297xalpha5z+3.09308-.656945xaD54 = 0

=>
alpha5z = 12.1939 (rad/s"2)
aD54 = 1.97423 (m/s"2)

alpha4=alpha5 = [ 0,0,12.1939 ] (rad/s"2)
aD54 = [ -1.48845, 1.29696, 0 ] (m/s"2)

B.5 R-RTR-RTR Mechanism: Derivative Method

o

B5

Velocity and acceleration analysis
R-RTR-RTR

Derivative method

o° oo

o\

clear all; clc; close all

fprintf (' Results \n\n’)

fprintf (' Velocity and acceleration analysis \n’)
fprintf ('Derivative method \n\n’)

AB = 0.15 ; AC = 0.10 ; CD = 0.15 ; %(m)

DFF = 0.40 ; AG = 0.30 ; % (m)

phi = pi/6 ; % (rad)

XA = 0 ; yA = ; YA [xA yvA 0] ;

xC =0 ; yC = AC ; rC = [xC yC 0] ;

o

)

n =50 ; % rpm of the driver link (constant)
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omega = n*xpi/30; % rad/s

o

sym constructs symbolic numbers and variables

t = sym('t’," "real’);

% phi(t) the angle of the diver link

% with the horizontal axis

% phi(t) is a function of time, t

% position of joint B

xB = ABxcos (sym(’phi(t)’));

yB = ABxsin(sym(’phi(t)’));

% position vector of B in terms of phi(t) - symbolic
rB = [xB yB 0];

% subs (S,0LD,NEW) replaces

% OLD with NEW in the symbolic expression S

xBn = subs (xB,’phi(t)’,pi/6); % xB for phi(t)=pi/6
yBn = subs (yB,’phi(t)’,pi/6); % yB for phi(t)=pi/6
rBn = subs (rB,’phi(t)’,pi/6); % rB for phi(t)=pi/6
fprintf (' rB = [ %9, %g, %g ] (m)\n’, rBn)

% velocity of B1=B2

% diff(S,t) differentiates S with respect to t

% vB1=vB2 in terms of phi(t) and diff (phi(t),t)

vB = diff (rB,t);

% calculates numerical value of vB for

% phi(t)=pi/6 and phi’ (t)=omega

% creates a list slist for the symbolical variables
% phi’’ (t), phi’ (t), phi(t)

slist =

{diff ("phi(t)’,t,2), diff("phi(t)’,t), ’"phi(t)’};

[}

i)
o
)

nl

o o° oP

o\

vB

o° o o o°

VB

creates a list nlist

with the numerical values for slist
ist = {0, omega, pi/6};

diff ('phi(t)’,t,2) -> 0

diff ('phi(t)’,t) —-> omega

phi (t)’ -> pi/6

replaces slist with nlist in VB

n = subs(vB,slist,nlist);

double (S) converts the symbolic object S
to a numeric object

converts the symbolic object vBn
to a numeric object
= double (vBn) ;
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fprintf (' vBl=vB2 = [ %g, %9, %g ] (m/s)\n’, VB)
% norm(v) is the magnitude of a vector v
VBn = norm(VB) ;

fprintf (' |vBl|=|vB2| = %g (m/s) \n’, VBn)

% acceleration of B1=B2
aB = diff(vB,t);

% numerical value for aB
aBn = double (subs(aB,slist,nlist));

fprintf (’aBl=aB2 = [ %g, %g, %9 ] (m/s"2)\n’, aBn)
ABn = norm(aBn) ;
fprintf (' |aBl|=]aB2| = %g (m/s"2) \n’, ABn)

fprintf ("\n’")
% position of joint D

egqnDl = ' (xDsol - xC)"2 + (yDsol - yC)"2=CD"2 ’;
eqnD2 = ' (yB-yC)/ (xB-xC)=(yDsol-yC) / (xDsol-xC)’;
solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);

xDpositions = eval (solD.xDsol);
yDpositions = eval (solD.yDsol);
xD1 = xDpositions(l); xD2 = xDpositions(2);

yD1l = yDpositions(1l); yD2 yDpositions (2);
select the correct position for D
for the given input angle
xD1n = subs (xD1l,’phi(t)’,pi/6);
% xD1 for phi(t)=pi/6
if xD1ln < xC
xD = xD1; yD = yD1;

o
Cl

o

<

else
xD = xD2; yD = yD2;
end
% position vector of D in term of phi(t)-symbolic
rD = [ xD yD 0 1;

xDn = subs (xD,’phi(t)’,pi/6);
% xD for phi(t)=pi/6
yDn = subs (yD,’phi(t)’,pi/6);
% yD for phi(t)=pi/6

rDn = [ xDn yDn 0 ]; % rD for phi(t)=pi/6
fprintf("rD = [ %9, %9, %9 ] (m)\n’, rDn)

velocity of D3=D4
vD in terms of phi(t) and diff('phi(t)’,t)
vD = diff(rD,t);

% numerical value for vD
vDn = double (subs(vD,slist,nlist));

o oe
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fprintf (' vD3=vD4 = [ %g

p (m/s)\n’, vDn)
fprintf (’/ |vD3|=|vD4| = %g

]
\n’, norm(vDn))

acceleration of D3=D4

aD in terms of phi(t), diff('phi(t)’,t),
and diff (‘phi(t)’,t,2)

ab = diff(vD,t);

% numerical value for abD
abDn = double (subs(aD,slist,nlist));

o° oo o°

fprintf (’ab3=abD4 = [ %g, %g, %9 ] (m/s"2)\n’, aDn)
fprintf ('’ |aD3|=|aD4| = %g (m/s"2) \n’, norm(aDn))

fprintf (\n’)
% angular velocities and accelerations

% Link 2

phi2 = atan ((yB-yC)/ (xB-xC));

% phi2 in terms of phi (t)

phi2n = subs (phi2, 'phi(t)’,pi/6);

% phi2 for phi(t)=pi/6

fprintf...

("phi2=phi3 = %g (degrees) \n’, phi2n*180/pi)

% omega?2 in terms of phi(t) and diff(‘phi(t)’,t)
dphi2 = diff (phi2, t);

dphi2nn = subs(dphi2,diff ("phi(t)’,t),omega);

% numerical value for omega?2

dphi2n = subs (dphi2nn,’phi(t)’,pi/6);
fprintf (' omega2=omega3 = %g (rad/s) \n’, dphi2n)

% alpha?2 in terms of phi(t), diff ('phi(t)’,t),
% and diff (phi(t)’,t,2)
ddphi2 = diff (dphi2,t);

[

% numerical value for alpha?2

ddphi2n = double (subs (ddphi2, slist,nlist));

fprintf ('alpha2=alpha3 = %g (rad/s"2) \n’, ddphi2n)
fprintf (' \n’)

% Link 4

phi4 = atan(yD/xD)+pi;

% phi4 in terms of phi (t)

phidn = subs (phi4,’phi(t)’,pi/6);

% numerical value for phi4
fprintf (" phid=phi5 = %g (degrees) \n’, phi4nx180/pi)
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dphi4 = diff (phi4,t);

% numerical value for omega4
dphi4n =
fprintf (' omegad=omegab = %g
ddphi4 = diff (dphi4,t);

% numerical value for alpha4
ddphidn =

fprintf (' alphad4=alphab = %g

double (subs (dphi4,slist,nlist));

(rad/s) \n’,

(rad/s"~2)\n’,

plot ([xA,xBn], [VA,yBn], k', ...

4 14
,'b

xBn, xDn], [yBn, yDn]
Irl)

[
[

[xA,xDn], [yA,yDn],
text (xA,vA,” A'),...
text (xBn, yBn,’ B")
text (xC,yC,”’ cry,.
text (xDn,yDn,’ D’)
grid

7 e e
7 e .

)

% end of program
Results :

rB = [ 0.129904, 0.075, 0 ]
vBl=vB2 = [ -0.392699,
|[vB1l|=|vB2| = 0.785398
aBl=aB2 = [ -3.56139,

laBl|=|aB2| = 4.11234

(m/s)
(m/s"2

rD = |
vD3=vD4 = [
|vD3|=|vD4| = 0.673198 (m/s)
aD3=aD4 = [ 2.5548, -2.71212
|aD3|=|aD4 | 3.72594 (m/s"2

-0.147297, 0.128347,
-0.127223,

phi2=phi3 = -10.
omegal=omegal3 =
alpha2=alphal3 =

8934
4.48799
14.5363

138.933
= 2.97887
12.1939

phid=phi5 =
omegad=omegab
alphad4=alphab

0.680175, 0 ]

-2.05617, 0 1
)

0]
-0.661068, 0 ]

0]
)

J e e .

(m)

(m)

(m/s"2)

(degrees)
(rad/s)
(rad/s"2)

(degrees)
(rad/s)
(rad/s"2)

(m/s”

dphidn)

double (subs (ddphi4,slist,nlist));

ddphi4n)

(m/s)

2)

(m/s)

343
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B.6 Inverted Slider-Crank Mechanism: Derivative Method

B6

Velocity and acceleration analysis
Inverted slider-crank mechanism
Derivative method

o0 o0 o oe

clear all; clc; close all

fprintf ("Results \n\n’)
fprintf (" Velocity and acceleration analysis\n’)
fprintf (' Derivative method \n\n’)

AC = 0.15; BC
xC = AC; yC = 0y
n = 30; omega = nxpi/30;

0.20 ; xA = 0; vA = 0;

o |l

t = sym('t’,’'real’);

phi = sym('phi(t)’);
xB = sym(’xB(t)’);
yB = sym("yB(t)");

egBl = xBxsin(phi) - yB=xcos (phi);
egqB2 = ( xB - xC )"2 + ( yB - yC )"2 - BC"2;

sp = {’phi(t)’, "xB(t)’,"yB(t)"};
np = {pi/3,’xBn’,’yBn’};

egBlp = subs (eqgBl, sp,np) ;
egB2p = subs (egB2, sp,np) ;

solBp solve (egBlp, egB2p);

xBpositions = eval (solBp.xBn);

yBpositions = eval (solBp.yBn);

xB1l = xBpositions(l); xB2 = xBpositions(2);
yBl = yBpositions(l); yB2 = yBpositions(2);

if yB1 > 0

xBp = xBl; yBp = yBl;
else

xBp = xB2; yBp = yB2;
end
rB = [xBp yBp 0];

fprintf('rB = [ %9, %g, %g ] (m)\n’, rB)
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fp = {pi/3,xBp,yBp};

% velocity of B2=B3
degBl = diff(egBl,t);
degB2 = diff (egB2,t);

sv={diff ('phi(t)’,t),diff("xB(t)’,t),...
diff ("yB(t)’,t)};
nv = {omega,’vxB’',’vyB’};

degBlp=subs (degBl, sv,nv) ;
degBln=subs (degBlp, sp, fp) ;
degB2p=subs (degB2, sv, nv) ;
degB2n=subs (degB2p, sp, fp) ;

solvB = solve (degBln, degB2n);

vBx = eval (solvB.vxB);

vBy = eval (solvB.vyB);

fprintf ("vB2 = vB3 = [ %9, %9, %9 ]
[VBx vBy 01])

fprintf (' |vB2| = |vB3| = %g (m/s) \n’,...

norm([vBx vBy 0]))

fv = {omega, vBx,VvBy};

% acceleration of B2=B3
ddegBl = diff (degBl,t);
ddegB2 = diff (degB2,t);

sa
diff ("yB(t)',t,2)};
{0,7axB’,"ayB’ };

na

ddegBlp=subs (ddegBl, sa, na) ;
ddegBln=subs (ddegBlp, sv, fv) ;
ddegBlf=subs (ddegBln, sp, fp) ;
ddegB2p=subs (ddegB2, sa, na) ;
ddegB2n=subs (ddegB2p, sv, fv) ;
ddegB2f=subs (ddegB2n, sp, fp)

4

solaB = solve (ddegBlf, ddegB2f);
aBx = eval (solaB.axB);

(m/s)\n’, ...

{(diff ("phi(t)’,t,2),diff ("xB(t)’,t,2), ...

345
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aBy = eval (solaB.ayB);

fprintf("aB2 = aB3 = [ %g, %g, %g ] (m/s"2)\n’,...
[aBx aBy 0])
fprintf (’ |aB2| = |aB3| = %g (m/s"2) \n’,...

norm([aBx aBy 0]))
fa = {0,aBx,aBy};
% angular velocity and acceleration of link 3

phi3 = atan ((yB-yC)/ (xB-xC)) ;

phi3n = subs (phi3, sp, fp);

fprintf ("phi3 = %g (degrees) \n’,...
double (phi3n*180/pi))

dphi3 = diff (phi3, t) ;

dphi3nn = subs (dphi3, sv, fv) ;

dphi3n = subs (dphi3nn, sp, fp) ;

fprintf (' omega3 = %g (rad/s) \n’,...
double (dphi3n))

ddphi3 = diff (dphi3, t);

ddphi3nnn = subs (ddphi3, sa, fa);

ddphi3nn subs (ddphi3nnn, sv, fv) ;

ddphi3n = subs (ddphi3nn, sp, fp);

fprintf (’alpha3 = %g (rad/s"2) \n’,...
double (ddphi3n))

plot ([xA, xBpl, [VA,yBpl,'x’/, ...
[xBp, xC], [yBp,yCl,'b"), ...

text (xA,vA," A'),...

text (xBp,yBp,’” B"), ...

text (xC,yC,’” C’"), grid

[

% end of program

Results:
rB = [ 0.113535, 0.196648, 0 ] (m)
vB2 = vB3 = [ -0.922477, -0.17106, 0 ] (m/s)
|vB2| = |vB3| = 0.938203 (m/s)
aB2 = aB3 = [ 2.0571, -4.0947, 0 1 (m/s"2)
|laB2| = |aB3| = 4.58238 (m/s"2)
phi3 = -79.4946 (degrees)

omega3d = 4.69102 (rad/s)
alpha3 -6.38024 (rad/s"2)
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B.7 R-RTR Mechanism: Derivative Method

B7

Velocity and acceleration analysis
R-RTR

Derivative method

o0 o0 o oe

clear all; clc; close all

fprintf ("Results \n\n’

fprintf (' Velocity and acceleration analysis\n’)
fprintf (' Derivative method \n\n’

AB = 0.1; AC = 0.1; CD = 0.3;% (m)
phil = pi/4; omega = pi; alpha = 0;

xC = 0; yC = 0;
XA 0; vA = AC;

t = sym('t’,"real’);
xBl = xA + ABxcos(sym(’phi(t)’));
yBl = yA + AB*sin(sym(’'phi(t)’));

% position vector of B function of phi(t) - symbolic
rB = [ xB1 yB1 0 ];

xBn = subs (xBl1, hi(
yBn = subs (yBl,’phi (
rBn = subs(rB phl(t
fprintf (' rB = [ %9,

t)’,pi/4); % xB for phi(t)=pi/4

t)’,pi/4); % yB for phi(t)=pi/4
)',pi/4); % rB for phi(t)=pi/4
%9, %9 ] (m)\n’, rBn)

velocity of B1=B2

differentiate rB with respect to t
vB = diff (rB,t);

% list for the symbolical variables:
% phi’’ (t), phi’ (t), phi(t)

slist = .

{diff (phi(t)’,t,2), diff('phi(t)’,t), ’'phi(t)’};
% list for the numerical values

% of phi’’ (t), phi’ (t), phi(t)

nlist = {alpha, omega, phil};

vBn = double (subs(vB,slist,nlist));

o° o

[

fprintf ("vBl = vB2 = [ %g, %g, %g ] (m/s)\n’, vBn)
fprintf (' |vB1l| = |vB2| = %g (m/s)\n’, norm(vBn))

acceleration of B1=B2
differentiate vB with respect to t
aB = diff(vB,t);

%
%

347
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aBn = double (subs (aB,slist,nlist));
fprintf("aBl = aB2 = [ %g, %g, %g ] (m/s"2)\n’, aBn)
fprintf (' |aBl| = |aB2| = %g (m/s"2)\n’, norm(aBn))

fprintf (" \n’)

xB = sym(’xB(t)’); % xB(t) symbolic
yB = sym("yB(t)’); % yB(t) symbolic

% list for the symbolical variables of B
$ xB’7 (t), yB'’' (t), xB’ (t), yB’' (t), xB(t), yB(t)
sB={diff ("xB(t)’,t,2),diff("yB(t)',t,2),

diff ('xB(t)’,t),diff('yB(t)",t), ' xB(t)’,’yB(t)"};
% three dots (...)
% are used whenever a line break is needed
% list for the numerical values of the sB list
nB={aBn(l),aBn(2),vBn(l),vBn(2),xBn,yBn};
% angular velocity and acceleration of links 2 and 3
phi3 = atan ((yB-yC)/ (xB-xC)) ;
phi3n = subs (phi3, sB, nB);
fprintf (‘phi2 = phi3 = %g (degrees)\n

double (phi3n*180/pi))

dphi3 = diff (phi3,t);

dphi3n = subs (dphi3, sB, nB);

fprintf (' omega2 = omega3 = %g (rad/s) \n’
double (dphi3n))

ddphi3 = diff (dphi3, t);

ddphi3n = subs (ddphi3, sB,nB) ;

fprintf ('alpha2 = alpha3 = %g (rad/s”"2) \n’
double (ddphi3n))

fprintf (\n’)

xD = eval (xC + CDxcos (phi3n));
yD = eval (yC + CDxsin (phi3n));

plot ([xA,xBn], [yA,yBn], ", [xC,xD], [yC,yD],"'b"),
text (x ,yA " A"), text(xBn,an,’ B"),
text (xC,yC,’” C’"), text (xD,yD,’ "),
ax1s([ 0.05 0.3 -0.05 0.31)
% end of program
Results:
rB = [ 0.0707107, 0.170711, 0 1 (m)

vBl = vB2 = [ -0.222144, 0.222144, 0 1 (m/s)
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|[vBl| = |vB2| = 0.314159 (m/s)
aBl = aB2 = [ -0.697886, -0.697886, 0 ] (m/s"2)
|aBl| = |aB2| = 0.98696 (m/s"2)

phi2 = phi3 = 67.5 (degrees)
omega2 = omegal3 = 1.5708 (rad/s)
alpha2 = alpha3 = 2.40543e-16 (rad/s"2)

B.8 R-RRR Mechanism: Derivative Method

B8

R—-RRR

Velocity and acceleration analysis
Derivative method

clear all; clc; close all

[

% Input data

o° o o o°

AB=0.15; % (m)
BC=0.35; % (m)
CD=0.30; % (m)
CE=0.15; % (m)
xD=0.30; % (m)
yD=0.30; % (m)

phi = pi/4 ; % (rad)
XA = 0; vA = 0;
rA = [xA yA 0];
rD = [xD yD 0];
xXB = AB=*cos (phi);

yB = AB*sin (phi);

rB = [xB yB 0];

egnCl=' (xCsol-xB) "2+ (yCsol-yB) "2=BC"2’;
egqnC2=' (xCsol-xD) "2+ (yCsol-yD) "2=CD"2’;
solC = solve(eqnCl, eqnC2, ’'xCsol, yCsol’);

xCpositions = eval (solC.xCsol);
yCpositions = eval(solC.yCsol);
xCl = xCpositions(l); xC2 = xCpositions(2);

yCl = yCpositions(l); yC2 = yCpositions(2);
if xCl < xD
xC = xCl; yC=yCl;
else xC = xC2; yC=yC2; end
rC = [xC yC 01;
egnEl=’ (xEsol- xC) "2+ (yEsol-yC) "2=CE"2’;
eqnE2=' (yD-yC) / (xD-xC) = (yEsol-yC)/ (xEsol-xC)';
solE = solve(eqnEl, eqnkE2, ’'xEsol, yEsol’);
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xEpositions = eval (solE.xEsol);
yEpositions = eval (solE.yEsol);
xEl = xEpositions(l); xE2 = xEpositions(2);
vE1 yEpositions (1); yE2 yEpositions (2);
if xE1l < xC
xE = xE1; yE=yE1l;
else xE = xE2; yE=yE2; end
rE = [xE yvE 0];
phi2 atan ( (yB-yC)/ (xB-xC) ) ;
phi3 = atan ((yD-yC)/ (xD-xC)) ;
fprintf ("Results \n\n’)
fprintf (' Velocity and acceleration analysis\n’)
fprintf ('Derivative method \n\n’)

t = sym('t’,’'real’);

n = 60; % (rpm) driver link

omegal = pixn/30;

alphal = eval (diff (omegal, t));

fprintf (' omegal %$3.3f (rad/s)\n’, omegal)
fprintf ("alphal = %3.3f (rad/s"2)\n’, alphal)
fprintf (' \n’)

phil = sym(’phil(t)");

%position vector of B function of phil (t)-symbolic

rBs = [ ABxcos (phil) AB*sin(phil) 0 1;
% velocity of B - symbolic

vB = diff (rBs,t);

slist=...

{diff ("phil(t)’,t,2),diff ("phil(t)’,t), ' phil(t)’};
$numerical values for slist

nlist={alphal, omegal, phi};

vBn = eval (subs(vB,slist,nlist));

fprintf...

("vBl = vB2 = [ %3.3f, %3.3f, %3.3f ] (m/s)\n’,VvBn)
fprintf...

(" |vB1l|] = |vB2| = %3.3f (m/s)\n’, norm(vBn))

% differentiate vB with respect to t

aB = diff(vB,t);

aBn = eval (subs(aB,slist,nlist));

fprintf...

("aBl = aB2 = [ %3.3f, %3.3f, %3.3f ] (m/s"2)\n’,aBn)
fprintf (' |aBl| = |aB2| = %3.3f (m/s"2)\n’, norm(aBn))

fprintf (" \n’)

xBs = sym(’xBs(t)’);
yBs = sym(’yBs (t)

xB symbolic
yB symbolic

~
-

~

o° o
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% list for the symbolical variables of B

sB={diff ('xBs(t)’,t,2),diff('yBs(t)’,t,2),
diff ("xBs(t)’,t),diff("yBs(t)’,t),...
"xBs(t)’,’yBs(t)'};

nB={aBn(l),aBn(2),vBn(l),vBn(2),xB,yB};

xCs = sym(’'xCs(t)’); % xC symbolic

yCs = sym('yCs(t)’); % yC symbolic

pCl=(xCs-xBs) "2+ (yCs—-yBs) "2-BC~ 2’ ;

pC2=(xCs—-xD ) "2+ (yCs—-yD ) "2-CD"2';

dpCl = diff (pCl,t);

dpC2 = diff (pC2,t);

syms dxC dyC

dpCls=subs (dpC1,

{diff ("xCs (t)’ ) dlff(’st(t)’ t)}, {dxC, dyC});

de2$=subs(de2

{diff ("xCs (t)’ ),dlff(’st(t)’ t)}, {dxC, dyC});

soldC = solve (dpCls, dpC2s,’dxC, dyC’);

vxC = soldC.dxC;

vyC = soldC.dyC;

vC = [ vxC vyC 0 ];

spC = {xCs, yCs};

npC = {xC, vyC };

vCn =eval (subs (subs(vC, sB, nB), spC, npC));

fprintf...

("vC = [ %3.3f, %3.3f, %3.3f ] (m/s)\n’, vCn)

fprintf (' |vC|] = %3.3f (m/s)\n’, norm(vCn))

svC={diff ("xCs(t)’,t),diff("yCs(t)’,t),...
"xCs(t)’,’yCs(t)'};

nvC={vCn(l), vCn(2), rC(l), rC(2)};

ddpC1l
ddpC2

= diff(pCl,t,2);
diff (pC2,t,2);

syms ddxC ddyC
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ddpCls = subs (ddpC1l,
{diff("xCs(t)’,t,2),diff("yCs(t)’,t,2)},
{ddxC, ddyC});

ddpC2s = subs (ddpC2,
{diff("xCs(t)’,t,2),diff("yCs(t)’,t,2)},
{ddxC, ddyC});

solddC = solve(ddpCls, ddpC2s,’ddxC, ddyC’);
axC = solddC.ddxC;
ayC = solddC.ddyC;

aC = [ axC, ayC, 0];

aCn =eval (subs (subs(aC, sB, nB), svC, nvC));

fprintf...

("aC = [ %3.3f, %3.3f, %$3.3f ] (m/s"2)\n’, aCn)

fprintf (' |aC|] = %3.3f (m/s”2)\n’, norm(aCn))

sC={diff ("xCs(t)’,t,2),diff('yCs(t)’,t,2),...
diff ("xCs(t)’,t),diff('yCs(t)’,t), ...
"xCs(t)’,"yCs(t)"};

nC={aCn(l),aCn(2),vCn(l),vCn(2),xC,yC};

fprintf ("\n’)

phi2s=atan ((yCs-yBs) / (xCs—xBs)) ;

phi2n = eval (subs (subs (phi2s, sB,nB),sC,nC));
fprintf ("phi2 = %3.3f (rad)\n’,phi2n)

omega2 = diff (phiZ2s,t);

omega2n = eval (subs (subs (omega2,sC,nC), sB,nB));
fprintf (' omega2 = %3.3f (rad/s)\n’, omega2n)
alpha2 = diff (omega2,t);

alpha2n = eval (subs (subs (alpha2,sC,nC),sB,nB));
fprintf (’alpha2 = %3.3f (rad/s”2)\n’,alpha2n)

fprintf ("\n’)

phi3s=atan ((yCs-yD) / (xCs—xD)) ;

phi3n = double (subs (phi3s, sC,nC));

fprintf ("phi3 = %3.3f (rad)\n’,phi3n)

omega3 = diff (phi3s,t);

omega3n = double (subs (omega3, sC,nC));
fprintf (' omega3 = %3.3f (rad/s)\n’,omega3n)
alpha3 = diff (omega3,t);

alpha3n = double (subs(alpha3,sC,nC));

fprintf (’alpha3 = %3.3f (rad/s”2)\n’,alpha3n)
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fprintf ("\n’")
xEs = xCs—-CExcos (phi3s);
vEs yCs-CExsin (phi3s) ;

rEs=[xEs yEs 0];
vE = diff (rEs,t);
akE = diff (vE, t);

vEn = double (subs (subs (vE, sC,nC), sB,nB));
fprintf...

('vVE = [ %3.3f, %3.3f, %2.3f ] (m/s)\n’,vEn)
akEn = double (subs (subs (akE, sC,nC), sB,nB));
fprintf...

("aE = [ %3.3f, %3.3f, %2.3f ] (m/s"2)\n’,aEn)

% Graph of the mechanism
plot ([xA,xB], [yA,yB], ' r-o’, ...

[xB,xC], [yB,yC],"b-0", ...

[xD, xE], [yD,yE], " g-0’),
xlabel ('x (m)"), ylabel('y (m)’"),...
title ('positions for \phi = 45 (deg)’), ...
text (xA,yA,’ A’), text(xB,yB,’” B’'),...
text (xC,yC,’” C’'), text(xD,yD,’ D’'),...
text (xE,vE,’” E’)
% end of program

°

Results:

omegal 6.283 (rad/s)
alphal = 0.000 (rad/s"2)

vBl = vB2 = [ -0.666, 0.666, 0.000 ] (m/s)

|vB1l| = |vB2| = 0.942 (m/s)

aBl = aB2 = [ -4.187, -4.187, 0.000 ] (m/s"2)
laBl| = |aB2| = 5.922 (m/s"2)

vC = [ 0.515, 0.893, 0.000 ] (m/s)

|[vC|] = 1.031 (m/s)

aC = [ -0.322, -7.654, 0.000 ] (m/s"2)

laC| = 7.660 (m/s”"2)

phi2 = -1.381 (rad)

omegal2 = -3.436 (rad/s)

alpha2 = -8.979 (rad/s"2)
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phi3 = -0.523 (rad)
omega3 = —-3.436 (rad/s)
alpha3 = 22.640 (rad/s"2)
vE = [ 0.772, 1.340, 0.000 1 (m/s)
aE = [ -0.483, -11.481, 0.000 ] (m/s"2)

B.9 R-RTR-RTR Mechanism: Contour Method

B9

R—-RTR-RTR
Contour method

o® o° o° o°

clear all; clc;
AB = 0.15 ; AC =
DF = 0.40 ; AG =
phi = pi/6 ; %
xA =0 ; vA =0
xC = 0 ; yC = AC
xB = AB*cos (phi);

egqnDl=’" ( xDsol - xC

Velocity and acceleration analysis

close all

0.10 ; CD = 0.15 ; % (m)
0.30 ; % (m)
(rad)
; rA = [xA yA 0] ;
; rC = [xC yC 0] ;
yB = AB*sin(phi); rB = [xB yB 0];
)"2 + ( yDsol - yC )"2 = CD"2’;

eqnD2=' (yB-yC) / (xB-xC)=(yDsol-yC) / (xDsol-xC)’;

solD =
xDpositions
yDpositions =

solve (eqnD1l,
= eval (solD.xDsol);
eval (solD.yDsol);
xD1=xDpositions(1l);
yDl=yDpositions (1) ;

eqnD2, ’xDsol, yDsol’);

xD2=xDpositions (2);
yD2=yDpositions (2);

if (phi>=0&&phi<=pi/2) | | (phi>=3*pi/2&&phi<=2+pi)
if xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end
else
if xD1 >= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;
end
end

rD=[xD yD 0];

phi2=atan ( (yB-yC)/ (xB-xC)) ;

phi3=phiZ2;

phid=atan (yD/xD)+pi; phib5=phi4;

xF=xD+DFxcos (phi3) ;

rF=[xF yF 0];
xXG=AG*cos (phib) ;
rG = [xG yG 0];

yF=yD+ DFx*sin (phi3);

yG=AG*sin (phib);
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fprintf ("Results \n\n’)

fprintf ('rA = [ %g, %g, %9 ] (m)\n’, rA)
fprintf('rC = [ %g, %g, %9 ] (m)\n’, rC)
fprintf("rB = [ %9, %9, %9 ] (m)\n’, rB)
fprintf("rD = [ %9, %g, %9 ] (m)\n’, rD)
fprintf...

("phi2 = phi3 = %g (degrees) \n’,phi2*x180/pi)
fprintf...

("phid4 = phi5 = %g (degrees) \n’,phid%180/pi)
fprintf ("rF = [ %9, %9, %g] (m)\n’, rF)
fprintf ("rG = [ %9, %9, %g] (m)\n’, rG)

% Graphic of the mechanism

355

plot ([xA, xB], [yA,yB],"k-0o", [xD,xF], [yD,yF], "b-0", ...

[xA, xG], [yA,yG], " r-0")
xlabel ("x (m)’"), ylabel('y (m)’),...

title ('positions for \phi = 30 (deg)’),...

text (xA,vA,’ A’'), text(xB,yB,’” B"),...
text (xC,yC,"” C"), text(xD,yD,’” D’"),...
text (xF,yF,’ F’'), text (xG,vyG,’” G'),...

(

4

axis([-0.3 0.3 -0.1 0.3]), grid

fprintf (" \n’)

fprintf (' Velocity and acceleration analysis\n\n’)
fprintf (' Contour method \n’)

fprintf (’\n’)

n = 50.;

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 1;
fprintf...

("omegal = [ %9, %9, %g ] (rad/s)\n’, omegal)
fprintf...

("alphal = [ %g, %9, %9 ] (rad/s"2)\n’, alphal)

fprintf ("\n’)

vA = [0 0O O ]; aA = [0 O O 71;

vBl = vA + cross(omegal,rB); vB2 = vBl;
aBl = aA + cross(alphal,rB) -

dot (omegal, omegal) *xrB;

fprintf...

("vB = vBl = vB2 = [ %g, %g, %g ] (m/s)\n’, vBl)
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aB2 = aBl;

fprintf...

("aB = aBl = aB2 = [ %g, %g, %g ] (m/s"2)\n’, aBl)
fprintf (' \n’)

fprintf (' Contour I \n\n’)

fprintf ("Relative velocities \n’)

fprintf ("\n’)

omegal0 = omegal;

omega2lv = [ 0 0 sym(’omega2lz’,’real’) 1;
omegal3v = [ 0 0 sym(’'omega03z’,"'real’) 1;

v32v = sym(’vB32’,"’real’)x[ cos(phi2) sin(phi2) 0];
eqlomega = omegall + omega2lv + omegal3v;
egqlvz=eqglomega (3);

eqlv =

cross (rB,omegaz2lv) + cross (rC,omegal3v) + v32v;
eqlvx=eqlIv (1l);
eglvy=eqlv(2);

Ivz=vpa (eqlvz,6);
fprintf("%$s = 0 \n’, char(Ivz))
Ivx=vpa (eqglvx, 6);
fprintf('%$s = 0 \n’, char (Ivx))
Ivy=vpa (eqglvy, 6);
fprintf("%$s = 0 \n’, char(Ivy))

solIv=solve (eqlvz,eqlvx,eqlvy);

omega2l = [ 0 0 eval(solIv.omega2lz) 1;

omegal03 = [ 0 0 eval(solIv.omega03z) 1;

vB3B2 = eval (sollIv.vB32)«*[ cos(phi2) sin(phi2) 0];

fprintf...

("omega2l = [ %g, %9, %9 1 (rad/s)\n’, omega2l)
fprintf...

("omegal3 = [ %g, %9, %9 ] (rad/s)\n’, omega03)
fprintf (" vB32 = %g (m/s)\n’, eval(solIv.vB32))
fprintf (vB3B2 = [ %g, %g, %d ] (m/s)\n’, vB3B2)

fprintf ("\n’)

fprintf (' Absolute velocities \n\n’)
omega30 = - omegal3;

omega20 = omega3l;

vC = [0 00 ];

B Programs of Chapter 3: Velocity and Acceleration Analysis
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vD3 = vC + cross(omega30, rD-rC);
fprintf...
(" omega20=omega30= [%d, %d, %g] (rad/s)\n’,omega30)
fprintf('vD3 = vD4 = [ %g, %9, %g ] (m/s)\n’, vD3)
fprintf (‘\n’")
fprintf ("Relative accelerations \n’)
fprintf ("\n’)
alphal0 = alphal;
alpha2lv = [ 0 0 sym(’alpha2lz’,’real’) 1;
alphaO3v = [ 0 0 sym(’alpha03z’,"'real’) 1;
a32v = sym(’aB32’,’'real’)*[ cos(phi2) sin(phi2) 0];

eglalpha = alphalO + alpha2lv + alphaO3v;
egqlaz=eqglalpha (3);

egla=cross (rB,alpha2lv)+cross (rC,alphal3v)+...
a32v+2+cross (omegaz20, vB3B2)—. ..

357

dot (omegal, omegal) xrB-dot (omega20, omega20) » (rC-rB) ;

eqlax=eqgla(l);
eqlay=eqla(2);

Taz=vpa
fprintf
Tax=vpa
fprintf
Tay=vpa
fprintf

eqlaz,6);
"%$s=0 \n’,char(Iaz))
eqglax, 3);
"$s=0 \n’,char (Iax))
eqglay, 6);
"$s=0 \n’,char (Iay))

~ o~ o~~~ —~

solIa=solve (eqlaz,eqlax,eqglay);
alpha2l = [ 0 0 eval(solIa.alpha2lz) 1;
alpha03 = [ 0 0 eval(solIa.alpha03z) 1;

aB3B2 = eval (solIa.aB32)*[ cos(phi2) sin(phi2) 0];

fprintf...
("alpha2l = [ %g, %9, %9 ] (rad/s"2)\n’, alpha2l)
fprintf...

("alpha03 = [ %9,
fprintf ("aB32 = %g
fprintf ("aB3B2 = [
fprintf ("\n’)

%9, %9 ] (rad/s"2)\n’, alpha03)
(m/s~2)\n’, eval(solIa.aB32))

fprintf (" Absolute accelerations \n\n’)
alpha30 = - alpha03;
alpha20 alpha3o0;

%9, %9, %d ] (m/s"2)\n’, aB3B2)
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aC [0 00 ];

aD3=aC+cross (alpha30, rD-rC)—-...
dot (omega20, omega20) « (rD-rC) ;

fprintf...

, ] (rad/s"2)\n’,alpha30)
fprintf("abD3 = aD4 = [ %g, %g, %g ] (m/s"2)\n’, aD3)

,\n’)
"Contour II \n\n’)
'Relative velocities \n’)

/\n/)

fprintf
fprintf
fprintf
fprintf

—_~ e~~~

omegad3v = [ 0 0 sym(’'omegad3z’,’'real’) 1];
omegal5v = [ 0 0 sym(’omegaO5z’,’real’) 1;
vb4dv = sym(’vD54’,"’real’)x[ cos(phi4) sin(phi4d) O0];
eglIomega = omega30 + omegad3v + omegal5v;
eqlIvz=egIIomega(3);

eqllv=cross (rC,omega30) +cross (rD, omegad3v) +v54v;
eqlIvx=eqlIv(l);

eqllvy=eqllv (2);

= 0 \n’, char(IIvz))
= 0 \n’, char(IIvx))
= 0 \n’, char(IIvy))

IIvz=vpa (eqllvz,6); fprintf ('
IIvx=vpa (eqlIvx,6); fprintf ('
IIvy=vpa(eqgllvy,6); fprintf (’

o° o oo
n n n
I

solIlv=solve(eqllvz,eqllvx,eqllvy);

omegad3 = [ 0 0 eval(solIIv.omegad3z) ];

omegal05 = [ 0 0 eval(solIIv.omega0O5z) ] ;

vD5D4 = eval(solIIv.vD54)x[ cos(phi4) sin(phi4d) O0];

fprintf...
("omegad43 = [ %9, %9, %g ] (rad/s)\n’, omega4d3)
fprintf...
("omegal5 = [ %g, %9, %9 1 (rad/s)\n’, omegalb)

fprintf (' vD54 = %g
fporintf ('vD5D4 = [
fprintf (‘\n’)

g g
(m/s)\n’, eval(solIIv.vD54))
% %9, %d 1 (m/s)\n’, vD5D4)

fprintf (' Absolute velocities \n\n’)

omega50 = - omegal5;
omega40 = omegabO;
fprintf...

(" omegadO=omega50=[%d, %d, %g] (rad/s)\n’,omega50)
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fprintf ('\n’)
fprintf ('Relative accelerations \n\n’)

alphad43v = [ 0 0 sym(’alpha43z’,’real’) 1;
alphaO5v = [ 0 0 sym(’alphaO5z’,’real’) 1;
ab4v = sym(’aD54’,"real’)x[ cos(phid4) sin(phid) 01];

eglIlalpha = alpha30 + alpha43v + alphalO5v;
egllaz=eqgIIalpha(3);
eqlla=cross (rC,alpha30)+cross (rD,alpha4d3v)+...
ab54v+2«cross (omegad0,vD5D4) —. ..
dot (omega30, omega30) » (rD-xrC) —. ..
dot (omegad0, omegad0) » (—rD) ;
egllax=eqlIa(l);
egllay=eqlIa(2);

ITaz=vpa(eqllaz,6); fprintf (’
ITax=vpa (eqllax,6); fprintf ('
ITay=vpa (eqlIlay,6); fprintf ('

o o oP
n n n
I

solITa=solve(eqgllaz,eqllax,eqgllay);
alphad43 = [ 0 0 eval(solITla.alphad43z) 1;
alpha05 = [ 0 0 eval(solIIa.alphaO5z) ] ;

aD5D4 = eval (solITIa.aD54)*[ cos(phi4) sin(phi4) 0];

fprintf...
("alpha43 = [ %g, %9, %g ] (rad/s"2)\n’, alpha43)
fprintf...
("alphaO5 = [ %g, %9, %9 1 (rad/s"2)\n’, alpha05)
fprintf (’abD54 = %g (m/s”2)\n’, eval(solIIa.aD54))
fprintf (/abD5D4 = [ %g, %g, %d ] (m/s"2)\n’, aD5D4)

fprintf ("\n’)

fprintf (" Absolute accelerations \n’)
fprintf ("\n’)

alpha50 = - alphaO5;

alphad40 = alphab0;

fprintf...

359

0 \n’, char(IIaz))
0 \n’, char(IIax))
0 \n’, char(IIay))

("alpha40=alphab0=[%d, %d, %$g] (rad/s"2)\n’,alpha50)

[}

% end of program

Results:
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rC =110, 0.1, 01 (m)

rB = [ 0.129904, 0.075, 0 ] (m)

rD = [ -0.147297, 0.128347, 0 1 (m)
phi2 = phi3 = -10.8934 (degrees)
phi4 = phib = 138.933 (degrees)

rF = [ 0.245495, 0.0527544, 0] (m)
rG = [ -0.226182, 0.197083, 0] (m)

Velocity and acceleration analysis
Contour method

omegal = [ 0, 0, 5.23599 ] (rad/s)
alphal = ] (rad/s"2)

|
o
N
o
~
o

vB = vBl = vB2 = [ -0.392699, 0.680175, 0 1 (m/s)
aB = aBl = aB2 -3.56139, -2.05617, 0 1 (m/s"2)

—

Contour I
Relative velocities

5.23599+omega2lz+omegal3z = 0
.750000e-1xomega2lz+.100000xomegal03z+.981983xvB32 = 0
-.129904xomegaz2l1z—-.188982%xvB32 = 0

omega2l = [ 0, 0, -0.747998 ] (rad/s)

omegal03 = [ 0, 0, —-4.48799 ] (rad/s)

vB32 = 0.514164 (m/s)

vB3B2 = [ 0.504899, -0.0971678, 0 1 (m/s)

Absolute velocities

omega20=omega30= [0, 0, 4.48799] (rad/s)
vD3 = vD4 = [ -0.127223, -0.661068, 0 ] (m/s)

Relative accelerations

alpha2lz+alpha03z=0
.750e-1xalpha2lz+.100+«alpha03z+.980xaB32-.727e-1=0
—-.129904%alpha21z-.188982%xaB32+1.97224=0

alpha2l = [ 0, 0, 14.5363 ] (rad/s"2)

alpha03 = [ 0, 0, -14.5363 1 (rad/s"2)

aB32 = 0.44409 (m/s"2)

aB3B2 = [ 0.436088, -0.0839252, 0 ] (m/s"2)
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Absolute accelerations

alpha20=alpha30=[0,0,14.5363] (rad/s"2)
aD3 = aD4 = [ 2.5548, -2.71212, 0 ] (m/s"2)

Contour II
Relative velocities

4.48798+omegad3z+omegalbz = 0
.448798+.128347+«omegad3z-.753939xvD54 = 0
.147297+xomegad3z+.656945+xvD54 = 0

omega43 = [ 0, 0, -1.50912 ] (rad/s)
omegal05 = [ 0, 0, -2.97887 ] (rad/s)

vD54 = 0.338367 (m/s)

vD5D4 = [ -0.255108, 0.222288, 0 ] (m/s)

Absolute velocities
omegad40=omega50=[0, 0, 2.97887] (rad/s)
Relative accelerations

14.5363+alpha43z+alphalbz = 0
1.78909+.128347*alphad43z-.753939%ab54 = 0
.147297xalpha43z+.656945%aD54~-.951928 =
alpha43 = [ 0, 0, -2.3424 ] (rad/s"2)
alpha05 [ 0, 0, -12.1939 1 (rad/s"2)
aD54 = 1.97423 (m/s"2)

aD5D4 = [ -1.48845, 1.29696, 0 ] (m/s"2)

|
o

Absolute accelerations

alpha40=alpha50=[0, 0, 12.1939] (rad/s"2)



Appendix C

Programs of Chapter 4: Dynamic Force Analysis

C.

[

Cl
Dynamic force analysis
R—-RRT

Newton—-Euler method
clear all; clc; close all
format long
AB = 1; BC

o° o

o

o\°

1; phi = 45%pi/180;

Slider-Crank (R-RRT) Mechanism: Newton—-Euler Method

xA = 0; yA = 0; rA = [xA yA 0];
xB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];
yC = 0; xC = xB+sqgrt (BC"2-(yC-yB) "2); rC = [xC yC 0];

phi2 = atan ((yB-yC)/ (xB-xC));
fprintf ("Results \n\n’)
fprintf ("phi = phil
(
(

o\¢
Q
~
oe ||

%g (degrees) \n’, phi*180/pi)

fprintf ("rA = [ % g, %9 ] (m)\n’, rh)
fprintf ('rB = [ %g, %g, %9 ] (m)\n’, rB)
fprintf('rC = [ %g, %g, %9 ] (m)\n’, rC)

n = 30/pi; % (rpm) driver link

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 ];
fprintf...

("alphal = [ %g, %9, %9 ] (rad/s"2)\n’, alphal)
vA = [0 0O O ]; aA = [0 O O 71;

vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl = aA + cross(alphal,rB) - dot (omegal,omegal) xrB;
aB2 = aBl;

omegalz = sym(’omega2z’,’real’);

vCx = sym(’'vCx’,"real’);

omega2 = [ 0 0 omega2z ]; vC = [ vCx 0 0 ];
eqvC = vC - (vB2 + cross(omega2,rC-rB));

363
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eqvCx = eqvC(l); eqvCy = eqvC(2);

solvC = solve (egvCx,eqvCy) ;

omega2zs=eval (solvC.omega2z) ;

vCxs=eval (solvC.vCx); Omega2 = [0 0 omega2zs];

vCs = [vCxs 0 0];

alpha2z = sym(’alpha2z’,’real’);

aCx = sym(’aCx’,’real’);

alpha2 = [ 0 0 alpha2z ]; aC = [aCx 0 0 1;

eqaC = aC - (aBl + cross(alpha2, rC-rB) -
dot (Omegaz2,Omegal) » (rC-rB) ) ;

egaCx = eqgaC(l); egaCy = eqgaC(2);

solaC = solve (egaCx,eqaCy);

alphaZ2zs=eval (solaC.alpha2z); aCxs=eval (solaC.aCx);
alpha20 = [0 0 alpha2zs]; aCs = [aCxs 0 0];
fprintf...

("alpha2 = [ %9, %9, %g ] (rad/s"2)\n’, alpha20)
alpha30 = [0 O 0];

fprintf...

("alpha3 = [ %g, %9, %9 ] (rad/s"2)\n’, alpha30)

fprintf ("\n’)

fprintf...
("Positions and accelerations for mass centers \n’)
fprintf ("\n’)

rCl = (rA+rB)/2;

fprintf ('rCl = [ %9, %g, %g ] (m)\n’, rCl)
rC2 = (rB+rC)/2;

fprintf ("rC2 = [ %9, %9, %9 ] (m)\n’, rC2)
rC3 = rC;

fprintf ('rC3 = [ %g, %g, %g ] (m)\n’, rC3)

% Graphic of the mechanism

plot ([0,xB], [0,yB],’r-0o’, [xB,xC], [yB,yC],"b-0")
xlabel ('x (m)’"), ylabel('y (m)’),...

title ('positions for \phi = 45 (deqg)’),

text (XA, yA " A'),text (xB,yB,’ B"), ...

text (xC, yC, Cc=C3"),
text(rCl( ) rCl(z),"” C1"),
text (rC2(1),rC2(2)," C2'),...
axis([-0. 1 1.6,-0.1,1.6])

aCl = aBl1/2;

fprintf(aCl = [ %g9, %9, %9 ] (m/s”"2)\n’, aCl)
aC2 = (aBl+aCs)/2;

fprintf("aC2 = [ %9, %g, %9 1 (m/s"2)\n’, aC2)
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aC3 = aCs;
fprintf("aC3 = [ %9, %9, %9 ] (m/s"2)\n’, aC3)

fprintf (" \n’)

% external force

fe = 100;

Fe = —-sign(vCs(1l))*[fe 0 0]

7
fprintf (' external force Fe=[ %d,

o

d, %g ] (N)\n’,Fe)

h = 0.01; % height of the bar (m)

d = 0.001; % depth of the bar (m)

hSlider 0.01; % height of the slider (m)
wSlider = 0.01; % depth of the slider (m)

g = 10.; % gravitational acceleration (m/s”2)

fprintf ("\n’)
fprintf (' Inertia forces and moments \n\n’)

fprintf(’ link 1 \n’)

ml = 1;

ICl = ml*(AB"2+h"2)/12;

Gl = [0 -mlxg 0 ];

Finl = - ml=*aCl;

Minl = - IClxalphal;

fprintf (‘ml = %g (kg)\n’, ml)

fprintf (' IC1 = %g (kg m”"2)\n’, IC1)

fprintf (Gl = [ %d, %g, %d 1 (N)\n’, G1)
fprintf (Finl = [ %g, %9, %d ] (N)\n’, Finl)
fprintf(‘Minl = [ %d, %d, %d ] (N m)\n’, Minl)

fprintf(’ link 2 \n’)

m2 = 1;

IC2 = m2*(BC"2+h"2)/12;

G2 = [ 0 -m2xg 0 ];

Fin2 = - m2+%aC2;

Min2 = - IC2xalpha20;

fprintf (‘m2 = %g (kg)\n’, m2)

fprintf ("IC2 = %g (kg m~2)\n’, IC2)

fprintf (G2 = [ %d, %g, %d 1 (N)\n’, G2)
fprintf ("Fin2 = [ %g, %g, %d ] (N)\n’, Fin2)
fprintf ('Min2 = [ %d, %d, %d ] (N m)\n’, Min2)

fprintf(’ link 3 \n’)
m3 = 1;
IC3 = m3*x (hSlider”"2+wSlider"2)/12;
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G3 =[ 0 -m3xg 0 ];
Fin3 = - m3%aC3;
Min3 = - IC3xalpha30;

fprintf ('m3 = %g (kg)\n’, m3)

(

(
fprintf(’G3 = [
(

(

fprintf (' IC3 = %g (kg m”"2)\n’, IC3)
$d, %g, %d 1 (N)\n’, G3)
fprintf ('Fi = [ , , 1 (N)\n’, Fin3)
[

fprintf ’M1n3 = 1 (N m)\n’, Min3)
fprintf (" \n’)

fprintf ('Dynamic force analysis \n’)
fprintf (' Newton-Euler eom \n\n’)

% eom link 3

FO3 = [ 0 sym('FO3y’,"’real’) 0 1;

F23 = [ sym('F23x’,’real’) sym('F23y’,"real’) 0 1;
% sum of the forces for link 3

egqF3 = FO03+F23+Fe+G3-m3*aC3;

egF3x = eqF3(1);

eqlF3y = eqF3 (2

fporintf (' %s =

4

)
0 (1)\n’, char(vpa(egF3x,6)))
0 P

fprintf (' %$s = (2)\n’, char (vpa(egF3y,6)))

% eom link 2

F32 = -F23;

F12 = [ sym('F1l2x’,’real’) sym('F1l2y’,’'real’) 0 1;

)

% sum of the forces for link 2
eqF2 = F32+F12+G2-m2+xaC2;
egF2x = eqF2(1);

eqF2y = eqF2(2);

% sum of the moments for link 2 wrt C2
egM2 = cross (rB-rC2,F12)+cross (rC-rC2,F32) -

IC2xalpha20;
egqM2z = eqM2(3);
fporintf (/ = 0 (3)\n’, char(vpa(eqF2x,6)))
fprintf(’% = 0 (4)\n’, char(vpa(eqF2y,6)))
fprintf("%s = 0 )\n’, char (vpa(egqM2z,3)))
fprintf (" \n’)
fprintf...

("Egs (1) -(5) => F03y, F23x, F23y, Fl2x, F1l2y \n’)
sol32=solve (eqgF3x,eqF3y,eqF2x,eqF2y,egqM2z) ;
FO3ys=eval (s0l132.F03y) ;

F23xs=eval (sol32.F23x);
F23ys=eval (so0l32.F23y);
Fl2xs=eval (s0l32.F12x);
Fl2ys=eval (sol32.F12y);
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FO03s = [ 0, FO3ys, 0 1;
F23s = [ F23xs, F23ys, 0 ];
Fl2s = [ Fl2xs, Fl2ys, 0 1;
fprintf ("F03 = [ %g, %9, %9
fprintf ('F23 = [ %g, %g, %9
fprintf ('F12 = [ %9, %9, %9
fprintf ("\n’)

o°

eom link 1

o\

sum of the forces for 1
FOl=ml*xaCl-Gl+F12s;

\O

367

1 (N)\n’,
1 (N)\n',
1 (N)\n’,

F03s )
F23s )
Fl2s )

5 sum of the moments for 1 wrt A

Mm=IClxalphal+cross(rCl,ml«aCl-Gl)-cross (rB,-F1l2s);

Q

<9y
%d,

fprintf ("FO01 = [
fprintf ('Mm = [

[

$ end of program

%9
%g 1]

%9,
%d,

Results:

phi
rA = [ 0
rB =10
rc = [ 1
alphal
alpha?

alpha3

phil 45 (degrees)
, 0, 01 (m)
.707107, 0.707107,
.41421, 0, 0 1 (m)
= [ O/ 0,
=10, 0,

0
0]
[ 0, 0, 0]

Positions and accelerations

0

1 (rad/s”
(rad/s”
(rad/s”

1 (N)\n’, FO1 )
(N m)\n’, Mm )
] (m)

2)

2)

2)

for mass centers

rCl = [ 0.353553, 0.353553, 0 ] (m)

rC2 = [ 1.06066, 0.353553, 0 ] (m)

rC3 = [ 1.41421, 0, 0 ] (m)

aCl = [ -0.353553, -0.353553, 0 ] (m/s"2)
aC2 = [ -1.06066, —-0.353553, 0 ] (m/s"2)
aC3 = [ -1.41421, 0, 0 ] (m/s"2)
external force Fe=[ 100, 0, 0 ] (N)
Inertia forces and moments

link 1
ml = 1 (kg)

ICl = 0.0833417 (kg m"2)
Gl = [ 0, =10, 0 1 (N)
Finl = [ 0.353553, 0.353553, 0 ] (N)
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Minl = [ 0, 0, O ] (N m)
link 2

m2 = 1 (kg)

IC2 = 0.0833417 (kg m"2)

G2 = 1[0, =10, 0 1 (N)
Fin2 = [ 1.06066, 0.353553, 0 ] (N)
Min2 = [ 0, 0, 0 ] (N m)

link 3

m3 = 1 (kg)
IC3 = 1.66667e-05 (kg m"2)

G3 = [ 0, =10, O 1 (N)
Fin3 = [ 1.41421, -0, 0 1 (N)
Min3 = [ 0, 0, 0 1 (N m)

Dynamic force analysis
Newton—-Euler eom

F23x+101.414 = 0 (1)

FO3y+F23y-10. = 0 (2)

-1.%F23x+F12x+1.06066 = 0 (3)
~1.%F23y+F12y-9.64645 = 0 (4)
—.352%F12y-.352%F12x-.352«F23y—.352«F23x = 0 (5)

Egs (1) -(5) => FO03y, F23x, F23y, Fl2x, Fl2y

FO3 = [ 0, -87.1213, 0 ] (N)

F23 = [ -101.414, 97.1213, 0 ] (N)
F12 = [ -102.475, 106.768, 0 ] (N)
FOl = [ -102.828, 116.414, 0 ] (N)

Mm = [ 0, 0, 151.492 ] (N m)

C.2 Slider-Crank (R-RRT) Mechanism: D’Alembert’s Principle

o\

Cc2

Dynamic force analysis

R-RRT

D’Alembert Principle

clear all; clc; close all

format long

AB = 1; BC = 1;

phi_input = 45; phi = phi_input«* (pi/180);
xA = 0; yA = 0; rA = [xA yA 0];

xB = AB*cos (phi); yB = ABxsin (phi);

o\

o° o
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rB = [xB yB 0];
yC = 0; xC = xB+sqgrt (BC"2-(yC-yB) "2);
rC = [xC yC 0];
phi2 = atan((yB-yC)/ (xB-xC));
n = 30/pi; % (rpm) driver link
omegal = [ 0 0 pi*»n/30 ]; alphal
vA = [0 0 0 ]; aA = [0 0 O 1;
vBl = vA + cross(omegal,rB); vB2 = vBl;
aBl = aA + cross(alphal,rB) -

dot (omegal, omegal) *xrB;
aB2 = aBl;
omegalz = sym(’omegal2z’,’real’);
vCx = sym(’'vCx’,"real’);
omega2 = [ 0 0 omega2z ]; vC = [ vCx 0 0 ];
eqvC = vC - (vB2 + cross(omega2,rC-rB));
eqvCx = eqvC(l); eqvCy = eqvC(2);
solvC = solve (eqvCx,eqvCy) ;
omegalzs=eval (solvC.omegalz) ;
vCxs=eval (solvC.vCx); Omega2 = [0 0 omega2zs];
vCs = [vCxs 0 0];
alpha2z = sym(’alpha2z’,’real’);
aCx = sym(’aCx’,’real’);
alpha2 = [ 0 0 alpha2z ]; aC = [aCx 0 0 ];
egaC=aC- (aBl+cross (alpha2, rC-rB) -

dot (Omegaz2,Omegal) x (rC-rB) ) ;
egaCx = eqaC(l); egaCy = eqaC(2);
solaC = solve (egaCx,eqaCy);
alpha2zs=eval (solaC.alpha2z);
aCxs=eval (solaC.aCx) ;
alpha20 = [0 0 alpha2zs]; aCs = [aCxs 0 0];
alpha30 [0 0 0];

(000 1;

rCl = (rA+rB)/2;
rC2 (rB+rC) /2;
rC3 = rC;

Q

% Graphic of the mechanism

plot ([0,xB], [0,yB],'r-0o’, [xB,xC], [yB,yC], " b-0")
xlabel ("x (m)’"), ylabel('y (m)’),...

title ('positions for \phi = 45 (deqg)’),

text (XA, yA " A'),text (xB,yB,’ B’'),...

text (xC, yC, c=C3"),

text (rCl (1), rCl(2)," C1"),

text (rC2(1),rC2(2),’ C2'),...
(

axis([-0.1,1.6,-0.1,1.6])
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aCl = aBl/2;
ac2 (aBl+aCs) /2;
aC3 aCs;

h = 0.01; d = 0.01; hSlider = 0.01; wSlider = 0.01;

g = 10.; % gravitational acceleration
ml = 1;

ICl = ml*(AB"2+h"2)/12;

Gl = [0 -mlxg 0 ];

Finl = — ml*aCl;

Minl = - IClxalphal;

m2 = 1;

IC2 = m2*(BC"2+h"2)/12;

G2 = [ 0 -m2xg 0 ];

Fin2 = - m2*aC2;

Min2 = - IC2xalpha20;

m3 =1 ;

IC3 = m3* (hSlider”"24+wSlider~2)/12;
G3 =0 -m3xg 0 ];

Fin3 = - m3%aC3;

Min3 = - IC3xalpha30;

% external force
fe = 100; Fe = —-sign(vCs(l))*[fe 0 0];

fprintf (' Results \n\n’)

fprintf (' Dynamic force analysis \n’)

fprintf (‘D Alembert Principle \n\n’)

% eom link 3

FO3 = [ 0 sym('FO03y’,’real’) 0 1;

F23 = [ sym('F23x’,’real’) sym('F23y’,’'real’”) 0 1;
% sum of the forces for link 3

eqF3 = FO3+F23+Fe+G3+Fin3 ;

egF3x = eqF3(1);

eqgF3y = eqF3 (2

fporintf (' %s =
fprintf (' %$s

)
0 (1)\n’, char (vpa(egF3x,6)))
0 (2)\n’, char (vpa(egF3y,6)))

% eom link 2
F32 = -F23;
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F12 = [ sym('F12x’",’real’) sym('Fl2y’,"real’”) O

[

% sum of the forces for link 2

eqgF2 = F32+F12+G2+Fin2;

eqF2x = eqF2(1);

eqF2y = eqF2(2);

% sum of the moments for link 2 wrt C2
egM2 = cross (
egqM2z = egM2 (3) ;
fprintf('%$s = 0 (3)\n’, char(vpa(eqgF2x,6)))
fprintf(’%$s = 0 (4)\n’, char(vpa(egF2y,6)))
fprintf (! %s 0 (5)\n’, char (vpa(egM2z,3)))

% eom link 1

rB-rC2,F12)+cross (rC-rC2,F32)+Min2;

FO1l = [ sym('FO01x’,’real’) sym('FOly’,’real’) O

Mm = [ 0 O sym('’Mmz’,"real’) 1;
% sum of the forces for 1

eqFl = FO1+Finl+G1l-F12;

egFlx = eqgFl(1l);

egFly = eqFl(2);

[}

% sum of the moments for 1 wrt C1l

egMl = cross (rB-rCl,-F12)+cross (rA-rC1l,F01)+

Minl+Mm;
egMlz = egMl
fprintf
fprintf
fprintf
fprintf

|~
w

) ’
"$s = 0 (6)\n’, char(vpa(eqFlx,6)))
"$s = 0 (7)\n’, char(vpa(eqgFly,6)))
"$s = 0 (8)\n’, char(vpa(egMlz, 3)))
/\n/)

—_~ e~~~

fprintf ("Egs (1) -(8) => \n’)
fprintf...
("F03y, F23x, F23y, Fl2x, Fl2y, FO01lx, FOly,

sol321 = solve(eqF3x,eqF3y,eqF2x,eqF2y,eqM2z, ...

eqFlx,eqFly,egMlz) ;

FO3ys = eval
F23xs = eval
F23ys = eval
Fl2xs = eval
Fl2ys = eval(sol321.F1l2y
FOlxs = eval (s0l1l321.F01x
FOlys = eval(sol321.F01ly
Mmzs = eval (so0l321.Mmz);

s0l321.F03y)
s0l321.F23x)
sol321.F23y);
s0l321.F12x);
)
)
)

4

4

4

4

—~ e~ o~ o~ o~

4

Mmz
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FO03s = [ 0, FO3ys, 0 1;
F23s = [ F23xs, F23ys, O
Fl12s = [ Fl2xs, Fl2ys, 0 1;
FOls = [ FOlxs, FOlys, O
Mms = [ 0, 0, Mmzs ];

fprintf ('\n’")

fprintf ("FO3 = [ %g, %9, %9 ] (N)\n’, FO03s)
fprintf ('F23 = [ %g, %g, %g ] (N)\n’, F23s)
fprintf ('F12 = [ %g, %g, %g ] (N)\n’, Fl2s)
fprintf ("FO01 = [ %9, %9, %g 1 (N)\n’, FO0ls)
fprintf (‘Mm = [ %g, %g, %9 ] (N m)\n’, Mms)

[

% end of program

Results:

F23x+101.414 = 0 (1)
FO3y+F23y-10. = 0 (2)

~1.%F23x+F12x+1.06066 = 0 (3)

~1.%F23y+F12y-9.64645 = 0 (4)
~.352xF12y-.352+F12x—.352xF23y-.352+F23x = 0 (5)
FOlx+.353552-1.+F12x = 0 (6)

FOly-9.64645-1.xF12y = 0 (7)
—.352%F12y+.352%F12x—.3524F01y+.352F01x+Mmz = 0 (8)

Egs (1) —-(8) =>
F03y, F23x, F23y, Fl2x, Fl2y, FO0lx, FOly, Mmz

FO3 = [ 0, -87.1213, 0 ] (N)
F23 = [ -101.414, 97.1213, 0 ] (N)
F12 = [ -102.475, 106.768, 0 ] (N)
FOl = [ -102.828, 116.414, 0 ] (N)
Mm = [ 0, 0, 151.492 ] (N m)

C.3 Slider-Crank (R-RRT) Mechanism: Dyad Method

o

C3

Dynamic force analysis

R-RRT

Dyad method

clear all; clc; close all
format long

AB = 1; BC = 45xpi/180;
xA = 0; yA = 0; rA = [xA yA 0];

o\

o° o

|
—
O
=
=
Il
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xB = AB*xcos (phi); yB = ABxsin (phi);

rB = [xB yB 0];

yC = 0; xC = xB+sqgrt (BC"2-(yC-yB) "2);

rC = [xC yC 01];

phi2 = atan((yB-yC)/ (xB-xC));

fprintf ("Results \n\n’)

fprintf ('phi = phil = %g (degrees) \n’, phi*180/pi)
fporintf (' rA = [ %9, %g, %g ] (m)\n’, rA)
fporintf (' rB = [ %9, %9, %g ] (m)\n’, rB)
fprintf('rC = [ %9, %g, %g ] (m)\n’, rC)

n = 30/pi; % (rpm) driver link

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 ];
fprintf...

("alphal = [ %g, %9, %9 ] (rad/s"2)\n’,alphal)
vA = [0 0O O 1; aA = [0 O O 71;

vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl = aA + cross(alphal,rB) -
dot (omegal, omegal) *xrB;
aB2 = aBl;
omegalz = sym(’omega2z’,’real’);
vCx = sym(’'vCx’,"real’);
omega2 = [ 0 0 omega2z ]; vC = [ vCx 0 0 ];
eqvC = vC - (vB2 + cross(omega2,rC-rB));
eqgvCx = eqvC(l); eqvCy = eqvC(2);
solvC = solve (egvCx,eqvCy);
omega2zs=eval (solvC.omega2z) ;
vCxs=eval (solvC.vCx); Omega2 = [0 0 omegalzs];
vCs = [vCxs 0 0];
alpha2z = sym(’alpha2z’,’real’);
aCx = sym(’'aCx’,’'real’);
alpha2 = [ 0 0 alpha2z ]; aC = [aCx 0 0 1;
eqaC = aC - (aBl + cross(alpha2,rC-rB) -
dot (OmegaZ2,Omega?2) = (rC-rB)) ;
egaCx = eqgaC(l); egaCy = eqgaC(2);
solaC = solve (egaCx,eqaCy);
alpha2zs=eval (solaC.alpha2z);
aCxs=eval (solaC.aCx);

alpha20 = [0 0 alpha2zs]; aCs = [aCxs 0 0];
fprintf...

("alpha2 = [ %9, %9, %g ] (rad/s"2)\n’,alpha20)
alpha30 = [0 0 0];

fprintf...

("alpha3 = [ %9, %9, %g ] (rad/s"2)\n’,alpha30)

fprintf (’\n’)
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rCl = (rA+rB)/2;

fprintf ("rCl = [ %9, %9, %g ] (m)\n’ rCl)

rC2 = (rB+rC)/2;

fprintf ('rC2 = [ %9, %g, %g ] (m)\n’, rC2)

rC3 = rC;

fprintf ("rC3 = [ %9, %9, %g ] (m)\n’, rC3)

% Graphic of the mechanism

plot ([0,xB], [0,yB],’r-0o’, [xB,xC], [yB,yC], " b-0")
xlabel('x (m)"), ylabel('y (m)’"),...
title('positions for \phi = 45 (deqg)’),

text (xA, yA " A’),text (xB,yB,’ B’),...

text (xC, yC, c=Cc3"),

text (rC1(1),rCl(2),"” C1"),

text (rC2(1),xrC2(2)," C2'), ...
axis([-0.1,1.6,-0.1,1.61)

aCl = aBl/2;

fprintf('aCl = [ %g, %g, %g ] (m/s"2)\n’, aCl)
aC2 = (aBl+aCs)/2;

fprintf(‘aC2 = [ %g, %9, %g ] (m/s"2)\n’, aC2)
aC3 = aCs;

fprintf("aC3 = [ %9, %9, %9 ] (m/s"2)\n’, aC3)
fprintf ("\n’)

% external force

fe = 100;

Fe = —-sign(vCs(l))=*[fe 0 0];

fprintf...

("external force Fe = [ %d, %d, %g ] (N)\n’, Fe)
h = 0.01; % height of the bar (m)

d = 0.001; % depth of the bar (m)

hSlider = 0.01; % height of the slider (m)
wSlider = 0.01; % depth of the slider (m)

g = 10.; % gravitational acceleration (m/s”2)
fprintf (" \n’

fprintf (' Inertia forces and moments \n\n’)
fprintf (’ link 1 \n’)

ml = 1;

ICl = ml*(AB"2+h"2)/12;

Gl =[0 -mlxg 0 ];

Finl = - ml=*aCl;
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Minl = - IClxalphal;

fprintf (‘ml = %g (kg)\n’, ml)

fprintf (' IC1 = %g (kg m”"2)\n’, ICI1)

fprintf (Gl = [ % %9, %d 1 (N)\n’, GI1)
fprintf ('Finl = [ , $d 1 (N)\n’, Finl)
fprintf ('Minl = [ $d ] (N m)\n’, Minl)

fprintf (’ link 2 \n’)

m2 = 1;

IC2 = m2*(BC"2+h"2)/12;

G2 = [ 0 -m2xg 0 ];

Fin2 = - m2*aC2;

Min2 = - IC2xalpha20;

fprintf ('m2 = %g (kg)\n’, m2)

(
fprintf (' IC2 = %g (kg m”"2)\n’, IC2)
fprintf (G2 = [ %d, %g, %d 1 (N)\n’, G2)
fprintf ('Fin2 = [ %g, %g, %d ] (N)\n’, Fin2)
fprintf ('Min2 = [ %d, %d, %d ] (N m)\n’, Min2)
fprintf (’ link 3 \n’)
m3 = 1;
IC3 = m3% (hSlider”"24+wSlider~2)/12;
G3 =0 -m3xg 0 ];
Fin3 = - m3%aC3;
Min3 = - IC3xalpha30;
fprintf ('m3 = %g (kg)\n’, m3)
fprintf ("IC3 = %g (kg m~2)\n’, IC3)
fprintf (G3 = [ %d, %g, %d 1 (N)\n’, G3)
fprintf ("Fin3 = [ %g, %g, %d ] (N)\n’, Fin3)
fprintf(’M1n3 = [ %d, %d, %4 ] (N m)\n’, Min3)

fprintf ("\n’)

fprintf ('Dynamic force analysis \n’)
fprintf (' Dyad method \n’)

fprintf ("\n’)

% links 2 and 3

FO3 = [ 0 sym("FO3y’,"real’) 0 1;

Fl12 = [ sym('Fl2x’,’'real’) sym('Fl2y’,’real’) 0];
% sum of the forces for links 2 and 3

egF23 = FO03+Fe+G3+F12+G2-m3+aC3-m2%aC2;

eqlF23x = eqF23(1);

eqF23y = eqF23(2);
fprintf("%$s = 0 (1)\n’, char (vpa(eqF23x,6)))
fprintf("%$s = 0 (2)\n’, char (vpa(eqF23y,6)))
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sum of the moments for link 2 wrt C

egM2C = cross (rB-rC,F12) +cross (rC2-rC,G2) —
IC2xalpha20-cross (rC2-rC,m2*aC2) ;

egM2Cz = qMZC(B)
fprintf(’%$s = 0 (3)\n’, char (vpa(egM2Cz,6)))
fprintf ("\n’);
fprintf ("Egs (1)-(3) => F03y, Fl2x, F1l2y \n’)
sol32=solve (eqF23x,eqF23y,eqgM2Cz) ;
FO3ys=eval (s0132.F03y) ;
Fl2xs=eval (sol32.F12x);
Fl2ys=eval (so0l32.F12y);
F03s = [ 0, FO3ys, 0 1;
Fl2s = [ Fl2xs, Fl2ys, 0 ];
fprintf ('F03 = [ %g, %g, %g ] (N)\n’, F03s)
fprintf ('F12 = [ %g, %g, %g ] (N)\n’, Fl2s)
fprintf ("\n’)
F32 = m2xaC2- (F12s+G2);
fprintf ('F32 = m2+aC2-(F12+G2) \n’)
fprintf ('F32 = [ %g, %g, %g ] (N)\n’, F32)
fprintf ("\n’)

link 1

% sum of the forces for 1
FOl=ml+xaCl-Gl+F1l2s;

5 sum of the moments for 1 wrt A
Mm=IClxalphal+cross (rCl,mlxaCl-G1)

\O

C Programs of Chapter 4: Dynamic Force Analysis

-cross (rB,-F12s);

fprintf (FO01 = [ %g, %g, %g ] N)\n’, FO01)
fprintf ('Mm = [ %d, %d, %g ] (N m)\n’, Mm)
% end of program
Results:
phi = phil = 45 (degrees)
rA = [ 0, O, O 1 (m)
rB = [ 0.707107, 0.707107, 0 1 (m)
rC = [ 1.41421, 0, O ] (m)
alphal = [ 0, 0, 0 ] (rad/s"2)
alpha2 = [ 0, 0, 0 ] (rad/s"2)
alpha3 = [ 0, 0, 0 ] (rad/s"2)
rCl = [ 0.353553, 0.353553, 0 ] (m)
rC2 = [ 1.06066, 0.353553, 0 ] (m)
rC3 = [ 1.41421, 0, 0 1 (m)
aCl = [ -0.353553, -0.353553, 0 ] (m/s"2)
aC2 = [ -1.06066, -0.353553, 0 ] (m/s"2)
aC3 = [ -1.41421, 0, 0 ] (m/s"2)
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external force Fe = [ 100, 0, O ] (N)
Inertia forces and moments
link 1

ml = 1 (kg)
IC1 = 0.0833417 (kg m"2)

Gl =10, -10, 0 1 (N)
Finl = [ 0.353553, 0.353553, 0 ] (N)
Minl = [ 0, 0, 0 ] (N m)

link 2

m2 = 1 (kg)
IC2 = 0.0833417 (kg m"2)

G2 = [ 0, =10, 0 1 (N)
Fin2 = [ 1.06066, 0.353553, 0 ] (N)
Min2 = [ 0, 0, 0 ] (N m)

link 3

m3 = 1 (kg)
IC3 = 1.66667e-05 (kg m™2)

G3 =10, =10, 0 1 (N)
Fin3 = [ 1.41421, -0, 0 ] (N)
Min3 = [ 0, 0, 0 ] (N m)

Dynamic force analysis
Dyad method

102.475+4F12x = 0 (1)
FO3y-19.6464+F12y = 0 (2)
~.707105+F12y—-.707105+F12x+3.03552 = 0 (3)

Egs(1l)-(3) => FO03y, Fl2x, Fl2y
FO3 = [ 0, -87.1213, 0 ] (N)
Fl2 = [ -102.475, 106.768, 0 ] (N)

F32 = m2+xaC2- (F12+G2)
F32 [ 101.414, -97.1213, 0 1 (N)

FO1 [ -102.828, 116.414, 0 1 (N)
Mm = [ 0, 0, 151.492 ] (N m)
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C.4 Slider-Crank (R-RRT) Mechanism: Contour Method

c4

Dynamic force analysis
R—-RRT

Contour method

o0 o0 o oe

clear all; clc; close all

format long

AB = 1; BC = 1;

phi_input = 45; phi = phi_input* (pi/180);

XA = 0; yA = 0; rA = [xA yA 0];

xB = AB*cos (phi); yB = ABxsin(phi);

rB = [xB yB 0];

yC = 0; xC = xB+sqgrt (BC"2-(yC-yB) "2);

rC = [xC yC 0];

phi2 = atan((yB-yC)/ (xB-xC));

n = 30/pi; % (rpm) driver link

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 ];
vA = [0 0O O ]; aA = [0 O O 7;

vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl = aA + cross(alphal, rB) - dot (omegal, omegal) *rB;
aB2 = aBl;

omegalz = sym(’omega2z’,’real’);

vCx = sym(’vCx’,"real’);

omegaZ2 = [ 0 0 omegal2z ]; vC = [ vCx 0 0 ];
eqvC = vC - (vB2 + cross(omega2,rC-rB));
eqgvCx = eqvC(l); eqvCy = eqvC(2);

solvC = solve (egvCx,eqvCy) ;

omegaZzs=eval (solvC.omega2z) ;

vCxs=eval (solvC.vCx); Omega2 = [0 0 omegalzs];
vCs = [vCxs 0 0];

alpha2z = sym(’alpha2z’,’real’);

aCx = sym(’'aCx’,’'real’);

alpha2 = [ 0 0 alpha2z ]; aC = [aCx 0 0 1;
egqaC = aC - (aBl + cross(alpha2,rC-rB) -

dot (Omega2,Omega?2) = (rC-rB)) ;
egaCx = egaC(l); egaCy = egaC(2);
solaC = solve (egaCx,eqaCy);
alpha2zs=eval (solaC.alpha2z);
aCxs=eval (solaC.aCx);
alpha20 = [0 0 alpha2zs];
aCs = [aCxs 0 01];
alpha30 = [0 0 0];
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rCl = (rA+rB)/2;
rC2 = (rB+rC)/2;
rC3 = rC;

[}

% Graphic of the mechanism

plot ([0,xB], [0,yB], 'r-0o’, [xB,xC], [yB,yC], " b-0")
xlabel('x (m)’"), ylabel('y (m)’),...

title ('positions for \phi = 45 (deg)’),

text (XA, yA " A'),text (xB,yB,’ B"), ...

text (xC, yC, c=C3"),
text(rCl( ) rCl(z),"” C1"),
text (rC2(1),rC2(2)," C2'),...
axis([-0. l 1.6,-0.1,1.6])

aCl = aBl1/2;
aC2 (aBl+aCs) /2;
aC3 = aCs;

o

Inertia forces and moments

h =0.01;, d =0.01; hSlider = 0.01; wSlider = 0.01;
g = 10.; % gravitational acceleration
ml = 1;

ICl = ml*x (AB"2+h"2)/12;

Gl =10 -mlxg 0 1;

Finl = - ml=*aCl;

Minl = - IClxalphal;

m2 =1 ;

IC2 = m2x (BC"2+h"2)/12;

G2 = [ 0 -m2xg 0 ];

Fin2 = - m2%aC2;

Min2 = - IC2xalpha20;

m3 = 1;

IC3 = m3% (hSlider”"24+wSlider~2)/12;

G3 = [ 0 -m3xg 0 ];

Fin3 = - m3*aC3;

Min3 = - IC3xalpha30;

% external force
fe = 100; Fe = —-sign(vCs(1l))*[fe 0 0];

fprintf ("Results \n\n’)
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fprintf (' Dynamic force analysis \n’)
fprintf (' Contour method \n\n’)

% Joint C_T

FO3 = [ 0 sym('FO3y’,"’real’) 0 1;

% sum of the moments for links 3&2 wrt B

egM32B = cross (rC-rB, FO03+G3+Fin3+Fe) +...
cross (rC2-rB, Fin2+G2) + Min2;

egM32Bz = egM32B(3);

fprintf('%$s = 0 (1)\n’, char(vpa(egM32Bz,6)))

fprintf ("Eg(l) => F03y \n’)

solF03=solve (eqM32Bz) ;

FO3ys=eval (solF03) ;

F03s=[ 0, FO3ys, 0 1;

fprintf ('F03 = [ %g, %g, %g ] (N)\n’, FO03s)

fprintf ("\n’)

% Joint C_R

F23 = [ sym('F23x’,"real’) sym('F23y’,’real’) 0 ];

% sum of the forces for link 3 projected on x

egF3 = F23+Fe+G3+Fin3;

egF3x = eqF3(1);

% sum of the moments for link 2 wrt B

egM2B = cross (rC-rB,-F23) +cross (rC2-rB,Fin2+G2) +Min2;
egM2Bz = eqgM2B(3);

fprintf("%$s = 0 (2)\n’, char (vpa(eqF3x,6)))
fprintf("%$s = 0 (3)\n’, char (vpa(eqM2Bz, 6)))
fprintf ("Egs (2)-(3) => F23x, F23y \n’)

solF23=solve (eqF3x, eqM2Bz) ;
F23xs=eval (solF23.F23x);
F23ys=eval (solF23.F23y) ;

F23s = [ F23xs, F23ys, 0 1;
fprintf ('F23 = [ %g, %g, %g ] (N)\n’, F23s)

fprintf ("\n’)

% Joint B_R

Fl12 = [ sym('Fl2x’,"real’) sym('Fl2y’,’real’) 0 ];

% sum of the moments for link 2 wrt C

egM2C = cross (rB-rC,F12)+cross (rC2-rC,Fin2+G2)+Min2;
egM2Cz = egM2C(3);

% sum of the forces for links 2&3 projected on x
egF23 = (F12+Fin2+G2+G3+Fin3+Fe);

eqF23x = eqF23 (1) ;
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fprintf("%$s = 0 (4)\n’, char (vpa(eqM2Cz,6)))
fprintf("%$s = 0 (5)\n’, char (vpa(eqF23x,6)))
fprintf ("Egs (4)-(5) => Fl2x, F12y \n’)

o° oo

solFl2=solve (egM2Cz, eqF23x) ;
Fl2xs=eval (solF1l2.F12x);
Fl2ys=eval (solF1l2.F12y);
Fl12s = [ Fl2xs, Fl2ys, 0 ]

fprintf ('F12 = [ %g, %g, %g ] (N)\n’, Fl2s)
fprintf (" \n’)

% Joint A_R

FO1l = [ sym('FO01x",’real’) sym('FOly’,"real’”) 0 1;

Mm = [ 0 O sym('’Mmz’,"real’) 1;

% sum of the moments for link 1 wrt B

egM1B = cross(-rB,F01)+cross (rCl-rB,Finl+G1l) +Minl+Mm;

egM1Bz = egM1B (3);

% sum of the moments for links 1&2 wrt C

egM12C = cross(-rC, FO01l)+cross(rCl-rC, Finl+Gl)+...
Minl+Mm+cross (rC2-rC, Fin2+G2)+Min2;

egM1l2Cz = egM12C(3);

% sum of the forces for links 1&2&3 projected on x

eqFl23 = (FOl+Finl+Gl+Fin2+G2+Fin3+G3+Fe) ;

egF1l23x = egF123(1) ;

fprintf(’%$s = 0 (6)\n’, char(vpa(egMlBz,6)))
fprintf("%$s = 0 (7)\n’, char (vpa(egqMl2Cz,6)))
fprintf("%$s = 0 (8)\n’, char (vpa(eqFl23x,6)))
fprintf ("Egs (6) (7) (8) => F0lx, FOly, Mmz \n’)

solF0l=solve (eqMlBz, egM12Cz, eqFl23x) ;
FOlxs=eval (solF01.F01x);

FOlys=eval (solF01.F01ly);

Mmzs=eval (solF01.Mmz) ;

FOls = [ FOlxs, FOlys, 0 1;

Mms = [ 0, 0, Mmzs ];

fprintf ('F01 = [ %9, %g, %g ] (N)\n’, FOls)
fprintf ('Mm = [ %g, %9, %9 ] (N m)\n’, Mms)

Results:

.707105%F03y+61.6039 = 0 (1)
Eg(l) => F03y
FO3 = [ 0, -87.1213, 0 ] (N)

F23x+101.414 = 0 (2)
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Il
o
w

~.707105%F23y-.707105%F23x-3.03553
Egs (2) - (3) => F23x, F23y
F23 = [ -101.414, 97.1213, 0 ] (N)

~.707105+F12y—.707105+F12x+3.03553 = 0 (4)
F12x+102.475 = 0 (5)

Eqs (4) - (5) => F12x, Fl2y

F12 = [ -102.475, 106.768, 0 ] (N)

-.707105«F01y+.707105xF01x+3.535524+Mmz = 0 (6)
-1.41421xF01y+13.14214+Mmz = 0 (7)

FO01x+102.828 = 0 (8)

Egs (6) (7) (8) => FO01lx, FOly, Mmz

FO1 = [ -102.828, 116.414, 0 1 (N)

Mm = [ 0, 0, 151.492 ] (N m)

C.5 R-RTR-RTR Mechanism: Newton—-Euler Method

o\

C5

Dynamic force analysis

R—-RTR-RTR

Newton—-Euler method

clear all; clc; close all; format long
fprintf (' R-RTR-RTR \n’)

fprintf ('Dynamic force analysis \n’)
fprintf (' Newton-Eluer method \n’)
fprintf ("Results \n\n’)

AB = 0.15 ;

o° o

o

AC = 0.10 ;
CD = 0.15 ;
DF = 0.40 ;
AG = 0.30 ;

phi = pi/6 ;

fprintf ("phi = phil = %g (degrees) \n’, phi*x180/pi)
fprintf (" \n’)

fprintf (Position analysis \n\n’)

xA = 0; yA = 0; rA = [xA yA 0];

fprintf("rA = [ %9, %9, %9 1 (m)\n’, rA)

xC = 0; yC = AC; rC = [xC yC 0];

fprintf('rC = [ %g, %g, %9 ] (m)\n’, rC)

xB = ABxcos (phi); yB = AB*sin(phi); rB = [xB yB 0];
fprintf('rB = [ %9, %9, %g] (m)\n’, rB)

eqgqnDl = ' ( xDsol - xC )"2 + ( yDsol - yC )"2 = CD"2';
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eqnD2 = ' (yB-yC)/ (xB-xC) = (yDsol-yC) / (xDsol-xC)’
solD = solve(eqnDl, eqnD2, ’'xDsol, yDsol’);
xDpositions = eval (solD.xDsol);
yDpositions = eval (solD.yDsol);
xD1 = xDpositions(l); xD2 = xDpositions(2);
yD1l = yDpositions(l); yD2 = yDpositions(2);
if (phi>=0&&phi<=pi/2) (phi >=3*pi/2&&phi<=2+pi)
if
xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;end
else
if
xD1 >= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;end
end
rD = [xD yD 01];
fprintf('rD = [ %g, %g, %g ] (m)\n’, rD)
phi2 = atan ((yB-yC)/ (xB-xC)); phi3 = phi2;
phid4 = atan((yD-yA)/ (xD-xA))+pi; phi5 = phi4;
xF=xD+DF*cos (phi3); yF=yD+DFx*sin (phi3);
rF=[xF yF 0];
fprintf ('rF = [ %g, %g, %9 ] (m)\n’ rF)
xG=xA+AGxcos (phib); yG=yA+AG+*sin (phih);
rG=[xG yG 0];
fprintf('rG = [ %g, %9, %9 ] m)\n’, rG)
fprintf ('phi2 = phi3 = %g (degrees) \n’, phi2x180/pi)
fprintf (‘phi4 = phi5 = %g (degrees) \n’, phid*180/pi)
fprintf (" \n’)
xCl = xB/2; yCl = yB/2; rCl = [xCl yCl 0];
fprintf (' rC1l [ %9, %g, %g ] (m)\n’, rCl)
rC2 = rB;
fprintf('rC2 = rB = [ %g, %g, %g ] (m)\n’, rC2)
xC3 = (xD+xF)/2; yC3 = (yD+yF)/2; rC3 = [xC3 yC3 0];
fprintf (' rC3 [ %9, %g, %g ] (m)\n’, rC3)
rC4 = rD;
fprintf("rC4 = rD = [ %g, %g, %g ] (m)\n’ rC4)
xC5 = (xA+xG)/2; yC5 = (yA+yG)/2; rC5 = [xC5 yC5 0];
fporintf ("rC5 = [ %9, %9, %9 ] m) \n’ rCb5)
% Graphic of the mechanism
plot ([0,xB], [0,yB],"'r-0o’, [xD,xF], [yD,yF],
[xA, xG], [yA,yGl, " g-0’),
xlabel('x (m)’"), ylabel('y (m)"),...
title('positions for \phi = 30 (deg) Yoo
text (xA,vyA,’ A’"), text(xB,yB,’ 2"), .
text (xC,yC,’ C’), text(xD,yD,’” D= C4’),
text (xF, yF, F’),text (xG,yG,’ G"),
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text (xC1l,vyCl,”’ Cl’), text(xC3,yC3,’ C37), ...
text (xC5,vyC5,” c5"),
axis([-0.3 0.3 -0.3 0.3]), grid on

fprintf (' \n’)
fprintf (" Velocity and acceleration analysis \n\n’)
n = 50.;
omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 ];
vA = [0 0 0 ]; aA = [0 0 0 1;
vBl = vA + cross(omegal,rB); vB2 = vBl;
aBl = aA + cross(alphal,rB) -

dot (omegal, omegal) *xrB;
aB2 = aBl;
fprintf
("aBl = aB2 = [ %9, %g, %g ] (m/s"2)\n’, aBl)
omega3z=sym(’ omega3z’,’real’);
alpha3z=sym(’alpha3z’,’real’);
vB32=sym(’'vB32’, " real’);
aB32=sym(’aB32’,’'real’);

omega3 = [ 0 0 omega3z ];
vC = [0 O O 1;
vB3 = vC + cross(omega3, rB-rC);

vB3B2 = vB32%[ cos(phi2) sin(phi2) 0];
eqgvB = vB3 - vB2 - vB3B2;

egvBx = eqvB(l); eqgvBy = eqvB(2);

solvB = solve (eqvBx, eqvBy);

omega3zs=eval (solvB.omega3z) ;

vB32s=eval (solvB.vB32);

Omega3 = [0 0 omega3zs]; Omega2 = Omega3;
v32 = vB32sx*[cos (phi2) sin(phi2) 01];

vD3 = vC + cross (Omega3,rD-rC); vD4 = vD3;

aB3B2cor = 2+*cross (Omega3,v32);
alpha3 = [ 0 0 alpha3z ];
aC = [0 0 0 1;

aB3 = aC + cross(alpha3, rB-rC) -

dot (Omega3, Omegal) x (rB-rC) ;
aB3B2 = aB32x[ cos(phi2) sin(phi2) 01;
egaB = aB3 - aB2 - aB3B2 - aB3B2cor;
egaBx = egaB(l); egaBy = egaB(2);
solaB solve (eqaBx, egaBy) ;
alpha3zs=eval (solaB.alpha3z);
aB32s=eval (solaB.aB32);
Alpha3 = [0 0 alpha3zs]; Alpha2 = Alpha3;
aD3 = aC + cross(Alpha3, rD-rC) -

dot (Omega3,Omegal) = (rD-rC) ;
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aD4 = aD3;

fprintf("abD3 = abD4 = [ %g, %g, %g ] (m/s"2)\n’, aD3)
omegabz=sym ('’ omegabz’, ' real’);
alphabz=sym(’alphabz’,’ real’);
vD54=sym(’vD54’, " real’);

aD54=sym (’aD54’,'real’);

omegabS = [ 0 0 omegabz ];

vD5 = vA + cross(omegab,rD-rA);

vD5D4 = vD54*[ cos(phib) sin(phib5) 0];
eqvD = vD5 - vD4 - vD5D4;

eqvDx = eqvD(1l); eqvDy = eqvD(2);

solvD = solve (eqvDx,eqvDy) ;
omegabzs = eval (solvD.omegabz);
vD54s = eval (solvD.vD54);
Omega5 = [0 0 omegabzs];

v54 = vD54sx*[cos (phi5) sin(phi5) 01];
Omega4d4 = Omegab;
aD5D4cor = 2+cross (Omegab,vb54);
alpha5 = [ 0 0 alphabz ];
aD5 = aA + cross(alpha5,rD-rA) -

dot (Omegab,Omegab) x (rD—rA) ;
aD5D4 = aDb54x[ cos(phi5) sin(phi5) 0];
egaD = aD5 - aD4 - aD5D4 - aDb5D4cor;
egaDx = eqgaD(l); egaDy = eqgaD(2);
solaD = solve (egaDx,eqgaDy);
alphabzs = eval (solaD.alphabz);
aD54s = eval (solaD.aD54);
Alphab5 = [0 0 alphabzs]; Alpha4 = Alphab;
aF = aC + cross (Alpha3, rF-rC) -

dot (Omega3, Omegal) x (rF-rC) ;
aG = aA + cross (Alphab, rG-rA) -

dot (Omegab, Omegab)  (rG—rA) ;

fprintf('aF = [ %9, %9, %9 1 (m/s"2)\n’, aF)
fprintf("aG = [ %g, %9, %9 ] (m/s"2)\n’, aG)
fprintf

(" omegad=omegab5 = [%g, %9, %g] (rad/s)\n’, Omegab)
fprintf ("\n’)

fprintf

("alphal = [%g9, %g, %g] (rad/s"2)\n’, alphal)
fprintf

("alpha2=alpha3 = [%g, %g, %g](rad/s”2)\n’, Alpha3)
fprintf

("alpha4=alphab5 = [%g, %g, %g](rad/s”2)\n’, Alpha5)

fprintf ("\n’")
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aCl = aBl/2;

fprintf("aCl = [ %g, %9, %9 ] (m/s"2)\n’, aCl)

aC2 = aB2;

fprintf ("aC2=aB2 = [ %g, %g, %9 ] (m/s"2)\n’, aC2)
aC3 = (aD3+aF)/2;

fprintf("aC3 = [ %g, %9, %9 1 (m/s"2)\n’, aC3)

aC4 = aDh3;

fprintf ("aC4=abD4 = [ %g, %g, %9 ] (m/s"2)\n’, aC4)
aC5 = (ahA+aG)/2;

fprintf(’aC5 = [ %g, %g, %g ] (m/s"2)\n’, aC5)

fprintf (\n’)
fprintf (' Dynamic force analysis \n’)
fprintf (' Newton-Euler method \n\n’)

h = 0.01; % height of the bar

d = 0.001; % depth of the bar

hSlider = 0.02; % height of the slider
wSlider = 0.05; % depth of the slider
rho = 8000; % density of the material

g = 9.807; % gravitational acceleration

Me = -sign (Omega5(3))=x[0,0,100];

fprintf ("Me = [ %d, %d, %g] (N m)\n’, Me)
fprintf ("\n’)

fprintf (' Inertia forces and inertia moments\n’)
fprintf ("\n’)

fprintf ("Link 1 \n’)
ml = rhoxABxhxd;

Finl = -mlxaCl;

Gl = [0,-mlxg,0];

ICl = ml*(AB"2+h"2)/12;

Minl = -IClxalphal;

fprintf(‘ml = %g (kg)\n’, ml)

fprintf ('ml aCl = [%g, %9, %g] (N)\n’, ml*aCl)
fprintf ('Finl = - ml aCl =[%g, %g, %d] (N)\n’,Finl)
fprintf (Gl = - ml g = [%g9, %g, %g] (N)\n’, Gl)
fprintf ("IC1 = %g (kg m~2)\n’, IC1)

fprintf (' IC1 alphal=[%g, %g, %d] (N m)\n’,IClxalphal)
fprintf ('Minl=-IC1l alphal=[%d, %d, %d] (N m)\n’,Minl)
fprintf (" \n’)

fprintf ("Link 2 \n’)
m2 = rho+xhSlider*wSlider=d;
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Fin2 = —-m2+xaC2;
G2 = [0,-m2%g,0];
IC2 = m2% (hSlider”"24+wSlider~2)/12;

387

Min2 = -IC2xAlpha2;

fprintf (‘m2 = %g (kg)\n’, m2)

fprintf ('m2 aC2 = [%9, %9, %g] )\n , m2xaC2)

fprintf ("Fin2 = - m2 aC2 =[%g, %g, d]l] (N)\n’,Fin2)

fprintf (G2 = - m2 g = [%g9, %9, %g] (N)\n’, G2)

fprintf (' IC2 = %g (kg m"2)\n’, IC2)

fprintf (' IC2 alpha2=[%g, %g, %g] (N m)\n’,IC2xAlpha2)

fprintf ('Min2=-IC2 alpha2=[%d, %d, %g] (N m)\n’,Min2)
(

fprintf (' \n’)

fprintf ('Link 3 \n’)
m3 = rhoxDFxhx*d;

Fin3 = -m3xaC3;

G3 = [0,-m3%g,0];

IC3 = m3x(DF"2+h"2)/12;

Min3 = -IC3xAlpha3;

fprintf (‘m3 = %g (kg)\n’, m3)

fprintf ('m3 aC3 = [%g9, %9, %9] \n , m3%aC3)
fprintf (Fin3 = - m3 aC3 =[%g, %g, d]l (N)\n’,Fin3)
fprintf ('G3 = - m3 g = [%g, %9, %g] (N \n’, G3)
fprintf ("IC3 = %g (kg m™2)\n’, IC3)

fprintf (' IC3 alpha3=[%g, %g, %g] (N m)\n’,IC3xAlpha3)
fprintf (/Min3=-IC3 alpha3=[%d, %d, %g] (N m)\n’,Min3)
fprintf ('\n’)

fprintf ('Link 4 \n’)
m4 = rhoxhSlider*wSlider=d;

Find = -m4+aC4;

G4 = [0,-mdxqg,0];

IC4 = md4* (hSlider”"24+wSlider~2)/12;

Min4 = -IC4xAlpha4;

fprintf (‘m4 = %g (kg)\n’, m4)

fprintf ('m4 aC4 = [%g, %9, %g] (N)\n’, md*aC4)
fprintf ('Find = - m4 aC4 =[%g, %g, %d] (N)\n’,Fin4)
fprintf (‘G4 = - m4 g = [%g9, %g, %g] (N)\n’, G4)
fprintf ("IC4 = %g (kg m™2)\n’, IC4)

fprintf (' IC4 alphad=[%g, %g, %g] (N m)\n’,IC4xAlphad)
fprintf ('Min4=-IC4 alpha4=[%d, %d, %g] (N m)\n’,Min4)
fprintf (“\n’)

fprintf ("Link 5 \n’)
m5 = rho*xAGxhxd;
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Fin5 = —-m5%aC5;

G5 = [0,-mbxqg,0];

IC5 = mbx (AG"2+h"2)/12;

Min5 = -IC5xAlphab;

fprintf (‘m5 = %g (kg)\n’, m5)

fprintf ('m5 aC5 = [%9, %9, %g] )\n , m5xaCh)

fprintf ("Fin5 = - m5 aC5 =[%g, %g, d] (N)\n’, Finb)

fprintf ('G5 = - m5 g = [%g, %9, %g] (N)\n’, Gb5)

fprintf (' IC5 = %g (kg m”"2)\n’, IC5)

fprintf (' IC5 alphab5=[%g, %g, %g] (N m)\n’,IC5%Alphab)
(

fprintf ("Min5=-IC5 alpha5=[%d, %d, %g] (N m)\n’,Minb5)
fprintf ("\n’")
fprintf (' Joint reactions and equilibrium moment \n’)
fprintf (" \n’)

% link 5

fprintf(eom link 5 \n’)
fprintf ("\n’)
FO5x=sym('F05x’,'real’)
FOS5y=sym('F05y’,"real’)
F45x=sym(’'F45x’,"'real’);
F45y=sym('F45y’, " real’)
xP=sym(’'xP’,’real’);
yP=sym('yP’,’real’);
FO05=[ FO05x, FO05y, 0]; %unknown joint force of 0 on 5
F45=[ F45x, F45y, 0]; %unknown joint force of 4 on 5
% unknown application point of force F45

rP=[xP, yP, 0];

% point P is on the line ED

egP=cross (rD-rA, rP-rA);

egPz=egP (3); % eqg(l)

Pz=vpa (eqPz, 6)

fprintf("%$s = 0 (1)\n’, char(Pz))

% F45 perpendicular to DA

eqglF45DA=dot (F45,rD-rA); % eqg(2)

F45DA=vpa (eqF45DA, 6) ;

fprintf("%$s = 0 (2)\n’, char(F45DA))

% Sum of the forces for 5

egF5=F05+F45+G5-m5%aC5;

egFbx=eqF5(1l); % projection on x-axis eq(3)

SEFS5x= vpa(eqFSx,6),

fprintf (/ = 0 (3)\n’, char(SF5x))

eqF5y=eqF5(2); % projection on y—-axis eqg(4)
SFbSy=vpa (eqgF5y, 6) ;
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fprintf("%$s = 0 (4)\n’, char(SF5y))

% Sum of the moments for 5 wrt C5

egMC5=cross (rA-rC5,F05) +cross (rP-rC5,F45) +Me~—. ..
IC5«Alphab;

egMC5z=egMC5 (3); % projection on z-axis eqg(b)

% print eqg(5)

egMC5I = cross (rA-rC5,F05);

fprintf (' $s+\n’, char (vpa (egMC5I (3),6)))

egMC5II = cross (rP-rC5,F45);

fprintf (! $s+\n’, char (vpa (egqMC5II (3),6)))

egMC5III = Me-IC5xAlphab;

fprintf ("%$s = 0 (5)\n’,char (vpa(egqMC5III(3),6)))

% link 4

fprintf (" \n’)

fprintf ("eom link 4 \n’)

fprintf ("\n’)

F34x=sym('F34x’, " real’);
F34y=sym('F34y’, " real’);

% unknown joint force of 3 on 4

F34=[ F34x, F34y, 0 1 ;

F54=-F45 ; % Jjoint force of 5 on 4

% Sum of the forces for 4
eqF4=F34+F54+G4-m4xaC4;

egF4x=eqF4 (l); % projection on x-axis eq(6)
SF4x=vpa (eqFix, 6) ;

fprintf("%$s = 0 (6)\n’, char(SF4x))
egF4y=eqF4 (2); % projection on y-axis eq(7)
SF4y=vpa (eqgFdy, 6) ;

fprintf("%$s = 0 (7)\n’, char (SF4dy))

% Sum of the moments for 4 wrt C4=D
egMC4=cross (rP-rC4,F54) -IC4xAlphai4;
egMC4z=egqMC4 (3); % projection on z-axis eqg(8)
SMC4z=vpa (egMC4z, 3) ;

fprintf("%s = 0 (8)\n’,char (SMC4z))

fprintf (" \n’)

fprintf ("Egs(1)-(8) => \n’)

fprintf

("FO5x, FOb5y, F45x, F45y, F34x, F34y, xP, yP\n’)

sol45=solve (eqFb5x,eqF5y,egMC5z, egF45DA, eqPz, . ..
eqtdx, eqFdy,eqgqMC4z);

FO5xs=eval (s0ld45.F05x);

FObys=eval (s0ol45.F05y);

FO05s=[ F05xs, FObys, 0 ];
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fprintf ("FO5 = [ %9, %g, %g] (N)\n’, F05s)
F45xs=eval (s0l45.F45x) ;
F45ys=eval (s0old5.F45y);
F45s=[ F45xs, F45ys, O
fprintf ("F45 = [ %g, %9, %g] (N)\n’, F45s)
F34xs=eval (s0ld5.F34x);
F34ys=eval (so0ld5.F34y);
F34s=[ F34xs, F34ys, O
fprintf ('F34 = [ %9, %g, %g] (N)\n’, F34s)
xPs=eval (s0ld45.xP);
yPs=eval (sol4d5.yP);
rPs=[xPs, yPs, 0];
fprintf ("rP = [ %9, %9, %g9] (m)\n’, rPs)

% link 3

fprintf (‘\n’)

fprintf ("eom link 3 \n’)
fprintf ("\n’")
F43=-F34s;
FO3x=sym('F03x’,'real’)
FO3y=sym('F03y’,'real’)
F23x=sym('F23x’,"'real’);
F23y=sym (' F23y’, " real’)
xQ=sym(’'xQ",’real’);
yQ=sym('yQ’,’'real’);
unknown Jjoint force of 0 on 3

F03=[ F03x, FO03y, 01;

%$unknown joint force of 2 on 3

F23=[ F23x, F23y, 0];

% unknown application point of force F23
rQ=[xQ, yQ, O0];

% point Q is on the line BC

egQ=cross (rB-rC, rQ-rC) ;

eqQz=eqQ (3); % eq(9)

Qz=vpa (eqgQz, 6) ;

fprintf('%$s = 0 (9)\n’, char(Qz))

% F23 perpendicular to BC

eqF23BC = dot (F23,rB-rC); % eqg(l0)
F23BC=vpa (eqF23BC, 6) ;

fprintf("%$s = 0 (10)\n’, char (F23BC))

% Sum of the forces for 3
egF3=F43+F03+F23+G3-m3*aC3;

egqF3x=eqF3(l); % projection on x—axis eq(ll)
SF3x=vpa (eqF3x, 6) ;

fprintf("%$s = 0 (11)\n’, char(SF3x))
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egF3y=eqF3(2); % projection on y-axis eq(1l2)

SF3y=vpa (eqF3y, 6) ;

fprintf("%$s = 0 (12)\n’, char (SF3y))

% Sum of the moments for 3 wrt C3

egMC3=cross (rD-rC3,F43) +cross (rC-rC3,F03) +. ..
cross (rQ-rC3,F23)-IC3xAlpha3;

egMC3z=egMC3 (3); % projection on z-axis eq(1l3)

% print eq(13)

egMC3I = cross(rC-xC3,F03);

fprintf (' $s+\n’, char (vpa (egMC3I (3),6)))

egMC3II = cross (rQ-rC3,F23);

fprintf (' $s+\n’, char (vpa (egMC3II(3),6)))

egMC3III = cross (rD-rC3,F43)-IC3*xAlpha3;

fprintf('%s = 0 (13)\n’,char (vpa(egMC3III(3),6)))

% link 2

fprintf ("\n’)

fprintf ("eom link 2 \n’)

fprintf ("\n’)

Fl2x=sym('F12x’,'real’);
Fl2y=sym('F12y’,'real’);

% unknown joint force of 1 on 2

Fl2=[ Fl2x, Fl2y, 01;

F32=-F23; % joint force of 3 on 2

% Sum of the forces for 2
egF2=F32+F12+G2-m2+*aC2;

egF2x=eqF2(l); % projection on x—-axis eq(l4)
SF2x=vpa (eqF2x, 6) ;

fprintf("$s = 0 (14)\n’, char (SF2x))
egF2y=eqF2(2); % projection on y-axis eqg(1l5)
SF2y=vpa (eqgF2y, 6) ;

fprintf("%$s = 0 (15)\n’, char(SF2y))

% Sum of the moments for 4 wrt C2=B
egMC2=cross (rQ-rC2,F32)-IC2xAlpha2;
egMC2z=egMC2 (3); % projection on z-axis eq(l6)
SMC2z=vpa (egqMC2z, 2) ;

fprintf(’%$s = 0 (16)\n’, char(SMC2z))

fprintf (‘'\n’")

fprintf ("Egs (9)-(16) => \n’)

fprintf

("FO3x, FO03y, F23x, F23y, Fl2x, Fl2y, xQ, yQ\n’)

sol23=solve (eqF3x,eqF3y,eqgMC3z, eqF23BC, eqgQz, . . .
eqgF2x,eqF2y,eqgMC2z) ;

FO3xs=eval (s0l23.F03x) ;
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FO3ys=eval (s0l23.F03y);

F03s=[ F03xs, FO03ys, 0 ];
fporintf ("FO03 = [ %9, %
F23xs=eval (s0l23.F23x);
F23ys=eval (so0l23.F23y);
F23s=[ F23xs, F23ys, O
fprintf ("F23 = [ %qg,

Fl2xs=eval (sol23.F12x
Fl2ys=eval (sol23.F1l2y
Fl2s=[ Fl2xs, Fl2ys,

4

O ~ ~— oP°
~

fprintf ('F12 = [ %g, %g, %g] (N)\n’

xQs=eval (s0l23.x0Q);
yQs=eval (s0l23.yQ);
rQs=[xQs, yQs, 0];

4

4

4

fprintf('rQ = [ %g, %g, %9] (m)\n’,

fprintf ("\n’)

% link 1
fprintf (eom link 1 \n’)
fprintf (" \n’)

$ Sum of the forces for 1
FOl=ml*aCl+F12s-G1;

fprintf ("FO01 = [ %g, %9, %g] (N)\n’

[

forintf ('Mm = [ %d, %d, %g] (N m

o
°

)

°

Sum of the moments for 1 wrt A

Mml=cross (rB,F12s)+cross (rCl,mlxaCl-Gl)+ICl*alphal;
% fprintf ('Mml = [ %d, %d, %g] (N m)\n’,

[

% end of program

Results:

phi = phil = 30 (degrees)

Position analysis

rA=1[0, 0, 0] (m)

rC =120, 0.1, 0] (m)

rB = [ 0.129904, 0.075, 0] (m)
rD = [ -0.147297, 0.128347, 0 ]
rF = [ 0.245495, 0.0527544, 0 ]
rG = [ -0.226182, 0.197083, 0 ]

4

% Sum of the moments for 1 wrt C1
Mm=IClxalphal-cross (rA-rCl,F01)+cross (rB-rCl,F1l2s);
)\n’,

another way of calculating equilibrium moment Mm
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phi2 = phi3 = -10.8934 (degrees)

phi4 = phi5 = 138.933 (degrees)

rCl = [ 0.0649519, 0.0375, 0 1 (m)

rC2 = rB = [ 0.129904, 0.075, 0 ] (m)

rC3 = [ 0.049099, 0.0905509, 0 1 (m)

rC4 = rD = [ -0.147297, 0.128347, 0 1 (m)
rC5 = [ -0.113091, 0.0985417, 0 1 (m)
Velocity and acceleration analysis

aBl = aB2 = [ -3.56139, -2.05617, 0 ] (m/s"2)
aD3 = ab4 = [ 2.5548, -2.71212, 0 1 (m/s"2)
aF = [ —-4.258, 4.52021, 0 ] (m/s"2)

aG = [ —-0.396144, -4.50689, 0 ] (m/s"2)
omegad4=omega5 = [0, 0, 2.97887] (rad/s)
alphal = [0, 0, 0] (rad/s"2)

alpha2=alpha3 = [0, 0, 14.5363] (rad/s"2)
alphad4=alpha5 = [0, 0, 12.1939] (rad/s"2)
aCl = [ -1.78069, -1.02808, 0 ] (m/s"2)
aC2=aB2 = [ -3.56139, -2.05617, 0 1 (m/s"2)
aC3 = [ -0.8516, 0.904041, 0 ] (m/s"2)
aC4=aD4 = [ 2.5548, -2.71212, 0 1 (m/s"2)
aC5 = [ -0.198072, -2.25344, 0 ] (m/s"2)
Dynamic force analysis

Newton—-Euler method

Me = [ 0, 0, -100] (N m)

Inertia forces and inertia moments

Link 1

ml = 0.012 (kqg)

ml aCl = [-0.0213683, -0.012337, 0] (N)

Finl = - ml aCl =[0.0213683, 0.012337, 0] (N)
Gl = -ml g = [0, -0.117684, 0] (N)

ICl = 2.26e-05 (kg m"2)

ICl alphal=[0, 0, 0] (N m)

Minl=-ICl alphal=[0, 0, 0] (N m)
Link 2
m2 = 0.008 (kqg)
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m2 aC2 = [-0.0284911, -0.0164493, 0] (N)

Fin2 = - m2 aC2 =[0.0284911, 0.0164493, 0] (N)
G2 = - m2 g = [0, -0.078456, 0] (N)
IC2 = 1.93333e-06 (kg m"2)

IC2 alpha2=[0, 0, 2.81035e-05] (N m)
Min2=-IC2 alpha2=[0, 0, -2.81035e-05] (N m)

Link 3

m3 = 0.032 (kg)

m3 aC3 = [-0.0272512, 0.0289293, 0] (N)

Fin3 = - m3 aC3 =[0.0272512, -0.0289293, 0] (N)
G3 = -m3 g= [0, -0.313824, 0] (N)

IC3 = 0.000426933 (kg m™2)

IC3 alpha3=[0, 0, 0.00620602] (N m)
Min3=-IC3 alpha3=[0, 0, -0.00620602] (N m)

Link 4

m4d = 0.008 (kg)

m4 aC4 = [0.0204384, -0.021697, 0] (N)

Fin4 = — m4 aC4 =[-0.0204384, 0.021697, 0] (N)
G4 = - md g = [0, -0.078456, 0] (N)

IC4 = 1.93333e-06 (kg m"2)

IC4 alphad4=[0, 0, 2.35748e-05] (N m)
Min4=-IC4 alpha4=[0, 0, -2.35748e-05] (N m)

Link 5

m5 = 0.024 (kg)

m5 aC5 = [-0.00475373, -0.0540826, 0] (N)

Fin5 = - m5 aC5 =[0.00475373, 0.0540826, 0] (N)
G5 = - mb g = [0, -0.235368, 0] (N)

IC5 = 0.0001802 (kg m"2)

IC5 alphab5=[0, 0, 0.00219734] (N m)
Min5=-IC5 alphab5=[0, 0, -0.00219734] (N m)

Joint reactions and equilibrium moment
eom link 5

~.147297+yP—-.128347+xP = 0 (
—.147297+F45x+.128347+F45y =
FO5x+F45x+.475373e-2 = 0 (3)
FO5y+F45y—.181285 = 0 (4)
.1130914F05y+.985417e-1+F05x+
(xP+.113091) «F45y—1.+ (yP—.985417e-1) «F45x+
-100.002 = 0 (5)

1)
0 (2)
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eom link 4

F34x-1.xF45x—.204384e-1 = 0 (6)
F34y-1.xF45y-.567590e-1 = 0 (7)
~1.%(xP+.147) «F45y+ (yP—.128) xF45x-.236e-4 = 0 (8)

Egs (1) -(8) =>

F05x, FO5y, F45x, F45y, F34x, F34y, xP, yP
FO5 = [ 336.192, 386.015, 0] (N)
F45 = [ -336.197, -385.834, 0] (N)
F34 [ -336.176, —-385.777, 0] (N)
rP = [ -0.147297, 0.128347, 0] (m)

eom link 3

.129904%y0-.129904e-1+.250000e—-1+xQ = 0 (9)
.129904%F23x-.250000e—-1+F23y = 0 (10)
336.203+F03x+F23x = 0 (11)

385.435+F03y+F23y = 0 (12)
~.490990e-1+F03y—.944911e-2+F03x+
(x0-.490990e-1) xF23y-1.* (yQ—.905509e-1) *F23x+
-88.4776 = 0 (13)

eom link 2

~1.%F23x+F12x+.284911le-1 = 0 (14)
~1.%F23y+F12y-.620067e-1 = 0 (15)
~1.%(xQ-.13) xF23y+ (yO-.75e-1) xF23x—.28e-4 = 0 (16)

Egs(9)-(l6) =>

FO03x, FO03y, F23x, F23y, Fl2x, Fl1l2y, xQ, vyQ
FO3 = [ -431.027, -878.152, 0] (N)

F23 = [ 94.8234, 492.717, 0] (N)

Fl2 = [ 94.7949, 492.779, 0] (N)

rQ = [ 0.129904, 0.075, 0] (m)

eom link 1

FO1 = [ 94.7736, 492.884, 0] (N)
Mm = [ 0, 0, 56.9119] (N m)
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C.6 R-RTR-RTR Mechanism: Dyad Method

C6

Dynamic force analysis

R—-RTR-RTR

Dyad method

clear all; clc; close all; format long
fprintf (' R-RTR-RTR \n’)

fprintf ('Dynamic force analysis \n’)
fprintf (' Dyad method \n’)

fprintf ('Results \n\n’)

AB = 0.15 ;

o0 o0 o oe

AC = 0.10 ;
CD = 0.15 ;
DF = 0.40 ;
AG = 0.30 ;

phi = pi/6 ;

fprintf (‘phi = phil = %g (degrees)\n’, phix180/pi)
fprintf ("\n’)

fprintf (Position analysis \n\n’)

xA = 0; yA = 0; rA = [xA yA 0];

fprintf ("rA = [ %g, %g, %g ] (m)\n’, rh)

xC = 0; yC = AC; rC = [xC yC 0];

fprintf('rC = [ %g, %g, %9 ] (m)\n’, rC)

xB = ABxcos (phi); yB = AB*sin(phi); rB = [xB yB 0];
fprintf ("rB = [ %9, %9, %g] (m)\n’, rB)

egqnDl = ' ( xDsol - xC ) "2+ ( ybsol - yC )"2 = CD"2’;
eqnD2 = '’ (yB-yC)/ (xB-xC)=(yDsol-yC)/ (xDsol-xC) "’ ;
solD = solve(eqnDl, egnD2, ’'xDsol, yDsol’);

xDpositions = eval (solD.xDsol);

yDpositions = eval (solD.yDsol);

xD1 = xDpositions(l); xD2 = xDpositions(2);

yD1l = yDpositions(l); yD2 = yDpositions(2);

if

(phi>=0 && phi<=pi/2) || (phi >= 3*pi/2 && phi<=2xpi)
if

xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;end
else
if

xD1 >= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;end
end

rD = [xD yD 0];

fprintf("rD = [ %9, %9, %9 ] (m)\n’, rD)

phi2 = atan((yB-yC)/ (xB-xC)); phi3 = phi2;

phid = atan((yD-yA)/ (xD-xA))+pi; phi5 = phi4;
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XF=xD+DFxcos (phi3); yF=yD+DFx*sin (phi3);
rF=[xF yF 0];
fprintf ('rF = [ %g, %g, %g ] (m)\n’, rF)

XG=xA+AGxcos (phib5); yG=yA+AG+*sin (phih);

rG=[xG yG 0];

fprintf ("rG = [ %9, %9, %9 ] (m)\n’, rG)

fprintf (' phi2 phi3 = %g (degrees) \n’, phi2x180/pi)
fprintf ("phi4 = phi5 = %g (degrees) \n’, phid*180/pi)
fprintf ("\n’)

o° oo

xCl = xB/2; yCl = yB/2; rCl = [xCl yCl 0];

fprintf ("rCl = [ %9, %9, %g ] (m)\n’, rCl)

rC2 = rB;

fprintf ("rC2 = rB = [ %9, %g, %g ] (m)\n’, rC2)

xC3 = (xD+xF)/2; yC3 = (yD+yF)/2; rC3 = [xC3 yC3 0];
fprintf ('rC3 = [ %9, %g, %g ] (m)\n’, rC3)

rC4 = rD;

fprintf(‘rC4 = rD = [ %g, %9, %g ] (m)\n’, rC4)

xC5 = (xA+xG)/2; yC5 = (yA+yG)/2; rC5 = [xC5 yC5 0];
fprintf ('rC5 = [ %g, %g, %g ] (m)\n’, rC5)

Q

% Graphic of the mechanism

plot ([0,xB], [0,yB], 'r-o’, [xD,xF], [yD,yF], ...
[xA,xG], [yA,yG],"g-0"), ...

xlabel("x (m)’"), ylabel('y (m)’),

title ('positions for \phi = 30 (deg)’),...

text (xA,vA,’ A’),text(xB,yB,’” B=C2'),...

text (xC,yC,’” C’),text(xD,yD,’ D=C4’),...

text (xF, yF,’ F’),text (xG,yG,’ G'),...

text (xC1,vyC1l,”’ Cl’),text (xC3,yC3,’ C37), ...

text (xC5,yC5,” C5"), ...

axis([-0.3 0.3 -0.3 0.3]), grid on

fprintf (‘'\n’")

fprintf (" Velocity and acceleration analysis\n\n’)

n = 50.;

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 ];

vA = [0 0 O ]; aA = [0 O O 71;

vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl = aA+cross (alphal, rB) —-dot (omegal, omegal) xrB;
aB2 = aBl;

fprintf ("aBl=aB2 = [ %g, %g, %9 ] (m/s"2)\n’,aBl)

omega3z=sym ('’ omega3z’,’ real’);
alpha3z=sym(’alpha3z’,’real’);
vB32=sym (' vB32’,"real’);
aB32=sym(’aB32’,’'real’);
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omega3 = [ 0 0 omega3z ];
vC = [0 00 ];
vB3 = vC + cross (omega3,rB-rC);
vB3B2 = vB32«[ cos(phi2) sin(phi2) 0];
eqvB = vB3 - vB2 - vB3B2;
eqvBx = eqvB(l); eqvBy = eqvB(2);
solvB = solve (eqvBx, eqvBy) ;
omega3zs=eval (solvB.omega3z) ;
vB32s=eval (solvB.vB32);
Omega3 = [0 0 omega3zs]; OmegaZ2 = Omegal;
v32 = vB32sx*[cos(phi2) sin(phi2) O01];
vD3 = vC + cross (Omega3,rD-rC); vD4 = vD3;
aB3B2cor = 2x%cross (Omega3,v32);
alpha3 = [ 0 0 alpha3z ];
acC = [0 0 0 ];
aB3 = aC + cross(alpha3, rB-rC) -

dot (Omega3, Omega3) x (rB-rC) ;
aB3B2 = aB32x[ cos(phi2) sin(phi2) 01];
eqgaB = aB3 - aB2 - aB3B2 - aB3B2cor;
egaBx = egaB(l); egaBy = egaB(2);
solaB = solve (egaBx,eqgaBy);
alpha3zs=eval (solaB.alpha3z);
aB32s=eval (solaB.aB32);
Alpha3 = [0 0 alpha3zs]; Alpha2 = Alpha3;
aD3 = aC + cross(Alpha3, rD-rC) -

dot (Omega3, Omegal) x (rD-rC) ;
abD4 = aD3;
fprintf ("abD3=abD4 = [ %g, %9, %g ] (m/s”2)\n’,aD3)
omegabz=sym(’omegabz’,’ real’);
alphabSz=sym(’alphabz’,’ " real’);
vD54=sym(’vD54’, " real’);
aDb4=sym(’ab54’ ,"real’);
omegab5 = [ 0 0 omegabz ];
vD5 = vA + cross(omegab,rD-rA);
vD5D4 = vD54%[ cos(phib5) sin(phib5) 0];
eqvD = vD5 - vD4 - vD5D4;
eqvDx eqgvD (1) ; eqgvDy = eqvD(2);
solvD = solve (eqvDx,eqvDy) ;
omegabzs=eval (solvD.omegab5z) ;
vD54s=eval (solvD.vD54) ;
Omega5 = [0 0 omegabzs];
vb4 = vD54s«*[cos (phi5) sin(phib5) 01;
Omega4d4 = Omegab;
aD5D4cor = 2+cross (Omegab,v54);
alpha5 = [ 0 0 alphabz ];



C.6 R-RTR-RTR Mechanism: Dyad Method 399

aDb=aA+cross (alphab, rD-rA)—...

dot (Omegab,Omegab) = (rD-rA) ;
aD5D4 = aD54x[ cos(phib) sin(phib5) 01;
egaD = ab5 - ab4 - aD5D4 - aD5D4cor;
egaDx = eqgaD(l); egaDy = egaD(2);
solaD = solve (egaDx,eqgaDy) ;
alphabzs=eval (solaD.alphabz);
aD54s=eval (solaD.aD54);
Alpha5 = [0 0 alphab5zs]; Alphad4 = Alphab5;
aF=aC+cross (Alpha3, rF-rC)—-...

dot (Omega3, Omegal) = (rF-rC) ;
aG=aA+cross (Alphab5, rG-rA)—-...

dot (Omegab,Omegab) x (rG—rA)

fprintf('aF = [ %g, %g, %9 ] (m/s"2)\n’, aF)
fprintf('aG = [ %g, %g, %9 ] (m/s"2)\n’, aG)
fprintf

(" omegad=omegab=[ %g, %9, %g ] (rad/s)\n’,Omegab)
fprintf ("\n’)

fprintf

("alphal=[ %9, %g, %g ] (rad/s"2)\n’, alphal)
fprintf

("alpha2=alpha3=[ %g, %g, %g ] (rad/s"2)\n’,Alpha3)
fprintf

("alphad4=alpha5=[ %9, %g, %9 ] (rad/s”2)\n’,Alphab)
fprintf (" \n’)
aCl = aBl1/2;

fprintf(’aCl = [ %9, %g, %9 1 (m/s"2)\n’, aCl)

aC2 = aB2;

fprintf ("aC2=aB2 = [ %g, %g, %9 ] (m/s"2)\n’, aC2)
aC3 = (aD3+aF)/2;

fprintf("aC3 = [ %g, %9, %9 1 (m/s"2)\n’, aC3)

aC4 = aD3;

fprintf ("aC4=ab4 = [ %g, %9, %g ] (m/s”2)\n’, aC4)
aC5h = (aA+aG)/2;

fprintf(’aC5 = [ %g, %g, %g ] (m/s"2)\n’, acCbh)

fprintf (\n’)
fprintf (' Dynamic force analysis \n’)
fprintf (' Dyad method \n\n’)

h 0.01; % height of the bar
d = 0.001; % depth of the bar
hSlider = 0.02; % height of the slider
wSlider = 0.05; % depth of the slider
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rho = 8000; % density of the material

g = 9.807; % gravitational acceleration
Me = -sign(Omegab5(3))=x[0,0,100];
fprintf ('Me = [%d, %d, %g] (N m)\n’, Me)

fprintf (‘'\n’)
fprintf (' Inertia forces and inertia moments\n\n’)

fprintf ('Link 1 \n’)
ml = rho*ABxhxd;

Finl = -mlxaCl;

Gl = [0,-mlxg,0];

ICl = mlx(AB"2+h"2)/12;

Minl = 7ICl*alpha1;

fprintf ('ml = %g (kg)\n’, ml)

fprintf (‘ml aCl = [%g, %g, %g] (N)\n’, ml*aCl)

fprintf ('Finl= - ml aCl =[%g, %g, %d] (N)\n’, Finl)
%9, %9] \n’, G1)

fprintf ('IC1 = %g (kg m"2)\n’, IC1)

14
fprintf (' IC1 alphal=[%g, %g, %d] (N m
fprintf ('Minl=-IC1l alphal=[%d, %
"An’)

(
(
(

fprintf(’Gl = - ml g = [%qg,
(
( \n’,ICl*alphal)
( ] (N m)\n’,Minl)
(

fprintf

fprintf ('Link 2 \n’)
m2 = rhoxhSlider*wSlider=d;

fprintf (" IC2 alpha2=[%g, %9, %g] ( )
fporintf ('Min2=-IC2 alpha2=[%d, %d, %g
"An’)

\n’, IC2xAlpha?2)
1 (N m)\n’,Min2)

Fin2 = -m2xaC2;
G2 = [0,-m2%qg,0];
IC2 = m2* (hSlider”"2+wSlider"2)/12;
Min2 = -IC2xAlpha2;
fprintf (‘m2 = %g (kg)\n’, m2)
fprintf ('m2 aC2 = [%g, %9, %g] (N)\n’, m2*aC2)
fprintf ('Fin2= - m2 aC2 =[%g, %g, %d] (N)\n’, Fin2)
fprintf (G2 = - m2 g = [%g9, %g, %g] (N)\n’, G2)
fprintf (" IC2 = %g (kg m"2)\n’ IC2)

(

(

(

fprintf

fprintf ('Link 3 \n’)
m3 = rho*DF+h=*d;

Fin3 = -m3%aC3;

G3 = [0,-m3%qg,0];

IC3 = m3x (DF"2+h"2)/12;
Min3 = -IC3xAlpha3;

fprintf ('m3 = %g (kg)\n’, m3)

C Programs of Chapter 4: Dynamic Force Analysis
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fprintf ('m3 aC3 = [%9, %9, %g] )\n , m3*aC3)
fprintf ('Fi = - m3 aC3 =[%g, %g, d] (N)\n’,Fin3)
fprintf ’G3 = -m3 g = [%g, %9, %g] (N) \n G3)

(

(

(
fprintf (' IC3 = %g (kg m"2)\n’, IC3)
fprintf (' IC3 alpha3=[%g, %g, %g] (N m)\n’,IC3xAlpha3)
fprintf ("Min3=-IC3 alpha3=[%d, %d, %g] (N m)\n’,Min3)
fprintf ("\n’")
fprintf ('Link 4 \n’)
m4 = rhoxhSlider*wSlider=d;

Fin4d = -md4xaC4;

G4 = [0,-mdxqg,0];

IC4 = md* (hSlider”"2+wSlider"2)/12;

Min4d = 7IC4*Alpha4;

fprintf (‘m4 = %g (kg)\n’ 4)

fprintf ’m4 aC4 = [%g, %9, %g] \n , midxaC4)

fprintf ('Fi = - m4 aC4 =[%gqg, %g, d]l (N)\n’,Fin4)
%9, %g] (N)\n’, G4)
r

fprintf (IC4 = %g (kg m”"2)\n’, IC4)

fprintf (' IC4 alpha4=[%g, %g, %g] (N m)\n’,IC4*Alpha4)

fprintf ('Min4=-IC4 alphad4=[%d, %d, %g] (N m)\n’,Min4)
\

(
(
(
fprintf(’G4 = - md4 g = [%qg,
(
(
(
fprintf (’

n’)

fprintf (Link 5 \n’)
m5 = rhoxAGxhxd;

fprintf (" IC5 = %g (kg m~2)\n’, IC5)
fprintf (' IC5 alpha5=[%g, %g, %g] (N m)\n’,IC5%xAlphab)
fprintf ('Min5=-IC5 alpha5=[%d, %d, %g] (N m)\n’,Min5)

Fin5 = -m5xaC5;
G5 = [0,-mb5xqg,0];
IC5 = m5* (AG"2+h"2)/12;
Min5 = —IC5*A1pha5;
fprintf (‘m5 = %g (kg)\n’ 5)
fprintf ('m5 aC5 = [%g9, %9, %g] (N)\n’, mb5%acCh)
fprintf ('Fin5 = - m5 aC5 =[%g, %g, %d] (N)\n’, Finb)
fprintf ('G5 = - m5 g = [%g9, %g, %g] (N)\n’, G5)
( 14
(
(

fprintf (‘\n’)
fprintf (" Joint reactions and equilibrium moment\n\n’)

% Links 5 and 4 - dyad 4 & 5 (RTR)
fprintf (‘Dyad 4 & 5 \n\n’)

FOSx=sym('FO05x’,"real’);
FOSy=sym("FO05y’, " real’);
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F34x=sym('F34x’,"'real’);

F34y=sym('F34y’,'real’);

F05=[F05x, FO5y, 0]; % unknown joint force of 0 on 5
F34=[F34x, F34y, 0]; % unknown joint force of 3 on 4
% Sum of the forces for 5 and 4
egF45=F05+G5+G4+F34-m5xaC5-m4*aC4;

eqF45x=eqF45 (1) ;
egF45y=eqF45(2);

projection on x-axis eq(
projection on y-axis eq(2)

=

%
%

SF45x=vpa (eqF45x, 3) ;

fprintf("%$s = 0 (1)\n’, char(SF45x))

SF45y=vpa (eqF45y, 3);

fprintf("%$s = 0 (2)\n’, char (SF45y))

% Sum of the moments for 5 and 4 wrt D

egMD45=cross (rA-rD,F05) +cross (rC5-rD, G5-m5%acCh) . ..
—-IC5%xAlphab-IC4xAlphad+Me;

egMD45z=egMD45 (3); % projection on z-axis eq(3)

SMD45z=vpa (egMD45z, 3) ;

fprintf("%$s = 0 (3)\n’, char(SMD45z))

% Sum of the forces for 4 projected on ED
eqgF4DA=dot (F34+G4-m4+aC4,rD-rA); % eqg(4)
F4DA=vpa (eqF4DA, 6) ;

fprintf("%$s = 0 (4)\n’, char (F4DA))

% egs(l)-(4) => FO05x, FO5y, F34x, F34y
fprintf ("Egs (1) -(4) => F05x, FO05y, F34x, F34y\n’)
solDI=solve (eqgF45x, eqF45y , egMD45z, eqF4DA);
FO5xs=eval (solDI.F05x);

FObys=eval (solDI.F05y);
F34xs=eval (solDI.F34x);
F34ys=eval (solDI.F34y);
FO05s=[ FO05xs, FO5ys, 0 1;
F34s=[ F34xs, F34ys, 0 1;
fprintf (FO05 = [%g9, %g, %
fprintf ("F34 = [%g, %9, %
fprintf ("\n’)

4

% Sum of the forces for 5: F45+F05+G5=m5xaC5 => F45
F45=m5+xaC5-G5-F05s;

fprintf ("F45 = [ %9, %9, %g] (N)\n’, F45)

fprintf ('verify: F45 perp to DE \n’)



C.6 R-RTR-RTR Mechanism: Dyad Method 403

fprintf ("F45.DA = %g \n’,dot (F45,rD-rAd))
fprintf ("\n’")

xP=sym('xP’,’real’);

yP=sym('yP’,’real’);

rP=[xP, yP, 0]; % application point of force F45
egP=cross (¥rD-rA,rP-rA); % P is on the line ED
egPz=eqP (3); % eqg(5)

Pz=vpa (eqgPz, 6) ;

fprintf('%$s = 0 (5)\n’, char(Pz))

% Sum of the moments for 4 wrt C4=D
egM4=cross (rP-rC4,-F45)-IC4xAlphai4;
egqM4z=eqM4 (3); % eq(6)

M4z=vpa (eqPz, 6) ;

fprintf(’%$s = 0 (6)\n’, char (M4z))

fprintf ("Egs(5)-(6) => xP, yP \n');

% egs(5)—-(6) => xP, yP

solP=solve (egPz,eqM4z) ;

xPs=eval (solP.xP);

yPs=eval (solP.yP);

rPs=[xPs, yPs, 0];

fprintf ("rP = [%g, %9, %g] (m)\n’, rPs)
fprintf ("rP - rD = [%g, %9, %g] (m)\n’, rPs-rD)
fprintf

("because IC4*Alpha4 is a very small number\n’)
fporintf (' -IC4xAlphad (3) %9 \n’,-IC4xAlphad (3))
fprintf ('\n’")

% Links 2 and 3 - dyad 2 & 3 (RTR)
fprintf (‘Dyad 2 & 3 \n’)
FO3x=sym('FO03x’,'real’);
FO3y=sym('F03y’,'real’);
Fl2x=sym('Fl2x’,"real’)
Fl2y=sym('F1l2y’, ' real’)
FO03=[F03x, FO03y, 0]; % unknown joint force of 0 on 3
F12=[F12x, F1l2y, 0]; % unknown joint force of 1 on 2
F43=-F34s;

% Sum of the forces for 2 and 3
eqF23=F43+F03+G3-m3xaC3+G2-m2*xaC2+F12;
egF23x=eqF23(1); % projection on x-axis eq(7)
SF23x=vpa (eqF23x,6) ;

fprintf("%$s = 0 (7)\n’, char(SF23x))
eqgF23y=eqF23(2); % projection on y-axis eq(8)
SF23y=vpa (eqF23y, 6);
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fprintf("%$s = 0 (8)\n’, char(SF23y))

% Sum of the moments for 2 and 3 wrt B

egMB3=cross (rD-rB,F43) +cross (rC-rB,F03) +. ..

cross (rC3-rB, G3-m3%xaC3) ;

egMB2=-IC3xAlpha3-IC2+Alpha2;

egMB23=egMB3+eqMB2;

egqMB23z=egMB23 (3); % eq(9)

SMB23z=vpa (egqMB23z, 6) ;

fprintf('%$s = 0 (9)\n’, char(SMB23z))

% Sum of the forces for 2 projected on BC

egF2BC=dot (F12+G2-m2xaC2, rC-rB); % eq(l0)

F2BC=vpa (eqF2BC, 6) ;

fprintf("$s = 0 (10)\n’, char(F2BC))

% egs(7)-(10) => FO03x, FO03y, Fl2x, Fl2y

fprintf ("Egs(7)-(10)=> F03x, F03y, Fl1l2x, Fl2y\n’)

solDII = solve(eqgF23x, eqF23y , egMB23z, eqF2BC);

FO03xs=eval (solDII.F03x);

FO3ys=eval (solDII.FO03y);
)
)

4

Fl2xs=eval (solDII.F12x
Fl2ys=eval (solDII.Fl2y

F03s=[ F03xs, FO03ys, 0 1;
Fl2s=[ Fl2xs, Fl2ys, 0 1];
fprintf ("FO03 = [%g, %g, %g] (N)\n’, F03s)
fprintf ('F12 = [%g, %g, %g] (N)\n’, F12s)

fprintf (" \n’)

F32=m2+xaC2-G2-F12s;

fprintf ("F32 = [%g, %g, %g] (N)\n’, F32)
fprintf ('verify: F32 perp to BC \n’)
fprintf ('F32.BC = %g \n’,dot (F32, rC-rB))
fprintf (" \n’)

xQ=sym(’xQ’, ' real’);

yQ=sym('yQ’,’real’);

ro=[xQ, vQ, 0]; % application point of force F32
egQ=cross (rC-rB, rQ0-rC); % Q is on the line BC
eqQz=eqQ (3); % eq(ll)

Qz=vpa (eqQz, 6) ;

fprintf("%$s = 0 (11)\n’, char(Qz))

% Sum of the moments for 2 wrt C2=B
egM2=cross (rQ-rC2,F32) -IC2xAlpha2;
egM2z=egM2 (3); % eq(l2)

SM2z=vpa (eqM2z, 6) ;

fprintf("%$s = 0 (12)\n’, char(SM2z))
fprintf ("Egs (11)-(12) => xQ, yQ \n’)
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% egs(11)-(12) => xQ, yOQ
solQ=solve (eqQz,eqM2z) ;
xQs=eval (s0lQ.xQ);
yQOs=eval (s0lQ.yQ);
rQs=[x0s, y0s, 0];

fprintf ('rQ = [%g, %9, %g] (m)\n’, rQs)
fprintf ("rQ - rB = [%g, %9, %g] (m)\n’, rQs-rB)
fprintf

("because IC2+Alpha2 is a very small number\n’)
fprintf (' -IC2+Alpha2(3) = %g \n’,-IC2*Alpha2(3))
fprintf ("\n’);

% Link 1

fprintf (‘Link 1 \n\n’)
% Sum of the forces for 1
FOl=ml+aCl-Gl+F1l2s;

fprintf ("FO01 = [ %9, %9, %g] (N)\n’, FO01)

[

% Sum of the moments for 1 wrt A

405

Mm=-cross (rB,-F12s) -cross (rCl,Gl-ml*aCl)-ICl*alphal;

fprintf ('Mm = [ %d, %d, %g] (N m)\n’, Mm)

)

% end of program

Results:

phi = phil = 30 (degrees)

Position analysis

rA = [ 0, 0, 01 (m)
rc =10, 0.1, 0] (m)
rB = [ 0.129904, 0.075, 0] (m)
rD = [ -0.147297, 0.128347, 0 1 (m)
rF = [ 0.245495, 0.0527544, 0 1 (m)
rG = [ -0.226182, 0.197083, 0 ] (m)
phi2 = phi3 = -10.8934 (degrees)

)

phi4 = phi5 = 138.933 (degrees

rCl = [ 0.0649519, 0.0375, 0 ] (m)

rC2 = rB = [ 0.129904, 0.075, 0 1 (m)

rC3 [ 0.049099, 0.0905509, 0 ] (m)

rC4 = rD = [ -0.147297, 0.128347, 0 ] (m)
rCh [ -0.113091, 0.0985417, 0 ] (m)

Velocity and acceleration analysis

aBl=aB2 = [ -3.56139, -2.05617, 0 ] (m/s"2)
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aD3=aD4 = [ 2.5548, -2.71212, 0 1 (m/s"2)
aFF = [ -4.258, 4.52021, 0 ] (m/s"2)

aG = [ -0.396144, -4.50689, 0 ] (m/s"2)
omegad4=omega5=[ 0, 0, 2.97887 ] (rad/s)

alphal=[ 0, 0, 0 ] (rad/s"2)
alpha2=alpha3=[ 0, 0, 14.5363 ] (rad/s"2)
alpha4=alpha5=[ 0, 0, 12.1939 ] (rad/s"2)

aCl = [ -1.78069, -1.02808, 0 1 (m/s"2)
aC2=aB2 [ -3.56139, -2.05617, 0 1 (m/s"2)
aC3 = [ -0.8516, 0.904041, 0 1 (m/s"2)
aC4=abD4 = [ 2.5548, -2.71212, 0 ] (m/s"2)
aC5 = [ -0.198072, -2.25344, 0 ] (m/s"2)

Dynamic force analysis
Dyad method

Me = [0, 0, -100] (N m)
Inertia forces and inertia moments

Link 1

ml = 0.012 (kqg)

ml aCl = [-0.0213683, -0.012337, 0] (N)
Finl= - ml aCl =[0.0213683, 0.012337, 0] (N)
Gl = -ml g = [0, -0.117684, 0] (N)

ICl = 2.26e-05 (kg m"2)

ICl alphal=[0, 0, 0] (N m)

Minl=-ICl alphal=[0, 0, 0] (N m)

Link 2

m2 = 0.008 (kg)

m2 aC2 = [-0.0284911, -0.0164493, 0] (N)
Fin2= - m2 aC2 =[0.0284911, 0.0164493, 0] (N)
G2 = - m2 g = [0, -0.078456, 0] (N)

IC2 = 1.93333e-06 (kg m"2)

IC2 alpha2=[0, 0, 2.81035e-05] (N m)

Min2=-IC2 alpha2=[0, 0, -2.81035e-05] (N m)

Link 3

m3 = 0.032 (kg)

m3 aC3 = [-0.0272512, 0.0289293, 0] (N)

Fin3 = - m3 aC3 =[0.0272512, -0.0289293, 0] (N)
G3 = - m3 g = [0, -0.313824, 0] (N)
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IC3 = 0.000426933 (kg m"2)
IC3 alpha3=[0, 0, 0.00620602] (N m)
Min3=-IC3 alpha3=[0, 0, -0.00620602] (N m)

Link 4

m4 = 0.008 (kg)

m4 aC4 = [0.0204384, -0.021697, 0] (N)

Find = - m4 aC4 =[-0.0204384, 0.021697, 0] (N)
G4 = - md g = [0, -0.078456, 0] (N)

IC4 = 1.93333e-06 (kg m"2)

IC4 alphad4=[0, 0, 2.35748e-05] (N m)

Min4=-IC4 alpha4=[0, 0, -2.35748e-05] (N m)

Link 5

mb = 0.024 (kqg)

m5 aC5 = [-0.00475373, -0.0540826, 0] (N)

Fin5 = - m5 aC5 =[0.00475373, 0.0540826, 0] (N)
G5 = - mb g = [0, -0.235368, 0] (N)

IC5 = 0.0001802 (kg m~2)

IC5 alphab5=[0, 0, 0.00219734] (N m)

Min5=-IC5 alphab=[0, 0, -0.00219734] (N m)

Joint reactions and equilibrium moment
Dyad 4 & 5

FO5x+F34%x-.157e-1 = 0 (1)

FO5y-.238+F34y = 0 (2)
.147%F05y+.128«F05x-100. = 0 (3)
—.147297xF34x—.427435e-2+.128347+F34y = 0 (4)
Egs (1)-(4) => FO05x, FO05y, F34x, F34y

FO05 [336.192, 386.015, 0] (N)

F34 = [-336.176, —-385.777, 0] (N)

F45 = [ -336.197, -385.834, 0] (N)
verify: F45 perp to DE
F45.DA = 0

—.147297xyP—.128347xxP
—-.147297%xyP—-.128347xxP =
Egs (5)—-(6) => xP, yP

rP = [-0.147297, 0.128347, 0] (m)

rP - rD = [3.47312e-08, -3.0263e-08, 0] (m)
because IC4xAlphad is a very small number
—-IC4%Alphad (3) = -2.35748e-05

(5)

0
0 (6)
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Dyad 2 & 3

336.2324F03x+F12x = 0 (7)

385.373+F03y+F12y = 0 (8)
-124.851-.129904%F03y—-.250000e-1+F03x = 0 (
~.129904+F12%—.525127e—-2+.250000e—-1+F12y =
Egs (7)-(10)=> F03x, FO03y, Fl2x, Fl2y

FO3 = [-431.027, -878.152, 0] (N)

F12 = [94.7949, 492.779, 0] (N)

)

9
0 (10)

F32 = [-94.8234, -492.717, 0] (N)
verify: F32 perp to BC
F32.BC = -7.10543e-15

-.129904%y0Q0+.129904e-1-.250000e-1%xQ = 0 (11)
-492.717+xQ+56.89404+94.8234xyQ = 0 (12)

Egs (11)-(12) => xQ, yQ

rQ = [0.129904, 0.075, 0] (m)

rQ — rB = [-5.50007e-08, 1.05849e-08, 0] (m)
because IC2xAlpha2 is a very small number
—-IC2xAlpha2(3) = -2.81035e-05

Link 1

FOl = [ 94.7736, 492.884, 0] (N)
Mm = [ 0, 0, 56.9119] (N m)

C.7 R-RTR-RTR Mechanism: Contour Method

o\

c7

Dynamic force analysis

R-RTR-RTR

Contour method

clear all; clc; close all; format long

o° o

o

AB = 0.15 ;
AC = 0.10 ;
CD = 0.15 ;
DF = 0.40 ;
AG = 0.30 ;

phi = pi/6 ;

fprintf ("phi = phil = %g (degrees)\n’, phi*180/pi)
fprintf ('\n’)

fprintf (Position analysis \n\n’)
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xA = 0; yA = 0; rA = [xA yA 0];

fprintf("rA = [ %9, %9, %9 ] (m)\n’, rA)

xC = 0; yC = AC; rC = [xC yC 0];

fprintf('rC = [ %g, %g, %9 ] (m)\n’, rC)

xB = AB*cos (phi); yB = ABxsin(phi); rB = [xB yB 0];

fprintf("rB = [ %9, %9, %9 ] (m)\n’, rB)

egqnDl = ' (xDsol-xC) "2 + (yDsol-yC)~"2 = CD"2';

egqnD2 = '’ (yB-yC) / (xB-xC)=(yDsol-yC)/ (xDsol-xC)’;

solD = solve(eqgnDl, egnD2, ’'xDsol, yDsol’);

xDpositions = eval (solD.xDsol);

yDpositions = eval (solD.yDsol);

xD1 = xDpositions(l); xD2 = xDpositions(2);

yD1l = yDpositions(l); yD2 = yDpositions(2);

if

(phi>=0 && phi<=pi/2) || (phi >= 3%pi/2 && phi<=2xpi)
if

xD1 <= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;end
else
if

xD1 >= xC xD=xD1l; yD=yDl; else xD=xD2; yD=yD2;end

end

rD = [xD yD 0];

fprintf("rD = [ %9, %9, %9 ] (m)\n’, rD);

phi2 = atan((yB-yC)/ (xB-xC)); phi3 = phi2;

phi4 = atan((yD-yA)/ (xD-xA))+pi; phi5 = phi4;

xF=xD+DFxcos (phi3); yF=yD+DFx*sin (phi3);

rF=[xF yF 0];

fprintf ("rF = [ %9, %g, %9 ] (m)\n’, rF)

XG=xA+AGxcos (phib); yG=yA+AG+*sin (phih);

rG=[xG yG 0];

fprintf ("rG = [ %9, %9, %9 ] (m)\n’, rG)

fprintf (" phi2=phi3 = %g (degrees)\n’, phi2*«180/pi)

fprintf (' phid=phi5 = %g (degrees)\n’, phi4*«180/pi)

fprintf ("\n’")

xCl = xB/2; yCl = yB/2; rCl = [xCl yCl 0];

fprintf ('rCl = [ %9, %g, %g ] (m)\n’, rCl)

rC2 = rB;

fprintf("rC2 = rB = [ %9, %g, %g ] (m)\n’, rC2)

xC3 = (xD+xF)/2; yC3 = (yD+yF)/2; rC3 = [xC3 yC3 0];

fprintf ("rC3 = [ %9, %9, %9 ] (m)\n’, rC3)

rC4 = rD;

fprintf('rC4 = ¥rD = [ %9, %g, %g ] (m)\n’, rC4)

xC5 = (xA+xG)/2; yC5 = (yA+yG)/2; rC5 = [xC5 yC5 0];

fprintf ('rC5 = [ %g, %g, %g ] (m)\n’, rC5)
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% Graphic of the mechanism

plot ([0,xB], [0,yB], " r-0o", [xD,xF], [yD,yF], ...
[xA,xG], [VA,yG],"g-0o"), ...

xlabel ('x (m)’"), ylabel('y (m)’"),...

title('positions for \phi = 30 (deg)’),...

text (xA,yA,’ A’),text (xB,yB,’ B=C2"), ...

text (xC,yC,’ C’),text (xD,yD,’ D=C4"), ...

text (xF,yF,’ F'),text (xG,vyG,”’ G"),...

text (xC1l,yCl,’” Cl’), text (xC3,yC3,’” C3"),...

text (xC5,vyC5,” C5"), ...

axis([-0.3 0.3 -0.3 0.3]), grid on

fprintf ("\n’")

fprintf (' Velocity and acceleration analysis\n\n’)

n = 50.;

omegal = [ 0 0 pi*n/30 ]; alphal = [0 0 0 ];

vA = [0 0 0 ]1; aA = [ 00 O0 ];

vBl = vA + cross(omegal,rB); vB2 = vBl;

aBl = aA+cross (alphal, rB) -dot (omegal, omegal) »rB;

aB2 = aBl;

fprintf ('aBl=aB2 = [ %g, %g, %9 ] (m/s"2)\n’,aBl)
omega3z=sym(’ omega3z’,’ real’);
alpha3z=sym(’alpha3z’,’real’);
vB32=sym (' vB32’,"real’);

aB32=sym(’aB32’,’real’)

omega3 = [ 0 0 omega3z ];
vC = [0 O O 71;
vB3 = vC + cross(omega3, rB-rC);

vB3B2 = vB32x[ cos(phi2) sin(phi2) 0];
egvB = vB3 - vB2 - vB3B2;
egvBx = eqvB(l); eqvBy = eqvB(2);
solvB = solve (eqvBx, eqvBy) ;
omega3zs=eval (solvB.omega3z) ;
vB32s=eval (solvB.vB32);
Omega3 = [0 0 omega3zs]; Omega2 = Omega3;
v32 = vB32sx*[cos (phi2) sin(phi2) 01];
vD3 = vC + cross (Omega3,rD-rC); vD4 = vD3;
aB3B2cor = 2+*cross (Omega3, v32);
alpha3 = [ 0 0 alpha3z ];
aC = [0 0 0 1;
aB3 = aC + cross(alpha3, rB-rC) -

dot (Omega3, Omegal) x (rB-rC) ;
aB3B2 = aB32x[ cos(phi2) sin(phi2) 0];
egaB = aB3 - aB2 - aB3B2 - aB3B2cor;
egaBx = egaB(l); egaBy = egaB(2);
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solaB = solve (egaBx,eqgaBy);
alpha3zs=eval (solaB.alpha3z);
aB32s=eval (solaB.aB32);
Alpha3 = [0 0 alpha3zs]; Alpha2 = Alpha3;
aD3 = aC + cross(Alpha3, rD-rC) -

dot (Omega3, Omega3) x (rD-rC) ;
aD4 = aD3;
fprintf ("abD3=abD4 = [ %g, %g, %9 ] (m/s"2)\n’,aD3)
omegabz=sym ('’ omegabz’,’ ' real’);
alphabz=sym(’alphabz’,’"real’);
vD54=sym(’vD54’, " real’);
aD54=sym(’aD54’,’'real’);
omegabS = [ 0 0 omegabz ];
vD5 = vA + cross(omegab,rD-rA);
vD5D4 = vD54*[ cos(phib) sin(phib5) 0];
eqvD = vD5 - vD4 - vD5D4;
eqvDx eqvD (1) ; eqgvDy = eqvD(2);
solvD = solve (eqvDx,eqvDy) ;
omegabzs=eval (solvD.omegabz) ;
vD54s=eval (solvD.vD54) ;
Omegab5 = [0 0 omegabzs];
v54 = vD54sx*[cos (phib5) sin(phi5) 01];
Omega4d4 = Omegab;
aD5D4cor = 2xcross (Omegab,v54);
alphab5 = [ 0 0 alphabz ];
aD5 = aA + cross(alphab5,rD-rA) -

dot (Omegab5,Omegab) x (rD-rA) ;
aD5D4 = aD54x[ cos(phi5) sin(phib5) 01;
egaD = aD5 - abD4 - aD5D4 - aD5D4cor;
egaDx = egaD(l); egaDy = eqgaD (2);
solaD = solve(eqgaDx,eqgaDy);
alphabzs=eval (solaD.alphabz);
aD54s=eval (solaD.aD54);
Alphab5 = [0 0 alphabzs]; Alpha4 = Alphab;
aF = aC + cross (Alpha3,rF-rC) -

dot (Omega3, Omegal) x (rF-rC) ;
aG = aA + cross (Alphab, rG-rA) -

dot (Omegab5,Omegab) x (rG-rA) ;

fprintf("aF = [ %g, %9, %9 1 (m/s"2)\n’, aF)
fprintf("aG = [ %9, %9, %9 ] (m/s"2)\n’, aG)
fprintf

(" omegad=omegab=[ %g, %g, %g ] (rad/s)\n’,Omegab)

fprintf ('\n’)
fprintf
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("alphal= [ %9, %g, %g ] (rad/s"2)\n’, alphal)
fprintf

("alpha2=alpha3=[%g, %9, %g] (rad/s"2)\n’,Alpha3)
fprintf

("alphad4=alpha5=[%g, %g, %g] (rad/s"2)\n’,Alphab)
fprintf (\n’)

aCl = aBl1/2;

fprintf("aCl = [ %9, %9, %9 ] (m/s”"2)\n’, aCl)
aC2 = aB2;

fprintf (’aC2=aB2 = [ %g, %g, %9 ] (m/s"2)\n’,aC2)
aC3 = (aD3+aF)/2;

fprintf("aC3 = [ %9, %9, %9 1 (m/s"2)\n’, aC3)
aC4 = aDh3;

fprintf ("aC4=abD4 = [ %g, %g, %9 ] (m/s"2)\n’,aC4)
aC5 = (aA+aG)/2;

fprintf("aC5 = [ %g9, %9, %9 1 (m/s"2)\n’, aCbh)

fprintf ("\n’")
fprintf (' Dynamic force analysis \n’)
fprintf (' Newton-Euler method \n\n’)

h = 0.01; % height of the bar

d = 0.001; % depth of the bar

hSlider = 0.02; % height of the slider
wSlider = 0.05; % depth of the slider

rho = 8000; % density of the material

g = 9.807; % gravitational acceleration
Me = -sign(Omega5(3))=[0,0,100];
fprintf ('Me = [%d, %d, %g] (N m)\n’, Me)

fprintf (" \n’)
fprintf (' Inertia forces and inertia moments\n\n’)

fprintf ("Link 1 \n’)
ml = rhoxABxhxd;

g
fprintf (Y IC1 = %g (kg m™2)
fprintf (' IC1 alphal=[%g, %

Finl = -mlxaCl;
Gl = [0,-mlxqg,0];
ICl = ml* (AB"2+h"2)/12;
Minl = —ICl*alphal;
fprintf (‘ml = %g (kg)\n’, ml)
fprintf (‘ml aCl = [%9, %g, %g] (N)\n’, mlxaCl)
fprintf ('Finl = -ml aCl = [%g, %g, %d] (N)\n’,Finl)
fprintf (Gl = - ml g = [%g, %g, %g] (N)\n’, Gl)
( “2)\n’
(

g, %d] (N m)\n’,IClxalphal)
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fprintf ('Minl=-ICl alphal=[%d, %d, %d] (N m)\n’,Minl)
fprintf ("\n’")

fprintf ('Link 2 \n’)
m2 = rhoxhSlider*wSlider=d;

Fin2 = -m2xaC2;

G2 = [0,-m2%qg,0];

IC2 = m2% (hSlider”"24+wSlider~2)/12;

Min2 = —ICZ*AlphaZ;

fprintf ('m2 = %g (kg)\n’, m2)

fprintf ('m2 aC2 = [%g, %g, %g] (N)\n’, 2*aC2)
fprintf ('Fin2 = -m2 aC2 = [%g, %g, %d] (N)\n’,Fin2)
fprintf (G2 = - m2 g = [%g9, %g, %g] (N) \n G2)
fprintf (' IC2 = %g (kg m"2)\n’, IC2)

fprintf (' IC2 alpha2=[%g, %g, %g] (N m)\n’,IC2xAlpha2)
fprintf (Min2=-IC2 alpha2=[%d, %d, %g] (N m)\n’,Min2)
fprintf (“\n’)

fprintf ('Link 3 \n’)
m3 = rhoxDFxh=*d;

Fin3 = -m3xaC3;

G3 = [0,-m3%g,0];

IC3 = m3x(DF"2+h"2)/12;

Min3 = -IC3xAlpha3;

fprintf (‘m3 = %g (kg)\n’, m3)

fprintf (‘m3 aC3 = [ %g, %9, %g] (N)\n’, m3%aC3)
fprintf (‘Fin3 = -m3 aC3 = [%g, %g, %d] (N)\n’,Fin3)
fprintf ('G3 = - m3 g = [%g9, %g, %g] (N)\n’, G3 )
fprintf (' IC3 = %g (kg m”"2)\n’, IC3);

fprintf (' IC3 alpha3=[%g, %g, %g] (N m)\n’,IC3xAlpha3)
fprintf (/Min3=-IC3 alpha3=[%d, %d, %g] (N m)\n’,Min3)
fprintf ("\n’")

fprintf ('Link 4 \n’)
m4 = rhoxhSlider*wSlider=d;

Find = -m4+*aC4;
G4 = [0,-mdxqg,0];
IC4 = m4* (hSlider”"24+wSlider~2)/12;
Min4d = —IC4*Alpha4;
fprintf ('m4 = %g (kg)\n’, m4)
fporintf ('m4 aC4 = [ %g, %9, %g] (N)\n’, méxaC4)
fprintf ('Find = -m4 aC4 = [%g, %g, %d] (N)\n’,Fin4)
fprintf (‘G4 = - m4 g = [%g9, %g, %g] (N)\n’, G4)
fprintf ("IC4 = %g (kg m™2)\n’, IC4)

(

14
fprintf (' IC4 alpha4d=[%g, %g, %g] (N m)\n’,IC4xAlphad)
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fprintf ('Min4=-IC4 alphad4=[%d, %d, %g] (N m)\n’,Min4)
fprintf ("\n’")

fprintf ('Link 5 \n’)
m5 = rho*AGxhx*d;

Fin5 = -m5xaC5;

G5 = [0,-mbxqg,0];

IC5 = m5x (AG"2+h"2)/12;

Min5 = —IC5*A1pha5;

fprintf ('m5 = %g (kg)\n’, m5)

fprintf ('m5 aCS = [%g, %g, %g] (N)\n’, 5*aC5)
fprintf ("Fin5 = -m5 aC5 = [%g, %g, %d] (N)\n’,Finb5)
fprintf ('G5 = - m5 g = [%g9, %9, %g] (N) \n G5)
fprintf (' IC5 = %g (kg m”"2)\n’, IC5)

fprintf (' IC5 alphab5=[%g, %g, %g] (N m)\n’,IC5xAlphab)
fprintf ('Min5=-IC5 alpha5=[%d, %d, %g] (N m)\n’,Minb5)

fprintf ("\n’")
fprintf (' Joint reactions\n’)
fprintf (' Contour method \n\n’)

fprintf (" Joint A_rotation (5 and 0)\n\n’)

FOS5=[sym('FO05x’,"real’), sym('FO05y’,’real’), 0];

% Sum of the forces for 5 projected on DA

egARl=dot (F05+G5+Fin5, rA-rD) ;

ARl=vpa (egARl, 6);

fprintf("%$s = 0 \n’, char (AR1l))

% Sum of the moments for 5 & 4 wrt D

egAR2=cross (rA-rD,F05) +cross (rC5-rD, G5+Finb) +
Me+Min4+Minb5;

egAR2z=egAR2 (3) ;

AR2=vpa (eqAR2z, 6) ;

fprintf ("%$s = 0 \n’, char (AR2))

solF05=solve (eqARl,egAR2z) ;

FO05s=[eval (solF05.F05x), eval(solF05.F05y), 0];

fprintf ('F05 = [ %9, %g, %g] (N)\n’, F05s)

fprintf (' \n’)

fprintf (" Joint D_translation \n\n’)

F45=[sym(’'F45x","'real’), sym('F45y’,’real’), 0];

F54=-F45;

rP=[sym(’'xP’,’"real’), sym('yP’,’real’), 0];

% Sum of the moments for 5 wrt A

egDTl=cross (rP-rA,F45) +cross (rC5-rA, G5+Fin5) +
Me+Min5;
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egDT1z=egDT1 (3);

DT1l=vpa (egDTlz, 6);

fprintf ('%$s = 0 \n’, char (DT1))
% Sum of the moments for 4 wrt D

egDT2=cross (rP-rD,F54) +Min4;

egqDT2z=egDT2 (3) ;

DT2=vpa (eqgqbT2z, 3) ;

fprintf("%$s = 0 \n’, char(DT2))

% F45 perpendicular to DA

eqgF45DA=dot (F45,rD-rA); %

F45DA=vpa (eqF45DA, 6) ;

fprintf("%$s = 0 \n’, char (F45DA))

% point P is on the line AD

egP=cross (rD-rA, rP-rA);

eqgPz=eqgP (3); % eqg(4)

Pz=vpa (eqPz, 6) ;

fprintf("%$s = 0 \n’, char(Pz))

solF45=solve (egqDTlz,eqDT2z,F45DA, eqPz) ;
F45s=[eval (solF45.F45x), eval (solF45.F45y), 0];

rPs=[eval (solF45.xP), eval(solF45.yP), 0];

fprintf ('F45 = [%g, %g, %9] (N)\n’, F45s)
fprintf ("rP = [%g, %g, %g] (m)\n’, rPs)

fprintf ("\n’);

fprintf (/ Joint D_rotation \n\n’);
F34=[sym('F34x’,'real’), sym('F34y’,’real’), 0];
F43=-F34;

% Sum of the forces for 4 projected on AD
egDR1=dot (F34+G4+Fin4, rD-rA);

DR1=vpa (egDR1, 6) ;

fprintf(’%$s = 0 \n’, char(DR1));

% Sum of the moments for 4 & 5 wrt A
egDR24=cross (rC4-rA,G4+Find) +tcross (rD-rA,F34) +Min4;
egDR25=cross (rC5-rA, G5+Fin5) +Me+Min5;
egDR2=egDR24+egDR25;

egDR2z=egDR2 (3) ;

DR2=vpa (eqDR2z, 6) ;

fprintf("%$s = 0 \n’, char (DR2))

solF34=solve (egqDR1l,egDR2z) ;

F34s=[eval (solF34.F34x), eval(solF34.F34y), 01;
fprintf ('F34 = [%g, %g, %g] (N)\n’, F34s )
fprintf ('\n’);

fprintf (' Joint C_rotation \n\n’)
FO3=[sym('FO03x","'real’), sym('FO03y’,’real’), 0];
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% Sum of the forces for 3 projected on CD

egCR1=dot (F03-F34s+G3+Fin3, rD-rC) ;

CR1l=vpa (eqCR1, 6) ;

fprintf(’%$s = 0 \n’, char (CR1))

% Sum of the moments for 3 & 2 wrt B

eqCR2=cross (rC3-rB, G3+Fin3) +cross (rC-rB,F03) +. ..
cross (rD—-rB, -F34s) +Min2+Min3;

eqCR2z=eqCR2 (3) ;

CR2=vpa (eqCR2z, 6) ;

fprintf(’%$s = 0 \n’, char (CR2))

solF03=solve (eqCR1l,eqCR2z) ;

FO03s=[eval (solF03.F03x), eval(solF03.F03y), 0];

fprintf ("FO03 = [%g, %g, %g] (N)\n’, FO03s)

fprintf ("\n’)

fprintf (" Joint B_translation \n\n’);

F23=[sym('F23x",’real’), sym('F23y’,’real’), 0];

F32=-F23;

rQ=[sym(’'xQ’, " real’), sym('yQ’,’real’), 0];

% Sum of the moments for 3 wrt C

egBTl=cross (rQ-rC,F23) +cross (rC3-rC,G3+Fin3) +. ..
cross (rD-rC,-F34s)+Min3;

egBT1lz=egBT1 (3);

BTl=vpa (egqBTlz, 6) ;

fprintf('%$s = 0 \n’, char (BT1))

% Sum of the moments for 2 wrt B

egBT2=cross (rQ-rB,F32)+Min2;

egBT2z=egBT2 (3) ;

BT2=vpa (eqBT2z, 3) ;

fprintf ('%$s = 0 \n’, char (BT2))

% F23 perpendicular to BC

eqF23BC=dot (F23,rC-rB); %

F23BC=vpa (eqF23BC, 6) ;

fprintf("%$s = 0 \n’, char (F23BC));

% point Q is on the line BC

egQ=cross (rB-rC, rQ—-rC);

eqQz=eqQ (3); % eq(4)

Qz=vpa (eqQz, 6) ;

fprintf("%$s = 0 \n’, char(Qz))

solF23=solve (eqBTlz,eqBT2z,F23BC,eqQz) ;

F23s=[eval (s0lF23.F23x), eval(solF23.F23y), 0];

rQs=[eval (solF23.x0Q), eval(solF23.yQ), 01;

fprintf ("F23 = [%g, %9, %g] (N)\n’, F23s)
fprintf (' rQ = [%9, %9, %g] (N)\n’, rQs)

fprintf ("\n’")
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fprintf (" Joint B_rotation \n\n’)
Fl2=[sym('Fl2x’,"’real’), sym('Fl2y’,’real’), 0];
F21=-F12;

% Sum of the forces for 2 projected on BC
egBR1l=dot (F12+G2+Fin2, rC-rB) ;

BR1l=vpa (egBR1, 6) ;

fprintf("%$s = 0 \n’, char(BR1l))

% Sum of the moments for 2 & 3 wrt C
egBR2=cross (rB-rC,F12) +cross (rC2-rC, G2+Fin2) +Min2. ..
+cross (rC3-rC,G3+Fin3) +cross (rD-rC, -F34s) +Min3;
egBR2z=egBR2 (3) ;

BR2=vpa (egqBR2z, 6) ;

fprintf ('%$s = 0 \n’, char (BR2))
solFl2=solve (egBR1l, eqBR2z) ;

Fl2s=[eval (solF1l2.F12x), eval(solFl1l2.F12y), 0];
fprintf ('F12 = [ %9, %g, %g] (N)\n’, Fl12s)
fprintf ("\n’")

% Sum of the moments for 1 wrt A

Mlm=- (cross (rB, -Fl1l2s)+cross (rCl,Gl+Finl)+Minl) ;
fprintf (‘Mm = [%d, %d, %g] (N m)\n’, Mlm)
fprintf ("\n’)

fprintf (' Joint A_rotation (1 and 0) \n\n’)
FOl=[sym('FO0lx’,'real’), sym('FOly’,’real’), O0];
% Sum of the moments for 1 wrt B

egAARl=cross (-rB,F01) +cross (rCl-rB,Gl+Finl) +Minl+Mlm;
egAARlz=egAARl (3);

AARl=vpa (eqAARlz, 6);

fprintf(’%$s = 0 \n’, char (AAR1))

% Sum of the forces for 1 & 2 projected on BC
egqAAR2=dot (FO1+G1l+Finl+G2+Fin2, rC-rB) ;

AAR2=vpa (egAAR2, 6) ;

fprintf("%$s = 0 \n’, char (AAR2))

solF0l=solve (egAARlz, egAAR2) ;

FOls=[ eval (solF01.F0lx), eval(solFOl1l.FO0ly), O 1;
fprintf ("FO01 = [%g, %g, %g] (N)\n’, FO0ls)

fprintf ('\n’")

)

% end of program
Results:

phi = phil = 30 (degrees)
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Position analysis

phi2=phi3 = -10.8934 (degree
phid4=phi5 = 138.933 (degrees

)

rA =110, 0, 0] (m)
rC= [0, 0.1, 0] (m)
rB = [ 0.129904, 0.075, 0 1 (m)
rD = [ -0.147297, 0.128347, 0 ] (m)
rF = [ 0.245495, 0.0527544, 0 ] (m)
rG = [ -0.226182, 0.197083, 0 ] (m)
S
)

rCl [ 0.0649519, 0.0375, 0 ] (m)

rC2 = rB = [ 0.129904, 0.075, 0 ] (m)

rC3 = [ 0.049099, 0.0905509, 0 1 (m)

rC4 = rD = [ -0.147297, 0.128347, 0 ] (m)
rC5 = [ -0.113091, 0.0985417, 0 ] (m)

Velocity and acceleration analysis

aBl=aB2 = [ -3.56139, -2.05617, 0 ] (m/s"2)
aD3=aD4 [ 2.5548, -2.71212, 0 1 (m/s"2)
aF = [ —-4.258, 4.52021, 0 ] (m/s"2)

aG = [ -0.396144, -4.50689, 0 ] (m/s"2)
omegad4=omega5=[ 0, 0, 2.97887 ] (rad/s)

alphal= [ 0, 0, 0 ] (rad/s"2)
alpha2=alpha3=[0, 0, 14.5363] (rad/s"2)
alphad4=alpha5=[0, 0, 12.1939] (rad/s"2)

aCl = [ -1.78069, -1.02808, 0 ] (m/s"2)
aC2=aB2 [ -3.56139, -2.05617, 0 ] (m/s"2)
aC3 = [ -0.8516, 0.904041, 0 1 (m/s"2)
aC4=abh4 = [ 2.5548, -2.71212, 0 1 (m/s"2)
aCb = [ -0.198072, -2.25344, 0 ] (m/s"2)

Dynamic force analysis
Newton—-Euler method

Me = [0, 0, -100] (N m)
Inertia forces and inertia moments
Link 1

ml = 0.012 (kg)
ml aCl = [-0.0213683, -0.012337, 0] (N)
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Finl = -ml aCl = [0.0213683, 0.012337, 0] (N)
Gl = -ml g = [0, -0.117684, 0] (N)

ICl = 2.26e-05 (kg m"2)

ICl alphal=[0, 0, 0] (N m)

Minl=-ICl alphal=[0, 0, 0] (N m)

Link 2

m2 = 0.008 (kg)

m2 aC2 = [-0.0284911, -0.0164493, 0] (N)

Fin2 = —-m2 aC2 = [0.0284911, 0.0164493, 0] (N)
G2 = - m2 g = [0, -0.078456, 0] (N)

IC2 = 1.93333e-06 (kg m"2)

IC2 alpha2=[0, 0, 2.81035e-05] (N m)

Min2=-IC2 alpha2=[0, 0, -2.81035e-05] (N m)

Link 3

m3 = 0.032 (kg)

m3 aC3 = [ -0.0272512, 0.0289293, 0] (N)

Fin3 = -m3 aC3 = [0.0272512, -0.0289293, 0] (N)
G3 = - m3 g = [0, -0.313824, 0] (N)

IC3 = 0.000426933 (kg m"2)

IC3 alpha3=[0, 0, 0.00620602] (N m)

Min3=-IC3 alpha3=[0, 0, -0.00620602] (N m)

Link 4
m4 = 0.008 (kqg)
m4d aC4 = [ 0.0204384, -0.021697, 0] (N)

Fin4 = -m4 aC4 = [-0.0204384, 0.021697, 0] (N)
G4 = -md g = [0, -0.078456, 0] (N)
IC4 = 1.93333e-06 (kg m"2)

IC4 alpha4=[0, 0, 2.35748e-05] (N m)
Min4=-IC4 alphad4=[0, 0, -2.35748e-05] (N m)

Link 5

m5 = 0.024 (kg)

m5 aC5 = [-0.00475373, -0.0540826, 0] (N)

Fin5 = -m5 aC5 = [0.00475373, 0.0540826, 0] (N)
G5 = - mb g = [0, -0.235368, 0] (N)

IC5 = 0.0001802 (kg m"2)

IC5 alphab5=[0, 0, 0.00219734] (N m)

Min5=-IC5 alphab=[0, 0, -0.00219734] (N m)

Joint reactions
Contour method
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Joint A_rotation (5 and 0)

.147297+«F05x+.239677e-1-.128347«F05y = O
.147297xF05y+.128347+xF05x-100.008 = 0
FO5 = [ 336.192, 386.015, 0] (N)

Joint D_translation

xPxF45y-1.+xyP*xF45x-99.9822 = 0
~1.%(xP+.147) xF45y+ (yP—.128) xF45x—.236e-4 = 0
—.147297+F45x+.128347+xF45y = 0
—.147297xyP-.128347+«xP = 0

F45 = [-336.196, -385.834, 0] (N)

rP = [-0.147297, 0.128347, 0] (m)

Joint D_rotation

—.147297xF34x—-.427435e-2+.128347xF34y = 0
—-99.9712-.147297xF34y—-.128347xF34x = 0
F34 = [-336.176, -385.777, 0] (N)

Joint C_rotation

-.147297xF03x-38.5957+.283473e-1xF03y = 0
-124.851-.129904%F03y—-.250000e-1xF03x = 0
FO03 = [-431.027, -878.152, 0] (N)

Joint B_translation

xQ*F23y-1.% (yQ—-.100000) xF23x-66.3764 = 0
=1.%(xQ-.130) *F23y+(yQ0—.750e-1) xF23x-.281le-4 = 0
-.129904%F23%x+.250000e-1%F23y = 0
.129904+yQ-.129904e-1+.250000e-1%xQ = 0

F23 = [94.8233, 492.717, 0] (N)

rQ = [0.129904, 0.075, 0] (N)

Joint B_rotation
-.129904%F12x—-.525127e-2+.250000e-1+xF12y = 0
.129904xF12y+.250000e-1xF12x-66.3837 = 0

F12 = [ 94.7949, 492.779, 0] (N)

Mm = [0, 0, 56.9119] (N m)

Joint A_rotation (1 and 0)
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-.129904%xF01y+.750000e-1%F01x+56.9195 = 0
-.129904xF01x-.106608e-1+.250000e-1%F01ly = O
FO1 = [94.7736, 492.884, 0] (N)



Appendix D
Programs of Chapter S: Direct Dynamics

e

D.1 Compound Pendulum

D1

Direct Dynamics

% Compound pendulum

clear all; clc; close all

syms L m g t

omega = [0 O diff('theta(t)’,t)];
alpha = diff (omega,t);

% diff(X,’t’) or diff(X,sym('t’))
% differentiates a symbolic expression
% X with respect to t

% diff(X,’t’,n) and diff(X,n,’'t’")
differentiates X n times

n is a positive integer

o° o

c = cos(sym(’theta(t)’));
s = sin(sym(’theta(t)’));
xC = (L/2)xc;

yC = (L/2) *s;

rC = [xC yC 0];

G = [0 —-mxg 0];

IC = mxL"2/12;

IO = IC + mx(L/2)"2;
MO = cross (rC,G);

eq = —-IO0Oxalpha+MO;
eqz = eqg(3);

eql = subs(eqz,{L,m,g},{3,12/32.2,32.2});

eqll = subs(eql,diff(’theta(t)’,t,2),’'ddtheta’);
eql2 = subs(eqll,diff ('theta(t)’,t),sym('x(2)"));

423
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eql3 = subs(eqgl2,’theta(t)’,sym(’'x(1)"));

solve a second order ODE using MATLAB
ODE45 function

write the second order equation as a

system of two first order equations,

by introducing x(2) = x (1)’
x(1)" = x(2) ==> x" = g(t,x)
x(2)" = £

define the vector x = [x(1); x(2)]

o 00 o o A A o o° o° o

(column-vector) .
% first differential equation
dxl = sym(’x(2)");

% second differential equation
dx2 = solve (eqgl3,’ddtheta’);

% define right-hand side vector
dx1ldt = char (dxl);
dx2dt char (dx2) ;

g=inline (sprintf (’ [%$s; %s]’,dx1ldt,dx2dt),’'t’,’'x’);

t0 = 0; define initial time
tf = 10; define final time
time = [0 tf];

x0 = [pi/4; 0]; % define initial conditions

t,xs] = ode45(g, time, x0);

find t, xs, but don’t show

oded5 solves non-stiff differential equations,
medium order method.

[ts,ys] = oded5(f,tspan,y0) integrates

the system of differential equations

y’ = f£(t,y) with initial conditions yO.

o o0 o o° o oo —

x1l = xs(:,1); % extract x1 & x2 components from xs
X2 = xs(:,2);

subplot (3,1,1),plot(t,x1,'x"), ...
xlabel ('t’),ylabel (' \theta’),grid, ...
subplot (3,1,2),plot (t,x2),...

xlabel ('t’),ylabel (' \omega’),grid, ...



D.2 Compound Pendulum Using the Function R (t, x)

subplot (3,1, 3),plot (x1,x2), ...

xlabel (" \theta’),ylabel (* \omega’),grid

ts,xs] = odedb5 (g,

[
format short
[ts, xs]

end of program

Results:
ans =

0 0.
0.5000 -0.
1.0000 -3.
1.5000 -3
2.0000 -0.
2.5000 0.
3.0000 -1.
3.5000 -3.
4.0000 -2.
4.5000 0
5.0000 0
5.5000 -2.
6.0000 -3.
6.5000 -2.
7.0000 0.
7.5000 0.
8.0000 -3.
8.5000 -3.
9.0000 -1.
9.5000 0.
10.0000 -0.

D.2 Compound Pendulum Using the Function R (t, x)

o\

D2

o o o°

o\

clear all; clc;

7854
8609
7001

.3568

1916
7178
6474
8826
8311

.2980
.5131

4083
9189
1153
6019
0638
1170
7773
1661
7582
6490

Direct Dynamics

Compound pendulum
the program uses the function:
the function is defined in the program R.m

close all

0:0.5:10, x0);

.8742
.3851
.9823
.3803
L2627
.4097
.0102
.7023
.6596
.6538
.6686
.2451
.0898
.0283
.5067
.8067
.7866
.2102
.4365
L4667

R(t, x)

425
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tfinal=10;

time=[0 tfinall;

$ x(1) (0)=pi/4 x(2) (0)=0
x0=[pi/4 01;

% solve a second order ODE
% using MATLAB ODE45 function

[t,x]=0ded5 (R, time, x0) ;

subplot (3,1,1), ...

plot (t,x(:,1)," "), ...

xlabel ("t’),ylabel (' \theta’),grid, ...
subplot (3,1,2), ...

plot(t,x(:,2)),...

xlabel ('t’),ylabel (' \omega’),grid, ...
subplot (3,1,3),...
plot(x(:,1),x(:,2)), ...
xlabel (" \theta’), ylabel (' \omega’),grid

[}

% end of program

D.3 Double Pendulum

D3

Direct Dynamics

Double pendulum

clear all; clc; close all

o oo o°

Ll =1; L2 = 0.5; ml = 1; m2 = 1; g = 10;
t = sym('t’,’real’);

xB = Llxcos(sym('gl(t)’));

vB Ll*xsin(sym(’'gl(t)’));

rB = [xB yB 0];

rCl = rB/2;

% differentiates rCl with respect to t
vCl = diff(rCl,t);

aCl = diff(vCl,t);

xD xB + L2*cos(sym(’'g2(t)’));
yD = yB + L2+%sin(sym(’ g2 (

o
N
~
-
-
~



D.3 Double Pendulum 427

rD = [xD yD 0];

rC2 = (rB + rD)/2;

vC2 = diff (rC2,t);

aC2 = diff(vC2,t);

omegal = [0 O diff('gl(t)’,t)]1;
alphal = diff (omegal,t);

omega2 = [0 O diff('g2(t)’,t)1;
alpha2 = diff (omega2,t);

Gl = [0 -mlxg O];

G2 = [0 -m2%g 0];

ICl = ml«L1°2/12;
IA = ICl + mlx(L1/2)"2;
IC2 = m2%xL2°2/12;

% LINK 2

% Sum F for link 2:

%$ -m2 aC2 + G2 + (-F21) = 0 => F21 = -m2 aC2 + G2
F21 = —-m2+xaC2 + G2;

% LINK 1

$ Sum M for 1 wrt A:"

% —IA alphal + AB x F21 + ACl x G1 = 0

EgA = -IAxalphal + cross(rB, F21) + cross(rCl, Gl);
% LINK 2

% Sum M for 2 wrt C2:

% —-IC2 alpha2 + C2B x (-F21) =0

Eg2 = -IC2xalpha2 + cross(rB - rC2, -F21);

[

% list for the symbolical wvariables
slist={diff('gql(t)’,t,2),diff('g2(t)’,t,2),...
diff ("ql(t)’,t),diff("q2(t)’,t), "ql(t)’,"q2(t)"};
nlist={'ddgl’,’ddg2’,’'x(2)","x(4)","'x(1)","x(3)"};

diff('gl(t)’,t,2) will be replaced by ’ddqgl’
diff('g2(t)’,t,2) will be replaced by ’"ddg2’
diff('gl(t)’,t) will be replaced by "x(2)’

diff('g2(t)’,t) will be replaced by "x(4)’
"gl(t)’ will be replaced by ’"x (1)’
"g2(t)’ will be replaced by ’"x(3)’

o° o0 o° o° o° oP

egl = subs(EgA(3),slist,nlist);
eg2 = subs(Eg2(3),slist,nlist);
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sol = solve(eqgql,eqg2,’ddgl, ddg2’);

dxl = sym('x(2)");
dx2 = sol.ddql;
dx3 = sym('x(4)");
dx4 = sol.ddg2?;

dx1ldt = char (dxl);
dx2dt = char (dx2);
dx3dt = char (dx3);
dx4dt = char (dx4);

g=inline (sprintf (’ [%$s;%s;%s;%s]’
dx1ldt,dx2dt,dx3dt,dx4dt),’'t’," ' x");

t0 = 0; tf =5; time = [0 tf];

x0 = [-pi/4; 0; -pi/3; 0]; % initial conditions
[t,xs] = oded5(g, time, x0);

x1l = xs(:,

(:,1
X2 = xs(:,2
x3 = xs(:,3
x4 = xs(:,4
subplot (2,1,1),plot (t,x1%x180/pi,’'r’),

xlabel ('t (s)’),ylabel (gl (deg)’),grid,
subplot (2,1,2),plot (t,x3*180/pi,'b"),
)’

xlabel ("t (s)’),ylabel (g2 (deg)’),grid
$[ts,xs] = oded5(g,0:1:5,x0);
%$[ts, xs]

end of program

D.4 Double Pendulum Using the File RR . m

D4

Direct Dynamics

Double pendulum

the program uses the function: RR(t, x)

o° o0 o0 o° oP

the function is defined in the program RR.m
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clear all; clc; close all

L1 = 1; L2 0.5, ml =1; m2 = 1; g = 10;
t = sym('t’,’real’);

xB = Llxcos(sym('gl(t)’));

yB = Llxsin(sym('gl(t)’));

rB = [xB yB 0];

rCl = rB/2;

xD = xB+L2xcos (sym(’'g2(t)’));

yD = yB+L2xsin(sym(’'g2(t)’));

rD = [xD yD 01;

rC2 = (rB + rD)/2;

vC2 = diff(rC2,t); aC2 = diff(vC2,t);
omegal = [0 O diff('gl(t)’,t)]1;
alphal = diff (omegal,t);

omega2 = [0 O diff('g2(t)’,t)1;
alpha2 = diff (omega2,t);

Gl = [0 —mlxg 0]; G2 = [0 —-m2%g O0];

IC1 = ml*L1°2/12; IA = ICLl + ml*(L1/2)"2;
IC2 = m2+L2°2/12;

F21 = —m2xaC2 + G2;
EgA = -IAxalphal + cross(rB, F21) + cross(rCl, Gl);
Eg2 = -IC2xalpha2 + cross(rB - rC2, -F21);

slist = {diff('gl(t)’,t,2),diff('g2(t)’,t,2),
diff('gl(t)’,t),diff("g2(t)’",t),’'gl(t)’,"g2(t)’};
nlist = .

{"ddgl’, 'ddg2’, "x(2)", 'x(4)', "x(1)","x(3)"};
eql = subs(EgA(3),slist,nlist);

eg2 = subs(Eg2(3),slist,nlist);

sol = solve(eqgl,eqg2,’ddgl, ddgz2’);
dx2 = sol.ddqgl; dx4 = sol.ddg2;

dx2dt = char (dx2);
dx4dt char (dx4) ;

opens the file "RR.m’ in the mode specified by ’'w+’
(create for read and write)

fid = fopen('RR.m’, " w+’");

fprintf (fid,’ function dx = RR(t,x)\n’);

fprintf (fid,’dx = zeros(4,1);\n’);
fprintf (fid,"dx (1) = x(2);\n’);
fporintf (£id,"dx(2) = ");
fprintf (fid, dx2dt)
( ")
( )

)
°
)

<

4

14

fprintf (fid,’;\n
fprintf (fid, "dx (3
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fprintf (fid,"dx(4) = ");
fprintf (fid, dx4dt) ;
fporintf (£id,”’;");

% closes the file associated with file identifier fid
fclose (fid);

cd (pwd) ;

cd changes current working directory

pwd displays the current working directory

o° o

fid = fopen(FIL,PERM) opens the file FILE in the
mode specified by PERM. PERM can be:

o0 o0 o° oe

rw’ writes (creates if necessary)

"w+! truncates or creates for read and write
t0 = 0; tf =5; time = [0 tf];
x0 = [-pi/4 0 —-pi/3 0]; % initial conditions
[t,xs] = oded5(Q@RR, time, x0);
x1l = xs(:,1);
x3 = xs(:,3);
subplot (2,1,1),plot (t,x1%180/pi,"'r"),
xlabel ("t (s)’),ylabel (gl (deg)’),grid, ...
subplot (2,1,2),plot (t,x3%«180/pi, ' b"), ...
xlabel ("t (s)’),ylabel (g2 (deg)’),grid
% [ts,xs] = oded45(QRRR,0:1:5,x0);
% [ts,xs]

O

s end of program

D.5 One-Link Planar Robot Arm

D5

Direct Dynamics

R robot arm

clear all; clc; close all

o oo o°

syms t
L =1; m=1; g = 9.81;
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)
) ;

c = cos(sym(’theta(t)’)
) ")
L/2)*s;

t
s = sin(sym(’theta(t
xC = (L/2)xc; yC = (
rC = [xC yC 0];

4
14

omega = [0 O diff('theta(t)’,t)];
alpha diff (omega,t);

G = [0 —mxg 0];

I0 = mxL"2/3;

beta = 45;
gamma = 30;
qf = pi/3;
T0lz = -betaxdiff ('theta(t)’,t)—-...

gammax* (sym(’theta(t)’)—-qgf)+0.5xgxLxmx*cC;
T01 = [0 0 TOlz];

eq = —-IOxalpha + cross(rC,G) + TO01;
eqz = eq(3);

slist={diff ('theta(t)’,t,2),diff (' theta(t)’,t),...
"theta(t)'’};
nlist={’ddtheta’, "x(2)’ , '"x(1)"};

eql = subs(eqgz,slist,nlist);

dx1l = sym('x(2)");
dx2 = solve(eql,’ddtheta’);

dx1ldt = char (dxl);
dx2dt char (dx2) ;

g=inline (sprintf ('’ [%s; %s]’, dxldt, dx2dt), 't’, 'x");

time = [0 10];
x0 = [pi/18; 0]; % define initial conditions

[ts,xs] = oded5(g, 0:1:10, x0);
plot (ts,xs(:,1)*180/pi,’LineWidth’,1.5), ...

xlabel ('t (s)’), ylabel(’\theta (deg)’),...
grid, axis ([0, 10, 0, 70])



432 D Programs of Chapter 5: Direct Dynamics

fprintf ("Results \n\n’)

fprintf (’ t (s) theta (rad) omega(rad/s) \n’)
[ts, xs]

% end of program

Results:
t (s) theta (rad) omega(rad/s)
ans =
0 0.1745 0
1.0000 0.5984 0.3006
2.0000 0.8175 0.1539
3.0000 0.9297 0.0788
4.0000 0.9871 0.0403
5.0000 1.0164 0.0206
6.0000 1.0315 0.0105
7.0000 1.0391 0.0054
8.0000 1.0431 0.0028
9.0000 1.0451 0.0014
10.0000 1.0461 0.0007

D.6 One-Link Planar Robot Arm Using the m-File Function
Rrobot.m

o

D6
Direct Dynamics

o\

R robot arm
the program uses the function: Rrobot (t, x)
the function is defined in the program Rrobot.m

o° o

o

clear; clc; close all

time = [0 10];

x0 = [pi/18 0];

[ts,xs] = oded5(@Rrobot, 0:1:10, x0);

1)%180/pi, ' LineWidth’,1.5), ...
"), ylabel (’\theta (deqg)’),...

plot (ts,xs (:,
)
0, 10, 0, 701)

xlabel ('t (s
grid, axis ([
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fprintf ("Results \n\n’)

fprintf (’ t (s) theta (rad) omega(rad/s) \n’)
[ts, xs]

% end of program

Results:
t (s) theta (rad) omega(rad/s)
ans =
0 0.1745 0
1.0000 0.5984 0.3006
2.0000 0.8175 0.1539
3.0000 0.9297 0.0788
4.0000 0.9871 0.0403
5.0000 1.0164 0.0206
6.0000 1.0315 0.0105
7.0000 1.0391 0.0054
8.0000 1.0431 0.0028
9.0000 1.0451 0.0014
10.0000 1.0461 0.0007

D.7 Two-Link Planar Robot Arm Using the m-File Function
RRrobot.m

o

D7

Direct Dynamics

Double pendulum

the program uses the function: RRrobot (t, x)

the function is defined in the program RRrobot.m

o\

o° o

o

clear all; clc; close all

Ll =1; L2 =1; ml =1; m2 = 1; g = 9.81;
t = sym('t’,’real’);

xB = Llxcos(sym('gl(t)’));
yB Llxsin(sym('qgl(t)’));
rB [xB yB 0];
rCl = rB/2; vCl =
xD xB + L2xcos (s
yD = yB + L2%sin(s
rD [xD yD 01;

diff (rCl,t); aCl = diff(vCl,t);
m("qg2(t)"));
m("q2(t)"))

14

Yy
Yy
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rC2 = (rB + rD)/2;

vC2 = diff(rC2,t); aC2 = diff(vC2,t);
omegal = [0 O diff('gl(t)’,t)1;
alphal diff (omegal,t);

omega2 = [0 O diff('g2(t)’,t)]1;
alpha? diff (omegaz2,t);

Gl = [0 -mlxg 0]; G2 = [0 —-m2%g 0];
ICl = mlxL17°2/12; IA ICl + mlx(L1/2)"2;
IC2 = m2%xL2°2/12;

F21 = —-m2xaC2 + G2;

b0l = 450; gO01 300;
bl2 = 200; glz2 = 300;

qlf = pi/6;
qg2f = pi/3;

TO01lz=-b0lxdiff (gl (t)’,t)-g0lx(sym('gl(t)’)-glf)...
+0.5xg*Ll*mlxcos (sym(/ gl (t)’))+...
gxLlxm2xcos (sym('gl(t)”’));

TO1l = [0 O TOlz];

Tl2z = -bla2xdiff('g2(t)’,t)—-gl2«(sym('g2(t)’)-g2f) ...
+0.5%xg*L2*m2*cos (sym (' g2 (t)’));

Tl12 = [0 O T12z];

EgA=-IAxalphal+cross (rB, F21)+cross(rCl, G1l)+T01-T1l2;

Eg2=-IC2xalpha2 + cross(rB - rC2, -F21) + T12;
slist={diff('gl(t)’,t,2),diff("'g2(t)’,
diff ("ql(t)’,t),diff("q2(t)’,t), ql(t
nlist=

{"ddgql”, "ddqg2’, 'x(2)’', "x(4)", "x(1)","'x(3)"};

eql = subs(EgA(3),slist,nlist);
eg2 = subs(Eg2(3),slist,nlist);

sol = solve(eql,eqg2,’ddgl, ddgz’);

dx2 = sol.ddql;
dx4 = sol.ddg2;
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dx2dt = char (dx2);
dx4dt = char (dx4);

fid = fopen('RRrobot.m’,’ w+’);
fprintf (fid,’ function dx = RRrobot (t,x)\n’);
fprintf (fid, ' dx zeros (4,1);\n’);

fprintf (fid, " dx(
fprintf (£fid, dx4d
fporintf (£id,’;");
fclose (fid);

[ OV]

4

fprintf (fid,'dx (1) = x(2);\n’");
fprintf (fid,"dx(2) = ");
fprintf (£id, dx2dt);
")
fprintf (fid, ' dx (3) x(4);\n");
)
)

(
(
(
(
fprintf (£fid,’;\n
(
(
(
(

cd (pwd) ;
t0 = 0,
tf = 15;

time = [0 tf];

x0

[-pi/18 0 pi/6 0];

[t,xs] = oded5 (RRRrobot, time, x0);

x1l = xs(:,1);
X2 = xs(:,2);
x3 = xs(:,3);
x4 = xs(:,4);

subplot (2,1,1),plot (t,x1%180/pi, ' r"), ...
xlabel ("t (s)’),ylabel (gl (deg)’),grid, ...

subplot (2,1,2),plot (t,x3%«180/pi,'b"), ...
xlabel ("t (s)’),ylabel (g2 (deg)’),grid

[ts,xs] = oded5 (@RRrobot,0:1:5,x0);
fprintf ("Results \n\n’)
fprintf

(" t(s) gl(rad) dgl(rad/s) g2(rad) dg2(rad/s) \n’)
[ts, xs]

[

% end of program
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Results:
t (s) ql (rad) dgl(rad/s) g2(rad) dg2(rad/s)
ans =

0 -0.1745 0 0.5236 0
1.0000 0.1594 0.2373 0.9304 0.1758
2.0000 0.3327 0.1220 1.0213 0.0391
3.0000 0.4217 0.0626 1.0415 0.0087
4.0000 0.4674 0.0321 1.0460 0.0019
5.0000 0.4908 0.0165 1.0469 0.0004



Appendix E
Programs of Chapter 6: Analytical Dynamics

E.1 Lagrange’s Equations for Two-Link Robot Arm

El

Analytical Dynamics
RR robot arm
Lagrange’s e.o.m

o° o

o

o\

clear all; clc; close all
syms t L1 L2 ml m2 g

gl = sym('qgl(t)’);
g2 = sym('qg2(t)’);

cl = cos(gl); sl = sin(gl);
c2 = cos(gz2); s2 sin(g2);

xB = Llxcl; yB = Llxsl;

rB = [xB yB 0];

rCl = rB/2; vCl = diff (rCl,t);

xD = xB + L2%c2; yD = yB + L2%s2;

rD = [xD yD 0];

rC2 = (rB + rD)/2; vC2 = diff(rC2,t);
omegal = [0 O diff(gl,t)];

omega2 = [0 0 diff(g2,t)];

IA = mlxL172/3; IC2 = m2xL2°2/12;

% kinetic energy of the link 1
Tl = IAxomegal+romegal.’/2;

437
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4

array transpose
A.’ is the array transpose of A

o° o

% kinetic energy of the link 2
T2 = m2%vC2xvC2.’ /2 + IC2+omega2xomegal2.’/2;
T2 = simple(T2);

% total kinetic energy
T = expand (Tl + T2);
fprintf (T = \n’); pretty(T); fprintf (’\n’

%deriv (f,g(t)) differentiates f with respect to g(t)
$ dT/d(dqg)

Tdgl = deriv (T, diff(gl,t));
Tdg2 = deriv (T, diff(g2,t));

fprintf (’ dT/d (dgl) = \n’); pretty(simple(Tdgl));
fprintf (" \n’

fprintf(’dT/d dg2) = \n’); pretty(simple (Tdg2)) ;
fprintf (' \n’)

% d(dT/d(dq)) /dt

Ttl = diff (Tdgl, t);
Tt2 = diff (Tdg2, t);
fprintf ('d dT/d(dgl) /dt
pretty (simple (Ttl));
fprintf (‘\n’")

fprintf ('d dT/d(dg2)/dt = \n’);
pretty (simple (Tt2));
fprintf (" \n’)

Il
—~
3

~
-
~

% dT/dg

Tgl = deriv (T, gl);

Tg2 = deriv (T, g2);

fprintf (’dT/dgl = \n’); pretty(Tql);
fprintf (' \n’)

fprintf ("dT/dg2 = \n’); pretty(Tgq2);
fprintf ('\n’")

% left-hand side of Lagrange’s eom
LHS1 Ttl - Tgl;

LHS2 = Tt2 - Tqg2;

[

% generalized active forces
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Gl = [0 —mlxg 0]; G2 = [0 —-m2%g O0];
syms TO0lz Tl2z

% contact torque of 0 that acts on link 1
TO1l = [0 O TOlz];

% contact torque of link 1 that acts on link 2

T12 = [0 O Tl2z];

% partial derivatives
rCl_1 = deriv(rCl, qgl);
rCl_2 = deriv(rCl, qg2);

rC2_1 = deriv(rC2,
rC2_2 = deriv(rC2,

4

= deriv (omegal, diff(gl,t)
_ deriv (omega2, diff (gl,t)
wl_2 = deriv(omegal, diff(g2,t)
deriv (omega2, diff(g2,t)

)
)i
)
)

=

N

—
Il

14

14

=

N

N
Il

% generalized active force Q1
01l = rCl1_1+Gl.’+wl_1+TO1l. ' 4+wl_1*(-T12.7)+
rC2_1+G2."+w2_1+T12.";

% generalized active force Q2
Q2 = rCl_2+Gl.’'+wl_2+TO01l." +wl_2x (-T12.")+
rC2_2+G2."4+w2_2T12.";

fprintf ("Ql = \n’); pretty(simple(Ql));
fprintf ("\n’)
fprintf ('Q2 = \n’); pretty(simple(Q2));
fprintf ("\n’)

% first Lagrange’s equation of motion
Lagrangel = LHS1-Q1;

% second Lagrange’s equation of motion
Lagrange2 = LHS2-Q2;

% control torques

b0l = 450; g01 = 300;

bl2 200; gl2 = 300;

qglf = pi/6;
q2f pi/3;

ql);
g2);

439
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TO0lzc = -b01lxdiff(gl,t)-g0lx(gl-glf)+
0.5xgxLlxml*xcl+gxLl* m2*cl;

Tl2zc = -bl2xdiff(g2,t)-gl2% (g2-g2f)+
0.5xgxL2*xm2*c2;

tor = {T01lz, Tl1l2z};

torf = {T0lzc,Tl2zc};

Lagrangl subs (Lagrangel, tor, torf);
Lagrang2 = subs (Lagrange2, tor, torf);

data {L1, L2, ml, m2, g};
datn = {1 , 1, 1, 1 , 9.81};
$ Ll =1; L2 =1; ml = 1; m2 = 1; g = 9.81;

Lagranl = subs (Lagrangl, data, datn);
Lagran2 = subs (Lagrang2, data, datn);

gl = {diff(ql,t,2), diff(g2,t,2),...
diff(ql,t), diff(g2,t), gql, g2};

af =

{"ddql’, ’'ddqg2’, 'x(2)", 'x(4)", '"x(1)", "x(3)"};

% gl gf

% diff('qgl(t)’,t,2) -> ’ddqgl’

% diff(’'g2(t)’,t,2) —> ’'ddgz’

% diff('gl(t)’,t) —> "x(2)'

% diff('g2(t)’,t) —> "x(4)’

% "gl(t)" —-> "x(1)'

% "gz2(t)’ —> "x(3)’
Lagral = subs(Lagranl, gl, gf);

Lagra2 = subs(Lagran2, gl, gf);

% solve e.o.m. for ddgl, ddgz

sol = solve(Lagral,Lagra2,’ddgl, ddgz2’);
Lagrl = sol.ddqgl;

Lagr2 = sol.ddqgZ2;

% system of ODE
dx2dt = char (Lagrl);
dx4dt = char (Lagr2);
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fid =

fopen (' RR_Lagr.m’,

441

Tw+') ;

fprintf (fid,’ function dx = RR Lagr (t,x)\n’
fprintf (fid, "dx = zeros(4,1);\n’)
fprintf (fid, ’dx (1) = );\n’)
fprintf (fid,'dx(2) = ");
fprintf (fid, dx2dt) ;
fprintf (£fid,’;\n’");
fprintf (fid, "dx (3) x(4);\n");
fprintf (fid, ' dx (4) ")
fprintf (£id, dx4dt);
fprintf (£id,’;’);
fclose (fid); cd(pwd);
t0 = 0; tf = 15; time = [0 tf];
x0 = [pi/18 0 pi/6 0];
[t,xs] = oded5(@RR_Lagr, time, x0);
x1l = xs(:,1);
X2 = xs(:,2);
x3 = xs(:,3);
x4 = xs(:,4);
subplot (2,1,1),plot (t,x1%180/pi,"'r"),
xlabel ("t (s)’),ylabel('gl (deg)’),grid,
subplot (2,1,2),plot (t,x3%x180/pi,'b’),
xlabel ("t (s)’),ylabel (g2 (deg)’),grid
[ts,xs] = oded45 (@RR_Lagr,0:1:5,x0);
fprintf ("Results \n\n’)
fprintf
("t (s) gl(rad) dgl(rad/s) g2(rad) dg2(rad/s) \n’)
[ts,xs]
% end of program
Numerical results:
t (s) gl (rad) dgl(rad/s) g2(rad) dg2(rad/s)
ans =
0 0.1745 0 0.5236 0
1.0000 0.3387 0.1175 0.9305 0.1757
2.0000 0.42406 0.0605 1.0213 0.0390
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3.0000
4.0000
5.0000

0.4688
0.4915
0.5032

E.2 Two-Link Robot Arm:

E2
Analytical Dynamics
RR robot arm
Lagrange’s e.o.m
Inverse dynamics
clear all; clc; close
syms t L1 L2 ml m2 m
gl = sym('gl(t)"); g2
cl cos(gl); sl
c2 cos (g2); s2
xB Llxcl; yB =
rB [xB yB 01;
rcl rB/2; vC1l
xD xB + L2%c2;
rD [xD yD 0];
rC2 (rB + rD)/2;
omegal =
omega2
IA = ml«L1°2/3;
Tl =
T2
T
$deriv (£, g(t
Tdgl

o o0 o0 o° oP

dif
yD

vC

IC2

m2+vC2xvC2.’ /2 +
expand (Tl + T2);
)) differ
deriv (T, diff(
Tdg2 deriv (T, diff(
Ttl = diff (Tdgl, t);
Tgl = deriv(T, gl); T
LHS1 Ttl - Tgl; LHS

rCl_1
rCl_2
wl 1 =
w2_1
wl_2
w2_2

= deriv (rCl, gl
deriv (rCl, g2
deriv (omegal,
deriv (omegaZz,
deriv (omegal,

_ deriv (omegaZz,
G1 [0 -mlxg 0]; G2
syms TO0lz Tl2z

[0 0 diff (ql,
[0 0 diff (g2,

IAxomegalxomegal.
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0.0311
.0160
0.0082

1.0415
1.0459
1.0469

0.0087
0.0019
0.0004

Inverse Dynamics

all
39

f(rCl,t);
yB + L2xs2;

2 diff (rC2,t);
©)1;

)i

m2+xL2°2/12;

"/2;
IC2xomegaZ2*omegaz.’

/2;
entiates f with respect to g(t)
ql,t));

(g2,t));

Tt2 =
q2
2

diff (Tdgz2, t);
= deriv (T, q2);
Tt2 - Ta2;

); rC2_1

); rC2_2

diff(gl,t
diff(gql,t
diff(g2,t
diff (g2,t)
[0 —-m2xg 0];

deriv (rC2,
deriv(rC2,

ql);
= gz);
)) i
) )i
)) i
)
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% contact torque of 0 that acts on link 1

TO1 = [0 O TOlz];

% contact torque of link 1 that acts on link 2

T12 = [0 0 T1l2z];

Ql=rCl_1+Gl.’+wl_1+TO1l.'4+wl_1*(-T12.")+
rC2_1+G2."4+w2_1+T12.";

Q2=rCl_2*Gl.’4+wl_2+TO01l.'+wl_2*(-T12.7)+
rC2_2+G2."+w2_2xT12.";

Lagrangel = LHS1-Q1; Lagrange2 = LHS2-02;

data = {L1, L2, ml, m2, g};

datn {r, 1,1, 1, 9.81};

Lagrl = subs(Lagrangel, data, datn);
Lagr? subs (Lagrange2, data, datn);

% solve for T0lz T1l2z

sol = solve(Lagrl,Lagr2,’T0lz, Tl2z’);
TOlzc = sol.T0lz;

Tl2zc sol.T12z;

% INVERSE DYNAMICS

qglf = pi/6 ; g2f = pi/3;
qls pi/18; g2s pi/6;

Tp=15.;

gln=gls+(glf-gls) /Tp* (t-Tp/ (2*pi) *sin (2xpi/Tp=*t));
g2n=qg2s+ (q2f-qg2s) /Tpx (t-Tp/ (2xpi) *sin (2xpi/Tp*t));

dgln = diff (gln,t);
dg2n = diff (g2n,t);
ddgln = diff (dgln,t);

ddg2n = diff (dg2n,t);

gl={diff(gl,t,2),diff(g2,t,2),
diff(gql,t),diff(g2,t),ql,g2};
agn={ddgln, ddg2n, dgln, dg2n, gln, g2n};

% gl an

% diff('gl(t)’,t,2) —-> ddgln
% diff('g2(t)’,t,2) -> ddg2n
% diff('gl(t)’,t) —-> dgln
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% diff (' q2( )’ ,t) —> dg2n
% 1)y’ —> gln
% 2(t)" —> gln

TO0lzt = subs(TO0lzc, gl, gn);
Tl2zt = subs(T1l2zc, gl, agn);

% ezplot (f, [min,max]) plots f(t)
% over the domain: min < t < max

subplot(Z, ,1), ezplot (TOlzt, [0,Tpl),
")y

xlabel ("t (s)’), ylabel ('TO0lz (N m)
title ('), grld,

subplot (2,1,2),ezplot (T12zt, [0, Tpl),
xlabel ("t (s)’), ylabel ('Tl2z (N m)’),
title(’’), grid

o

% another way of plotting TO0lz and Tl2z

time = 0:1:Tp;

TO1lt subs (TO1lzt,’'t’,time);

T1l2t = subs (Tl2zt,’t’,time);

subplot (2,1,1),plot (time, TO1t), ...

xlabel ('t (s)’),ylabel ('TO0lz (N m)’),grid,
subplot (2,1,2),plot (time, T12t), ...

xlabel ("t (s)’),ylabel ('Tl12z (N m)’),grid

g_lt = subs(gln,’'t’,time);
g_2t = subs(g2n,’'t’,time);

subplot (2,1,1), plot(tlme g _1t*180/pi),
xlabel ('t (s)’),ylabel (gl (deg)’),grid,

subplot (2,1,2),plot (time,q 2t+x180/pi), ...
xlabel ('t (s)’),ylabel (g2 (deg)’),grid
end of program

o 0 A O o A O N AN A N N A A O o O o° o

E.3 RRT Robot Arm

E3
Analytical Dynamics
RRT robot arm

o o° o°
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% Lagrange’s e.o.m
clear all; clc; close all

syms t L1 L2 ml m2 m3 g real

+
~

~

~

gl = sym(’"qgl(
gz =

a3 =

cl =
sl =
c2 =
s2 =
% transformation matrix from RF1 to
R10 = [[1 O 0]; [0 c1 s1]; [O

% transformation matrix from RF2 to
R21 = [[c2 0 =-s2]1; [0 1 07;

% angular velocity of link 1 in RFO
% in terms of RF1 {il, jl,kl}

wl0 = [diff(gl,t) O O 1;

% angular velocity of link 2 in RFO
% in terms of RF1 {il,7j1,k1}

w201 = [diff(gl,t) diff(g2,t) O];
angular velocity of link 2 in RFO
in terms of RF2 {i2,j2,k2}

w20 = w201 * transpose(R21);

% angular acceleration of link 1 in
% in terms of RF1{il,Jjl,k1}
alphal0 = diff(wl0,t);

% angular acceleration of link 2 in
% in terms of RF2{i2, j2,k2}
alpha20 = diff (w20,t);

% position vector of mass center Cl
o
Cl

REO

-sl cl]1;

RF1

[s2 0 c21];

expressed

expressed

expressed

RF0O expressed

RF0 expressed

of link 1

in RFO expressed in terms of RF1 {il, j1,k1l}

rCl = [0 O L11];

[

% linear velocity of mass center Cl

of link 1

445
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[

% in RF0O expressed in terms of RF1 {il,jl,k1}
vCl = diff(rCl,t) + cross(wl0O, rCl);

position vector of mass center C2 of link 2
in RFO expressed in terms of RF2 {i2, j2,k2}
rC2 = [0 0 2«xLl]*transpose(R21) + [0 0 L2];

% linear velocity of mass center C2 of link 2
% 1n RFO expressed in terms of RF2 {i2, j2,k2}
vC2 = simple(diff (rC2,t) + cross (w20,rC2));

position vector of mass center C3 of link 3 in RFO
expressed in terms of RF2 {i2, j2,k2}
rC3 = rC2 + [0 0 g3];

o
Cl

°

<

% linear velocity of mass center C3 of link 3 in RFO
% expressed in terms of RF2 {i2,j2,k2}
vC3 = simple(diff (rC3,t) + cross(w20,rC3));

linear velocity of C32 of link 2 in RFO
expressed in terms of RF2 {i2, j2,k2}

C32 of link 2 is superposed with C3 of link 3
vC32 = simple(vC2 + cross (w20, [0 0 g3]));

o° o° oP

another way of computing vC3 is:
vC3p= vC32+diff ([0 O sym('g3(t)’)1,t);
vC3-vC3p

o° o° oP

o\

linear accelerations

aCl = simple(diff(vCl,t)+cross(wl0,vCl));
aC2 simple (diff (vC2,t) +cross (w20,vC2));
aC3 simple (diff (vC3,t)+cross (w20,vC3));

% gravitational force that acts on link 1 at C1
% RF0 expressed in terms of RF1 {il,jl1,k1}
1 = [-mlxg 0 0]

(0]

% gravitational force that acts on link 2 at C2
% in RF0O expressed in terms of RF2 {i2, j2,k2}
2 = [-m2xg 0 0] *transpose (R21)

0]

gravitational force that acts on link 3 at C3
in RFO expressed in terms of RF2 {i2,j2,k2}
G3 = [-m3xg 0 O]xtranspose (R21)

%
%
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syms TOlx TOly TOlz Tl2x T1l2y Tl2z F23x F23y F23z

% contact torque of 0 that acts on link 1
% 1in RFO expressed in terms of RF1 {il,j1,k1}
TO0l = [TOlx TOly TOlz];

% contact torque of link 1 that acts on link 2
% in RF0O expressed in terms of RF2 {i2, j2,k2}
Tl2 = [Tl2x Tl2y T1l2z];

% contact force of link 2 that acts on link 3 at C3
% in RF0O expressed in terms of RF2 {i2, j2,k2}
F23 = [F23x F23y F23z];

$deriv(f,g(t)) differentiates f with respect to g(t)
wl_1 deriv(wl0O, diff(gl,t));
wl_2 = deriv(wl0, diff(g2,t));

wl 3 deriv(wl0, diff(g3,t));

w2_1 = deriv (w20, diff(ql,t));
w2_2 = deriv (w20, diff(g2,t));

w2_3 = deriv (w20, diff(g3,t));
vCl_1 = deriv(vCl, diff(gl,t));
vCl_2 = deriv(vCl, diff(g2,t));
vCl_3 deriv(vCl, diff (g3,t));

vC2_1 deriv(vC2, diff(gql,t));
vC2_2 = deriv(vC2, diff(g2,t));
vC2_3 deriv(vC2, diff(g3,t));

vC32_1 = deriv(vC32, diff(gl,t));
vC32_2 = deriv(vC32, diff(g2,t));
vC32_3 = deriv(vC32, diff(g3,t));

vC3_1 deriv(vC3, diff(gql,t));
vC3_2 = deriv(vC3, diff(g2,t));
vC3_3 deriv(vC3, diff(g3,t));

% generalized active forces

% generalized active force Q1
01l = wl_1+TO1.” + vCl_1+Gl." +
wl_lxtranspose (R21)* (-T12.") +



448 E Programs of Chapter 6: Analytical Dynamics

w2_1+xT12.7 + vC2_1+G2." + vC32_1*(-F23.") +
vC3_1+xF23." + vC3_1%G3.’

% generalized active force Q2

02 = wl 2+T01." + vC1_2xGl." + ...
wl_2+transpose (R21)x (-T12.") +
w2_2*T12." + vC2_2+G2." + vC32_2x(-F23.") +
vC3_2xF23.7 + vC3_2%G3.’

% generalized active force Q3

03 = wl _3%T01." + vC1_3xGl.’” + ...
wl_3*transpose (R21)x (-T12.") +
w2_3%«T12." + vC2_3%G2.’ + vC32_3*(-F23.") +
vC3_3xF23.7 + vC3_3%G3.’

% kinetic energy

o\

inertia dyadic

inertia matrix associated with central inertia
dyadic for link 1 expressed in terms of RF1
1 = [mlx(2xL1)"2/12 0 0; 0 mlx(2%«L1)"2/12 0; 0 0 0];

o° o

H

inertia matrix associated with central inertia
dyadic for link 2 expressed in terms of RF2
2 = [m2*(2xL2)"2/12 0 0; 0 m2x(2«L2)"2/12 0; 0 0 0];

o° o

=

inertia matrix associated with central inertia
dyadic for link 3 expressed in terms of RF2
syms I3x I3y I3z real

I3 = [I3x 0 0; O I3y 0; O O I3z1;

o
°

)

°

% kinetic energy of the link 1
Tl = (1/2)*ml*vClxvCl.” + (1/2)*wlOxI1lxwl0.’;

% kinetic energy of the link 2
T2 = (1/2)*m2*xvC2xvC2.’ + (1/2)*w20xI2xw20.";

% kinetic energy of the link 3
T3 = (1/2)*m3*vC3*vC3.’ + (1/2)*w20xI3*w20.’;

./ array transpose
A.’” is the array transpose of A

o° oo

% total kinetic energy
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T = expand (Tl + T2 + T3);

% dT/d(dq)

Tdgl = deriv (T, diff(gl,t));
Tdg2 = deriv (T, diff(g2,t));
Tdg3 deriv (T, diff(g3,t));

% d(dT/d(dqg)) /dt
Tt1l diff(Tdgl, t);
Tt2 = diff(Tdg2, t);

Tt3 = diff (Tdg3, t);
% dT/dg

Tgl = deriv (T, gl);
Tg2 = deriv (T, g2);
Tg3 deriv (T, g3);

% left-hand side of Lagrange’s eom
LHS1 = Ttl - Tqgl;

LHS2 = Tt2 - Tq2;

LHS3 = Tt3 - Tqg3;

% first Lagrange’s equation of motion
Lagrangel = LHS1-Q1;

% second Lagrange’s equation of motion
Lagrange2 = LHS2-02;

% third Lagrange’s equation of motion
Lagrange3 = LHS3-Q3;

% control torques and control force
qlf=pi/3; qg2f=pi/3; g3f=0.3;

b01=450; g01=300;

b12=200; gl2=300;

b23=150; g23=50;

TOlxc = -b01+diff (ql,t)-g0l (ql-qlf);

Tl2yc = -bl2xdiff(g2,t)-gl2*(g2-g2f)+
g* (m2*L2+m3* (L2+g3) ) xc2;
F23zc = -b23xdiff(g3,t)-g23%(g3—-g3f)+g*m3xs2;
tor = {T0lx, T1l2y, F23z};
torf = {TO0lxc,Tl2yc,F23zc};
Lagrangl = subs (Lagrangel, tor, torf);

Lagrang?2 = subs (Lagrange2, tor, torf);
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Lagrang3 = subs (Lagrange3, tor,

data = {L1, L2, I3x, I3y, I3z,
datn {0.4, 0.4, 5, 4, 1, 90,

Lagranl = subs (Lagrangl, data,
Lagran?2 subs (Lagrang2, data,
Lagran3 = subs(Lagrang3, data,

ql = {diff(ql,t,2), diff(q2,t,2),

torf);

ml, m2,
60, 40,

datn) ;
datn) ;
datn) ;

E Programs of Chapter 6: Analytical Dynamics

m3, g};
9.81};

diff (g3,t,2),

diff(gl,t), diff(g2,t), diff(g3,t), gl, a2z,
gf = {’ddgl’, ’'ddg2’, 'ddg3’,...
'x(2)", 'x(4)", 'x(6)", 'x(1)", "x(3)",
% gl agf
% diff(’'gl(t)’,t,2) —> ’ddqgl’
& diff('g2(t)’,t,2) -> ’ddg2’
% diff('g3(t)’,t,2) —-> ’ddg3’
% diff ("gl(t)’,t) —> "x(2)'
% diff("g2(t)’,t) —> "x(4)'
% diff("g3(t)’,t) —> "x(6)'
% rgl(t)’ -—> "x (1)’
% g2 (L)’ -> 'x(3)’
% "g3(t)’ -> 'x(5)"
Lagral = subs(Lagranl, gl, gf);

Lagra2 = subs(Lagran2, gql, gf);
Lagra3 subs (Lagran3, gl, gf);

)

% solve e.o.m. for ddgl, ddgz,

sol=solve (Lagral, Lagra2,Lagra3,’ddqgl,ddg2,ddg3’) ;

Lagrl = sol.ddqgl;
Lagr?2 sol.ddqg?2;
Lagr3 = sol.ddqg3;

% system of ODE

dx2dt = char (Lagrl);
dx4dt char (Lagr2) ;
dx6dt = char (Lagr3);

fid = fopen('RRT_Lagr.m’,’ w+’);

ddg3

fprintf (fid, ’ function dx = RRT_Lagr (t,x)\n’);
fprintf (fid, ’dx = zeros(6,1);\n’);

fprintf (fid,'dx (1) = x(2);\n’);

"x(5)"};
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fprintf (fid,"dx(2) = ");
fprintf (fid, dx2dt);

fprintf (£fid,’;\n’);

fprintf (fid, "dx (3) x(4);\n");

fprintf (fid, "dx (4) ")
fprintf (fid, dx4dt) ;

fprintf (fid,’;\n’);

fprintf (fid, " dx (5) x(6);\n’");

fporintf (£id, " dx (6) ")
fprintf (£id, dx6dt);

fprintf (£fid, " ;") ;

fclose (fid); cd(pwd);

t0 = 0; tf = 15; time = [0 tf];

x0 = [pi/18 0 pi/6 0 0.25 0];

[t,xs] = oded5 (@RRT_Lagr, time, x0);

x1l = xs(:,1);

X2 = xs(:,2);

x3 = xs(:,3);

x4 = xs(:,4);

x5 = xs(:,5);

X6 = xs(:,6);

subplot (3,1,1),plot (t,x1%x180/pi,'r’"),
xlabel ("t (s)’),ylabel (gl (deg)’),grid,...
subplot (3,1,2),plot (t,x3%x180/pi,'b"), ...
xlabel ("t (s)’),ylabel (g2 (deg)’),grid,...
subplot (3,1,3),plot(t,x5,"g"), ...

xlabel ("t (s)’),ylabel (g3 (m)’),grid
[ts,xs] = oded5(Q@RRT_Lagr,0:1:5,x0);
fprintf (' Results \n\n’)

fprintf...

(' t (s) gl (rad) g2 (rad) g3 (m)\n’")
[ts, xs(:,1), xs(:,3), xs(:,5)]

end of program

Results:

Gl

[ mlxg,
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G2 =

[ -m2xg*cos(g2(t)), 0, —m2+g*xsin(g2(t))]

G3 =

[ -m3xg*xcos (g2 (t)), 0, —-m3*gxsin(g2(t))]

TO1lx

Q2 =

T12y-L2xm2+*g*xcos (g2 (t))—(L2+g3 (t) ) »m3*gxcos (g2 (t))

Q3 =

F23z-m3xg*sin (g2 (t))

t (s) gl (rad) g2 (rad) g3 (m)
ans =

0 0.1745 0.5236 0.2500
1.0000 0.5217 0.9225 0.3060
2.0000 0.8333 1.02006 0.3344
3.0000 0.9640 1.0418 0.3296
4.0000 1.01406 1.0463 0.3213
5.0000 1.0344 1.0471 0.3149
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o\

E4

o o o°

o\

gl=sym
cl=cos

R10
R21
wl0
w201
w20
rCl
vC1l
rC2
vC2
rC3
vC3
vC32
Gl =
G2 =
G3 =

syms
TO1
T12
F23

% deriv (f,

[
[
[

TOlx TOly TOlz Tl2x Tl2y Tl2z F23x F23y F23z

% with
= deriv (wlO,

wl_ 1
w2_1
wl_2
w2_2
wl 3
w2_3

vCl_
vC2_
vCl_.
vC2_

1
1
2
2

(¢
(a
[
[
[

rC2 +

clc;

t)");

[diff (ql,t)

Analytical Dynamics
RRT robot arm

Lagrange’s e.o.m
Inverse Dynamics
clear all;
syms t L1 L2

close all

cl s171;
[0 1 01;

00 1;

c2=cos (g2) ;
[0 -s1 cl111;
[s2 0 c21];

ml m2 m3 g real
gz=sym (' g2 (t
) sl=sin(qgl);
[1 0 01; [0
[c2 0 —-s2];
diff(gl,t)

)"

diff(g2,t) 01;
= w201 % transpose (R21);
[0 0 L1];

diff (rCl,t)

+ cross (wlO0,
[0 0 2+xL1]+transpose (R21) +
simple (diff (xrC2,t)
[0 0 g31;
simple (diff (rC3,t)
simple (vC2 + cross (w20,
-mlxg 0 0];

rCl);

+ cross (w20, rC3));
[0 0 g31));

-m2xg 0 O]xtranspose (R21);
-m3xg 0 O]xtranspose (R21);

[TOlx TOly TOlz];
[T12x T1l2y T12z];
[F23x F23y F23z];

deriv(
deriv (
deriv (w20,
deriv (
deriv (

g(t))
w20,
wlO,

wl0,
w20,

= deriv (vCl,

deriv
deriv

vCl,

(
deriv (vC2,

(

(vC2,

ql, t
qgl,t
gz, t
az,t
a3, t
a3, t

— e~ o~~~ —

)
)
)
)
)
)

diff(ql,t
diff(ql,t
diff(g2,t
diff(q2,t

differentiates £
respect to g(t)
diff
diff
diff
diff
diff
diff

4

14

)
)
)i
)i
)i
)

4

) )
)) i
) )i
))

14

g3=sym (" g3 (t
s2=sin(g2);

[0 0 L271;
+ cross (w20, rC2));

453
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vCl_3 = deriv(vCl, diff(g3,t));

vC2_3 = deriv(vC2, diff(g3,t));

vC32_1 = deriv(vC32, diff(gl,t));
vC3_1 = deriv(vC3, diff(gl,t)) ;
vC32_2 = deriv(vC32, diff(g2,t));
vC3_2 = deriv(vC3, diff(g2,t)) ;
vC32_3 = deriv(vC32, diff(g3,t));
vC3_3 = deriv(vC3, diff(g3,t)) ;

% generalized active forces

vC32_1% (-F23.") +

vC32_2% (-F23.") +

vC32_3% (-F23.7) +
0 mlx(2xL1)"2/12 0;
0 m2x (2xL2)"2/12
0 I3z];

(1/2) *wl0*I1*wl0.’;

(1/2) *w20+«I2«w20.";
(1/2) »w20+xI3xw20.7;

Ql = wl_1+TO01.’ + vCI1_1+Gl.’” +
wl_lxtranspose (R21) (-T12.") +
w2_1xT12.7 + vC2_1+G2.’" +
vC3_1+xF23.7 + vC3_1%xG3.’;

Q02 = wl_2+T01." + vC1_2xGl.” + ...
wl_2+transpose (R21)x (-T12.") +
wW2_2xT12.7 + vC2_2+G2." +
vC3_2+xF23.7 + vC3_2%G3.7’;

03 = wl_3%T01." + vC1_3xGl.’” + ...
wl_3*transpose (R21)x (-T12.") +
w2_3%T12." + vC2_3xG2.’" +
vC3_3xF23.7 + vC3_3xG3.’;

I1 = [ml*(2«L1)"°2/12 0 0;

I2 = [m2%(2%«L2)"°2/12 0 0;

syms I3x I3y I3z

I3 = [I3x 0 0; 0 I3y 0; O

Tl = (1/2)*ml*vClxvCl.’” +

T2 = (1/2)*m2*vC2xvC2." +

T3 = (1/2)*m3*vC3xvC3.’ +

T = expand (Tl + T2 + T3);

Tdgl = deriv (T, diff(gl,t));

Tdg2 = deriv (T, diff(g2,t));

Tdg3 = deriv (T, diff(g3,t));

Ttl=diff (Tdql,t);
Tgl=deriv (T, gl);

LHS1=Ttl - Tql;

Tt2=diff (Tdg2,t);
Tg2=deriv (T,

LHS2=Tt2 - Tq2;

Tt3=diff (Tdg3,t);

g2); Tg3=deriv (T, g3);

LHS3=Tt3 - Tg3;
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Lagrangel = LHS1 - Q1;
Lagrange?2 LHS2 - Q2;
Lagrange3 LHS3 - Q3;

data = (L1, L2, I3x, I3y, I3z, ml, m2, m3, g};
datn = {0.4, 0.4, 5, 4, 1, 90, 60, 40, 9.81};

Lagral = subs(Lagrangel, data, datn);
Lagra2 = subs(Lagrange2, data, datn);
Lagra3 subs (Lagrange3, data, datn);

sol = solve(Lagral,Lagra2,Lagra3,’'T01lx,T12y,F23z");
TOlxc = simple(s0l.T01lx);
Tl2yc = simple(sol.T12y);
F23zc simple (so0l.F23z);

gls = pi/18; g2s = pi/6; g3s = 0.25;
qlf = pi/3 ; qg2f pi/3; g3f = 0.3;

Tp=15.;

glt=qgls+(glf-gls) /Tp* (£-Tp/ (2xpi) *sin (2xpi/Tp*t));
g2t=qg2s+ (q2f-g2s) /Tp* (t-Tp/ (2*pi) *sin (2+pi/Tpxt));
a3t=g3s+(gq3£f-g3s) /Tp* (t-Tp/ (2xpi) *sin (2xpi/Tpxt));

dglt diff (glt,t);
dg2t = diff(g2t,t);
dg3t diff (g3t,t);

ddqlt = diff (dqlt,t);
ddg2t = diff (dg2t,t);
ddg3t = diff (dg3t,t);

gl = {diff(ql,t,2), diff(q2,t,2), diff(g3,t,2),
diff(ql,t), diff(g2,t), diff(g3,t), q9l, g2, q3};

an =
{ddglt,ddg2t,ddg3t, dglt,dg2t,dg3t, glt,g2t,qg3t};

TOlxt = subs(TOlxc, gl, qgn);
Tl2yt subs (T1l2yc, gl, gn);
F23zt = subs(F23zc, gl, qgn);

time = 0:1:Tp;

455
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TOlt = subs (TO0lxt,’t’,time);
T12t subs (T1l2yt,’'t’,time);
F23t subs (F23zt,’'t’,time);

subplot (

3,1,1),plot (time, TO1t), ...
xlabel ("t (s)

")y,ylabel ("TOlx (N m)’),grid, ...

subplot (3,1,2),plot (time, T12t), ...
xlabel ("t (s)’),ylabel ('Tl2y (N m)’),grid, ...

subplot (3,1,3),plot (time,F23t), ...
xlabel ("t (s)’),ylabel ('F23z (N)'),grid

fprintf (' Results \n\n’)

fprintf
( t(s) TOlx (Nm) T12y(Nm) F23z(N)\n’)

[time’ TO1lt’ T12t’ F23t’]

another way of plotting TOlx, Tl2y, and F23z

o° o

o

subplot (3,1,1), ezplot(TO0lxt, [0,Tpl),...
title(’’), xlabel("t(s)’), ylabel ('TO0lx (N m)’),...

o\°

o

subplot (3,1,2), ezplot(Tl2yt, [0,Tpl),...
title(’’), xlabel("t(s)’), ylabel ('T12y (N m)’), ...

o° o

o\

o

subplot (3,1,3), ezplot (F23zt, [0,Tpl),...
title(’’), xlabel("t(s)’), ylabel ("F23z (N)’)
end of program

o

o\

Results :
t(s) TO1lx (Nm) T12y (Nm) F23z(N)
ans =

0 -0.0000 424.7855 196.2000
1.0000 1.7703 424.7713 196.5650
2.0000 3.2150 423.4736 198.8939
3.0000 4.0454 419.7485 204.7523
4.0000 4.0801 412.6265 214.9893
5.0000 3.3036 401.3600 229.5450
6.0000 1.8890 385.5925 247.4489
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7.0000 0.1625 365.6353 267.0360
8.0000 -1.4946 342.6925 286.3519
9.0000 -2.7690 318.8276 303.6290
10.0000 -3.4945 296.5656 317.6617
11.0000 -3.6461 278.2350 327.9492
12.0000 -3.2804 265.3101 334.6139
13.0000 -2.4792 258.0103 338.2170
14.0000 -1.3396 255.2728 339.6061
15.0000 -0.0000 255.0600 339.8284

E.5 RRT Robot Arm: Kane’s Dynamical Equations

o

ES5

Analytical Dynamics

RRT robot arm

Kane’s dynamical equations

clear all; clc; close all

syms t L1 L2 ml m2 m3 g I3x I3y I3z

TOlx TOly TOlz Tl2x T1l2y Tl2z F23x F23y F23z real

o\

o° o

% generalized coordinates gl, g2, g3
gl = sym("gql(t)");

gz = sym('q2(t)");

a3 sym (g3 (t)");

% generalized speeds ul, u2, u3

ul = sym(‘ul(t)’);

u2 sym(’uz2(t)’);

u3 = sym('u3(t)’);

expressing gql’, g2’, g3’ in terms of
generalized speeds ul, u2, u3

o

o\

dgl = ul;
dg2 = u2;
dg3 = u3;
gt = {diff(gl,t), diff(g2,t), diff(g3,t)};

qu = {dql, dgz, dgq3};
cl=cos(gl); sl=sin(gl); c2=cos(g2); s2=sin(g2);

R10 [[1 0 0]; [0 ¢l s1]; [0 -sl1 cl111;
R21 = [[c2 0 -s2]; [0 1 01; [s2 0 c2]11;

wl0 = [dgl, 0, O 1;
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w201 = [dgl, dg2, 0];
w20 = w201 » transpose(R21);
alphal0 = diff (wl0,t);

alpha20 = subs(diff (w20,t), gt, qu);

rCl = [0 O L171;

vCl = diff(rCl,t) + cross(wl0O, rCl);

rC2 = [0 0 2xLl]+transpose(R21) + [0 O L2];

vC2 = subs(diff (xC2, t), gt, qu) + cross(w20,rC2);

rC3 = rC2 + [0 0 g3];
vC3 subs (diff (rC3, t), gt, qu) + cross(w20,rC3);
vC32 = vC2 + cross (w20, [0 0 g31);

aCl = diff(vCl,t) + cross(wl0O,vCl);
aC2 diff(vC2,t) + cross(w20,vC2);
aC3 subs (diff (vC3,t), gt, qu) + cross(w20,vC3);

the velocities and accelerations are functions of
aql, g2, 93, ul, uz2, u3, and ul’, uz2’, u3’

o o

Gl = [-mlxg O 0];

G2 = [-m2xg 0 O]*transpose (R21);
G3 = [-m3xg 0 O]*transpose (R21);
TO1l = [TOlx TOly TOlz];

T12 = [T12x T12y T12z];

F23 = [F23x F23y F23z];

%deriv(f,g(t)) differentiates f with respect to g(t)

% partial velocities

wl_ 1 deriv(wl0, ul); w2_1 = deriv (w20, ul);

wl_ 2 = deriv(wl0, u2); w2_2 = deriv (w20, u2);
3

wl_3 deriv(wl0, u3); w2 = deriv (w20, u3);

vCl_1 = deriv(vCl, ul); vC2_1 = deriv(vC2, ul);
vCl_2 deriv (vCl, u2); vC2_2 = deriv(vC2, u2);
vCl_3 = deriv(vCl, u3); vC2_3 = deriv(vC2, u3);

vC32_1 = deriv(vC32, ul); vC3_1 = deriv(vC3, ul);
vC32_2 = deriv (vC32, u2); vC3_2 deriv (vC3, u2);
vC32_3 deriv(vC32, u3); vC3_3 deriv (vC3, u3);

% generalized active forces
0l = wl_1%TO1.’ + vCl_1+Gl.’ +
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wl_lxtranspose (R21)* (-T12.") +
w2_1+T12.’ 4+ vC2_1xG2.’ + vC32_1*(-F23.") +
vC3_1+xF23.7 + vC3_1%xG3.’;

02 = wl 2%T01." + vC1_2xGl." + ...
wl_2+transpose (R21)x (-T12.") +
w2_2+T12." + vC2_2+G2.’ + vC32_2*(-F23.") +
vC3_2xF23.7 + vC3_2xG3.";

03 = wl_3xT01.’” + vC1_3%xGl.” + ...
wl_3*transpose (R21) » (-T12.") +
w2_3*T12.7 + vC2_3xG2." + vC32_3%(-F23.") +
vC3_3*F23."7 + vC3_3%G3.';

I1 = [mlx(2%L1)"2/12 0 0; O mlx(2%L1)"2/12 0; 0 0 0];
I2 = [m2*(2*«L2)°2/12 0 0; 0 m2%(2xL2)"2/12 0; 0 0 07;
I3 = [I3x 0 0; 0 I3y 0; 0 O I3z];

% Kane’s dynamical equations

o\°

inertia forces

inertia force for link 1

expressed in terms of RF1 {il,jl,kl}
Finl= -mlxaCl;

inertia force for link 2

expressed in terms of RF2 {i2, j2,k2}
Fin2= -m2+aC2;

inertia force for link 3

expressed in terms of RF2 {i2, j2,k2}
Fin3= -m3%aC3;

o° o

o° o

o° o

% inertia moments

% inertia moment for link 1

% expressed in terms of RF1 {il,jl,kl}
Minl = -alphalO*Il-cross(wl0,wl0*I1);
inertia moment for link 2

expressed in terms of RF2 {i2, j2,k2}
Min2 = -alpha20%I2-cross (w20,w20%I2);
% inertia moment for link 3

% expressed in terms of RF2 {i2,j2,k2}
Min3 = —-alpha20xI3-cross (w20,w20xI3);

o° o

[

% generalized inertia forces
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% generalized inertia forces corresponding to gl
Kinl = wl_1+«Minl.’ + vCl_1xFinl.’ +

w2_1+«Min2.’” 4+ vC2_1*Fin2.’ +

w2_1+«Min3.’ + vC3_1%Fin3.’;

% generalized inertia forces corresponding to g2
Kin2 = wl_2+«Minl.’ 4+ vCl_2xFinl.’ +

w2_2+Min2.’” 4+ vC2_2*Fin2.’ +

w2_2+Min3.’ + vC3_2*Fin3.’;

% generalized inertia forces corresponding to g3
Kin3 = wl_3+«Minl.’ + vCl_3%Finl.’ +

w2_3+«Min2.’ + vC2_3%Fin2.’ +

w2_3+«Min3.’ + vC3_3%Fin3.’;

% Kane’s dynamical equations

% first Kane’s dynamical equation
Kanel = Kinl + Q1;

% second Kane’s dynamical equation
Kane2 = Kin2 + Q2;

% third Kane’s dynamical equation
Kane3 = Kin3 + Q3;

% control torques and control force
glf=pi/3; g2f=pi/3; g3£=0.3;
b01=450; g01=300;

b12=200; gl2=300;

b23=150; g23=50;

TOlxc = -b01lxdgl-g0l* (gl-glf

( )
Tl2yc = -bl2+xdg2-gl2* (g2-g2f)+
g*x (m2*L2+m3* (L2+g3) ) xc2;
F23zc = -b23xdg3-g23* (g3—-g3f) +g*m3xs2;
tor = {T0lx, Tl2y, F23z};

torf = {TO0lxc,Tl2yc,F23zc};

Kanl = subs (Kanel, tor, torf);
Kan2 = subs (Kane2, tor, torf);
Kan3 = subs (Kane3, tor, torf);

data = {L1, L2, I3x, I3y, I3z, ml, m2, m3, g};
datn = {0.4, 0.4, 5, 4, 1, 90, 60, 40, 9.81};
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Kal = subs (Kanl, data, datn);
Ka2 = subs (Kan2, data, datn);
Ka3 subs (Kan3, data, datn);

ql = {diff(ul,t), diff(u2,t), diff(u3,t)
ul, u2, u3, ql, 92, g3};
ax {"dul’, ’"du2’, "du3’,
'x(4)", "x(5)", 'x(6)", "x(L)", "x(2)", "x(3)"};

% gl ax

& diff('ul(t)’,t) —-> "dul’
& diff('u2(t)’,t) —-> "du2’
& diff('u3(t)’,t) —-> "du3’
% rul(t)’ —> "x(4)’
% ru2(t)’ —> 'x(5)
% ruld(t)’ —> 'x(6)’
% fgl(t)’ —> ’"x (1)’
% g2 (L)’ -> 'x(2)"
% "g3(t)’ -> 'x(3)’
Dul = subs(Kal, gl, gx);

Du2 = subs(Ka2, gl, gx);
Du3 subs (Ka3, gl, gx);

% solve for dul, du2, du3

sol = solve(Dul, Du2, Du3,’dul, duz, du3’);
sdul = sol.dul;

= sol.du2;

sdu3 = sol.du3;

4]

Q.

c

N
I

% system of ODE
dx1l = char('x(4)")
dx2 = char('x(5 )’)
dx3 = char('x(6)");
dx4 = char(sdul);
dx5 = char (sdu2);
dx6 = char (sdu3);
fid = fopen ('RRT_Kane.m’,’w+’);

fprintf (fid, " function dx = RRT_Kane (t,x)\n’)

fprintf (fid, "dx = zeros(6,1);\n’)
fprintf(fid,’dx(l) = '), fprintf(fid,dxl);
fprintf (fid, ";\n’)

(

fprintf (fid,’dx(2) = ’); fprintf (fid,dx2);

461
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fprintf (fid,
fprintf (fid,
fprintf (fid, " ;\n
fprintf (fid, ' dx (4
fprintf (fid, !
fprintf (fid,
fprintf (fid,
fprintf (fid, ' dx (6
fporintf (£id,’; !

fclose (fid); cd(pwd);

t0 = 0; tf = 15; time = [0 tf];

x0 = [pi/18 pi/6 0.25 0 0 07;

[t,xs] = o0ded5 (QRRRT_Kane, time, x0);

x1l = xs(:,1);

X2 = xs8(:,2);

X3 = xs(:,3);

x4 = xs(:,4);

x5 = xs(:,5);

X6 = xs(:,6);

subplot (3,1,1),plot (t,x1%180/pi,"'r"),
xlabel ("t (s)’),ylabel('gl (deg)’),grid,
subplot (3,1,2),plot (t,x2x180/pi, 'b’),
xlabel ("t (s)’),ylabel (g2 (deg)’),grid, ...
subplot (3,1,3),plot(t,x3,’g"), ...

xlabel ("t (s)’),ylabel (g3 (m)’),grid

% end of program

E.6 RRTR Robot Arm

E Programs of Chapter 6: Analytical Dynamics

fprintf (fid, dx3);
fprintf (fid, dx4);
fprintf (£id, dx5);

fprintf (fid, dx6);

% E6

% Analytical Dynamics

% RRTR robot arm

% Kane’s dynamical equations
clear all; clc; close all
L1=0.1; L2=0.1; L3=0.7;
ml=9.; m2=6.; m3=4.; md=
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I1x=0.01; Ily=0.02; I1z=0.01;
I2x=0.06; I2y=0.01; I2z=0.05;

I3x=0.4; I3y=0.01; I3z=0.4;
I4x=0.0005; I4y=0.001; 1I4z=0.001;
k1=3.; k2=5.; k3=1.; k4=3.; k5=0.3;
k6=0.6; k7=30.; k8=41.; g=9.8;
qglf=pi/3; g2f=pi/3; g3f=pi/3; g4f=0.1;

syms t real

ql = sym("ql(t)");
gz = sym('q2(t)");
g3 = sym("q3(t)");
g4 = sym("qgd(t)");
c2 = cos(g2); s2 = sin(g2);
c3 = cos(g3); s3 = sin(g3);

o

% transformation matrix from RF2 to RF1
R21 = [[1 0 0]; [0 c2 s2]; [0 =-s2 c21];

% transformation matrix from RF4 to RF2
R42 = [[c3 0 —-s3]1; [0 1 0]; [s3 0 c311;

o\°

expressing ql’,qg2’,93’,g4’ in terms
of generalized speeds ul,u2,u3,u4

o

ul = sym('ul(t)’);
u2 = sym('u2(t)’);
u3 = sym('u3(t)’);
ud = sym(‘ud(t)’);

dgl = (ul*s3-u3x%c3)/s2;

dg2 = ul*xc3+u3*s3;
dg3 = u2+ (u3*c3-ulxs3)*c2/s2;
dgd4 = u4;

qt={diff (ql,t),diff(q2,t),diff (q3,t),diff (g4, t)
diff (ul,t),diff (u2,t),diff (u3, t),diff (ud,t)
ut={dql, dq2,dq3,dq4, ’dul’,’du2’,’du3’,’dud’};

o o° o°
[N OR
H- H
Hh o Hh
Hh Hh
Q Q
N =
t
t
[
VvV Vv
Q. Q.
Q Q
N =
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& diff("g3(t)",t) -> dg3

% diff (g4 (t)’,t) —-> dg4

% diff('ul(t)’,t) —-> "dul’

$ diff(‘u2(t)’,t) —-> ’du2’

& diff("u3(t)’,t) —-> "du3’

& diff('ud(t)’,t) —-> ’'dud’

% Angular velocities

% Angular velocities of each link 1, 2, 3, 4,
% in RFO0, involving the generalized speeds,

% are expressed using a vector basis

% fixed in the body under consideration

% angular velocity of link 1 with respect to (wrt)
% RFO expressed in terms of RF1{il, jl,kl}
wl0l = [0, dgl, 0];

angular velocity of link 1 wrt RFO expressed in
terms of RF2{i2,j2,k2}

wl02 = wlOlxtranspose (R21);

angular velocity of link 2 wrt RF1l expressed in
terms of RF1{il,jl,k1l}

w21l = [dg2, 0, 0];

angular velocity of link 2 wrt RF1 expressed in
terms of RF2{i2, j2,k2}

w212 = [dg2, 0, 0];

%
%

angular velocity of link 2 wrt RFO expressed in
terms of RF2{i2, j2,k2}

w202 = wl02 + w2l2;

o
<
o)

°

angular velocity of link 2 wrt RFO expressed in
terms of RF4{i4, j4,k4}

w204 = w202+transpose (R42);

o
Cl

°

<

angular velocity of link 3 wrt RFO expressed in
terms of RF2{i2, j2,k2}==RF3

w302 = w202;

%
o
)

angular velocity of link 4 wrt RF2 expressed in
terms of RF2{i2, j2,k2}

w422 = [0, dg3, 0];
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angular velocity of link 4 wrt RF2 expressed in
terms of RF4{i4, j4,k4}
w424 = wi422+transpose (R42);

% anglar velocity of link 4 wrt RFO expressed in
% terms of RF4{i4, j4,k4}
w404 = wid24 + w204;

% angular velocity of link 4 wrt RFO expressed in
% terms of RF2{i2, j2,k2}
w402 = wd04xR42;

% Angular accelerations

% angular acceleration of link 1 wrt RFO expressed
% in terms of RF1 {il, jl,kl}
alphal0l = subs(diff(wl01l, t), gt, ut);

% angular acceleration of link 2 wrt RF0O expressed
% in terms of RF2{i2, j2,k2}
alpha202 = subs(diff (w202, t), gt, ut);

% angular acceleration of link 3 wrt RF0O expressed
% 1in terms of RF2{1i2, j2,k2}
alpha302 = alpha202;

% angular acceleration of link 4 wrt RF0O expressed
% in terms of RF4{i4, j4,k4}
alpha404 = subs(diff (w404, t), gt, ut);

linear velocity of mass center Cl of link 1
wrt RF0O expressed in terms of RF1{il, jl,kl} is
zero since Cl is fixed in RFO

vCl01 = [0, O, 0Q1;

o 0P o°

%position vector from Cl, mass center of link 1,

% to C2, mass center of link 2, expressed in terms
% of RF1{il,7j1,k1}

rCl21 = [L1, L2, 0];

% linear velocity of mass center C2 of link 2 wrt
% RFO expressed in terms of RF1{il, jl,kl}
vC201 = diff (rCl21, t) + cross(wlO0l, rCl21);
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Remark: velocity of C2, which is "fixed" wrt
RF1{il1,jl1l,k1}, can be computed as
vC20l=cross (w101, [L1,0,0]);

o o o°

linear velocity of mass center C2 of link 2 wrt
RF0O expressed in terms of RF2{i2, j2,k2}
vC202 = vC201lxtranspose (R21);

o° oo

position vector from Cl, mass center of link 1,
to C3, mass center of link 3, expressed in terms
of RF2{i2,j2,k2}

rCl32 = [L1, L2, O]*transpose(R21) + [0, g4, 0];

%
%
o
°

% linear velocity of mass center C3 of link 3 wrt
% RF0O expressed in terms of RF2{i2, j2,k2}
vC302=subs (diff (rC132,t),gt,ut)+cross (w202, rCl32);

Remark: another way of computing vC302
vC302=vC202+diff([0,g4,0],t]+cross (w202, [0,g4,0]);

o° o

linear velocity of point C32 of link 2

expressed in terms of RF2{i2, j2,k2}

C32, of link 2, is superposed with C3, of link 3
= vC202 + cross (w202, [0, g4, 0]);

o° 0P o°

<

Q
w
N
(@}
N

% linear velocity of mass center C4 of link 4 wrt
% RF0O expressed in terms RF2 {i2,j2,k2}
vC402 = vC302 + cross (w202, [0, L3, 01);

% Linear accelerations

% linear acceleration of mass center Cl of 1link 1 wrt
% RFO expressed in terms of RF1{il, jl,kl}
aC101 = [0, 0O, 0];

% linear acceleration of mass center C2 of link 2 wrt
% RFO expressed in terms of RF1{il, jl1,k1}
aC201 = subs(diff(vC201,t),qgt,ut)+cross(wl01l,vC201);

linear acceleration of mass center C3 of link 3 wrt
RF0O expressed in terms of RF2{i2, j2,k2}
aC302 = subs(diff (vC302,t),gt,ut)+cross (w202,vC302);

% linear acceleration of mass center C4 of link 4 wrt
% RF0 expressed in terms of RF2{i2, j2,k2}
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aC402 =
deriv (f,g(t))
partial velocities

%
%

wl 1 = deriv(wl01l, ul); w2_1 = deriv (w202, ul);
wl_2 = deriv(wl01l, u2); w2_2 = deriv (w202, u2);
wl 3 = deriv(wl01l, u3); w2_3 = deriv (w202, u3);
wl 4 = deriv(wl01l, ud); w2_4 = deriv (w202, u4);
w4d_1 = deriv (w404, ul);

wid_2 = deriv (w404, u2);

wi4_3 = deriv (w404, u3);

wild_4 = deriv (w404, ud);

vCl_1 = deriv(vC1l01l, ul); vC2_1 = deriv(vC201, ul
vCl_2 = deriv(vC1l01l, u2); vC2_2 = deriv(vC201, u2
vCl_3 = deriv(vC1l01l, u3); vC2_3 = deriv(vC201, u3
vCl_4 = deriv(vC1l01l, ud); vC2_4 = deriv(vC201, u4
vC32_1 = deriv (vC3202, ul); vC3_1 = deriv(vC302,
vC32_2 = deriv (vC3202, u2); vC3_2 = deriv(vC302,
vC32_3 = deriv (vC3202, u3); vC3_3 = deriv(vC302,
vC32_4 = deriv (vC3202, ud); vC3_4 = deriv(vC302,
vC4_1 = deriv(vC402, ul);

vC4_2 = deriv(vC402, u2);

vC4_3 = deriv(vC402, u3l);

vC4_4 = deriv(vC402, ud);

% Generalized active forces

o
°

Contact and gravitational force

I3

¥ rigid link 1
syms FOlx FOly FOlz TOlx TOly TOlz real

syms F21lx F2ly F21lz T21lx T2ly T2lz real

force applied by base 0 to link 1 at C1
expressed in terms of RF1{il, jl,kl}

o° o

FO01l = [FOlx FOly FO1lz];
% torque applied by base 0 to link 1
% expressed in terms of RF1{il, j1,k1l}
TOl = [TOlx TOly TOlz];

467

subs (diff (vC402,t),gt,ut)+tcross (wd02,vC402) ;

differentiates f with respect to g(t)
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force applied by link 2 to link 1 at C2
expressed in terms of RF2{i2, j2,k2}

F21 = [F21lx F2ly F21z];

torque applied by link 2 to link 1
expressed in terms of RF2{i2, j2,k2}

T21 = [T21x T21ly T21lz];

o° o

%
%

% gravitational force that acts on link 1 at Cl1
% expressed in terms of RF1{il,jl,kl}
Gl = [0 —mlxg O];
% generalized active forces for link 1
Qlal = wl_1%(TO1l."+R21."%xT21.") +
vCl_1*(Gl."+F01.") + vC2_1%R21.’*F21.";
Qlaz = wl_2+(TO1l."+R21.’xT21.7) +
vC1_2x (GL."+F01.") + vC2_2%R21.’*F21.";
Qla3 = wl_3*(TO1.’+R21.7xT21.") + ...
vC1_3% (GL.”+F01.7) + vC2_3%R21.’*F21.';
Qlad = wl_4«(TO1l."+R21.'xT21.7) + ...
vCl_4x(Gl.’+F01.7) + vC2_4xR21.'*F21.7";

% rigid link 2
syms F32x F32y F32z T32x T32y T32z real

force applied by link 1 to link 2 at C2
expressed in terms of RF2{i2, j2,k2}: -F21

o o

torque applied by link 1 to link 2
expressed in terms of RF2{i2,j2,k2}: -T21

o° o

force applied by link 3 to link 2 at C32
expressed in terms of RF2{i2, j2,k2}
F32 = [F32x F32y F32z];

o° oo

torque applied by link 3 to link 2
expressed in terms of RF2{i2, j2,k2}
T32 = [T32x T32y T32z];

o o

gravitational force that acts on link 2 at C2
expressed in terms of RF2{i2, j2,k2}
G2 = [0 —-m2xg 0];

o
Cl

o

<

Q

% generalized active forces for link 2
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02al = w2_1%(T32.7-T21.") +
vC2_ 1% (G2."—R21.7+F21.7) + vC32_1F32.7;

Q2a2 = w2_2%(T32."-T21.") + ...
vC2_2* (G2."-R21."*F21.") + vC32_2%F32.7";

Q2a3 = w2_3%(T32.'-T21.") + ...
vC2_3% (G2."-R21."*F21.") + vC32_3%xF32.7;

Q2ad4 = w2_4%(T32."-T21.7) + ...
"y 4+ vC32_2+*F32.7;

vC2_4% (G2.’-R21." xF21.

% rigid link 3
syms F43x F43y F43z T43x T43y T43z real

force applied by link 2 to link 3 at C3
expressed in terms of RF2{i2, j2,k2}: -F32

o° o

torque applied by link 2 to link 3
expressed in terms of RF2{i2,j2,k2}: -T32

o° o

force applied by link 4 to link 3 at C4
expressed in terms of RF2{i2, j2,k2}

o oo

F43 = [F43x F43y F43z];

% torque applied by link 4 to link 3

% expressed in terms of RF2 {i2, j2,k2}
T43 = [T43x T43y T43z];

% gravitational force that acts on link 3 at C3
% expressed in terms of RF2{i2, j2,k2}x)
G3 = [0 -m3*g O]xtranspose (R21);

Q

% generalized active forces for link 3

Q3al = w2_1%(T43."-T32.") + .
vC3_1*(G3.’-F32.") + vC4_1xF43.';
Q3a2 = w2_2+%(T43."-T32.") + .
vC3_2* (G3."-F32.") + vC4_2xF43.';
Q3a3 = w2_3%(T43."-T32.") + .
vC3_3*%x(G3."-F32.") + vC4_3%F43.';
Q3a4 = w2_4+(T43."-T32.") + .
vC3_4* (G3."-F32.") + vC4_4xF43.';

rigid link 4
force applied by link 3 to link 4 at C4
expressed in terms of RF2{i2,j2,k2}: -F43

o o° o°
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torque applied by link 3 to link 4
expressed in terms of RF2 {i2, j2,k2}:

o° o

-T43

gravitational force that acts on link 4 at C4
expressed in terms of RF2{i2, j2,k2}

o° o°

G4 = [0 —-md4xg O]+transpose (R21);

% generalized active forces for link 4

Qdal = wid_1+%R42+% (-T43)." + vC4_1+(G4.’'-F43.7);
Qda2 = wid_2+R42+ (-T43)." + vC4_2+(G4.’'-F43.7);
Qd4a3 = wi4_3%R42% (-T43)." + vC4_3%(G4.’'-F43.7);
Qdad = wld_4+R42+ (-T43)." + vC4_4%(G4.’'-F43.7);

%

generalized active forces

Ql = simple (Qlal+Q2al+Q3al+Q4al);
Q2 = simple (Qla2+Q2a2+Q3a2+Q4a2);
Q3 = simple (Qla3+Q2a3+Q3a3+Q4a3);
Q4 = simple (Qlad+Q2ad4+Q3ad+Q4ad);
% Dyadics

inertia matrix
dyadic of link
[I1x 0 0; O
inertia matrix
dyadic of link
[I2x 0 0; O
inertia matrix
dyadic of 1link
[I3x 0 0; O
inertia matrix
dyadic of link
[I4x 0 0; O

o° o

—

1

o° oo

—

2

o° o

=

3

o° oo

I4

inertia forces

Finl = —-ml*aCl101

Fin2 -m2+xaC201

4

4

associated with central
1 in RF1{i1,3j1,k1}

Ily 0; 0 0 Ilz];
associated with central
2 in RF2{i2,j2,k2}
I2y 0; 0 0 I2z];
associated with central
3 in RF2{i2, j2,k2}
I3y 0; 0 0 I3z];
associated with central
RF4{i4,j4,k4}

0 0 1I4z];

4 in
I4y O;

inertia

inertia

inertia

inertia

inertia force Finl of 1linkl in RFO expressed in
terms of RF1{il,jl1,k1}

inertia force Fin2 of 1ink2 in RFO expressed in
terms of RF1{il, jl1,kl}
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inertia force Fin3 of 1ink3 in RFO expressed in

% terms of RF2{i2, j2,k2}

r

in3 =

o° o

t
ind =

=

% inertia moments

% inertia moment Minl of link 1 in RFO expressed

-m3%aC302;

terms of RF1{il,3j1,k1}

Minl =

inertia moment Min2 of link 2 in RF0O expressed

—alphalOl*Il-cross(wl01l,wl01+I1);

% terms of RF2{i2, j2,k2}

Min2 =

% inertia moment Min3 of link 3 in RFO expressed

—alpha202*I2-cross (w202,w202xI2);

terms of RF2{i2, j2,k2}

Min3 =

inertia moment Min4 of link 4 in RFO expressed

—alpha302xI3-cross (w202, w202xI3);

% terms of RF4{i4, j4,k4}

Mind =

Q

Kinl =

Kin2 =

Kin3 =

Kind =

—alphad404+I4-cross (w404,w404x14);

wl_1+«Minl.
w2_1%Min2.
w2_1%Min3.
wd_1+Min4.

wl_2+Minl.
w2_2+Min2.
w2_2+Min3.
wd_2+Mind4.

wl_3+«Minl.
w2_3%«Min2.
w2_3+*Min3.
wi4_3+«Mind.

wl_4+«Minl.
w2_4+«Min2.

+ + o+ + + + o+ +

+ o+ o+ o+

+

% Generalized inertia forces

vCl_1+Finl.
vC2_1xFin2.
vC3_1xFin3.
vC4_1xFind.

vCl_2*Finl.
vC2_2xFin2.
vC3_2*xFin3.
vC4_2xFind.

vCl_3*Finl.
vC2_3*xFin2.
vC3_3*xFin3.
vC4_3xFind4.

vCl_4xFinl.
vC2_4xFin2.

inertia force Fin4 of 1link4 in RFO expressed in
erms of RF2{i2,j2,k2}
-m4+«aC402;

~ 4+ 4+ 4+ s+ 4+

+ 4+ +

+
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w2_4xMin3.’
wi_4+«Mind .’

E Programs of Chapter 6: Analytical Dynamics

+ vC3_4+Fin3.’ +
+ vC4_4xFind.’ ;

% Kane’s dynamical equations

Kanel = Q1 + Kinl;

Kane2 = Q2 + Kin2;

Kane3 = Q3 + Kin3;

Kane4 = Q4 + Kin4;

% control

TOlyc = klx(glf—-gl)-k2«xdqgl;

T21lxc = k3x(g2-g2f) +kdxdg2+g* ( (m3+m4d) xg4+md*L3) xs2;

T43yc = k5% (g3—-g3f) +k6+dg3;

F32yc = k7* (g4-g4f)+k8xdgd—-g* (m3+m4) xc2;

tor {TOly , T21x , T43y , F32y };

torf = {TO0lyc, T21lxc, T43yc, F32yc };

Kanl = subs (Kanel, tor, torf);

Kan2 = subs (Kane2, tor, torf);

Kan3 = subs (Kane3, tor, torf);

Kan4 = subs (Kane4, tor, torf);

aql = {gl, 92, g3, g4, ul, u2, u3, uéd};

ge = {"x(1)", "x(2)", "x(3)", '"x(4)",
"x(5)", 'x(6)", "x(7)", "x(8)"};

% gl ge

S 'gl(t)’ —> "x(1)'

$ 'g2(t)" > 'x(2)'

& "g3(t)’ —> "x(3)'

& g4 (L)’ —> "x(4)’

% 'ul(t)’ -> "x(5)'

$ 'u2(t)’ -> "x(6)’

$ 'uld(t)’ -> 'x(7)’

$ 'ud(t)’ —> '"x(8)'

el = subs(Kanl, gl, ge);

e2 = subs(Kan2, gql, ge);

e3 = subs(Kan3, gl, qge);

e4 = subs(Kan4, gl, ge);

sol = solve(el, e2, e3, e4, "dul, du2z, du3, dud’);

dulc = sol.dul;
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du2c =

du3c
dudc

sol.du?;
sol.du3;
sol.du4;

% system of ODE

dx1
dx2
dx3
dx4
dx5
dx6
dx7
dx8

fid

fprintf (fid,
fprintf (fid,’'dx =
fporintf (fid, "dx (1
fprintf (fid, " ;\n’
fprintf (fid, "dx (2
fprintf (fid,’; \n’
fprintf (fid, "dx (3
fprintf (fid,’; \n’
fporintf (£id, " dx (4
fprintf (fid, " ;\n’
fprintf (fid, "dx (5
fprintf (fid,’; \n’
fprintf (£fid, "dx (6
fprintf (fid,’; \n’
fporintf (£id, "dx (7
fprintf (fid, ' ; \n’
fprintf (fid, "dx (8

(

char (subs (dgl
char (subs (dg2
char (subs (dg3
char (subs (dg4
char (dulc) ;
char (du2c);
( )
( )

4

char (du3c
dudc

4

char

14

14

14

4

ql, qe))
al, qe));
ql, qe))
ql, qe))

fopen ("RRTR.m’ ,"w+’);

fporintf (fid,’;");

" function dx = RRTR(t,x)\n’);
zeros (8,1);\n’);

"y; fprintf (fid,dx1);
"); fprintf (fid, dx2);
"y; fprintf (fid,dx3);
"y; fprintf (fid,dx4);
"); fprintf (fid,dx5);
"y; fprintf (fid,dx6);
"y; fprintf (fid,dx7);

"); fprintf (fid, dx8);

fclose (fid); cd(pwd);

t0 = 0; tf = 15; time = [0 tf];
glO=pi/6;

q20=pi/12;

q30=pi/10;

q40=0.01;

ul0=0; u20=0; u30=0; u40=0;

x0 = [gl0 g20 g30 g40 ul0 u20 u30 u40];

473
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x]l = xs
X2 = Xs

~
~.

~
~.

X3 = xs

~
o ~.

x4 = xs
x5 = xs

~.

X6 = Xs
X7 = Xs
X8 = xs

~
~.

~
~.

~ o~ o~~~ o~~~

e ee e ae ae ae ee e
~ 0~

O ~J o U b W R

—_— — — — — — ~— —
~

~
~.

subplot (4,1,1
xlabel ("t (s)
subplot (4,1,2
xlabel ("t (s)
subplot (4,1,3
"t (s)
4,1,4
t (s)

14 ) 4
")

),

),
xlabel ( !
subplot (4, ),
xlabel (' !

[ts,xs] =

fprintf (' Results \n\n’)

),

) s
plot (t, x4,

) ,ylabel (g4

oded5 (ERRTR,

time,

E Programs of Chapter 6: Analytical Dynamics

x0) ;

plot (t,x1%180/pi," "), ...
,vlabel (gl
plot (t,x2%180/pi,"'b"),
ylabel (' g2
plot (t,x3%«180/pi,"g’),
ylabel (g3
"black’),

(deg)’),grid,

(deg) "), grid,
(deg) ") ,grid,

(m)"),grid

ode45 (RRRTR,0:1:10,x0) ;

fprintf
( t(s) gl (rad) g2 (rad) a3 (rad) g4 (m)\n’);
[ts,xs(:,1),xs(:,2),%xs(:,3),xs(:,4)]
% end of program
Results:
t (s) gl (rad) g2 (rad) g3 (rad) g4 (m)
ans =
0 0.5236 0.2618 0.3142 0.0100
1.0000 0.7555 0.4377 0.6023 0.0559
2.0000 0.8858 0.6259 0.7776 0.0808
3.0000 0.9587 0.7605 0.8838 0.0917
4.0000 0.9995 0.8527 0.9481 0.0964
5.0000 1.0218 0.9154 0.9872 0.0984
6.0000 1.0338 0.9579 1.0108 0.0993
7.0000 1.0402 0.9867 1.0251 0.0997
8.0000 1.0435 1.0063 1.0338 0.0998
9.0000 1.0453 1.0195 1.0391 0.0999
10.0000 1.0462 1.0285 1.0423 0.1000
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A

acceleration, 46

angle of the body, 1

angular
coordinate, 1
velocity, 46, 49, 51
acceleration, 47, 53
momentum, 112

axis, 20

B
body-fixed reference frame, 44, 50

C

cam-follower, 4

Cartesian reference frame, 17, 21
center of mass, 114
central inertia dyadic, 239
cd, 201

class, 8

clear, 16

clc, 16

close, 16

closed kinematic chains, 5
char, 57

coincident points, 95
complex plane motion, 3
compound pendulum, 183
connectivity table, 11
contour, 5

contour diagram, 11
contour equations, 95
crank, 6

Coriolis acceleration, 52
component, 3

constraint equation, 209
couple, 201

coupler, 7

cross, 54

cross product, 54

D

d’ Alembert’s principle, 114
degrees of freedom, 1
decomposition, 10
derivative method, 79
diff, 80, 188

direct dynamics, 114
direction, 46

dot, 54

dot product, 54

double pendulum, 192
drive moment, 126
driver, 8

driven, 8

driven force, 124

dyad, 8

dyad method, 137
dynamical equations, 212
dynamics, 114
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E
equilibrium, 114
eval, 18

F

fclose, 201

fixed reference frame, 43
frame, 1

free-body diagram, 115
feedback control, 201, 204
force, 109

follower, 4, 8

four-bar, 10, 20

for, 31

fprintf, 19

full joint, 3

function, 35, 190
fundamental kinematic chain, 8

G
general plane motion, 3
generalized
active forces, 212, 217
coordinates, 184, 209
inertia forces, 212, 251
forces, 235
velocities, 210
getframe, 41

grid, 20
ground, 3
H

half-joint, 4
holonomic, 211

|
if, 18,25
inertia
force, 114
moment, 114
matrix, 239
inertial reference frame, 183
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