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Preface 

This book describes in detail a physics-based adaptive Bayesian pattern classifica-
tion model that uses a passive thermal infrared imaging system to automatically 
characterize non-heat generating objects in unstructured outdoor environments for 
mobile robots.  In the context of this work, non-heat generating objects are defined 
as objects that are not a source for their own emission of thermal energy, and so 
exclude people, animals, vehicles, etc.  The resulting classification model com-
plements an autonomous bot’s situational awareness by providing the ability to 
classify smaller structures commonly found in the immediate operational envi-
ronment. Since GPS depends on the availability of satellites and onboard terrain 
maps which are often unable to include enough detail for smaller structures found 
in an operational environment, bots will require the ability to make decisions such 
as “go through the hedges” or “go around the brick wall.” A thermal infrared im-
aging modality mounted on a small mobile bot is a favorable choice for receiving 
enough detailed information to automatically interpret objects at close ranges 
while unobtrusively traveling alongside pedestrians.  The classification of indoor 
objects and heat generating objects in thermal scenes is a solved problem.  A miss-
ing and essential piece in the literature has been research involving the automatic 
characterization of non-heat generating objects in outdoor environments using 
a thermal infrared imaging modality for mobile bots.  Seeking to classify non-heat 
generating objects in outdoor environments using a thermal infrared imaging sys-
tem is a complex problem due to the variation of radiance emitted from the objects 
as a result of the diurnal cycle of solar energy.  The model that we describe will al-
low bots to “see beyond vision” to autonomously assess the physical nature of the 
surrounding structures for making decisions without the need for an interpretation 
by humans. 

The approach described here is an application of Bayesian statistical pattern 
classification where learning involves labeled classes of data (supervised classifi-
cation), assumes no formal structure regarding the density of the data in the 
classes (nonparametric density estimation), and makes direct use of prior knowl-
edge regarding an object class’s existence in a bot’s immediate area of operation 
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when making decisions regarding class assignments for unknown objects.  We 
have used a mobile bot to systematically capture thermal infrared imagery for two 
categories of non-heat generating objects (extended and compact) in several dif-
ferent geographic locations.  The extended objects consist of objects that extend 
laterally beyond the thermal camera’s lateral field of view, such as brick walls, 
hedges, picket fences, and wood walls.  The compact objects consist of objects 
that are completely within the thermal camera’s lateral field of view, such as steel 
poles and trees.  We used these large representative data sets to explore the behav-
ior of thermal-physical features generated from the signals emitted by the classes 
of objects and design our Adaptive Bayesian Classification Model.  We demon-
strate that our novel classification model not only displays exceptional perform-
ance in characterizing non-heat generating outdoor objects in thermal scenes but it 
also outperforms the traditional KNN and Parzen classifiers. 

We are grateful for the support received by several institutions in carrying out 
the work presented in this book.  We are thankful for a grant of computer time 
from the DoD High Performance Computing Modernization Program at the Army 
Research Laboratory Major Shared Resource Center, using computational facili-
ties at The College of William & Mary which were enabled by grants from Sun 
Microsystems, the National Science Foundation, and Virginia’s Commonwealth 
Technology Research Fund, and the General Omar N. Bradley Research Fellow-
ship in Mathematics provided by the Omar N. Bradley Foundation.  Particularly, 
we thank Juan Chaves from the Ohio Supercomputer Center (OSC), and Stephen 
Landowne, from the United States Military Academy, for making it possible to 
use the DoD high performance computing system.  We thank Chris Bording in as-
sisting us with porting computer code to the computational facilities at The Col-
lege of William & Mary.  Additionally, we thank the U.S. Army Research Labora-
tory’s Weapons and Materials Research Directorate (WMRD) at Aberdeen 
Proving Ground, Maryland, for their collaborations during this work. 

We are also thankful to our colleagues and friends who have provided assis-
tance and made comments on various parts of the manuscript.  In particular, we 
would like to thank Darryl Ahner, Cara Campbell, Hilary DeRemigio, Danielle 
Dumond, Valerie Fehlman, Tina Hartley, Alex Heidenberg, Michael Jaye, Scott 
Nestler, Zia-ur Rahman, Leah Shaw, Jonathan Stevens, Eugene Tracy, and  
Deonna Woolard. 

The views expressed in this book are those of the authors and do not represent 
the views of the U.S. Government.  
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1 Introduction and Overview 

Abstract  This chapter introduces the objective of this book, to present the design 
and implementation of a physics-based pattern classification model to characterize 
non-heat generating outdoor objects in thermal scenes for autonomous robots.  The 
classification of indoor objects and heat generating objects is a solved problem.  
However, a missing and essential piece in the literature is research involving the 
automatic characterization of non-heat generating objects in outdoor environments 
using a thermal infrared imaging modality for mobile robotic systems.  Seeking to 
classify non-heat generating objects in outdoor environments using a thermal infra-
red imaging system is a complex problem due to the variation of radiance emitted 
from the objects as a result of the diurnal cycle of solar energy.  The model design 
cycle outlined for presentation in subsequent chapters will allow bots to “see be-
yond vision” to autonomously assess the physical nature of the surrounding struc-
tures for making decisions without the need for an interpretation by humans.   

1.1 Purpose of Book 

The goal of the work presented in this book is to complement an autonomous ro-
bot’s situational awareness by providing the ability to classify smaller structures 
commonly found in the immediate operational environment.  These are structures 
that cannot be assessed in enough detail by GPS and onboard terrain mapping sys-
tems currently configured on bots.  Situational awareness is the bot’s interpreta-
tion of objects and physical processes in its internal representation of the environ-
ment.  Mobile bots operating independently in unstructured outdoor environments 
must maintain situational awareness to permit sound decisions.  The bot’s internal 
representation of the environment is formed by the synthesis of prior knowledge 
and information obtained from sensors.  The bot develops an interpretation by de-
tecting, segmenting (or distinguishing), and classifying objects and physical proc-
esses within its internal representation.  Based on this interpretation, the bot can 
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decide on how to respond to situations and what actions are necessary to accom-
plish a given task.  Autonomous bots will require the ability to make decisions 
such as “go through the hedges” or “go around the brick wall.”  To carry out these 
types of actions, the bot must have the ability to classify the unknown object as 
being either hedges or a brick wall.  Therefore, our interest is in the situation 
where the bot has already detected and segmented a non-heat generating object but 
now needs to classify the object in a highly unstructured outdoor environment like 
those presented in Fig. 1.1, to include conditions of limited visibility. 

We envision mobile bots that unobtrusively travel alongside pedestrians at 
a walking pace in an unstructured environment.  It is important that small mobile 

 
Fig. 1.1 Unstructured environments as potential areas of operation for autonomous robots. 
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robots, with wheels, legs, and/or tracks, normally travel at the same speed as the 
pedestrian traffic, even if they traverse to quickly move down a vacant alley to 
conduct a reconnaissance or slow down to characterize an obstacle, because peo-
ple resent having to go around a slow bot while they are also startled by machines 
such as Segways and golf carts that overtake them without warning.  Furthermore, 
the type of sensors used to afford the bot with situational awareness is tied to the 
speed of the bot.  A thermal infrared imaging modality mounted on a mobile robot 
is a favorable choice for receiving enough detailed information to automatically 
interpret objects at close ranges relevant to walking speeds.  The technology nec-
essary for thermal imaging has just recently become sufficiently portable and in-
expensive enough to mount on small robotic platforms.  Furthermore, passive 
thermal infrared imaging modalities do not pose a risk to humans like one might 
have with laser-based sensors, such as LADAR.  Our use of a thermal infrared im-
aging modality will not only afford the ability to identify targets during conditions 
of limited visibility but it will also eliminate the need for a light source mounted 
on a bot to illuminate targets for classification that could disclose the bot’s loca-
tion.  For example, illuminating the fence in Fig. 1.2 (a) with a visible light source 
as in Fig. 1.2 (b) would reveal the tactical position of the bot and perhaps com-
promise any reconnaissance missions.  On the other hand, the thermal infrared im-
aging system that simultaneously captured the image of the fence in Fig. 1.2 (c) 
acts as a passive system that does not emit any visible signatures for enemy detec-
tion.  The thermal infrared imaging sensor is a passive system since there is no 
need for an onboard artificial illumination source to operate.  The only source re-
quired for the fence to emit thermal energy is the sun that provides solar energy 
during the daylight hours.  

The objective of this book is to design and implement a physics-based pattern 
classification model to characterize non-heat generating outdoor objects in thermal 
scenes for autonomous robots.  The classification of indoor objects and heat gen-
erating objects is a solved problem.  However, a missing and essential piece in the 
literature is research involving the automatic characterization of non-heat generat-
ing objects in outdoor environments using a thermal infrared imaging modality for 
mobile robotic systems.  Seeking to classify non-heat generating objects in out-
door environments using a thermal infrared imaging system is a complex problem 
due to the variation of radiance emitted from the objects as a result of the diurnal 
cycle of solar energy.  Our desired model will allow bots to “see beyond vision” to 
autonomously assess the physical nature of the surrounding structures as well as 
report classes of objects while performing security or reconnaissance missions.  
We will design a classification model that retains the original physical interpreta-
tion of the information in the signal data throughout the classification process.  
This emphasis will result in a framework that allows the human analyst to under-
stand the reason for a bot’s classification of an unknown object by associating the 
final classification decision with the thermal-physical properties found in the 
original signal data.  Additionally, our approach will afford bots with the intelli-
gence to automatically interpret the information in signal data to make decisions 
without the need for an interpretation by humans.    
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Fig. 1.2 Visible and thermal images of a wooden fence.  (a) visible image of the fence during the 
day, (b) visible image captured at 2030 hrs on 7 September 2007 with light source illuminating 
on the fence, (c) thermal image of the fence captured at the same time as the visible image in (b) 
and at an ambient temperature of 71.9 °F. 
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The research presented in this book evolved from a broader work, by the Non-
destructive Evaluation Laboratory at The College of William & Mary, to automate 
the fusion and interpretation of data streams from various active and passive sen-
sor systems to enable autonomous mobile robot operations in a wide variety of un-
structured outdoor environments.  We feel that it is the fusion of an active sensor, 
such as sonar (air-coupled ultrasound), and a passive sensor, such as thermal infra-
red and RGB video, systems that has the potential for the greatest advancements 
because of the complementary nature of the modalities.  Two mobile robots, dis-
played in Fig. 1.3, are currently being used to collect systematic ultrasonic and in-
frared imagery data streams about The College of William & Mary campus, the 
adjacent colonial area, York County, Virginia, in a village and on a farm outside 
of Buffalo, New York, and on mountainous terrain in Eleanor, West Virginia.  We 
have used these large data sets to explore the behavior of features generated from 
the signal data of classes of outdoor objects and design single-sensor classification 
algorithms that afford mobile robots the ability characterize outdoor objects.  The 
research presented in this book is an extension to our previous work involving so-
nar sensor interpretation by mobile robots [1].  This research involves the design 
of algorithms to distinguish outdoor objects such as trees, poles, fences, walls, and 
hedges based on features generated from backscattered sonar echoes.  Our novel 
model involving thermal infrared imagery presented in Chap. 5 of this book af-
fords a complementary technique to classify the same types of objects.  Since both 
ultrasound and infrared are independent of lighting conditions, they are appropri-

 
Fig. 1.3 Mobile robotic 3D sonar scanning system, rWilliam (on right) and thermal imaging sys-
tem, rMary (on left). 
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ate for use both day and night.  In Chap. 6, we will discuss our future research that 
is aimed towards designing a framework that fuses information from the bot’s 
thermal infrared imaging and ultrasonic sensors to perform intelligent actions, 
such as decision-making and learning.   

1.2 Non-Heat Generating Objects 

Non-heat generating objects are defined as objects that are not a source for their 
own emission of thermal energy, and so exclude people, animals, vehicles, etc.  
Non-heat generating objects can be natural or human-made.  Our choices of natu-
ral objects that do not generate their own thermal energy include trees and bushes.  
Human-made objects include brick walls, wood walls, fences, and steel poles.  
Consequently, the ability of non-heat generating objects to display a thermal sig-
nature depends partly on the thermal energy received from heat generating sources 
in the environment.  The primary heat generating source is the sun.  However, 
there may also exist other objects in the local environment that generate and emit 
their own thermal energy and/or reflect thermal energy emitted from other 
sources.  The ability for a non-heat generating object to display a thermal signa-

 
Fig. 1.4 Thermal scene consisting of heat and non-heat generating objects.  Heat generating ob-
jects include the human walking on the sidewalk and squirrel running from behind the tree. Non-
heat generating objects include the trees and steel pole used by the street light. 



 1.2 Non-Heat Generating Objects 7 

ture also depends on its physical composition.  We will discuss the thermal emis-
sion characteristics of non-heat generating objects in Chap. 3.  

Identifying heat generating objects in thermal scenes, using pattern classifica-
tion techniques, has become relatively trivial because infrared imaging cameras 
are very sensitive to detecting the thermal contrast between the object and sur-
rounding surfaces.  For instance, the human walking on the sidewalk and squirrel 
running from behind the tree in Fig. 1.4 can be identified by generating geometric 
features from various points on the body such as those presented in Fig. 1.5 (a).  
Features are unique representations of an object class that are generated from an 
object’s signal received by a sensor.  These features are used by a pattern classifi-
cation model to distinguish one object class from another and provide class as-
signments to unknown objects.  Geometric features can also be generated from 
tires and different segments of vehicle surfaces for class assignments as displayed 
in Fig. 1.5 (b).  However, generating features from the thermal image of a non-
heat generating object like the trees and steel poles in Fig. 1.4 for classification is 

 
Fig. 1.5 Geometric measurements generated from thermal images of heat generating objects for 
classification.  (a) measurements generated to classify people [2]. (b) measurements generated to 
classify vehicles [3]. 
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a more subtle process due to the variation in thermal radiance of objects in the 
scene primarily caused by the diurnal cycle of solar energy.  We will provide a de-
tailed discussion on techniques used to generate features for heat and non-heat 
generating objects in Chap. 3 and present various classifiers used in classification 
models in Chap. 4.  In Chap. 5, we will present our novel classification model that 
outperforms the traditional classifiers when characterizing non-heat generating ob-
jects in outdoor environments. 

1.3 Autonomous Robotic Systems 

Robots have many uses in the military, industry, health care services, and neigh-
borhood homes.  A general summary of the current uses of robots is provided in 
[4].  Robots categorized as unmanned ground, marine, and aerial vehicles are 
normally found in the military.  In industry, robots are commonly used on assem-
bly lines in automotive and food processing plants.  These robots are usually in the 
category of machine vision and used to assemble products and/or detect defects in 
the products.  In health care, robots are now used to assist during surgical proce-
dures.  Robotic devices are also starting to be used to assist elderly people, par-
ticularly in Japan.  We can also find robots in homes in the form of vacuum clean-

 
Fig. 1.6 Roomba vacuum cleaning robot. 
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ers and even lawn mowers.  Each type of robot operates at specific level of auton-
omy.  The level of autonomy afforded to robots usually depends on the size and 
mobility capabilities of the bot and level of risk in harming humans and pets.  
Though the Roomba vacuum cleaners in Fig. 1.6 are semi-autonomous, we would 
have no problem with letting them roam anywhere around the house since the bots 
are ankle high.  On the other hand, we would expect the robotic lawn mower in 
Fig. 1.7 to have a higher level of intelligence so the neighbor’s favorite tulips are 
not misclassified as a blade of grass.  Our objective is to design the intelligence 
algorithms required by mobile autonomous bots to correctly make decisions re-
garding non-heat generating objects that exist in their path. 

A mobile autonomous robotic system is a ground, marine, or aerial vehicle con-
sisting of all the integrated components (mobility platform, sensors, computers, 
and algorithms) required to perceive, learn, and adapt in the environment to make 
intelligent decisions for navigating, communicating, and accomplishing required 
tasks.  A historical background on advances in the state of the art for unmanned 
ground vehicles from 1959 to 2002 is presented in [5].  The focus of our research 
is to support autonomous unmanned ground vehicles; however, the framework of 
our classification model presented in Chap. 5 could be applied to marine and aerial 
vehicle applications as well. 

The robotic platform design is not an issue anymore.  Whether the robot will 
serve the military or be a part of the civilian workforce, the platform will be de-

 
Fig. 1.7 Robotic lawn mower. 
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signed to support the required application.  For instance, Fig. 1.8 (a) presents a ro-
botic platform that could be used for military reconnaissance missions, Fig. 1.8 (b) 
shows a robotic platform designed for ambulatory applications, and Fig. 1.8 (c) 
shows a robotic platform designed for monitoring and surveillance applications.  
However, the greatest challenge is how to design the intelligence software that will 
allow the bot to use relevant sensors to learn and make decisions.  We obviously 
hope that the autonomous military reconnaissance vehicle would make the correct 
classification and decision to go through hedges and not a misclassification that re-
sults in the bot attempting to go through a six meter high brick wall.  Furthermore, 
we would expect that an unmanned ambulatory vehicle will extract injured person-
nel from a burning building and not garbage cans due to misclassifications. 

Analogous to living organisms using their senses to understand the environ-
ment, autonomous bots will have to interpret information received by their sensors 

 
Fig. 1.8 Autonomous unmanned ground vehicle platforms designed to support various military 
and commercial applications.  (a) military reconnaissance application (Courtesy of globalsecu-
rity.org), (b) Battlefield Extraction Assist Robot for ambulatory applications (Courtesy of Vecna 
Technologies, Inc.), (c) remote monitoring and surveillance applications (Courtesy of MobileRo-
bots, Inc.). 
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to detect, segment, and classify natural and human-made objects.  Sensors used to 
detect, segment, and classify objects are either active or passive sensors.  Active 
sensors require an external or onboard source to transmit a signal that is reflected 
by the target and then received by the bot’s sensor.  Passive sensors do not require 
an active onboard source to transmit energy at a target.  Thus, passive sensors re-
ceive signal information that is naturally emitted from an object’s surface.  Detec-
tion involves comparing signals received within a sensor’s field of view to deter-
mine whether an object is present.  Once detected the object is segmented to 
distinguish it from the surrounding environment.  The segmented object is then as-
signed to a specific object class based on the bot’s assessment of the object and 
previous knowledge about the local area of operation.  The autonomous bot can 
then make a decision pertaining to the classified object depending on the required 
task or mission.  For instance, if the object is a trash can, the bot may be required 
to report the trash can and quietly go around it when on a reconnaissance mission 
or pick it up and empty the can in the dumpster when performing janitorial duties.  
In any case, the autonomous bot must have the intelligence to classify non-heat 
generating objects.  

1.3.1 Detect the Object 

Detection of obstacles by bots is quite trivial nowadays.  For instance, with an ac-
tive sensor system, a source simply transmits some pulse of energy from the ro-
bot’s platform and onboard sensors receive the energy after being reflected from 
an object in the path.  The bot’s intelligence software analyzes contrasting infor-
mation in the reflected signals received within the field of view of the sensor to 
determine the ranges, sizes, and locations of objects.  Consequently, detection 
usually coincides with obstacle avoidance.  Thus, the bot simply knows the loca-
tion and size of an unknown object in its path and travels around the object to 
avoid a collision.  The Defense Advanced Research Projects Agency (DARPA) 
Grand Challenge, that took place in the Mojave Desert of southwestern United 
States on 8 October 2005, proved that sophisticated semi-autonomous robots are 
able navigate along a grueling route by using multiple sensors to detect obstacles 
and map the terrain [www.darpa.mil].  Active sensors normally used by bots to de-
tect objects include laser detection and ranging (LADAR), synthetic aperture radar 
(SAR), ultrasound, and infrared sensors.  An advantage of LADAR is that it has 
exceptional resolution; however, a disadvantage is that it is affected by dust and 
smoke that may be interpreted as an object in the bot’s path [5].  Additionally, cer-
tain tactical situations may limit the use of LADAR due to its potential risks to 
humans.  Although SAR performs well in the presence of obscurants, it lacks spa-
tial resolution and may not detect non-metallic objects depending on their mois-
ture content [5].  Ultrasound transducers display exceptional performance in de-
tecting objects during conditions of limited visibility and in the presence of 
obscurants such as dust, smoke, and fog at short ranges.  Furthermore, ultrasound 
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does not have any safety concerns like those associated with LADAR.  An exam-
ple of how ultrasound sensors can be used to detect and avoid obstacles is given in 
[6].  An infrared sensor performing in an active role requires a transmitter to emit 
energy at an object and the sensor to receive the energy reflected from the object’s 
surface.  For instance, the infrared detection and range sensor system in Fig. 1.9 
transmits a pulse of infrared energy from an emitter that is a fixed distance from 
the detector.  If the energy hits an object, reflected waves are received by a spe-
cific portion of a linear charge-coupled device (CCD) array in the detector based 
on the angle of the wave.  The angles in the triangle formed by the emitter, point 
of reflection, and detector vary based on the distance to the object.  Thus, the sen-
sor uses the reflected wave’s point of impact on the CCD array to complete the tri-
angle and estimate the distance to the object.  A method for detecting and estimat-
ing distances to objects using ultrasound and active infrared sensors is discussed in 
[7].  An emerging active sensor that operates at 110 GHz to 10 THz, between mi-
crowaves and the infrared bands, in the electromagnetic spectrum involves tera-
hertz-pulsed imaging.  Research interests using terahertz-pulsed imaging involve 
applications such as detection of concealed weapons and explosives [8].  An ad-
vantage of using terahertz radiation for these applications is that metals are opaque 
to the radiation.  Additionally, terahertz radiation poses no health risk to humans.  
A limiting factor is that most non-metals, such as non-heat generating wooden 
fences, are transparent to terahertz and propagation distance is limited at the 
higher frequencies.  However, this limitation could be abated by the terahertz 
band’s sensitivity to the presence of water, which may be of use for not only de-
tecting (and characterizing) the disease states of human tissue [9] but also other 
living objects such as trees and bushes. 

Passive sensors include red, green, blue (RGB) vision cameras and thermal in-
frared detectors.  RGB cameras provide excellent resolution but are limited to op-
eration during times when no obscurants are present and the target is illuminated 

 
Fig. 1.9 Infrared range sensor with detection range from 1 to 5.5 m  (Courtesy of Acroname, Inc.) 
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with light.  In a passive role, the infrared sensor is usually a focal plane array 
(FPA) of thermal (or long-wave) infrared detectors that operate at 7 to 14 μm in 
the electromagnetic spectrum.  Unlike the 1-dimensional array used by the active 
infrared range sensor, the passive thermal infrared sensor consists of a 2-dimen-
sional FPA of detectors.  Thermal radiance emitted by an object and received on 
the FPA is converted to an analog signal.  This analog signal is then converted to 
a digital signal for display as a thermal image.  Objects are detected using the 
thermal infrared imaging sensor by analyzing thermal contrasts in the signal in-
formation received passively from the surrounding environment within the field of 
view of the sensor.  A comparison of thermal infrared detection algorithms is 
found in [10].  Since the thermal infrared imaging sensor is used in our current re-
search, we will delay our discussions of the characteristics of this sensor until 
Sect. 1.4 and subsequent chapters in this book.  To complement a bot’s ability to 
detect objects, the intelligence algorithm normally uses more than one type of sen-
sor.  Object detection and avoidance methods using vision and ultrasonic sensors 
for mobile bots are discussed in [11, 12, 13].  A technique for detecting objects us-
ing ultrasound and passive infrared sensors is discussed in [14]. 

1.3.2 Segment the Object 

Once a target is detected by displaying a signal difference from other objects in 
the sensor’s field of view, it is segmented from its surroundings and prepared for 
classification by the bot’s intelligence algorithm.  Discussions on the detection and 
segmentation of objects in infrared images are found in [15, 16].  Techniques for 
segmentation of objects in general images are discussed in [17].  Preparing the 
segmented signal information for the classification phase involves preprocessing 
to minimize the effects of temporal and spatial signal degradations.  The preproc-
essing must avoid the use of filters that would lead to loss of relevant signal in-
formation used in the classification phase.  We provide a detailed discussion on 
acquisition and preprocessing of thermal infrared images in Chap. 2.   

1.3.3 Classify the Object 

After segmenting and preprocessing the unknown object, the bot uses its intelli-
gence algorithms to classify the object.  The autonomous bot can then make a de-
cision pertaining to the classified object depending on the required task or mission.  
The design of the classification model continues to be the most challenging phase 
for any intelligence system.  In this research we will assume that the bot has al-
ready detected and segmented an unknown object.  Therefore, our objective is to 
design and implement a model that will allow the bot to classify the unknown ob-
ject.  Two approaches can be used to design a model that will assign a class to an 
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unknown object – theoretical models (analytical or numerical) and observational 
models.  Theoretical models normally involve the use of differential equations to 
compute the estimated value of physical variables associated with unknown ob-
jects for comparison with measured values from known objects.  Class assignment 
is determined by the computed values’ closeness to the measured values.  Theo-
retical models usually require at least one measured value for the parameters in the 
model.  These measured values are obtained by using an instrument that makes 
contact with the object.  One possibility for obtaining physical measurements from 
an unknown object is by equipping a bot with touch sensors [18].  However, a bot 
that can classify objects using non-contact sensors is more practicable.  We will 
continue our discussion on a specific theoretical model known as the multi-mode 
heat transfer model in Sect. 1.4. 

Our method of choice for designing a classification algorithm is the observa-
tional model approach.  An observational model estimates class assignments of un-
known objects based on inferences made from empirical knowledge and prior 
knowledge.  The empirical knowledge is obtained by observing information re-
ceived by the sensors.  The prior knowledge is based on observations regarding the 
presence of objects existing in the bot’s area of operation before entering the area.  
The empirical knowledge and prior knowledge are combined to produce posterior 
knowledge that yields a class assignment for the unknown object.  Observational 
models are used in the field of pattern classification (or recognition).  Pattern clas-
sification is the process of characterizing an unknown object based on an assess-
ment of attributes (also called features or patterns) that are generated from the ob-
ject’s signal received by a sensor.  The class assignment of the unknown pattern is 
made by a classification model consisting of a classifier and features that uniquely 
represent each object class requiring classification.  The success of a classification 
model relies primarily on the selection of features that provide the most favorable 
distinction between each object class.  However, a poor choice of feature types 
and/or generating features that are not representative of objects in the bot’s area of 
operations will result in ambiguity with separation of object classes and ultimately 
an increase in the misclassification rate.  We will provide a detailed discussion on 
choices for features and approaches for pattern recognition in Chaps. 3 and 4, re-
spectively.  While designing our classification model, presented in Chap. 5, we will 
make considerable effort to provide guidance on how to analyze features to under-
stand their underlying physics and select most favorable sets of features that mini-
mize the misclassification of unknown objects.  Additionally, our approaches to 
feature selection and classification will retain the original physical interpretation of 
the information in the signal data throughout the classification process.   

Our classification of non-heat generating objects (brick walls, hedges, picket 
fences, wood walls, steel poles, and trees) in outdoor environments could be 
placed in the category of terrain classification.  There are many approaches found 
in the literature that effectively use various sensors to classify objects in outdoor 
environments.  The design of algorithms to distinguish outdoor objects such as 
trees, poles, fences, walls, and hedges based on features generated from backscat-
tered sonar echoes for interpretation by mobile robots is discussed in [1].  Discus-
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sions on LADAR sensors and object recognition approaches using 3-dimensional 
LADAR and SAR imagery are presented in [9].  Terrain classification using 
LADAR to distinguish surfaces (ground surface, rocks, large tree trunk), linear 
structures (wires, thin branches, small tree trunks), and porous volumes (foliage, 
grass) for autonomous robot navigation is discussed in [19].  Terrain classification 
methods using a color vision camera and LADAR to discriminate between soil, 
vegetation, tree trunks, and rocks for autonomous off-road navigation is presented 
in [20].  A method for terrain classification involving inertial, motor, ultrasonic, 
active infrared, microphone, and wheel encoder sensors to classify gravel, sand, 
asphalt, grass, and dirt is discussed in [21].  The ultrasonic and infrared range sen-
sors were mounted on the robotic platform and aimed downward to the ground to 
classify the terrain based on the periodogram of the reflected signal (in the fre-
quency domain) and range signal (in the time domain).   

The LADAR, SAR, sonar, terahertz-pulsed imaging, and RGB vision modalities 
presented above all have the capability to complement a bot’s intelligence algo-
rithm that is designed to classify objects at close ranges (~2–3 meters) relevant to 
walking speeds.  A thermal infrared imaging modality mounted on a mobile robot 
is also a favorable choice for receiving enough detailed information to automati-
cally interpret objects at close ranges relevant to walking speeds.  However, as we 
will further discuss in Chap. 3, a missing and essential piece in the literature is re-
search involving the automatic characterization of non-heat generating objects in 
outdoor environments using a thermal infrared imaging modality for mobile ro-
botic systems.  Seeking to classify non-heat generating objects in outdoor envi-
ronments using a thermal infrared imaging system is a complex problem due to the 
variation of radiance emitted from the objects as a result of the diurnal cycle of so-
lar energy.  Our approach of using a thermal infrared imaging camera for pattern 
classification makes use of concepts found in the fields of nondestructive evalua-
tion, remote sensing, and digital image processing.  Our novel classification model 
will provide an approach that can make use of thermal infrared imagery as a stand-
alone sensor or in combination with other existing sensors to complement the intel-
ligence of a bot.  Additionally, the framework of our classification model could 
also be used in other applications requiring the characterization of unknown objects 
based on features that witness variations due to natural cyclic events.  A somewhat 
more speculative extension would be an application to autonomous Lunar or Mar-
tian rovers, since the diurnal heating effects that we are exploring do not require an 
atmosphere.  On the other hand, ultrasound sensors would not support applications 
in this environment since nobody can hear you “scream” on the moon or Mars.   

1.4 Infrared Thermography 

Thermography is the study of internal and/or surface heat distributions of a structure 
using various instruments that measure thermal energy.  Such instruments could re-
quire contact techniques such as a probe to measure surface temperatures on the 
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structure.  On the other hand, non-contact techniques afford the ability to study heat 
distributions by measuring the thermal radiation emitted from the surface of the 
structure using an infrared detector.  These noninvasive techniques are used in infra-
red thermography, which is the foundation for our research presented in this book. 

The techniques of infrared thermography are used in the field of nondestructive 
evaluation (NDE) or thermographic nondestructive testing (TNDT or NDT) to non-
invasively assess the behavior of what is at the subsurface of an object.  Infrared 
thermography is widely used in NDE to examine the nature of objects for suitability 
and quality.  Applications are found in areas of preventive maintenance for aircraft (to 
include space launch vehicles), electrical utilities, and building construction [22, 23].  
Applications involving infrared thermography in NDE are also being researched in 
the field of medicine [24].  Infrared thermography is also used in surveillance opera-
tions involving the military, law enforcement, and search and rescue [23].  

The applications mentioned above normally require a human operator to assess 
the thermal image of an object.  As we will discuss in Chap. 3, many techniques 
exist that use pattern recognition methods to automatically classify a target with-
out the need for a human operator.  In the military, these approaches are normally 
referred to as automatic target recognition (ATR) algorithms.  However, the ma-
jority of the methods available in the literature, using thermal infrared imaging to 
classify objects, involve heat generating targets.  The only use of thermal infrared 
imaging to classify non-heat generating objects in outdoor environments was 
found in the area of remote sensing to discriminate between vegetation and soil.  
We have not identified any previous research in the literature involving the as-
signment of classes to non-heat generating objects in outdoor environments using 
a thermal infrared imaging sensor for autonomous robotic systems. 

1.4.1 Active vs. Passive Thermography 

Analogous to the active and passive functions that the sensors described in Sect. 1.3 
have, a thermal infrared imaging system can have either an active or passive role.  
As mentioned previously, active systems have an external or onboard source to 
transmit signal energy that is reflected by the target and then received by the sensor.  
In active thermal infrared imaging, thermal energy from a source is directed towards 
the specimen being inspected to create differences in the thermal image that identify 
anomalies in the structure and/or analyze the diffusion of thermal waves to estimate 
the physical properties of the material.  The active heat source used to estimate 
thermal properties of a given material are formally the boundary conditions that we 
will present in Sect. 1.4.3 involving the heat transfer model.  Methods used to 
stimulate a specimen with an external source include pulsed thermography, step 
heating, lock-in thermography, and vibrothermography [22].    

Passive thermography does not require an active source to transmit thermal energy 
at a target.  Thus, passive thermal infrared imaging sensors receive thermal radiance 
that is naturally emitted from an object’s surface.  The research presented in this book 
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uses passive thermal infrared thermography where the only mandatory source of 
thermal energy is the sun that provides solar energy during the daylight hours.   

1.4.2 Advantages & Disadvantages of Thermal Infrared Imaging 

Every sensor has its own advantages and disadvantages.  A major advantage of using 
a thermal infrared imaging sensor is that it provides the ability to identify objects dur-
ing conditions of limited visibility.  Conditions of limited visibility such as night and 
the presence of obscurants (smoke, light dust, and light haze) have a minimal attenu-
ating effect on long-wave infrared waves.  Our choice of a thermal (long-wave) infra-
red detector yields an operating band of 7 to 14 μm in the electromagnetic spectrum.  
Long-wave infrared has an advantage over the other bands in the infrared region: near 
infrared (0.7–1.1 μm), short-wave infrared (1.1–2.5 μm), and mid-wave infrared 
(2.5–7.0 μm).  Figure 1.10 displays the spectral radiance of a perfect emitter of ther-
mal radiation (blackbody) across a band of wavelengths in the electromagnetic spec-
trum and at various surface temperatures of the blackbody as described by Planck’s 
law.  As we see, the long-wave infrared band (denoted by the blue shaded region) 
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Fig. 1.10 Spectral radiance of a blackbody.  Long-wave infrared band (7–14 microns) is de-
noted by the blue shaded region. 
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yields the highest thermal radiance for the range of ambient and non-heat generating 
object surface temperatures encountered by an autonomous mobile robotic system on 
Earth.  Consequently, a thermal infrared imaging camera will maximize the detection 
of thermal radiance emitted by an object compared to detectors that operate in the 
near, short-wave, and mid-wave infrared spectral bands. 

We will discuss more details of the limitation of using a thermal infrared imag-
ing sensor in Chap. 6.  However, we will note a few disadvantages of using this 
sensor right now.  A minor disadvantage is that the thermal infrared imaging cam-
era cannot discriminate between the radiance detected at each wavelength.  Thus, 
in contrast to how the human eye can distinguish the colors red and blue, the 
thermal infrared imaging camera only “sees” a total radiance from the entire long-
wave band of wavelengths.  However, this deficiency is tolerated for our applica-
tion since the FPA of detectors in the thermal infrared imaging camera receives 
different levels of radiance across the 2-dimensional array to yield a thermal im-
age with related gray-level values.  We will discuss the characteristics of the ther-
mal infrared imaging camera in Chaps. 2 and 3.      

Since our application takes place outdoors, environmental conditions will exist 
where the surfaces of a target and surrounding objects will emit approximately the 
same level of thermal radiance.  This phenomenon, known as thermal crossover 
[23], results in minimal thermal contrast between the surfaces of objects and the 
surrounding environment within the thermal infrared camera’s field of view.  
Thus, these periods of thermal crossover could result in a limitation in our ability 
to classify non-heat generating objects in an outdoor environment using a thermal 
imaging sensor.  We will revisit the phenomenon of thermal crossover again in 
Chaps. 4, 5, and 6. 

One possible critical disadvantage of using a thermal infrared imaging camera 
for autonomous mobile robotic applications is that glass is opaque to infrared ra-
diation.  Consequently, a bot will not be able to detect objects that are behind 
glass.  We will revisit this ability of objects to emit thermal energy when we dis-
cuss the thermal property known as emissivity in Chap. 3.   

The disadvantages found with any sensor obviously provide the reason why 
multi-sensor data fusion systems are normally more successful in classification 
applications than systems with a single sensor.  Thus, the interpretations of rele-
vant information received by different types of sensors used in a multi-sensor 
framework are fused to complement the overall performance of the classification 
process.  We will discuss our plans for integrating our current pattern classifica-
tion model using thermal infrared imagery into a multi-senor data fusion frame-
work in Chap. 6.     

1.4.3 Multi-Mode Heat Transfer Model          

A multi-mode heat transfer equation is a differential equation, along with the cor-
responding initial and boundary conditions, that models the flow of heat energy by 
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conduction, convection, and radiation.  Thus, the multi-mode heat transfer equa-
tion is a theoretical model.  The governing multi-mode heat transfer model for an 
anisotropic object with no internal heat source is given as [25]: 
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where T is the temperature of the object and aT  is the ambient temperature; ρ  
and C are the density and specific heat of the object, respectively; xK , yK , and 

zK  are the in-plane and transverse thermal conductivity of the object; rt  is the re-
laxation time; 

−
n  is the vector normal to the object’s surface; Q is the heating flux; 

ch  is the free convection coefficient; ε  is the object’s emissivity; σ  is the  
Stephan-Boltzmann coefficient; indices s and d specify the object specimen and 
defect, respectively; and indices cd, cn, and r specify conductive, convective, and 
radiative heat transfer mechanisms, respectively.  Eq. 1.2 is the initial condition; 
Eq. 1.3 describes heating and cooling at the object’s surface boundary; Eqs. 1.4 
and 1.5 represent the continuity of temperature and heat flux at the boundaries be-
tween inner layers, including defects. 

To make use of this theoretical model, given by Eqs. 1.1–1.5, in an autonomous 
robotic application for categorizing objects we would first solve the model for 
some physical variable for comparison with measured values from known objects.  
Class assignment is determined by the computed values’ closeness to the meas-
ured values.  However, this model is nonlinear and rather complicated.  As we see, 
T is a function of many variables, ( )KQCtT ,,,,, ερ .  The problem becomes even 
more involved with the fact that variables such as conductivity, specific heat, and 
emissivity may be dependent on time, position, and the object’s temperature.  
Thus, distinct classes of objects heat up and cool at different rates based on their 
thermal-physical properties.  For instance, the surface temperature of low specific 
heat objects, such as the leaves on hedges, tend to track the availability of solar 
energy [23].  On the other hand, objects with a high specific heat, such as a birch 
tree trunk (~2.4 11 −− ⋅⋅ CkgkJ o ) [22], will tend to heat up more slowly with in-
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creasing solar energy and cool more slowly as the amount of solar energy begins 
to decrease in the late afternoon (around 1600 hrs).  Furthermore, for outside ob-
jects, windy conditions may influence convective heat transfer. 

Simplified model versions of Eqs. 1.1–1.5 are usually used to directly solve for 
a unique temperature solution using the initial and boundary conditions.  There are 
numerous texts that provide methods to solve the direct problem, two classic texts 
are [26, 27].  One can also use simplified models to estimate the thermal-physical 
parameters, which is called the inverse problem.  Methods involving inverse prob-
lems can be found in [22, 28].  A review of both direct and inverse heat transfer 
methods is found in [29].  These excellent references provide both analytical and 
numerical methods to solve simplified heat transfer problems.  However, when 
seeking to generate features from signal data produced by a given object in an un-
structured outdoor environment, we must consider the complexities of the real 
world.  Consequently, we must consider the multi-mode heat transfer model and 
the fact that the thermal-physical variables are dependent upon time, space, and the 
object’s temperature.  Rather than attempting to solve the direct or inverse prob-
lems mentioned above, we will use the observational model approach to design a 
pattern classification model that generates thermal-physical features from an ob-
jects thermal image.  As we will see in Chap. 3, our thermal-physical features are 
generated from information in the thermal image that encompasses the thermal-
physical properties of the object that depend on the diurnal cycle of solar energy.         

1.5 Overview of the Book 

The primary objective of this book is to design and implement a pattern classifica-
tion model used by an intelligence algorithm to characterize non-heat generating 
outdoor objects in thermal scenes for autonomous robotic systems.  Our approach 
to meet this objective is outlined in the model design cycle illustrated in Fig. 1.11.  

Fig. 1.11 Pattern classification 
model design cycle. 
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The chapter that discusses each step is noted in this design cycle flowchart.  Since 
the goal in designing a classification model is to assign unknown objects to classes 
with minimal classification errors, the results of the evaluation may require repeat-
ing certain steps to achieve acceptable performance by the model.  In Chap. 2 we 
will present our robotic thermal imaging system and methodology used to pre-
process the thermal signals received by the thermal infrared imaging camera.  We 
will also discuss our procedures to acquire representative data sets for non-heat 
generating objects to assist in designing and assessing the performance of our 
classification models.  We will present a literature review on feature types and our 
approach to generating thermal features in Chap. 3.  A classification model is de-
fined by at least one classifier and set of features.  The performance of a classifier 
is a function of the feature set.  Consequently, the evaluation of classifiers and se-
lection of feature sets are done simultaneously as indicated by the flowchart for 
the model design cycle.  In Chap. 4 we will provide a literature review on ap-
proaches to pattern classification and discuss our methodology for selecting ther-
mal features.  We will select our most favorable sets of features using the tradi-
tional Bayesian, K-Nearest-Neighbor, and Parzen classifiers.  In Chap. 5 we will 
present our Adaptive Bayesian Classification Model that outperforms these tradi-
tional classifiers for our application.  In Chap. 6 we will offer some conclusions 
and discuss future research directions.  

A possible intelligence algorithm that could be supported by our model is illus-
trated in Fig. 1.12.  The steps with the shaded regions highlight this book’s contri-
butions to the intelligence process.  A thermal infrared imaging sensor receives 
thermal energy emitted from an unknown object’s surface.  The signal received by 

Fig. 1.12 Intelligence algorithm with pattern 
classification model. 
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the sensor is preprocessed to minimize the effects of temporal and spatial degrada-
tions and dead pixels that would have a negative impact on the bot’s ability to 
generate relevant features from the thermal image and classify unknown objects.  
The object is detected and segmented in the thermal scene by identifying its ther-
mal contrast with other surfaces in the surrounding environment within the cam-
era’s field of view.  Features are generated from the segmented object and used by 
the classification model to assign the unknown object to a specific class with a 
given degree of confidence represented by the respective posterior probability.  If 
the classification model’s decision satisfies specific rules, the class assignment is 
accepted for post-processing.  Otherwise, the class assignment is rejected and the 
bot is required to capture another image to classify the unknown object.  The post-
processing step uses the classification model’s accepted output to decide on the 
bot’s next required action [report the object and/or (if the object is a hedge, go 
through the object or if the object is a brick wall, go around the object or if the ob-
ject is a trash can, pick up the object)]. 
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2 Data Acquisition 

Abstract  The first step in our pattern classification model design process is pre-
sented – data acquisition.  We will first introduce the robotic thermal imaging sys-
tem, consisting of the hardware and software used to acquire thermal data.  We 
will also discuss the methodology used to preprocess and collect our representa-
tive data set.  The methodology used in our data acquisition is implemented prior 
to the feature generation step discussed in the next chapter.  

2.1 Introduction 

In this chapter, we will present the first step in our pattern classification model de-
sign process – data acquisition.  We will first introduce our robotic thermal imag-
ing system.  This system consists of the hardware and software that is used to ac-
quire the image data.  We will also discuss the methodology used to preprocess 
and collect our representative data set prior to the feature generation step dis-
cussed in the next chapter. 

2.2 Robotic Thermal Imaging System 

2.2.1 Hardware 

The hardware for our robotic thermal imaging system is displayed in Fig. 2.1.  
Figure 2.1 (a) shows the front view of the robot platform.  A metal container en-
closes the thermal camera to ensure that the camera is on a stable platform and 
protected from the outside environment.  The underside of the adjustable lid on the 
metal container consists of a polished aluminum plate to reflect thermal radiance 
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emitted from a target to the thermal camera.  The polished aluminum plate is 
a good reflector of thermal radiation due to its low emissivity value (approxi-
mately 0.09 for wavelengths of 8–14 μm) [1].  Consequently, the combination of 
the thermal camera, metal container, and polished aluminum plate act as a peri-
scope.  A Futaba remote control module (displayed in the bottom right corner of 
Fig. 2.1 (a)) is used to navigate the robot platform. 

The thermal camera secured at the bottom of the metal container and displayed 
in Fig. 2.1 (c) is a Raytheon ControlIR 2000B long-wave (7–14 micron) infrared 
thermal imaging video camera with a 50 mm focal length lens. The key specifica-
tions of the Raytheon ControlIR 2000B include: 320 X 240 pixel resolution, 30 Hz 
frame rate, 18° x 13.5° field of view (with 50 mm lens), and ferroelectric staring 

 
Fig. 2.1 Robotic thermal imaging system hardware:  (a) robot platform front view, (b) robot 
platform rear view, (c) Raytheon thermal imaging video camera, (d) VideoAdvantage USB video 
capture device, (e) Samsung tablet PC w/ Powerbank. 
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focal plane array detector type.  As discussed in Chap. 1, Planck’s blackbody 
radiation law tells us that the magnitude of the radiation emitted by an object var-
ies with wavelength for a given temperature.  A perfect emitter (or blackbody) 
with a surface temperature in the interval from 32° to 100°F radiates a greater 
magnitude of thermal energy in the wavelength interval of 7–14 microns compared 
to shorter wavelengths.  Therefore, radiation emitted from non-heat generating ob-
jects outdoors will peak in the long-wavelength range.  In the context of this re-
search, non-heat generating objects are defined as objects that are not a source for 
their own emission of thermal energy, and so exclude people, animals, vehicles, 
etc.  Consequently, a thermal imaging camera that is sensitive to long-wave ther-
mal radiation is an ideal sensor for our classification application involving non-
heat generating objects.  

Figure 2.1 (b) displays the rear view of the robot platform.  Two metal lockers 
with hinged doors are stacked behind the “periscope.”  A Barnant 90 Digital Ther-
mometer is attached to the top locker to allow the operator to record the ambient 
temperature.  The bottom locker provides storage for field supplies while the top 
locker holds a Samsung Tablet PC and Powerbank (Fig. 2.1 (e)).  Samsung Tablet 
PC has an Intel Celeron 900 MHz processor, 512 MB of RAM, and Microsoft 
Windows XP Tablet PC Edition operating system.  The Powerbank extends the 
tablet PC’s battery life by allowing the operator to continuously capture thermal 
images for up to approximately 2.5 hours.   

The process of capturing a thermal image of a specific target begins with the 
detectors in the camera’s Focal Plane Array (FPA) receiving the thermal radiation 
emitted from all of the surfaces of objects within the thermal scene.  The thermal 
scene consists of all objects within the camera’s field of view, which includes the 
target of interest and objects in the foreground.  In the context of this research, we 
define foreground as the region in the scene consisting of objects behind the target 
of interest and within the thermal camera’s field of view.  Background is defined 
as the region either in front or to the side of the target consisting of thermal 
sources that emit thermal energy onto the target’s surface.  The source emitting 
this thermal energy may or may not be in the camera’s field of view.  The thermal 
radiation received by the FPA is converted to an analog signal with a 320X240 
pixel resolution.  This analog signal is transmitted from the camera through a har-
ness cable assembly to a Voyetra Turtle Beach Video Advantage USB Video Cap-
ture device (see Fig. 2.1 (d)) that is attached to the Samsung Tablet PC.  The 
Voyetra Turtle Beach Video Advantage USB Video Capture device converts the 
composite analog signal from the camera to a digital signal.  The tablet PC re-
ceives the digital signal and a thermal image is displayed on the screen using the 
VideoAdvantage software that is installed on the tablet PC, discussed below.  
A camera control cable also connects the camera to the Samsung Tablet PC.  The 
Control IR Manager software installed on the tablet PC, discussed in the following 
section, uses this cable to make modifications to the camera’s memory.  During 
thermal image capturing sessions, the door on the top locker is closed to prevent 
glare on the tablet PC’s display screen caused by the sun.  With the door shut, the 
operator views the thermal image on the tablet PC’s display screen through the 
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black eyepiece and captures thermal images with the VideoAdvantage software us-
ing the mouse, both located on the top locker (see Fig. 2.1 (b)).   

2.2.2 Signal Preprocessing  

In this section, we will discuss the software used to capture and preprocess a ther-
mal image of an object prior to generating features.  The significance of preproc-
essing a thermal image is evident from the thermal image in Fig. 2.2.  The quality 
of this thermal image is affected by temporal and spatial signal degradations and 
dead pixels.  If the magnitude of these typical degradation processes is not mini-
mized, they will have a negative impact on our ability to generate relevant features 
from the thermal image and characterize unknown objects. 

 
Fig. 2.2 Thermal image prior to preprocessing. 

2.2.2.1 Signal Degradations 

Signal degradations consist of temporal and spatial signal degradations and dead 
pixels.  Temporal signal degradations consist of a temporal fluctuation in the sig-
nal at a low frequency (drift), mechanical vibrations due to the movement of cam-
era system relative to the target (jitter), and noise (electronic, optical, and struc-
tural) [2, 3].  The spatial signal degradations are displayed as the fine horizontal 
and vertical lines overlaid on the thermal image in Fig. 2.2.  These spatial signal 
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degradations are due to non-uniformities in the responsivity of the detectors in the 
FPA [2, 3].  We also see dead pixels (white specks throughout the image) resulting 
from a defect in the instrumentation caused by events such as heat deterioration or 
a high incidence of static electricity on a detector [4].   

Control IR Manager is software used to control the functionality of the Ray-
theon ControlIR 2000B infrared thermal imaging video camera.  The software is 
used to make modifications to the camera’s memory that will preprocess the ther-
mal images and minimize the effects of the degradation processes.  We will dis-
cuss the key software features used to preprocess our thermal images.  Figure 2.3 
displays the main menu of the Control IR Manager software.  The polarity switch 
in the upper left corner is set to White Hot, resulting in objects with apparent high 
temperature (hot) surfaces, relative to other objects in the camera’s field of view, 
to yield gray-scale values of 255 (white) in the thermal image.  On the other hand, 
objects that have an apparent low temperature (cold) surface, relative to other ob-
jects in the camera’s field of view, will yield gray-scale values 0 (black) in the 
thermal image.  Consequently, the thermal radiance emitted from surfaces of ob-
jects in the entire scene could result in various gray-scale values in the interval 
[0, 255].  This characteristic of the thermal camera will lead us to an important 
discussion on AC coupling and the AGC circuit that we will cover shortly.   

 
Fig. 2.3 Control IR Manager main menu. 
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We will now discuss how to make adjustments in the software to suppress the 
temporal and spatial signal degradations and dead pixels.  By selecting the Video 
icon from the Control IR Manager software’s main menu (Fig. 2.3) we get the 
Video Settings menu (Fig. 2.4).  By enabling Frame Integration with 16 frames, 
we can reduce the effects of temporal signal degradations by taking a frame-to-
frame average of the scene over 16 frames (the Raytheon ControlIR 2000B has 
a frame rate of 30 Hz).  Moving back to the main menu (Fig. 2.3) and selecting 
the Advanced icon, we go to the Advanced Video Settings menu (Fig. 2.5).  By 
enabling Normalization Correction in the Normalization Options menu, we are 
able to treat the spatial signal degradations due to the non-uniformity of the  
detectors in the FPA.  Our system uses a single-point non-uniformity correction 
method that normalizes (makes equal) the outputs for the individual detectors 
over a uniform thermal scene [5].  In single-point correction, the average of mul-
tiple images of a uniform thermal scene (single thermal input intensity or tem-
perature reference) is subtracted from live video to remove the non-uniformity 
[2, 3].  Also within the Normalization Options menu (Fig. 2.5), we can enable 
Pixel Substitution to store locations of dead pixels in the FPA and substitute  
the dead pixels with the mean value of horizontally adjacent good pixels.  After 
suppressing the temporal and spatial signal degradations and dead pixels found in 

 
Fig. 2.4 Control IR Manager video settings. 



 2.2 Robotic Thermal Imaging System 31 

Fig. 2.2, we obtain the resulting thermal image in Fig. 2.6.  Table 2.1 presents 
theprocedure to normalize the camera and store the reference in the camera’s memory 
to perform non-uniformity correction on subsequent thermal image frames.  

 
Fig. 2.5 Control IR Manager advanced video settings. 
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Table 2.1 Procedure to normalize the camera and store the reference in the camera’s memory to 
perform non-uniformity correction on subsequent thermal image frames [5]. 

(1) Setup the Raytheon ControlIR 2000B approximately 2.5 meters from a smooth, non-
shiny, surface with a low thermal reflectivity (i.e., high  emissivity), such as plywood with 
black spray painton the surface.  This uniform surface must take up the entire scene in the 
camera’s field of view. 
 
(2) Select the Factory icon (Fig. 2.3) and disable Norm Threshold inthe Factory Options 
menu. 
 
(3) At the main menu (Fig. 2.3), disable Digital Zoom. 
 
(4) Select the Advanced icon (Fig. 2.3) and the Normalization icon in Advanced Video Set-
tings (Fig. 2.5).  Enable Normalization Correction and Pixel Substitution in the Normalization 
Options menu. 
 
(5) In the Normalization Options menu (Fig. 2.5), select the Full Norm icon under Normalize 
System.  Run Full Norm for at least 5 minutes and then select Stop. 
 
(6) At the main menu (Fig. 2.3), enable Digital Zoom. 
 
(7) Again, in the Normalization Options menu (Fig. 2.5), select the Full Norm icon under 
Normalize System.  Run Full Norm for at least 5 minutes and then select Stop. 
 
(8) Select the Factory icon (Fig. 2.3) and enable Norm Threshold in the Factory Options 
menu. 

 
Fig. 2.6 Thermal image with preprocessing on temporal/spatial signal degradations and dead 
pixels. AGC is enabled. 
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2.2.2.2 AC Coupling 

As mentioned earlier, the polarity for the Raytheon ControlIR 2000B was set so 
the thermal radiance of the surfaces of objects in the entire scene could map to 
various gray-scale values in the interval [0, 255] where the extremes 0 (black) and 
255 (white) imply apparent cold and hot surfaces, respectively.  Furthermore, we 
mentioned that the gray-scale values of an object in a thermal image are assigned 
relative to other objects in the camera’s field of view.  This is a characteristic of 
thermal cameras with FPAs that is known as AC coupling.  AC coupling is inte-
grated into the Raytheon ControlIR 2000B so that small variations of the surface 
radiance of objects in a scene can be amplified [1].  Also, a thermal image is AC 
coupled horizontally along the rows in the image array.  A consequence of AC 
coupling is that a specific target in a scene with a constant thermal radiance could 
be assigned a large or small gray-scale value depending on the other surfaces in 
the surroundings within the camera’s field of view.  Furthermore, a target can only 
be seen in a thermal image when a thermal contrast exists between the target and 
other objects in the camera’s field of view.  Consequently, useful feature values to 
distinguish objects can only be generated when a thermal contrast exists in the 
thermal scene.  Of course, this makes the objective to classify non-heat generating 
objects even more challenging since these objects depend highly on prior solar en-
ergy absorption in order to emit thermal radiation.     

As a result of AC coupling, a target is not radiometrically correct (i.e., the gray-
level value is not a linear function of the apparent surface temperature).   
Figure 2.7 shows an example of AC coupling similar to one illustrated in [1].   
Figure 2.7 (a) simulates a scene with uniform thermal physical surface properties 
(i.e., emissivity, specific heat, etc.) but with different temperature regions.   
Figure 2.7 (b) displays the resulting thermal image of this scene after AC cou-

(a)

“COLD”
(75 deg F)

“COLD”
(75 deg F)

“HOT”
(77 deg F)

“HOT”
(77 deg F)

“AMBIENT”
(76 deg F)

 
Fig. 2.7 (a) AC coupling. Scene with different temperature regions. 
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pling.  As we see, the ambient region maintains a constant temperature of 76°F.  
However, with AC coupling applied horizontally along the rows in the image, the 
regions in each row are assigned gray-levels relative to other objects in the same 
row.  As a result, the upper half of the ambient region appears “hot” in Row 1 and 
the lower half of the ambient region appears “cold” in Row 2.   

2.2.2.3 Automatic Gain Control 

The effects of AC coupling alone will not hinder our ability to generate features to 
distinguish objects.  However, problems do arise when the amplifications of the 
gray-level values for an object at a constant temperature become extreme.  This is-
sue exists when the Raytheon ControlIR 2000B’s automatic gain control (AGC) 
circuit is enabled.  The AGC is an image enhancer that is designed to afford the 
operator with comfortable image viewing.  The AGC automatically adjusts the 
gain (and offset) to ensure the signals are within the camera’s dynamic range to 
minimize saturation of objects in the scene [2].  As a result of the AGC, the ther-
mal image of a bright object may be darker and dark object may be brighter.  
Thus, the AGC amplifies the effects of AC coupling.  Similar to AC coupling, the 
AGC results in gray-level values assigned to objects relative to other objects 
within a given window.  The effects of the AGC circuit are illustrated in Fig. 2.6.  
Even though the actual surface of the pole is approximately uniform in thermal 
properties (to include temperature), its thermal image displays an apparent tem-
perature difference between the bottom portion of the pole (with the building in 
the foreground) and top portion of the pole (with the sky in the foreground).   

To investigate the effects of the AGC circuit further, we analyzed variations in 
gray-level values of a cardboard tube with a constant surface temperature adjacent to 

(b)

Row 1

Row 2

 
Fig. 2.7 (b) AC coupling. Gray-level shades of regions in thermal image. 
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a cardboard tube that is heated to a given temperature and allowed to cool.  The card-
board tubes were secured in a thermally insulated box with an opening in the front and 
a thermal insulator separating the tube on the left (at a constant temperature) from the 
tube on the right (that was heated).  The experiment was conducted in a controlled  
environment with a constant surrounding radiance and ambient temperature of  
approximately 59.3°F.  The left cardboard tube with a constant surface temperature 
was maintained at approximately 86.5°F.  The surface of the right cardboard tube was 
heated to 110.8°F and allowed to cool to 65.8°F.  Ten images of the scene consisting 
of the two tubes were captured at increments of approximately 5°F based on the right 
cardboard tube that was cooling.  The mean gray-level values were recorded on the 
same segments of the two tubes for each image captured.  Figure 2.8 illustrates the 
experimental results with the AGC enabled.  Figure 2.8 (a) and 2.8 (b) display the 
first (right tube at 110.8°F) and tenth (right tube at 65.8°F) images captured, respec-
tively.  By comparing Fig. 2.8 (a) and 2.8 (b), we see that the tube on the left (main-
tained at a constant temperature) varies in gray-levels due to the AGC.  Figure 2.8 (c) 
displays the variations of the gray-levels for the constant and heated tubes as a func-
tion of temperature.  With the AGC enabled, the constant tube has a standard devia-
tion of 13.84 and range of 44.98 in the gray-levels.  Consequently, these extreme 
variations in gray-level values for the constant tube would hinder our ability to gener-
ate relevant features to distinguish objects.  Fortunately, we can make modifications 
to the Raytheon ControlIR 2000B’s memory, using the Control IR Manager soft-
ware, to disable the AGC by following the procedure presented in Table 2.2. 

We conducted another experiment under the same conditions as described above 
with the cardboard tubes, with the exception that the AGC was disabled.  Once again, 
the left cardboard tube with a constant surface temperature was maintained at ap-
proximately 86.5°F.  The surface of the right cardboard tube was heated to 110.4°F 
and allowed to cool to 65.8°F.  Ten images of the scene consisting of the two tubes 
were captured at increments of approximately 5°F based on the right cardboard tube 
that was cooling.  Figure 2.9 illustrates the experimental results with the AGC dis-
abled.  Figure 2.9 (a) and 2.9 (b) display the first (right tube at 110.4°F ) and tenth 
(right tube at 65.8°F ) images captured, respectively.  By comparing Fig. 2.9 (a) and 
2.9 (b), we see that the tube on the left (maintained at a constant temperature) appears 
to have minimal variation in gray-levels when the AGC is disabled.  Figure 2.9 (c) 

Table 2.2 Procedure to disable AGC by making modifications in the Raytheon ControlIR 
2000B’s memory using the Control IR Manager software [5]. 

(1) In the Video Settings menu (Fig. 2.4), select the Contrast icon to display the Gain Control 
Settings. Set the Digital Gain equal to 1, AGC Count Select to 6144 counts, and AGC Win-
dow to 80 Rows. 
 
(2) In the Video Settings menu (Fig. 2.4), select the Brightness icon to display Brightness 
Control Settings. Disable the Brightness Control.  
 
(3) In the Control IR Manager main menu (Fig. 2.3), set the Contrast Mode to Manual with a 
Value of 255 and Brightness Mode to Manual with a Value of 25002.  
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displays the variations of the gray-levels for the constant and heated tubes as a func-
tion of temperature.  With the AGC disabled, the constant tube has a standard devia-
tion of 2.16 and range of 7.22 in the gray-levels.  Thus, by disabling the AGC, the var- 
iations in the gray-level values for the constant tube are only due to AC coupling.  
Furthermore, by disabling the AGC, the thermal image of the pole displayed in 
Fig. 2.6 now provides acceptable results for the variation of gray-levels as displayed 

 
Fig. 2.8  Enabled AGC experiment with cardboard tubes (left tube at constant temperature of 
~ 86.5 deg F and right tube heated to 110.8 deg F and allowed to cool to 65.8 deg F).  (a) Image of 
tubes with right (heated) tube at 110.8 deg F, (b) Image of tubes with right (heated) tube at 
65.8 deg F, (c) Variations of gray-levels of constant and heated tubes as a function of temperature. 
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Fig. 2.9 Disabled AGC experiment with cardboard tubes (left tube at constant temperature of 
~ 86.5 deg F and right tube heated to 110.4 deg F and allowed to cool to 65.8 deg F).  (a) Image of 
tubes with right (heated) tube at 110.4 deg F, (b) Image of tubes with right (heated) tube at 
65.8 deg F, (c) Variations of gray-levels of constant and heated tubes as a function of temperature. 

in Fig. 2.10. Therefore, with the AGC disabled we can now generate relevant features 
from the thermal images of objects that will assist us in classifying the objects. 

At this point it is appropriate to mention the halo effect around the bottom por-
tion of the pole in Fig. 2.6.  The halo effect is common with ferroelectric FPAs 
where accurate imagery is assisted by a mechanical chopper wheel within the cam-
era.  As discussed in [6], capturing a thermal image of a target is a cyclic process. 
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Fig. 2.10 Thermal image with preprocessing on temporal/spatial signal degradations and dead 
pixels. AGC is disabled. 

Suppose the target is emitting more thermal radiation than any other neighboring 
object in the scene (either directly adjacent or behind the target).  To capture 
a thermal image, the target first emits radiation onto the back of the chopper wheel 
and the FPA obtains a charge reading from the wheel.  Next, the FPA obtains 
a charge directly from the actual target emitting the thermal radiation.  Lastly, the 
system electronically subtracts the charges with and without the chopper wheel to 
produce the thermal image.  However, the thermal radiation from the hot target that 
leaks through the camera’s chopper wheel is unfocused, leaving a larger radiation 
imprint on the FPA than that of the actual target.  When the system subtracts the 
charges with and without the chopper wheel, a halo is created around the “hot” tar-
get in the image that is darker than the “cold” foreground.  As we will see in 
Chap. 3, a “cold” target and “hot” foreground will result in a halo around the 
“cold” target that is a lighter shade than the “hot” foreground.  Fortunately, the halo 
effect will not interfere with our ability to generate thermal features for classifying 
objects.  As a matter of fact, we will discuss in Chap. 6 how we may be able to use 
the halo effect to facilitate the segmentation of targets [7]. 

2.2.2.4 Filters 

One of our goals in preprocessing is to suppress degradations in the signal without 
losing information that would assist in classifying objects in the scene.  Conse-
quently, we avoid filters that would lead to loss of relevant information used to distin- 
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Fig. 2.11 Thermal image of segment of brick wall: (a) without high pass filter, (b) with high 
pass filter. 

guish object classes.  For example, in the Video Settings menu (Fig. 2.4) of the Con-
trol IR Manager software we disable Peaking since this functionality performs 
a high-pass filter on the thermal image.  Figures 2.11 (a) and (b) display thermal im-
ages of the same segment of a brick wall without and with a high pass filter, respec-
tively.  As we see in Fig. 2.11 (b), applying a high pass filter results in a loss of infor-
mation that could be used by thermal features to classify objects. 
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Fig. 2.12 (a) Robotic thermal imaging system capturing an image of a wood fence. (b)  Thermal 
image of the  wood fence displayed with VideoAdvantage software. 
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2.2.2.5 Capturing Thermal Imagery 

After the analog signal from Raytheon ControlIR 2000B is converted to a digital 
signal by the Voyetra Turtle Beach Video Advantage USB Video Capture, the 
Samsung Tablet PC receives the digital signal and a thermal image is displayed on 
the screen using the VideoAdvantage software.  Figure 2.12 illustrates a scenario 
with the robotic thermal imaging system capturing an image of a segment of 
a wood fence.  The VideoAdvantage software displays live video and is capable of 
capturing continuous or still frames.  Our current research will focus on classify-
ing non-heat generating objects in thermal images using still frames.  However, 
we intend to extend our research to classify objects using continuous frames as 
discussed in Chap. 6.  The final preprocessing step before the feature generation 
phase is to convert the RGB (red, green, blue) image captured by the VideoAdvan-
tage software to a gray-scale image using MATLAB. 

2.3 Data Collection 

We now present the methodology used to collect the data needed to train and eva-
luate our pattern classification model.  We assume that the robot already makes use 
of algorithms to detect and segment a specific target, analogous to those discussed 
in Chap. 1.  In Chap. 6, we will discuss possible techniques for automated detection 
and segmentation of objects that we intend to integrate into our future research.  
Consequently, in the current research we will manually segment our targets. 

Thermal imagery was captured on a variety of non-heat generating outdoor ob-
jects during a nine-month period, at various times throughout the days and at vari-
ous illumination/temperature conditions.  The ambient temperature (in degrees 
Fahrenheit) was recorded during each session.  The images were captured using 
a Raytheon ControlIR 2000B long-wave (7–14 micron) thermal infrared imaging 
video camera with a 50 mm focal length lens at a distance of 2.4 meters from the 
given objects. The analog signals with a 320 X 240 pixel resolution were con-
verted to digital signals using a Voyetra Turtle Beach Video Advantage USB Video 
Capture device attached to a Samsung Tablet PC, all mounted on board a mobile 
robotic platform displayed in Fig. 2.1. The resulting digital frames were preproc-
essed as discussed in Sect. 2.2.    

The image data was divided into two categories: extended objects and compact 
objects.  The extended objects consist of objects that extend laterally beyond the 
thermal camera’s lateral field of view.  Our classes of extended objects consist of 
brick walls, hedges, wood picket fences, and wood walls.  The compact objects 
consist of objects that are completely within the thermal camera’s lateral field of 
view.  Our classes of compact objects consist of steel poles and trees.  The image 
data collected was partitioned into three mutually exclusive sets: training data, test 
data, and blind data.  The training data was used to design our pattern classifica-
tion model.  The performance of the model was assessed using the test and blind 
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data sets.  Since the test set was used as a validation set to tune the pattern classifi-
cation model, it was part of the training process and not being used to provide an 
independent error estimate.  Therefore, the blind data set was used for our inde-
pendent performance evaluation of the pattern classification model.     

Our objective is to design a pattern classification model that displays excep-
tional performance in classifying unknown non-heat generating objects in an out-
door environment.  To satisfy this objective, the data that we collect must com-
pletely and accurately represent the real world problem by consisting of all the 
meaningful variations of field data instances that the system is likely to encounter.  
Thus, our representative data was collected under diverse environments (climates), 
temperatures, solar energy conditions, and viewing angles.   

Figures 2.13 and 2.14 display the visible and typical thermal images of ex-
tended and compact objects, respectively, used for our training data that was col-
lected from 15 March to 22 June 2007 about The College of William & Mary 
campus.  The strips of black electrical tape shown in the visible images and dis-
playing a high thermal radiance in some of the thermal images are used as a refer-
ence emitter for generating the thermal features that we will discuss in Chap. 3.  
During each of the 55 sessions, the thermal images were captured on each object 
from two different viewing angles: normal incidence and 45 degrees from inci-
dence.  Table 2.3 and Fig. 2.15 present the frequencies of the object classes and 
ambient temperature distribution for the training data, respectively.   

The thermal images used for the test data consisted of the same objects used in 
the training data (Figs. 2.13 and 2.14).  The thermal images were captured at the 
same viewing angles as the training data.  However, the test data was collected 
over nine sessions from 25 June to 3 July 2007.  Table 2.3 and Fig. 2.15 present 
the frequencies of the object classes and ambient temperature distribution for the 
test data, respectively.   

The blind data set was collected over 14 sessions from 6 July to 5 November 2007.  
The thermal images used for the blind data set consisted of the same classes and were 
captured at the same viewing angles as the training data but were not the same objects.  
In addition to some blind data being collected on The College of William & Mary 
campus, data was also collected throughout York County, Virginia, in a village and 
on a farm outside Buffalo, New York, and on mountainous terrain in Eleanor, West 
Virginia.  Table 2.4 presents the frequencies of the objects in the blind data set as well 
as the locations that the data was collected.  Figure 2.15 displays the ambient tem- 

Table 2.3 Distribution of training and test data collected from 15 March to 3 July 2007. 

DATA 

TYPE

Brick 

Wall Hedges

Picket 

Fence 

(Wood)

Wood 

Wall

Steel 

Pole Tree Total

Training 105 107 107 105 318 318 1060
Test 18 16 16 18 48 52 168

OBJECT CLASSES

Extended Objects Compact Objects
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Fig. 2.13 Visible and thermal images of extended objects from the training data set.  (a) brick 
wall, (b) hedges, (c) wood picket fence, and (d) wood wall. 
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Fig. 2.14 Visible and thermal images of compact objects from the training data set. Steel poles: 
(a) brown painted surface, (b) green painted surface, (c) octagon shape w/ aged brown painted 
surface.  Tree: (d) basswood tree, (e) birch tree, (f) cedar tree. 

perature distribution of the blind data set.  Additionally, to evaluate the classification 
model’s response when confronted with other blind objects, to include objects out-
side the classes in the training data set, we included data consisting of a brick wall 
with moss on the surface, concrete wall, bush, gravel pile, steel picket fence, wood 
bench, wood wall of a storage shed, square steel pole, aluminum pole for a dryer vent, 
concrete pole, knotty tree, telephone pole, 4 × 4 wood pole, and pumpkin.       

Table 2.4 Distribution of blind data collected from 6 July to 5 November 2007. 

LOCATION

Brick 

Wall Hedges

Picket 

Fence 

(Wood)

Wood 

Wall 

Fence

Steel 

Pole Tree Total

New York 3 4 10 3 1 7 28
William & Mary 16 10 9 14 2 51
West Virginia 1 1
York County 4 9 4 6 17 12 52
Total 23 23 23 23 20 20 132

Extended Objects Compact Objects

OBJECT CLASSES
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2.4 Summary 

In this chapter, we discussed the first step in our pattern classification model de-
sign process – data acquisition.  We introduced our robotic thermal imaging sys-
tem consisting of the hardware and software used to acquire thermal data.  We al-
so discussed the methodology used to preprocess and collect our representative 
data set.  The methodologies used in our data acquisition are implemented prior to 
the feature generation step discussed in the next chapter.  
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3 Thermal Feature Generation 

Abstract  This chapter introduces the thermal features used to classify non-heat 
generating objects.  Examples are provided to illustrate the value of these features 
in distinguishing non-heat generating objects.  By generating feature values from 
the thermal images of non-heat generating objects, we will see how interpreting 
the effects of the outdoor environment and thermal properties of objects on their 
feature values is a subtle process.  We will also introduce a curvature algorithm 
that can be used distinguish compact objects from extended objects.   

3.1 Introduction 

In Chap. 2 we discussed the procedures for acquiring our thermal images.  We will 
now present the second step in our pattern classification model design process – 
thermal feature generation.  These features are unique representations of a non-
heat generating object that are derived from the given object’s thermal image.  In 
the context of this research, non-heat generating objects are defined as objects that 
are not a source for their own emission of thermal energy, and so exclude people, 
animals, vehicles, etc.  Our goal is to generate thermal features that not only assist 
in distinguishing one object class from another but also have a physical interpreta-
tion.  We will discuss three types of features – meteorological, micro, and macro.  
We will also present a curvature algorithm that will allow us to distinguish com-
pact objects from extended objects.  Compact objects consist of objects that are 
completely within the thermal camera’s lateral field of view, such as steel poles 
and trees.  Extended objects consist of objects that extend laterally beyond the 
thermal camera’s lateral field of view, such as brick walls, hedges, picket fences, 
and wood walls.  By generating feature values from the thermal images of non-
heat generating objects, we will witness how trying to interpret the effects of the 
outdoor environment and thermal properties of objects on these feature values is 
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a subtle process.  In the next chapter, we will evaluate the features’ classification 
performance and select the most favorable set of features. 

3.2 “Ugly Duckling” Features      

Our thermal-physical features are generated from an object’s signal data received 
by a Raytheon ControlIR 2000B long-wave infrared thermal imaging video cam-
era.  Through the process of feature generation, the underlying physics of the in-
formation in the thermal signal produced by a given object is analyzed to generate 
unique representations of the object.  These features are used to distinguish one 
object class from another.  Ideally, features are chosen that have minimal variation 
with changes in the viewing angle and/or distance between the object and sensor, 
temperature, and visibility.  Since our objects do not generate their own heat en-
ergy, their thermal signature depends on their thermal properties and external heat 
sources such as the sun and other objects in the surrounding environment.  As 
a result, the amount of thermal radiation emitted from our objects during condi-
tions of limited visibility will depend on the time history of radiation received 
from external sources.  Consequently, the complexity of our application increases 
due to the variation in thermal radiance of objects in the scene primarily caused by 
the diurnal cycle of solar energy. 

Thermal feature generation is a crucial step in our quest to design a pattern 
classification model that will allow us to classify non-heat generating objects in an 
outdoor environment.  As we will see in Chap. 4, the performance of a classifier is 
a function of the feature set.  According to the Ugly Duckling Theorem [1], there 
is no problem independent, universal, or “optimal” set of features.  If a set of fea-
tures appears to perform better in a classification model than another, it is a result 
of its fit to the particular pattern classification application.  In our case, not only do 
we desire a set of features that maintain their discriminating information, we also 
seek features that retain their physical interpretation.   

There are many choices for the type of features to use in a classification model.  
Reviews of the various types of features are found in [2, 3, 4, 5, 6, 7].  Two popular 
types of features used in pattern recognition are moment invariants and Fourier-
Mellin descriptors.  Moment invariants are geometric features that were first intro-
duced to the pattern recognition community by Hu [8].  Hu’s seven famous mo-
ments were derived from the normalized central moments of an object’s image [3].  
Since then, various improvements have been made to Hu’s work.  Mistakes in Hu’s 
theory were corrected by Reiss [9].  Flusser [10] showed that Hu’s system of seven 
moments is not independent, implying redundancy in the set of features.  Consider-
able research has focused on moments as geometric descriptors that are invariant 
with respect to translation, rotation, scaling, illumination and blurring of an object 
in an image [11, 12, 13, 14].  However, moments have a tendency to be sensitive to 
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noise [15].  Another set of features that permit objects in images to be classified ac-
cording to their shapes are the Fourier-Mellin descriptors, introduced by Casasent 
and Psaltis [16, 17].  Fourier-Mellin descriptors are generated from the frequency 
domain of an object’s image and used for invariant pattern recognition [18, 19].  
The Fourier-Mellin descriptors are also related to Hu’s moment invariants [20].  
Neither moments nor Fourier-Mellin descriptors are a desirable choice for our fea-
tures since they lack physical meaning for cases above the third order.   

The majority of the classification research involving thermal imagery has in-
volved generating features based on the radiance emitted from heat generating ob-
jects or non-heat generating objects that require a thermal excitation in a control-
led environment.  Heat generating objects could include people, ground vehicles, 
or marine vehicles.  The classification problems in the literature involving people 
usually involve identification and tracking [21] and facial recognition [22].  Re-
search involving the classification of ground vehicles is found in [23, 24].  Fang 
and Wu [25] approached armored vehicle classification by generating geometric 
features, based on Hu’s seven moment invariants, from the thermal images of 
English letters used to represent the contours and wheels of armored vehicles.  
The features were entered into a neural network where final recognition of a letter 
was achieved through repeated computation and learning.  Classification of ships 
by comparing their silhouettes against a library of templates is discussed in [26].  
Common to these referenced applications is that classification is based purely on 
geometric features, rather than thermal-physical features generated from the tar-
get’s surface.   

There have been only a few research studies found in the literature involving 
thermal-physical features generated from a target’s surface for classification ap-
plications.  Nandhakumar and Aggarwal [27] generated features based on esti-
mated values of surface heat fluxes to interpret surfaces in an outdoor scene.  Sur-
face temperatures were estimated from a thermal image by assuming that all 
objects in the scene have an emissivity of approximately 0.9.  A visual image of 
the same scene was used to estimate surface absorptivity and relative orientation 
of the viewed surface.  These estimations were used together to estimate the heat 
fluxes at the surfaces in the scene.  The assumption of a relatively constant emis-
sivity was continued in follow-on research to generate thermo-physical and geo-
metric invariant features from thermal images to classify ground vehicles [28].  
Geometric features based on lines and conics were generated from a given region 
in a thermal image to hypothesize the type of ground vehicle and its pose.  Ther-
mal-physical features are formed from both temperature estimates generated from 
the thermal image and material properties associated with the hypothesized vehi-
cle type and pose.  The resulting thermal-physical features are compared with 
a model prototype based on features expected from the hypothesized vehicle to 
assess the hypothesized vehicle class.  Bharadwaj and Carin [29] generate tem-
perature features estimated from the thermal radiance emitted from various re-
gions on ground vehicles.  Vehicles are classified based on the correlation be-
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tween the feature vectors generated from the different regions on a vehicle and 
a given template.  Maadi and Maldague [30] generate features based on tempera-
ture estimations and geometries to classify people and ground vehicles.  A mul-
tisensor data fusion system using infrared cameras, visual (CCD) cameras, and  
laser radar sensors for classifying ground vehicles is described in [31].  The fea-
tures used by this system include geometric attributes, temperature estimations, 
and colors generated from the target.  

There are also many machine vision industrial applications that rely on thermal 
features generated from the surface of objects to monitor quality control [32, 33, 
34].  These applications normally involve feature generation in a controlled in-
doors environment using a thermal excitation to monitor packaging standards and 
detect anomalies in products.  For instance, in the food industry thermal features 
could be generated to monitor the seals on food containers [35] or detect anoma-
lies in food [36].   

The feature generating techniques in the previous research discussed above are 
not an appropriate choice for our application.  Classification of objects in thermal 
imagery has mainly involved geometric features, rather than thermal-physical fea-
tures generated from the target’s surface.  Consequently, classification of objects 
has traditionally involved detecting and segmenting thermal “blobs” in the image 
and generating shape features that are compared to those in database or library of 
templates.  This limitation was mainly a result of the state of the art available in 
thermal image based systems.  Thermal imaging systems did not have the resolu-
tion to obtain detailed information about an object’s surface.  However, our object 
classes do have a noticeable distinction when comparing their surfaces in a ther-
mal image.  Thus, it appears that appropriate features for our application will con-
sider information about the objects’ surfaces found in the thermal image. 

The previous research that did involve the generation of thermal features from 
an object’s surface required the visible spectrum and/or included temperature es-
timates.  However, to classify non-heat generating objects during conditions of li-
mited visibility, we should not generate features that rely on the visible spectrum.  
Moreover, thermal cameras do not read temperature on an objects surface directly.  
To generate an estimated temperature feature from thermal imagery, one must en-
ter a measured or assumed emissivity of the target’s surface [37].  Emissivity is 
a surface property that provides a measure of an object’s ability to emit thermal 
energy.  Furthermore, emissivity is a function of the type of material, viewing an-
gle, and the object’s surface quality, shape, and temperature [38, 39, 40].  The lev-
el of radiance presented by an object’s surface in a thermal image depends on the 
object’s emissivity.  Consequently, we should not assume an emissivity for an un-
known object that we desire to classify.  The remote sensing community has suc-
cessfully used emissivity as a feature to assist in discriminating between vegeta-
tion and bare soil [41].  Therefore, an appropriate choice for a feature derived 
from the thermal image of a non-heat generating object in an outdoor environment 
seems to be emissivity, not an apparent surface temperature.   
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Besides the emissivity feature used in remote sensing, we have not identified 
any other previous research involving the generation of surface features from the 
thermal imagery of a non-heat generating object in an outdoor environment.  How-
ever, in the visible spectrum, discriminating information about an object’s surface 
has been obtained using texture features.  Weszka, Dyer, and Rosenfeld [42] pro-
vide an informative study that compares visual texture features for terrain classifi-
cation in the field of remote sensing.  They concluded that texture features based on 
first-order and second-order statistics displayed good terrain classification results.  
The term texture is difficult to define and takes on many definitions in the litera-
ture.  Furthermore, the concept of texture has been traditionally motivated by hu-
man’s visual perception of material surfaces [5, 43].  We adopt the definition of 
texture as a feature dependent on the spatial variation in pixel intensities (gray-
level values) [5].  Using this definition of texture allows us to denote an object’s 
variation in surface radiance as the spatial variation in pixel intensities (gray-level 
values) observed in the object’s thermal image.  Since our object classes do have 
a noticeable distinction when comparing their surfaces in a thermal image, first- 
and second-order texture features seem to be appropriate for our application.  

Since we are working with thermal images of non-heat generating objects, the 
radiance of the objects not only depends on the diurnal cycle of solar energy but 
also is a function of the object’s thermo-physical properties.  Consequently, fea-
tures based on emissivity and texture seem appropriate since they are generated 
from information in the thermal image that encompass the thermo-physical prop-
erties of the object that depend on the diurnal cycle of solar energy.  In this re-
search, the generation of these features from segmented objects in thermal images 
are computed offline in MATLAB.   

The remainder of this chapter will proceed as follows.  In Sect. 3.3, we will 
discuss the characteristics of our thermal gray-scale image used for generating fea-
tures.  Section 3.4 will present our meteorological features consisting of the ambi-
ent temperature and a rate of change in the ambient temperature.  In Sect. 3.5, we 
will discuss our micro features based on the emissivity of our target’s surface.  
Section 3.6 will present our macro features based on first- and second-order tex-
ture features.  We will provide an application involving our meteorological, micro, 
and macro features in Sect. 3.7.  Section 3.8 will present a curvature algorithm that 
will allow us to distinguish compact objects from extended objects.  Section 3.9 
will provide a summary of the chapter.      

3.3 Thermal Image Representation 

In this section we will define how our thermal gray-scale (or gray-level) im- 
ages are represented throughout our research.  Figure 3.1 (a) displays our robotic  
imaging system capturing a thermal image of a fence segment denoted with the 
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rectangular solid border.  Figure 3.1 (b) presents the resulting thermal image of 
the fence segment.  Assuming our object of interest is opaque to thermal radia-
tion, the thermal energy leaving the segmented region consists of energy emitted 
and reflected from both the fence’s surface and surfaces behind the fence but view- 
ed within the gaps between the fence’s wood boards.  For non-heat generating 
targets, the amount of energy absorbed, emitted, and reflected from the surface 
depends on the target’s thermal and physical surface properties and amount of en-

(a)

(c)(b)

N......321

1 94 97 94 90 87 88 83 80 75 73 73 62 62 55 51 57 53
2 94 97 91 90 90 90 82 76 76 69 71 62 62 55 54 53 53
3 97 94 94 90 88 88 80 80 76 69 71 62 62 59 51 55 53
. 95 97 89 90 90 88 80 81 77 69 68 64 64 55 54 57 51
. 94 97 90 90 88 88 83 77 73 68 71 62 64 59 57 55 51
. 94 94 94 94 87 88 83 79 76 69 71 62 64 60 54 59 55

95 97 90 90 90 86 83 80 73 69 69 66 66 58 55 57 52
97 97 90 94 90 88 82 80 76 69 71 65 64 62 58 60 55
93 97 91 90 88 88 80 80 76 71 71 62 66 59 58 60 55
95 98 89 90 88 88 84 76 76 71 68 66 66 61 60 60 57
95 94 90 94 88 88 83 79 76 69 69 66 64 62 60 60 59
95 98 89 94 90 86 82 80 76 69 68 67 66 61 62 62 59
95 97 89 94 87 88 83 76 76 69 68 67 66 61 62 62 60
93 95 91 91 86 87 80 80 76 69 71 66 66 61 62 62 58

. 95 97 89 94 87 88 83 75 74 68 69 65 66 61 59 62 58

. 97 97 89 94 86 88 81 76 74 68 69 66 64 62 60 60 58

. 95 95 90 90 88 88 80 80 76 68 69 67 64 61 60 62 58
M 95 95 87 91 86 87 83 73 74 69 66 64 64 60 58 59 57

c

r  
Fig. 3.1 Thermal Image Representation:  (a) sources of radiance emitted from fence segment and 
received by the camera, (b) thermal image of fence segment, (c) data array of gray-level intensi-
ties from segment of thermal image. 
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ergy received by the surface from thermal sources either in front or to the side of 
the target.  The energy received by the target’s surface from other thermal sources 
is called irradiance.  The energy leaving the target’s surface regardless of the 
physical cause (emitted plus reflected) is called radiosity.  Radiosity is a radiant 
flux defined as the rate at which thermal radiation leaves the surface due to emis-
sion and reflection per unit area of the target’s surface (W ⋅ m –2).  Radiosity is the 
thermal energy received by the detectors in the thermal imaging camera.  How-
ever, radiosity is normally expressed as radiance (W ⋅ m–2 ⋅ sr –1) to associate the 
quantity to the thermal camera’s response displayed by the thermal image, analo-
gous to the human’s visual response to luminance [44].  Unless we specify the 
type of radiance (i.e., emitted or reflected), we will assume all radiance received 
by the thermal camera is derived from radiosity. 

We will now define the terms foreground and background of our thermal 
scenes with respect to the thermal camera’s position and field of view.  Fore-
ground is the region in the scene consisting of objects behind the target of interest 
and within the thermal camera’s field of view.  Due to the opaqueness of our 
classes of objects, they are not normally influenced by the thermal radiance emit-
ted from the objects in the foreground.  On the other hand, the radiance emitted by 
the objects in the foreground could have an effect on the thermal camera’s AC 
coupling.  As discussed in Chap. 2, AC coupling could result in a target with 
a constant thermal radiance being assigned variations in gray-level values depend-
ing on the radiance of the foreground.  Fortunately, these variations in the gray-
level values of a target’s thermal image will not impact our ability to generate fea-
tures as long as the AGC is disabled.  Background is defined as the region either in 
front or to the side of the target consisting of thermal sources that emit irradiance 
onto the target’s surface.  The source emitting this irradiance may or may not be in 
the camera’s field of view.  Referring back to Fig. 3.1, a portion of the total ther-
mal radiance received by the camera comes from the foreground radiance emitted 
from the gaps in wood fence (denoted by the dotted arrow) and background irradi-
ance from the vinyl siding on the building (dashed arrow) that is both reflected 
from the fence’s surface (dashed arrow) and absorbed and then emitted from the 
fence’s surface (solid arrow).     

Figure 3.1 (c) displays the gray-level array (or matrix) of the thermal image 
segment denoted with the rectangular solid border in Fig. 3.1 (b).  The gray-level 
array consists of M rows and N columns such that each pixel element at coordi-
nate (r, c) is mapped to a gray-level value from the range [0, 255] by the func-
tion I(r, c) that depends on the radiance emitted by the surfaces in the thermal 
image.  Thus, a surface emitting a high amount of radiance is assigned a higher 
gray-level value compared to a surface that is emitting a lower radiance.  In the 
field of thermography for nondestructive testing (NDT) (or nondestructive 
evaluation (NDE)), a thermal imaging camera is used to record the distribution of 
apparent surface temperatures to assess the structure or behavior of what is under 
the surface [32].  To compute these apparent temperatures of the structure’s sur-
face, the operator must input the object’s emissivity and ambient temperature 
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[37, 38].  However, in our application we are seeking to assign a class to an un-
known object.  Therefore, we do not know the target’s emissivity.  Consequent-
ly, we will relate the gray-level values to the amount of radiance emitted by the 
objects’ surfaces in a thermal image, not their apparent surface temperatures.  As 
shown in Fig. 3.1 (c) the values of the gray-levels decrease from left to right in-
dicating a region of higher radiance emission on the left and lower emission on 
the right side of the segment in Fig. 3.1 (b).  Moreover, the object’s radiance in-
put is not linearly related to the thermal camera’s digital gray-level value output 
due to AC coupling. 

3.4 Meteorological Features 

Since the thermal properties (such as conductivity, emissivity, and specific heat) 
of our non-heat generating objects primarily depend on solar energy, the amount 
of thermal radiance emitted at the surface is dependent on solar energy as well.  
Therefore, we can estimate current and historical effects of the diurnal cycle of so-
lar energy on the amount of radiance emitted from an object’s surface by generat-
ing features based on the ambient temperature. 

3.4.1 Ambient Temperature 

The effects of solar energy on the amount of radiance emitted from an object’s 
surface is estimated by the ambient temperature (°F ) feature recorded in same vi-
cinity of the target at the time (t) defined by: 

 [ ]= aTa T t
 (3.1) 

3.4.2 Ambient Temperature Rate of Change 

The historical effects of solar energy on the amount of radiance emitted from an 
object’s surface is determined by a first order backward difference quotient about 
the current time (t) with =Δt 30 minutes. 
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3.5 Micro Features 

Micro features are based on the thermal-physical properties of our targets’ sur-
faces.  Particularly, we derive micro features based on the emissivity of an object.  
The term emissivity is assigned to ideal materials and emittance is used to charac-
terize real materials with surface defects and irregularities [38].  However, we use 
emissivity for our real materials to avoid confusion since this term is used most of-
ten in the infrared community.  

Emissivity is a surface property that provides a measure of an object’s ability 
to emit thermal energy.  Emissivity is expressed as the ratio of thermal radiation 
emitted by an object’s surface to the thermal radiation emitted by a perfect emit-
ter (blackbody) under the same surface temperatures, viewing angle, and spectral 
wavelengths [32].  Emissivity is a unitless quantity on a scale from 0 to 1.  A per-
fect emitter of thermal radiation has an emissivity value of unity while a perfect 
reflector has an emissivity value of zero.  When an object is in thermal equilib-
rium with its local environment, Kirchhoff’s law implies that the amount of ther-
mal energy emitted by an object’s surface is approximately equal to the amount 
absorbed for a specified wavelength and direction.  Therefore, a common saying 
in the thermography community is that a good absorber is a good emitter and 
a poor absorber is a good reflector.   

A material’s emissivity is not a constant parameter.  Emissivity is a function of 
the type of material, viewing angle, and the object’s surface quality, shape, and 
temperature [32, 38, 39, 40, 45, 46].  Emissivity could also vary with wavelength; 
however, in our research we assume all objects are graybody emitters.  If an object 
is a graybody emitter, its emissivity will not depend on wavelength [37].  The 
amount of thermal radiance emitted by a target and detected by a thermal imaging 
camera depends on the emissivity of the target.  Thus, the higher an object’s emis-
sivity, the more thermal radiance it will emit.   

3.5.1 Emissivity Variation by Material Type 

Emissivity varies by the type of material (metallic or nonmetallic) and type of 
coating on the surface (such as paint, dust, dirt, or corrosion due to oxidation).  
Polished metallic surfaces generally have a low emissivity (appear very reflec-
tive), but the amount of thermal emission can be increased by the presence of cer-
tain paints or oxide layers on the surface.  As an example of the reflective quali-
ties of a polished metallic surface, consider the visible image of the aluminum 
plate in Fig. 3.2 (a).  The thermal image of the aluminum plate in Fig. 3.2 (b)  
displays the irradiance from a portion of a house in the background being  
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reflected off the plate.  We may also have to contend with objects that have 
a high emissivity and are opaque to thermal radiation.  For example, consider  
the plate of glass with an emissivity of approximately 0.92 [38] in front of the 
pine tree log in Fig. 3.3 (a).  As we see in Fig. 3.3 (b), the glass plate is opaque  
to the thermal radiation emitted by the pine tree log displayed in Fig. 3.3 (c).   
The emissivity values of metallic and nonmetallic materials are available in  
many references with topics involving thermography and/or radiative heat transfer 
[32, 38, 45, 46].    

 
Fig. 3.2 Aluminum plate with low emissivity.  (a) visible image of aluminum plate. (b) thermal 
image of aluminum plate. 
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Fig. 3.3 Glass plate with high emissivity and opaque to IR radiation.  (a) visible image of glass 
plate in front of pine tree log. (b) thermal image of glass plate in front of log. (c) thermal image 
of log without glass plate in front. 
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3.5.2 Emissivity Variation by Viewing Angle 

The variation of emissivity with the viewing angle of the thermal camera with re-
spect to the target also depends on the target’s surface material.  Some typical 
trends in the emissivity of nonmetallic and metallic materials are shown in 
Fig. 3.4, as given by [46].  For nonmetallic materials such as wood and vegeta-
tion, the emissivity remains rather constant across variations in the viewing angle 
up to about 50 degrees from normal incidence [32].  On the other hand, the emis-
sivity of smooth metallic surfaces tends to be lower at normal incidence than at 
other viewing angles.   

 
Fig. 3.4 Variation of emissivity with viewing angle for a number of (a) nonmetallic and (b) me-
tallic materials. [46] 
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3.5.3 Emissivity Variation by Surface Quality 

The effects of surface quality on the thermal radiance emitted from a target’s surface 
are difficult to model since the characteristics of smoothness or roughness may be 
very different from surface to surface.  A discussion on models used to measure sur-
face roughness is found in [46].  In general, smooth, polished surfaces like the alumi-
num plate in Fig. 3.2 (a) can result in a more specular reflection (lower emissivity) 
than rough surfaces such as bricks that have a diffuse surface (higher emissivity).   

3.5.4 Emissivity Variation by Shape and Surface Temperature 

When viewing a still frame of a vertically placed cylindrical object with uniform 
irradiance using a thermal imaging camera, we should witness a variation in radi-
ance as we scan horizontally from the center to the periphery of the object in the 
image.  This variation in radiance is due to the object’s directional variation of 
emissivity.  On the other hand, we should not see any significant variation in radi-
ance when scanning the thermal image of a flat object in the same manner with the 
camera at normal incidence.  To demonstrate how emissivity varies with an ob-
ject’s shape (directional variation) and surface temperature, black electrical tape 
was wrapped around a cardboard cylindrical tube placed in a position such that the 
irradiance was constant and uniformly distributed.  The interior of the tube was 
heated to 114.8°F and thermal images were captured at increments of 2°F as the 
tube cooled to an ambient temperature of 56. 3°F.  An averaged vertical radiance 
(gray-level) was computed using the thermal radiance from the tape in each ther-
mal image.  Figure 3.5 displays how the averaged radiance varies horizontally 
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Fig. 3.5 Variation of emissivity with object shape and surface temperature. 
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along the segment of tape.  Since the irradiance is constant and uniformly distrib-
uted, the variation in radiance at each temperature increment is due to the direc-
tional variation of emissivity.  However, we must be aware that a higher surface 
temperature does not necessarily yield a higher emissivity.  The emissivity of 
a conductor will increase with increasing surface temperature, but the emissivity 
of a nonconductor may either increase or decrease with increasing surface tem-
perature depending on the specific material [45].   

3.5.5 Other Directional Variation Enhancers 

Vertical cylindrical objects in an unstructured outdoor environment will not only 
display variations in radiance due to the directional variation of emissivity, irradi-
ance from the background and solar energy could also have a significant effect on 
the variation in radiance.  Thus, the irradiance as well as the surface temperature 
may not be uniformly distributed on the object.  For instance, consider an experi-
ment to capture a thermal image of a pine tree log with varying irradiance from 
sources in the background.  Thermal images of a pine tree log were captured out-
side on 29 December 2006 with an ambient temperature of 66.9°F.  The thermal 
imaging camera captured the images while facing the center segment of the log at 
normal incidence, 2.4 meters from the log.  The surface temperature measurements 
of the pine tree log at the time the images were captured along with the experimen-
tal setup are shown in Fig. 3.6 (a).  A building’s brick wall with a surface tempera-
ture of 80.2°F is located 3.4 meters to the left of the log and the sun is located in the 
direction as displayed in Fig. 3.6 (a).  Figure 3.6 (b) shows the thermal image of the 
log with the irradiance from the brick wall.  Figure 3.6 (c) shows the thermal image 
of the log with the irradiance from the wall blocked using a sheet of drywall posi-
tioned 0.6 meters from the log.  Figure 3.6 (d) compares the gray-level values as 
we scan horizontally along the tape segment on the log of the irradiance from the 
brick wall and the irradiance from the dry wall (brick wall blocked).  The scenario 
presented in Fig. 3.6 allows us to see the simultaneous effects of solar energy, ir-
radiance from the background, and directional variation of the object’s surface 
emissivity.  Perhaps we would expect a decrease in the radiance on the left side of 
the log when the irradiance from the brick wall was blocked using the sheet of 
drywall.  On the contrary, the sheet of drywall introduced a new and greater source 
of irradiation.  However, as we scan from the center to the right of both images, the 
radiance remains approximately equal.   

In Chap. 2, we introduced the halo effect commonly viewed in thermal images 
where a strong thermal contrast exists between the target’s surface and foreground 
within the camera’s field of view.  As we discussed, this halo effect is the result of 
the mechanical chopper wheel within the camera during cyclic process of capturing 
a thermal image of an object.  Two scenarios will result in a halo appearing around 
an object in its thermal image.  First, a “hot” target and “cold” foreground will result 
in a thermal image with a halo around the “hot” target that has a smaller gray-level 
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value (darker shade) than the “cold” foreground as displayed in Fig. 3.7 (a).  The 
second scenario is a “cold” target and “hot” foreground resulting in a thermal image 
with a halo around the “cold” target that has a larger gray-level value (lighter shade) 
than the “hot” foreground as displayed in Fig. 3.7 (b).  Consequently, the halo 
around the target in these two scenarios will also influence how the camera’s AC 
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Fig. 3.6 Directional variation of emissivity for a pine tree log outdoors. (a) experimental setup, 
(b) pine tree log with brick wall irradiance, (c) pine tree log with dry wall irradiance.  (d) gray-
level comparisons of brick wall vs. dry wall. 
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coupling will effect the assignment of gray-level values at the periphery in the tar-
get’s thermal image.  Thus, the peripheries of the pine tree log in Fig. 3.7 (a) are as-
signed a large gray-level value (lighter shade) due to the neighboring halo with 
a “colder” (smaller gray-level value) apparent temperature than the actual fore-
ground.  On the other hand, the peripheries of the pine tree log in Fig. 3.7 (b) are as-
signed a small gray-level value (darker shade) due to the neighboring halo with 
a “hotter” (larger gray-level value) apparent temperature than the actual foreground.  
These two scenarios of the halo effect will also contribute to the variations in radi-
ance that already exist due to the directional variation of emissivity and irradiance 
from sources in the background. 

The majority of our compact objects display variations in radiance from the 
center to the peripheries due to the directional variation of emissivity, irradiance 
from sources in the background, and/or halo effect.  Since these larger variations 

 
Fig. 3.7 Halo effect resulting from a (a) “hot” target and “cold” foreground and (b) “cold” target 
and “hot” foreground.
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in radiance at the peripheries caused by irradiance from sources in the background 
and the halo effect may interfere with our ability to generate relevant features, we 
will generate all our features for compact objects using only their center segment 
in the thermal image.       

3.5.6 Emissivity-based Features 

The amount of thermal radiation emitted by our non-heat generating objects will 
depend on their emissivity and thermal irradiance emitted from external sources in 
the environment.  The primary external source of thermal energy for our outdoor, 
non-heat generating objects is the sun.  Therefore, features based on emissivity 
will allow us to capture variations in thermal-physical properties that depend on 
the solar energy and are unique to an object class.     

The fundamental equation that allows us to measure the radiance emitted from 
an object’s surface is given by [44]: 

( ) ( ) ( ) ( ) ( ) ( )1 1τ ε τ ε τ= + − + −� � �
o o o o o b aL T L T L T L T  

(3.3)

where oL  is the radiance detected by the camera, L~  is the total radiance of 
a blackbody, oT  is the surface temperature of the object, bT  is the background 
temperature, aT  is the ambient temperature, τ  is the transmission coefficient of 
the atmosphere, and oε  is the emissivity of the object (the object is assumed to be 
a graybody emitter and opaque).  Since we are maintaining a camera to target dis-
tance of 2.4 m, we can neglect any effects due to the atmosphere and assign an 
atmospheric transmittance of approximately 100% [32] so that Eq. 3.3 becomes: 

( ) ( ) ( ) ( )1ε ε= + −� �
o o o o o bL T L T L T  

(3.4)

If we assume an opaque object with a diffuse surface, the distribution function 
( ) ( )1 ε− �

o bL T  is independent of the incidence reflection angles so that 

( ) ( ) ( )1
1

ε
ε

π
−

− ≈� o
o bL T E , where E  is the irradiance energy on the target from 

the surrounding background environment.  As noted in [44], 
π
E  can be evaluated 

by measuring the radiance reflected by a diffuse surface, such as crinkled alumi-
num foil.  Aluminum foil is a good reflector of thermal radiation due to its low 
emissivity value (approximately 0.04 for a wavelength of 10 μ m at 78.8 DF ) [38].  
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Letting our irradiance from the background be estimated by ( )
π

=b b
EL T , Eq. 3.4 

becomes: 

( ) ( ) ( ) ( )1ε ε= + −�
o o o o o b bL T L T L T  (3.5)

The scenario for the radiance received by the thermal imaging camera from an 
object’s surface is displayed in Fig. 3.8 (a).  Figure 3.8 (b) shows a thermal image 
of the cedar tree displayed in Fig. 3.8 (a) captured at 0545 hrs (before sunrise) on 

 
Fig. 3.8 (a) Thermal radiance received by the thermal imaging camera.  (b) Thermal image of 
cedar tree captured at 0545 hrs on 17 March 2006.
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17 March 2006.  The ambient temperature was approximately 45.7°F.  The mobile 
robot was positioned as displayed in Fig. 3.8 (a).  Not only is the thermal imaging 
camera able to detect radiance coming from the cedar tree but we also see the in-
fluence of irradiance coming from the brick wall as indicated by the higher radi-
ance on the right side of the cedar tree in the thermal image. 

We will now derive an equation to estimate the emissivity of an object, εo, us-
ing a reference emitter with a known emissivity of εr that is applied to the object 
so both are at the same surface temperature, subject to the same thermal irradiance 
from the background, and opaque.  Let the radiance from the object’s surface be 
given by Eq. 3.5 and the radiance from the reference emitter’s surface be given by: 

( ) ( ) ( ) ( )1ε ε= + −�
r o r o r b bL T L T L T  (3.6)

We now solve Eqs. 3.5 and 3.6 in terms ( )oTL~ , and algebraically combine the 

resulting equations to eliminate ( )oTL~ .  From Eq. 3.5 we have: 

( ) ( ) ( ) ( )1 ε
ε

− −
=� o o o b b

o
o

L T L T
L T

 
(3.7)

From Eq. 3.6 we have: 

( ) ( ) ( ) ( )1 ε
ε

− −
=� r o r b b

o
r

L T L T
L T

 
(3.8)

Combining these results we have: 

( ) ( ) ( ) ( ) ( ) ( )1 1ε ε
ε ε

− − − −
=o o o b b r o r b b

o r

L T L T L T L T

 
(3.9)

Solving for oε  we obtain our desired equation for the emissivity: 

( ) ( )
( ) ( )ε ε

−
=

−
o o b b

o r
r o b b

L T L T
L T L T  

(3.10)

Madding [37] uses this result to investigate how emissivity measurement accu-
racy affects temperature measurement accuracy.   

For our micro features, we continue to recognize the surface radiances’ de-
pendencies on temperature; however, we simplify our emissivity equation by let-
ting ( )ooo TLL = , ( )orr TLL = , and ( )=b b bL L T .  To ensure consistency with the 
notation used for our thermal-physical features, we will also change our symbol 
for emissivity so that oEo ε= .  Therefore, our emissivity feature is defined by: 

ε−
=

−
o b

r
r b

L L
Eo

L L  
(3.11)
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To compute the emissivity feature Eo, the values of L0, Lr, and Lb are first de-
rived from the mean of the thermal radiance (gray-level values) of surface seg-
ments in the thermal images of the object, reference emitter, and aluminum foil, 
respectively.  These values are then substituted into Eq. 3.11 to obtain our estimate 
of Eo.  As noted earlier, emissivity is a function of the type of material, viewing 
angle, and the object’s surface quality, shape, and temperature.  Since compact ob-
jects (particularly cylindrical objects) display variations in radiance from the cen-
ter to the peripheries due to the directional variation of emissivity, irradiance from 
sources in the background, and halo effect, the emissivity feature was computed 
using the center image segment on all compact objects.  For thermal scenes of ex-
tended objects that lack thermal emissions from a foreground, such as dense 
hedges and brick walls, the surface segment used to compute L0 consists of all the 
constituents that make up the object.  For instance, the segment selected on the 

 
Fig. 3.9 Visible and thermal images of objects captured on 10 February 2007 to evaluate the 
emissivity feature.  (a) steel pole, (b) birch tree log, (c) concrete cylinder, (d) hedges, and (e) 
wood wall. 
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hedges to compute L0 primarily consists of leaves but also includes branches.  The 
segment selected on brick walls to compute L0 consists of the brick and the mortar 
between the bricks.  For thermal scenes of extended objects that display a thermal 
radiance from the foreground, such as wood walls and picket fences, only a seg-
ment of the extended object’s surface is selected in the image to compute L0.  
Crinkled aluminum foil with an emissivity of approximately 0.04 [38] was at-
tached to the target afterwards to compute the irradiance energy on the object from 
the surrounding background environment, Lb.  The aluminum foil must not be at-
tached to the target prior to capturing the thermal image to compute L0 in order to 
avoid disturbing the natural radiance being emitted by the target.  The reference 
emitter was black electrical tape attached to the object with a known emissivity εr 
of approximately 0.97 [38].  The black electrical tape should be attached to the 
surface of the target well in advance in capturing thermal images of the target to 
ensure the tape obtains the same surface temperature as the target.  The segmented 
region of the target used to compute L0 does not include the reference emitter.  

As an example of our emissivity feature, thermal images of a steel pole, birch 
tree log, concrete cylinder, hedges, and wood wall (see Fig. 3.9) were captured at 
various times on 10 February 2007.  The black electrical tape used as the reference 
emitter is shown attached to the targets in each thermal image.  All thermal images 
were captured as described in Chap. 2 with a distance of 2.4 meters between the 
Raytheon ControlIR 2000B long-wave infrared thermal imaging video camera and 
the object.  The thermal images were captured with the thermal camera facing the 
center of each object at normal incidence.  Table 3.1 provides the ambient tem-
peratures of the environment and surface temperatures of the objects at the times 
the thermal images were captured.  The average ambient temperatures are noted in 
Table 3.1 for each time interval.  The surface temperatures of the objects were re-
corded at the time the thermal image was captured.  All objects were influenced by 
the same solar conditions during each time interval. 

Table 3.2 provides the generated feature values for the objects at the times the 
thermal images were captured.  By analyzing Table 3.2, we notice trends in the 
emissivity feature values that allow us to distinguish one object from another.  Fur-
thermore, a detailed analysis of both Tables 3.1 and 3.2 reveals how the emissivity 
feature lets us also consider the effects of other thermal properties.  For instance, 
emissivity depends on surface temperature (as well as the type of material, viewing 
angle, and the object’s surface quality and shape) and surface temperature depends 

Table 3.1 Thermal image capture times and temperatures for objects in Fig. 3.9 captured on 
10 February 2007. 

Time

Ambient 

Temp (
o
F)

0745 25.7
0900 37.5 Steel Pole Birch Log Concrete Cyl Hedges Wood Wall

1000(+/– 15min) 45.8 54.5 49.4 50.7 45.1 47.4
1330(+/– 15 min) 46.5 54.3 53.2 54.8 48.2 62.0
1615(+/– 15 min) 42.2 51.2 53.6 48.7 43.1 52.5

Surface Temp (
o
F)
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on the specific heat (as well as conductivity and other thermal properties) of the ob-
ject.  The surface temperature of low-specific-heat objects, such as the leaves on the 
hedges, tend to track the availability of solar energy [38].  When a cloud passes or 
the sun begins to set, the surface temperature of the hedges stays consistent with the 
lower ambient temperature.  Moreover, a low level of solar energy available to 
a low specific heat object results in less thermal radiation emitted as indicated by the 
hedges’ consistently low emissivity presented in Table 3.2.  On the other hand, ob-
jects with a high specific heat, such as the birch tree log (~ 2.4 kJ ⋅ kg –1 ⋅ °C –1) [32], 
will tend to heat up more slowly with the increasing solar energy and cool more 
slowly as the amount of solar energy begins to decrease in the late afternoon 
(around 1600 hrs).  The emissivity of the birch tree log first increases with the avail-
ability of solar radiation in the morning as indicated by the positive rate of change in 
ambient temperature in the morning.  As the solar energy decreases throughout the 
afternoon, the emissivity of the birch tree log slightly lowers in value as expected.  
Along with the possibility of some error in the temperature measurement, we see no 
significant change in the surface temperature of the birch tree log between 1330 and 
1615 hrs due to the effect of its specific heat.  Even though the steel pole has a low 
specific heat (~ 0.47 2.4 kJ ⋅ kg –1 ⋅ °C –1) [32], its emissivity consistently shows the 
highest value due to the light coating of black paint (ε ~ 0.96 at 75.2°F in a con-
trolled environment) [38] and oxidation on the surface.  An interesting observation 
is that the black electrical tape used as the reference emitter attached to the steel 
pole (Fig. 3.9 (a)) emits a slightly higher radiance than the steel pole since the tape’s 
emissivity is approximately 0.97.    

We also notice that our emissivity values do not necessarily vary between 0 and 1 
as is the case of experiments in a controlled inside laboratory environment.  By ob-

Table 3.2 Feature values generated from the thermal image of objects in Fig. 3.9 captured on 
10 February 2007. 

Time      

(+/–15min)

Ambient 

Temp (
o
F) 

(Ta)

Ambient Temp 

Rate of Change 

(T1) Object

Emissivity 

(Eo)

1000 45.8 0.04 Steel Pole 0.8876
Birch Log 0.3106

Concrete Cyl 0.1922
Hedges –0.0912

Wood Wall 0.4623
1330 46.5 0.02 Steel Pole 0.8792

Birch Log 0.4498
Concrete Cyl 0.4187

Hedges –0.0477
Wood Wall 0.0320

1615 42.2 -0.03 Steel Pole 0.7803
Birch Log 0.3581

Concrete Cyl 0.4564
Hedges –0.2772

Wood Wall –0.0958  
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serving Eq. 3.11, we see that the emissivity values could be quite sensitive to varia-
tions in the thermal radiance of the object, reference emitter, and aluminum foil.  For 
instance, as the radiance of the reference emitter and the aluminum foil approach the 
same value, the denominator in the equation for emissivity will become very small 
(either positive or negative).  As a result, the value of the emissivity in Eq. 3.11 would 
take on very large values (either positive or negative).  We will illustrate in Chap. 4 
that these extreme value of emissivity are rare and will be treated as outliers.  To avoid 
such extreme feature values, we use the following additional micro features derived 
from the emissivity given in Eq. 3.11:   

= oLo L  (3.12)

rLLr =  (3.13)

bLLb =  (3.14)

r

o

L
LLor =

 
(3.15)

b

o

L
LLob =

 
(3.16)

Lr and Lb are only used in conjunction with features generated from the ther-
mal radiance emitted from the target and not used to discriminate targets as stand-
alone features.  The features Lor and Lob were chosen to create a ratio value.  
Other types of features could be used as well; however, additional choices, such as 

ro LL −  or bo LL − , will more likely have a strong correlation with our existing 
features and result in redundancy in the feature set.  

3.6 Macro Features 

Macro features provide a unique representation of a target based on the spatial 
variation in radiance (gray-level values) observed in the thermal image.  Macro 
features seek to generate descriptors that not only consider radiant patterns found 
on the target’s surface but also patterns observed in the entire thermal image of the 
target within the camera’s field of view.  Thus, macro features may also consider 
patterns formed by gaps in the target that allow the camera to receive radiation 
emitted from the foreground.  For instance, macro features allow us to generate 
features that describe the periodic pattern of wood boards on the fence in 
Fig. 3.1 (b).  Since compact objects (particularly cylindrical objects) display varia-
tions in radiance from the center to the peripheries due to the directional variation 
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of emissivity, irradiance from sources in the background, and halo effect, we will 
always compute the macro features using the center image segment on all compact 
objects.  On the other hand, for the extended objects, we will compute their macro 
features using the entire scene within the camera’s field of view.  Our macro fea-
tures are derived from first- and second-order texture features.   

3.6.1 First-order Statistical Features 

First-order statistics provide measures based on the probability of observing 
a gray-level value at a random location in the thermal image.  Our first-order sta-
tistics are generated using a histogram of pixel intensities from an object’s thermal 
image.  Our histograms and first-order statistics follow from those presented in 
[2].  The histogram of each thermal image has a total of 256 possible intensity lev-
els in the interval [0, 255] defined as a discrete function: 

( ) =k kh r n  (3.17)

where kr  is the kth intensity level on the interval [0, 255] and kn is the number of 
pixels in the thermal image that have an intensity level of kr .  The kth indices take 
on values from 1 to 256 associated with the position of the gray-level value in    
[0, 255].  The probability ( )krP  of observing a gray-level value at a random loca-
tion in the thermal image is given by the normalized form of the histogram: 

( ) ( )
=

=

k
k

k

h r
P r

n
n
n  

(3.18)

where n is the total number of pixels in the thermal image.  With this convention, 
we now define our first-order statistics. 

3.6.1.1 Object Scene Radiance 

The object scene radiance is the average of the radiance coming from the target’s 
surface and any foreground emitters within the field of view of the segmented tar-
get.  The mean for the first-order statistics is defined as: 

( )
256

1

1
=

=∑ k k
k

Mo r P r
 

(3.19)
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The following two variations of Mo1 were used to consider the radiance emit-
ted by the reference emitter and background, respectively: 

11=
r

MoMor
L  

(3.20)

bL
MoMob 11 =

 
(3.21)

Since 1MoLo =  for compact objects, Mo1, Mor1, and Mob1 only apply to ex-
tended objects.   

The mean radiance can also be used to generate texture features based on the 
nth moment about the mean Mo1: 

( ) ( )
256

1

1μ
=

= −∑ n
n k k

k

r Mo P r
 

(3.22)

However, we limit our moments to order n = 3 so that our features maintain 
their physical interpretations.  The following two features are based on the second 
and third moments, respectively. 

3.6.1.2 Contrast1 

Contrast is a measure of the amount of variation in the radiance of an object in 
a thermal image.  The contrast feature is based on the standard deviation of the 
gray-level values about the mean Mo1 given by: 

( ) ( )
256

2

1

1 1
=

= −∑ k k
k

Co r Mo P r
 

(3.23)

3.6.1.3 Smoothness 

Smoothness measures the variations in the intensity of the gray-level values of an 
object’s thermal image as computed by: 

( )2

11 1
1 1

= −
+

So
Co

 
(3.24)

Values of So1 close to zero represent surfaces with a constant gray-level value and 
values close to unity imply surfaces with large deviations among their gray-level 
values. 
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3.6.1.4 Third Moment 

The third moment is defined by: 

( ) ( )
256

3

1

1 1
=

= −∑ k k
k

To r Mo P r
 

(3.25)

The third moment measure the skewness of the distribution of gray-level values 
in the histogram.  When the histogram is symmetric, the value of the third moment 
is zero.  When the histogram is skewed to the right or left about the mean, the 
value of the third moment is accordingly positive or negative, respectively. 

3.6.1.5 Uniformity 

The uniformity feature is defined by: 

( )
256

2

1

1
=

⎡ ⎤= ⎣ ⎦∑ k
k

Uo P r
 

(3.26)

The value of uniformity increases as the histogram of gray-level values ap-
proaches a uniform distribution and is unity for a thermal image of an object with 
a constant surface radiance. 

3.6.1.6 Entropy1 

The entropy feature provides a measure of randomness (or complexity) in the in-
tensity (gray-level) values of an object’s thermal image.  The use of the term en-
tropy can easily cause some confusion since there are continuous debates within 
the scientific community concerning the correct definition of entropy.  Therefore, 
before we present our use of entropy and derive an equation for the term, we will 
first provide some background information on entropy. 

The term entropy was first introduced in classical thermodynamics.  However, 
the definition has become rather subjective to fit the needs of other fields of study.  
Thus, one can find different definitions in thermodynamics, chemistry, information 
theory, and other fields.  For instance, a search on the internet results in the follow-
ing definitions: entropy is a measure of randomness; entropy is a measure of the 
probability of a particular result; entropy is a measure of the disorder of a system; 
entropy measures the heat divided by the absolute temperature of a body.  Some of 
the names associated with the definition of entropy include Clausius, Gibbs, 
Boltzmann, Szilard, von Neumann, Shannon, and Jaynes.  Shannon was interested 
in communication theory and von Neumann investigated quantum mechanical en-
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tropy.  Shannon initiated the use of the quantity ∑−= ii PPKH log  (where K is 

a positive constant) in information theory as a measure of “information, choice, and 
uncertainty” [47].  However, regarding a name for H, Shannon stated [48]: 
 

    My greatest concern was what to call it.  I thought of calling it ‘information,’ but the 
word was overly used, so I decided to call it ‘uncertainty.’  When I discussed it with 
John von Neumann, he had a better idea. Von Neumann told me, ‘You should call it 
entropy, for two reasons.  In the first place your uncertainty function has been used in 
statistical mechanics under that name, so it already has a name.  In the second place, 
and more important, no one knows what entropy really is, so in a debate you will al-
ways have the advantage.’ 

 
As a result, Shannon’s entropy was introduced in information theory.  In [47], 

Shannon states, “In the discrete case the entropy measures in an absolute way the 
randomness of the chance variable.”   

The next step is to find a definition of entropy that is applicable to classifying 
objects in thermal imaging application.  An appropriate definition for entropy is 
found in the digital image processing community in the area of texture analysis 
and pattern classification [2, 3, 4, 42, 49, 50, 51].  The entropy used in digital im-
age processing is consistent with Shannon.  In digital image processing, entropy is 
defined as a statistical measure of randomness in the intensity values of an object’s 
visible image, and used to characterize the texture of objects in an image [51].  For 
our application, we adopt the same definition; however, we measure the random-
ness in the intensity (gray-level) values pertaining to an object’s thermal image.  
From this definition, we derive our equation for the entropy feature. 

Following the mathematical framework of information theory, our measure of 
randomness in the gray level values is given by: 

( ) ( )( )2log= −k kR r P r
 (3.27)

where the choice of the base is consistent with units, in bits, for measuring infor-
mation.  Consequently, if only one gray level value, say 1r , was present in the 
thermal image, ( ) 11 =kP  and ( ) 01 =kR  so no randomness would occur.  From 

Eq. 3.17, we have kn  cases with randomness measure ( )krR , the average value of 
randomness in our object’s thermal image follows from Eqs. 3.18 and 3.27 as: 
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This last quantity, called the entropy, will provide our required measure of ran-
domness in the gray-level values of an object’s thermal image.  Therefore, our en-
tropy feature value is computed by: 

( ) ( )( )k
k

k rPrPEn 2

256

1

log1 ∑
=

−=
 

(3.29)

where En1 increases in value as the randomness in the gray-level values increases 
in the object’s thermal image.      

3.6.2 Second-order Statistical Features  

Second-order statistics methods also provide a way to generate features that de-
scribe the radiant patterns in the thermal image of an object.  Thus, second-order 
statistics features are our second type of macro features.  However, unlike first-
order statistical methods that depend only on individual gray-level values, second-
order statistical methods involve the interaction or co-occurrence of neighboring 
gray-level values.  Second-order statistics provide measures based on the probabil-
ity of observing pairs of gray-level values with a defined spatial relationship in an 
object’s thermal image.  The spatial relationship consists of a specified direction 
and distance between a pair of gray-level values.  The macro features are generated 
from the spatial relationships that are reported in a gray-level co-occurrence matrix 
(GLCM), also known as a gray-level spatial dependence matrix.  Our second-order 
statistical features follow from those presented in [51] and are based on the pioneer-
ing work of Haralick, Shanmugam, and Dinstein [49].  Other notable discussions on 
second-order statistical features involving the GLCM are found in [42, 50]. 

The GLCM records how often a pixel of interest with a gray-level value of i oc-
curs in a specific spatial relationship to a pixel with a gray-level value of j in 
a thermal image.  A pixel of interest in a thermal image forms a spatial relationship 
with one of its neighboring pixels defined by a pixel distance D and direction (an-
gle) denoted by a row vector with the pixel of interest as the origin as illustrated in 
Fig. 3.10 (a).  We choose four directions (0°, 45°, 90°, and 135°) to afford our 
macro features the ability to capture discriminating information along various di-
rections on a target’s surface.  Our choice of angles assumes that the thermal radi-
ant patterns are symmetric along each direction about the pixel of interest.  The 
most favorable pixel distance D is the one that allows a spatial relationship that 
captures an object class’s distinctive radiant patterns.  We will discuss our most fa-
vorable pixel distances for both extended and compact objects after we present our 
second-order features below.   

Suppose Fig. 3.10 (b) illustrates a gray-level array of a thermal image with gray-
level values ranging from 0 to 3.  The four GLCMs for each direction and a distance 
D = 1 are provided in Figs. 3.10 (c–f).  The shaded regions in each GLCM displays 
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the gray-level values of the pixel of interest (i) along the first column and its neighbor-
ing pixel’s gray-level values (j) along the first row.  As we see, the number of gray-
level values in the thermal image determines the size of the GLCM.  Each element 
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Fig. 3.10 Gray-level Co-occurrence Matrix. (a) spatial relationship of neighboring pixels, (b) 
gray-level array of a thermal image, (c)–(f)  GLCMs with distance D = 1 and directions 0, 45, 90, 
and 135 degrees, respectively. 



76 3 Thermal Feature Generation  

( i,  j ) in the GLCM provides the number times that a pixel with gray-level value i oc-
curred in the specified spatial relationship with the pixel with gray-level value j in the 
thermal image.  We denote this frequency by ),( jif .   For example, ( 1, 0 ) in 
Fig. 3.10 (c) presents 2)0,1( =f  as the number of times that the pixel of interest with 
gray-level value i = 1 occurred at an angle of zero degrees and distance of one pixel 
away from a pixel with gray-level value j = 0.  Let R denote the sum of all the frequen-
cies ),( jif  in the GLCM for a specified spatial relationship.  For a GLCM defined 
by a particular spatial relationship, the probability of observing a pixel of interest with 
a gray-level value of i in a specific spatial relationship to a pixel with a gray-level 
value of j in a target’s thermal image is given by: 

R
jifjiP ),(),( =

 
(3.30)

Equation 3.30 is used to define the following second-order macro features.  For 
each thermal image of an object, four GLCMs are created where each matrix is de-
fined by a specified relationship (a distance and one of the four angular direc-
tions).  For each second-order feature, feature values are generated for all four 
GLCMs.  The resulting four feature values are averaged to ensure invariance un-
der rotation as suggested in [49].           

3.6.2.1 Contrast2 

The contrast feature (also known as inertia) is a measure of the amount of radiant 
variations between a pixel and its specified neighbor over the entire thermal im-
age.  A thermal image with a large amount of radiant variations will have a higher 
value for the contrast feature compared to a thermal image with a small amount of 
radiant variations.  In terms of the GLCM, contrast is a measure of the spread of 
( )jiP ,  values about the main diagonal of the matrix.  Contrast becomes larger in 

value with larger values of ( )jiP ,  spreading away from the main diagonal.  The 
contrast feature value is zero for a thermal image of an object with a constant 
thermal radiance (gray-level value) across its surface.  Contrast2 is defined as: 

( )∑∑ −=
i j

jiPjiCo ,2 2

 
(3.31)

3.6.2.2 Correlation 

Correlation provides a measure of linear-dependencies between the gray-level 
value of the pixel of interest and its specified neighbor over the entire image.  The 
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directions in a thermal image consisting of a linear structure will have either a cor-
relation value closer to 1 (positively correlated) or –1 (negatively correlated).  On 
the other hand, an uncorrelated image with a lack of linear structure and/or high 
amount of noise will result in a correlation value closer to zero.  The correlation 
value for an image with a constant thermal radiance across the surface is unde-
fined.  The correlation feature is defined by: 

( )( ) ( ),
2

μ μ
σ σ

− −
=∑∑ x y

x yi j

i j P i j
Cr

 
(3.32)

where xμ  and xσ  are the mean and standard deviation of the rows sums of the 
GLCM formed by ( )jiP ,  and yμ  and yσ  are the statistics of the column sums. 

3.6.2.3 Energy 

Energy (also known as angular second moment) measures the uniformity of the 
gray-level values in a thermal image.  In a uniform image there are very few in-
tense gray-level transitions between the neighboring pixels.  The values of energy 
become larger as the GLCM has fewer entries of large ( )jiP , .  Such a case exists 
when the probabilities ( )jiP ,  are clustered near the main diagonal of the GLCM.  
The energy is unity for a thermal image of an object with a constant surface radi-
ance.  On the other hand, the values of energy approach zero as all ( )jiP ,  become 
more equal in value.  The energy feature is defined by:  

( )[ ]∑∑=
i j

jiPEr 2,2
 

(3.33)

3.6.2.4 Homogeneity 

Homogeneity is similar to the energy feature.  The values of homogeneity become 
larger as larger values of ( )jiP ,  become clustered near the main diagonal of the 
GLCM.  Homogeneity approaches zero as the values of ( )jiP ,  become more 
equal and spread away from the main diagonal, and is unity for a diagonal GLCM.  
Homogeneity is defined by: 

( ),
2

1
=

+ −∑∑
i j

P i j
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i j
 

(3.34)
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3.6.2.5 Entropy2 

Similar to the case in first-order statistics, entropy in second-order statistics is 
a measure of the complexity (or randomness) in the thermal image.  A thermal im-
age become more complex as all the values of ( )jiP ,  in the GLCM approach 
equality, resulting in a larger entropy.  Entropy2 is defined by: 

( ) ( )( )∑∑−=
i j

jiPjiPEn ,log,2 2

 
(3.35)

3.6.2.6 Most Favorable Pixel Distances 

As we mentioned previously, a pixel of interest in a thermal image forms a spatial 
relationship with one of its neighboring pixels defined by a pixel distance D and 
angular direction denoted by a row vector with the pixel of interest as the origin 
as illustrated in Fig. 3.10 (a).  In this section, we will discuss our most favorable 
pixel distances for both extended and compact objects.  The most favorable pixel 
distance D is the one that allows a spatial relationship that captures an object 
class’s distinctive radiant patterns.  We will analyze various distances applied to 
the thermal images of extended and compact objects captured with approximately 
the same environmental conditions and location on 27 March 2007 between 1230 
and 1300 hrs.  The thermal images of the objects were captured during a period 
where there was a low thermal contrast in the scenes.  These conditions will al-
low us to choose D values for both extended and compact objects that are sensi-
tive to radiant patterns in a thermal image where a low thermal contrast exists.  
We will proceed to choose our D values by considering the extended and compact 
objects in separate cases.  The methodology for each case consists of first gener-
ating the second-order statistical features from GLCMs with spatial relationships 
with a horizontal angular direction and varying pixel distances D from 1 to 100, 
{ }100...,,1],0[ =DD .  Next, we will compare the feature values and choose the 
D value that results in the greatest distinction the object classes. 

The extended objects used in our analysis to choose the most favorable pixel 
distance D consist of the brick wall, hedges, picket fence, and wood wall dis-
played in Fig. 3.11.  As we see in Fig. 3.12, Energy and Entropy2 provide the best 
separation of the object classes.  Based on these results, we derive an equation that 
will assist us in choosing the pixel distance that maximizes the discrimination be-
tween the object classes.  This equation is defined as the absolute sum of the dif-
ferences in object class feature values as a function of pixel distance given by: 

( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

− + −

= + − + −

+ − + −

Picket F D Hedges D Picket F D Brick W D

Feat Diff D Picket F D Wood W D Hedges D Brick W D

Hedges D Wood W D BrickW D Wood W D
 

(3.36) 
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Fig. 3.11 Visible and thermal images of extended objects used for pixel distance analysis and  
selection. (a) brick wall, (b) hedges, (c) picket fence, and (d) wood wall. 
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Fig. 3.12 Extended objects pixel distance analysis. Pixel Distance vs. (a) Contrast2, (b) Correla-
tion, (c) Energy, (d) Homogeneity, (e) Entropy2. 

By applying this equation to the Energy and Entropy2 features, we obtain the  
results displayed in Fig 3.13.  The pixel distances that provide the best object class 
separation for Energy is D = 8 and Entropy2 is D = 56.  Comparing these pixel dis-
tances to each result in Fig. 3.12, we see that a pixel distance D = 8 provides an ac-
ceptable separation between the object classes for energy.  However, a pixel dis-
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tance of D = 8 does not result in an acceptable object class separation for the other 
features.  On the other hand, the pixel distance of D = 56 for Entropy2 results in an 
acceptable object class separation for all the second-order statistical features.  
Consequently, we choose D = 56 as the most favorable pixel distance for each spa-
tial relationship involving extended objects. 

The compact objects used in our analysis to choose the most favorable pixel 
distance D consist of the steel poles and trees displayed in Fig. 3.14.  As we see in 
Fig. 3.15, Energy and Entropy2 provide the best separation of the object classes.  
As with the extended objects we define an equation that will assist us in choosing 
the pixel distance that maximizes the discrimination between the object classes.   
However, since we desire to distinguish steel poles from trees for our compact ob-
ject classes, our equation is given below as the absolute difference of the mean 
feature values for the three steel poles and three trees across all pixel distances: 

( )
( ) ( ) ( )( )
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Fig 3.13 Extended objects absolute sum of the differences for Energy and Entropy2 features as 
a function of pixel distance (D). 
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By applying this equation to the Energy and Entropy2 features, we obtain the re-
sults displayed in Fig. 3.16.  Once again, we will choose the pixel distance that 
maximizes the discrimination between the object classes.  The pixel distances that 
provide the best object class separation for Energy is D = 8 and Entropy2 is D = 16. 
Comparing these pixel distances to each result in Fig. 3.15, we see that a pixel dis-
tance D = 8 provides an acceptable separation between the steel pole and tree ob-
ject classes for energy.  However, a pixel distance of D = 8 does not result in an 
acceptable object class separation for the other features.  On the other hand, the 
pixel distance of D = 16 for Entropy2 results in an acceptable object class separ-

 
 
 
 

 
Fig. 3.14 Visible and thermal images of compact objects used for pixel distance analysis and se-
lection. (a) brown steel pole, (b) green steel pole, (c) octagon steel pole, (d) basswood tree (e) 
birch tree, (f) cedar tree. 
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ation for all the second-order statistical features.  Consequently, we choose D = 16 
as the most favorable pixel distance for each spatial relationship involving com-
pact objects. 

 
Fig. 3.15 Compact objects pixel distance analysis. Pixel Distance vs. (a) Contrast2, (b) Correla-
tion, (c) Energy, (d) Homogeneity, (e) Entropy2. 
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Fig. 3.16 Compact objects absolute sum of the differences for Energy and Entropy2 features as 
a function of pixel distance (D). 

3.7 Thermal Feature Application 

We now provide an application to analyze some of the characteristics of our ther-
mal features.  However, we will not make any judgments regarding the worthiness 
of our thermal features.  A proper selection of a set of most favorable features will 
require an exhaustive search using a high performance computing system to ana-
lyze the classification performance of every possible combination of features 
across multiple dimensions.  During our exhaustive search, we eliminate redun-
dant features and only retain those sets of features that enhance our ability to dis-
tinguish object classes.  We delay this exhaustive search until the next chapter.  
Figure 3.17 displays the thermal images of extended objects (brick wall, hedges, 
and wood wall) and compact objects (concrete cylinder, steel pole, and pine tree 
log) that were captured between 0930 and 1400 on 10 February 2007 under ap-
proximately the same solar conditions and location.  All thermal images were cap-
tured as described in Chap. 2 at normal incidence with a distance of 2.4 meters be-
tween the Raytheon ControlIR 2000B long-wave infrared thermal imaging video 
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camera and the object.  The thermal features were generated on segments of these 
extended and compact objects using the equations derived in Sects. 3.4–3.6 and 
summarized in Table 3.3.  The resulting feature values are presented in Table 3.4.   

Since we intend to distinguish the object classes within either the category  
of extended or compact objects, we will analyze the two categories separately  
as disjoint sets of object classes.  Beginning with the meteorological features  
in Table 3.4, we see that the object classes within each category are experiencing 
approximately the same ambient temperatures and temperature rates of change.   
In the micro features, the object classes within each category are also experiencing 
about the same background irradiance.  However, the wood wall and pine tree log 
are both emitting a higher surface radiance compared to the other object classes 
within their respective category.  This higher radiance is partially due to the higher 

 
Fig. 3.17 Visible and thermal images of objects used to evaluate thermal features.  Extended ob-
jects: (a) brick wall, (b) hedges, (c) wood wall. Compact objects: (d) concrete cylinder, (e) steel 
pole, (f) pine tree log. 
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specific heat of the wood.  Additionally, differences in the radiance are attributed  
to other factors such as the type of material (including chemicals used on the pres-
sure treated wood wall) and the object’s surface quality (smooth vs. rough).  Of 
course these factors also influence the feature values for emissivity.  As expect- 
ed, the wood wall has a higher emissivity compared to the brick wall and hedges. 
Within the compact objects category, the pine tree log has a median value on the 
emissivity scale; however, the steel pole has a higher emissivity primarily due to 
its coating of black paint on the surface. 

Table 3.3 Summary of meteorological, micro, and macro features. 
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Table 3.4 Feature values generated from the thermal image of objects in Fig. 3.17. 

Brick 

Wall Hedges

Wood 

Wall

Concrete 

Cyliner Steel Pole

Pine Tree 

Log

Meteorological Features

Ambient Temp.       (Ta) 43.1000 42.2000 46.5000 43.3000 43.3000 46.2000
Amb. Temp. Rate of Change (T1) 0.0367 0.0433 0.0567 0.0100 0.0100 0.0333

Micro Features

Object Surface Radiance (Lo) 94.8974 94.3022 98.2153 97.0469 100.7415 110.8171
Reference Emitter Radiance (Lr) 119.3813 155.3111 124.6449 109.8459 104.1326 128.6190
Background Irradiance (Lb) 94.4367 97.2481 94.4559 86.7990 87.4212 86.3406

6168.04769.05388.00887.02706.09497.0)roL( rL/oL
5382.14251.11811.18930.17969.09400.1)boL( boL/oL

Emissivity (Eo) 0.0179 –0.0492 0.1208 0.4313 0.7732 0.5616
Macro Features

First-order Statistics

Object Scene Radiance (Mo1) 94.8051 94.2897 94.3128 NA NA NA
Mo1/Lr (Mor1) 0.7941 0.6071 0.7567 NA NA NA
Mo1/Lb (Mob1) 1.0039 0.9696 0.9985 NA NA NA
Contrast1 (Co1) 4.1440 5.1906 12.7304 2.7770 1.6671 6.7767
Smoothness (So1) 0.0003 0.0004 0.0025 0.0001 0.0000 0.0007
Third Moment (To1) –0.0009 0.0022 –0.0379 –0.0001 0.0000 0.0002
Unifomity (Uo1) 0.1000 0.0716 0.0391 0.1140 0.2065 0.0567
Entropy1 (En1) 3.7119 4.1787 5.2090 3.3448 2.5535 4.6228

Second-order Statistics

Contrast2 (Co2) 35.4270 53.0582 267.4656 10.6734 3.9182 66.5163
Correlation (Cr2) –0.0161 –0.0243 0.2170 0.3161 0.2670 0.1995

9300.01740.04410.01300.03500.04110.0)2rE( ygrenE
Homogeneity (Ho2) 0.3358 0.2743 0.2719 0.4134 0.5384 0.2520
Entropy2 (En2) 7.2262 8.2843 9.4353 6.5705 4.9302 8.8415

Extended Objects Compact Objects

oF

 

By analyzing the macro features, we see that the correlation feature in the sec-
ond-order statistics provides a measure of the linearity in the directions on an ob-
ject’s thermal image.  The wood wall presents the highest correlation value 
amongst the extended objects as a result of its vertical boards and wood grains on 
the surface.  Though the bark on the pine tree log tends to extend in a vertical di-
rection, the zigzag design results in a lack of linear structure and the lowest corre-
lation value amongst the compact objects.  Similar to the uniformity in the first-
order statistical feature, energy in the second-order case measures the intensity of 
gray-level (radiant) transitions in the thermal image of an object.  Values for both 
uniformity and energy increase as the gray-level becomes more uniformly distrib-
uted and are unity for a thermal image of an object with a constant surface radi-
ance.  For the extended objects, the brick wall shows the highest uniformity and 
energy values since it displays less intense radiant transitions compared to the 
hedges and wood wall.  The steel pole presents the highest uniformity and energy 
feature values for the compact objects due to its relatively constant surface radi-
ance.  Since homogeneity is similar to energy, its results are consistent with those 
presented by the energy feature.  Contrary to uniformity, energy, and homogeneity 
tending to increase in value for objects with a uniform or constant surface radi-
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ance, contrast and entropy feature values increase for objects with more variations 
(randomness or complexity) in radiant emissions.  The wood wall presents 
a higher contrast feature value for both the first- and second-order statistical cases 
compared to the brick wall and hedges.  The larger amount of variation in the ra-
diance for the wood wall is contributed by both the radiant patterns of wood grains 
on the surface of the boards and the surface radiances in the foreground emitted 
through the gaps of the wood boards.  For the compact objects, the pine tree log 
displays the highest contrast in both the first- and second-order statistic cases as 
a result of the large variations in the radiance from the bark pattern.  Entropy is 
a measure of complexity (or randomness) in an object’s thermal image.  Since the 
entropy feature tends to be sensitive to the variations in the radiance of an objects 
thermal image, its results are consistent with the contrast feature.  For the extended 
objects, the hedges have a high entropy value for both the first- and second-order 
statistics as expected.  However, the wood wall presents the highest entropy values 
due to the feature’s sensitivity to the combined effects of varying radiation emitted 
from the wood grains on the surface of the boards and the surface radiances in the 
foreground emitted through the gaps of the wood boards.  The rough surface and 
the zigzag pattern of the bark on the pine tree log results in a more complex sur-
face compared to the concrete cylinder and steel pole.  Therefore, the pine tree log 
has the highest entropy amongst the compact objects.  The concrete cylinder has 
the second highest entropy due to its mixture of stones and cement creating a ran-
dom radiant pattern compared to the steel pole’s smooth radiant surface.       

As we see, the micro and macro features all generate unique representations of 
a non-heat generating object from the given object’s thermal image.  The meteoro-
logical features serve to estimate the current and historical effects of the diurnal 
cycle of solar energy on the amount of radiance emitted from an object’s surface.  
Consequently, not only will the micro and macro features provide inter-class 
variation to distinguish one object class from another, these features will also dis-
play intra-class variations due to the variations of the meteorological features.  Our 
performance and feature selection process presented in Chap. 4 will prove that the 
most favorable feature sets are those that contain contributions from all the feature 
types - meteorological, micro, and macro. 

3.8 Curvature Algorithm 

In Sect. 3.5 we discussed the factors that cause variations in radiance on cylindrical 
objects.  These factors consisting of directional variation of emissivity, irradiance 
from sources in the background, and/or halo effect can also assist us in deriving 
a curvature algorithm used to distinguish compact objects from extended objects.  
Our curvature algorithm is presented in Table 3.5.  In Step 1, the algorithm com-
putes the average of radiances at the center, vertical, horizontal, and diagonal seg-
ments of the object’s thermal image.  In Step 2, the absolute differences between the 
average radiance at the center and the average radiance at the neighboring vertical, 
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horizontal, and diagonal segments are computed.  The absolute difference is chosen 
since the periphery of an object could have a smaller gray-level value than the cen-
ter or vice versa, depending on the effects of the directional variation of emissivity, 
irradiance from sources in the background, and/or halo effect.  In Step 3, these abso-
lute differences are compared to a given threshold value CT and conclude whether 
an object is compact-cylindrical, compact-spherical, compact (without regards to 
being cylindrical or spherical in shape) or extended.  The rule for a compact-
cylindrical object in Step 3 takes into consideration the possibility of a cylindrical 
object tilted at different orientations.  We can also identify compact objects that dis-
play minimal directional variation of emissivity but still present variations in radi-
ance from the center to the peripheries due to background irradiance and/or the halo 
effect.  The square steel pole displayed in Fig. 3.18 (b) is an example of this type of 
compact object.  Since these objects are not cylindrical or spherical, we label them 
as compact (without regards to being cylindrical or spherical in shape). 

Table 3.5 Curvature Algorithm used to distinguish compact and extended objects. 

Curvature Algorithm 

Step 1:  Compute the average radiance of an object’s thermal image 
at center ( cR ), verticals ( 21 , vv RR ), horizontals ( 21 , hh RR ), and 
diagonals ( 4321 ,,, dddd RRRR ) as displayed in the diagram to the 
right.  

Step 2:  Compute the absolute radiance differences: 
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then the object is classified as compact-cylindrical.  
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then the object is classified as compact-spherical.  

ElseIf at least one pair of image segments symmetric about the center segment have absolute 
radiance difference values (from Step 2) of at least that of the given threshold value TC , then the 
object is classified as compact (without regard to being cylindrical or spherical). 

Else the object is classified as extended. 
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Fig. 3.18 Visible and thermal images of objects used to demonstrate curvature algorithm.  Seg-
mented regions in thermal images are used to compute the average radiances used in the curva-
ture algorithm. (a) tree, (b) square metal pole, (c) brick wall. 

As a demonstration of the curvature algorithm, consider the tree, square metal 
pole, and brick wall in Fig. 3.18.  The segmented regions in thermal images are 
used to compute the average radiances R  used in the curvature algorithm.  The 
results of the computations from the curvature algorithm are presented in Ta-
ble 3.6.  With a threshold value of 1.1=TC , the tree would be assigned as a com-
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pact-cylindrical object, square metal pole as a compact object (without regards to 
being cylindrical or spherical in shape), and the brick wall would be assigned as an 
extended object.  As we will also mention in Chap. 6, with further investigation 
the curvature algorithm has potential to serve as an exceptional technique to dis-
tinguish compact objects from extended objects. 

3.9 Summary 

In this chapter we discussed the thermal features used in our research to classify 
non-heat generating objects.  Examples were provided to illustrate the value of our 
features in distinguishing non-heat generating objects.  A summary of our equa-
tions for these thermal features is displayed in Table 3.3.  By generating feature 
values from the thermal images of non-heat generating objects, we have seen how 
interpreting the effects of the outdoor environment and thermal properties of ob-
jects on their feature values is a subtle process.  We also presented a curvature al-
gorithm to assist us in distinguishing compact objects from extended objects.  In 
the next chapter we will select the most favorable sets from these features based 
on their performance with various classifiers.  We will also analyze the behavior 
of our most favorable set of features with variations in the viewing angle with the 
target, thermal image window size, and rotational orientation of the target.   
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4 Thermal Feature Selection 

Abstract  In this chapter, we evaluate the performance of various classification 
models to identify the most favorable feature vectors for our extended and com-
pact objects.  We will show that there is no single “optimal” feature vector but 
a set of “most favorable” feature vectors associated with various classifiers for 
both the extend and compact object classes.  Moreover, the most favorable feature 
vectors are those that contain contributions from all the feature types – meteoro-
logical, micro, and macro.  

4.1 Introduction 

In the previous chapter, we generated 21 thermal features from three categories – 
meteorological, micro, and macro.  This chapter will present the third step in our 
pattern classification model design process – thermal feature selection.  In the cur-
rent and subsequent chapters, we will assume that the robotic thermal imaging sys-
tem has already used algorithms to detect the presence of an unknown non-heat 
generating object, identified the object as being either extended or compact, and 
segmented the object to generate our thermal features.  In the context of this re-
search, we have defined non-heat generating objects as objects that are not 
a source for their own emission of thermal energy, and so exclude people, animals, 
vehicles, etc.  The extended objects consist of objects that extend laterally beyond 
the thermal camera’s lateral field of view, such as brick walls, hedges, picket 
fences, and wood walls.  The compact objects consist of objects that are com-
pletely within the thermal camera’s lateral field of view, such as steel poles and 
trees.  Our analysis in the classification model design process will consider the ex-
tended and compact categories separately as disjoint sets of object classes.   

The current goal is to select sets of features from the three feature categories 
(meteorological, micro, and macro) that provide the most favorable information to 
allow us to classify the unknown non-heat generating object with minimal error.  
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Each of these sets of features is called a feature vector (or pattern).  We will begin 
our feature selection process with a preliminary feature analysis to explore for any 
outliers in the data and eliminate redundant features while avoiding any “data 
dredging” and retaining only those sets of features that enhance our ability to dis-
tinguish object classes.  Since the performance of a classifier is a function of the 
feature vector, the subsequent evaluation of classifiers and selection of feature sets 
are done simultaneously.  Our selection process will involve an exhaustive search 
using a high performance computing system to analyze the classification perform-
ance of over 290,000 feature combinations spanning up to 18 dimensions.  Com-
mon in the assessment of all feature vector candidates is their ability to minimize 
the error in classifying non-heat generating objects.  We will see that there is no 
single “optimal” feature vector but we will have a set of “most favorable” feature 
vectors associated with various classifiers.  Moreover, our process will prove that 
the most favorable feature vectors are those that contain contributions from all the 
feature types – meteorological, micro, and macro.   

4.2 “No Free Lunch” Classifiers 

Selecting the most favorable sets of feature vectors is not a trivial process.  Each 
feature vector is selected based on its performance with a given classifier.  There-
fore, the feature vector and classifier combination that results in minimum classifi-
cation errors becomes the most favorable pattern classification model.  However, 
as we discussed in Chap. 3, there is no universal feature vector according to the 
Ugly Duckling Theorem.  Similarly, according to the No Free Lunch Theorem [1], 
there is no universal classifier or learning algorithm.  The classifier is chosen based 
on how well it performs for a specific pattern classification application.  Since the 
performance of a classifier is a function of a feature vector, there is obviously no 
universal pattern classification model.  Our application makes choosing a pattern 
classification model even more complex due to the variations in the thermal feature 
values caused by the diurnal cycle of solar energy.  We will see in subsequent 
chapters that each of our object classes will have their own set (or committee) of 
most favorable pattern classification models.  Each committee will result in the 
most favorable performance on unknown patterns from their respective object 
class, but may not perform well on patterns from other object classes.  The combi-
nation of these committees will result in a model that exploits the complementary 
information found in each classification model and improves overall performance. 

There are many choices for the type of classifier or learning algorithm to use in 
pattern classification models.  Reviews of pattern recognition methods and theory 
are found in [1]–[14].  The most popular approaches for pattern recognition are 
statistical classification, template matching, and neural networks.  The method of 
choice usually is based objectively on which approach results in minimum classi-
fication errors and/or subjectively on which approach provides the operator with 
the desired data format in the output.  Our desired approach is the one that results 
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in minimum classification errors while retaining the original physical interpreta-
tion of the information in the signal data throughout the entire classification proc-
ess.  We choose not to use neural networks since this approach tends to conceal 
the original physical interpretation and statistics of the data [2].  In template 
matching, an unknown pattern is compared with a library of templates (or proto-
types).  A similarity (or correlation) measure is used to decide which of these tem-
plates the unknown pattern matches best.  One possibility for creating a template 
is by computing a mean reference pattern from an object class’s training set.  
A major disadvantage of template matching is that it tends to fail with large intra-
class variations among the patterns [2].  Consequently, template matching is not 
an appropriate method for our application since our thermal features experience 
intra-class variations due to the diurnal cycle of solar energy.  In statistical classi-
fication, each object class is represented by a distribution of feature vectors that 
are chosen to maximize the distinction between each object class.  The goal is to 
assign an unknown pattern to one of the object classes by considering the combi-
nation of these distributions of feature vectors and any prior knowledge regarding 
each object class.  This approach affords the ability to classify unknown patterns 
from distributions that display intra-class variations.  In our case, these variations 
of the feature vectors within each object class are due to the diurnal cycle of solar 
energy.  Moreover, the statistical classification approach retains the original 
physical interpretation of the information in the signal data throughout the entire 
classification process.  Consequently, statistical classification seems to be the most 
favorable method for our application.   

Statistical classification is further divided into two categories – supervised and 
unsupervised.  In unsupervised classification, class labeling of the data is not avail-
able and techniques such as clustering are used to identify features that assist in 
distinguishing groups.  Once the structure of the data is understood, an unknown 
pattern can be assigned to one of the groups.  As introduced in Chap. 2, our appli-
cation consists of labeled object classes – brick walls, hedges, wood picket fences, 
wood walls, steel poles, and trees.  Consequently, our application is categorized as 
supervised classification where learning involves labeled classes of data.  In our 
case, an unknown pattern is assigned to one of our predefined object classes.   

For a given pattern classification application the density function representing 
the distribution of the data in each object class is known or unknown.  Cases where 
the density function is known are called parametric techniques.  For example, a pa-
rametric technique could use a Gaussian density estimation for an object class with 
a known normal distribution.  Due to the variations in the thermal feature values 
caused by the diurnal cycle of solar energy, we will not assume a formal density 
function for the distribution of the data in each object class.  Therefore, we will 
make use of nonparametric techniques for our pattern classification application.   

Two popular approaches for nonparametric techniques are the decision bound-
ary approach and the probabilistic approach.  The decision boundary approach for 
nonparametric cases involves the design of a discriminant function that defines the 
decision boundaries used to distinguish one object class from another.  However, 
these discriminant functions tend to disguise probabilistic information in the data 
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and the original physical interpretation of the information in the signal data though 
transformations with weight vectors.  On the other hand, the probabilistic approach 
assigns an unknown pattern to one of the object classes based on a decision rule de-
rived from posterior probabilities that consider the combination of density function 
estimations for the distributions of the data and any prior knowledge regarding 
each object class.  The probabilistic approach is our choice for a nonparametric 
technique.  In summary, our approach is an application of statistical pattern classi-
fication where learning involves labeled classes of data (supervised classification), 
assumes no formal structure regarding the density of the data in the classes (non-
parametric density estimation), and makes direct use of posterior probabilities 
when making decisions regarding class assignments (probabilistic approach). 

The remainder of this chapter will proceed as follows.  In Sect. 4.3, we will present 
a preliminary feature analysis to assess the quality of our training data and eliminate 
any redundant features.  Section 4.4 will present the nonparametric classifiers that we 
will use during the feature selection process.  In Sect. 4.5, we will discuss and imple-
ment performance criteria and feature selection methods to select our most favorable 
features for extended and compact objects.  In Sect. 4.6, we will perform a sensitivity 
analysis to explore the effects of variations in the camera’s viewing angle, window 
size of the thermal scene, and rotational orientation of the target on the feature values 
and classification performance of a classifier involving selected feature vectors from 
our most favorable sets.  We will provide a summary of the chapter in Sect. 4.7.  The 
methods presented in this chapter were implemented with assistance by a Matlab 
toolbox for pattern recognition known as PRTools4 [15]. 

4.3 Preliminary Feature Analysis 

In this section, we perform a preliminary feature analysis (exploratory data analy-
sis or initial data analysis) of the thermal features (see Chap. 3) generated from our 
training data (see Sect. 2.3).  Since the training data has a direct effect on the 
learning process of the pattern classification model, assessing the quality of the 
data is a crucial step.  Our preliminary feature analysis consists of three steps.  
First, we will analyze the data for any outliers.  Second, we will standardize the 
data values for each thermal feature.  Each set of thermal feature values in the 
training data were standardized over all object classes within each of the extended 
and compact object categories.  We used the following standardization equation 
presented in a study of standardization methods by Milligan and Cooper [16]:    

 ( )( )
( ) ( )( )XMinXMax

XMinXZ
−

−=5  (4.1) 

where X is the original thermal feature value being standardized.  The Z5 stan-
dardization method is bounded by 0.0 and 1.0 with at least one feature value at 
each of the end points.  We adopted the Z5 standardization method since it does 
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not require an assumed formal density function for the distribution of the data.  
Furthermore, Milligan and Cooper’s study showed that methods such as Z5 in-
volving the range of the data values as the divisor offer the best recovery of the 
underlying data structure.  Third, we will use scatter plots for an initial feature re-
dundancy reduction.  The goal in feature redundancy reduction is to retain features 
where the relationship between pairs of features improves class separation and 
eliminate features where strong linear relationships result in redundancy.    Since 
preliminary feature analysis is a very subjective process, we will avoid any data 
dredging [17] that could result in an over-fitted pattern classification model and/or 
reducing the quality of our representative data set. 

We did not identify any outliers among the 424 extended objects in the training 
data set presented in Table 2.1.  After standardizing the feature values using 
Eq. 4.1, we used scatter plots to study the relationship between each pair of ther-
mal features found in Table 3.3.  Since Co1 has a strong relation with So1 as 
shown in Fig. 4.1, Co1 is eliminated from the choice of thermal features.  Simi-
larly, Uo1 is removed due to its strong relation with En1 as displayed in Fig. 4.2.  
Additionally, To1 was eliminated since the majority of its vales are between 0.61 
and 0.63 as presented in Fig. 4.3.  This small interval containing the majority of 
the To1 feature values results in a lack of separation between the object classes.  
The scatter matrix for the remaining 18 extended object thermal features is pre-
sented in Fig. 4.4.  We still observe other pairs of thermal features with strong re-
lationships; however, we will retain these features for further analysis when we as-
sess the performance of the feature combinations with various classifiers.  For 
example, as we see in Fig. 4.4, both Mor1 and Mob1 display a strong relation with 
Lr and Lb, respectively, due to the dependencies found in their thermal feature 
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Fig. 4.1 Scatter plot of extended object thermal features Co1 vs. So1. 
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equations (see Table 3.3).  As expected, we also see a strong relationship between 
En1 and En2.  As discussed in our application of the thermal features in Sect. 3.7, 
the characteristics of Ho2 are similar to Er2.  As a result, Ho2 displays a strong re-
lationship with Er2 in the scatter matrix.  We also noted that contrary to Er2 and 
Ho2 increasing in value for objects with a uniform or constant surface radiance, 
Co2, En1, and En2 increase in value for objects with more variations (or complex-
ity) in radiant emissions.  Consequently, these characteristics are observed in the 
strong relationship of data trends with negative slopes. 
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Fig. 4.2 Scatter plot of extended object thermal features Uo1 vs. En1. 
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Each symbol represents up to 9 observations.  
Fig. 4.3 Dot plot of extended object thermal feature To1. 
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Fig. 4.4 Scatter matrix of remaining extended object thermal features after a preliminary feature 
analysis. 

For the compact objects, two thermal feature values for emissivity were identi-
fied as outliers.  As we discussed in Chap. 3, the emissivity values computed by 
Eq. 3.11 could be quite sensitive to variations in the thermal radiance of the object, 
reference emitter, and aluminum foil.  For instance, as the radiance of the refer-
ence emitter and the aluminum foil approach the same value, the denominator in 
the equation for emissivity will become very small (either positive or negative).  
As a result, the value of the emissivity in Eq. 3.11 would take on very large values 
(either positive or negative).  This is the situation for our two outliers.  One of the 
thermal images of a steel pole had Lo = 95.2844, Lr = 95.0581, and Lb = 95.0479.  
The computed emissivity of Eo = 22.4907 was identified as an outlier.  The other 
outlier involved the thermal image of a tree with Lo = 94.6489, Lr = 94.0923, and 
Lb = 94.1144.  In this case, the computed emissivity was Eo = –23.46.  The ther-
mal image of the steel pole was captured at 1049 hrs on 21 March 2007 with an 
ambient temperature of 45.6°F and cloud coverage at a high ceiling altitude.  The 
thermal image of the tree was captured at 1738 hrs on 25 March 2007 with an am-
bient temperature of 51.4°F and no cloud coverage.  Thus, we can conclude the 
environmental conditions and viewing angle of the thermal camera were just right 
for the target and surrounding surfaces to have approximately the same level of 
thermal radiant emissions.  This phenomenon, known as thermal crossover [18], 
resulted in the minimal thermal contrast between the surfaces of objects and the 
surrounding that caused the extreme emissivity values.  Consequently, the thermal 
images of the steel pole and tree that created these emissivity outliers were re-
moved from the training data set.  Table 2.1 displays the remaining 636 compact 
objects used in the training data set.   
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Fig. 4.5 Scatter plot of compact object thermal features Co1 vs. So1. 

In Chap. 6, we will discuss how these periods of thermal crossover could result 
in a limitation to our ability to classify non-heat generating objects in an outdoor 
environment using a thermal infrared imaging sensor.  We will also present 
a method that incorporates a thermal contrast threshold rule into the detection 
phase of the classification process that requires a minimum amount of contrast in 
the scene to use the thermal infrared imaging sensor.  If the rule is not satisfied, 
the autonomous robot must reject the use of the thermal imaging sensor and rely 
on other sensors such as ultrasound to assist in classifying the target.        

After standardizing the feature values of the compact objects using Eq. 4.1, we 
used scatter plots to study the relationship between each pair of thermal features 
found in Table 3.3.  As noted in Chap. 3, the thermal features Mo1, Mor1, and 
Mob1 will not apply to the compact objects since 1Lo Mo= .  Since Co1 has 
a strong relation with So1 as shown in Fig. 4.5, So1 is eliminated from the choice 
of thermal features.  The feature So1 is eliminated since Co1 consists of more dis-
tinct feature values than So1 as displayed in Fig. 4.5.  The thermal feature Uo1 is 
removed due to its strong relation with En1 as displayed in Fig. 4.6.  Addition-
ally, To1 was eliminated since the majority of its values are between 0.21 and 
0.23 as presented in Fig. 4.7.  As with the extended object case, this small interval 
containing the majority of the To1 feature values results in a lack of separation 
between the object classes.  The scatter matrix for the remaining 15 compact ob-
ject thermal features is presented in Fig. 4.8.  The remaining pairs of thermal fea-
tures with strong relationships in the scatter matrix will be retained for further 
analysis when we assess the performance of the feature combinations with vari-
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ous classifiers.  As expected, Co1 and En1 display similar characteristics by their 
strong relationship with a positive sloping trend in data.  Furthermore, Er2 and 
En2 present opposing attributes by displaying a negative sloping trend in their 
data.  Interestingly, we see strong relationships within each object class involving 
the pairs of features (En1, En2), (Co1, En2),  (Co2, En1), (Co2, En2), and (Er2, 
Ho2) that result in an increasing separation between the two object classes’ data 
from a common origin. 

A reoccurring observation in the scatter plots for both the extended and com-
pact objects is that the data for each object class tends to diverge from the other 
object classes beginning at a common origin.  We see a separation in the object 
classes that is dependent on the variation in thermal features due to the diurnal 
cycle of solar energy.  Consequently, the origins represent thermal conditions in 
the environment that are just right for the feature values to not display much dis-
tinction between object classes.  In typical classification applications involving 
controlled environments, the feature values for each object class tend to form 
compact hyperspherical or hyperellipsoidal clusters with no common origin 
amongst the object classes.  These applications normally use traditional metrics to 
choose a set of features for the classification model such as the inter/intra class 
distance where the most favorable set of features is the one that results in a large 
distance between object class clusters (interclass) and small distance between fea-
ture vectors within each object class (intraclass).  Since our application involves a 
dynamic outdoor environment, we are dealing with a more complex situation that 
requires non-traditional methods.   
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Fig. 4.6 Scatter plot of compact object thermal features Uo1 vs. En1. 
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Due to the complexity of classification applications involving outdoor images, 
we have only found three relevant attempts in the literature to classify features gen-
erated from the images of outdoor objects that vary with the availability of solar ra-
diation.  Buluswar and Draper present a color-based recognition application under 
varying illumination in an outdoor environment using features based on RGB (Red, 
Green, Blue) space to classify the color of surfaces for autonomous vehicles [19] 
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Fig. 4.8 Scatter matrix of remaining compact object thermal features after a preliminary feature 
analysis. 
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and machine vision [20].  A representative training data set consisting of color fea-
tures generated from images of natural objects in an outdoor environment covering 
a wide range of illumination conditions is used in a maximum likelihood classifier 
in [21].  The classification using the color stereo camera is complemented by a sin-
gle axis LADAR sensor for autonomous navigation in cross-country environments.   

As we will see later, the diverging nature of the structure in our object classes’ 
clusters will continue in higher dimensions.  Since our object classes’ clusters re-
semble a conical structure, they will be called hyperconoidal clusters.  These hy-
perconoidal clusters are the cornerstones of our research that inspired our novel 
method for classifying non-heat generating objects in an outdoor environment that 
we will present in Chap. 5.   

4.4 Classifiers 

In this section we discuss our nonparametric classifiers that will have a probabilis-
tic approach when making decisions regarding class assignments.  The three clas-
sifiers used in our feature selection process are Bayesian, K-Nearest-Neighbor 
(KNN), and Parzen. 

4.4.1 Bayesian Classifier 

In this section we will derive our Bayesian classifier that uses a KNN density es-
timation.  Suppose we want to find the probability of an arbitrary object class jO , 

Jj ,...,1= , being present given that we generated a feature vector nD  from the 
signal emitted by the object and received by our sensor n.  In mathematical terms, 
we seek to find the conditional probability ( )nj DOP | .  Intuitively, we would 

think that this condition somehow depends on the joint probability ( )jn ODP ,  that 

we obtained the feature vector nD  from the signal and it belongs to the object 
class jO .  Our joint probability is defined using the product rule 

( ) ( ) ( )jjnjn OPODPODP |, =  where the conditional probability ( )jn ODP |  pro-

vides a measure of the chance that we would have obtained the values in the fea-
ture vector nD  if the object class jO  was given to be present and ( )jOP  provides 

a measure of our state of knowledge regarding the object class being present be-
fore any signal data is collected using the sensor.  Since the probability of both 

nD  and jO  being true must be logically equivalent to jO  and nD  being true so 
that ( ) ( )njjn DOPODP ,, = , we must have ( ) ( ) ( ) ( )nnjjjn DPDOPOPODP || = .  
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Since all the joint probabilities ( )jn ODP , , for Jj ...1= , are mutually exclusive, 
the unconditional probability   
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is the total probability of obtaining the feature vector nD , irrespective of object 
class membership.  Thus, we have 

 ( ) ( ) ( )
( )n

jjn
nj DP

OPODP
DOP

|
| = . (4.3) 

This expression is known as Bayes’ theorem (or Bayes’ formula), named after 
Reverend Thomas Bayes (1702 – 1761).  The quantity ( )nj DOP |  is called the 

posterior probability since it gives the probability of the object class being jO  af-

ter obtaining the measured feature vector nD .  The quantity ( )jn ODP |  is called 

the likelihood function since it provides a measure of the chance that we would 
have obtained the values in the feature vector nD  if the object class jO  was given 

to be present.  As noted by R. A. Fisher [22], though the likelihood function is 
provided in the form of a conditional probability, it is not necessarily a probability 
density function since the integral of a likelihood function may not equal to one.  
Consequently, we will refer to the likelihood function as a probability density es-
timation.  The quantity ( )jOP  is called the prior probability since it represents our 

state of knowledge regarding the object class being present before any signal data 
is collected using the sensor.  For example, if we feel that all the object classes 
could exist in our robot’s local area of operation or have no reason to believe that 
one object class is more likely to be identified over another, then the “principle of 
indifference” prevails and we assign equal priors for all the object classes.  The 
quantity ( )nDP  is a normalization parameter (known as the evidence) that ensures 
that the posterior probabilities sum to unity. 

From Bayes’ theorem we can form Bayes’ decision rule that allows us to 
minimize the probability of misclassification by selecting the object class kO  hav-
ing the largest posterior probability compared to posterior probabilities of the 
other object classes.  That is, given a feature vector nD  obtained from the signal 
received by our sensor, we conclude that the source of the signal is object class 

kO  if  

 ( ) ( )nlnk DOPDOP || >  (4.4) 

for all lk ≠ . 
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As noted earlier, the likelihood function provides a measure of the chance that 
we would have obtained the values in a feature vector if an object class was given 
to be present.  Otherwise, the likelihood function is a probability density estima-
tion in the data space.  Formally, a probability density function ( )xp  is used to 
find the probability that a variable x lies within an interval from ax =  to bx =  
and is given by 

 ( ) ( )∫=∈
b

a

dxxpbaxP ],[ . (4.5) 

If the density function is known based on the distribution of the data and we do 
not expect the distribution to vary, then we could choose parametric techniques to 
formulate our probability density function.  However, if we expect our data to vary 
based on environmental factors and our actual density function is unknown, we 
should seek nonparametric methods that can be used with arbitrary distributions to 
derive our probability density estimation. 

The general method in formulating an estimate for an unknown probability 
density function ( )xp  is discussed by Duda, Hart, and Stork [1] and Bishop [4] as 
follows.  Suppose the probability P that a vector x  will fall inside a region R in 
x -space is given by 

 ( )∫=
R

xdxpP ''  (4.6) 

If N samples are drawn independently from ( )xp , then the probability that K of 
them will fall within the region R is given by the binomial law 

 ( ) KNK PP
K
N

KP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1)(  (4.7) 

Since the mean fraction of the samples falling within this region is given by 
PNKE =]/[  and the variance about this mean is given by 

( )[ ] ( ) NPPPNKE /1/ 2 −=− , the distribution peaks sharply as ∞→N .  Thus, 
the mean fraction of the samples falling within the region R is a good estimate of 
the probability P so that 

 NKP /≅ . (4.8) 

Furthermore, if we assume that ( )xp  is continuous and that the region R is 
small enough so that ( )xp  does not vary appreciably within it, we have 

 ( ) ( )VxpxdxpP
R

≅= ∫ ''  (4.9) 
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where V is the volume enclosed by the region R  and x  is an arbitrary point 
within R.  Combining Eqs. 4.8 and 4.9 we obtain the following estimate for our 
probability density function ( )xp , 

 ( )
VN

Kxp =ˆ . (4.10)         

An appropriate nonparametric method for implementing our density estimation 
in Eq. 4.10 is the KNN technique.  With the KNN density estimation, the approach 
is to select an appropriate K  and determine the volume V containing the K sam-
ples centered on the point x .  Thus, the volume V is a function of the training 
data.  Consequently, if the density of the training data is high near x , the volume 
will be relatively small, leading to good resolution.  On the other hand, if the den-
sity is low, the volume will grow until it obtains the required number of K, but it 
may stop growing sooner if it enters a region of higher density.  Theoretically, to 
ensure xp(ˆ ) is a good estimate of the probability that the point x  will fall within 
the region R of volume V we desire K to approach infinity as N approaches infin-
ity.  However, to ensure that V shrinks to zero we must require K to approach in-
finity slower than N.  Devroye, Györfi, and Lugosi [13] show that ∞=

∞→
K

N
lim  and 

0lim =
∞→ N

K
N

 are necessary and sufficient conditions for )(ˆ xp to be a consistent es-

timate of )(xp .   
Now suppose our training data set consists of jN  feature vectors from object 

class jO  and there are NN
J

j
j =∑

=1

 points in total.  As displayed in Fig. 4.9, we 

can draw a hypersphere of volume V with a center feature vector nD  and consist-
ing of K other feature vectors irrespective of their object class.  Suppose the hy-
persphere contains jK  feature vectors from object class jO .  From results of the 

probability density function estimation above in Eq. 4.10, we obtain our required 
likelihood function as a KNN density estimation 

 ( )
VN

K
ODP

j

j
jn =|ˆ  (4.11) 

The underlying concepts for using the KNN density estimation in nonparamet-
ric discrimination originated from the works by Fix and Hodges [23, 24].  Their 
decision rule was to assign nD  to class j if  

 ( ) ( )injn ODPODP |ˆ|ˆ > ,   ji ≠  (4.12) 
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Fig. 4.9 K-Nearest-Neighbor 
density estimation. 
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for two classes i = 1,2.  However, this maximum likelihood decision rule does not 
consider any prior knowledge about our object class Oj  (i.e., ( )jOP  ).  Therefore, 

our desired posterior probability for our Bayesian classifier in Eq. 4.3 is 
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 (4.13) 

In our case, we will use a Bayes’ decision rule as given in Eq. 4.4 that assigns 
the feature vector nD  to the object class with the maximum posterior probability. 
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At this point, two comments need to be made.  First, as discussed above in the 
derivation of Bayes’ theorem, the likelihood function is not necessarily a probabil-
ity density function since the integral of a likelihood function may not equal to 
one.  Thus, the KNN density function is not a true probability density since if we 
integrated Eq. 4.11 over the whole feature space, we would find that the integral is 
infinite (rather than unity).  Second, in practice, the optimal value of K depends on 
the size of the available training data set and various approaches are used to de-
termine the best value for K that results in the most favorable classifier perform-
ance.  Consequently, the performance of the Bayesian classifier with a KNN den-
sity estimation depends on both the choice for K and the feature vector.  We will 
discuss our choices for K in Sect. 4.4.4 below.  

4.4.2 K-Nearest-Neighbor (KNN) Classifier 

The traditional K-Nearest-Neighbor classifier (or rule) originated from the works 
of Cover and Hart [25].  They assumed that the proportion of each object class’s 
samples in the training data set provides a good representation for the prior prob-
ability ( )jOP  of that object class being present in the environment for subsequent 

classifications so that 

 ( )
N
N

OP j
j = . (4.14) 

In this case, the unconditional density (evidence) in Eq. 4.2 becomes   
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For the posterior probability we have 
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This form leads to what has traditionally been known as the K-Nearest-
Neighbor classifier (or rule).  Generalizing to M classes, we assign nD  to class j if  

 ij KK > ,  .,...,2,1, Miij =≠  (4.17) 

Consequently, the design rule is to assign nD  to the class that receives the ma-
jority vote amongst the K nearest neighbors.  The case where K = 1 is simply 
called the Nearest Neighbor Rule.   

4.4.3 Parzen Classifier 

The Parzen classifier estimates the object class densities by a Parzen density esti-
mation [26].  Both the KNN and Parzen density estimations evolve from Eq. 4.10.  
With the KNN density estimation presented in Sect. 4.4.1, the volume V of the hy-
persphere with a center feature vector nD  is determined by the specified number 
of nearest neighbors K that depends on the size N of the training data set.  How-
ever, the Parzen density estimation reverses the roles.  In the Parzen density esti-
mation, the value of K is determined by a specified volume V that depends on the 
size N of the training data.  Similar to the Bayesian classifier with the KNN den-
sity estimation, the Parzen classifier will estimate the densities for each object 
class and assign an unknown feature vector to the object class with the maximum 
posterior probability. 

Beginning with Eq. 4.10, suppose our training data set consists of jN  feature 

vectors from object class jO  and there are NN
J

j
j =∑

=1

 vectors in total.  Draw 
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a d-dimensional hypercube with edges of length h and a center feature vector nD  
around K other feature vectors irrespective of their object class.  The hypercube 
contains jK  feature vectors from object class jO .  The volume of this hypercube 

is given by 

 dhV =  (4.18) 

We can derive an analytical expression for Kj by defining the kernel function 
(or Parzen window function): 

 ( )
⎪⎩

⎪
⎨
⎧ =≤

=
.0

,...,12/11

otherwise

dpu
uH p  (4.19) 

Thus, the Parzen density estimation is known as a kernel-based method for 
density estimations.  The function ( )uH  defines a unit hypercube centered at the 
origin.  Consequently, for all feature vectors Dqj from the training data set of ob-
ject class Oj, the value of ( )( )hDDH qjn /−  is unity if the point Dqj falls within the 

hypercube and is zero otherwise.  The total number of feature vectors from object 
class jO  in the hypercube is given by 
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By substituting Eqs. 4.18 and 4.20 into Eq. 4.10, we obtain our Parzen density 
estimation: 
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Therefore, our posterior probability for our Parzen classifier is given by 
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The performance of the Parzen classifier depends on both the choice for h  
and the feature vector.  We will discuss our method for choosing h in Sect. 4.4.4 
below. 
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4.4.4 General Remarks 

In this section, we will make some general remarks that are common to all our 
classifiers.  First we will comment on the choices for K used in the KNN density 
estimation and h used by the Parzen density estimation.  Next we will comment on 
the use of prior probabilities by the classifiers.  We will conclude the section with 
a brief discussion on how to deal with ties between two posterior probabilities 
with different class assignments. 

4.4.4.1 Choices for Parameters K and h 

Both K and h act as smoothing parameters for the KNN and Parzen density esti-
mations, respectively, where an appropriate choice will result in a good approxi-
mation to the true density function for the training data.  However, for our non-
parametric application where the density function is not known, we must choose 
parameter values that minimize the misclassification error.  Two approaches for 
selecting the values of the parameters are by either presenting the parameters as 
a function of the training data or using cross-validation. 

Since the KNN density estimation is one of the most popular methods used in 
pattern classification, there exists a considerable amount of research in the litera-
ture to develop a scheme for choosing the value for the parameter K that will 
minimize the misclassification rate [27, 28, 29, 30].  For our Bayesian classifier, 
we will choose the following functional form of K in terms of the training data 
size that was presented by Loftsgaarden and Quesenberry [27] and endorsed by 
Duda, Hart, and Stork [1]: 

( ) jj NNK =
 

(4.23)

where Nj is the number of labeled observations in the training data set for object 
class Oj.  A functional form for the parameter h in the Parzen density estimation 
that is recommended by Duda, Hart, and Stork [1] is obtained by letting 
( ) jj NNV /1=  in Eq. 4.18.  We will choose the parameters for the KNN and 

Parzen classifiers using the cross-validation method discussed below. 
Cross-validation is an error estimation method used to assist in designing 

a classification model with a minimum misclassification error.  The most favor-
able pattern classification model is the one consisting of the feature vector and pa-
rameters in the classifier that results in minimal classification errors.  The classi-
fier is first designed using a training data set, and then its classification 
performance is assessed using a test (or validation) set.  Hence, the test set is used 
to tune the values of the parameters in the classifier.  The percentage of misclassi-
fied test samples is used as an estimate of the error (or misclassification) rate.  
Thus, cross-validation is used to compute the error rate for different parameter 
values (i.e., k or h) for a classifier and a given feature vector.  The parameter value 
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that results in the lowest estimate of the error rate is chosen for the given classi-
fier.  We will use the cross-validation method to select the parameter values for 
the KNN and Parzen classifiers.  A more detailed discussion on the cross-
validation method will be provided in Sect. 4.5.       

4.4.4.2 Prior Knowledge 

The quantity ( )jOP  in Bayes’ formula (Eq. 4.3) is called the prior probability since 

it represents our state of knowledge regarding the object class being present before 
any signal data is collected using the sensor.  Our Bayesian and Parzen classifiers 
possess the capability to input prior knowledge regarding each object class’s exis-
tence in the robot’s local area of operation.  However, as we mentioned previously, 
the KNN classifier assumes that the proportion of each object class’s samples in the 
training data set provides a good representation for the prior probability.   

The KNN classifier’s prior probability may be appropriate when dealing with 
training data sets that form compact hyperspherical clusters.  However, the KNN 
classifier’s prior probability may not be appropriate with our hyperconoidal clus-
ters where multimodal distributions normally occur within each object class due to 
the dynamical outdoor environment’s effect on the training data.  For instance, 
multimodal distributions could occur within an object class’s training data set since 
the features generated from the object’s thermal images display variations in the 
values due to the diurnal cycle of solar energy.  Furthermore, since we are seeking 
to classify objects that could exist in a robot’s local area of operation, we may want 
to incorporate a prior based on our knowledge of an object existing in the environ-
ment under inspection.  For example, if we feel that all the object classes could ex-
ist in our robot’s local area of operation or have no reason to believe that one object 
class is more likely to be identified over another, then the “principle of indiffer-
ence” prevails and we assign equal priors for all the object classes.   

During our analysis in the present chapter and Chap. 5, we will assume equal 
prior probabilities for all our object classes when using the Bayesian and Parzen 
classifiers.  We will also use the popular KNN classifier as the comparative 
benchmark regardless of its potential shortcoming with the prior probability.  In 
Chap. 6, we will discuss future research to assign a prior probability to an object 
class using knowledge gained from satellite imagery. 

4.4.4.3 Ties 

There are various approaches to deal with ties between two posterior probabilities 
with different class assignments.  For the KNN classifier, Devroye, Györfi, and 
Lugosi, [13] recommend choosing K to be odd to avoid voting ties.  Webb [7] pro-
vides several ways to break ties.  One way is to break ties arbitrarily.  Another pos-
sible tiebreaker technique is to assign nD  to the object class, out of the classes 



 4.5 Model Performance and Feature Selection 115 

with equal posterior probabilities, that has the nearest mean vector to nD  (where 
the mean vector is computed over each object class’s training data within the cell of 
volume V).  An alternative method is to assign nD to the most compact object class 
out of the classes with equal posterior probability values.  Since our autonomous 
robot may have to decide whether to go through the hedge or around the brick wall, 
posterior probabilities for the hedge and brick wall that are close in value could re-
sult in an autonomous robot with damaged sensors if the brick wall was misclassi-
fied as a hedge.  Our point of view is that two posterior probabilities with different 
recommendations for class assignments but a small absolute difference in their pos-
terior values may present too much risk for a misclassification.  Consequently, in 
Chap. 5, we will introduce our approach that will prevent ties and high-risk deci-
sions by requiring the two highest posterior values with different recommendations 
for class assignment to have an absolute difference that exceeds a specified thresh-
old value.  If the rule for the threshold is not satisfied, the classification is rejected 
and the robot must capture another thermal image for class assignment.    

4.5 Model Performance and Feature Selection 

In this section we will discuss and implement methods to select the most favorable 
feature vectors that result in minimum classification errors for the Bayesian, KNN, 
and Parzen classifiers presented in Sect. 4.4.  Since the performance of a classifier 
is a function of the feature vector as well as the value of the its parameters (i.e., K 
or h), the evaluation of classifiers and selection of feature sets are done simultane-
ously using various error estimation methods.  Our selection process will involve 
an exhaustive search using two high performance computing systems to analyze 
the classification performance of over 290,000 feature combinations spanning up 
to 18 dimensions.  A login node was used on the DoD High Performance Comput-
ing Modernization Program system at the Army Research Laboratory Major 
Shared Resource Center that included 8 GB of memory at a processor frequency 
of 3.6 GHz.  Four nodes were used on a computing system located at the College 
of William & Mary with two nodes each consisting of 8 GB of memory and two 
other nodes each consisting of 16 GB of memory, each node operating at 
a processor frequency of 1.28 GHz.  The end-state objective is to present sets of 
features that will maximize the performance of classifiers in assigning the correct 
object class to unknown feature vectors generated from the thermal imagery of 
non-heat generating objects in an outdoor environment.   

The discussions in this section are outlined as follows.  In Sect. 4.5.1 we will dis-
cuss our exhaustive search feature selection method.  Section 4.5.2 will present our 
performance criteria used to assess each classification model (classifier plus feature 
vector).  Section 4.5.3 will discuss our error estimation methods used on the training 
and test data sets.  In Sect. 4.5.4 we will provide a summary of our process for evalu-
ating the various classification models and selecting the most favorable feature vec-
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tors for our extended and compact objects.  We will select the most favorable feature 
vectors for the extended objects in Sect. 4.5.5 and compact objects in Sect. 4.5.6.   

4.5.1 Feature Selection Method 

This section is concerned with the method used to identify the most favorable fea-
tures for classifying an unknown non-heat generating object with minimal error.  
We will discuss the two primary approaches used to identify these features – fea-
ture selection and feature extraction.  Our discussion will include how and why 
we use a feature selection method to identify our most favorable sets of features 
and feature extraction method in a “nontraditional way” to analyze the hypercon-
oidal clusters and design our novel classification model in Chap. 5.  A review of 
these two methods is found in [2, 3, 7].  The goal of both methods is to minimize 
both the number of dimensions of the features and misclassifications.  Not only 
does a large dimensional feature vector, relative to the available training data, in-
crease the computation time for the robot’s decision-making process but, more 
importantly, it will have a negative effect on the performance of the classification 
model.  This behavior brings up the concepts of the curse of dimensionality and 
peaking phenomena that we will discuss first. 

According to the curse of dimensionality [4], as the number of dimensions in-
creases for a feature vector, the size of the training data set must increase exponen-
tially as a function of the feature dimension to obtain an increase in classification 
performance.  However, in practice, we have a limited quantity of data.  Thus, as 
the number of dimensions of a feature vector increases, the data becomes sparse, 
in which case the classification performance begins to decline.  This behavior is 
known as the peaking phenomenon [2].  Consequently, a rule of thumb that we 
will adopt to favor peak performance of our classification model is to have no 
more than n/10 features for an object class with n training patterns [2].   

4.5.1.1 Feature Extraction 

Feature extraction methods create new features based on transformations of the 
original feature set.  Thus, the new feature set may not have a clear physical mean-
ing or retain the physical interpretation found in the original features generated from 
an object’s thermal image.  Consequently, we will not use any feature extraction 
methods in the “traditional way” for our application.  Some of the popular feature 
extraction methods include principal component analysis, Karhunen-Loève trans-
formation, independent component analysis, factor analysis, discriminant analysis 
(also known as Fisher linear discriminant analysis), and multi-dimensional scaling 
[2, 3, 7, 31, 32].  We will only discuss principal component analysis since we will 
apply this method in a “nontraditional way” when we analyze the hyperconoidal 
clusters and introduce the design of our novel classification model in Chap. 5.  
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Principal component analysis (PCA) is traditionally applied to the entire feature 
space in unsupervised classification.  The objective is to transform the original 
features to a lower dimensional space while retaining as much information about 
the original features as possible.  The idea behind this method is that the informa-
tion in the patterns of an n-dimensional feature space can be represented by 
a transformation involving the projection of the patterns, irrespective of any object 
class information, onto a subset of n orthonormal vectors with directions corre-
sponding to high variance in the patterns.  PCA assumes that information about 
the original features is available in the variance of the features.  Hence, a direction 
of higher variance in the patterns corresponds to more information about the fea-
tures.  Any vector in a direction of low variance can be excluded from the trans-
formation since it implies a direction with a low amount of information about the 
features.  Thus, the projection of the original patterns onto each of the selected 
vectors in the directions of the highest variance will yield new patterns in a lower 
dimensional space.  In some cases the resulting transformation could yield an ac-
ceptable separation of the original clusters in the feature space.  For instance, in 
Fig. 4.10, the projection of the 2-dimensional patterns onto the vector 1e  in the di-

1f

2f

1e

2e

 
Fig. 4.10 Principal component analysis used to project patterns onto eigenvector in direction of 
maximum variance of the patterns. 



118 4 Thermal Feature Selection  

rection of the maximum variance of the patterns and excluding the vector 2e  from 
the transformation would reduce the patterns to a 1-dimensional feature space 
while providing an acceptable separation of the two clusters as indicated by their 
given distributions. 

We now go into more detail on the derivation of the transformation used in 
PCA.  Let F be an n x m training data matrix where each column forms an 
n-dimensional feature vector nffff ...,,, 21=  for one object.  First center the 

data by subtracting the sample mean if  from the feature value if , where i =  

1,…,n, across each row in F.  This produces a matrix F~  where iii fff −=
~

 so 
that each row has a mean of zero.  Compute the covariance matrix C of the cen-
tered training data matrix F~  so that  
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FC . (4.24) 

The covariance matrix C is an n x n matrix with the variances of the individual 
features of F~  along the main diagonal and the off-diagonal elements consist of 
the covariances of each pair of features.  Since { } { }ijji f,fσf,fσ

~~~~
=  for all ji ≠ , 

{ }FC ~  is a symmetric matrix.  From linear algebra, the matrix { }FC ~  is symmetric 
if and only if it has an orthonormal set of n eigenvectors.  Next, calculate the ei-
genvalues iλ  and corresponding unit-length eigenvectors ie  of the covariance 
matrix in Eq. 4.24 in following algebraic eigenvalue problem 

 iii eλe =C . (4.25) 

Thus, a large eigenvalue iλ  equates to large covariance values (positive or 
negative) for pairs of features in C.  The unit-length eigenvector ie  corresponding 
to this large eigenvalue provides a direction of high variation in the patterns.  The 
ordering of the eigenvectors is such that the corresponding eigenvalues iλ  satisfy 

nλλλ ≥≥≥ ...21 .  The largest eigenvalues 1λ  is associated with the eigenvector 

1e  that determines the direction with the maximal variance and best fits the pat-
terns in a least squared sense.   

Each eigenvector in the orthonormal set corresponds to a principal axis of the 
patterns in the feature space.  The PCA transformation projects each pattern 
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given by the linear combination 
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where j is the index of the chosen eigenvector in a direction with a high variance 
of the patterns.  Each of these new features jy  given by Eq. 4.26 is called a prin-

cipal component.  The principal component 1y  corresponding to the eigenvector 

1e  in the direction of the maximal variance of the patterns is called the first prin-
cipal component.   

As mentioned earlier, we can choose a subset of the eigenvectors with direc-
tions corresponding to the highest variances of the patterns and exclude those ei-
genvectors with directions of low variance to obtain a new lower dimensional pat-
tern with minimal loss of information about the original features.  Let E denote 
a matrix with each column being one of the selected eigenvectors je .  The PCA 

transformation  

 FEY T ~=  (4.27) 

yields new patterns Y, consisting of principal components, in a reduced dimen-
sional feature space.  Each column of Y is a new lower dimensional feature vector 
corresponding to the same column with the original feature vector in F~ .  Conse-
quently, if we included all n eigenvectors in E, we would lose no information, and 
Y would contain the original data rotated in the feature space with the eigenvectors 
as the axes.  We will not use PCA as a feature extraction method; however, we 
will use its ability to fit an eigenvector through an object class’s hyperconoidal 
cluster in a least squares sense.  Using PCA in this “nontraditional way” will allow 
us to analyze the characteristics of the hyperconoidal clusters for each object class 
and assist in designing our novel classification model in Chap. 5.  

4.5.1.2 Feature Selection 

Contrary to the feature extraction methods, feature selection methods result in fea-
tures sets that retain their original physical meaning.  The process in feature selection 
methods is to select the subset of size d from the available input feature set of size p 
that leads to the most favorable performance for a specific classifier based on a given 
criterion J ( ⋅ ) .  We will discuss our choice for a performance criterion in Sect. 4.5.2.  
Since the most favorable subset of features is dependent on the type of classifier cho-
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sen, the selected features are “wrapped around” the given classifier.  Consequently, 
feature selection methods are often referred to as “wrapper methods” [3].   

The most popular feature selection methods include exhaustive search, branch-
and-bound search, best individual features, sequential forward selection, sequential 
backward selection, plus l-take away r selection, sequential forward floating search, 
and sequential backward floating search [2].  The exhaustive search is the only thor-
ough approach to identifying the most favorable feature vector since it involves ex-

amining all ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
d
p

 possible subsets and selecting the subset that leads to the best per-

formance for a specific classifier based on the criterion J ( ⋅ ).  As noted in [2], no 
nonexhaustive feature selection method can be guaranteed to produce the “optimal” 
subset.  The exhaustive search is normally avoided since it is computationally expen-
sive.  However, with the increasing capabilities of high performance computing sys-
tems, what used to take say 20 days to evaluate 32,000 combinations of feature sub-
sets, currently takes 4 days to complete.  Therefore, our approach is to use the 
exhaustive search feature selection method on the high performance computing sys-
tems that we discussed earlier.  As mentioned previously, to ensure peak perform-
ance, the size d of this most favorable feature vector must also satisfy the rule of 
thumb to have no more than n/10 features for an object class with n training patterns.       

4.5.2 Performance Criterion 

The most favorable classification model (feature vector plus classifier along with 
parameter values) is determined by comparing performance criterion values for all 
possible combinations of features and classifiers by an exhaustive search.  Choices 
for the performance criterion functions J ( ⋅ ) normally include the estimated mis-
classification (or error) rate eP , estimated correct classification (or accuracy) rate 
( )eP−1 , or some distance measure as the performance criterion J ( ⋅ ) .  For our ap-
plication, we seek to determine the classification model that minimizes the esti-
mated error rate criterion given by 

 
n
nP e

e =  (4.28) 

where en  is the number of misclassified feature vectors out of n labeled test set 
samples for a given object class.  The criterion based on a distance measure nor-
mally consist of a ratio of the distances between object class clusters (interclass) 
and feature vectors within each object class (intraclass) [7].  The inter-
class/intraclass distance criterion should show a strong linear relationship with the 
estimated error rates such that the interclass/intraclass value increases as the esti-
mated error rate decreases in value.  However, we investigated the use of the in-
terclass/intraclass distance criterion in our application and found a weak relation-
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ship between the estimated error rates and the interclass/intraclass distances.  The 
best coefficient of determination of r2 = 57.4% was achieved with a Bayesian clas-
sifier and 2-dimensional feature vectors.  The coefficients of determination de-
creased in value as the feature vectors increased in dimensions.  Consequently, 
this type of distance criterion is best for applications involving hyperspherical or 
hyperellipsoidal clusters with no common origin amongst the object classes, as we 
see in our application involving hyperconoidal clusters.   

In Sect. 4.5.3, we will discuss our chosen error estimation methods that involve 
the use of training data to design a classifier and test (or validation) data to assess 
the performance of the classification model.  For a given classification model, these 
methods will assign an object class label to each feature vector from a test data set 
consisting of known (or actual) labels from multiple object classes.  The resulting 
class assignments of the test data set by the given classification model will be pre-
sented in a confusion matrix (or misclassification matrix).  Table 4.1 provides an 
example of a confusion matrix involving the extended objects where the labels for 
the actual object classes are displayed along the columns and the labels for the as-
signed object classes are given along the rows.  Each element of the matrix, given 
by the ith row and jth column, provides the number of feature vectors from the ac-
tual object class jω  that were assigned as object class iω  by the given classifica-
tion model.  For example, out of the 23 actual brick wall feature vectors in the test 
data set, the classification model correctly assigned 15 feature vectors as brick wall 
and misclassified 6 feature vectors as hedges and 2 feature vectors as wood walls.  
By applying Eq. 4.28, the error rate for the brick wall is approximately 34.78%.  
The error rates for each object class are displayed below the confusion matrix.  
When comparing the performance of all the classification models using the exhaus-
tive search feature selection method we will use the average of the error rates for 
each object class in the test data set due to the large number of models being evalu-
ated.  The average error rate for our example in Table 4.1 is approximately 33.70%.  
Once we identify the most favorable feature vectors, we will use the more detailed 
error rates for each object class in the confusion matrix during our analysis and de-
sign of our most favorable classification model in Chap. 5. 

Table 4.1 Confusion matrix example that assesses a classification model’s performance on test 
data set consisting of extended objects. 

Brick Wall Hedges Picket Fence Wood Wall
Object 
Labels 1 2 3 4

Brick Wall 1 15 3 0 5
Hedges 2 6 20 0 8
Picket Fence 3 0 0 20 4
Wood Wall 4 2 0 3 6

23 23 23 23
8 3 3 17

34.7826 13.0435 13.0435 73.9130
31

33.6957

Actual Object Class

Total in Object Class
Total Errors 

Error Rate (%)
Total Errors

Avg Error Rate (%)

Assigned 
Object 
Class
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4.5.3 Error Estimation Method 

In this section we will discuss our choice of error estimation methods that involve 
the use of training data to design a classifier and test (or validation) data to assess 
the performance of the classification model.  The training, test, and blind data sets 
used in our application were discussed in Sect. 2.3.  The objective of the error es-
timation methods is to manage the training and test data sets that are used by 
a given classification model to ensure an appropriate estimation of the error rate.  
The error estimation methods that are commonly used in pattern classification in-
clude the resubstitution method, holdout method, leave-one-out method, rotation 
method, and bootstrap method [1, 2, 5, 6, 7].  The holdout, leave-one-out, and ro-
tation methods are different versions of the cross-validation algorithm [2].  For 
each classification model (i.e., classifier plus feature vector), an average error rate 
is computed on the test set data using a given error estimation method.  In our ap-
plication, we will estimate the average error rates using the resubstitution method, 
holdout method, and leave-one-out method.     

In the resubstitution method, all the available data used for the training data 
set is also used as test data.  The resubstitution method will only be applied to 
the Bayesian classifier.  Thus, for this method, our training data collected from 
15 March to 22 June 2007 will be used in Sects. 4.5.5 and 4.5.6 to design the 
Bayesian classifier with a given feature vector and then resubstituted as test data 
to validate the design. 

In the holdout method, a portion of the data is used for training and another 
portion is used for testing.  Thus, the training and test data sets are disjoint.  In this 
case, the training set is the data collected from 15 March to 22 June 2007.  We will 
use the test set collected from 25 June to 3 July 2007 in Sects. 4.5.5 and 4.5.6 to 
assess the performance of the Bayesian, KNN, and Parzen classifiers.  We will use 
our blind data set that was collected from 6 July to 5 November as our validation 
set when we analyze our most favorable feature vectors and designing our novel 
classification model in Chap. 5. 

The leave-one-out method uses the training set of size N to design the classifier 
using ( )1−N  samples as the training data and assess the classifier on the one re-
maining feature vector as the test sample.  This process is repeated N times with 
different training sets of size ( )1−N  to compute an average estimated error rate.  
We will apply the leave-one-out method to compute the average error rates involv-
ing the KNN and Parzen classifiers in Sects. 4.5.5 and 4.5.6.  As discussed in 
Sect. 4.4.4.1, cross-validation is also used to identify the most favorable parameter 
value for a given classifier.  The parameter value that results in the lowest estimate 
of the average error rate is chosen for the given classifier.  Therefore, we will also 
use the leave-one-out method to select the parameter value for K in the KNN clas-
sifier and h in the Parzen classifier.  The leave-one-out method will use the train-
ing data collected from 15 March to 22 June 2007.  The leave-one-out method is 
also called the jackknife method by John W. Tukey since it is handy and useful in 
many ways [1]. 
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4.5.4 Checkpoint Summary 

In Sects. 4.5.5 and 4.5.6 below, we will evaluate the performance of various clas-
sification models and identify the most favorable feature vectors for our extended 
and compact objects, respectively.  In this section we will summarize our process 
used in the following two sections that is based on the concepts we discussed in 
Sects. 4.4 through 4.5.3.  The goal of Sects. 4.5.5 and 4.5.6 is to select a set of fea-
ture vectors that result in the lowest error rates when teamed up with either the 
Bayesian, KNN, or Parzen classifier.  We will compute the error rates for each 
classifier combined with every combination of features across all possible dimen-
sions (i.e., exhaustive search feature selection method).  For each classification 
model (i.e., classifier plus feature vector), an average error rate is computed on test 
set data using the resubstitution, holdout, and leave-one-out error estimation 
methods.  The resulting average error rates are compared to determine the feature 
vectors that present the lowest error rates.  These feature vectors will be consid-
ered as our most favorable feature vectors and used for further analysis and de-
signing our novel classification model in Chap. 5.  

4.5.5 Extended Object Performance and Feature Selection 

The 18 thermal features remaining from our preliminary feature analysis in 
Sect. 4.3 are displayed in Table 4.2 along with numerical labels that are provided 
for convenience as we analyze the different feature vectors used in the classifica-
tion models during the exhaustive search feature selection method.  The equations 
for each feature were discussed and derived in Chap. 3.   

Table 4.3 provides the number of combinations of extended object features for 
each feature vector dimension used in the exhaustive search method.  We will 
compute the average error rates for the classification models across all 18 dimen-
sions to ensure an exhaustive search.  However, we will also adhere to rule of 
thumb given in Sect. 4.5.1 that requires the size d of the most favorable feature 
vector to have no more than n/10 features for an object class with n training pat-
terns to ensure peak performance.  Thus, given the number of training patterns for 
each extended object class in Table 2.1, the maximum acceptable size for our most 
favorable feature vector is 11 features. 

The average error rates for each classifier combined with every combination of 
features across all possible dimensions (i.e., exhaustive search feature selection 
method) were computed using the error estimation methods on a high perform-
ance computing system discussed in Sect. 4.5.  Figure 4.11 presents dotplots that 
give the general trend of the average error rates for each classifier and error esti-
mation method observed in each dimension.  The dotplots show that holdout error 
estimation methods have a tendency to display a higher variance in the average 
error rates compared to the leave-one-out and resubstitution methods.  This oc-
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curs since the training and test data come from the same set for the leave-one-out 
and resubstitution methods.   

The average error rates were sorted in increasing order by classifier and error 
estimation method within each dimension.  Tables 4.4 (a–e) compare the lowest 
average error rates (%) of each classifier with the respective error estimation 
method across each feature vector dimension.  The average error rates in Ta-
bles 4.4 (a–e) clearly illustrate the behavior known as the peaking phenomenon.  
Thus, as the number of dimension of a feature vector increases, the error rates of 
each classifier decrease to a specific peak (or in some cases a short plateau) and 
then the classification performance begins to decline.  For instance, the Bayesian 
classifier with the resubstitution error estimation method reaches its peak perform-
ance at an estimated average error rate of 16.70% with a 7-dimensional feature 
vector.  We also see that no classifier reaches a peak performance with a feature 
vector consisting of only features from a single feature category – meteorological, 
micro, or macro. 

Table 4.2 Extended ob-
ject thermal features and 
labels used in the exhaus-
tive search feature selec-
tion method. 

FEATURE LABEL

Ambient Temp. oF  (Ta) 1

Amb. Temp. Rate of Change (T1) 2

Object Surface Radiance (Lo) 3

Reference Emitter Radiance (Lr) 4

Background Irradiance (Lb) 5

Lo/Lr (Lor) 6

Lo/Lob (Lob) 7

Emissivity (Eo) 8

Object Scene Radiance (Mo1) 9

Mo1/Lr (Mor1) 10

Mo1/Lb (Mob1) 11

Smoothness (So1) 12

Entropy1 (En1) 13

Contrast2 (Co2) 14

Correlation (Cr2) 15

Energy (Er2) 16

Homogeneity (Ho2) 17

Entropy2 (En2) 18

Second-order Statistics

Meteorological Features

Micro Features

Macro Features

First-order Statistics
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Table 4.3 Total number of extended 
object thermal feature combinations 
for feature vectors from 1 to 18 di-
mensions.  The first 11 dimensions 
(highlighted in yellow) satisfy the rule 
of thumb to ensure peak performance 
of the classification models. 

DIMENSIONS OF 

FEATURE VECTOR

NUMBER OF 

FEATURE 

COMBINATIONS

1 18
2 153
3 816
4 3060
5 8568
6 18564
7 31824
8 43758
9 48620

10 43758
11 31824
12 18564
13 8568
14 3060
15 816
16 153
17 18
18 1

TOTAL 262143

The next step is to compare classification models (along with their respective error 
estimation methods) in Tables 4.4 (a–e) to identify a most favorable set of feature 
vectors.  The size of the most favorable set of feature vectors is limited to 11 dimen-
sions to support the rule of thumb for peak performance.  We choose pairs of classifi-
cation models for comparison based on their similarities in the error rate trends found 
in Fig. 4.11.  Thus, for each dimension, we compare the error rates in Table 4.4 for the 

KNN (Holdout)

Parzen (Holdout)

KNN (Leave-one-out)

Parzen (Leave-one-out)

Bayesian (Holdout)

Bayesian (Resubstitution)

Average Error Rate
 

Fig. 4.11 General trend for extended objects of dotplots with average error rates for each classi-
fier and error estimation method observed in each dimension. 
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Table 4.4 Extended object comparison of the lowest average error rates (%) of each classifier 
with the respective error estimation method across each feature vector dimension. 

(a) 

CLASSIFIER

ERROR 

ESTIMATION

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*9653.44noitutitsbuseRnaiseyaB3
*7430.03tuodloHnaiseyaB6
457430.03tuodloHNNK6

51622.64tuo-eno-evaeLNNK3
9910.02795.13tuodloHnezraP6
3210.04659.34tuo-eno-evaeLnezraP3

*3260.03noitutitsbuseRnaiseyaB314
*9888.31tuodloHnaiseyaB616
911816.91tuodloHNNK73
14983.03tuo-eno-evaeLNNK211

3340.09188.71tuodloHnezraP315
7420.02254.23tuo-eno-evaeLnezraP3101

*7969.32noitutitsbuseRnaiseyaB8165
*2979.11tuodloHnaiseyaB6165
110573.9tuodloHNNK6163

17243.01tuo-eno-evaeLNNK2121
6720.04102.9tuodloHnezraP6164
1630.01440.32tuo-eno-evaeLnezraP31116

*8280.22noitutitsbuseRnaiseyaB31653
*7192.7tuodloHnaiseyaB61865
612458.8tuodloHNNK8653
14000.21tuo-eno-evaeLNNK41421

1830.05218.7tuodloHnezraP310163
1830.00749.61tuo-eno-evaeLnezraP310121

FEATURE VECTOR

 

(b) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*7850.91noitutitsbuseRnaiseyaB816532
*2927.5tuodloHnaiseyaB619653
14670.6tuodloHNNK318743
10306.01tuo-eno-evaeLNNK216321

4930.00052.6tuodloHnezraP817631
2930.05334.31tuo-eno-evaeLnezraP31110121

*9397.81noitutitsbuseRnaiseyaB815111632
*3043.4tuodloHnaiseyaB71019853
14670.6tuodloHNNK312111631
16895.01tuo-eno-evaeLNNK41216321

6350.08209.5tuodloHnezraP61017531
5120.02669.21tuo-eno-evaeLnezraP41214321

*5407.61noitutitsbuseRnaiseyaB813196532
*4159.2tuodloHnaiseyaB613198653
15786.4tuodloHNNK811186431
11245.11tuo-eno-evaeLNNK810165421

4350.03043.4tuodloHnezraP611176531
7430.03177.11tuo-eno-evaeLnezraP810165421

*7379.61noitutitsbuseRnaiseyaB81615196532
*4159.2tuodloHnaiseyaB6131987653
19315.4tuodloHNNK814121116431
13070.11tuo-eno-evaeLNNK8101654321

6550.08209.5tuodloHnezraP61412176531
2850.07169.21tuo-eno-evaeLnezraP71410165421

FEATURE VECTOR
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(c) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*6249.61noitutitsbuseRnaiseyaB815131976532
*4159.2tuodloHnaiseyaB21119876532
10521.3tuodloHNNK8141211186431
10403.11tuo-eno-evaeLNNK814101654321

6350.00052.6tuodloHnezraP71413121016531
3140.07825.11tuo-eno-evaeLnezraP31018654321

*7476.71noitutitsbuseRnaiseyaB817151311196532
*9315.4tuodloHnaiseyaB81716131986532
14670.6tuodloHNNK81614121865431
16735.11tuo-eno-evaeLNNK81412101654321

9050.00052.6tuodloHnezraP714131210165431
2940.00281.31tuo-eno-evaeLnezraP413121110164321

*5941.71noitutitsbuseRnaiseyaB7161513101976532
*5786.4tuodloHnaiseyaB716131019865321
14670.6tuodloHNNK81413121110187631
14000.21tuo-eno-evaeLNNK814121018654321

0950.00052.6tuodloHnezraP7141312101865431
9360.06872.21tuo-eno-evaeLnezraP6141211101765421

*9101.81noitutitsbuseRnaiseyaB817161513101976532
*4670.6tuodloHnaiseyaB71615131119876321
19836.7tuodloHNNK814131211101876531
14742.21tuo-eno-evaeLNNK41312111018654321

8950.08720.9tuodloHnezraP61514121018765431
8950.00329.31tuo-eno-evaeLnezraP71614111018654321

FEATURE VECTOR

 

(d) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR

RATE (%)

K
VALUE

h
VALUE

2 3 5 6 7 9 10 11 13 15 16 17 18 Bayesian Resubstitution 19.5305 *
1 2 3 4 5 6 8 9 12 13 16 17 18 Bayesian Holdout 7.6389 *
3 4 5 6 7 8 9 10 12 14 15 16 17 KNN Holdout 9.0278 8
1 2 3 4 5 6 7 8 10 11 12 13 14 KNN Leave-one-out 12.9573 1
2 3 4 5 6 8 9 10 11 12 14 15 16 Parzen Holdout 9.0278 0.0798
1 2 3 4 6 7 8 10 11 12 14 16 18 Parzen Leave-one-out 14.6239 0.0673
2 3 5 6 7 8 9 10 11 13 15 16 17 18 Bayesian Resubstitution 20.4695 *
1 2 3 4 5 6 7 8 9 10 12 13 16 17 Bayesian Holdout 9.2014 *
1 3 4 5 6 7 8 10 11 12 14 15 16 17 KNN Holdout 11.8056 1
1 2 3 4 5 6 7 8 10 11 12 13 14 16 KNN Leave-one-out 13.2043 1
1 3 4 5 6 7 8 10 11 12 13 16 17 18 Parzen Holdout 10.5903 0.0631
1 2 3 4 5 6 7 10 11 12 13 14 16 18 Parzen Leave-one-out 14.3903 0.0631
2 3 4 5 6 7 9 10 11 12 13 15 16 17 18 Bayesian Resubstitution 21.5977 *
1 2 3 4 5 6 7 8 9 10 12 13 16 17 18 Bayesian Holdout 9.2014 *
1 3 4 5 6 7 8 10 11 12 13 14 15 16 18 KNN Holdout 11.9792 1
1 2 3 4 5 6 7 8 10 11 12 13 14 16 18 KNN Leave-one-out 14.6239 1
2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 Parzen Holdout 10.4167 0.0929
1 2 3 4 5 6 7 9 10 11 12 14 15 16 18 Parzen Leave-one-out 15.8011 0.0812
1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18 Bayesian Resubstitution 22.2897 *
1 2 3 4 5 6 7 8 9 10 11 13 15 16 17 18 Bayesian Holdout 10.9375 *
1 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 KNN Holdout 13.7153 1
1 2 3 4 5 6 7 8 10 11 12 13 15 16 17 18 KNN Leave-one-out 14.6328 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Parzen Holdout 12.1528 0.0877
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 Parzen Leave-one-out 15.5674 0.0760

FEATURE VECTOR
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(e) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 Bayesian Resubstitution 24.6484 *
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 Bayesian Holdout 13.8889 *
1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 KNN Holdout 17.8819 1
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 KNN Leave-one-out 14.8665 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Parzen Holdout 13.5417 0.0820
1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 Parzen Leave-one-out 16.7490 0.0820
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Bayesian Resubstitution 27.5056 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Bayesian Holdout 18.4028 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 KNN Holdout 20.8333 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 KNN Leave-one-out 16.5109 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Parzen Holdout 16.4931 0.0981
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Parzen Leave-one-out 18.1375 0.0981

FEATURE VECTOR

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  

following pairs of classifiers along with their respective error estimation method:  
(KNN classifier (with holdout method), Parzen classifier (with holdout method)) 
and (KNN classifier (with leave-one-out method), Parzen classifier (with leave-
one-out method)).  Within each dimension, the feature vector that is associated with 
the lowest error rate in each pair of classifiers is selected as a candidate to become 
a most favorable feature vector.  The feature vector with the highest error rate in the 
pair is eliminated from the set of candidates.  Since the Bayesian classifier (with 

Table 4.5  Extended object candidates for most favorable feature vectors. 

(a) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*9653.44noitutitsbuseRnaiseyaB3
*7430.03tuodloHnaiseyaB6
457430.03tuodloHNNK6

3210.04659.34tuo-eno-evaeLnezraP3

*3260.03noitutitsbuseRnaiseyaB314
*9888.31tuodloHnaiseyaB616
14983.03tuo-eno-evaeLNNK211

3340.09188.71tuodloHnezraP315

*7969.32noitutitsbuseRnaiseyaB8165
*2979.11tuodloHnaiseyaB6165
17243.01tuo-eno-evaeLNNK2121

6720.04102.9tuodloHnezraP6164

*8280.22noitutitsbuseRnaiseyaB31653
*7192.7tuodloHnaiseyaB61865
14000.21tuo-eno-evaeLNNK41421

1830.05218.7tuodloHnezraP310163

sbuseRnaiseyaB816532 titution 19.0587 *
*2927.5tuodloHnaiseyaB619653
14670.6tuodloHNNK318743
10306.01tuo-eno-evaeLNNK216321

*9397.81noitutitsbuseRnaiseyaB815111632
*3043.4tuodloHnaiseyaB71019853
16895.01tuo-eno-evaeLNNK41216321

6350.08209.5tuodloHnezraP61017531

FEATURE VECTOR
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holdout method) and Bayesian classifier (with resubstitution method) both present 
some uniqueness in the distribution of their error rate trends in Fig. 4.11, all their 
feature vectors from Table 4.4 will remain as candidates for most favorable feature 
vectors.  The candidates for the most favorable feature vectors are presented in 
Table 4.5 (a–b).  We can now choose a set of most favorable feature vectors that are 
associated with the lowest error rates within each category of classification models 
in Table 4.5.  A set of most favorable feature vectors is displayed in Table 4.6. 

(b) 

CLASSIFIER

ERROR 

ESTIMATION

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*5407.61noitutitsbuseRnaiseyaB813196532
*4159.2tuodloHnaiseyaB613198653
11245.11tuo-eno-evaeLNNK810165421

4350.03043.4tuodloHnezraP611176531

*7379.61noitutitsbuseRnaiseyaB81615196532
*4159.2tuodloHnaiseyaB6131987653
19315.4tuodloHNNK814121116431
13070.11tuo-eno-evaeLNNK8101654321

sbuseRnaiseyaB815131976532 titution 16.9426 *
*4159.2tuodloHnaiseyaB21119876532
10521.3tuodloHNNK8141211186431
10403.11tuo-eno-evaeLNNK814101654321

*7476.71noitutitsbuseRnaiseyaB817151311196532
*9315.4tuodloHnaiseyaB81716131986532
14670.6tuodloHNNK81614121865431
16735.11tuo-eno-evaeLNNK81412101654321

sbuseRnaiseyaB7161513101976532 titution 17.1495 *
*5786.4tuodloHnaiseyaB716131019865321
14670.6tuodloHNNK81413121110187631
14000.21tuo-eno-evaeLNNK814121018654321

FEATURE VECTOR

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  

Table 4.6 Extended object set of most favorable feature vectors for each classifier with the re-
spective error estimation method. 

CLASSIFIER

ERROR

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

17243.01tuo-eno-evaeLNNK2121
10306.01tuo-eno-evaeLNNK216321
16895.01tuo-eno-evaeLNNK41216321
*5407.61noitutitsbuseRnaiseyaB813196532
*4159.2tuodloHnaiseyaB613198653

4350.03043.4tuodloHnezraP611176531
*7379.61noitutitsbuseRnaiseyaB81615196532
*4159.2tuodloHnaiseyaB6131987653
19315.4tuodloHNNK814121116431
*6249.61noitutitsbuseRnaiseyaB815131976532
*4159.2tuodloHnaiseyaB21119876532
10521.3tuodloHNNK8141211186431

FEATURE VECTOR

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  
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Alternatively, we can identify a set of feature vectors that result in minimal error 
rates for a single classifier on more generalized validation data.  As we saw in 
Sect. 4.5.3, our error estimation methods (resubstitution, holdout, and leave-one-
out) choose the test data in different ways.  For instance, in the holdout method the 
training and test data sets are disjoint.  On the other hand, in the resubstitution 
method all the available data used for the training data set is also used as test data.  
Thus, the performance of the classifier along with a given feature vector is assessed 
on the test set associated with given error estimation method.  By identifying a set of 
feature vectors in each dimension that simultaneously minimize the error rates on 
two types of test data sets, we can present a classification model that will provide 
enough flexibility to ensure acceptable performance on a more generalized test (or 
blind) data set.  The scheme proceeds by first computing the average error rates for 
a single classifier using two types of error estimation methods for each dimension of 
features.  For each dimension of feature vectors, we will create a scatter plot consist-
ing of the average error rates produced by the single classifier on the two error esti-
mation methods.  We will use the scatter plots to determine the feature vector in 
each dimension that minimize both the average error rates and absolute difference 
between the average error rates for the single classifier on the two error estimation 
methods.  For example, suppose we consider the combination consisting of the 
KNN classifier (with the holdout error estimation method) and KNN classifier (with 
leave-one-out error estimation method) in three dimensions.  This combination in-
volves the KNN classifier evaluated on two different test sets determined by their 
respective error estimation methods.  A scatter plot of the average error rates (%) 
involving the KNN classifier and both of these error estimation methods is displayed 
in Fig. 4.12.  Feature vector < 1, 6, 18 > results in the minimum average error rates 
with the smallest absolute difference in the error rates on the test data set for each er-
ror estimation method used by the KNN classifier.  The combination of classifiers and 
error estimation methods considered in this analysis are: (KNN classifier (with hold-
out method), KNN classifier (with leave-one-out method)) and (Parzen classifier 
(with holdout method), Parzen classifier (with leave-one-out method)) and (Bayesian 
classifier (with holdout method), Bayesian classifier (with resubstitution method)).  
Table 4.7 (a–c) presents the minimum average error rates with the smallest absolute 
difference in the error rates on the test data set for each combination across each di-
mension.  After identifying the minimum average error rates in each dimension and 
combination, we can compare the results and select the most favorable feature vec-
tors associated with the lowest error rates.  Once again, the size of the most favorable 
set of feature vectors is limited to 11 dimensions to support the rule of thumb for peak 
performance.  Table 4.8 displays a set of most favorable feature vectors for the com-
binations of a classifier and error estimation methods. 

Table 4.9 combines the results from Tables 4.6 and 4.8 to present our set of most 
favorable feature vectors for the extended objects.  An important observation is that 
none of the most favorable feature vectors consist of only features from a single fea-
ture category – meteorological, micro, or macro.  Additionally, we are choosing 
a most favorable set of feature vectors rather than identifying the feature vector as-
sociated with the overall lowest error rate as the single most favorable feature vector. 
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Table 4.7  Extended object comparison of the lowest average error rates (%) for combinations 
of a classifier and error estimation methods across each feature vector dimension. 

(a) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

13 KNN (Holdout, Leave-one-out) 48.0903 49.8709 38
15 Parzen (Holdout, Leave-one-out) 62.5000 63.3801 0.0491
14 Bayesian (Holdout, Resubstitution) 46.3542 48.2933 *
6 12 KNN (Holdout, Leave-one-out) 36.2847 36.5042 3
2 3 Parzen (Holdout, Leave-one-out) 40.2778 39.8509 0.0136
6 12 Bayesian (Holdout, Resubstitution) 34.7222 34.3703 *
1 6 18 KNN (Holdout, Leave-one-out) 27.2569 26.1571 1
1 4 13 Parzen (Holdout, Leave-one-out) 25.8681 25.6809 0.0247
4 7 17 Bayesian (Holdout, Resubstitution) 27.6042 28.2065 *
1 5 6 18 KNN (Holdout, Leave-one-out) 18.0556 18.3756 1
2 6 11 16 Parzen (Holdout, Leave-one-out) 19.6181 18.8607 0.0423
2 7 10 13 Bayesian (Holdout, Resubstitution) 26.2153 25.4295 *
1 5 6 10 18 KNN (Holdout, Leave-one-out) 15.1042 15.5585 1
2 6 7 11 18 Parzen (Holdout, Leave-one-out) 16.8403 16.2506 0.0491
2 4 5 17 18 Bayesian (Holdout, Resubstitution) 22.5694 23.3000 *
1 6 8 10 11 13 KNN (Holdout, Leave-one-out) 13.7153 14.1522 1
1 2 3 6 11 16 Parzen (Holdout, Leave-one-out) 14.9306 15.5763 0.0583
3 9 10 11 15 18 Bayesian (Holdout, Resubstitution) 21.1806 21.6555 *
1 6 8 10 11 14 18 KNN (Holdout, Leave-one-out) 13.8889 14.6061 1
1 2 3 5 6 13 17 Parzen (Holdout, Leave-one-out) 15.1042 14.3858 0.0496
2 3 5 10 11 13 17 Bayesian (Holdout, Resubstitution) 21.0069 21.4486 *
1 6 8 10 11 12 13 14 KNN (Holdout, Leave-one-out) 15.2778 14.3769 1
1 2 3 5 10 11 12 16 Parzen (Holdout, Leave-one-out) 14.9306 14.6506 0.0646
2 3 5 6 11 13 15 17 Bayesian (Holdout, Resubstitution) 18.2292 18.3712 *

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)

 

(b) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

1 2 3 4 6 11 13 14 16 KNN (Holdout, Leave-one-out) 13.5417 14.3903 1
1 2 3 6 10 11 13 14 16 Parzen (Holdout, Leave-one-out) 13.5417 13.1954 0.0463
2 3 5 9 10 11 13 15 17 Bayesian (Holdout, Resubstitution) 18.0556 17.9083 *

1 2 3 5 6 10 12 13 14 16 KNN (Holdout, Leave-one-out) 13.5417 13.6805 1
1 2 3 5 6 7 10 11 14 16 Parzen (Holdout, Leave-one-out) 13.5417 14.1656 0.0687
2 3 5 9 10 11 13 15 17 18 Bayesian (Holdout, Resubstitution) 18.2292 18.3845 *

1 2 3 4 5 6 8 12 13 14 16 KNN (Holdout, Leave-one-out) 13.5417 13.6760 1
1 2 3 4 5 6 7 10 12 14 16 Parzen (Holdout, Leave-one-out) 13.5417 14.1611 0.0637
2 3 5 7 9 10 11 13 15 16 18 Bayesian (Holdout, Resubstitution) 19.6181 19.8175 *
1 2 3 5 6 7 8 11 12 14 16 18 KNN (Holdout, Leave-one-out) 14.9306 15.1046 1
1 2 4 6 7 8 10 11 12 14 16 17 Parzen (Holdout, Leave-one-out) 15.1042 15.1046 0.0715
2 3 5 7 9 10 11 13 15 16 17 18 Bayesian (Holdout, Resubstitution) 19.6181 20.0512 *
1 2 3 4 6 7 8 10 11 12 14 16 17 KNN (Holdout, Leave-one-out) 14.9306 14.3947 1
1 2 3 4 5 6 7 8 10 11 12 14 16 Parzen (Holdout, Leave-one-out) 15.1042 15.0957 0.0735
1 2 3 5 7 9 10 11 13 15 16 17 18 Bayesian (Holdout, Resubstitution) 22.3958 22.3787 *
1 2 3 4 5 6 7 8 11 12 13 14 16 18 KNN (Holdout, Leave-one-out) 15.1042 15.0957 1
1 2 3 4 5 6 7 10 11 12 14 15 16 18 Parzen (Holdout, Leave-one-out) 16.4931 16.5198 0.0744
2 4 5 6 7 9 11 12 13 14 15 16 17 18 Bayesian (Holdout, Resubstitution) 24.1319 23.9964 *
1 2 3 5 6 7 8 11 12 13 14 15 16 17 18 KNN (Holdout, Leave-one-out) 16.4931 16.2906 1
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 Parzen (Holdout, Leave-one-out) 16.4931 16.2639 0.0869
1 2 4 5 6 7 9 11 12 13 14 15 16 17 18 Bayesian (Holdout, Resubstitution) 27.2569 28.6871 *
1 2 3 4 6 7 9 10 11 12 13 14 15 16 17 18 KNN (Holdout, Leave-one-out) 17.8819 17.9261 1
1 2 3 4 5 7 8 9 10 11 12 13 14 15 17 18 Parzen (Holdout, Leave-one-out) 18.0556 18.3890 0.0930
1 2 3 4 5 6 7 9 11 12 13 14 15 16 17 18 Bayesian (Holdout, Resubstitution) 22.7431 26.3373 *

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)
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(c) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 KNN (Holdout, Leave-one-out) 17.8819 17.2074 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 Parzen (Holdout, Leave-one-out) 18.0556 18.6093 0.0963
1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 Bayesian (Holdout, Resubstitution) 19.9653 27.0427 *

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 KNN (Holdout, Leave-one-out) 20.8333 16.5109 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Parzen (Holdout, Leave-one-out) 16.4931 18.1375 0.0981
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Bayesian (Holdout, Resubstitution) 18.4028 27.5056 *

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  

Table 4.8 Extended object set of most favorable feature vectors for combinations of a classifier 
and error estimation methods. 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

13093.417145.31 )tuo-eno-evaeL ,tuodloH(NNK6141311164321
3640.04591.317145.31 )tuo-eno-evaeL ,tuodloH(nezraP61413111016321

*3809.716550.81)noitutitsbuseR ,tuodloH(naiseyaB71513111019532
15086.317145.31 )tuo-eno-evaeL ,tuodloH(NNK614131210165321

7860.06561.417145.31 )tuo-eno-evaeL ,tuodloH(nezraP61411101765321
10676.317145.31 )tuo-eno-evaeL ,tuodloH(NNK614131218654321

7360.01161.417145.31 )tuo-eno-evaeL ,tuodloH(nezraP614121017654321

FEATURE VECTOR

AVERAGE

ERROR RATES 

(%)

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  

Table 4.9 Extended object set of most favorable feature vectors (combined feature vectors from 
Tables 4.6 and 4.8). 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

1tuo-eno-evaeLNNK2121
1tuo-eno-evaeLNNK216321
1tuo-eno-evaeLNNK41216321
*noitutitsbuseRnaiseyaB813196532
*tuodloHnaiseyaB613198653

4350.0tuodloHnezraP611176531
*noitutitsbuseRnaiseyaB81615196532
*tuodloHnaiseyaB6131987653
1tuodloHNNK814121116431
*noitutitsbuseRnaiseyaB815131976532
*tuodloHnaiseyaB21119876532
1tuodloHNNK8141211186431
13093.417145.31 )tuo-eno-evaeL ,tuodloH(NNK6141311164321

3640.04591.317145.31 )tuo-eno-evaeL ,tuodloH(nezraP61413111016321
*3809.716550.81)noitutitsbuseR ,tuodloH(naiseyaB71513111019532
15086.317145.31 )tuo-eno-evaeL ,tuodloH(NNK614131210165321

7860.06561.417145.31 )tuo-eno-evaeL ,tuodloH(nezraP61411101765321
10676.317145.31 )tuo-eno-evaeL ,tuodloH(NNK614131218654321

7360.01161.417145.31 )tuo-eno-evaeL ,tuodloH(nezraP614121017654321

2.9514
3.1250

10.3427
10.6030
10.5986
16.7045
2.9514
4.3403

16.9737
2.9514

FEATURE VECTOR

AVERAGE

ERROR RATES 

(%)

4.5139
16.9426

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  
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Fig. 4.12 Extended object scatter plot of average error rates (%) for KNN classifier (with hold-
out error estimation method) and KNN classifier (with leave-one-out error estimation method) in 
three dimensions.  Feature vector < 1, 6, 18 > results in the minimum average error rates with the 
smallest absolute difference in the error rates on the test data set for each error estimation method 
used by the KNN classifier. 

Considering a set of most favorable feature vectors will allow us to design a classi-
fication model that is able to generalize to other test (or blind) data sets, rather than 
choosing a single feature vector that results in a model with too little flexibility.   

4.5.6 Compact Object Performance and Feature Selection 

We will now repeat the same procedures presented in Sect. 4.5.5 to identify the 
most favorable features for the compact objects.  The 15 thermal features remain-
ing from our preliminary feature analysis in Sect. 4.3 are displayed in Table 4.10 
along with numerical labels that are provided for convenience as we analyze the 
different feature vectors used in the classification models during the exhaustive 
search feature selection method.  The equations for each feature were discussed 
and derived in Chap. 3. 

Table 4.11 provides the number of combinations of extended object features for 
each feature vector dimension used in the exhaustive search method.  We will com-
pute the average error rates for the classification models across all 15 dimensions in 
our exhaustive search.  Since the number of training patterns for each of the com-
pact object classes (steel pole and tree) is n = 318 as displayed in Table 2.1, the rule 
of thumb for peak performance given in Sect. 4.5.1 limits us to a feature vector 
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with up to 32 features.  Thus, we could consider all 15 dimensions in our analysis 
to identify a set of most favorable feature vectors for our compact objects.   

The average error rates for each classifier combined with every combination of 
features across all 15 dimensions (i.e., exhaustive search feature selection method) 
were computed using the error estimation methods on a high performance comput-
ing system discussed in Sect. 4.5.  Figure 4.13 presents dotplots that give the gen-
eral trend of the average error rates for each classifier and error estimation method 
observed in each dimension.  Similar to the extended objects, the dotplots for the 
compact objects show that holdout error estimation methods have a tendency to 
display a higher variance in the average error rates compared to the leave-one-out 
and resubstitution methods.  Once again, this result occurs since the training and 
test data come from the same set for the leave-one-out and resubstitution methods.   

The average error rates were sorted in increasing order by classifier and error esti-
mation method within each dimension.  Tables 4.12 (a–d) compares the lowest av-
erage error rates (%) of each classifier with the respective error estimation method 
across each feature vector dimension.  The average error rates in Tables 4.12 (a–d) 
display the behavior of the peaking phenomenon.  As the number of dimension of 
a feature vector increases, the error rates of each classifier decrease to a specific peak 
(or in some cases a short plateau) and then the classification performance begins to 
decline.  For instance, the Bayesian classifier with the resubstitution error estimation 

Table 4.10 Compact object 
thermal features and labels 
used in the exhaustive search 
feature selection method. 

FEATURE LABEL

Ambient Temp. oF  (Ta) 1

Amb. Temp. Rate of Change (T1) 2

Object Surface Radiance (Lo) 3

Reference Emitter Radiance (Lr) 4

Background Irradiance (Lb) 5

Lo/Lr (Lor) 6

Lo/Lob (Lob) 7

Emissivity (Eo) 8

Contrast1 (Co1) 9

Entropy1 (En1) 10

Contrast2 (Co2) 11

Correlation (Cr2) 12

Energy (Er2) 13

Homogeneity (Ho2) 14

Entropy2 (En2) 15

Second-order Statistics

Meteorological Features

Micro Features

Macro Features

First-order Statistics
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method reaches its peak performance at an estimated average error rate of 6.45% with 
a 7-dimensional feature vector and maintains this error rate up to nine dimensions be-
fore the performance begins to decline.  We also see that no classifier reaches a peak 
performance with a feature vector consisting of only features from a single feature 
category – meteorological, micro, or macro. 

The next step is to compare classification models (along with their respective er-
ror estimation method) in Tables 4.12 (a–d) to identify a most favorable set of feature 
vectors.  We will choose pairs of classification models for comparison based on their 
similarities in the error rate trends found in Fig. 4.13.  Thus, for each dimension, we 
will compare the error rates in Table 4.12 for the following pairs of classifiers along 
with their respective error estimation method:  (KNN classifier (with holdout method 
method), Parzen classifier (with holdout method)) and (KNN classifier (with leave-
one-out method), Parzen classifier (with leave-one-out method)).  Within each di-
mension, the feature vector that is associated with the lowest error rate in each pair 
of classifiers is selected as a candidate to become a most favorable feature vector.  
The feature vector with the highest error rate in the pair is eliminated from the set of 
candidates.  Since the Bayesian classifier (with holdout method) and Bayesian clas-
sifier (with resubstitution method) both present some uniqueness in the distribution 
of their error rate trends in Fig. 4.13, all their feature vectors from Table 4.12 will 
remain as candidates for most favorable feature vectors.  The candidates for the 
most favorable feature vectors are presented in Table 4.13 (a–c).  We retained both 
feature vectors in any pairs that had equal error rates.  We can now choose a set of 
most favorable feature vectors that are associated with the lowest error rates within 
each category of classification models in Table 4.13.  A set of most favorable fea-
ture vectors is displayed in Table 4.14. 

 

Table 4.11 Total number of compact 
object thermal feature combinations 
for feature vectors from 1 to 15 di-
mensions.  All 15 dimensions satisfy 
the rule of thumb to ensure peak per-
formance of the classification models.

DIMENSIONS OF 

FEATURE VECTOR

NUMBER OF 

FEATURE 

COMBINATIONS

1 15
2 105
3 455
4 1365
5 3003
6 5005
7 6435
8 6435
9 5005

10 3003
11 1365
12 455
13 105
14 15
15 1

TOTAL 32767
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Table 4.12 Compact object comparison of the lowest average error rates (%) of each classifier 
with the respective error estimation method across each feature vector dimension. 

(a) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*7949.11noitutitsbuseRnaiseyaB8
*3333.8tuodloHnaiseyaB8
912352.8tuodloHNNK8
912536.11tuo-eno-evaeLNNK8

24630.02352.8tuodloHnezraP8
24630.08537.21tuo-eno-evaeLnezraP8

*8746.8noitutitsbuseRnaiseyaB417
*7192.7tuodloHnaiseyaB82
90052.6tuodloHNNK86
523333.8tuo-eno-evaeLNNK417

96800.02352.8tuodloHnezraP118
46720.00508.8tuo-eno-evaeLnezraP417

*2745.7noitutitsbuseRnaiseyaB4174
*2821.5tuodloHnaiseyaB4181
89961.6tuodloHNNK862
437232.7tuo-eno-evaeLNNK4174

47940.05929.5tuodloHnezraP4184
3430.04407.7tuo-eno-evaeLnezraP4174

*5570.7noitutitsbuseRnaiseyaB41976
*7469.2tuodloHnaiseyaB413186
65680.4tuodloHNNK410176
015570.7tuo-eno-evaeLNNK411174

94050.05680.4tuodloHnezraP41863
68730.07232.7tuo-eno-evaeLnezraP41974

FEATURE VECTOR

 

(b) 

CLASSIFIER

ERROR

ESTIMATION 

METHOD

AVERAGE 

ERROR

RATE (%)

K
VALUE

h
VALUE

*0167.6noitutitsbuseRnaiseyaB417631
*7469.2tuodloHnaiseyaB3111863
65680.4tuodloHNNK41110176
78306.6tuo-eno-evaeLNNK4101761

23260.04600.4tuodloHnezraP419863
17150.07232.7tuo-eno-evaeLnezraP418721

*5644.6noitutitsbuseRnaiseyaB41217631
*2300.2tuodloHnaiseyaB31119864
65680.4tuodloHNNK411101976
71231.6tuo-eno-evaeLNNK51217651

99060.09440.3tuodloHnezraP41119863
73440.09983.7tuo-eno-evaeLnezraP51117621

*5644.6noitutitsbuseRnaiseyaB410197621
*2300.2tuodloHnaiseyaB51312111761
514600.4tuodloHNNK4111019863
51231.6tuo-eno-evaeLNNK4121017651

44570.04600.4tuodloHnezraP514198641
24550.05570.7tuo-eno-evaeLnezraP5121117651

*5644.6noitutitsbuseRnaiseyaB4131976421
*2300.2tuodloHnaiseyaB413121119761
415680.4tuodloHNNK51311198632
56718.5tuo-eno-evaeLNNK41210197651

20760.07661.4tuodloHnezraP21110198762
47460.05570.7tuo-eno-evaeLnezraP41210197651

FEATURE VECTOR
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(c) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR

RATE (%)

K
VALUE

h
VALUE

1 2 4 6 7 9 10 13 14 Bayesian Resubstitution 6.4465 *
1 6 7 8 10 11 12 13 14 Bayesian Holdout 2.0032 *
2 3 4 8 9 10 11 13 15 KNN Holdout 4.0865 14
1 5 6 7 9 10 11 12 14 KNN Leave-one-out 5.8176 5
6 7 8 9 10 12 13 14 15 Parzen Holdout 4.0865 0.07706
1 5 6 7 9 10 11 12 14 Parzen Leave-one-out 7.0755 0.06533
1 3 4 6 7 9 10 13 14 15 Bayesian Resubstitution 6.7610 *
1 6 7 9 10 11 12 13 14 15 Bayesian Holdout 2.0032 *
1 3 4 6 8 9 11 13 14 15 KNN Holdout 4.0865 14
1 4 5 6 7 9 10 11 12 14 KNN Leave-one-out 6.4465 7
2 3 6 7 8 9 10 11 12 15 Parzen Holdout 4.1667 0.07228
1 3 5 6 7 8 9 10 11 14 Parzen Leave-one-out 7.2327 0.08107
1 2 3 4 5 6 7 8 9 10 14 Bayesian Resubstitution 7.3899 *
1 2 4 6 7 8 10 11 13 14 15 Bayesian Holdout 2.0032 *
1 2 4 6 7 8 9 11 13 14 15 KNN Holdout 4.1667 7
1 3 4 5 6 7 9 10 11 12 14 KNN Leave-one-out 6.6038 7
2 3 6 7 8 9 10 11 12 14 15 Parzen Holdout 5.1282 0.07677
1 2 5 6 7 8 9 11 12 14 15 Parzen Leave-one-out 7.2327 0.08712
1 3 4 5 6 7 8 9 10 12 13 14 Bayesian Resubstitution 7.5472 *
1 2 4 6 7 8 9 11 12 13 14 15 Bayesian Holdout 2.9647 *
2 3 4 6 7 8 9 10 11 13 14 15 KNN Holdout 5.1282 5
1 3 4 5 6 7 9 10 11 12 14 15 KNN Leave-one-out 6.7610 7
1 2 3 6 8 9 10 11 12 13 14 15 Parzen Holdout 7.1314 0.09115
1 2 3 4 5 6 7 8 9 11 12 14 Parzen Leave-one-out 7.2327 0.07915

FEATURE VECTOR

 

(d) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR

RATE (%)

K
VALUE

h
VALUE

1 2 3 5 6 7 8 9 10 12 13 14 15 Bayesian Resubstitution 8.0189 *
1 2 4 6 7 8 9 10 11 12 13 14 15 Bayesian Holdout 4.0064 *
1 2 3 4 6 7 8 9 10 11 13 14 15 KNN Holdout 6.2500 7
1 2 3 4 5 6 7 8 9 10 11 14 15 KNN Leave-one-out 7.0755 11
2 3 4 5 6 8 9 10 11 12 13 14 15 Parzen Holdout 8.2532 0.08932
1 2 3 4 5 6 7 8 10 11 12 14 15 Parzen Leave-one-out 7.7044 0.09106
1 2 3 4 5 6 7 8 9 10 12 13 14 15 Bayesian Resubstitution 8.0189 *
1 2 3 4 5 6 7 9 10 11 12 13 14 15 Bayesian Holdout 5.1282 *
1 2 3 4 6 7 8 9 10 11 12 13 14 15 KNN Holdout 6.2500 7
1 2 3 4 5 6 7 8 9 10 11 12 14 15 KNN Leave-one-out 7.3899 7
1 2 3 4 5 6 8 9 10 11 12 13 14 15 Parzen Holdout 8.3333 0.0953
1 2 3 4 5 6 7 8 9 10 11 12 14 15 Parzen Leave-one-out 8.0189 0.08984
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bayesian Resubstitution 10.5346 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bayesian Holdout 7.2115 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 KNN Holdout 9.3750 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 KNN Leave-one-out 8.6478 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Parzen Holdout 9.3750 0.09889
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Parzen Leave-one-out 8.8050 0.09889

FEATURE VECTOR

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  
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Table 4.13 Compact object candidates for most favorable feature vectors. 

(a) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*7949.11noitutitsbuseRnaiseyaB8
*3333.8tuodloHnaiseyaB8
912352.8tuodloHNNK8
912536.11tuo-eno-evaeLNNK8

24630.02352.8tuodloHnezraP8
*8746.8noitutitsbuseRnaiseyaB417
*7192.7tuodloHnaiseyaB82
90052.6tuodloHNNK86
523333.8tuo-eno-evaeLNNK417
*2745.7noitutitsbuseRnaiseyaB4174
*2821.5tuodloHnaiseyaB4181
437232.7tuo-eno-evaeLNNK4174

47940.05929.5tuodloHnezraP4184
*5570.7noitutitsbuseRnaiseyaB41976
*7469.2tuodloHnaiseyaB413186
65680.4tuodloHNNK410176
015570.7tuo-eno-evaeLNNK411174

94050.05680.4tuodloHnezraP41863

*0167.6noitutitsbuseRnaiseyaB417631
*7469.2tuodloHnaiseyaB3111863
78306.6tuo-eno-evaeLNNK4101761

23260.04600.4tuodloHnezraP419863

FEATURE VECTOR

 

(b) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*5644.6noitutitsbuseRnaiseyaB41217631
*2300.2tuodloHnaiseyaB31119864
71231.6tuo-eno-evaeLNNK51217651

99060.09440.3tuodloHnezraP41119863
*5644.6noitutitsbuseRnaiseyaB410197621
*2300.2tuodloHnaiseyaB51312111761
514600.4tuodloHNNK4111019863

51231.6tuo-eno-evaeLNNK4121017651
0.04600.4tuodloHnezraP514198641 7544

*5644.6noitutitsbuseRnaiseyaB4131976421
*2300.2tuodloHnaiseyaB413121119761
415680.4tuodloHNNK51311198632

56718.5tuo-eno-evaeLNNK41210197651
1 2 4 6 7 9 10 13 14 Bayesian Resubstitution 6.4465 *
1 6 7 8 10 11 12 13 14 Bayesian Holdout 2.0032 *
2 3 4 8 9 10 11 13 15 KNN Holdout 4.0865 14
1 5 6 7 9 10 11 12 14 KNN Leave-one-out 5.8176 5
6 7 8 9 10 12 13 14 15 Parzen Holdout 4.0865 0.07706
1 3 4 6 7 9 10 13 14 15 Bayesian Resubstitution 6.7610 *
1 6 7 9 10 11 12 13 14 15 Bayesian Holdout 2.0032 *
1 3 4 6 8 9 11 13 14 15 KNN Holdout 4.0865 14
1 4 5 6 7 9 10 11 12 14 KNN Leave-one-out 6.4465 7

FEATURE VECTOR

 



 4.5 Model Performance and Feature Selection 139 

(c) 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

1 2 3 4 5 6 7 8 9 10 14 Bayesian Resubstitution 7.3899 *
1 2 4 6 7 8 10 11 13 14 15 Bayesian Holdout 2.0032 *
1 2 4 6 7 8 9 11 13 14 15 KNN Holdout 4.1667 7
1 3 4 5 6 7 9 10 11 12 14 KNN Leave-one-out 6.6038 7
1 3 4 5 6 7 8 9 10 12 13 14 Bayesian Resubstitution 7.5472 *
1 2 4 6 7 8 9 11 12 13 14 15 Bayesian Holdout 2.9647 *
2 3 4 6 7 8 9 10 11 13 14 15 KNN Holdout 5.1282 5
1 3 4 5 6 7 9 10 11 12 14 15 KNN Leave-one-out 6.7610 7
1 2 3 5 6 7 8 9 10 12 13 14 15 Bayesian Resubstitution 8.0189 *
1 2 4 6 7 8 9 10 11 12 13 14 15 Bayesian Holdout 4.0064 *
1 2 3 4 6 7 8 9 10 11 13 14 15 KNN Holdout 6.2500 7
1 2 3 4 5 6 7 8 9 10 11 14 15 KNN Leave-one-out 7.0755 11
1 2 3 4 5 6 7 8 9 10 12 13 14 15 Bayesian Resubstitution 8.0189 *
1 2 3 4 5 6 7 9 10 11 12 13 14 15 Bayesian Holdout 5.1282 *
1 2 3 4 6 7 8 9 10 11 12 13 14 15 KNN Holdout 6.2500 7
1 2 3 4 5 6 7 8 9 10 11 12 14 15 KNN Leave-one-out 7.3899 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bayesian Resubstitution 10.5346 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bayesian Holdout 7.2115 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 KNN Holdout 9.3750 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 KNN Leave-one-out 8.6478 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Parzen Holdout 9.3750 0.09889

FEATURE VECTOR

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  

Table 4.14 Compact object set of most favorable feature vectors for each classifier with the re-
spective error estimation method. 

CLASSIFIER

ERROR 

ESTIMATION 

METHOD

AVERAGE 

ERROR 

RATE (%)

K
VALUE

h
VALUE

*5644.6noitutitsbuseRnaiseyaB41217631
*2300.2tuodloHnaiseyaB31119864

99060.09440.3tuodloHnezraP41119863
*5644.6noitutitsbuseRnaiseyaB410197621
*2300.2tuodloHnaiseyaB51312111761
514600.4tuodloHNNK4111019863
*5644.6noitutitsbuseRnaiseyaB4131976421
*2300.2tuodloHnaiseyaB413121119761
56718.5tuo-eno-evaeLNNK41210197651

1 2 4 6 7 9 10 13 14 Bayesian Resubstitution 6.4465 *
1 6 7 8 10 11 12 13 14 Bayesian Holdout 2.0032 *
1 5 6 7 9 10 11 12 14 KNN Leave-one-out 5.8176 5
1 6 7 9 10 11 12 13 14 15 Bayesian Holdout 2.0032 *
1 2 4 6 7 8 10 11 13 14 15 Bayesian Holdout 2.0032 *

FEATURE VECTOR

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  
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KNN (Holdout)

Parzen (Holdout)

KNN (Leave-one-out)

Parzen (Leave-one-out)

Bayesian (Holdout)

Bayesian (Resubstitution)

Average Error Rate
 

Fig. 4.13 General trend for compact objects of dotplots with average error rates for each classi-
fier and error estimation method observed in each dimension. 

As in Sect. 4.5.5, we will now identify a set of most favorable feature vectors in-
volving combinations of a classifier and error estimation methods.  The set of most 
feature vectors are associated with classification models that display flexibility by 
yielding acceptable performance on a more generalized test (or blind) data set.  Fol-
lowing the same scheme in Sect. 4.5.5, we proceed by first computing the average er-
ror rates for a single classifier using two types of error estimation methods for each 
dimension of features.  As discussed in the previous section, the two error estimation 
methods choose their respective test data in different ways.  For each dimension of 

Table 4.15  Compact object comparison of the lowest average error rates (%) for combinations 
of a classifier and error estimation methods across each feature vector dimension. 

(a) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

7 KNN (Holdout, Leave-one-out) 11.4583 12.7358 12
7 Parzen (Holdout, Leave-one-out) 13.5417 13.2075 0.011912
7 Bayesian (Holdout, Resubstitution) 11.4583 12.7358 *
3 8 KNN (Holdout, Leave-one-out) 10.4167 10.6918 13
7 8 Parzen (Holdout, Leave-one-out) 12.5000 12.2642 0.0379
7 12 Bayesian (Holdout, Resubstitution) 10.4167 10.6918 *
6 7 14 KNN (Holdout, Leave-one-out) 8.2532 8.3333 26
7 8 14 Parzen (Holdout, Leave-one-out) 9.3750 8.9623 0.0506
7 8 14 Bayesian (Holdout, Resubstitution) 9.3750 9.2767 *
6 7 9 14 KNN (Holdout, Leave-one-out) 7.2917 7.8616 9
1 6 7 14 Parzen (Holdout, Leave-one-out) 7.2917 7.7044 0.0486
6 7 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.3899 *
1 6 7 12 15 KNN (Holdout, Leave-one-out) 7.2917 7.0755 7
1 6 7 12 14 Parzen (Holdout, Leave-one-out) 7.2917 8.1761 0.0517
6 7 9 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *
4 5 6 7 12 15 KNN (Holdout, Leave-one-out) 7.2115 7.7044 5
1 6 7 11 12 15 Parzen (Holdout, Leave-one-out) 7.2917 8.0189 0.0533
1 6 7 9 10 14 Bayesian (Holdout, Resubstitution) 6.2500 6.7610 *

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)
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feature vectors, we will create a scatter plot consisting of the average error rates pro-
duced by the single classifier on the two error estimation methods. We will use the 
scatter plots to determine the feature vector in each dimension that minimize both 
the average error rates and absolute difference between the average error rates for 
the single classifier on the two error estimation methods.  The combination of clas-
sifiers and error estimation methods considered in this analysis are: (KNN classifier 
(with holdout method), KNN classifier (with leave-one-out method)) and (Parzen 
classifier (with holdout method), Parzen classifier (with leave-one-out method)) 
and (Bayesian classifier (with holdout method), Bayesian classifier (with resubsti-
tution method)).  Table 4.15 (a–c) presents the minimum average error rates with 
the smallest absolute difference in the error rates on the test data set for each combi-
nation across each dimension.  After identifying the minimum average error  
rates in each dimension and combination, we can compare the results and select 

(b) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

1 4 6 7 9 10 14 KNN (Holdout, Leave-one-out) 7.2917 7.3899 6
1 6 7 8 9 10 14 Parzen (Holdout, Leave-one-out) 7.2115 7.5472 0.0653
1 2 6 7 10 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *
1 3 4 5 6 12 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.5472 7
1 6 7 8 9 10 11 14 Parzen (Holdout, Leave-one-out) 7.2115 7.5472 0.0650
3 4 6 7 9 10 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.7610 *

1 3 4 5 6 7 8 10 14 KNN (Holdout, Leave-one-out) 7.2917 7.3899 6
1 3 4 6 7 11 12 14 15 Parzen (Holdout, Leave-one-out) 8.3333 8.8050 0.0643
1 3 6 7 9 10 13 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.9182 *

1 3 4 5 6 7 9 10 11 14 KNN (Holdout, Leave-one-out) 7.2917 7.0755 6
1 3 4 6 7 9 11 12 14 15 Parzen (Holdout, Leave-one-out) 8.3333 8.8050 0.0635
1 2 3 6 7 9 10 13 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.9182 *

1 3 4 5 6 7 8 9 11 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.7044 6
1 3 4 6 7 8 9 10 11 12 14 Parzen (Holdout, Leave-one-out) 8.3333 8.8050 0.0721
1 2 3 4 6 7 8 10 12 13 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *
1 2 3 4 5 6 7 9 10 11 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.5472 5
1 3 4 5 6 9 10 11 12 13 14 15 Parzen (Holdout, Leave-one-out) 8.3333 8.9623 0.0761
1 2 4 5 6 7 8 9 10 13 14 15 Bayesian (Holdout, Resubstitution) 8.3333 8.4906 *

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)

 

(c) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

1 3 4 5 6 7 8 9 10 11 12 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.7044 3
3 4 5 6 7 8 9 10 11 12 13 14 15 Parzen (Holdout, Leave-one-out) 9.3750 9.9057 0.0893
1 2 3 4 5 6 8 9 10 12 13 14 15 Bayesian (Holdout, Resubstitution) 9.2949 9.7484 *
2 3 4 5 6 7 8 9 10 11 12 13 14 15 KNN (Holdout, Leave-one-out) 8.3333 8.4906 11
1 3 4 5 6 7 8 9 10 11 12 13 14 15 Parzen (Holdout, Leave-one-out) 9.3750 9.4340 0.0953
1 2 3 4 5 6 7 8 9 10 11 12 13 15 Bayesian (Holdout, Resubstitution) 9.2949 10.0629 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 KNN (Holdout, Leave-one-out) 9.3750 8.6478 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Parzen (Holdout, Leave-one-out) 9.3750 8.8050 0.0989
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bayesian (Holdout, Resubstitution) 7.2115 10.5346 *

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  
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Table 4.16 Compact object set of most favorable feature vectors for combinations of a classifier 
and error estimation methods. 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

6 7 9 14 KNN (Holdout, Leave-one-out) 7.2917 7.8616 9
6 7 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.3899 *
1 6 7 12 15 KNN (Holdout, Leave-one-out) 7.2917 7.0755 7
6 7 9 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *
4 5 6 7 12 15 KNN (Holdout, Leave-one-out) 7.2115 7.7044 5
1 6 7 9 10 14 Bayesian (Holdout, Resubstitution) 6.2500 6.7610 *
1 4 6 7 9 10 14 KNN (Holdout, Leave-one-out) 7.2917 7.3899 6
1 6 7 8 9 10 14 Parzen (Holdout, Leave-one-out) 7.2115 7.5472 0.0653
1 2 6 7 10 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *
1 3 4 5 6 12 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.5472 7
1 6 7 8 9 10 11 14 Parzen (Holdout, Leave-one-out) 7.2115 7.5472 0.0650
3 4 6 7 9 10 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.7610 *
1 3 4 5 6 7 8 10 14 KNN (Holdout, Leave-one-out) 7.2917 7.3899 6
1 3 6 7 9 10 13 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.9182 *
1 3 4 5 6 7 9 10 11 14 KNN (Holdout, Leave-one-out) 7.2917 7.0755 6
1 2 3 6 7 9 10 13 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.9182 *
1 3 4 5 6 7 8 9 11 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.7044 6
1 2 3 4 6 7 8 10 12 13 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *
1 2 3 4 5 6 7 9 10 11 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.5472 5
1 3 4 5 6 7 8 9 10 11 12 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.7044 3

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  

Table 4.17 Compact object set of most favorable feature vectors (combined feature vectors from 
Tables 4.14 and 4.16). 

(a) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

6 7 9 14 KNN (Holdout, Leave-one-out) 7.2917 7.8616 9
6 7 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.3899 *
1 6 7 12 15 KNN (Holdout, Leave-one-out) 7.2917 7.0755 7
6 7 9 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *

*noitutitsbuseRnaiseyaB41217631
*tuodloHnaiseyaB31119864

989060.0tuodloHnezraP41119863
4 5 6 7 12 15 KNN (Holdout, Leave-one-out) 7.2115 7.7044 5
1 6 7 9 10 14 Bayesian (Holdout, Resubstitution) 6.2500 6.7610 *

*noitutitsbuseRnaiseyaB410197621
*tuodloHnaiseyaB51312111761
51tuodloHNNK4111019863

1 4 6 7 9 10 14 KNN (Holdout, Leave-one-out) 7.2917 7.3899 6
1 6 7 8 9 10 14 Parzen (Holdout, Leave-one-out) 7.2115 7.5472 0.0653
1 2 6 7 10 12 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *

*noitutitsbuseRnaiseyaB4131976421
*tuodloHnaiseyaB413121119761
5tuo-eno-evaeLNNK41210197651

1 3 4 5 6 12 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.5472 7
1 6 7 8 9 10 11 14 Parzen (Holdout, Leave-one-out) 7.2115 7.5472 0.0650
3 4 6 7 9 10 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.7610 *

*noitutitsbuseRnaiseyaB413101976421
*tuodloHnaiseyaB41312111018761
5tuo-eno-evaeLNNK4121110197651

1 3 4 5 6 7 8 10 14 KNN (Holdout, Leave-one-out) 7.2917 7.3899 6
1 3 6 7 9 10 13 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.9182 *

2.0032
5.8176

6.4465
2.0032
5.8176

6.4465

3.0449

6.4465
2.0032
4.0064

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)

6.4465
2.0032
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(b) 

CLASSIFIER

ERROR ESTIMATION 

METHOD

K
VALUE

h
VALUE

*tuodloHnaiseyaB5141312111019761
1 3 4 5 6 7 9 10 11 14 KNN (Holdout, Leave-one-out) 7.2917 7.0755 6
1 2 3 6 7 9 10 13 14 15 Bayesian (Holdout, Resubstitution) 6.2500 6.9182 *

*tuodloHnaiseyaB5141311101876421
1 3 4 5 6 7 8 9 11 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.7044 6
1 2 3 4 6 7 8 10 12 13 14 Bayesian (Holdout, Resubstitution) 7.2917 7.5472 *
1 2 3 4 5 6 7 9 10 11 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.5472 5
1 3 4 5 6 7 8 9 10 11 12 14 15 KNN (Holdout, Leave-one-out) 7.2917 7.7044 3

FEATURE VECTOR

AVERAGE 

ERROR RATES 

(%)

2.0032

2.0032

 
* Bayesian classifier will use the functional form of K in terms of the training data size that was pre-

sented by Loftsgaarden and Quesenberry [27]: ( ) =j jK N N  where Nj is the number of labeled ob-

servations in the extended object training data set for object class Oj as presented in Table 2.1.  

the most favorable feature vectors associated with the lowest error rates. Table 4.16 
displays a set of most favorable feature vectors for the combinations of a classifier 
and error estimation methods. 

Tables 4.17 (a–b) combine the results from Tables 4.14 and 4.16 to present our 
set of most favorable feature vectors for the compact objects.  As in the case with 
the extended objects, none of the most favorable feature vectors for the compact 
objects consist of only features from a single feature category – meteorological, 
micro, or macro.  Also, we are again considering a set of most favorable feature 
vectors that will allow us to design a classification model that is able to generalize 
to other test (or blind) data sets, rather than choosing a single feature vector that 
results in a model with too little flexibility.   

4.6 Sensitivity Analysis 

In the previous section, we identified sets of most favorable feature vectors for our 
extended and compact objects.  We will now analyze the effects of variations in 
the camera’s viewing angle, window size of the thermal scene, and rotational ori-
entation of the target on the feature values and classification performance of 
a classifier involving selected feature vectors from our most favorable sets.  Be-
fore we begin we will specify our rules of engagement for this analysis.  Since one 
of our objectives is to study the behavior of the features with the noted variations, 
we will only make within class inferences and will not present conclusions from 
between class comparisons.  Furthermore, we will explore the effects of these 
variations on classification performance within each class.  However, we will not 
attempt to make inferences on the misclassifications until Chap. 5.  All images 
used to generate the features were captured at a distance of 2.4 meters between the 
thermal camera and target.  The images were processed as discussed in Chap. 2 
and the features were generated as presented in Chap. 3.    
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4.6.1 Viewing Angle Variations 

The sensitivity analysis for the variations in the camera’s viewing angle will be 
performed using the extended objects and the Bayesian classifier with the 
9-dimensional extended object feature vector < 2, 3, 5, 6, 7, 8, 9, 11, 12 >.  The 
features associated with the numerical labels in the feature vector are presented 
in Table 4.2.  This classification model displayed an error rate of approximately 
2.95% with the holdout error estimation method on the extended objects in 
Sect. 4.5.5.  The extended objects used in the analysis consist of a brick wall, 
hedges, picket fence, and wood wall.  The thermal images were captured on 
10 and 11 February 2007 between 1300 and 1700 hrs on each day with meteoro-
logical conditions involving clear skies and temperatures ranging from approxi-
mately 42.2°F to 49.8°F.  This temperature range influenced our choice for the 
most favorable feature vector used in this analysis.  Consequently, we did not 
choose a feature vector that included the ambient temperature feature since mini-
mal data is available in the training set for this range of temperatures as shown 
in Fig. 2.15.  The thermal images of these extended objects were captured at 
seven different viewing angles: –60° from normal incidence, –45° from normal 
incidence, –30° from normal incidence, normal incidence ( 0°), 30° from normal 
incidence, 45° from normal incidence, and 60° from normal incidence.  The visi-
ble image and thermal images for each viewing angle is presented for each object 
in Fig. 4.14.  

Table 4.18 presents the feature values and assigned classes as well as the posterior 
probabilities of the Bayesian classifier for each extended object with variations in the 
camera’s viewing angle.  The object surface radiance (Lo) feature values show strong 
variations for both the picket fence and wood wall.  The background irradiance (Lb) 
values display variations as expected for each object class since thermal energy from 
different background sources is being reflected diffusely from the aluminum foil as 
the camera varies its viewing angle.  In the context of this research, we have defined 
background as the region either in front or to the side of the target consisting of ther-
mal sources that emit thermal energy onto the target’s surface.  The source emitting 
this thermal energy may or may not be in the camera’s field of view.  On the other 
hand, we have defined foreground as the region in the scene consisting of objects be-
hind the target of interest and within the thermal camera’s field of view.  In 
Sect. 3.5.2, we noted that for nonmetallic materials such as wood and vegetation, the 
emissivity remains rather constant across variations in the viewing angle up to about 
50° from normal incidence [33].  This statement appears to hold true for the picket 
fence and somewhat true for the other three object classes.  However, we would not 
expect the emissivity feature values (or any other feature values) for our object 
classes to be well behaved as they would in a controlled laboratory since our objects’ 
feature values depend on a dynamical outdoor environment.  The reference emitter’s 
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Table 4.18 Variations in the camera’s viewing angle effect on feature values and classification performance of a Bayesian classifier for 
each extended object in the left column.  The object class assigned by the classifier as well as the posterior probabilities for each object 
class is presented in the columns on the right. 

OBJECT

ANGLE 

FROM 

INCIDENCE 

(Degrees) T1 Lo Lb Lor Lob Eo Mo1 Mob1 So1 Lr

Assigned 

Class Brick Wall Hedges

Picket 

Fence Wood Wall

-60 0.0433 94.9617 92.9803 0.9193 1.0213 0.1864 94.9844 1.0216 8.1730E-05 103.2929 Brick Wall 0.7756 0.2242 0.0001 3.7972E-05
-45 0.0433 94.7209 94.1202 0.8907 1.0064 0.0477 94.8433 1.0077 7.9345E-05 106.3387 Hedges 0.2486 0.7314 0.0200 1.9581E-05
-30 0.0433 94.5467 94.5482 0.8950 1.0000 -0.0001 94.5213 0.9997 8.0769E-05 105.6375 Brick Wall 0.5810 0.3396 0.0793 6.4467E-05
0 0.0433 94.7672 95.9912 0.8898 0.9872 -0.1129 94.7900 0.9875 6.7887E-05 106.5030 Brick Wall 0.6203 0.3532 0.0264 6.3010E-05
30 0.0433 94.2989 95.0153 0.8876 0.9925 -0.0619 94.2612 0.9921 7.6643E-05 106.2397 Brick Wall 0.7249 0.2020 0.0730 1.7991E-04
45 0.0433 94.7160 95.3002 0.8886 0.9939 -0.0502 94.7553 0.9943 9.5116E-05 106.5842 Brick Wall 0.4744 0.4587 0.0668 4.0784E-05
60 0.0433 94.8038 92.7395 0.8848 1.0223 0.1390 94.8909 1.0232 6.5737E-05 107.1417 Hedges 0.1465 0.8534 0.0001 2.0882E-06
-60 0.0133 95.2910 100.5700 0.8144 0.9475 -0.3116 94.8174 0.9428 6.5982E-04 117.0042 Hedges 0.0216 0.9762 0.0020 0.0002
-45 0.0133 95.3998 96.0246 0.7517 0.9935 -0.0196 95.0911 0.9903 7.1898E-04 126.9160 Hedges 0.0011 0.7670 0.2318 1.7443E-05
-30 0.0133 95.6480 94.9257 0.7218 1.0076 0.0186 95.1725 1.0026 7.2689E-04 132.5179 Hedges 0.0007 0.6015 0.3978 6.3578E-06
0 0.0133 95.7860 95.8691 0.7297 0.9991 -0.0023 95.2173 0.9932 6.3364E-04 131.2684 Hedges 0.0025 0.7604 0.2371 1.0913E-05
30 0.0133 95.1127 97.4163 0.7185 0.9764 -0.0639 95.1133 0.9764 4.4896E-04 132.3797 Hedges 0.0049 0.9895 0.0056 1.9066E-06
45 0.0133 95.3904 97.2083 0.7879 0.9813 -0.0739 95.1845 0.9792 2.0106E-04 121.0743 Hedges 0.0521 0.9389 0.0090 5.4414E-06
60 0.0133 94.9263 94.7073 0.7130 1.0023 0.0055 95.0170 1.0033 1.0357E-04 133.1368 Hedges 0.0004 0.9990 0.0006 1.4435E-08
-60 0.0233 124.7094 90.2790 0.8523 1.3814 0.5958 94.1866 1.0433 9.8058E-03 146.3294 Picket Fence 2.1317E-08 2.2893E-07 0.8101 0.1899
-45 0.0233 129.0326 90.2098 0.8338 1.4304 0.5835 94.1903 1.0441 1.9036E-02 154.7484 Picket Fence 8.2947E-09 7.7560E-07 0.5769 0.4231
-30 0.0233 124.1194 93.4587 0.8171 1.3281 0.5089 94.8792 1.0152 9.6040E-03 151.8996 Picket Fence 9.0397E-09 9.6969E-08 0.9199 0.0801
0 0.0233 125.5684 95.2828 0.8673 1.3179 0.5935 94.4753 0.9915 1.4192E-02 144.7846 Picket Fence 7.2086E-09 3.4656E-07 0.7309 0.2691
30 0.0233 120.1833 93.0409 0.8333 1.2917 0.5144 92.2863 0.9919 1.5219E-02 144.2259 Picket Fence 6.6776E-09 8.2017E-07 0.6884 0.3116
45 0.0233 127.0912 92.7001 0.8525 1.3710 0.5916 93.5688 1.0094 1.5773E-02 149.0874 Picket Fence 7.2573E-09 4.2859E-07 0.7070 0.2930
60 0.0233 128.7721 90.1232 0.8536 1.4288 0.6172 93.5213 1.0377 1.2437E-02 150.8625 Picket Fence 1.8253E-08 3.2385E-07 0.7682 0.2318

-60 -0.0200 103.0582 92.3384 0.8384 1.1161 0.3400 94.5762 1.0242 2.0918E-03 122.9228 Picket Fence 2.3124E-07 7.5991E-07 0.9942 0.0058
-45 -0.0200 97.1941 97.1622 0.7699 1.0003 0.0011 95.0557 0.9783 2.4461E-03 126.2458 Picket Fence 1.2691E-06 0.0010 0.9978 0.0012
-30 -0.0200 99.1662 96.1854 0.7882 1.0310 0.0976 94.7222 0.9848 3.0110E-03 125.8145 Picket Fence 6.7161E-08 2.0578E-05 0.9989 0.0011
0 -0.0200 96.9300 96.5391 0.8133 1.0040 0.0167 95.0429 0.9845 3.4981E-03 119.1762 Picket Fence 6.0568E-08 8.3124E-05 0.9928 0.0072
30 -0.0200 97.8098 95.1851 0.8065 1.0276 0.0976 94.4559 0.9923 3.4576E-03 121.2698 Picket Fence 2.0069E-08 1.9857E-05 0.9972 0.0028
45 -0.0200 95.9054 95.3208 0.8026 1.0061 0.0235 94.9616 0.9962 3.7237E-03 119.4957 Picket Fence 2.1684E-08 4.1212E-05 0.9961 0.0039
60 -0.0200 96.3324 90.3376 0.8043 1.0664 0.1975 94.9803 1.0514 3.0500E-03 119.7736 Picket Fence 2.6450E-06 0.0059 0.9214 0.0727

SEITILIBABORP ROIRETSOPSEULAV ERUTAEF
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Wall
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Wood 

Wall
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Fig. 4.14 Visible images and thermal images for each viewing angle of extended objects used 
in sensitivity analysis for the variations in the camera’s viewing angle.  The viewing angles of 
the thermal images are arranged from left to right as –60° from normal incidence, –45° from 
normal incidence, –30° from normal incidence, normal incidence, 30° from normal incidence, 
45° from normal incidence, and 60° from normal incidence. (a) brick wall, (b) hedges, (c) picket 
fence, (d) wood wall. 
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radiance (Lr) displays a large deviation in its values for the hedges due to the electri-
cal tape being attached to an irregular surface.  The variation in the camera’s viewing 
angle has a strong effect on the posterior probabilities for the brick wall as seen by the 
variation in the resulting probabilities of a brick wall and hedges.  We see a moderate 
effect on the posterior probabilities for the picket fence as seen by the variations in the 
resulting probabilities of a picket fence and wood wall.  The variation in the camera’s 
viewing angle appears to have a minor effect on the posterior probabilities for the 
hedges and wood wall object classes.  As mentioned earlier, we will discuss reasons 
for misclassifications of objects by a classification model in Chap. 5.  In general, we 
conclude that variations in the viewing angle of a thermal camera will have a moder-
ate effect on the values of features and performance of a classification model. 

4.6.2 Window Size Variations 

The sensitivity analysis for the variations in the window size of the thermal scene 
will be performed using the extended objects and the Bayesian classifier with the 
9-dimensional extended object feature vector < 2, 3, 5, 9, 10, 11, 13, 15, 17 >.  
The features associated with the numerical labels in the feature vector are pre-
sented in Table 4.2.  This classification model displayed estimated error rates of 
18.06% with the holdout error estimation method and 17.91% with the resubstitu-
tion error estimation method on the extended objects in Sect. 4.5.5.  The extended 
objects used in the analysis consist of a brick wall, hedges, picket fence, and wood 
wall.  The thermal images of the extended objects were captured on 10 and 11 
February 2007 between 0930 and 1700 hrs on each day with meteorological con-
ditions involving clear skies and temperatures ranging from approximately 42.2°F 
to 49.8°F.  Consequently, we did not choose a most favorable feature vector with 
a temperature feature since minimal data is available in the training set for this 
range of temperatures as shown in Fig. 2.15.  Furthermore, we chose a feature vec-
tor having a majority of macro features since we will vary the window size of the 
entire scene of the target with the micro features generated from each target’s sur-
face remaining constant.  For each extended object used in the analysis, the win-
dow size of the thermal scene containing the target decreases in increments to pro-
duce 100 thermal images that are each proportional to the original segment.  As 
previously mentioned, the values for the micro feature Lo as well as Lb and the 
meteorological feature T1 will remain constant for each object’s images.  How-
ever, the values for the macro features Mo1, Mor1, Mob1, En1, Cr2, and Ho2 will 
be computed for each window size.  The visible image and thermal images to in-
clude the first (largest) and 100th (smallest) window segment for each of these ob-
jects is displayed in Fig. 4.15. 

For the brick wall, the constant feature values were T1 = 0.05, Lo = 95.0405, and 
Lb = 94.4728.  Figure 4.16 (a) presents the posterior probabilities for the brick wall 
feature vectors being a brick wall, hedges, picket fence, and wood wall.  The posterior 
probabilities of the brick wall and wood wall display minimal variations.  However, 
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Fig. 4.15 Visible images and thermal images for extended objects used in sensitivity analysis for 
the variations in the window size of the thermal scene. The first (largest) and 100th (smallest) 
window segments out of the 100 window sizes are enclosed by the solid red borders. (a) brick 
wall, (b) hedges, (c) picket fence, (d) wood wall. 
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there is minimal variation in the classifier’s posterior probabilities of the hedges and 
picket fence until about the 80th window size index.  For the macro feature values in 
Fig. 4.16 (b), the largest variations occur at around the 80th window size index.  
However, the features En1 and Cr2 display a gradual change in values up to the 80th 
window size index. 

For the hedges, the constant feature values were T1 = 0.0567, Lo = 94.0763, 
and Lb = 97.4769.  Figure 4.17 (a) presents the posterior probabilities for the 
hedges feature vectors being a brick wall, hedges, picket fence, and wood wall.  
The posterior probabilities of the brick wall and wood wall display minimal varia-
tions.  However, there is minimal variation in the classifier’s posterior probabili-
ties of the hedges and picket fence until about the 90th window size index.  For the 
macro feature values in Fig. 4.17 (b), the largest variations occur around the 90th 
window size index.  The features Mo1, Mor1, and Mob1 display a gradual change 
in values up to about the 90th window size index. 

For the picket fence, the constant values were T1 = 0.0233, Lo = 123.221, and 
Lb = 94.996.  Figure 4.18 (a) displays the posterior probabilities for the picket 
fence feature vectors being a brick wall, hedges, picket fence, and wood wall.  The 
posterior probabilities of the brick wall and hedges display minimal variations.  
However, there is minimal variation in the classifier’s posterior probabilities of the 
picket fence and wood wall until about the 80th window size index.  For the macro 
feature values in Fig. 4.18 (b), the largest variations occur around the 90th window 
size index.  Additionally, all the macro features for the picket fence display a gra-
dual change in values up to about the 90th window size index. 

For the wood wall, the constant values were T1 = –0.02, Lo = 96.8051, and    
Lb = 97.566.  Figure 4.19 (a) displays the posterior probabilities for the wood 
wall feature vectors being a brick wall, hedges, picket fence, and wood wall.  The 
posterior probabilities of the brick wall and hedges display minimal variations.  
However, there is minimal variation in the classifier’s posterior probabilities of 
the picket fence and wood wall until about the 90th window size index.  For the 
macro feature values in Fig. 4.19 (b), the largest variations occur around the 90th 
window size index.  With the exception of Ho2, all the macro features for the 
wood wall display a gradual change in values up to about the 90th window size 
index.  The Ho2 macro feature remains approximately constant until the 90th 
window size index.     

In general, we conclude that the variations in the window size of the thermal 
scene of a target will have a moderate effect on the values of features and minor 
effect on the posterior probabilities of a classification model.  As we see, these 
variations in the window size of the thermal scene of a target could act as a dy-
namical window technique that affords an autonomous robot the ability to collect 
multiple degrees of information regarding a target’s surface to arrive at a more 
confident decision for a class assignment.  We use this dynamical window tech-
nique in our novel classification model that we will present in Chap. 5.  
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Fig. 4.16 Brick wall sensitivity analysis for the variations in the window size of the thermal 
scene. (a) Posterior probabilities for the brick wall feature vectors and (b) macro feature values 
with variations in window size indexed from 1 (largest window) to 100 (smallest window). 
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Fig. 4.17 Hedges sensitivity analysis for the variations in the window size of the thermal scene. 
(a) Posterior probabilities for the hedges feature vectors and (b) macro feature values with varia-
tions in window size indexed from 1 (largest window) to 100 (smallest window). 
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Fig. 4.18 Picket fence sensitivity analysis for the variations in the window size of the thermal 
scene.  (a) Posterior probabilities for the picket fence feature vectors and (b) macro feature values 
with variations in window size indexed from 1 (largest window) to 100 (smallest window). 
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Fig. 4.19 Wood wall sensitivity analysis for the variations in the window size of the thermal 
scene.  (a) Posterior probabilities for the wood wall feature vectors and (b) macro feature values 
with variations in window size indexed from 1 (largest window) to 100 (smallest window). 
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4.6.3 Rotational Variations 

The sensitivity analysis for the variations in the rotational orientation will be per-
formed using a compact object and the Bayesian classifier with the 9-dimensional 
compact object feature vector < 1, 6, 7, 8, 10, 11, 12, 13, 14 >.  The features associ-
ated with the numerical labels in the feature vector are presented in Table 4.10.  
This classification model displayed an estimated error rate of 2.00% with the hold-
out error estimation method on the compact objects in Sect. 4.5.6.  The compact 
object used in this analysis is a pine tree log with the thermal image captured on 
9 October 2007 at 1317 hrs with meteorological conditions involving clear skies 
and an ambient temperature of approximately 98.2°F.  The thermal image of the 
pine tree log was rotated to produce images with five different orientations: 0°, 45°, 
90°, 135°, and 180°.  The visible image and thermal images for each orientation 
along with the segmented portion of the pine tree log used in the analysis is pre-
sented in Fig. 4.20.  

Table 4.19 presents the feature values and assigned classes as well as the poste-
rior probabilities of the Bayesian classifier for each orientation of the pine tree log.  
The feature values for Eo display a large deviation at the diagonal angles (45° and 
135°) from the feature values found for 0°, 90°, and 180°.  Additionally, Co2 
shows a large variation in values at the angles 135° and 180° from those feature 
values of the other three angles.  However, the other feature values display mini-
mal variations with the rotational angles.  As we see, the variation in the orienta-
tion of the pine tree log has a minimal effect on the posterior probabilities.  Con-
sequently, we can conclude that variations in the rotational orientation of an object 
have a minor effect on the values of the features and posterior probabilities of 
a classification model.  Therefore, the performance of the classification model is 
rotational invariant.     

Table 4.19 Effect of variations in the rotational orientation on feature values and classification 
performance of a Bayesian classifier of a pine tree log. The object class assigned by the classifier 
as well as the posterior probabilities for each rotation angle is presented in the columns on the 
right. 

OBJECT

ROTATION

ANGLE 

(Degrees) Ta Lor Lob Eo En1 Co2 Cr2 Er2 Ho2

Assigned 

Class Steel Pole Tree

0 98.2 1.0056 1.0407 1.1295 3.8779 15.2746 0.5182 0.0102 0.3866 Tree 0.0002 0.9998
45 98.2 1.0273 1.0314 7.6905 3.9113 14.0655 0.6843 0.0124 0.3858 Tree 0.0202 0.9798
90 98.2 1.0031 1.0358 1.0636 3.8529 14.0995 0.6134 0.0111 0.3982 Tree 0.0004 0.9996
135 98.2 1.0359 1.0494 3.6732 4.4568 21.5122 0.7750 0.0067 0.3477 Tree 0.0002 0.9998
180 98.2 1.0176 1.0462 1.5940 4.3081 20.3509 0.6557 0.0066 0.3576 Tree 0.0001 0.9999

SEITILIBABORP ROIRETSOPSEULAV ERUTAEF

Pine Tree 

Log
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Fig. 4.20 Visible image and thermal images for the pine tree log used in the sensitivity analysis 
for the variations in the rotational orientation. (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°.  The 
portion of the pine tree log segmented for the analysis is enclosed by the solid rectangular bor-
ders in each thermal image. 

4.7 Summary 

In this chapter, we evaluated the performance of various classification models to 
identify the most favorable feature vectors for our extended and compact objects.  
We first introduced our approach of statistical pattern classification where learning 
involves labeled classes of data (supervised classification), assumes no formal 
structure regarding the density of the data in the classes (nonparametric density es-
timation), and makes direct use of posterior probabilities when making decisions 
regarding class assignments (probabilistic approach).  After presenting a prelimi-
nary feature analysis to assess the quality of our training data and eliminate redun-
dant features, classification models were formed with feature vectors from the ex-
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tended and compact object classes and Bayesian, KNN, and Parzen classifiers.  
The error rates for each classification model were computed using exhaustive 
search feature selection method on a high performance computing system.  For 
each classification model, an average error rate was computed on test set data us-
ing the resubstitution, holdout, and leave-one-out error estimation methods.  The 
resulting average error rates were compared to determine the feature vectors that 
present the lowest error rates.  These feature vectors were considered as our most 
favorable feature vectors and consist of relevant information to allow us to classify 
unknown non-heat generating objects with minimal error.  We saw that there is no 
single “optimal” feature vector but a set of “most favorable” feature vectors asso-
ciated with various classifiers for both the extend and compact object classes.  
Moreover, we showed that the most favorable feature vectors are those that con-
tain contributions from all the feature types – meteorological, micro, and macro.  

We performed a sensitivity analysis to explore the effects of variations in the 
camera’s viewing angle, window size of the thermal scene, and rotational orienta-
tion of the target on the feature values and classification performance of a classi-
fier involving selected feature vectors from our most favorable sets.  In general, 
we conclude that variations in the viewing angle of a thermal camera will have 
a moderate effect on the values of features and performance of a classification 
model.  The variations in the window size of the thermal scene of a target have 
a moderate effect on the values of features and minor effect on the posterior prob-
abilities of a classification model.  Additionally, we concluded that variations in 
the rotational orientation of an object have a minor effect on the values of the fea-
tures and posterior probabilities of a classification model.   

During the sensitivity analysis in Sect. 4.6, we noted that the variations in the 
window size of the thermal scene of a target could act as a dynamical window 
technique that affords an autonomous robot the ability to collect multiple degrees 
of information regarding a target’s thermal scene to arrive at a more confident de-
cision for a class assignment.  We use this dynamical window technique in our 
novel classification model that we will present in Chap. 5.  Furthermore, we saw 
that some patterns from specific object classes were consistently misclassified 
while other patterns were assigned to the correct class.  In Chap. 5, we will iden-
tify conditions that result in blind patterns from specific object classes being mis-
classified.  Additionally, we will observe that certain classification models per-
form exceptionally well on patterns from specific object classes.  These 
classification models act as experts in making classification decisions for patterns 
from these respective object classes.  It turns out that we can form a committee of 
experts for classifying patterns from a specific object class.  By combining each 
committee of experts into one classification model, we are able to exploit the ex-
pertise of each committee and complement the overall performance of the classifi-
cation model.  This novel concept is the baseline for our Adaptive Bayesian Clas-
sification Model presented next in Chap. 5.           
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5 Adaptive Bayesian Classification Model 

Abstract  An Adaptive Bayesian Classification Model is presented that outper-
forms the traditional KNN and Parzen classifiers when classifying non-heat gener-
ating outdoor objects in thermal scenes.  The Adaptive Bayesian Classification 
Model is a suitable choice for any classification application involving hyperconoi-
dal clusters.  Each hyperconoidal cluster consists of an object class’s patterns in an 
n-dimensional feature space that are characterized by their behavior about a re-
spective first principal eigenvector.  The model introduced in this chapter is de-
signed to adapt to the behavior of these patterns from specified object classes to 
provide an accurate classification of unknown objects.  

5.1 Introduction 

In Chap. 3, we generated features from the thermal images of our non-heat gener-
ating objects.  In the context of this research, we have defined non-heat generating 
objects as objects that are not a source for their own emission of thermal energy, 
and so exclude people, animals, vehicles, etc.  In Chap. 4, we assessed the per-
formance of various classification models to identify the most favorable sets of 
feature vectors for our extended and compact object classes.  The extended objects 
consist of objects that extend laterally beyond the thermal camera’s lateral field of 
view, such as brick walls, hedges, picket fences, and wood walls.  The compact 
objects consist of objects that are completely within the thermal camera’s lateral 
field of view, such as steel poles and trees.  We will now use these most favorable 
feature vectors to design and implement a novel model that outperforms the tradi-
tional KNN and Parzen classifiers for our specific application.  The design of the 
adaptive Bayesian classification model is based on the observation that the thermal 
patterns for each class of non-heat generating objects display a unique behavior 
about an eigenvector that projects through their respective hyperconoidal cluster.  
The behavior is characterized by the normal distances between the patterns and  
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eigenvector for each object class.  Various distance functions are derived based on 
these normal distances.  These distance functions are incorporated into the likeli-
hood function of the Bayesian classifiers to form an adaptive Bayesian classifier.  
We found that the combination of specific sets of adaptive Bayesian classifiers 
and most favorable feature vectors yield exceptional classification performance for 
a given object class.  Each set of adaptive Bayesian classifier models acts as an 
expert in making classification decisions on patterns from their respective object 
class.  It turns out that we can form a committee of experts for classifying patterns 
from a specific object class.  Consequently, one committee of experts may per-
form exceptionally on specific unknown patterns where another classifier is defi-
cient, and vice versa.  By combining each committee of experts into one classifica-
tion model, we are able to exploit the expertise of each committee and 
complement the overall performance of the classification model.  We further in-
creased the confidence level in our model’s classification decisions by integrating 
the dynamical window technique presented in Chap. 4 that lets each committee of 
experts decide on class assignment by considering information collected from 
multiple window sizes of the thermal image of an object.  Additionally, we incor-
porated rules into our model that must be satisfied before the bot is authorized to 
make a classification decision.  If all the rules are satisfied, the bot is authorized to 
assign a class to the unknown object within its field of view and proceed with the 
next required action in the intelligence algorithm.  On the other hand, if a rule is 
not satisfied, the bot must reject a class assignment and capture another thermal 
image of the unknown object for classification, perhaps from another viewing an-
gle.  This is the cornerstone of the Adaptive Bayesian Classification Model.  

The remainder of this chapter will proceed as follows.   In Sect. 5.2, we will de-
rive the distance metrics used to describe the behavior of each object class’s pat-
terns about the eigenvector that projects through their respective hyperconoidal 
cluster.  In Sect. 5.3, we will present our adaptive Bayesian classifiers.  We will 
compare the classification performance of our adaptive Bayesian classifiers to the 
KNN and Parzen classifiers using our most favorable feature vectors on blind data 
sets in Sect. 5.4.  We will also make inferences on blind patterns being misclassi-
fied under certain thermal conditions.  In Sect. 5.5 we will present our algorithm 
for the Adaptive Bayesian Classification Model consisting of the committees of 
expert adaptive Bayesian classifiers.  Section 5.6 will present an example applica-
tion of our Adaptive Bayesian Classification Model.  We will conclude this chap-
ter with a summary in Sect. 5.7.  The models and methods presented in this chap-
ter were implemented using Matlab with assistance by FastICA [1] and a pattern 
recognition toolbox known as PRTools4 [2].           

5.2 Distance Metrics for Hyperconoidal Clusters 

In Chap. 4 we introduced principal component analysis (PCA) as a traditional fea-
ture extraction method for dimensionality reduction of a feature space.  As 
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a dimensionality reduction technique, PCA is applied globally over the patterns of 
all the object classes in the feature space.  For a data set of size m consisting of 
n-dimensional feature vectors from all object classes, we showed that there exists 
an eigenvector that not only determines the direction of the maximal variance of 
the data in feature space but also best fits the patterns in a least squared sense.  We 
refer to this eigenvector as the first principal eigenvector.  Using PCA in a “non-
traditional way” we can perform local PCA on each object class and compute the 
first principal eigenvector that provides a best fit through the respective object 
class’s hyperconoidal cluster. 

Figure 5.1 provides an example of local PCA applied to three object classes in 
a 3-dimensional feature space with features f1, f2, and f3.  We will name these ob-
ject classes red, blue, and green, corresponding to the colors in the figure.  Since 
the patterns in the feature space illustrated in Fig. 5.1 display characteristics 
analogous to the patterns of our non-heat generating objects, we will generalize 
the following observations and equations to our extended and compact object 
classes.  First we note that similar to the hyperconoidal clusters introduced with 
the 2-dimensional scatter plots in Chap. 4, the 3-dimensional hyperconoidal clus-
ters for our non-heat generating object classes also tend to diverge from a common 
origin as displayed in Fig. 5.1.  In Fig. 5.1, we see that the patterns about the first 
principal eigenvectors behave differently for each object class.  Thus, two types of 
behavior in the patterns seem to uniquely characterize the object classes.  The first 
type of behavior is that we see regions with dense clusters of patterns that vary in 
location differently for each object class.  The second type of behavior is that the 
trend in the normal distance between each object class’s patterns and their respec-
tive first principal eigenvector appears to uniquely characterize each object class.  

f1

f2

f3

 
Fig. 5.1 First principal eigenvectors each projected through the hyperconoidal cluster of their re-
spective object class in a 3-dimensional feature space. 
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For instance, the patterns in the blue class appear to have a more compact fit about 
their respective first principal eigenvector compared to the patterns in the red and 
green classes.  The patterns in the green class appear to have larger normal dis-
tances from their respective first principal eigenvector compared to the red and 
blue classes.  We can study these behaviors in more detail and with n-dimensional 
feature vectors by using the two distance metrics that we will now present. 

Similar to the global PCA discussed in Chap. 4, that was applied to all the pat-
terns in the feature space irrespective of the object class, local PCA centers the m 
patterns in each object class jO , where Jj ,...,1= , by subtracting the sample 

mean pf  from each feature value pf , where   p = 1,…,n, across each pattern 

nij
ffff ,,, 21 …= , where i = 1,…,m.  This produces patterns 
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class jO .  Continuing with the same procedures discussed in Chap. 4, we can 
compute the first principal eigenvector je1  by solving the eigenvalue problem in-

volving the covariance matrix of the matrix formed with the patterns 
ij

f
~

 along 

the columns.  Repeating this process across all object classes results in hypercon-
oidal clusters along with their respective first principal eigenvectors that diverge 
from a common origin, similar to Fig. 5.1.  Consequently, the first principal ei-
genvector je1  and each pattern 

ij
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 in object class jO  can be treated as position 

vectors with the common origin as the initial position.      
The first distance metric that will assist us in understanding the behavior of 

each object class’s patterns is the component (or scalar projection) of the pattern 
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 onto the first principal eigenvector je1  as displayed in Fig. 5.2 and given by 
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The second distance metric is the normal distance between a pattern and its re-
spective first principal eigenvector as displayed in Fig. 5.2 and given by 
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By relating 
ije fcomp

j

~
1

 to ijD , we can analyze the behavior of each object class’s 

pattern 
ij

f
~

 about the respective first principal eigenvector je1 .  Figures 5.3 (a–j) 

present the relationships of these distance metrics involving the set of most favorable 
feature vectors for the extended objects presented in Table 4.9.  The numerical labels 
in each feature vector for the extended objects are defined in Table 4.2.  The training 
data for the extended objects displayed in Table 2.1 is used in this analysis.  By com-
paring the plots for each object class across the given dimensions, we see that a gen-
eral trend is found within each object class that varies slightly depending on the fea-
ture vector.  These trends found in the relationships between the distance metrics are 
attributed to the values of the features for each object class within the training data set.  
As we saw in Chaps. 3 and 4, each object class’s feature values depend on its respec-
tive material properties, the thermal camera’s viewing angle, and the diurnal cycle of 
solar energy.  These combined factors yield the trends that we see by each extended 
object class’s patterns in Fig. 5.3.  For instance, the hedges present the highest stan-
dard deviation in its feature values compared to the other extended object classes.  As 
a result, the hedges’ patterns display higher deviations across both the normal dis-
tance and scalar projection metrics in Fig. 5.3 compared to the other extended ob-
jects.  These high deviations in the feature values are due to the hedges’ thermal-
physical properties.  Thus, the hedges display the greatest deviation in thermal radi-
ance throughout its training data since the leaves on the hedges tend to track the avail-
ability of solar energy due to the low specific heat of the leaves [3].  Consequently, the 
features generated for the training data from the thermal images of the hedges cap-
tured over diverse environmental conditions, as described in Chap. 2, yield a high de-
viation among the feature values.  The standard deviation of the feature values associ-
ated with the brick wall and picket fence are close in value, but lower than the hedges 
object class and higher than the wood wall object class.  Thus, as we see in Fig. 5.3, 
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Fig. 5.2 Distance metrics 
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class’s patterns 
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Fig. 5.3 Extended object distance metric relations for given most favorable feature vector. 
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the relationships between the values of the scalar projections and normal distances for 
the patterns involving the brick wall and picket fence present approximately the same 
trends throughout all the feature vectors.  On the other hand, the feature values in the 
training data set for the wood wall object class present the lowest standard deviation 
compared to the other extended object classes.  As we will also discuss in Sect. 5.4.2, 
the thermal images of the wood walls used in the training data typically had a low 
thermal radiance and contrast displayed by its surface and reference emitter.  The 
combination of these circumstances contribute to the patterns associated with the 
wood wall object class displaying a more compact cluster that is closer to the origin in 
Fig. 5.3 compared to the other extended object classes. 

Figures 5.4 (a–q) present the relationships of the distance metrics involving the 
set of most favorable feature vectors for the compact objects presented in Table 4.17.  
The numerical labels in each feature vector for the compact objects are defined in  
Table 4.10.  The training data for the compact objects displayed in Table 2.1 is used 
in this analysis.  Analogous to the extended objects, the trends found in the relation-
ships between the distance metrics for the compact objects are attributed to the values 
of the features for each object class within the training data set.  Each object class’s 
feature values depend on its respective material properties, the thermal camera’s 
viewing angle, and the diurnal cycle of solar energy.  These combined factors yield 
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Fig. 5.4 Compact object distance metric relations for given most favorable feature vector. 
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the trends that we see by each compact object class’s patterns in Fig. 5.4.  Thus, the 
standard deviation of the feature values in the steel pole object class’s training data set 
is lower than the tree object class.  Furthermore, as we also mention in Sect. 5.4.2, 
the thermal images of the steel poles used in the training data set typically have a 
lower thermal contrast displayed on the surface and with the reference emitter com-
pared to the tree object class.  These combined factors contribute to the steel pole ob-
ject class’s patterns displaying a more compact cluster that is closer to the origin in 
Fig. 5.4 compared to the patterns from the tree object class.  Consequently, there ex-
ists a distinguishing behavior between the patterns for the steel poles and trees. 

As we see, the distance metrics given by Eqs. 5.1 and 5.2 play a significant 
role in the study of n-dimensional patterns that form hyperconoidal clusters.  Ad-
ditionally, these distance metrics give us the ability to “see” regions in the 
n-dimensional feature space where some object classes may tend to “look alike” 
and run the risk for misclassification by a classification model.  For instance, we 
will see that the tendency for the majority of the patterns for the wood wall in the 
extended object category and steel pole in the compact object category to cluster 
closer to their respective common origins, where minorities of the other object 
classes’ patterns may exist, will lead to a higher error rate for the wood wall and 
steel pole.  Consequently, the common origin for the hyperconoidal clusters of 
a set of object classes is a region where patterns from the object classes will tend 
to “look alike.”  Thus, the closer an object class’s patterns are to the common ori-
gin of all the hyperconoidal clusters, the higher the risk for misclassification of 
patterns from that object class by the classification model.  Additionally, we can 
also consider the uniqueness in the behavior of each object class’s patterns about 
their respective first principal eigenvector when assigning a class to an unknown 
pattern.  This is the basis for adaptive Bayesian classifier that we will now present. 

5.3 Adaptive Bayesian Classifier Design 

Based on our analysis in Sect. 5.2, it appears that the likelihood function used in 
the posterior probability for classifying an unknown pattern should not only be de-
termined by the unknown pattern’s participation in the density distribution of 
a given object class but also by the unknown pattern’s behavior about the first 
principal eigenvector projecting through the given object class’s hyperconoidal 
cluster.  Consequently, we can consider both the density distribution and behav-
ioral characteristics of patterns by deriving a likelihood function that is weighted 
by a function that involves the normal distance of the unknown pattern to an ob-
ject class’s first principal eigenvector.  Additionally, variations of the weighted 
likelihood function are derived that are adapted to the behavior of the patterns for 
a given object class.  The resulting weighted likelihood function will produce 
a posterior probability with enhanced discriminating capabilities. 
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Figure 5.5 presents a zoomed in portion of the hyperconoidal clusters given in 
Fig. 5.1 with an unknown pattern denoted as a black star in the feature space.  
Analogous to the behavior of the patterns that we studied in Sect. 5.2, the patterns 
in the object classes red, blue, and green display unique behaviors about their re-
spective first principal eigenvectors that allow us to distinguish one object class 
from another.  For instance, the patterns in the blue class tend to have a smaller dis-
tance to their respective first principal eigenvector compared to the patterns in the 
red and green classes.  The patterns in the green class appear to have larger normal 
distances from their respective first principal eigenvector compared to the red and 
blue classes.  Consequently, if we computed the normal distance of the unknown 
pattern (black star) from each object class’s first principal eigenvector and com-
bined this information with our knowledge about each object class’s density distri-
bution, we could conclude that the characteristics of the black star mostly resemble 
the blue class.  Therefore, the normal distances of the training patterns to the re-
spective first principal eigenvector define the behavior of the given object class. 

Let f
~

 be an unknown pattern centered for the object classes in an 

n-dimensional feature space using local PCA.  Thus, the unknown pattern is 
treated as a position vector with an initial position being the common origin for all 
the hyperconoidal clusters in the n-dimensional feature space.  From Eq. 4.13 we 
have our Bayesian classifier with a KNN density estimation given by  

 ( ) ( ) ( )
( )fP

OPOfP
fOP jj

j ~ˆ
|

~ˆ~
| =  (5.3) 

where the likelihood function is defined by the KNN density estimation 

 ( )
VN

K
OfP

j

j
j =|

~ˆ  (5.4) 

and 

 ( ) jjj NNK =  (5.5) 

is a function of the training data in object class jO  as discussed in Chap. 4 and 
presented by Loftsgaarden and Quesenberry [4].  We will assign equal prior prob-
abilities ( )jOP  to the object classes for our analysis throughout this chapter; how-

ever, in Chap. 6, we will describe a way to use satellite imagery to assist in estab-
lishing prior knowledge used in a bot’s area of operation.  Consequently, our 
assignment rule classifies an unknown object to the object class with the largest 
posterior probability given by Eq. 5.3.  

An unknown pattern’s normal distance is adapted as a weight on the likelihood 
function based on the general behavior of the training patterns about each object 
class’s respective first principal eigenvector.  For training patterns that tend to 
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have large normal distances from their respective first principal eigenvector je1 , 

such as the green object class in Fig. 5.5, the normal distance jD  for the unknown 

pattern f
~

 is adapted as a weighted value on the likelihood function of the object 

class jO  as a multiplier to obtain 

 ( ) ( )jjj OfPDOf |
~

|
~

⋅=L  (5.6) 

On the other hand, when the training patterns tend to have smaller normal dis-
tances from their respective first principal eigenvector, such as the blue class in 
Fig. 5.5, the normal distance jD  for the unknown pattern f

~
 is adapted as 

a weighted value on the likelihood function of the object class jO  as a divisor to 
obtain 

 ( ) ( )
j

j
j D

OfP
Of

|
~

|
~

=L  (5.7) 

Consequently, for an unknown pattern with a large normal distance from a first 
principal eigenvector, Eq. 5.6 will enhance the likelihood value when the un-
known pattern is among a crowd of training patterns from an object that with large 
normal distances from the same first principal eigenvector.  On the other hand, the 
use of Eq. 5.7 on the unknown pattern (black star) in Fig. 5.5 will enhance the 
likelihood value of the blue class since the star is among the crowd of blue training 
patterns.  However, the use of Eq. 5.6 on the star for the green class will not yield 

 
Fig. 5.5 Portion of hyperconoidal clusters presented in Fig. 5.1 with an unknown pattern dis-
played as the black star in the feature space. 
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any significant changes to the green class’s likelihood value since the star does not 
exist among a crowd of green training patterns.  Such enhancements to the likeli-
hood function will improve the discriminating power of the posterior probability. 

We can generalize Eqs. 5.6 and 5.7 to form likelihood functions that are 
weighted by a distance function ( )jj efd 1,

~
 that takes on various forms involving 

the normal distances given by Eq. 5.2.  For this research, we will consider distance 

functions ( )jj efd 1,
~

 that are defined by 1, 
jD

1 , 2
1

jD
, ( )jDexp

1 , jD , 2
jD , and 

( )jDexp .  Thus, our generalized weighted likelihood function becomes 

 ( ) ( ) ( )jjjjj OfPefddOf |
~

,
~

,|
~

1 ⋅=L  (5.8) 

Hence, our weighted KNN density estimation is given by      

 ( ) ( )
VN

K
efddOf

j

j
jjjj ⋅= 1,

~
,|

~L  (5.9) 

Therefore, our generalized adaptive Bayesian classifier is defined by the poste-
rior probability 

 ( ) ( ) ( )
( )fP

OPdOf
fOP jjj

j ~ˆ
,|

~
~

|
L

=  (5.10) 

where our unconditional probability is given by 
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=

=

=

=
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 (5.11) 

The novel adaptive Bayesian classifier in Eq. 5.10 puts more weight on the 
likelihood function when the behavior of an unknown pattern is similar to the pat-
terns of a specific object class.  For instance, as previously noted, the unknown 
pattern (black star) displayed in Fig. 5.5 is located more among the blue class.  
The adaptive Bayesian classifiers for each class will respond using the weighted 
likelihood function given by Eq. 5.9.  The weighted likelihood function associated 
with the blue class will have the greatest value since the unknown pattern is 
among a dense crowd of blue patterns and a close distance to the respective first 
principal eigenvector like the other blue patterns in the crowd.  Consequently, the 
larger posterior probability associated with the blue class will give us confidence 
to assign the unknown pattern to the blue object class.   
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5.4 Adaptive Bayesian Classifier Appraisal 

In this section, we will assess the performance of the adaptive Bayesian classifier 

with the distance function ( )jj efd 1,
~

 defined by 1,
jD

1 , 2
1

jD
, ( )jDexp

1 , jD , 2
jD , 

and ( )jDexp .  We will compare these classification results to the performance by 

the traditional KNN and Parzen classifiers.  The classifiers are teamed up with our 
most favorable feature vectors presented in Chap. 4 and evaluated on the blind 
data set discussed in Chap. 2.  Our analysis will show that our adaptive Bayesian 
classifiers have the ability to outperform the KNN and Parzen classifiers.  Fur-
thermore, we see that some adaptive Bayesian classifiers show exceptional classi-
fication performance on a certain object class but do not perform as well on blind 
patterns from other object classes.  This phenomenon is a result of our weighted 
likelihood functions adapting to the behavior of each object class’s patterns about 
their respective first principal eigenvector.  Additionally, we explore why some 
blind patterns are being misclassified under certain thermal conditions. 

5.4.1 Blind Data Performance 

We assessed the performance of our adaptive Bayesian classifier given by Eq. 5.10 

with the distance function ( )jj efd 1,
~

 defined by 1, 
jD

1 , 2
1

jD
, ( )jDexp

1 , jD , 2
jD , 

and ( )jDexp .  We compared these classification results to the performance by the 

traditional KNN and Parzen classifiers presented in Sects. 4.4.2 and 4.4.3, respec-
tively.  Each classification model is formed by one of these classifiers and a feature 
vector from the extended and compact objects displayed in Tables 4.9 and 4.17 
presented in Chap. 4.  The classification models designed for the extended and 
compact objects are evaluated on the respective blind data sets for the extended and 
compact objects discussed in Chap. 2 and presented in Table 2.2. 

Tables 5.1 and 5.2 present the average error rates for the adaptive Bayesian, 
KNN and Parzen classifiers using the most favorable feature vectors and blind data 
for the extended and compact objects, respectively.  The K values for the KNN 
classifier and h values for the Parzen classifier are presented in blue shaded cells in 
each table and were derived using the leave-one-out method as discussed in 
Chap. 4.  The numerical labels for the feature vectors of the extended and compact 
objects are displayed in Tables 4.2 and 4.10, respectively.  As we see, the top per-
formers from the adaptive Bayesian classifiers outperform the best models de-
signed from the KNN and Parzen classifiers for both the extended and compact ob-
jects.  For the extended objects in Table 5.1, the adaptive Bayesian classifier with 
the distance function ( ) jjj Defd =1,

~
 and feature vector <1,2,3,4,6,11,13,14,16> 
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result in the best classification performance with an estimated error rate of 28.26%, 
while the top performers for both the KNN and Parzen only obtain error rates of 
approximately 33.70%.  For the compact objects in Table 5.2, the adaptive Bayes-
ian classifier with the distance function ( )jj efd 1,

~
 defined by 1, jD , and ( )jDexp  

along with the feature vector <1,2,4,6,7,8,10,11,13,14,15> all produce error rates 
of only 10%, while the KNN and Parzen classifiers both display their best classifi-
cation performances with error rates of 15%.  Therefore, we conclude that the 
adaptive Bayesian classifier is an appropriate choice for a classification applica-
tion, such as ours, involving hyperconoidal clusters consisting of patterns in an 
n-dimensional feature space that are characterized by their behavior about the re-
spective first principal eigenvector.  

As expected, the average error rates for the adaptive Bayesian classifier in  
Tables 5.1 and 5.2 vary with choice of feature vector and distance function 

( )jj efd 1,
~

.  The next question is how these combinations affect the adaptive 

Bayesian classifier’s classification performance on the blind data for each object 
class within the extended and compact object categories.  We analyzed the confu-
sion matrices for the adaptive Bayesian classifier involving every combination of 
feature vectors and distance functions ( )jj efd 1,

~
 in Tables 5.1 and 5.2.  Once 

again, we saw variations in the error rates within each object class with different 
combinations of feature vectors and distance functions.     

Within the extended object class category, the highest error rates consistently 
occurred with the wood wall object class.  The average of the error rates across 

Table 5.1 Comparison of average error rates (%) for adaptive Bayesian classifiers with KNN 
and Parzen classifiers using most favorable feature vectors and blind data for extended objects.  
The table cells with the lowest average error rates for each classifier are shaded in yellow.  The 
table cell with the overall lowest average error rate is shaded in green. 

KNN
K

Value
Parzen

h
Value

1

84.862121 1 68.48 0.0213 56.52 53.26 55.43 55.43 58.70 75.00 55.43
1 2 3 6 12 46.74 1 44.57 0.0297 38.04 38.04 41.30 38.04 40.22 57.61 38.04
1 2 3 6 12 14 47.83 1 45.65 0.0311 38.04 38.04 38.04 38.04 38.04 46.74 36.96
2 3 5 6 9 13 18 45.65 1 44.57 0.0656 40.22 38.04 35.87 39.13 41.30 42.39 40.22
3 5 6 8 9 13 16 35.87 3 40.22 0.0729 40.22 38.04 39.13 40.22 44.57 45.65 42.39
1 3 5 6 7 11 16 42.39 1 41.30 0.0534 41.30 41.30 39.13 40.22 40.22 42.39 41.30
2 3 5 6 9 15 16 18 40.22 1 43.48 0.076 44.57 41.30 39.13 44.57 43.48 45.65 44.57
3 5 6 7 8 9 13 16 33.70 3 40.22 0.0746 41.30 39.13 39.13 42.39 43.48 45.65 41.30
1 3 4 6 11 12 14 18 35.87 1 33.70 0.044 31.52 32.61 32.61 32.61 31.52 32.61 31.52
2 3 5 6 7 9 13 15 18 41.30 1 44.57 0.0691 44.57 43.48 40.22 43.48 44.57 44.57 45.65
2 3 5 6 7 8 9 11 12 47.83 1 46.74 0.0723 41.30 39.13 40.22 40.22 43.48 48.91 40.22
1 3 4 6 8 11 12 14 18 36.96 1 33.70 0.0529 31.52 32.61 31.52 32.61 31.52 33.70 30.43
1 2 3 4 6 11 13 14 16 39.13 1 40.22 0.0595 30.43 30.43 29.35 30.43 28.26 32.61 31.52
1 2 3 6 10 11 13 14 16 38.04 1 35.87 0.0463 31.52 29.35 29.35 31.52 30.43 36.96 29.35
2 3 5 9 10 11 13 15 17 39.13 1 44.57 0.0712 44.57 43.48 41.30 44.57 43.48 44.57 45.65
1 2 3 5 6 10 12 13 14 16 38.04 1 35.87 0.0677 33.70 32.61 31.52 32.61 32.61 35.87 33.70
1 2 3 5 6 7 10 11 14 16 46.74 1 46.74 0.0687 32.61 30.43 30.43 30.43 33.70 39.13 32.61
1 2 3 4 5 6 8 12 13 14 16 38.04 1 35.87 0.0641 32.61 31.52 32.61 32.61 33.70 34.78 32.61
1 2 3 4 5 6 7 10 12 14 16 43.48 1 39.13 0.0637 29.35 30.43 30.43 31.52 31.52 34.78 30.43

ADAPTIVE BAYESIAN CLASSIFER WITH 

FEATURE VECTOR
2

1

jDjD
1

( )jDexp
1

jD 2
jD ( )jDexp

( )=jj efd 1,~
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the 133 possible combinations for each object class is:  40.27% for the brick wall, 
18.31% for the hedges, 20.17% for the picket fence, and 75.32% for the wood 
wall.  There were nine combinations that resulted in the lowest error rate of 
8.70% for the brick wall.  Six combinations resulted in the lowest error rate of 
8.70% for the hedges.  The picket fence had the lowest error rates of 4.35% with 
four combinations and 8.70% with four other combinations.  Six combinations re-
sulted in the lowest error rate of 56.52% for the wood wall.  Tables 5.3 (a–d) pre-
sents five confusion matrices subjectively selected from the set of combinations 
of feature vectors and distance functions that resulted in the lowest error rates for 
each class in the extended object category. 

Table 5.2  Comparison of average error rates (%) for adaptive Bayesian classifiers with KNN 
and Parzen classifiers using most favorable feature vectors and blind data for compact objects. 
The table cells with the lowest average error rates for each classifier are shaded in yellow.  The 
table cells with the overall lowest average error rate are shaded in green. 

(a) 

KNN
K

Value
Parzen

h
Value

1

5241976 9 15 0.0379 17.5 17.5 20 17.5 17.5 20 17.5
6 7 12 14 15 7 20 0.0503 15 15 15 15 15 15 15
1 6 7 12 15 20 7 22.5 0.0515 20 20 20 22.5 15 17.5 15
6 7 9 12 14 20 7 20 0.0466 15 17.5 15 15 15 15 15

5151515.715.225.22519350.00265.2241217631
5.71525.225.715.715.715.717660.052115231119864

52035.7252025.2252160.05285241119863
4 5 6 7 12 15 20 5 20 0.0584 15 17.5 17.5 15 15 17.5 15
1 6 7 9 10 14 22.5 6 22.5 0.0533 15 15 15 15 15 15 15

515151515151519450.05.22302410197621
510251515.2151518850.05.2215.2251312111761
5.725.725.725.72025.225.722460.05.2251524111019863

1 4 6 7 9 10 14 17.5 6 20 0.0399 17.5 17.5 17.5 17.5 17.5 15 17.5
1 6 7 8 9 10 14 25 3 22.5 0.0653 15 15 15 15 15 15 15
1 2 6 7 10 12 14 20 3 20 0.064 15 15 15 15 15 15 15

515151515.7151518860.05.2221524131976421
515151515151512560.05.2255.22413121119761
5.715.71515.715.715.715.717460.05.2255241210197651

1 3 4 5 6 12 14 15 22.5 7 20 0.0647 22.5 20 20 20 27.5 25 22.5
1 6 7 8 9 10 11 14 22.5 9 22.5 0.065 15 15 15 15 15 15 15
3 4 6 7 9 10 14 15 22.5 7 15 0.0545 12.5 15 15 12.5 12.5 15 12.5
1 2 4 6 7 9 10 13 14 17.5 27 22.5 0.0689 15 15 15 15 15 15 15
1 6 7 8 10 11 12 13 14 22.5 5 22.5 0.0789 15 15 15 15 15 15 15

5.225.225.225252525.223560.05.225524121110197651
1 3 4 5 6 7 8 10 14 20 6 17.5 0.0742 17.5 17.5 17.5 17.5 17.5 17.5 17.5
1 3 6 7 9 10 13 14 15 22.5 6 20 0.0606 17.5 17.5 17.5 17.5 12.5 15 15

ADAPTIVE BAYESIAN CLASSIFER WITH 

FEATURE VECTOR
2

1

jDjD
1

( )jDexp
1

jD 2
jD ( )jDexp

( )=jj efd 1,~

 

(b) 

KNN
K

Value
Parzen

h
Value

1

1 6 7 9 10 11 12 13 14 15 22.5 5 22.5 0.068 15 15 12.5 15 15 15 15
1 3 4 5 6 7 9 10 11 14 22.5 6 17.5 0.0723 17.5 20 20 17.5 17.5 17.5 17.5
1 2 3 6 7 9 10 13 14 15 25 10 20 0.0624 17.5 17.5 17.5 17.5 15 12.5 15
1 2 4 6 7 8 10 11 13 14 15 22.5 7 17.5 0.0772 10 12.5 15 12.5 10 12.5 10
1 3 4 5 6 7 8 9 11 14 15 22.5 6 17.5 0.0871 17.5 20 20 17.5 17.5 17.5 17.5
1 2 3 4 6 7 8 10 12 13 14 22.5 7 20 0.0852 17.5 17.5 17.5 17.5 17.5 17.5 17.5
1 2 3 4 5 6 7 9 10 11 14 15 22.5 5 17.5 0.0773 17.5 20 20 20 20 20 20
1 3 4 5 6 7 8 9 10 11 12 14 15 22.5 3 20 0.0714 17.5 17.5 17.5 17.5 17.5 17.5 17.5

ADAPTIVE BAYESIAN CLASSIFER WITH 

FEATURE VECTOR
2

1

jDjD
1

( )jDexp
1

jD 2
jD ( )jDexp

( )=jj efd 1,~

 



200 5 Adaptive Bayesian Classification Model 

Table 5.3 Brick wall lowest error rates with respective feature vector and distance function 
combination displayed in the upper left corner of each confusion matrix. 

(a) 

Brick Wall

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 21 4 0 12
Hedges 2 19 1 1

Picket Fence 0 0 19 7
Wood Wall 0 0 3 3

Total Objects in Class 23 23 23 23
Errors by Class 2 4 4 20
Error Rate by Class (%) 8.70 17.39 17.39 86.96
Total Errors 30
Average Error Rate (%) 32.61

<1,3,4,6,11,12,14,18>,        

Assigned 

Object 

Class

ssalC tcejbO lautcA2

1

jD

 

 

 Wood WallecneF tekciPsegdeHllaW kcirB

Brick Wall 21 4 0 12
Hedges 2 19 1 1

Picket Fence 0 0 20 7
Wood Wall 0 0 2 3

Total Objects in Class 23 23 23 23
Errors by Class 2 4 3 20
Error Rate by Class (%) 8.70 17.39 13.04 86.96
Total Errors 29
Average Error Rate (%) 31.52

Assigned 

Object 

Class

<1,2,3,5,6,10,12,13,14,16>,      ssalC tcejbO lautcA2

1

jD

 

 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 21 4 0 9
Hedges 2 19 3 2

Picket Fence 0 0 19 8
Wood Wall 0 0 1 4

Total Objects in Class 23 23 23 23
Errors by Class 2 4 4 19
Error Rate by Class (%) 8.70 17.39 17.39 82.61
Total Errors 29
Average Error Rate (%) 31.52

Assigned 

Object 

Class

       ,>61,41,31,21,8,6,5,4,3,2,1< ssalC tcejbO lautcA
jD

1
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 Wood WallecneF tekciPsegdeHllaW kcirB

Brick Wall 21 4 0 12
Hedges 2 19 3 1

Picket Fence 0 0 19 7
Wood Wall 0 0 1 3

Total Objects in Class 23 23 23 23
Errors by Class 2 4 4 20
Error Rate by Class (%) 8.70 17.39 17.39 86.96
Total Errors 30
Average Error Rate (%) 32.61

Assigned 

Object 

Class

       ,>61,41,31,21,8,6,5,4,3,2,1< ssalC tcejbO lautcA2

1

jD

 

 

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 21 4 0 10
Hedges 2 19 1 1

Picket Fence 0 0 18 6
Wood Wall 0 0 4 6

Total Objects in Class 23 23 23 23
Errors by Class 2 4 5 17
Error Rate by Class (%) 8.70 17.39 21.74 73.91
Total Errors 28
Average Error Rate (%) 30.43

Assigned 

Object 

Class

<1,2,3,4,5,6,7,10,12,14,16>,       Actual Object Class2

1

jD
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Table 5.3 Hedges lowest error rates with respective feature vector and distance function combi-
nation displayed in the upper left corner of each confusion matrix. 

(b) 

Hedges

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 14 2 0 7
Hedges 9 21 2 6

Picket Fence 0 0 18 8
Wood Wall 0 0 3 2

Total Objects in Class 23 23 23 23
Errors by Class 9 2 5 21
Error Rate by Class (%) 39.13 8.70 21.74 91.30
Total Errors 37
Average Error Rate (%) 40.22

ssalC tcejbO lautcA

Assigned 

Object 

Class

                ,>21,6,3,2,1< jD

 

 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 17 2 0 10
Hedges 6 21 2 2

Picket Fence 0 0 18 5
Wood Wall 0 0 3 6

Total Objects in Class 23 23 23 23
Errors by Class 6 2 5 17
Error Rate by Class (%) 26.09 8.70 21.74 73.91
Total Errors 30
Average Error Rate (%) 32.61

ssalC tcejbO lautcA

Assigned 

Object 

Class

           ,>81,41,21,11,6,4,3,1< 2
jD

 

 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 13 2 0 5
Hedges 9 21 1 4

Picket Fence 1 0 19 5
Wood Wall 0 0 3 9

Total Objects in Class 23 23 23 23
Errors by Class 10 2 4 14
Error Rate by Class (%) 43.48 8.70 17.39 60.87
Total Errors 30
Average Error Rate (%) 32.61

ssalC tcejbO lautcA

Assigned 

Object 

Class

1    ,>61,41,11,01,7,6,5,3,2,1<
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llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 15 2 0 5
Hedges 7 21 1 4

Picket Fence 1 0 19 5
Wood Wall 0 0 3 9

Total Objects in Class 23 23 23 23
Errors by Class 8 2 4 14
Error Rate by Class (%) 34.78 8.70 17.39 60.87
Total Errors 28
Average Error Rate (%) 30.43

ssalC tcejbO lautcA

Assigned 

Object 

Class

                   ,>61,41,11,01,7,6,5,3,2,1< ( )jDexp
1

 

 

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 12 2 0 5
Hedges 10 21 1 4

Picket Fence 1 0 19 5
Wood Wall 0 0 3 9

Total Objects in Class 23 23 23 23
Errors by Class 11 2 4 14
Error Rate by Class (%) 47.83 8.70 17.39 60.87
Total Errors 31
Average Error Rate (%) 33.70

Actual Object Class

Assigned 

Object 

Class

<1,2,3,5,6,7,10,11,14,16>,        jD
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Table 5.3 Picket fence lowest error rates with respective feature vector and distance function 
combination displayed in the upper left corner of each confusion matrix. 

(c) 

Picket Fence

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 5 2 0 3
Hedges 15 20 1 6

Picket Fence 3 1 22 8
Wood Wall 0 0 0 6

Total Objects in Class 23 23 23 23
Errors by Class 18 3 1 17
Error Rate by Class (%) 78.26 13.04 4.35 73.91
Total Errors 39
Average Error Rate (%) 42.39

ssalC tcejbO lautcA<1,3,5,6,7,11,16>,            

Assigned 

Object 

Class

2
jD

 

 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 18 3 0 8
Hedges 5 20 1 3

Picket Fence 0 0 22 6
Wood Wall 0 0 0 6

Total Objects in Class 23 23 23 23
Errors by Class 5 3 1 17
Error Rate by Class (%) 21.74 13.04 4.35 73.91
Total Errors 26
Average Error Rate (%) 28.26

ssalC tcejbO lautcA<1,2,3,4,6,11,13,14,16>,        

Assigned 

Object 

Class

jD

 

 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 16 3 0 8
Hedges 7 18 1 3

Picket Fence 0 2 22 6
Wood Wall 0 0 0 6

Total Objects in Class 23 23 23 23
Errors by Class 7 5 1 17
Error Rate by Class (%) 30.43 21.74 4.35 73.91
Total Errors 30
Average Error Rate (%) 32.61

Actual Object Class        ,>61,41,31,11,6,4,3,2,1<

Assigned 

Object 

Class

2
jD
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llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 17 3 0 8
Hedges 6 20 1 3

Picket Fence 0 0 21 6
Wood Wall 0 0 1 6

Total Objects in Class 23 23 23 23
Errors by Class 6 3 2 17
Error Rate by Class (%) 26.09 13.04 8.70 73.91
Total Errors 28
Average Error Rate (%) 30.43

Actual Object Class        ,>61,41,31,11,01,6,3,2,1<

Assigned 

Object 

Class

jD

 

 

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 13 2 0 8
Hedges 10 18 1 3

Picket Fence 0 3 22 7
Wood Wall 0 0 0 5

Total Objects in Class 23 23 23 23
Errors by Class 10 5 1 18
Error Rate by Class (%) 43.48 21.74 4.35 78.26
Total Errors 34
Average Error Rate (%) 36.96

Actual Object Class<1,2,3,6,10,11,13,14,16>,        

Assigned 

Object 

Class

2
jD
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Table 5.3 Wood wall lowest error rates with respective feature vector and distance function 
combination displayed in the upper left corner of each confusion matrix. 

(d) 

Wood Wall

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 7 3 0 4
Hedges 16 20 1 5

Picket Fence 0 0 17 4
Wood Wall 0 0 5 10

Total Objects in Class 23 23 23 23
Errors by Class 16 3 6 13
Error Rate by Class (%) 69.57 13.04 26.09 56.52
Total Errors 38
Average Error Rate (%) 41.30

ssalC tcejbO lautcA1  ,>21,11,9,8,7,6,5,3,2<

Assigned 

Object 

Class

 

 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 9 3 0 4
Hedges 14 20 1 5

Picket Fence 0 0 17 4
Wood Wall 0 0 5 10

Total Objects in Class 23 23 23 23
Errors by Class 14 3 6 13
Error Rate by Class (%) 60.87 13.04 26.09 56.52
Total Errors 36
Average Error Rate (%) 39.13

ssalC tcejbO lautcA,6,5,3,2< 7,8,9,11,12>,          

Assigned 

Object 

Class

jD
1

 

 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 8 3 0 4
Hedges 15 20 1 5

Picket Fence 0 0 17 4
Wood Wall 0 0 5 10

Total Objects in Class 23 23 23 23
Errors by Class 15 3 6 13
Error Rate by Class (%) 65.22 13.04 26.09 56.52
Total Errors 37
Average Error Rate (%) 40.22

Actual Object Class

Assigned 

Object 

Class

                  ,>21,11,9,8,7,6,5,3,2< ( )jDexp
1
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llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 7 3 0 4
Hedges 16 20 1 5

Picket Fence 0 0 18 4
Wood Wall 0 0 4 10

Total Objects in Class 23 23 23 23
Errors by Class 16 3 5 13
Error Rate by Class (%) 69.57 13.04 21.74 56.52
Total Errors 37
Average Error Rate (%) 40.22

Actual Object Class

Assigned 

Object 

Class

             ,>21,11,9,8,7,6,5,3,2< ( )jDexp

 

 

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 15 3 0 5
Hedges 7 20 1 4

Picket Fence 1 0 19 4
Wood Wall 0 0 3 10

Total Objects in Class 23 23 23 23
Errors by Class 8 3 4 13
Error Rate by Class (%) 34.78 13.04 17.39 56.52
Total Errors 28
Average Error Rate (%) 30.43

Actual Object Class<1,2,3,5,6,7,10,11,14,16>,        

Assigned 

Object 

Class

jD
1

 

Within the compact object class category, the highest error rates consistently 
occurred with the steel pole object class.  The average of the error rates across the 
238 possible combinations for each object class is:  29.56% for the steel pole and 
4.71% for the tree.  Four combinations resulted in the lowest error rate of 20% for 
the steel pole.  The tree had the lowest error rates of 0.00% with 136 combinations 
of feature vectors and distance functions.  Tables 5.4 (a–b) presents four confusion 
matrices subjectively selected from the set of combinations of feature vectors and 
distance functions that resulted in the lowest error rates for each class in the com-
pact object category.  As displayed in Tables 5.4, the steel pole and tree object 
classes have the feature vectors for all the chosen combinations and the same dis-
tance functions for three of the combinations. 
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Table 5.4 Steel Pole and Tree lowest error rates with respective feature vector and distance 
function combination displayed in the upper left corner of each confusion matrix. 

(a) 

Steel Pole & Tree

eerTeloP leetS

Assigned Steel Pole 16 0
eerTssalC tcejbO 4 20

Total Objects in Class 20 20
Errors by Class 4 0
Error Rate by Class (%) 20 0
Total Errors 4
Average Error Rate (%) 10

Actual Object Class1   ,>51,41,31,11,01,8,7,6,4,2,1<

 

 

eerTeloP leetS

Assigned Steel Pole 16 0
Object Class Tree 4 20

Total Objects in Class 20 20
Errors by Class 4 0
Error Rate by Class (%) 20 0
Total Errors 4
Average Error Rate (%) 10

Actual Object Class         ,>51,41,31,11,01,8,7,6,4,2,1< jD

 

 

Steel Pole Tree

Assigned Steel Pole 16 0
eerTssalC tcejbO 4 20

Total Objects in Class 20 20
Errors by Class 4 0
Error Rate by Class (%) 20 0
Total Errors 4
Average Error Rate (%) 10

Actual Object Class<1,2,4,6,7,8,10,11,13,14,15>, ( )jDexp
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Table 5.4 Steel Pole and Tree lowest error rates with respective feature vector and distance 
function combination displayed in the upper left corner of each confusion matrix. 

(b) 

eloP leetS

eerTeloP leetS

Assigned Steel Pole 16 1
eerTssalC tcejbO 4 19

Total Objects in Class 20 20
Errors by Class 4 1
Error Rate by Class (%) 20 5
Total Errors 5
Average Error Rate (%) 12.5

Actual Object Class<1,2,4,6,7,8,10,11,13,14,15>,          2
jD

 

 

eerT

eerTeloP leetS

Assigned Steel Pole 15 0
Object Class Tree 5 20

Total Objects in Class 20 20
Errors by Class 5 0
Error Rate by Class (%) 25 0
Total Errors 5
Average Error Rate (%) 12.5

<1,2,4,6,7,8,10,11,13,14,15>, Actual Object Class
jD

1

 

As we see in Tables 5.3 and 5.4, some adaptive Bayesian classifiers show ex-
ceptional classification performance on a certain object class but do not perform 
as well on blind patterns from other object classes.  Thus, one classifier may per-
form exceptionally on specific unknown patterns where another classifier is defi-
cient, and vice versa.  In most cases, the classification models presented in  
Tables 5.3 and 5.4 present better classification results on their respective individ-
ual object class than the models’ performance on all the classes within their re-
spective extended or compact object category as displayed by the average error 
rates in Tables 5.1 and 5.2.  Consequently, each combination of a feature vector 
and adaptive Bayesian classifier with the particular distance function displayed in 
Tables 5.3 and 5.4 forms a model that acts as an expert in making classification 
decisions on patterns from their respective object class.  In Sect. 5.5, we will 
show how a classification model consisting of committees of these experts will 
further enhance the overall performance.   



210 5 Adaptive Bayesian Classification Model 

5.4.2 Analysis of Misclassifications 

We next explore why some blind patterns are being misclassified under certain 
thermal conditions.  As discussed in Sect. 5.2, the common origin for the hyper-
conoidal clusters of a set of object classes is a region where patterns from the ob-
ject classes will tend to “look alike.”  Thus, the closer the majority of an object 
class’s patterns are to the common origin of all the hyperconoidal clusters, the 
higher the risk for misclassification of patterns from that object class by the clas-
sification model.  We can use the distance metrics given by Eqs. 5.1 and 5.2 to 
predict what object classes are at risk for misclassification.  By relating the scalar 
project metric in Eq. 5.1 to the normal distance in Eq. 5.2, we saw in 
Figs. 5.3 and 5.4 that the patterns of the wood wall and steel poles tend to cluster 
closer to common origin compared to the other object classes in the extended and 
compact object categories, respectively.  Consequently, our classification results 
in Sect. 5.4.1 verified our predictions since the wood wall and steel pole dis-
played the highest error rates within their respective object class categories.  Now 
we will go a little deeper “into the bushes” to determine what thermal conditions 
are required for the patterns from two distinct object classes to “look alike.”  The 
analysis consists of finding misclassification trends in both the extended and 
compact object categories using the confusion matrices resulting from our adap-
tive Bayesian classifiers and comparing the individual thermal images and feature 
values of the misclassified objects to those of the respective object classes in the 
training data set.  

5.4.2.1 Misclassifications of Extended Objects      

We begin by making inferences on the misclassification of objects within the ex-
tended object category.  Figure 5.6 displays the visible images and thermal im-
ages of a sample of extended objects used in the training data set.  The thermal 
images present the thermal radiance and contrast that are typically found in the 
scenes for each object class in their respective training data set.  The reference 
emitter (electrical tape) is displayed in each thermal image since it was segmented 
to generate the Lr feature value as discussed in Chap. 3.  Since the extended ob-
ject training data discussed in Chap. 2 was captured at various viewing angles and 
times from 15 March to 3 July 2007, there is some deviation in the thermal radi-
ance and contrast for these object classes due to the diurnal cycle of solar energy.  
Thus, there were times when it was difficult to detect the object and/or distin-
guish between the object and the reference emitter in the thermal scene.  The 
brick walls used for the training data normally had a low overall thermal radiance 
and thermal contrast between the brick and the mortar layers.  The reference 
emitter for the brick wall normally had a thermal radiance slightly higher than the 
brick wall’s surface.  The hedges normally displayed a good thermal contrast.  
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The reference emitter for the hedges usually had a higher thermal radiance than 
surface of the hedges.  The hedges displayed the greatest deviation in thermal ra-
diance throughout its training data since the leaves on the hedges tend to track the 
availability of solar energy due to the low specific heat of the leaves [3].  When 
the hedges are in the shade, a cloud passes, or the sun begins to set, the surface 
temperature of the hedges stays consistent with the lower ambient temperature 
and the hedges will display a low thermal radiance in the scene.  The picket on 
the picket fence normally displayed a good thermal contrast with the foreground 
(in the gaps between the pickets).  In the context of this research, we have defined 
foreground as the region in the scene consisting of objects behind the target of in-
terest and within the thermal camera’s field of view.  On the other hand, back-
ground is defined as the region either in front or to the side of the target consist-
ing of thermal sources that emit thermal energy onto the target’s surface.  The 
source emitting this thermal energy may or may not be in the camera’s field of 
view.  The reference emitter normally had a higher thermal radiance than the 
wood surface of the pickets.  The thermal radiance and contrast of the wood wall 
and its reference emitter were normally low, similar to the brick wall. 

As noted in Sect. 5.4.1, the brick wall had the second highest average error rate 
of 40.27% across all combinations of feature vectors and distance functions used 
by the adaptive Bayesian classifier.  The misclassified patterns from the brick wall 
object class were mainly assigned to the hedges.  Figure 5.7 displays the thermal 
image of one of the misclassified brick walls found in the blind data set that was 
captured on 24 September 2007 hrs at 1005 hrs.  As we see, the high thermal radi- 

 
Fig. 5.6 Visible and thermal images of extended objects from the training data set.  The thermal 
images display the thermal radiance and contrast that are typically found in the scenes for each 
object class and reference emitters in their respective training data set. (a) brick wall (b) hedges, 
(c) picket fence, and (d) wood wall. 
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Fig. 5.7 Visible and thermal image of brick wall from the blind data set that was misclassified as 
a hedge by the adaptive Bayesian classifier. The thermal image was captured on 24 September 
2007 at 1005 hrs. 
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ance of the reference emitter and the high thermal radiance and contrast associated 
with the blind brick wall in Fig. 5.7 resemble the hedges and reference emitter in 
Fig. 5.6 (b) more than the brick wall and reference emitter in Fig. 5.6 (a).  Conse-
quently, by analyzing the thermal images and feature values, we found that some of 
the brick wall patterns from the blind data are misclassified as a result of much 
larger and smaller features values compared to those found in the training data 
set.  The features generated from the misclassified brick wall blind objects that 
resulted in larger feature values compared to the training data were Lr, So1, En1, 
Co2, and En2.  The feature Er2 generated from the misclassified brick wall blind 
objects is smaller in value compared to the brick wall feature values found in the 
training data set.  These results are consistent with the characteristics of our fea-
tures that we discussed in Chap. 3.  In Chap. 3, we noted that So1 will take on 
small values (close to zero) for surfaces with a constant thermal radiance (i.e., 
gray-level value in the thermal image) and large values (close to unity) when the 
surface of an object displays large deviations among its gray-level values in the 
thermal image.  Similarly, the feature values for Co2, En1, and En2 will increase 
for objects with more variations (randomness or complexity) in radiant emissions. 

As noted in Sect. 5.4.1, the hedges had the lowest average error rate of 18.31% 
across all combinations of feature vectors and distance functions used by the 
adaptive Bayesian classifier.  The misclassified hedges were mainly assigned as 
brick walls.  These misclassifications occurred in the thermal images of hedges 
from the blind data set that presented a low thermal radiance of the reference 
emitter and low thermal radiance and contrast in the thermal scene associated 
with the hedges.  Figure 5.8 displays the visible and thermal image of one of the 
hedges that was misclassified as a brick wall.  The thermal radiance emitted from 
the hedges and reference emitter seem to have a stronger resemblance with the 
thermal image of the brick wall in Fig. 5.6 (a) that is normally found in the train-
ing data set.  On the other hand, the hedges from the blind data set display a weak 
resemblance to the thermal radiance of the hedges in Fig. 5.6 (b) that are often 
found in the training data set.  Classifying hedges using a thermal imaging system 
presents a challenge since the leaves on the hedges tend to track the availability 
of solar energy due to the low specific heat of the leaves [3].  When the hedges 
are in the shade, as is the case for the hedges in Fig. 5.7, a cloud passes, or the 
sun begins to set, the surface temperature of the hedges stays consistent with the 
lower ambient temperature.  Consequently, a low level of solar energy available 
to this low specific heat object results in less thermal radiation emitted and fea-
tures that tend to look like those of other objects with a similar thermal scene.   

As noted in Sect. 5.4.1, the picket fence had the second lowest average error rate 
of 20.17% across all combinations of feature vectors and distance functions used 
by the adaptive Bayesian classifier.  The misclassified picket fences from the blind 
data set were normally assigned as wood walls.  Figure 5.9 displays the visible and 
thermal images of a picket fence from the blind data set that was misclassified as 
a wood wall.  The common characteristics of a picket fence from the blind data that 
 

 



214 5 Adaptive Bayesian Classification Model 

 
Fig. 5.8 Visible and thermal image of hedges from the blind data set that was misclassified as 
a brick wall by the adaptive Bayesian Classifier. The thermal image was captured on 15 August 
2007 at 1048 hrs. 

results in a misclassification as a wood wall are a low thermal radiance emitted 
from the reference emitter and minimal thermal radiance contrast between the 
pickets and foreground as we see in Fig. 5.9.  Thus, the thermal radiance displayed 
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by the reference emitter for the picket fence in Fig. 5.9 is similar to the wood wall 
in Fig. 5.6 (d).  In any case, the picket fence will always run the risk of being clas-
sified as a wood wall, and vice versa, due to the similar physical and geometrical 
properties of the two objects. 

As noted in Sect. 5.4.1, the wood wall had the highest average error rate of 
75.32% across all combinations of feature vectors and distance functions used by 
the adaptive Bayesian classifier.  As we mentioned earlier, the thermal images of 
the wood walls used in the training data typically had a low thermal radiance and 
contrast for the wood wall and its reference emitter.  As a result, when relating the 
scalar project metric in Eq. 5.1 to the normal distance in Eq. 5.2, we saw in Figs. 5.3 

 
Fig. 5.9 Visible and thermal images of a picket fence from the blind data set that was misclassi-
fied as a wood wall by the adaptive Bayesian Classifier.  The thermal image was captured on 
6 October 2007 at 1240 hrs. 
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Fig. 5.10 Visible and thermal images of wood walls from the blind data set that were misclassified 
by the adaptive Bayesian Classifier.  (a) misclassified as a brick wall (captured on 15 August 2007 
at 1034 hrs), (b) misclassified as a picket fence (captured on 24 September 2007 at 1029 hrs, same 
object as in (c) but viewed at normal incidence), (c) misclassified as hedges (captured on 
24 September 2007 at 1030 hrs, same object as in (b) but at 45 degrees from normal viewing angle). 

that the patterns of the wood wall tend to cluster closer to common origin compared 
to the other object classes in the extended object category.  However, this common 
origin is a region where the hyperconoidal clusters from all the object classes di-
verge.  Thus, blind objects that are wood walls and have a similar thermal radiance 
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as the wood wall training data in Fig. 5.6 (d) will run the risk of misclassifying in 
this region where patterns from the object classes will tend to “look alike.”  On the 
other hand, if a blind object is a wood wall and its feature values deviate greatly 
from the norm found in the wood wall’s training data, then it will more likely be 
classified as one of the other object classes.   

Now we will go into more detail with the wood walls.  Figure 5.10 (a) presents 
a wood wall from the blind data that was misclassified as a brick wall.  Thus, the 
blind wood wall object and its reference emitter in Fig. 5.10 (a) display a low 
thermal radiance similar to the thermal images of the brick wall in Fig. 5.6 (a) and 
wood wall in Fig. 5.6 (d).  As we showed in Chap. 4, the thermal features are in-
variant to the rotation of the given object.  Consequently, the thermal contrast re-
sulting from tight fitting, slightly slanted boards forming the blind wood wall in 
Fig. 5.10 (a) could result in a closer resemblance to the layers of bricks in 
Fig. 5.6 (a) in feature space. 

Three primary conditions that result in a wood wall being misclassified as 
a picket fence are a high thermal contrast between the wood boards and the fore-
ground in the gaps between the boards, a gap size between the boards that is 
wider than the typical gaps found in the wood wall’s training data, and a refer-
ence emitter that produces a higher thermal radiance than the reference emitters 
with a low thermal radiance in the wood wall’s training data.  Figure 5.10 (b) dis-
plays a thermal image of a blind wood wall object that was misclassified as 
a picket fence.  The thermal features generated from this blind wood wall object 
would more likely resemble the training data features generated from thermal im-
ages of the picket fences captured at 45 degrees from incidence since viewing an-
gles off of normal incidence make the gaps appears smaller. 

Three primary conditions that result in a wood wall being misclassified as 
hedges are a higher thermal radiance emitted by both the surface of the wood wall 
and reference emitter, high thermal contrast on the surface of the wood boards 
due to the grains in the wood, and small gaps between the boards of the wood 
wall.  Thus, the combination of these conditions results in thermal features that 
resemble the complexity (or randomness) associated with hedges.  Figure 5.10 (c) 
displays the same object as Fig. 5.10 (b) capture within one minute apart but at 
different viewing angles.  The wood wall blind object in Fig. 5.10 (c) misclassi-
fied as hedges due to these three conditions. 

5.4.2.2 Misclassifications of Compact Objects 

Figure 5.11 displays the visible images and thermal images of a sample of com-
pact objects used in the training data set.  The thermal images present the thermal 
radiance and contrast that are typically found in the scenes of the training data sets 
for the steel pole and tree object classes.  The reference emitter (electrical tape) is 
displayed in each thermal image since it was segmented to generate the Lr feature 
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Fig. 5.11 Visible and thermal images of compact objects from the training data set.  The thermal 
images display the thermal radiance and contrast that are typically found in the scenes for each 
object class and reference emitters in their respective training data set. Steel poles: (a) brown 
painted surface, (b) green painted surface, (c) octagon shape, w/ aged brown painted surface.  
Tree: (d) basswood tree, (e) birch tree, (f) cedar tree. 

value as discussed in Chap. 3.  Since the compact object training data discussed in 
Chap. 2 was captured at various viewing angles and times from 15 March to 3 July 
2007, there is some deviation in the thermal radiance and contrast for these object 
classes due to the diurnal cycle of solar energy.  Thus, there were times when it was 
difficult to detect the object and/or distinguish between the object and the reference 
emitter in the thermal scene.  As also discussed in Chap. 3, the steel poles consis-
tently display a relatively constant surface radiance.  However, a slight thermal 
contrast may appear on steel poles with aged painted surfaces that result in flaking 
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of the paint, such as the octagon steel pole in Fig. 5.11 (c).  Furthermore, the refer-
ence emitter on the surface of the steel poles is normally difficult to distinguish 
from the steel poles’ surfaces since the emissivity of the electrical tape (ε ∼ 0.97) is 
about the same as emissivity of the steel poles’ surfaces (ε ∼ 0.92–0.96 at 75.2°F 
depending on the type of paint) [3].  The trees’ surfaces typically displayed a high 
thermal contrast due to the large variations in the radiance from the bark patterns.  
However, the birch tree’s surface usually presented the lowest thermal contrast, 
compared to the other trees, due to the less rough characteristics of its bark.  The 
reference emitter attached to the trees’ surfaces normally displayed a higher ther-
mal radiance than the trees’ surfaces. 

As noted in Sect. 5.4.1, the steel pole had the highest average error rate of 
29.56% across all combinations of feature vectors and distance functions used by 
the adaptive Bayesian classifier.  When relating the scalar project metric in 
Eq. 5.1 to the normal distance in Eq. 5.2, we saw in Figs. 5.4 that the patterns of 
the steel pole tend to cluster closer to common origin compared to the patterns of 
the tree object class.  As previously discussed, this common origin is a region 
where the hyperconoidal clusters from all the object classes diverge.  Thus, blind 
objects that are steel poles and have a similar thermal radiance and contrast as the 
steel pole training data in Fig. 5.6 (a–c) will run the risk of misclassifying in this 
region where patterns from the object classes will tend to “look alike.”  Addition-
ally, if a blind object is a steel pole and its feature values deviate greatly from the 
norm found in the steel pole’s training data, then it may be misclassified as a tree.  
Figure 5.12 displays the visible and thermal images of a steel pole captured on 
5 November 2007 at 1428 hrs for the blind data that consistently misclassified as 
a tree.  This steel pole used for the blind data was an unpainted, lightly oxidized 
surface with an emissivity of approximately ε ∼ 0.80 at 77°F [3].  Consequently, 
the electrical tape reference emitter, with an emissivity of approximately ε ∼ 0.97, 
emits a higher thermal radiance compared to the surface of the steel pole.  Fur-
thermore, the oxidized surface of the steel pole results in a thermal contrast that is 
seen in the steel pole’s thermal image.  The combination of the thermal contrast 
on the surface of the steel pole and higher emission of thermal radiation by the 
reference emitter results in a thermal scene similar to the trees in the training data 
set and misclassification by the adaptive Bayesian classifiers. 

As noted in Sect. 5.4.1, the tree object class had the highest average error rate 
of 4.71% across all combinations of feature vectors and distance functions used 
by the adaptive Bayesian classifier.  Figure 5.13 displays the visible and thermal 
image of a tree from the blind data set that misclassified as a steel pole.  The ob-
vious conditions that will result in a misclassification of a tree as a steel pole are 
a low thermal contrast on the surface of the tree and thermal radiant emission 
from the reference emitter that is similar to the tree’s surface as displayed in 
Fig. 5.13.  Consequently, the thermal image of the tree in Fig. 5.13 has character-
istics that are similar to the steel poles in Fig. 5.11 (a–c). 
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Fig. 5.12 Visible and thermal images of a steel pole from the blind data set that was misclassi-
fied as a tree by the adaptive Bayesian Classifier.  The thermal image was captured on 5 Novem-
ber 2007 at 1428 hrs. 
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Fig. 5.13 Visible and thermal images of a tree from the blind data set that was misclassified as 
a steel pole by the adaptive Bayesian Classifier.  The thermal image was captured on 18 Septem-
ber 2007 at 1407 hrs. 
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5.4.2.3 Misclassifications Discussion 

The correct classification of a blind object was independent of the geographical 
location of the object.  For instance, the adaptive Bayesian classifier was just as 
successful in correctly classifying a picket fence in Buffalo, New York, as it was 
in York County, Virginia.  The two primary factors that contributed to the mis-
classification of the blind objects were a lack of representative training data and 
the effects of the diurnal cycle of solar energy.  Thus, some misclassifications 
could be eliminated by expanding the range of features in the training data set by 
capturing a more representative set of thermal images.  However, in most cases 
a lack of a thermal signature from an object due to the diurnal cycle of solar en-
ergy will continue to result in feature values from different object classes looking 
alike.  As discussed in Chap. 4, the phenomenon primarily responsible for a target 
and the surrounding surfaces having approximately the same level of thermal radi-
ant emissions is known as thermal crossover [3].  Thermal crossover results in 
minimal thermal contrast between the surfaces of objects and the surrounding en-
vironment within the thermal infrared camera’s field of view.  Consequently, 
thermal images of objects captured during thermal crossover run the risk of pro-
ducing features that the bot will think look like features from other object classes.  
In Chap. 6, we will discuss how these periods of thermal crossover could result in 
a limitation to our ability to classify non-heat generating objects in an outdoor en-
vironment using a thermal infrared imaging sensor.  We will also present a method 
that integrates a thermal contrast threshold rule into the detection phase of the 
classification process that requires a minimum amount of contrast in the scene to 
use the thermal infrared imaging sensor.  If the rule is not satisfied, the autono-
mous robot must reject the use of the thermal imaging sensor and rely on other 
sensors such as ultrasound to assist in classifying the target.    

Another observation from our analysis is that in some cases the misclassifica-
tion of a blind object was associated with either a low posterior probability or 
a posterior that was close in value to another posterior for an assignment to a dif-
ferent object class.  Although the posterior probabilities provide a degree of cer-
tainty in the bot’s ability to correctly classify an unknown object, these two situa-
tions may increase risk of misclassification and decrease our confidence in the 
bot’s classification decision.  We can gain more confidence in the bot’s decisions 
by integrating certain rules into the classification model that will require the bot to 
capture another thermal image of an unknown object if these rules are not satis-
fied.  For instance, if the classification model’s resulting posterior probability for 
assigning an unknown pattern to an object class does not satisfy a specific thresh-
old, then the classification is rejected and the bot is required to capture another 
image, perhaps at another viewing angle, for class assignment.  We will present 
these types of rules with our novel adaptive Bayesian classification model in 
Sect. 5.5.  The tendency for an object to “look like” another object under certain 
thermal conditions (other than thermal crossover) presents a degree of vagueness 
that may call for the integration of fuzzy logic into the classification model.  Addi-
tionally, we could integrate other sensors into the autonomous robotic system by 
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designing a multi-sensor data fusion architecture where the use of multiple sensors 
complements the overall performance of the classification model.  We will discuss 
our plans for future research involving the integration of fuzzy logic into our clas-
sification model and designing a multi-sensor classification model in Chap. 6.       

5.5 Adaptive Bayesian Classification Model Design 

We now present the design of our Adaptive Bayesian Classification Model.  In 
Sect. 5.4.1, we saw that some adaptive Bayesian classifiers show exceptional clas-
sification performance on a certain object class but do not perform as well on 
blind patterns from other object classes.  Thus, one classifier may perform excep-
tionally on unknown patterns from a specific object class where another classifier 
is deficient, and vice versa.  Consequently, each combination of a feature vector 
and adaptive Bayesian classifier with the particular distance function displayed in 
Tables 5.3 and 5.4 forms a model that acts as an expert in making classification 
decisions on unknown patterns from the respective object class.  By forming 
a committee of these experts of a specific object class, we should have a model 
with improved classification performance and confidence in deciding whether an 
unknown pattern belongs to the respective object class.  With multiple commit-
tees, each consisting of experts of a specific object class, one committee of experts 
will perform exceptionally on specific unknown patterns where another classifier 
is deficient, and vice versa.  By combining each committee of experts into one 
classification model, we are able to exploit the expertise of each committee and 
complement the overall performance of the classification model.  We can increase 
the confidence level in our model’s classification decisions by integrating the dy-
namical window technique presented in Chap. 4 that lets each committee of ex-
perts decide on class assignment by considering information collected from multi-
ple window sizes of the thermal image of an object.  Additionally, we can 
integrate rules to improve the accuracy of class assignments and prevent voting 
ties by the committees.  Included are rules that will require the bot to reject class 
assignments if a posterior probability is below a given threshold or too close to 
another committee’s posterior probability.  This will prevent decisions on class as-
signments during these high-risk situations.  Rejections of a class assignment will 
require the bot to capture another thermal image of the unknown object for classi-
fication, perhaps at another viewing angle.  We will seek to choose threshold val-
ues that minimize both the error rate and number of rejections of class assign-
ments.  This is the cornerstone of our Adaptive Bayesian Classification Model. 

The concept behind our Adaptive Bayesian Classification Model resides in the 
topic of combining classifiers.  There are many strategies for combining classifiers 
[5, 6, 7].  Analogous to what is found for single classifiers, there is no universal 
combination of classifiers.  The combination of classifiers is chosen based on how 
well it performs for a specific pattern classification application.  Thus, the No Free 
Lunch Theorem discussed in Chap. 4 prevails again.  Consequently, the Adaptive 
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Bayesian Classification Model is an appropriate choice for any classification ap-
plication, such as ours, involving hyperconoidal clusters consisting of patterns in 
an n-dimensional feature space that are characterized by their behavior about their 
respective first principal eigenvector. 

Figure 5.14 presents our algorithm for the Adaptive Bayesian Classification 
Model designed to assign classes to objects from the extended object category.  As 
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Fig. 5.14 Adaptive Bayesian Classification Model Algorithm. 
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we will show, this algorithm can be easily modified to support the compact object 
category.  The algorithm begins with the thermal infrared imaging camera receiv-
ing thermal radiation emitted from objects within the camera’s field of view as de-
scribed in Chap. 2.  The thermal image of the scene is pre-processed as discussed 
in Chap. 2.  After pre-processing, existing algorithms are used to detect and seg-
ment an unknown object in the thermal image.  The curvature algorithm, intro-
duced in Chap. 3, is used to distinguish and separate extended objects from com-
pact objects.  The bot will then use the Adaptive Bayesian Classification Model to 
assign a class to the unknown object. 

Once the unknown object is categorized as either an extended or compact ob-
ject, the respective set of thermal features are generated from window segments of 
the object’s thermal image that vary in size by a technique that we refer to as dy-
namical windows.  Dynamical windows increases our confidence level in our 
model’s final classification decision since the technique lets the bot make a deci-
sion on the class assignment of an unknown object by interpreting information 
collected from multiple window sizes of the thermal image of the object.  This 
technique is analogous to how a human would perhaps study an object at varying 
fields of view to make a class assignment.  In Sect. 4.6.2, we saw that generating 
thermal features from 100 window segments of an extended object’s thermal im-
age that decrease in size will result in posterior probabilities computed by 
a Bayesian classification model that generally display minimal variations until 
about the 80th window size index.  Thus, the posterior probabilities produced by 
the classification model generally became sensitive to the smaller window seg-
ments with an index greater than 80, resulting in inconsistent posterior probabili-
ties and class assignments.  Consequently, we will apply the dynamical window 
technique by generating thermal features from 80 window segments of decreasing 
size.  For the extended objects’ thermal features displayed in Table 4.2, the micro 
features generated from a segment of the object’s surface and meteorological fea-
tures will remain constant during the classification of the given unknown object.  
However, the values for the macro features will be computed for each window 
size.  For the compact objects’ thermal features displayed in Table 4.10, the micro 
features Lr and Lb will remain constant during the classification of the given un-
known object.  However, the micro features Lo, Lor, Lob, and Eo and macro fea-
tures will be computed for each window size since Lo and the macro features are 
generated from the same center segment of a given compact object. 

A committee of experts is formed for each object class within both the extended 
and compact object categories.  As mentioned previously, each expert consists of 
a feature vector and adaptive Bayesian classifier with a particular distance function 
that performs exceptionally on classifying unknown patterns from a specific object 
class.  Table 5.3 displays the experts for the extended objects.  For the extended ob-
ject category, each object class consists of five experts that form a committee of 
experts.  As we see in Table 5.4, the steel pole and tree compact object classes each 
have four experts in their respective committee.  The selection of the number and 
types of experts is subjective; however, the goal should always be to select the ex-
perts for each object class that result in exceptional classification performance.  
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Additional research is required to determine the most favorable number of experts 
in each committee.  Each expert in each committee votes on the 80 patterns gener-
ated from each dynamical window segment of the unknown object’s thermal image 
by assigning a class and posterior probability. 

The next phase in the algorithm consists of the first set of classification rules.  
Since each committee is an expert in classifying unknown patterns from a specific 
object class, a majority vote by the experts in a given committee of an unknown 
object being assigned to their respective object class would give us some confi-
dence that the committee of experts is correct.  Consequently, the first rule re-
quires that the majority (or mode) of votes of the experts in a given committee be 
in favor of their respective object class, known as the mode class.  Furthermore, 
the number of experts in each committee having the respective object class as their 
mode must be greater than or equal to a Committee Mode Frequency Threshold.  
The Committee Mode Frequency Threshold is a value from the set {1, 2, 3,…,n} 
where n is the number of experts in each committee.  For instance, a mode class 
equal to brick wall and a Committee Mode Frequency Threshold = 3 implies that 
the mode of the votes for the committee must be in favor of the brick wall and at 
least 3 of the 5 experts in the committee must have the brick wall as their mode 
when voting on the unknown pattern.  If these two rules are not satisfied for 
a given committee, the committee assigns a class label of 0 to the unknown object 
with a posterior probability of 0%.  If the rules are satisfied, the given committee’s 
voting information moves on to the next set of rules. 

The next set of rules applies to those experts with the required mode class in 
each respective committee.  The first rule is that the total number of patterns voted 
in favor of the required class by the experts with the required mode class in each 
committee must be greater than or equal to a Required Class Votes Threshold.  The 
chosen Required Class Votes Threshold is a number no greater than the product of 
the number of experts in a given committee and number of dynamical window 
segments (i.e., 400805 =∗ for our extended object application).  The choice for 
the Required Class Votes Threshold is associated with the Committee Mode Fre-
quency Threshold.  For instance, with the extended objects, if Committee Mode 
Frequency Threshold = 2 and Required Class Votes Threshold = 400 are selected, 
the rule involving Committee Mode Frequency Threshold may be satisfied; how-
ever, it is very possible that the rule involving the Required Class Votes Threshold 
may not be satisfied.  The second rule is that the total number of class voting ties by 
the experts with the required mode class in each respective committee must be less 
than or equal to the Ties Threshold.  By expecting the ideal situation, where there 
are no class voting ties by each expert on the total number of patterns produced by 
the dynamical window, the Ties Threshold = 0.  The third rule is that the desired 
mean of the posterior probabilities of the experts with the required mode class in 
each respective committee is greater than or equal to a Posterior Threshold.  The 
Posterior Threshold is chosen based on the degree of confidence desired for each 
committee’s recommendation for a class assignment of the unknown object.  If 
a committee satisfies these three rules, then its mode class and the associated mean 
of the posterior probabilities of the experts with the required mode class is provided 
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as the committee’s recommendation for a class assignment of the unknown object.  
Otherwise, if the three rules are not satisfied, the committee assigns a class label of 
0 to the unknown object with a posterior probability of 0%.  

The final phase in the algorithm for the Adaptive Bayesian Classification Model 
involves all the committees to present their recommendations for the class assign-
ment of the unknown object.  The recommended assigned class and their respective 
posterior probability from each committee are arranged in ascending order by the 
posterior probabilities.  If the maximum posterior probability among all the com-
mittees is not 0%, then the recommended class assignment information from each 
committee is sent to the final decision rule.  Otherwise, if the maximum posterior 
probability is 0%, then all the committees recommended a class label of 0 to the 
unknown object with a posterior probability of 0% and the class assignment is re-
jected by the model.  The final decision rule is that the absolute difference between 
the two largest posterior probabilities is greater than or equal to an Absolute Poste-
rior Difference Threshold.  The Absolute Posterior Difference Threshold will pre-
vent high-risk situations of assigning a class to an unknown object when two com-
mittees made different class assignment decisions but have a small difference in 
their posterior values.  This threshold will also eliminate ties when two committees 
vote on different class assignments but they have the same posterior probability 
values.  If the rule involving the Absolute Posterior Difference Threshold is not sat-
isfied, then the recommended class assignment is rejected by the model.  Other-
wise, if the Absolute Posterior Difference Threshold is satisfied, the unknown ob-
ject is assigned to the class with the largest posterior probability. 

Rejections of a class assignment will require the bot to capture another thermal 
image of the unknown object for classification, perhaps at another viewing angle.  
Consequently, the Adaptive Bayesian Classification Model would be appropriate 
for autonomous robotic systems that capture continuous frames.  If the class as-
signment is accepted by the Adaptive Bayesian Classification Model, the bot will 
use this classification output to decide on the next required action in the intelli-
gence algorithm [report the object and/or (if the object is a hedge, go through the 
object or if the object is a brick wall, go around the object)].   

5.6 Adaptive Bayesian Classification Model Application 

In this section we will assess the performance of the Adaptive Bayesian Classifi-
cation Model presented in Sect. 5.5 on the extended and compact blind data dis-
played in Table 2.2.  We will also evaluate the classification model’s response 
when confronted with the following additional blind objects that include objects 
outside the classes in the training data sets:  brick wall with moss on the surface, 
concrete wall, bush, gravel pile, steel picket fence, wood bench, wood wall of 
a storage shed, square steel pole, aluminum pole for a dryer vent, concrete pole, 
knotty tree, telephone pole, 4 × 4 wood pole, and pumpkin.   
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5.6.1 Performance on Blind Data (with Classes = Training Set) 

The performance of the Adaptive Bayesian Classification Model on the blind data 
in Table 2.2 was analyzed using various combinations of values for the model’s 
thresholds.  As discussed in Sect. 2.3, the blind data presented in Table 2.2 con-
sisted of the same classes and were captured at the same viewing angles as the 
training data but were not the same objects.  The blind data was classified by the 
Adaptive Bayesian Classification Model using a login node on the DoD High Per-
formance Computing Modernization Program system at the Army Research Labo-
ratory Major Shared Resource Center that included 8 GB of memory at a proces-
sor frequency of 3.6 GHz.  The model required approximately 4.45 minutes to 
make a decision regarding the class assignment of each object in the extended ob-
ject category consisting of the brick wall, hedges, picket fence, and wood wall ob-
ject classes.  The model required approximately 1.16 minutes to classify each ob-
ject in the compact object category consisting of the steel pole and tree object 
classes.  Tables 5.5 and 5.6 provide the confusion matrices of the Adaptive Bayes-
ian Classification Model with different combinations of threshold values for the 
extended and compact object categories, respectively.  The confusion matrices in-
clude the number of objects that were rejected by the Adaptive Bayesian Classifi-
cation Model due to the rules in the model not being satisfied.  The model’s rejec-
tions of class assignments do not count toward the error rates.   

Table 5.5 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the extended objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the extended objects. 
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Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 17 3 0 6
Hedges 3 20 0 1

Picket Fence 0 0 17 5
Wood Wall 0 0 3 5

Rejections by Class 3 0 3 6
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Errors by Class 3 3 3 12
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Table 5.5 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the extended objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the extended objects. 

(b) 

Committee Mode Frequency Threshold = 4

Ties Threshold = 0

Posterior Threshold = 0.6

Absolute Posterior Difference Threshold = 0.10

Required Class Votes Threshold = 1

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 18 3 0 6
Hedges 3 19 0 1

Picket Fence 0 0 18 5
Wood Wall 0 0 3 5

Rejections by Class 2 1 2 6
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 12
Error Rate by Class (%) 14.29 13.64 14.29 70.59
Total Errors 21
Average Error Rate (%) 28.20
Total Rejections 11
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001 = dlohserhT setoV ssalC deriuqeR

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 18 3 0 6
Hedges 3 19 0 1

Picket Fence 0 0 18 5
Wood Wall 0 0 3 5

Rejections by Class 2 1 2 6
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 12
Error Rate by Class (%) 14.29 13.64 14.29 70.59
Total Errors 21
Average Error Rate (%) 28.20
Total Rejections 11

Assigned 

Object 

Class

ssalC tcejbO lautcA

 

 

052 = dlohserhT setoV ssalC deriuqeR

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 18 3 0 6
Hedges 3 19 0 1

Picket Fence 0 0 18 5
Wood Wall 0 0 3 5

Rejections by Class 2 1 2 6
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 12
Error Rate by Class (%) 14.29 13.64 14.29 70.59
Total Errors 21
Average Error Rate (%) 28.20
Total Rejections 11

Assigned 

Object 

Class

ssalC tcejbO lautcA

 

 

Required Class Votes Threshold = 400

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 19 3 0 6
Hedges 2 19 0 2

Picket Fence 0 0 19 5
Wood Wall 0 0 3 5

Rejections by Class 2 1 1 5
Total Objects in Class 23 23 23 23
Errors by Class 2 3 3 13
Error Rate by Class (%) 9.52 13.64 13.64 72.22
Total Errors 21.00
Average Error Rate (%) 27.25
Total Rejections 9.00

Assigned 

Object 

Class

Actual Object Class
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Table 5.5 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the extended objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the extended objects. 

(c) 

Required Class Votes Threshold = 1

Ties Threshold = 0

Posterior Threshold = 0.6

Absolute Posterior Difference Threshold = 0.10

1 = dlohserhT ycneuqerF edoM eettimmoC

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 17 3 0 7
Hedges 3 19 0 1

Picket Fence 0 0 18 5
Wood Wall 0 0 3 5

Rejections by Class 3 1 2 5
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 13
Error Rate by Class (%) 15.00 13.64 14.29 72.22
Total Errors 22
Average Error Rate (%) 28.79
Total Rejections 11

Assigned 

Object 

Class

ssalC tcejbO lautcA

 

 

2 = dlohserhT ycneuqerF edoM eettimmoC

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 17 3 0 7
Hedges 3 19 0 1

Picket Fence 0 0 18 5
Wood Wall 0 0 3 5

Rejections by Class 3 1 2 5
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 13
Error Rate by Class (%) 15.00 13.64 14.29 72.22
Total Errors 22
Average Error Rate (%) 28.79
Total Rejections 11

Assigned 

Object 

Class

ssalC tcejbO lautcA
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3 = dlohserhT ycneuqerF edoM eettimmoC

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 17 3 0 7
Hedges 3 19 0 1

Picket Fence 0 0 18 5
Wood Wall 0 0 3 5

Rejections by Class 3 1 2 5
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 13
Error Rate by Class (%) 15.00 13.64 14.29 72.22
Total Errors 22
Average Error Rate (%) 28.79
Total Rejections 11

Actual Object Class

Assigned 

Object 

Class

 

 

4 = dlohserhT ycneuqerF edoM eettimmoC

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 18 3 0 6
Hedges 3 19 0 1

Picket Fence 0 0 18 5
Wood Wall 0 0 3 5

Rejections by Class 2 1 2 6
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 12
Error Rate by Class (%) 14.29 13.64 14.29 70.59
Total Errors 21
Average Error Rate (%) 28.20
Total Rejections 11

Assigned 

Object 

Class

Actual Object Class

 

 

Committee Mode Frequency Threshold = 5

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 19 3 0 6
Hedges 2 19 0 1

Picket Fence 0 0 19 5
Wood Wall 0 0 3 5

Rejections by Class 2 1 1 6
Total Objects in Class 23 23 23 23
Errors by Class 2 3 3 12
Error Rate by Class (%) 9.52 13.64 13.64 70.59
Total Errors 20
Average Error Rate (%) 26.85
Total Rejections 10

Assigned 

Object 

Class

Actual Object Class
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Table 5.5 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the extended objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the extended objects. 

(d) 

Committee Mode Frequency Threshold = 5

Required Class Votes Threshold = 1

Ties Threshold = 0

Posterior Threshold = 0.6

Absolute Posterior Difference Threshold = 0.01

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 19 3 0 7
Hedges 2 20 0 1

Picket Fence 0 0 19 5
Wood Wall 0 0 3 6

Rejections by Class 2 0 1 4
Total Objects in Class 23 23 23 23
Errors by Class 2 3 3 13
Error Rate by Class (%) 9.52 13.04 13.64 68.42
Total Errors 21
Average Error Rate (%) 26.16
Total Rejections 7

Assigned 

Object 

Class

ssalC tcejbO lautcA

 

 

Absolute Posterior Difference Threshold = 0.10

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 19 3 0 6
Hedges 2 19 0 1

Picket Fence 0 0 19 5
Wood Wall 0 0 3 5

Rejections by Class 2 1 1 6
Total Objects in Class 23 23 23 23
Errors by Class 2 3 3 12
Error Rate by Class (%) 9.52 13.64 13.64 70.59
Total Errors 20
Average Error Rate (%) 26.85
Total Rejections 10

Assigned 

Object 

Class

ssalC tcejbO lautcA
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02.0 = dlohserhT ecnereffiD roiretsoP etulosbA

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 19 3 0 6
Hedges 2 19 0 1

Picket Fence 0 0 19 5
Wood Wall 0 0 2 4

Rejections by Class 2 1 2 7
Total Objects in Class 23 23 23 23
Errors by Class 2 3 2 12
Error Rate by Class (%) 9.52 13.64 9.52 75.00
Total Errors 19
Average Error Rate (%) 26.92
Total Rejections 12

Assigned 

Object 

Class

Actual Object Class

 

 

03.0 = dlohserhT ecnereffiD roiretsoP etulosbA

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 19 3 0 6
Hedges 2 19 0 1

Picket Fence 0 0 19 5
Wood Wall 0 0 1 4

Rejections by Class 2 1 3 7
Total Objects in Class 23 23 23 23
Errors by Class 2 3 1 12
Error Rate by Class (%) 9.52 13.64 5.00 75.00
Total Errors 18
Average Error Rate (%) 25.79
Total Rejections 13

Assigned 

Object 

Class

Actual Object Class

 

 



236 5 Adaptive Bayesian Classification Model 

Table 5.6 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the compact objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the compact objects. 

(a) 

Committee Mode Frequency Threshold = 3

Required Class Votes Threshold = 250

Ties Threshold = 0

Absolute Posterior Difference Threshold = 0.10

Posterior Threshold = 0.6

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

Brick Wall Hedges Picket Fence Wood Wall

Brick Wall 17 3 0 6
Hedges 3 20 0 1

Picket Fence 0 0 17 5
Wood Wall 0 0 3 5

Rejections by Class 3 0 3 6
Total Objects in Class 23 23 23 23
Errors by Class 3 3 3 12
Error Rate by Class (%) 15.00 13.04 15.00 70.59
Total Errors 21
Average Error Rate (%) 28.41
Total Rejections 12

Posterior Threshold = 0.7

Assigned 

Object 

Class

ssalC tcejbO lautcA
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8.0 = dlohserhT roiretsoP

eerTeloP leetS

Steel Pole 14 0
Tree 3 18

Rejections by Class 3 2
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 17.65 0
Total Errors 3
Average Error Rate (%) 8.82
Total Rejections 5

Actual Object Class

Assigned 

Object Class

 

 

9.0 = dlohserhT roiretsoP

eerTeloP leetS

Steel Pole 14 0
Tree 2 16

Rejections by Class 4 4
Total Objects in Class 20 20
Errors by Class 2 0
Error Rate by Class (%) 12.50 0
Total Errors 2
Average Error Rate (%) 6.25
Total Rejections 8

Actual Object Class

Assigned 

Object Class
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Table 5.6 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the compact objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the compact objects. 

(b) 

Committee Mode Frequency Threshold = 3

Ties Threshold = 0

Posterior Threshold = 0.6

Absolute Posterior Difference Threshold = 0.10

Required Class Votes Threshold = 1

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

Required Class Votes Threshold = 50

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class
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001 = dlohserhT setoV ssalC deriuqeR

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

052 = dlohserhT setoV ssalC deriuqeR

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

Required Class Votes Threshold = 320

Steel Pole Tree

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class
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Table 5.6 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the compact objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the compact objects. 

(c) 

Required Class Votes Threshold = 1

Ties Threshold = 0

Posterior Threshold = 0.6

Absolute Posterior Difference Threshold = 0.10

Committee Mode Frequency Threshold = 1

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

Committee Mode Frequency Threshold = 2

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned

Object Class
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3 = dlohserhT ycneuqerF edoM eettimmoC

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

4 = dlohserhT ycneuqerF edoM eettimmoC

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned

Object Class
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Table 5.6 Confusion matrices of the Adaptive Bayesian Classification Model with various 
threshold values for the compact objects.  Fixed threshold values are noted in the upper left cor-
ner.  Threshold with a varied value is noted at the upper left corner of each matrix.  Thresholds 
highlighted in green colored text are selected as most favorable for the Adaptive Bayesian Classi-
fication Model applied to the compact objects. 

(d) 

Committee Mode Frequency Threshold = 4

Required Class Votes Threshold = 1

Ties Threshold = 0

Posterior Threshold = 0.6

Absolute Posterior Difference Threshold = 0.01

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

Absolute Posterior Difference Threshold = 0.10

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

 

 

Absolute Posterior Difference Threshold = 0.20

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class
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eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned 

Object Class

Absolute Posterior Difference Threshold = 0.30

 

The thresholds provide the ability to fine tune the classification model to sup-
port the extended and compact object categories.  The appropriate selection of the 
threshold values will minimize the classification error rate and number of rejec-
tions.  For the extended objects, we fixed the threshold values as displayed in the 
upper left corner of Table 5.5 (a) and varied the Posterior Threshold as shown.  As 
we see, a Posterior Threshold = 0.6 (or 60%) provides the most favorable average 
error rate (28.20%) and the least amount of rejections of class assignments (11).  
We now fix Posterior Threshold = 0.6 and vary the Required Class Votes Thresh-
old as shown in Table 5.5 (b).  In this case, the Required Class Votes Threshold 
set to 400 results in the lowest average error rate and total rejections.  However, 
we will subjectively select Required Class Votes Threshold =1 since the setting of 
400 appears to slightly increase the number of misclassifications for the wood wall 
object class, which is already more vulnerable to classification errors as discussed 
in Sect. 5.4.  Fixing the Required Class Votes Threshold = 1, we now vary the 
Committee Mode Frequency Threshold as displayed in Table 5.5 (c).  As we see, 
setting Committee Mode Frequency Threshold = 5 provides the most favorable 
performance.  Table 5.5 (d) presents variations of our final threshold, Absolute 
Posterior Difference Threshold, while fixing the threshold displayed in the upper 
left corner of the matrices.  We see that the threshold settings in the upper left cor-
ner along with letting Absolute Posterior Difference Threshold = 0.01 provide an 
acceptable average error rate of 26.16% with only a total of 7 rejections of class 
assignments.  Consequently, these threshold settings appear to be a favorable se-
lection for our extended objects. 

Analysis of the performance of the Adaptive Bayesian Classification Model on 
the compact objects with variations in the threshold values was conducted in 
a similar fashion as the extended objects.  For the compact objects, we begin in 
Table 5.6 (a) by fixing the thresholds displayed in the upper left corner and vary-
ing the Posterior Threshold.  As we see, setting the Posterior Threshold = 0.6 (or 
60%) results in the most favorable average error rate and total rejections.  Conse-
quently, we will choose 0.6 as the setting for the Posterior Threshold.  Since the 
variations in the Required Class Votes Threshold and Committee Mode Frequency 
Threshold in Table 5.6 (b) and 5.6 (c), respectively, do not show any changes in 
the classification performance, we will set each of the their thresholds equal to 
one.  In Table 5.6 (d), we also see that the variations in the Absolute Posterior Dif-
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ference Threshold values do not produce any changes in the model’s classification 
performance.  Consequently, we will choose the settings of the thresholds in the 
upper left corner and Absolute Posterior Difference Threshold = 0.01 as our favor-
able choices for the compact objects. 

Tables 5.7 and 5.8 provide a comparison of the confusion matrices of our Adap-
tive Bayesian Classification Models with the threshold settings discussed above to 
the best performers among the Adaptive Bayesian Classifier with the single dis-
tance function, KNN Classifier, and Parzen Classifier from Tables 5.1 and 5.2 on 
the extended and compact object categories, respectively.  As we see, our Adaptive 
Bayesian Classification Model performs exceptionally on the blind extended and 
compact objects shown in Table 2.2 compared to the KNN Classifier and Parzen 
Classifier.  While the committees of experts and dynamical window technique in-
tegrated into the Adaptive Bayesian Classification Model increase the accuracy of 
class assignments and our confidence in the model’s final classification decision, 
the ability to reject class assignments that do not satisfy specific rules is the distin-
guishing factor that results in the Adaptive Bayesian Classification Model outper-
forming the Adaptive Bayesian Classifier with a single distance function. 

Table 5.7 Comparison of confusion matrices of the best performing classification models ap-
plied to the extended objects from the Adaptive Bayesian Classification Model (via Committees 
of Experts), Adaptive Bayesian Classifier with single distance function, KNN Classifier, and 
Parzen Classifier. 

(a) 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 19 3 0 7
Hedges 2 20 0 1

Picket Fence 0 0 19 5
Wood Wall 0 0 3 6

Rejections by Class 2 0 1 4
Total Objects in Class 23 23 23 23
Errors by Class 2 3 3 13
Error Rate by Class (%) 9.52 13.04 13.64 68.42
Total Errors 21
Average Error Rate (%) 26.16
Total Rejections 7

Adaptive Bayesian Classification Model

Committee Mode Frequency Threshold = 5 
Required Class Votes Threshold = 1                    
Ties Threshold = 0                                        
Posterior Threshold = 0.6                                   
Absolute Posterior Difference Threshold = 0.01

Assigned 

Object 

Class

Actual Object Class
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(b) 

Adaptive Bayesian Classifier

<1,2,3,4,6,11,13,14,16>,

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 18 3 0 8
Hedges 5 20 1 3

Picket Fence 0 0 22 6
Wood Wall 0 0 0 6

Total Objects in Class 23 23 23 23
Errors by Class 5 3 1 17
Error Rate by Class (%) 21.74 13.04 4.35 73.91
Total Errors 26
Average Error Rate (%) 28.26

Assigned 

Object 

Class

Actual Object Class
jD

 

(c) 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 15 3 0 5
Hedges 6 20 0 8

Picket Fence 0 0 20 4
Wood Wall 2 0 3 6

Total Objects in Class 23 23 23 23
Errors by Class 8 3 3 17
Error Rate by Class (%) 34.78 13.04 13.04 73.91
Total Errors 31
Average Error Rate (%) 33.70

Assigned 

Object 

Class

KNN Classifier

Actual Object Class

<3,5,6,7,8,9,13,16>, K  = 3

 

(d) 

llaW dooWecneF tekciPsegdeHllaW kcirB

Brick Wall 14 3 0 5
Hedges 8 18 1 5

Picket Fence 0 1 21 5
Wood Wall 1 1 1 8

Total Objects in Class 23 23 23 23
Errors by Class 9 5 2 15
Error Rate by Class (%) 39.13 21.74 8.70 65.22
Total Errors 31
Average Error Rate (%) 33.70

Parzen Classifier

Assigned 

Object 

Class

Actual Object Class

<1,3,4,6,11,12,14,18>, h = 0.044
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Table 5.8 Comparison of confusion matrices of the best performing classification models ap-
plied to the compact objects from the Adaptive Bayesian Classification Model (via Committees 
of Experts), Adaptive Bayesian Classifier with single distance function, KNN Classifier, and 
Parzen Classifier. 

(a) 

eerTeloP leetS

Steel Pole 15 0
Tree 3 19

Rejections by Class 2 1
Total Objects in Class 20 20
Errors by Class 3 0
Error Rate by Class (%) 16.67 0
Total Errors 3
Average Error Rate (%) 8.33
Total Rejections 3

Actual Object Class

Assigned

Object Class

Adaptive Bayesian Classification Model

Committee Mode Frequency Threshold = 4      
Required Class Votes Threshold = 1                                
Ties Threshold = 0                                                  
Posterior Threshold = 0.6                                                  
Absolute Posterior Difference Threshold = 0.01

 

(b) 

Adaptive Bayesian Classifier

<1,2,4,6,7,8,10,11,13,14,15>,

eerTeloP leetS

Steel Pole 16 0
Tree 4 20

Total Objects in Class 20 20
Errors by Class 4 0
Error Rate by Class (%) 20.00 0
Total Errors 4
Average Error Rate (%) 10.00

Actual Object Class

Assigned

Object Class

jD

 

(c) 

eerTeloP leetS

Steel Pole 14 0
Tree 6 20

Total Objects in Class 20 20
Errors by Class 6 0
Error Rate by Class (%) 30.00 0
Total Errors 6
Average Error Rate (%) 15.00

Assigned

Object Class

ssalC tcejbO lautcA

KNN Classifier

<6,7,12,14>, K  = 7
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(d) 

eerTeloP leetS

Steel Pole 14 0
Tree 6 20

Total Objects in Class 20 20
Errors by Class 6 0
Error Rate by Class (%) 30.00 0
Total Errors 6
Average Error Rate (%) 15.00

Assigned

Object Class

ssalC tcejbO lautcA

Parzen Classifer

<6,7,9,14>,  h  = 0.0379

 

5.6.2 Performance on Blind Data (with Classes ≠ Training Set) 

We will now evaluate the Adaptive Bayesian Classification Model’s response 
when confronted with the following additional blind objects that include objects 
outside the classes in the training data sets.  Figure 5.15 displays the visible and 
thermal images of some random blind extended objects consisting of a brick wall 
with moss on the surface, concrete wall, bush, gravel pile, steel picket fence, wood 
bench, and wood wall of a storage shed.  Figure 5.16 displays the visible and 
thermal images of some blind compact objects consisting of a square steel pole, 
aluminum pole for a dryer vent, concrete pole, knotty tree, telephone pole, 4 × 4 
wood pole, and pumpkin.  The thermal images of these objects were captured be-
tween 6 July and 5 November 2007 on The College of William & Mary campus, 
throughout York County, Virginia, and on a farm outside Buffalo, New York.  The 
performance of the Adaptive Bayesian Classification Model was assessed on these 
objects with threshold settings selected as discussed above for the extended and 
compact object categories and displayed in the confusion matrices for the Adap-
tive Bayesian Classification Model in Tables 5.7 and 5.8. 

Table 5.9 presents the actual blind object and object class assigned by the Adap-
tive Bayesian Classification Model along with the resulting posterior probability 
for the extended objects.  The brick wall with moss on the surface in Fig. 5.15 (a) 
was misclassified as hedges due to the high thermal radiance of the reference emit-
ter and the high thermal radiance and contrast associated with the blind brick wall 
having a strong resemblance to those of the hedges in the model’s training data set 
as discussed in Sect. 5.4.  The classification performance on brick walls with a lar-
ger range of thermal radiances could be improved by increasing the range of repre-
sentative objects in the training data set as noted in Sect. 5.4.2.3.  Furthermore, 
since the posterior probability for assigning the brick wall as hedges was 81.78%, 
setting the model’s Posterior Threshold to 82% would result in the model rejecting 
this class assignment and requiring the bot to capture another thermal image of the 
brick wall for classification, perhaps at another viewing angle.  The concrete wall 
in Fig. 5.15 (b) and bush in Fig. 5.15 (c) were appropriately classified as a brick 
wall and hedges, respectively.  The gravel pile in Fig. 5.15 (d) classified as hedges 
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since it displays variations (randomness or complexity) in radiant emissions that 
are similar to the hedges in the training data set.  Even though the thermal-physical 
properties of the steel picket fence used for the blind data in Fig. 5.15 (e) and wood 
picket fence used in our training data set are obviously different, the model appro-
priately classified the steel picket fence as a (wood) picket fence since the blind ob-
ject has the same picket pattern and similar thermal emissions from the foreground 
as the wood picket fences in the training data.  

During our research, we have continuously emphasized our desire to design 
a classification model that affords the ability to retain the original physical inter-
pretation of the information in the signal data throughout the entire classification 
process.  As a result, our Adaptive Bayesian Classification Model provides the 
ability to analyze the physical characteristics of objects and decisions by the ex-
perts in each committee to understand the reason for misclassifications and rejec-
tions of class assignments.  As we see in Table 5.9, the Adaptive Bayesian Classi-
fication Model rejected the class assignment for the wood bench in Fig. 5.15 (f) 
and wood wall on the shed in Fig. 5.15 (g).  By analyzing each committee’s deci-
sion making process, we found that the classifications of both the wood bench and 
wood wall were rejected for not satisfying specific rules within each committee.  
The class assignment of the wood bench was rejected since each committee did not 
have a mode class equal to their respective object class.  For instance, the mode 

 
Fig. 5.15 Visible and thermal images of extended blind objects that include classes outside the 
given training data set.  (a) brick wall with moss on the surface, (b) concrete wall, (c) bush, 
(d) gravel pile, (e) steel picket fence, (f) wood bench, and (g) wood wall of a storage shed. 
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class for the brick wall, hedges, and picket fence committees was the wood wall.  
The mode class for the wood wall committee was the picket fence.  As a result, the 
mode class rule was not satisfied and each committee recommended a class label of 
0 to the wood bench with a posterior probability of 0%.  The model subsequently 
rejected the classification of the wood bench.  Similarly, the classification of the 
wood wall was also rejected for not satisfying rules within each committee.  In this 
case, the brick wall, picket fence, and wood wall committees each recommended a 
class label of 0 and posterior probability of 0% to the wood wall since each of their 
mode classes was the hedges.  The hedges committee had a mode class of hedges; 
however, a class label of 0 and posterior probability of 0% was recommended since 
only four out of the required five experts had the hedges as their mode class.  Con-
sequently, the model rejected the classification of the wood wall. 

Table 5.10 presents the actual blind object and object class assigned by the 
Adaptive Bayesian Classification Model along with the resulting posterior probabil-
ity for the compact objects.  As we see, the square steel pole in Fig. 5.16 (a) was ap-
propriately classified as a steel pole by the model.  We would expect an aluminum 
pole to classify as a steel pole due to its approximately constant thermal radiance on 
the surface.  However, as we see in Fig. 5.16 (b), the expected constant thermal ra-
diance on the surface is interrupted by a crease in the aluminum that results in 
a higher thermal radiance emitted from the crease due to the variation of emissivity 

 
Fig. 5.16 Visible and thermal images of compact blind objects that include classes outside the 
given training data set.  (a) square steel pole, (b) aluminum pole for dryer vent, (c) concrete pole, 
(d) knotty tree, (e) telephone pole, (f) 4 × 4 wood pole, and (g) pumpkin. 
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Table 5.9 (a) Adaptive Bayesian Classification Model class assignments and posterior probabili-
ties on extended blind objects displayed in Fig. 5.15. (b) Threshold values for the Adaptive 
Bayesian Classification Model. 

Value

5
1
0

60%
0.01

Posterior
Absolute Posterior Difference

Threshold

Committee Mode Frequency
Required Class Votes
Ties

(a)

(b)

Actual Object Class Assigned Object Class Posterior Probability (%)

87.18segdeHssoM /w llaW kcirB
32.69llaW kcirBllaW etercnoC
83.99segdeHhsuB
00.29segdeHeliP levarG
16.79ecneF tekciPecneF tekciP leetS

Wood Bench (Class Assignment Rejected) 0
Wood Wall on Shed (Class Assignment Rejected) 0

 

Table 5.10 (a) Adaptive Bayesian Classification Model class assignments and posterior prob-
abilities on compact blind objects displayed in Fig. 5.16. (b) Threshold values for the Adaptive 
Bayesian Classification Model. 

Actual Object Class Assigned Object Class Posterior Probability (%)

99.99eloP leetSeloP leetS erauqS
76.69eerTeloP munimulA
56.99eloP leetSeloP etercnoC
85.99eerTeerT yttonK

Telephone Pole (Class Assignment Rejected) 0
45.58eerTeloP dooW 4x4
88.77eloP leetSnikpmuP

Value

4
1
0

60%
0.01

Posterior
Absolute Posterior Difference

Threshold

Committee Mode Frequency
Required Class Votes
Ties

(a)

(b)  

with the shape of the object as we discussed in Chap. 3.  Consequently, the model 
sees the thermal features generated from the surface of the aluminum pole more 
closely resembling the features of the trees in the training data set.  The concrete 
pole in Fig. 5.16 (c) classified as a steel pole due to its approximately constant 
thermal radiance on the surface resembling the surfaces of the steel poles in the 
training data.  The knotty tree in Fig. 5.16 (d) classified as a tree as expected.  As 
we see in Table 5.10, the model rejected the classification of the telephone pole in 
Fig. 5.16 (e).  By analyzing the execution of the Adaptive Bayesian Classification 
Model on the telephone pole, we learned that both the steel pole and tree commit-
tees had a mode class equal to the steel pole.  As a result, the tree committee rec-
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ommended a class label of 0 and posterior of 0% to the telephone pole.  On the 
other hand, the rules for the mode class, committee mode frequency threshold, re-
quired class vote threshold, and ties threshold were satisfied within the steel pole 
committee.  However, the steel pole committee’s mean posterior probability for the 
telephone pole was only 53.76%.  Therefore, the rule with the Posterior Threshold 
set to 60% was not satisfied and the steel pole committee also recommended a class 
label of 0 and posterior of 0% to the telephone pole.  The final decision by the 
Adaptive Bayesian Classification Model was to reject the classification of the tele-
phone pole.  The 4 × 4 wood pole in Fig. 5.16 (f) classified as a tree by the model as 
expected.  The pumpkin in Fig. 5.16 (f) classified as a steel pole since the model 
saw the pumpkin’s surface, with an approximately constant thermal radiance, re-
sembling the thermal radiance and contrast typically found on the surfaces of the 
steel poles in the training data set as displayed in Fig. 5.11 (a–c).  Fortunately, our 
Adaptive Bayesian Classification Model is equipped with the rule involving the 
Posterior Threshold.  As a result, a simple tuning that sets the model’s Posterior 
Threshold to say 80% will let the bot reject the classification of the pumpkin. 

5.7 Summary 

The concepts, methods, and thermal features introduced in the previous chapters 
culminated in the design and implementation of the novel pattern classification tools 
presented in this chapter that can be used to understand the behavior of the thermal 
patterns of non-heat generating object classes in an n-dimensional feature space and 
classify an unknown pattern that is mapped into the feature space.  In this chapter, we 
first showed how to apply principal component analysis locally on the patterns from a 
given object class to derive two distance metrics – based on a scalar projection 
(Eq. 5.1) and normal distance (Eq. 5.2) involving the patterns and first principal ei-
genvectors in feature space.  We showed how these distance metrics provide the abil-
ity to see and understand the behavior of an object class’s patterns about its first prin-
cipal eigenvector that projects through the respective hyperconoidal cluster.  
Additionally, we demonstrated how our distance metrics give us the ability to “see” 
regions in an n-dimensional feature space where some object classes may tend to 
“look alike” and run the risk for misclassification by a classification model.  

Various distance functions ( )jj efd 1,
~

 were derived based on the normal dis-

tance between patterns and an object class’s first principal eigenvector.  These dis-
tance functions were incorporated into the likelihood function of the Bayesian 
classifiers to form our adaptive Bayesian classifier given by Eq. 5.10.  In this way, 
we formed a weighted likelihood function used in the posterior probability of the 
Bayesian classifier that not only considers the unknown pattern’s participation in 
the density distribution of a given object class but also the unknown pattern’s be-
havior about the first principal eigenvector projecting through the given object 
class’s hyperconoidal cluster.  The variations of the distance functions were de-
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signed to adapt to the behavior of the patterns for a given object class, as the name 
for the adaptive Bayesian classifier implies.  The resulting adaptive Bayesian clas-
sifier with the weighted likelihood function was shown to produce a posterior 
probability with enhanced discriminating capabilities that outperformed the tradi-
tional KNN and Parzen classifiers. 

As we have stated in previous chapters, the performance of a classifier is 
a function of the feature vector.  However, rather than analyzing the classification 
performance by just choosing different feature vectors, the novel process used by 
our adaptive Bayesian classifier affords us the ability to literally see how the 
choice of any n-dimensional feature vector will affect the behavior of an object 
class’s patterns and the overall performance of the classification model.  As we 
discussed in Sect. 5.2, the distance metrics, given by Eqs. 5.1 and 5.2, give us the 
ability to see a general trend in the behavior of the patterns within each object 
class that vary slightly depending on the feature vector.  Thus, the behavior of the 
patterns about the first principal eigenvector is dependent on the choice of the 
n-dimensional feature vector.  Consequently, the normal distance metric, given by 
Eq. 5.2, depends on the behavior of the patterns about the first principal eigenvec-
tor.  The normal distance metric has an effect on the values of our distance func-
tion ( )jj efd 1,

~
 and the weighted KNN density estimation given by Eq. 5.9.  As 

a result, the classification performance of our model is based on the values of our 
adaptive Bayesian classifier, given by Eq. 5.10, that are dependent on the 
weighted KNN density estimation.  Therefore, the performance of a classifier is 
a function of the feature vector.   

We used our distance metrics and adaptive Bayesian classifier to understand 
why some blind patterns are being misclassified under certain thermal conditions.  
We noted that correct classification of a blind object seemed to be independent of 
the geographical location of the object.  Thus, the two primary factors that con-
tributed to the misclassification of the blind objects were a lack of representative 
training data and the effects of the diurnal cycle of solar energy.  Consequently 
some misclassifications could be eliminated by expanding the range of features in 
the training data set by capturing a more representative set of thermal images.  
However, in most cases a lack of a thermal signature from an object due to the di-
urnal cycle of solar energy will continue to result in feature values from different 
object classes looking alike.  We also observed that in some cases the misclassifi-
cation of a blind object was associated with either a low posterior probability or 
a posterior that was close in value to another posterior for an assignment to a dif-
ferent object class.  These situations led to our integration of specific rules into our 
novel classification model and our plans for future research involving the integra-
tion of fuzzy logic into our model and designing a model based on a multi-sensor 
data fusion architecture that we will discuss in Chap. 6.   

Based on our discovery that some adaptive Bayesian classifiers act as experts 
by showing exceptional classification performance on a certain object class, we 
formed committees of experts where each committee classifies patterns from their 
respective object class.  By combining each committee of experts into one classifi-
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cation model, we were able to exploit the expertise of each committee and com-
plement the overall performance of the classification model.  We further increased 
the confidence level in our model’s classification decisions by integrating the dy-
namical window technique presented in Chap. 4 that lets each committee of ex-
perts decide on class assignment by considering information collected from multi-
ple window sizes of the thermal image of an object.  Additionally, we incorporated 
rules into our model that must be satisfied before the bot is authorized to make 
a classification decision to improve the accuracy of class assignments and prevent 
high-risk classification decisions.  If all the rules are satisfied, the bot is authorized 
to assign a class to the unknown object within its field of view and proceed with 
the next required action in the intelligence algorithm.  On the other hand, if a rule 
is not satisfied, the bot must reject the class assignment and capture another ther-
mal image of the unknown object for classification, perhaps at another viewing 
angle.  These concepts led to the design of our novel Adaptive Bayesian Classifi-
cation Model displayed in Fig. 5.14. 

By assessing our Adaptive Bayesian Classification Model on extended and 
compact blind data that consisted of objects from the same and different object 
classes as the training data, we proved the exceptional applicability and originality 
of our model.  Our application demonstrated that the Adaptive Bayesian Classifi-
cation Model outperforms the traditional KNN Classifier and Parzen Classifier.  
Additionally, while the committees of experts and dynamical window technique 
integrated into the Adaptive Bayesian Classification Model increase the accuracy 
of class assignments and our confidence in the model’s final classification deci-
sion, the ability to reject class assignments that do not satisfy specific rules is the 
distinguishing factor that results in the Adaptive Bayesian Classification Model 
outperforming the Adaptive Bayesian Classifier with a single distance function.     

The design of our Adaptive Bayesian Classification Model makes it an appro-
priate method to support multiple scenarios.  First, the Adaptive Bayesian Classifi-
cation Model is a suitable choice for any classification application, such as ours, 
involving hyperconoidal clusters consisting of patterns in an n-dimensional feature 
space that are characterized by their behavior about their respective first principal 
eigenvector.  Such applications involve features that vary due to the effects of some 
natural cyclic events.  The natural cyclic event in our application is the diurnal cy-
cle of solar energy.  Furthermore, the emphasis on designing the model so that the 
original physical interpretation of the information in the signal data is retained 
throughout the entire classification process affords human operators the ability to 
analyze the reason for a bot’s class assignments by associating the final classifica-
tion decision with the thermal-physical properties found in the original features.  
Also, the integration of the dynamical window technique and classification rules 
with the option to reject class assignments and capture another thermal image of 
the unknown object for classification, perhaps at another viewing angle, make our 
model appropriate for autonomous robotic systems that capture continuous frames. 

The design and implementation of our Adaptive Bayesian Classification Model 
has also created new research opportunities.  Research is required to determine if 
there exists a most favorable number of experts in each committee.  Also, the se-
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lection of the most favorable threshold values requires additional research.  The 
appropriate selection of threshold values will minimize the classification error rate 
and number of rejections.  The tendency for an object to “look like” another object 
under certain thermal conditions (other than thermal crossover) presents a degree 
of vagueness that may call for the integration of fuzzy logic into the classification 
model.  We could also integrate other sensors into the autonomous robotic system 
by designing a multi-sensor data fusion architecture where the use of multiple sen-
sors complements the overall performance of the classification model.  We will 
discuss these research opportunities in our final chapter, Chap. 6.                  
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6 Conclusions and Future Research Directions 

Abstract  This book presented the design and implementation of a physics-based 
adaptive Bayesian pattern classification model that uses a passive thermal infrared 
imaging system to automatically characterize non-heat generating objects in un-
structured outdoor environments for mobile robots.  The resulting model comple-
ments an autonomous robot’s situational awareness and affords bots with the intel-
ligence to automatically interpret the information in signal data emitted from 
targets to make decisions without the need for an interpretation by humans.  The 
work presented in this book has created new opportunities to continue the research 
in support of the goal to automate the fusion and interpretation of data streams 
from various active and passive sensor systems to enable autonomous mobile ro-
bot operations in a wide variety of unstructured outdoor environments.         

6.1 Introduction 

In this book, we have designed and implemented a novel pattern classification 
model to characterize non-heat generating outdoor objects in thermal scenes for 
application to autonomous robots.  In the context of this research, we have defined 
non-heat generating objects as objects that are not a source for their own emission 
of thermal energy, and so exclude people, animals, vehicles, etc.  The resulting 
model complements the autonomous bot’s situational awareness that supports de-
cision-making in the overall intelligence process.  In this final chapter, we will 
summarize the research contributions of this work, identify the primary limitation 
to using a thermal infrared imaging system in our application, and discuss our fu-
ture research directions. 
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6.2 Contributions 

We have developed a set of methods and algorithms that use a thermal infrared 
imaging system to automatically characterize non-heat generating extended and 
compact objects in outdoor environments.  The extended objects consisted of ob-
jects that extend laterally beyond the thermal camera’s lateral field of view, such 
as brick walls, hedges, picket fences, and wood walls.  The compact objects con-
sisted of objects that are completely within the thermal camera’s lateral field of 
view, such as steel poles and trees.  We included a systematic and detailed analy-
sis on the acquisition and preprocessing of thermal images, generation and selec-
tion of thermal-physical features from these non-heat generating objects within 
thermal images, and the design of a novel physics-based model to automatically 
classify these objects.  Many of our concepts and methods evolved by integrating 
techniques from various fields of study, such as thermography and pattern classifi-
cation, to gain an understanding of the underlying physical behavior of the infor-
mation in the thermal signal produced by a non-heat generating object.  During 
our research, we also designed our classification model to retain the original phys-
ical interpretation of the information in the signal data throughout the entire classi-
fication process.  This emphasis resulted in a framework that allows the analyst to 
understand the reason for a bot’s classification of an unknown object by associat-
ing the final classification decision with the thermal-physical properties found in 
the original features.  Additionally, our approach affords bots with the intelligence 
to automatically interpret the information in signal data to make decisions without 
rendering high-quality imagery for human experts to interpret.      

Three primary contributions from this research are:  (1) an Adaptive Bayesian 
Classification Model,  (2) distance metrics used to describe the behavior of an ob-
ject class’s patterns about the eigenvector that projects through its respective hy-
perconoidal cluster, and (3) a curvature algorithm that will allow us to distinguish 
compact objects from extended objects.  Our Adaptive Bayesian Classification 
Model presented in Chap. 5 outperformed the traditional KNN and Parzen classifi-
ers.  The design of our Adaptive Bayesian Classification Model makes it an appro-
priate method to support multiple scenarios.  First, the Adaptive Bayesian Classifi-
cation Model is a suitable choice for any classification application, such as ours, 
involving hyperconoidal clusters consisting of patterns in an n-dimensional feature 
space that are characterized by their behavior about their respective first principal 
eigenvector.  Such applications involve features that vary due to the effects of some 
natural cyclic events.  Our model is designed to adapt to the behavior of these pat-
terns from specified object classes to provide an accurate classification of unknown 
objects.  Furthermore, the emphasis on designing the model so that the original 
physical interpretation of the information in the signal data is retained throughout 
the entire classification process affords human operators the ability to analyze the 
reason for a bot’s class assignments by associating the final classification decision 
with the thermal-physical properties found in the original features.  Also, the inte-
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gration of the dynamical window technique and classification rules with the option 
to reject class assignments and capture another thermal image of the unknown ob-
ject for classification, perhaps at another viewing angle, make our model appropri-
ate for autonomous robotic systems that capture continuous frames. 

The two distance metrics, based on the scalar projection (Eq. 5.1) and normal dis-
tance (Eq. 5.2), were a precursor to our Adaptive Bayesian Classification Model.  
These two distance metrics give us the ability to “see” and understand the behavior of 
an object class’s patterns within their respective hyperconoidal cluster in an 
n-dimensional feature space.  Additionally, we demonstrated how our distance met-
rics give us the ability to “see” regions in an n-dimensional feature space where some 
object classes may tend to “look alike” and run the risk for misclassification by a clas-
sification model.  Consequently, these metrics provide the researcher with a tech-
nique to analyze and select n-dimensional feature vectors as well as predict the classi-
fication performance of a given model when using the selected feature vectors. 

In Chap. 3, we introduced a curvature algorithm that allows us to distinguish 
compact objects from extended objects.  During our analysis involving the genera-
tion of thermal features used by our classification model, we discovered that cer-
tain factors caused variations in radiance on cylindrical-shaped objects.  These 
factors, consisting of directional variation of emissivity, irradiance from sources in 
the background, and/or halo effect, assisted us in deriving a curvature algorithm 
used to distinguish compact objects from extended objects.  In the context of this 
research, we defined background as the region either in front or to the side of the 
target consisting of thermal sources that emit thermal energy onto the target’s sur-
face.  The source emitting this thermal energy may or may not be in the camera’s 
field of view.  On the other hand, we defined foreground as the region in the scene 
consisting of objects behind the target of interest and within the thermal camera’s 
field of view.  Our curvature algorithm is presented in Table 3.5.  A demonstration 
of the curvature algorithm showed that we were able to correctly identify a tree 
and square metal pole as compact objects and a brick wall as an extended object.  
With further investigation the curvature algorithm has potential to serve as an ex-
ceptional technique to distinguish compact objects from extended objects. 

6.3 Limitation of a Thermal Infrared Imaging System 

Understanding the limitations of sensor systems used by any pattern classification 
model is important since depending on the environmental conditions the sensor 
may not be able to obtain relevant features to classify an unknown object due to the 
lack of signal information emitted from the object.  In this case, our autonomous 
robot may have to rely on its other sensor(s) to classify the object.  Since our appli-
cation takes place outdoors, environmental conditions will exist where the surfaces 
of a target and surrounding objects will emit approximately the same level of ther-
mal radiance.  This phenomenon, known as thermal crossover [1], results in mini-
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mal thermal contrast between the surfaces of objects and the surrounding environ-
ment within the thermal infrared camera’s field of view.  Thermal images of ob-
jects captured during thermal crossover run the risk of producing features that the 
bot will attribute to features from other object classes.  Thermal crossover was a 
factor that contributed to the misclassification of our blind objects in Chap. 5 and is 
seen as the primary limitation in our ability to accurately classify non-heat generat-
ing objects in an outdoor environment using a thermal imaging system.  

Thermal crossover will always occur as part of the natural diurnal cycle of solar 
energy.  The length of time that the phenomenon occurs depends on the thermal prop-
erties of objects’ surfaces, time history of solar radiation, and time of day.  Environ-
mental conditions such as low ambient temperatures and/or lack of direct solar en-
ergy on an object’s surface (e.g., due to shady locations, clouds, or night time) reduce 
an object’s emission of thermal radiance.  Our ability to detect objects in thermal im-
ages captured at night depends on the thermal properties of the object and the time 
history of solar radiation.  Thus, as we discussed in Chap. 3, the amount of thermal 
radiance emitted by an object depends on the emissivity of the object.  The higher an 
object’s emissivity, the more thermal radiance it will emit.  Emissivity depends on 
surface temperature (as well as the type of material, viewing angle, and the object’s 
surface quality and shape) and surface temperature depends on the specific heat (as 
well as conductivity and other thermal properties) of the object.  Objects with a high 
specific heat, such as birch trees (~ 2.4 kJ ⋅ kg–1 ⋅ °C–1) [2], will tend to heat up more 
slowly with the increasing solar energy and cool more slowly as the amount of solar 
energy begins to decrease in the late afternoon (around 1600 hrs).  On the other hand, 
the surface temperature of low specific heat objects, such as the leaves on hedges, 
tend to track the availability of solar energy [1].  When a cloud passes or the sun be-
gins to set, the surface temperature of the hedges stays consistent with the lower am-
bient temperature.  As a result, a low level of solar energy available to a low specific 
heat object results in less thermal radiation emitted.  If a birch tree and hedges exist 
side-by-side and are in direct sunlight in the afternoon on a summer’s day, an accept-
able thermal contrast will exist in the scene to detect, segment, and classify both ob-
jects.  Since the birch tree will emit more thermal radiance than the hedges after sun-
set, there will still exist enough thermal contrast between the two objects in the scene 
to segment the birch tree.  However, the bot will more likely only be able to generate 
relevant thermal features from the surface of the birch tree.  On a cloudy day with a 
low ambient temperature in the winter, both the birch tree and hedges will emit mini-
mal thermal radiation.  In this case, there will likely not exist enough thermal contrast 
in the scene for the bot to distinguish the two objects.  An attempt to classify the ob-
jects in the scene will thus result in misclassifications. 

The best way to deal with periods of thermal crossover is have the bot avoid us-
ing the thermal infrared imaging modality when minimal thermal contrast exists in 
the scene.  A feasible course of action would be to integrate a thermal contrast 
threshold rule into the detection phase of the intelligence process that requires 
a minimum amount of contrast in the scene to use the thermal infrared imaging 
modality.  If the rule is not satisfied, the bot must eliminate the use of the thermal 
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infrared imaging sensor and rely on other sensors, such as ultrasound, that are 
available in the multi-sensor data fusion framework to classify this specific target.  
The limitations found with any sensor obviously provide the reason why multi-
sensor data fusion systems are normally more successful in classification applica-
tions than systems with a single sensor.  Thus, the interpretations of relevant in-
formation received by different types of sensors used in a multi-sensor framework 
are fused to complement the overall performance of the classification process.  In 
Sect. 6.4, we will discuss our plans for integrating our current pattern classification 
model using thermal infrared imagery into a multi-senor data fusion framework.  

6.4 Future Research 

The work presented in this book has created new opportunities to continue the re-
search in support of the goal to automate the fusion and interpretation of data 
streams from various active and passive sensor systems to enable autonomous 
mobile robot operations in a wide variety of unstructured outdoor environments as 
discussed in Chap. 1.  In this section, we will discuss our future research directions 
that evolve from our current work and research involving sonar sensor interpreta-
tion by mobile robots [3]. 

6.4.1 Augmentation of Robotic Thermal Imaging System   

The design and implementation of our Adaptive Bayesian Classification Model 
has created new research opportunities.  Research is required to determine if there 
exists a most favorable number of experts in each committee.  Also, the selection 
of the most favorable threshold values requires additional research.  The appropri-
ate selection of threshold values will minimize the classification error rate and 
number of rejections. 

Although our current research involved a parked robot capturing still frames 
and then moving to the next location before capturing another still frame, it is not 
difficult to envision a similar mobile robotic system that interprets objects in 
thermal images captured from continuous frames while moving.  The robotic sys-
tem could then capture thermal images at a frame rate of 30 images per second.  
Continuous frames would afford the bot with a “real-time” classification and quick 
response to capture another thermal image of an object that was previously re-
jected by the Adaptive Bayesian Classification Model for not satisfying the rules 
for a class assignment.   

Research involving classifying unknown objects from continuous frame will re-
quire the integration of detection and segmentation algorithms into the algorithm of 
the classification model.  In this work, we assumed that the bot had already de-
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tected and segmented an unknown object.  There are many options for integrating 
detection and segmentation algorithms into the overall classification framework.  
In Chap. 1, we presented references that discuss detection and segmentation meth-
ods using various passive and active modalities, such as thermal infrared, RGB, 
and sonar sensors.  In Chap. 2, we discussed how the halo effect, resulting from the 
mechanical chopper wheel within a thermal infrared camera, could produce a halo 
around targets.  Consequently, this halo effect could serve to assist the bot in seg-
menting a target for classification [4].  Additionally, we will also automate the 
classification process to detect, segment, and classify targets in cluttered scenes. 

As we discussed in Chap. 5, the two primary factors that contributed to the 
misclassification of the blind objects were a lack of representative training data 
and the effects of thermal crossover.  The integration of a thermal crossover thre-
shold rule to avoid misclassifications due to thermal crossover was introduced in 
Sect. 6.3.  Thus, future research involving the use of thermal infrared imaging sys-
tem will also need to include an expanded range of features in the training data set 
by capturing a more representative set of thermal images. 

The current robotic thermal imaging system design uses electrical tape as a ref-
erence emitter and crinkled aluminum foil to estimate the irradiance received by 
the target.  The electrical tape and crinkled aluminum foil are attached to the target 
to capture their thermal images used to generate the required feature values dis-
cussed in Chap. 3.  Research is required to determine how to estimate the thermal 
radiance emitted from a reference emitter and capture the irradiance received by 
the target without the need to pre-attach the electrical tape and aluminum foil.  

6.4.2 Fuzzy Logic Classifier 

Research is required to explore the integration of a fuzzy logic classifier into the 
Adaptive Bayesian Classification Model.  This research would be based on the ob-
servations, in Chaps. 4 and 5, that the classification models consistently misclassi-
fied some patterns from specific object classes while other patterns were assigned 
to the correct class.  We have determined that some object classes look alike when 
operating “beyond the visible spectrum” under certain thermal conditions (other 
than thermal crossover).  These conditions result in objects that are imprecisely 
defined.  For instance, under certain thermal conditions the feature vectors from 
a wood wall may look like a brick wall, and a picket fence under other conditions.  
This type of uncertainty presents a degree of vagueness that may call for the inte-
gration of fuzzy logic into the classification model [5, 6]. 

We could introduce our use of fuzzy logic and membership functions based on 
a feature called sparsity that is generated from the 2-dimensional frequency spectrum 
of an object’s thermal image [3].  Four sparsity features can be generated from an ob-
ject’s thermal image to measure how well defined the edge directions are on the ob-
ject.  After pre-processing the object’s thermal image as discussed in Chap. 2, we take 
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the 2D Fourier transform of the object’s thermal image and take the absolute value to  
obtain the spectrum, which is then transformed to polar coordinates with angle meas-
ured in a clockwise direction from the polar axis and increasing along the columns in 
the spectrum’s polar matrix. The linear radius (i.e., frequencies) in polar coordinates 
increases down the rows of the polar matrix.  Figures 6.1 and 6.2 display the visible 
image, thermal image, frequency spectrum, and polar spectrum of a wood wall  
and brick wall, respectively.  Since the discrete Fourier transform used to produce the 
spectrum assumes the frequency pattern of the image is periodic, a high-frequency 

 
Fig. 6.1 (a) visible image, (b) thermal images, (c) frequency spectrum, and (d) polar spectrum of 
a wood wall. 
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drop-off occurs at the edges of the image.  These “edge effects” result in intense hori-
zontal and vertical artifacts in the spectrum.  Care needs to be taken when generating 
features from the 2-dimensional frequency domain since these edge effects may in-
terfere with the ability to produce relevant features to classify objects.  Fortunately, 
since these edge effects are consistent for all the thermal images, they will not have 
a negative impact on sparsity features. 

Next, the total energy of the frequencies along the spectral radius is computed for 
angles from 45 to 224 degrees. This range of angle values ensures that the algorithm 

 
Fig. 6.2 (a) visible image, (b) thermal images, (c) frequency spectrum, and (d) polar spectrum of 
a brick wall. 
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captures all possible directions of the frequencies on the object in the scene. A histo-
gram with the angle values along the abscissa and total energy of the frequencies on 
the ordinate is smoothed using a moving average filter.  The values along the ordinate 
are scaled to obtain frequency energy values ranging from 0 to 1 since we are only in-
terested in how well the edges are defined about the direction of the maximum fre-
quency energy, not the value of the frequency energy. The resulting histogram is plot-
ted as a curve with peaks representing directions of maximum frequency energy. The 
full width at 80% of the maximum (FW(0.80)M) value on the curve is used to indicate 
the amount of variation in frequency energy about a given direction. Four features are 
generated from the resulting histogram defined by the terms: sparsity and direction. 
The sparsity value provides a measure of how well defined the edge directions are on 
an object. The value for sparsity is the ratio of the global maximum scaled frequency 
energy to the FW(0.80)M along a given interval in the histogram. Thus, an object 
with well defined edges along one given direction will display a curve in the histo-
gram with a global maximum and small FW(0.80)M, resulting in a larger sparsity 
value compared to an object with edges that vary in direction. To compute the feature 
values, the intervals from 45 to 134 degrees and from 135 to 224 degrees were created 
along the abscissa of the histogram to optimally partition the absolute vertical and 
horizontal components in the spectrum. The sparsity value, along with its direction, is 
computed for each of the partitioned intervals. A value of zero is provided for both the 
sparsity and direction if there is no significant frequency energy present in the given 
interval to compute the FW(0.80)M.  

By comparing the directions (in radians) of the maximum scaled frequency en-
ergy along each interval, four features are generated: Sparsity about Maximum 
Frequency Energy (12.03 for wood wall vs. 9.02 for brick wall), Direction of 
Maximum Frequency Energy (3.14 for wood wall vs. 1.55 for brick wall), Sparsity 
about Minimum Frequency Energy (0.00 for wood wall vs. 7.80 for brick wall), 
and Direction of Minimum Frequency Energy (0.00 for wood wall vs. 3.14 for 
brick wall).  Figure 6.3 compares the scaled frequency energy histograms for the 
wood wall and brick wall, respectively. 

As we see in the histogram plot of the wood wall (Fig. 6.3 (a)), the edges are 
more well defined in the horizontal direction, as expected. Furthermore, the verti-
cal direction presents no significant frequency energy. On the other hand, the re-
sults for the brick wall (Fig. 6.3 (b)) imply edge directions that are more well de-
fined in the vertical direction. The brick wall also produces a sparsity value and 
direction associated with minimum frequency energy.  Consequently, these par-
ticular results would lead to features that could allow us to distinguish the wood 
wall from the brick wall.   

Fuzzy membership functions could be explored for the sparsity features to trans-
late the vagueness to a degree of membership that produces the “likeliness” of an ob-
ject being present when given the associated sparsity feature values.  It is important to 
note that the fuzzy logic classifier would be integrated into the Adaptive Bayesian 
Classification Model to complement the overall classification performance.  For in-
stance, the probabilistic (crisp) portion of the model would still recommend a class 
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assignment along with a posterior probability for an unknown object.  However, 
a fuzzy (non-crisp) portion of the model would fuzzify the sparsity feature values 
generated from the thermal image of the unknown object to produce an output from 
the fuzzy set using phrases, such as, Unlikely and Likely, associated to each object 
class that could be assigned.  For example, for a specific set of sparsity features the 
fuzzy classifier may output that the unknown object is Likely to be a Wood Wall and 
Unlikely to be a Brick Wall.  The classification model would make a final classifica-
tion decision based on the recommendations by the crisp and fuzzy classifiers. 
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Fig. 6.3 Scaled frequency energy histograms: (a) wood wall and (b) brick wall. 
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6.4.3 Bayesian Multi-Sensor Data Fusion 

As discussed in Sect. 6.3, the limitations found with any sensor obviously provide 
the reason why multi-sensor data fusion systems are normally more successful in 
classification applications than systems with a single sensor.  Thus, the interpreta-
tions of relevant information received by different types of sensors used in a multi-
sensor framework are fused to complement the overall performance of the classifi-
cation process [7, 8]. 

Since both ultrasound and infrared are independent of lighting conditions, they 
are appropriate for use both day and night.  Consequently, designing a framework 
that fuses information from the bot’s thermal infrared imaging and ultrasonic sen-
sors for performing intelligent actions, such as decision-making and learning, is an 
appropriate choice.  We envision a Bayesian multi-sensor data fusion architecture 
involving thermal infrared imaging and sonar sensors as displayed in Fig. 6.4.  The 
first requirement in the multi-sensor data fusion architecture is to ensure the data 
from the different sensors are registered to common points of reference so that all 
the sensors are “looking at” the same target.  As displayed in the given architecture, 
the passive thermal infrared imaging and active sonar sensors receive signal data 
from objects in the surrounding environment.  Equivalent to the methodology out-
lined in this book, the signals received by each sensor are preprocessed to minimize 
the effects of temporal and spatial signal degradations.  The target within the field 
of view of the sensors is then detected and segmented.  After the preprocessing 
phase, features are generated from the target’s signals received by each sensor. 
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Fig. 6.4 Bayesian multi-sensor data fusion architecture involving thermal infrared and sonar 
sensors. 



266 6 Conclusions and Future Research Directions  

The Bayesian multi-sensor data fusion model has the same structure as the 
Bayesian Classifier discussed in Chap. 4.  Thus, the Bayesian multi-sensor data 
fusion model consists of a likelihood function and prior knowledge to formulate 
a posterior probability used to classify based on features generated from the un-
known target’s signals received by each sensor.  This logical inference also con-
siders any other relevant background information I.  The likelihood function, 
( )IODP jn ,| , n = 1,…,M and j = 1,…,J, provides a measure of the chance that 

we would have obtained the values in the feature vector nD  generated from the 
unknown target’s signal received by sensor n if the object class jO  was given to 
be present.  The prior probability ( )IOP j |  provides a measure of our state of 

knowledge regarding the object class being present before any signal data is col-
lected by the sensors.  This prior probability is based on information that we 
know about the objects in the given environment.  If we feel that all the object 
classes could exist in the bot’s local area of operation or have no reason to be-
lieve that one object class is more likely to be identified over another, then the 
“principle of indifference” prevails and we assign equal priors for all the object 
classes.  In Sect. 6.4.4, we will discuss our future research plans to use satellite 
imagery to assist in developing prior knowledge in a bot’s immediate area of op-
eration.  Once the likelihood function and the prior probability are established, we 
use Bayes’ theorem to obtain our posterior probability 

 ( ) ( ) ( )
( ) ( )∑

=

= J

j
jjM

jjM
Mj

IOPIODDP

IOPIODDP
IDDOP

1
1

1
1
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where the unconditional probability ( ) ( )∑
=

J

j
jjM IOPIODDP

1
1 |,|,...,  is a nor-

malization parameter (known as the evidence) that ensures 

( ) 1,,...,|
1

1 =∑
=

J

j
Mj IDDOP .  Since the signals received by the sensors are statisti-

cally independent, our likelihood function is computed by 

( ) ( )∏
=

=
M

n
jnjM IODPIODDP

1
1 ,|,|,,… .  Thus, with our posterior, we can deter-

mine the probability of the target being assigned to object class jO  given the fea-
ture vectors generated from the unknown target’s signals received each sensor 
and prior knowledge of the object class existing in the current environment.  The 
Bayesian Multi-sensor Data Fusion Model will assign the target to the object 
class associated with the largest posterior probability.  The Bayesian Multi-sensor 
Data Fusion Model can be designed in a framework analogous to our adaptive 
model presented in Chap. 5.  Thus, this framework would also include classifica-
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tion rules that must be satisfied before the bot uses the class assignment to decide 
on the next required action in the intelligence algorithm.       

6.4.4 Prior Knowledge Based on Satellite Imagery 

We envision a bot having the ability to use real-time or archival satellite imagery to 
assist in developing knowledge regarding objects that may exist in an area of op-
eration prior to the bot entering the given area.  Hence, the information in the satel-
lite imagery is used to estimate prior probabilities of objects in the bot’s immediate 
area of operation that are used in our Bayesian classification models.  We can pic-
ture a scenario similar to Fig. 6.5 where a bot, denoted by the blue icon with the 
given latitude and longitude coordinates, is using satellite imagery to enhance its 
situational awareness by gaining knowledge of objects that may exist in the next 
immediate area of operation represented by the region enclosed by the yellow tri-
angle.  By partitioning the satellite image into various regions, represented by the 
enclosed areas with yellow borders and labeled as Paved Road, Yard, and Woods, 
we are creating surface regions that each consist of a mixture of object classes.  For 
instance, we perhaps know from experience that the region labeled as Woods has 
a higher chance of containing trees and bushes than fences.  The region labeled as 
Yard could have an equal chance of containing trees, bushes, and fences.  On the 
other hand, the region labeled as a Paved Road could have no chance of containing 
trees, bushes, or fences.  Consequently, we could associate an estimated probability 

 
Fig. 6.5 Autonomous robot estimates prior probabilities of objects in area of operation using sat-
ellite imagery to assist in classifying objects within field-of-view of onboard sensors. 
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for each of these objects existing in each of the respective regions.  Thus, as the bot 
is moving along a specific path, it is conducting a pre-entry analysis of the next 
area of operation by using satellite imagery to gain prior knowledge of objects that 
the bot may encounter.  The resulting prior probability estimates for each object 
class from the analyzed region is used in the bot’s Bayesian classification model. 

Next we need a method to assign a class label (i.e., Paved Road, Yard, and 
Woods) to the partitioned regions in the satellite image.  As we see in Fig. 6.5, 
each region enclosed by the yellow borders displays a RGB color histogram with 
distributions that distinguish it from the other regions’ histograms.  Consequently, 
we may be able to generate features that uniquely represent the different types of 
regions that we labeled in the satellite imagery.  Suppose the bot captures satellite 
imagery of the next immediate area of operation in its path, represented by the re-
gion enclosed by the yellow triangle, and generates feature vectors from the re-
gion’s RGB histogram to assign a label to the enclosed region.  Estimated prior 
probabilities are then given for the object classes associated with the respective 
type of enclosed region.  These prior probability estimates are then used as inputs 
into the bot’s Bayesian classification model for computing posterior probabilities 
of object classes that the bot detects in the next immediate area of operation.  If no 
relevant satellite information is available to predict the region types or there are 
ties for the type of region, then equal prior probabilities could be assigned for each 
object class.  Additionally, since the partitions are not necessarily crisp in distin-
guishing region types, we could find a degree of vagueness that may call for the 
integration of fuzzy logic.  Wang [9] describes a fuzzy supervised classification 
method for classifying land cover in Landsat images involving imprecise bounda-
ries between land cover types.  A review of methods used in the classification of 
remotely sensed data is found in [10].               

6.5 Concluding Remarks 

We have designed and implemented a physics-based adaptive Bayesian pattern 
classification model that uses a passive thermal infrared imaging system to auto-
matically characterize non-heat generating objects in unstructured outdoor envi-
ronments for mobile robots.  The resulting model complements an autonomous 
robot’s situational awareness and affords bots with the intelligence to automati-
cally interpret the information in signal data emitted from targets to make deci-
sions without the need for an interpretation by humans.  We have demonstrated 
that our Adaptive Bayesian Classification Model outperforms the traditional KNN 
and Parzen classifiers.   

The framework of our classification model could also be used in other applica-
tions requiring the characterization of unknown objects based on features that wit-
ness variations due to natural cyclic events.  For instance, our model could be in-
tegrated into classification applications that use RGB video to generate features 
from the visible images of objects in outdoor scenes that depend on illumination 
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from the sun.  The Adaptive Bayesian Classification Model could also be used 
during quality control inspections on assembly lines in industry where a thermal 
pulse is used to stimulate a product’s surface and time-varying features generated 
from the cooling object are used to improve the accuracy of characterizing anoma-
lies in products and monitoring packing standards.   

Our work has also laid the foundation for continued research that will:  (1) ex-
plore the integration of fuzzy logic to assist in classifying targets that emit signal 
information that imprecisely defines their respective class assignments, (2) design 
a multi-sensor framework to fuse the interpretations of relevant information re-
ceived by different types of sensors to complement the overall performance of the 
classification process, and (3) afford a mobile bot with the ability to use real-time 
or archival satellite imagery to assist in developing knowledge regarding objects 
that may exist in an area of operation prior to the bot entering the given area.  
These interesting and important areas of research are the cornerstone to further 
advancements in the capabilities of autonomous robotic systems.   
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A 

Absolute posterior difference threshold,  
227 

AC coupling,  33, 54, 62 
Acoustics,  See Ultrasound 
Adaptive Bayesian classification model,  

161, 223, 227, 260 
Adaptive Bayesian classifier,  193, 197 
Ambient temperature,  19, 54 
Ambient temperature rate of change,  54 
Angular second moment,  See Energy 
Attributes,  See Features 
Automatic gain control (AGC),  34 
Automatic target recognition (ATR),  16 
Autonomous robotic system,  8 

B 

Background,  27, 53 
Background irradiance,  53 
Bayes’ formula,  See Bayes’ theorem 
Bayes’ theorem,  106 
Bayesian classifier,  105, 193 
Binomial law,  107 
Blackbody,  17, 27 
Blind data set,  42, 122 
Bootstrap,  122 

C 

Chopper wheel,  37, 60 
Classification model,  7, 13, 25, 95, 116 

observational model,  14 
theoretical model,  14 

Classification rules,  226 

Classify,  13 
Combining classifiers,  223 
Committee mode frequency threshold,  226 
Committee of experts,  162, 223 
Compact objects,  41, 47, 95, 161 
Component (or scalar projection),  164 
Conditional probability,  105 
Conductivity,  19 
Confusion matrix,  121 
Contrast,  60, 71, 76 
Control IR Manager,  27 
Correlation,  76 
Cross-validation,  113, 122 
Curse of dimensionality,  116 
Curvature algorithm,  88, 256 

D 

DARPA Grand Challenge,  11 
Data dredging,  96 
Decision boundary,  97 
Density estimation 

nonparametric,  97, 98, 105 
parametric,  97 

Detection,  11 
Discriminant functions,  97 
Distance function,  196 
Dynamical window,  150, 162, 223, 257 

E 

Edge effects,  262 
Emissivity,  18, 55, 58, 59, 63, 257 
Emittance,  55 
Energy,  77, 78, 80, 81, 82, 86, 87,  

124, 134 
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Entropy,  72, 73, 74, 78, 80, 81, 82, 86, 88, 
124, 134 

Error estimation,  113, 122 
bootstrap,  122 
cross-validation,  113, 122 
holdout,  122 
leave-one-out,  122, 123 
resubstitution,  122 
rotation,  122 

Error (or misclassification) rate,   
113, 120, 219 

Evidence,  106, 266 
Exhaustive search,  84, 115, 120 
Extended objects,  41, 66, 95, 161 

F 

FastICA,  162 
Feature extraction,  116 
Feature selection,  119 
Feature vector (or pattern),  96 
Features,  7, 14, 47 

geometric,  7, 48 
thermal-physical,  48 

First principal eigenvector,  161 
First-order statistical features,  70 
Focal plane array (FPA),  13, 27 
Foreground,  27, 53, 144 
Fourier-Mellin descriptors,  48 
Fourier transform,  261 
Frequency spectrum,  260, 261 
Fuzzy logic,  222, 260, 263, 268 

G 

Geometric features,  7, 48 
Graybody emitter,  55 
Gray-level co-occurrence matrix,  74 
Gray-scale (or gray-level) values,  18, 29, 

33, 34, 35, 36, 51, 53, 54, 59, 60, 61, 
62, 66, 69, 70, 71, 72, 73, 74, 75, 76, 
77, 87, 89, 213 

H 

Halo effect,  37, 60, 88 
Heat transfer mechanisms,  19 

conductive,  19 
convective,  19 
radiative,  19 

Heating flux,  19 
High pass filter,  39 
Holdout method,  122 
Homogeneity,  77, 80 

Hu’s seven moments,  48 
Hyperconoidal cluster,  105, 114, 116, 119, 

121, 161, 162, 163, 164, 193, 194, 198, 
210, 216, 219, 224, 251, 253, 256, 257 

I 

Inertia,  See Contrast 
Infrared range sensor,  11 
Infrared thermography,  15 
Inter/intra class distance,  103, 120 
Irradiance,  53, 59 

J 

Jacknife method,   
See Leave-one-out method 

Joint probability,  105 

K 

Kirchhoff’s law,  55 
K-Nearest-Neighbor (KNN) classifier,  

110, 197 
KNN density estimation,  109, 111,  

194, 196 

L 

Laser detection and ranging (LADAR),  11 
Leave-one-out method,  122, 128 
Likelihood function,  106, 193, 266 

M 

Machine vision,  8, 50 
Macro features,  69, 74 
Maximum frequency energy,  263 
Meteorological features,  54, 85 
Micro features,  55 
Misclassification matrix,   

See Confusion matrix 
Misclassification rate,  See Error rate 
Mode class,  226 
Multi-mode heat transfer,  18 
Multi-sensor data fusion,  265 

N 

Nearest neighbor rule,  111 
Neural networks,  96 
No Free Lunch Theorem,  96, 223 
Nondestructive evaluation (NDE),  16 
Non-heat generating objects,  2, 27, 95 
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Nonparametric density estimation,   
97, 98, 105 
decision boundary,  97 
probabilistic,  97, 98 

Nonparametric techniques,  97 
Normal distance,  161, 257 
Normalization correction,  30 

non-uniformity correction,  30 

O 

Object scene radiance,  70 
Object surface radiance,  51 

P 

Parametric density estimation,  97 
Parzen classifier,  111, 197 
Pattern,  See Feature vector 
Pattern classification (or recognition),   

14, 16, 48, 96 
Pattern classification model,   

See Classification model 
Pattern recognition,   

See Pattern classification 
Peaking phenomenon,  116, 124, 134 
Perfect emitter,  See Blackbody 
Performance criterion,  120 
Pixel distance,  74 
Pixel substitution,  30 
Planck’s blackbody radiation law,  27 
Planck’s law,  17 
Polarity,  33 
Polar spectrum,  261 
Posterior probability,  106, 196, 266 
Posterior threshold,  226 
Principal axis,  118 
Principal component,  119 
Principal component analysis (PCA),   

117, 162 
Principle of indifference,  106, 114, 266 
Prior probability,  106, 110, 194, 266 
Probability density function,  107 
PRTools4,  162 

R 

Radiance,  48 
Radiosity,  53 
Raytheon ControlIR 2000B,  26 
Redundancy reduction,  99 
Reference emitter radiance,  65 
Required class votes threshold,  226 
Resubstitution method,  122 

RGB cameras,  12 
Rotation method,  122 

S 

Samsung Tablet PC,  27 
Satellite imagery,  266 
Scalar projection,  See Component 
Second-order statistical features,  74 
Segment,  11 
Sensors,  11 

active sensors,  11 
passive sensors,  11 

Shannon’s entropy,  See Entropy 
Signal degradations,  28 

dead pixels,  28 
spatial,  28 
temporal,  28 

Situational awareness,  1 
Smoothing parameters,  113 
Smoothness,  71 
Sonar,  See Ultrasound 
Sparsity,  260 
Specific heat,  19, 54, 258 
Statistical pattern classification,  96, 97, 98 
Stephan-Boltzmann coefficient,  19 
Supervised classification,  97 
Synthetic aperture radar (SAR),  11 

T 

Template matching,  96, 97 
Terahertz-pulsed imaging,  12 
Terrain classification,  14 
Test data set,  41, 115, 121 
Texture,  51 
Thermal (long-wave) infrared,  17 
Thermal (long-wave) infrared detector,  17 
Thermal crossover,  18, 101, 222, 257 
Thermal infrared imaging,  16 

active thermal infrared imaging,  16 
passive thermal infrared imaging,  16 

Thermal-physical features,  48 
macro,  69, 74 
meteorological,  54, 85 
micro,  55 

Thermographic nondestructive testing 
(TNDT or NDT),   
See Nondestructive evaluation (NDE) 

Thermography,  15 
Third moment,  72 
Thresholds 

absolute posterior difference,  227 
committee mode frequency,  226 
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posterior,  226 
required class votes,  226 
ties,  226 

Ties,  114 
Ties threshold,  226 
Training data set,  41, 115, 121 

U 

Ugly Duckling Theorem,  48 
Ultrasound,  5, 11, 12, 13, 15,  

222, 259, 265 

Unconditional probability,  196, 266 
Uniformity,  72, 87 
Unsupervised classification,  97 

V 

Validation data,   
See Test data set 

Z 

Z5 standardization method,  98 
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