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Series Editor’s Foreword

By the dawn of the new millennium, robotics has undergone a major trans-
formation in scope and dimensions. This expansion has been brought about
by the maturity of the field and the advances in its related technologies. From
a largely dominant industrial focus, robotics has been rapidly expanding into
the challenges of the human world. The new generation of robots is expected
to safely and dependably co-habitat with humans in homes, workplaces, and
communities, providing support in services, entertainment, education, health-
care, manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across di-
verse research areas and scientific disciplines, such as: biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks
among others. In return, the challenges of the new emerging areas are prov-
ing an abundant source of stimulation and insights for the field of robotics.
It is indeed at the intersection of disciplines that the most striking advances
happen.

The goal of the series of Springer Tracts in Advanced Robotics (STAR)
is to bring, in a timely fashion, the latest advances and developments in
robotics on the basis of their significance and quality. It is our hope that the
wider dissemination of research developments will stimulate more exchanges
and collaborations among the research community and contribute to further
advancement of this rapidly growing field.

The monograph written by Cyrill Stachniss is a contribution in the area
of self-localization and mapping (SLAM) for autonomous robots, which has
been receiving a great deal of attention by the research community in the
latest few years. The contents expand the authors doctoral dissertation and
are focused on the autonomous mapping learning problem. Solutions include
uncertainty-driven exploration, active loop closing, coordination of multiple
robots, learning and incorporating background knowledge, and dealing with
dynamic environments. Results are accompanied by a rich set of experiments,
revealing a promising outlook toward the application to a wide range of
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mobile robots and field settings, such as search and rescue, transportation
tasks, or automated vacuum cleaning.

Yet another STAR volume on SLAM, a very fine addition to the series!

Naples, Italy
February 2009

Bruno Siciliano
STAR Editor



Foreword

Simultaneous localization and mapping is a highly important and active area
in mobile robotics. The ability to autonomously build maps is widely re-
garded as one of the fundamental preconditions for truly autonomous mobile
robots. In the past, the SLAM has mostly been addressed as a state esti-
mation problem and the incorporation of control into the map learning and
localization process is a highly interesting research question. In this book by
Cyrill Stachniss, the reader will find interesting and innovative solutions to
the problem of incorporating control into the SLAM problem. I know Cyrill
since over eight years and I still appreciate his enthusiasm in developing new
ideas and getting things done. He has been working with a large number
of different robots, participating in several public demonstrations, and has
gained a lot of experience which can also be seen from his large number of
papers presented at all major robotic conferences and in journals. His work
covers a variety of different topics. He has acquired several project grants and
received several awards. He furthermore is an associate editor of the IEEE
Transactions on Robotics. It’s safe to say that he is an expert in his field.

This book is a comprehensive introduction to state-of-the-art technology in
robotic exploration and map building. The reader will find a series of solutions
to challenging problems robots are faced with in the real world when they
need to acquire a model of their surroundings. The book focuses on autonomy
and thus the robot is not supposed to be joysticked though the world but
should be able to decide about his actions on its own. I regard the ability
to learn maps by making own decisions as a key competence for autonomous
robots. Cyrill rigorously applies probabilistic and decision-theoretic concepts
to systematically reducing the uncertainty in the belief of a robot about its
environment and its pose in the environment.

The book contains impressively demonstrates the capabilities of the de-
scribed solutions by showing results obtained from real robotic datasets.
A further strength lies in the sound and thorough evaluation of all pre-
sented techniques going beyond the world of simulation. At this point, I
would like to encourage the reader to follow Cyrill’s example to take real
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robots and data obtained with real robots to demonstrate that novel ap-
proaches work in reality. For readers not in possession of particular sensors
or for comparison purposes, Cyrill and colleagues have created a Web site
(http://www.openslam.org/) in which the community can share implemen-
tations of SLAM approaches and where the reader will find links to datasets
to support future research.

Freiburg, Germany
February 2009

Wolfram Burgard



Preface

Models of the environment are needed for a wide range of robotic applica-
tions including search and rescue, transportation tasks, or automated vac-
uum cleaning. Learning maps has therefore been a major research topic in
the robotics community over the last decades. Robots that are able to reliably
acquire an accurate model of their environment on their own are regarded as
fulfilling a major precondition of truly autonomous agents. To autonomously
solve the map learning problem, a robot has to address mapping, localization,
and path planning at the same time. In general, these three tasks cannot be
decoupled and solved independently. Map learning is thus referred to as the
simultaneous planning, localization, and mapping problem. Because of the
coupling between these tasks, this is a complex problem. It can become even
more complex when there are dynamic changes in the environment or several
robots are being used together to solve the problem.

This book presents solutions to various aspects of the autonomous map
learning problem. The book is separated into two parts. In the first part, we
assume the position of the robot to be known. This assumption does not hold
in the real world, however, it makes life easier and allows us to better con-
centrate on certain aspects of the exploration problem such as coordinating a
team of robots. We describe how to achieve appropriate collaboration among
exploring robots so that they efficiently solve their joint task. We furthermore
provide a technique to learn and make use of background knowledge about
typical spatial structures when exploring an environment as a team.

In the second part, we relax the assumption that the pose of the robot is
known. To deal with the uncertainty in the pose of a robot, we present an
efficient solution to the simultaneous localization and mapping problem. The
difficulty in this context is to build a map while at the same time localizing the
robot in this map. The presented approach maintains a joint posterior about
the trajectory of the robot and the model of the environment. It produces
accurate maps in an efficient and robust way. After addressing step-by-step
the different problems in the context of active map learning, we integrate
the main techniques into a single system. We present an integrated approach
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that simultaneously deals with mapping, localization, and path planning. It
seeks to minimize the uncertainty in the map and in the trajectory estimate
based on the expected information gain of future actions. It takes into account
potential observation sequences to estimate the uncertainty reduction in the
world model when carrying out a specific action. Additionally, we focus on
mapping and localization in non-static environments. The approach allows
a robot to consider different spatial configurations of the environment and
in this way makes the pose estimate more robust and accurate in non-static
worlds.

In sum, the contributions of this book are solutions to various problems of
the autonomous map learning problem including uncertainty-driven explo-
ration, SLAM, active loop closing, coordination of multiple robots, learn-
ing and incorporating background knowledge, and dealing with dynamic
environments.

A lot of the work presented in this book has been done in collaboration
with other researchers. It was a pleasure for me to work with all the wonder-
ful people in the AIS lab in Freiburg. First of all, I thank Wolfram Burgard
for his tremendous support, his inspiration, and for providing a creative at-
mosphere. My thanks to my friends and colleagues for the great time in the
lab, especially to Maren Bennewitz, Giorgio Grisetti, Dirk Hähnel, Óscar
Mart́ınez Mozos, Patrick Pfaff, Christian Plagemann, and Axel Rottmann
for the great collaboration on the topics addressed in this book. It was a
pleasure to work with all these people and to benefit from their knowledge.
My thanks also to Mark Moors and Frank Schneider for the collaboration on
multi-robot exploration. Special thanks to Nick Roy and Mike Montemerlo
who did a great job in developing and maintaining the Carnegie Mellon Robot
Navigation Toolkit. It was a pleasure for me to work together with all of them.

Additionally, I thank several people, who published robot datasets and in
this way helped to make mapping approaches more robust and more easily
comparable. In this context, I would like to thank Patrick Beeson, Mike Bosse,
Udo Frese, Steffen Gutmann, Dirk Hähnel, Andrew Howard, and Nick Roy.

Freiburg, Germany
December 2008

Cyrill Stachniss
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Notation

Throughout this book, we make use of the following notation:

variable description
xt pose of the robot at time step t. This pose is a three

dimensional vector containing the x, y-position and the
orientation θ of the vehicle

x1:t sequence of poses of the robot from time step 1 to time
step t

zt sensor observation obtained at time step t
ut odometry information describing the movement from xt

to xt+1

a action or motion command
w importance weight

w
[i]
t importance weight of the i-th particle at time step t

m grid map
c grid cell
r resolution of a grid map. Each cell covers an area of r by

r.
G topological map

E[] expectation
N (μ, Σ) Gaussian with mean μ and covariance Σ

H entropy
I information gain
U utility function
V cost function
η normalizer, typically resulting from Bayes’ rule

Neff effective number of particles
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Introduction

Models of the environment are needed for a wide range of robotic applications,
from search and rescue to automated vacuum cleaning. Learning maps has
therefore been a major research focus in the robotics community over the last
decades.

In general, learning maps with single-robot systems requires the solution
of three tasks, which are mapping, localization, and path planning. Mapping is
the problem of integrating the information gathered with the robot’s sensors
into a given representation. It can be described by the question “What does
the world look like?” Central aspects in mapping are the representation of
the environment and the interpretation of sensor data. In contrast to this,
localization is the problem of estimating the pose of the robot relative to a
map. In other words, the robot has to answer the question, “Where am I?”
Typically, one distinguishes between pose tracking, where the initial pose of
the vehicle is known, and global localization, in which no a priori knowledge
about the starting position is given. Finally, the path planning or motion
control problem involves the question of how to efficiently guide a vehicle to
a desired location or along a trajectory. Expressed as a simple question, this
problem can be described as, “How can I reach a given location?”

Unfortunately, these three tasks cannot be solved independently of each
other. Before a robot can answer the question of what the environment looks
like given a set of observations, it needs to know from which locations these
observations have been made. At the same time, it is hard to estimate the
current position of a vehicle without a map. Planning a path to a goal location
is also tightly coupled with the knowledge of what the environment looks like
as well as with the information about the current pose of the robot.

The diagram in Figure 1.1 depicts the mapping, localization, and path
planning tasks as well as the combined problems in the overlapping areas.
Simultaneous localization and mapping (SLAM) is the problem of building a
map while at the same time localizing the robot within that map. One cannot
decouple both tasks and solve them independently. Therefore, SLAM is often
referred to as a chicken or egg problem: A good map is needed for localization

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 3–6.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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active
localization

integrated
approaches

mapping localization

exploration

path planning/
motion control

SLAM

Fig. 1.1. Tasks that need to be solved by a robot in order to acquire accurate
models of the environment. The overlapping areas represent combinations of the
mapping, localization, and path planning tasks [94].

while an accurate pose estimate is needed to build a map. Active localization
seeks to guide the robot to locations within the map to improve the pose
estimate. In contrast to this, exploration approaches assume accurate pose
information and focus on guiding the robot efficiently through the environ-
ment in order to build a map. The center area of the diagram represents the
so-called integrated approaches which address mapping, localization, and path
planning simultaneously. The integrated approaches are also called solutions
to the simultaneous planning, localization, and mapping (SPLAM) problem.
A solution to the SPLAM problem enables a mobile robot to acquire sensor
data by autonomously moving through its environment while at the same
time building a map. Whenever the robot is moving, it considers actions to
improve its localization, to acquire information about unknown terrain, and
to improve its map model by revisiting areas it is uncertain about. In the
end, the robot is assumed to have learned an accurate model of the whole
environment as well as determined its own pose relative to this model.

Several researchers focus on different aspects of these problems. This is
done using single robot systems as well as teams of robots. The use of mul-
tiple robots has several advantages over single robot systems. Cooperating
robots have the potential to accomplish a task faster than a single one. Fur-
thermore, teams of robots can be expected to be more fault-tolerant than
a single robot. However, when robots operate in teams, there is the risk of
possible interference between them. The more robots that are used in the
same environment, the more time each robot may spend on detours in order
to avoid collisions with other members of the team. In most approaches, the
performance of the team is measured in terms of the overall time needed to
learn a map. This means that the robots need to be distributed over the
environment in order to avoid redundant work and to reduce the risk of in-
terference. A team of robots makes finding efficient solutions to problems
like exploration more complex, since more agents are involved and so more
decisions need to be made.
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It is worth mentioning that all these problems become even more complex
in the case where the environment changes over time. Most mapping tech-
niques assume that the environment is static and does not change over time.
This, however, is an unrealistic assumption, since most places where robots
are used are populated by humans. Changes are often caused by people walk-
ing through the environment, by open and closed doors, or even by moved
furniture. One possibility to deal with dynamic aspects is to filter them out
and to map the static objects only. More challenging, however, is the problem
of integrating the information about changes into the map and utilizing such
knowledge in other robotic applications. This can enable a mobile robot to
more efficiently execute its tasks. For example, one can expect a robot to
more robustly localize itself in case where it knows about the typical config-
urations of the non-static aspects in its surroundings.

In summary, the key problems in the context of map learning are the
questions of

• where to guide a robot during autonomous exploration,
• how to deal with noise in the pose estimate and in the observations,
• how to deal with the uncertainty in the robot’s world model and how to

interprete the sensor data,
• how to model changes in the environment over time, and
• how to efficiently coordinate a team of mobile robots.

The contributions presented in this book are solutions to different aspects
of the map learning problem which explicitely consider these five aspects. We
present approaches to autonomous exploration that take into account the un-
certainty in the world model of the robot. We minimize this uncertainty by
reasoning about possible actions to be carried out and their expected reward.
We furthermore describe how to achieve good collaboration among a team of
robots so that they efficiently solve an exploration task. Our approach effec-
tively distributes the robots over the environment and in this way avoids re-
dundant work and reduces the risk of interference between vehicles. As a re-
sult, the overall time needed to complete the exploration mission is reduced.
To deal with the uncertainty in the pose of a robot, we present a highly ac-
curate technique to solve the SLAM problem. Our approach maintains a joint
posterior about the trajectory of the robot and the map model. It produces
highly accurate maps in an efficient and robust way. In this book, we ad-
dress step-by-step the problems in the context of map learning and integrate
different solutions into a single system. We provide an integrated approach
that simultaneously deals with mapping, localization, and path planning. It
seeks to minimize the uncertainty in the map and trajectory estimate based on
the expected information gain of future actions. It takes into account poten-
tial observation sequences to estimate the uncertainty reduction in the world
model when carrying out a specific action. Additionally, we focus on mapping
and localization in non-static environments. Our approach allows the robot
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to consider different spatial configurations of the environment and in this way
makes the pose estimate more robust and accurate in non-static worlds.

This book is organized as follows. First, we introduce the particle filtering
technique and the ideas of grid maps. The first part of this book concentrates
on single- and multi-robot exploration given the poses of the robots are known
while they move through the environment.

Chapter 3 addresses the problem of decision-theoretic, autonomous explo-
ration with a single vehicle. We consider a sensor which is affected by noise
and investigate a technique to steer a robot through the environment in order
to reduce the uncertainty in the map model.

In Chapter 4, we explore how to coordinate a team of robots in order to
achieve effective collaboration and to avoid redundant work. The presented
approach is extended in Chapter 5 so that background information about the
structure of the environment is integrated into the coordination procedure.
The knowledge about different structures is learned by the mobile robots
from sensor data.

In the second part of this book, we relax the assumption of known poses
and consider the uncertainty in the pose the a mobile robot. We present in
Chapter 6 an efficient solution to the SLAM problem. It allows us to learn
highly accurate grid maps while the pose information of the robot is affected
by noise. Our technique maintains the joint posterior about the map and the
trajectory of the robot using a particle filter. Chapter 7 describes a system
to detect and to actively close loops during exploration. With this technique,
we are not optimizing the pose estimation procedure but are planning ap-
propriate trajectories for the mobile robot. The revisiting of known locations
from time to time allows the robot to reduce the uncertainty in its pose. As
a result, the obtained map is better aligned and shows less inconsistencies.

Actively revisiting known areas during SLAM offers not only the possibility
to relocalize a vehicle, it also introduces the risk of becoming overly confident
especially in the context of nested loops. To cope with this limitation, we
present in Chapter 8 an approach for recovering the particle diversity after
closing loops. This allows the robot to stay an arbitrary period of time within
a loop without depleting important state hypotheses.

In Chapter 9, we present a decision-theoretic approach to exploration with
respect to the uncertainty in the map and the pose estimate of the robot. The
presented algorithm integrates different techniques introduced in the preced-
ing chapters. It simultaneously addresses mapping, localization, and planning.
As a result, our approach enables a real mobile robot to autonomously learn
a model of the environment with low uncertainty even if its pose estimates
are affected by noise.

Finally, Chapter 10 addresses the problem of mapping and localization
in non-static environments. By explicitly modeling the different states the
environment is observed in, the robot is able to more robustly localize itself
in a non-static world.
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Basic Techniques

This chapter explains two techniques which are frequently used throughout
this book. First, we will introduce the concept of particle filters. A particle
filter is a recursive Bayesian technique for estimating the state of a dynamic
system. We then explain the ideas of grid maps and “mapping with known
poses”. Note that elementary laws in the context of probability theory can
be found in the Appendix.

2.1 Introduction to Particle Filters

A particle filter is a nonparametric implementation of the Bayes filter and is
frequently used to estimate the state of a dynamic system. The key idea is to
represent a posterior by a set of hypotheses. Each hypothesis represents one
potential state the system might be in. The state hypotheses are represented
by a set S of N weighted random samples

S =
{〈

s[i], w[i]
〉
| i = 1, . . . , N

}
, (2.1)

where s[i] is the state vector of the i-th sample and w[i] the corresponding
importance weight. The weight is a non-zero value and the sum over all
weights is 1. The sample set represents the distribution

p(x) =
N∑

i=1

wiδs[i](x), (2.2)

where δs[i] is the Dirac function in the state s[i] of the i-th sample. Such set S
of samples can be used to approximate arbitrary distributions. The samples
are drawn from the distribution they should approximate. To illustrate such
an approximation, Figure 2.1 depicts two distributions and their correspond-
ing sample sets. In general, the more samples that are used, the better the

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 7–20.
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approximation. The ability to model multi-modal distributions by the set of
samples is an advantage compared to a series of other filters. The Kalman
filter [73], for example, is restricted to Gaussian distributions.
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Fig. 2.1. Two functions and their approximations by samples with uniform weights.
The samples are illustrated by the vertical bars below the two functions.

Whenever we are interested in estimating the state of a dynamic system
over time, we can use the particle filter algorithm. The idea of this technique
is to represent the distribution at each point in time by a set of samples, also
called particles. The particle filter algorithm allows us to recursive estimate
the particle set St based on the estimate St−1 of the previous time step. The
sampling importance resampling (SIR) particle filter can be summarized with
the following three steps:

1. Sampling: Create the next generation S′
t of particles based on the pre-

vious set St−1 of samples. This step is also called sampling or drawing
from the proposal distribution.

2. Importance Weighting: Compute an importance weight for each sam-
ple in the set S′

t.
3. Resampling: Draw N samples form the set S′

t. Thereby, the likelihood
to draw a particle is proportional to its weight. The new set St is given
by the drawn particles.

In the following, we explain these three steps in more detail. In the first
step, we draw samples in order to obtain the next generation of particles for
the next time step. In general, the true probability distribution to sample
particles from is not known or not in a suitable form for sampling. We show
that it is possible to draw samples from a different distribution than the one
we want to approximate. This technique is known as importance sampling.

We are faced with the problem of computing the expectation that x ∈ A,
where A is a region. In general, the expectation Ep[f(x)] of a function f is
defined as

Ep[f(x)] =
∫

p(x)f(x) dx. (2.3)
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Let B be a function which returns 1 if its argument is true and 0 otherwise.
We can express the expectation that x ∈ A by

Ep[B(x ∈ A)] =
∫

p(x)B(x ∈ A) dx (2.4)

=
∫

p(x)
π(x)

π(x)B(x ∈ A) dx, (2.5)

where π is a distribution for which we require that

p(x) > 0 ⇒ π(x) > 0. (2.6)

Thus, we can define a weight w(x) as

w(x) =
p(x)
π(x)

. (2.7)

This weight w is used to account for the differences between p and the π.
This leads to

Ep[B(x ∈ A)] =
∫

π(x)w(x)B(x ∈ A) dx (2.8)

= Eπ[w(x)B(x ∈ A)]. (2.9)

Let us consider again the sample-based representations and suppose the sam-
ple are drawn from π. By counting all the particles that fall into the region
A, we can compute the integral of π over A by the sum over samples

∫

A

π(x) dx ≈ 1
N

N∑
i=1

B(s[i] ∈ A). (2.10)

If we consider the weights in this computation, we can compute the integral
over p as

∫

A

p(x) dx ≈
N∑

i=1

w[i]B(s[i] ∈ A). (2.11)

It can be shown, that the quality of the approximation improves the more
samples that are used. For an infinite set of samples, the sum over the samples
converges to the integral

lim
N→∞

N∑
i=1

w[i]B(s[i] ∈ A) =
∫

A

p(x) dx. (2.12)

Let p be the probability distribution which is not in a suitable form for sam-
pling and π the one we actually sample from. In the context of importance
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sampling, p is typically called the target distribution and π the proposal dis-
tribution.

This derivation tells us that we can sample from an arbitrary distribution
π which fulfills (2.6) to approximate the distribution p by assigning an impor-
tance weight to each sample according to (2.7). This condition is needed to
ensure that a state which might be sampled from p does not have zero prob-
ability under π. An example that depicts a weighted set of samples in case
the proposal is different from the target distribution is shown in Figure 2.2.
Note that the importance sampling principle requires that we can point-wise
evaluate the target distribution. Otherwise, the computation of the weights
would be impossible.
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Fig. 2.2. The goal is to approximate the target distribution by samples. The sam-
ples are drawn from the proposal distribution and weighted according to (2.13). After
weighting, the resulting sample set is an approximation of the target distribution.

Let p(s1:t | d) be the posterior to estimate, where d stands for all the data
or background information. The importance weighting performed in Step 2
of the particle filter implementation (see Page 8) accounts for the fact one
draws from the proposal π by setting the weight of each particle to

w
[i]
t = η

p(s[i]
1:t | d)

π(s[i]
1:t | d)

, (2.13)

where η is the normalizer that ensures that the sum over all weights is 1.
The resampling step within a particle filter removes particles with a low

importance weight and replaces them by particles with a high weight. After
resampling, the weights are set to 1/N because by drawing according to the
importance weight, one replaces “likelihoods” by “frequencies”.

Resampling is needed since we use only a finite number of samples to ap-
proximate the target distribution. Without resampling, typically most par-
ticles would represent states with a low likelihood after some time and the
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filter would loose track of the “good” hypotheses. On the one hand, this
fact makes resampling important, on the other hand removing samples from
the filter can also be problematic. In practice, it can happen that samples
are replaced even if they are close to the correct state. This can lead to the
so-called particle depletion or particle deprivation problem [29, 31, 155].

To reduce the risk of particle depletion, one can apply low-variance resam-
pling. This technique does not draw the particles independently of each other
in the resampling step. Instead of generating N random numbers to select N
samples, the approach uses only a single random number to choose the first
particle. The others are drawn depended on the first draw but still with a
probability proportional to the individual weights. As a result, the particle
set does not change during a resampling in case the weights are uniformly
distributed. A detailed explanation on low-variance resampling as well as on
particle filters in general can be found in [148]. The complete particle filter
algorithm is listed in Algorithm 2.1.

Algorithm 2.1 The particle filter algorithm
Input: Sample set St−1 and the data d.
1: S′

t = ∅
2: for i=1 to N do
3: draw ŝ ∼ π(st | s[i]

t−1, d)

4: ŵ = η
[
p(ŝ | s[i]

t−1, d)
] [

π(ŝ | s[i]
t−1, d)

]−1

// where η is a normalizer

5: S′
t = S′

t + 〈ŝ, ŵ〉
6: end
7: St = ∅
8: for j=1 to N do
9: draw a sample s

[i]
t from S′

t. Thereby, s
[i]
t is drawn with probability w

[i]
t

10: St = St +
〈
s
[i]
t , 1/N

〉

11: end
12: return St

2.1.1 Mobile Robot Localization Using Particle Filters

In the context of mobile robotics, particle filters are often used to track the
position of the robot and we briefly illustrate the most important facts of
Monte-Carlo localization [25]. In this scenario, the state vector s is the pose
of the vehicle. Mostly, the motion estimate of the robot resulting from odom-
etry is used to compute the proposal distribution in Step 1. The so-called
motion model p(xt | xt−1, ut−1) is used to draw the next generation of par-
ticles. In this case, the importance weight w

[i]
t of the i-th sample has to

be computed based on the observation likelihood p(zt | m, x
[i]
t ) of the most

recent sensor observation zt given a map m of the environment and the corre-
sponding pose of the particle. This becomes clear by considering the following
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derivations. We can transform the full posterior p(x1:t | m, z1:t, u1:t−1) and
obtain a recursive formula

p(x1:t | m, z1:t, u1:t−1)
Bayes’ rule

= ηp(zt | m, x1:t, z1:t−1, u1:t−1)
p(x1:t | m, z1:t−1, u1:t−1) (2.14)

Markov= ηp(zt | m, xt)
p(x1:t | m, z1:t−1, u1:t−1) (2.15)

product rule
= ηp(zt | m, xt)

p(xt | m, x1:t−1, z1:t−1, u1:t−1)
p(x1:t−1 | m, z1:t−1, u1:t−1) (2.16)

Markov= ηp(zt | m, xt)p(xt | xt−1, ut−1)
p(x1:t−1 | m, z1:t−1, u1:t−2), (2.17)

where η is the normalizer resulting from Bayes’ rule. Under the Markov as-
sumption, we can transform the proposal as

π(x1:t | m, z1:t, u1:t) = π(xt | m, xt−1, zt, ut−1)
π(x1:t−1 | m, z1:t−1, u1:t−2). (2.18)

The computation of the weights needs to be done according to (2.13). In the
sequel, we drop the normalizer that ensures that all weights sum up to 1.
This leads to

wt =
p(x1:t | m, z1:t, u1:t−1)
π(x1:t | m, z1:t, u1:t−1)

(2.19)

=
ηp(zt | m, xt)p(xt | xt−1, ut−1)

π(x1:t | m, z1:t, u1:t−1)
p(x1:t−1 | m, z1:t−1, u1:t−2) (2.20)

=
ηp(zt | m, xt)p(xt | xt−1, ut−1)

π(xt | m, xt−1, zt, ut−1)
p(x1:t−1 | m, z1:t−1, u1:t−2)
π(x1:t−1 | m, z1:t−1, u1:t−2)︸ ︷︷ ︸

wt−1

(2.21)

=
ηp(zt | m, xt)p(xt | xt−1, ut−1)

π(xt | m, xt−1, zt, ut−1)
wt−1. (2.22)

If we choose the motion model as the proposal, we obtain for the i-the sample

w
[i]
t =

ηp(zt | m, x
[i]
t )p(xt | x

[i]
t−1, ut−1)

p(xt | x
[i]
t−1, ut−1)

w
[i]
t−1 (2.23)

= ηp(zt | m, x
[i]
t )w[i]

t−1 (2.24)

∝ p(zt | m, x
[i]
t )w[i]

t−1. (2.25)
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Since the resampling step resets the weights of the whole set by 1/N , we can
ignore the weight of the previous time step and obtain

w
[i]
t ∝ p(zt | m, x

[i]
t ). (2.26)

This derivation shows that by choosing the motion model to draw the next
generation of particles, we have to use the observation likelihood p(zt | m, xt)
to compute the individual weights.

To summarize this section, particle filters are a nonparametric implemen-
tations of the recursive Bayes filter. They use a set of weighted samples and
can represent arbitrary distributions. The samples are drawn from a proposal
distribution. After determining the importance weights which account for the
fact that the target distribution is different from the proposal distribution,
the resampling step replaces particles with a low weight by particles with a
high importance weight.

In the techniques described in this book, we apply particle filters to solve
the simultaneous localization and mapping problem. Furthermore, we apply
them in the context of information gain-based exploration and to localize a
mobile robot in dynamically changing environments.

2.2 Grid Maps

There exist different types of models for representing the environment which
are frequently used in mobile robotics. The most common ones are feature
maps, geometric maps, and grid maps. A feature map stores a set of features
detected in the environment. Typical features are lines and corners when
proximity sensors are used. Other possibilities are visual features based on
the scale invariant feature transform (SIFT) [91] whenever a camera is used
to perceive the environment. For each feature, these maps store the feature
information together with a coordinate and eventually an uncertainty mea-
sure. This can be realized by a list of features or by using more efficient data
structures like KD-trees [49, 11].

Geometric maps represent all obstacles detected by the robot as geometric
objects, like circles or polygons. This kind of representation is comparably
compact and needs only few memory resources.

The approaches described in this book use grid maps to model the envi-
ronment. Grid maps discretize the environment into so-called grid cells. Each
cell stores information about the area it covers. Most frequently used are
occupancy grid maps that store for each cell a single value representing the
probability that this cell is occupied by an obstacle. The advantage of grids
is that they do not rely on predefined features which need to be extracted
from sensor data. Furthermore, they offer a constant time access to grid cells
and provide the ability to model unknown (unobserved) areas, which is an
important feature in the context of exploration. However, they have the dis-
advantages of discretization errors and of requiring a lot of memory resources.
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In this section, we first introduce the occupancy mapping algorithm, de-
veloped by Moravec and Elfes [108]. Afterwards, we briefly describe a variant
called reflection probability maps. Both approaches are also referred to as
“mapping with known poses.”

2.2.1 Occupancy Probability Mapping

Grid maps discretize the environment into equally sized cells. Each cell rep-
resents the area of the environment it covers. It is assumed that each cell is
either free or occupied by an obstacle. Occupancy grids store for each cell
c a probability p(c) of being occupied by an obstacle. In the following, we
will derive the map update algorithm introduced by Moravec and Elfes which
computes the occupancy probability p(m) for the grid map m.

The algorithm takes into account a sequence of sensor observations z1:t

obtained by the robot at the positions x1:t and seeks to maximize the oc-
cupancy probability for the grid map. One assumption in the algorithm of
Moravec and Elfes is that the different cells are independent. Therefore, the
probability of a map m is given by the product over the probabilities of the
individual cells

p(m) =
∏
c∈m

p(c). (2.27)

In the following, we concentrate on the estimation of the occupancy proba-
bility of the individual cells c ∈ m. By applying Bayes’ rule using x1:t and
z1:t−1 as background knowledge, we obtain

p(c | x1:t, z1:t) =
p(zt | c, x1:t, z1:t−1)p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.28)

We assume that zt is independent from x1:t−1 and z1:t−1. This leads to

p(c | x1:t, z1:t) =
p(zt | c, xt)p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.29)

We apply Bayes’ rule for the term p(zt | c, xt) in (2.29) and obtain

p(zt | c, xt) =
p(c | xt, zt)p(zt | xt)

p(c | xt)
. (2.30)

We can now combine (2.30) and (2.29). Let us furthermore assume that xt

does not carry any information about c if there is no observation zt. This
leads to

p(c | x1:t, z1:t) =
p(c | xt, zt)p(zt | xt)p(c | x1:t−1, z1:t−1)

p(c)p(zt | x1:t, z1:t−1)
. (2.31)

If we exploit the fact that each cell is a binary variable, we can derive the
following equation in an analogous way
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p(¬c | x1:t, z1:t) =
p(¬c | xt, zt)p(zt | xt)p(¬c | x1:t−1, z1:t−1)

p(¬c)p(zt | x1:t, z1:t−1)
. (2.32)

By dividing (2.31) by (2.32), we obtain

p(c | x1:t, z1:t)
p(¬c | x1:t, z1:t)

=
p(c | xt, zt)p(¬c)p(c | x1:t−1, z1:t−1)

p(¬c | xt, zt)p(c)p(¬c | x1:t−1, z1:t−1)
. (2.33)

Finally, we use the fact that p(¬c) = 1 − p(c) which yields

p(c | x1:t, z1:t)
1 − p(c | x1:t, z1:t)

=

p(c | xt, zt)
1 − p(c | xt, zt)

1 − p(c)
p(c)

p(c | x1:t−1, z1:t−1)
1 − p(c | x1:t−1, z1:t−1)

. (2.34)

If we define

Odds(x) =
p(x)

1 − p(x)
, (2.35)

Equation (2.34) turns into

Odds(c | x1:t, z1:t) =
Odds(c | xt, zt)Odds(c)−1 Odds(c | x1:t−1, z1:t−1). (2.36)

This equation has a recursive structure similar to that of a recursive Bayesian
update scheme. The corresponding log Odds representation of (2.36) is given
by

log Odds(c | x1:t, z1:t) =
log Odds(c | zt, xt)
− log Odds(c)
+ log Odds(c | x1:t−1, z1:t−1). (2.37)

The usage of the log Odds notation has advantage that it can be computed
efficiently. It is only necessary to compute a sum in order to update a cell
based on sensory input. To recover the occupancy probability from the Odds
representation given in (2.36), we use the following formula which can easily
be derived from (2.35):

p(x) =
Odds(x)

1 + Odds(x)
(2.38)

This leads to the following occupancy update formula

p(c | x1:t, z1:t) =[
1 +

(1 − p(c | xt, zt))
p(c | xt, zt)

p(c)
(1 − p(c))

1 − p(c | x1:t−1, z1:t−1)
p(c | x1:t−1, z1:t−1)

]−1

. (2.39)
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Equation (2.39) tells us how to update our belief p(c | x1:t, z1:t) about the
occupancy probability of a grid cell given sensory input. In practice, one often
assumes that the occupancy prior is 0.5 for all cells so that p(c)

(1−p(c)) can be
removed from the equation.

It remains to describe how to compute the occupancy probability p(c |
xt, zt) of a grid cell given a single observation zt and the corresponding pose
xt of the robot. This quantity strongly depends on the sensor of the robot
and has to be defined manually for each type of sensor.

2.2.2 Sensor Model for a Laser Range Finder

In case a laser range finder is used, a quite simplistic model can be applied.
Each cell c that is covered by the n-th beam zt,n of the observation zt and
whose distance to the sensor is shorter than the measured one, is supposed to
be unoccupied. The cell in which the beam ends is supposed to be occupied.
The function dist(xt, c) refers to the distance between the sensor and the
center of the cell c. This can be formulated

p(c | zt,n, xt) =

⎧
⎪⎪⎨
⎪⎪⎩

pprior , zt,n is a maximum range reading
pprior , c is not covered by zt,n

pocc, |zt,n − dist(xt, c)| < r
pfree , zt,n ≥ dist(xt, c),

(2.40)

where r is the resolution of the grid map. Furthermore, it must hold 0 ≤
pfree < pprior < pocc ≤ 1. Figure 2.3 depicts an example for such a sensor
model for laser range finder data.

2.2.3 Sensor Model for a Sonar Sensor

In case a sonar sensor is used, the sensor model is slightly more complicated,
since the sensor is not a beam sensor and the observations are more noisy
than the ones of a laser range finder. In practice, one typically uses a mixture
of three functions to express the model. First, the influence of an observation
(which is represented by the difference between pprior and pocc as well as
between pprior and pfree) decreases with the measured distance.

Second, the proximity information of a sonar is substantially affected by
noise. Therefore, one typically uses a piecewise linear function to model a
smooth transition from pfree to pocc as illustrated in Figure 2.4.

Finally, the sonar sensor should not be modeled as a beam sensor, since it
sends out a conic signal. The accuracy of an observation decreases with the
angular distance between the cell under consideration and the optical axis
of the observation. This is expressed by the derivation from the prior and is
typically modeled using a Gaussian with zero mean. Therefore, it is maximal
along the optical axis and decreases the bigger the angular distance form the
optical axis is.
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Fig. 2.3. Sensor model for a laser range finder. It depicts the probability that a
cell is occupied depending on the distance of that cell from the laser sensor.
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Fig. 2.4. Probability that a cell on the optical axis of the sensor is occupied
depending on the distance of that cell from the sensor.

Two examples for a resulting model are depicted in Figure 2.5. It shows
two three-dimensional plots of the resulting occupancy probabilities for a
measurement of 2m (left image) and 2.5m (right image). In this figure, the
optical axis of the sensor cone was identical with the x-axis and the sensor was
placed in the origin of the coordinate frame. As can be seen, the occupancy
probability is high for cells whose distance to xt is close to zt,n. It decreases
for cells with shorter distance than zt,n as well as with increasing values of
the angular distance.
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Fig. 2.5. Occupancy probability introduced by a single ultrasound measurement
of zt,n = 2.0m (left image) and zt,n = 2.5m (right image).

Figure 2.6 depicts the mapping process for a sequence of observations
recorded with an iRobot B21r robot. The first row shows a map was built
from a sequence of previous ultrasound scans. Afterwards the robot perceived
a series of 18 ultrasound scans each consisting of 24 measurements. The oc-
cupancy probabilities for these 18 scans are depicted in the rows from 2 to 7.
The occupancy probability grid obtained by integrating the individual obser-
vations into the map is shown in the last row of this figure. As can be seen,
the belief converges to a representation of the corridor structure in which the
scans where recorded.

2.2.4 Reflection Probability Mapping

Beside occupancy probability grids, there exist alternative realization of grid
maps. A frequently used model is the so-called reflection probability map
or counting model. In contrast to occupancy grid maps, they store for each
cell a reflection probability value. This value provides the probability that a
measurement covering the cell is reflected. Note that the occupancy model
and the counting model are similar but not identical.

In this model, we are interested in computing the most likely reflection
probability map m∗ given the observations and poses of the robot.

m∗ = argmax
m

p(m | x1:t, z1:t) (2.41)

By series of mathematical transformations (see [16] for the details), one can
derive that the most likely map m∗ is the map for which each grid cell c has
the value

p(c | x1:t, z1:t) =
#hits(c, x1:t, z1:t)

#hits(c, x1:t, z1:t) + #misses(c, x1:t, z1:t)
, (2.42)

where #misses(c, x1:t, z1:t) is the number of times a beam zt,n taken from xt

passed through the grid cell c and #hits(c, x1:t, z1:t) is the number of times
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Fig. 2.6. Incremental mapping in a corridor environment. The upper left image
shows the initial map and the lower one contains the resulting map. The maps in
between are the local maps built from the individual ultrasound scans perceived by
the robot.
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a beam ended in that cell. Since the value of each cell can be determined by
counting, this technique is also called counting model.

The differences between occupancy probability and reflection probability
maps is that the occupancy probability typically converges to 0 or 1 for each
cell which is frequently observed. In contrast to that, reflection probability
values converge to values between 0 and 1. Values significantly different from
0 or 1 often occur when mapping objects much smaller than the grid dis-
cretization or, for example, for glass panes which are repeatedly observed
with a laser range finder.



3

Decision-Theoretic Exploration Using

Coverage Maps

3.1 Introduction

There exist several applications in which the exploration task is an integral
part of the robotic mission. The complete and efficient coverage of terrain
is one of the elementary problems in planetary exploration [6], reconnais-
sance [63], rescue [110, 149], mowing [67], or cleaning [68, 38, 137].

Throughout this chapter, we focus on the problem of how to efficiently
explore an environment with a single mobile robot. We describe a decision-
theoretic approach to exploration of unknown terrain with noisy sensors.
The goal is to come up with an accurate model of the environment without
steering the robot manually. Our approach seeks to minimize the uncertainty
in the map over time. Therefore, the next viewpoint of the robot is chosen in
a way that its action provides the highest expected uncertainty reduction. In
the first part of this book, we assume that the movement of the vehicle is not
affected by noise. Later on, we relax this assumption and present a technique
to deal with the pose uncertainty of a mobile robot.

In addition to the exploration aspect, we consider the problem of how to
model the environment of a mobile robot and how to update the map upon
new sensory input. In particular, we introduce coverage maps as a probabilis-
tic way to represent the belief of the robot about the state of the environment.
In contrast to occupancy grids [108], in which each cell is considered as either
occupied or free, coverage maps represent for each cell of a given discretiza-
tion a posterior about the percentage this cell is covered by an object. As
an example consider the situation depicted in the left images of Figure 3.1
in which a cell is partly covered by an obstacle. Using occupancy grid maps
the probability that this cell is occupied converges to 1 if the sensors of the
robot repeatedly detect the obstacle (as illustrated in the left image of this
figure). Since the object covers only 20% of the area of this cell, a coverage
value of 0.2 (as shown in the right image of Figure 3.1) would be a better
representation of the given situation. Additionally, we present a sensor model
that allows us to appropriately update a coverage map upon sensory input
affected by noise.

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 23–41.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 3.1. Typical occupancy map obtained in situations in which cells are only
partly occupied (left) and a coverage map containing the corresponding coverage
values (right). Black represents high occupancy probability respectively coverage
value.

This chapter is organized as follows. In the next section, we introduce the
idea of coverage maps. In Section 3.3, we present a sensor model that allows
us to update a given coverage map upon sensory input. In Section 3.4, we
describe a decision-theoretic approach to exploration based on coverage maps.
After this, the experiments illustrate the various properties of our approach.
We present accurate maps learned by a real robot and discuss the advantages
of our technique over existing approaches. Finally, we discuss related work in
Section 3.7.

3.2 Definition of Coverage Maps
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Fig. 3.2. The coverage posterior for the cell containing the obstacle in Figure 3.1.

As already mentioned above, occupancy grids rest on the assumption that
the environment has binary structure, i.e., that each grid cell is either occupied
or free. This assumption, however, is not always justified. For example, if the
environment contains a wall that is not parallel to the x- or y-axis of the grid
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there must be grid cells which are only partly covered. In occupancy grids,
the probability that such cells are occupied will inevitably converge to 1 (see
Figure 3.1). Coverage maps overcome this limitation by storing for each cell
a posterior about its coverage. Coverage values range from 0 to 1. A coverage
of 1 means that the cell is fully occupied and an empty cell has a coverage
of 0. Since the robot usually does not know the true coverage of a grid cell c
it maintains a probabilistic belief p(c) about the coverage of c. In principle,
there are different ways of representing p(c). They range from parametric
distributions such as (mixtures of) Gaussians or non-parametric variants such
as histograms. Throughout this work, we assume that each coverage posterior
is modeled by a histogram over possible coverage values. More precisely, we
store a histogram for each grid cell, where each bin contains the probability
that the corresponding grid cell has the particular coverage.

A coverage map cell is typically initialized using a uniform distribution
in order to represent the maximum uncertainty about the actual state of
the cell. In contrast to this, Figure 3.2 shows a typical coverage posterior
we frequently obtain for partly occupied cells. The depicted posterior was
generated based on observations perceived in a simulated environment like
the one shown in Figure 3.1.

So far, we only explained the idea of coverage maps but left open how to
actually determine the posterior based on observations. In the next section,
we describe how we can update coverage maps based on sensory input.

3.3 Updating Coverage Maps Upon Sensory Input

To update a coverage map whenever sensor data arrives, we apply a Bayesian
update scheme. Throughout this chapter, we assume that our sensor provides
distance information. Thus, we need a formalism to convert the distance
information to coverage values. What we need to determine is the cover-
age map m that has the highest likelihood under all distance measurements
z1:t = z1, . . . , zt. If we use Bayes’ rule and then assume that consecutive
measurements are independent given that we know the map m, we obtain

p(m | x1:t, z1:t)
Bayes′rule

=
p(z1:t | m, x1:t)p(m | x1:t)

p(z1:t | x1:t)
(3.1)

=
p(m | x1:t)
p(z1:t | x1:t)

p(z1:t | m, x1:t) (3.2)

independence
=

p(m | x1:t)∏t
t′=1 p(zt′ | xt′)

t∏
t′=1

p(zt′ | m, xt′). (3.3)

Next we need to know how to determine the likelihood p(zt | m, xt) of mea-
suring zt given the map m and the pose xt of the vehicle. Again, we apply
Bayes’ rule and obtain
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p(m | x1:t, z1:t)
Bayes′rule

=
p(m | x1:t)∏t
t′=1 p(zt′ | xt′)

t∏
t′=1

p(m | xt′ , zt′)p(zt′ | xt′)
p(m | xt′)

(3.4)

=
p(m | x1:t)∏t

t′=1 p(zt′ | xt′)

∏t
t′=1 p(zt′ | xt′)∏t
t′=1 p(m | xt′)

t∏
t′=1

p(m | xt′ , zt′) (3.5)

=
p(m | x1:t)∏t

t′=1 p(m | xt′ )

t∏
t′=1

p(m | xt′ , zt′) (3.6)

m ind. of x� 1
p(m)t−1

︸ ︷︷ ︸
η′

t∏
t′=1

p(m | xt′ , zt′) (3.7)

= η′
t∏

t′=1

p(m | xt′ , zt′). (3.8)

Equation (3.7) is obtained from (3.6) by assuming that m is independent of
xt given we have no observations. The variable η′ represents a normalization
constants ensuring that the left-hand side sums up to one over all m. We
assume that the individual cells of a coverage map are independent. This is
not true in general, but is frequently used in the context of grid maps. We
would like to refer to a work by Thrun [147] on how to better deal with the
dependency between cells. Finally, we obtain

p(m | x1:t, z1:t) = η′
t∏

t′=1

∏
c∈m

p(c | xt′ , zt′) (3.9)

= η′ ∏
c∈m

t∏
t′=1

p(c | xt′ , zt′). (3.10)

Thus, to update a map given a measurement zt we simply have to multiply
the current belief about the coverage of each cell c by the belief about the
coverage resulting from zt. The maximum likelihood coverage map is obtained
by choosing the mode of the coverage histogram for each cell c.

It remains to describe how we actually compute p(c | xt, zt), i.e. how we
determine the distribution about the potential coverage values of a cell c
with distance dist(c, xt) to the sensor given a measurement zt. In our current
system, we use a mixture of a Gaussian N (μ, σ) and a uniform distribution
γ to describe the probability distribution p(c | xt, zt) about the coverage of c

p(c | xt, zt) = γ(dist(c, xt), zt) +
ξ(zt)N (μ(dist(c, xt) − zt), σ(dist(c, xt), zt)), (3.11)
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where ξ(zt) is an indicator variable about the validity of the observation zt.
In case zt is a maximum range reading, ξ(zt) equals zero otherwise it is one.
dist(c, xt) is the euclidian distance between the center of the cell c and the
position of the robot (the sensor) at time t.

The value of the uniform distribution γ(dist(c, xt), zt) increases with
dist(c, xt) and the measured distance zt. This reflects a typical property of
proximity sensors like sonars, because the accuracy of a measurement de-
creases with the distance to the obstacle. The mean μ(x) of the Gaussian is
computed in the following way:

μ(x) =

⎧
⎨
⎩

0, x < − r
2

1
2 + x

r , |x| ≤ r
2

1, x > r
2

(3.12)

Here r is the resolution of the grid discretization. We distinguish three situ-
ations, depending on whether the measurement zt ends in c or not. Suppose
that the measurement does not end in c and the distance dist(c, xt) is shorter
than zt. In this case, we have dist(c, xt) − zt < − r

2 . In such a situation, the
mean of the Gaussian is zero. In this way, we assume that a cell which is
covered by a measurement that does not end within this cell is most likely
empty. The second line of (3.12) represents the situation in which z ends
within c. In this case, the mean is inverse proportional to the area the cell is
covered by zt. Finally, cells lying a small distance behind a cell, in which the
measurement ends, are most likely completely occupied so that the mean is 1.
This value which is set to 20 cm in our implementation models the thickness
of the walls and objects in the environment.

The value of the standard deviation σ(dist(c, xt), zt) of the Gaussian is
also a function that is monotonously increasing in dist(c, xt) and zt except
when |dist(c, xt) − zt| < r

2 . In this interval, σ(dist(c, xt), zt) has a constant
value that exceeds all values outside of this interval.

To obtain the optimal parameters for the various functions in our sensor
model shown in (3.11), we apply the maximum likelihood principle. We used
data sets recorded with a B21r robot in our department building using sonar
and laser observations. We then compared the resulting maps build with the
sonar sensors to the ground truth map obtained by applying a highly accurate
scan-alignment procedure [61] on the laser range information. We can easily
compute the exact coverage of each cell of a given discretization by straight-
forward geometric operations. We evaluate a particular set of parameters
by computing the likelihood of the ground truth map given the correspond-
ing coverage map and by applying a local search techniques to determine a
parameter setting that maximizes the likelihood of the ground truth map.

Figure 3.3 depicts a fraction of the resulting sensor model p(c | zt, xt) for
the ultrasound sensors. As the plot illustrates, for a measured distance of
1m, cells close to the robot are with high likelihood unoccupied. Cells close
the measured distance are covered with a high likelihood.
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Fig. 3.3. This picture shows our sensor model p(c | xt, zt) for a proximity mea-
surement (here for a sonar reading with a measured distance zt = 1m).

The maximum likelihood coverage map obtained with this model is shown
in the top image of Figure 3.4. The size of the environment depicted in this
figure is 17m by 2.6m. The lower image of this figure shows the ground truth
map. As can be seen from the figure, the similarity between the learned map
and the ground truth is quite high.

Fig. 3.4. The top image depicts a coverage map learned from ultrasound data
using our sensor model and map update technique. In this experiment, most of the
obstacles fit into the grid discretization and therefore only a few cells show partly
occupied cells. The lower image illustrates the corresponding ground truth map
learned from laser range data.
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3.4 Decision-Theoretic Exploration with Coverage Maps

One of the key problems during exploration is to choose appropriate view-
points. In general, there are different aspects that are relevant. On the one
hand, the uncertainty of the robot about the current state of the map should
be as small as possible and on the other hand, the number of measurements to
be incorporated to achieve this uncertainty reduction as well as the traveled
distance should be minimized.

Coverage maps are well-suited to support a decision-theoretic approach to
exploration. To determine the uncertainty in the state of a particular cell,
we consider the entropy of the posterior for that cell. Entropy is a general
measure for the uncertainty of a belief and is defined as

H(p(x)) = −
∫

x

p(x) log p(x) dx. (3.13)

In case a histogram is used to represent p(x), the integral turns into a sum
over the bins of the histogram. H is maximal in case of a uniform distribution.
The minimal value of zero (in the case of a discrete posterior) is obtained if
the system is absolutely certain about the state of the corresponding cell. To
minimize the uncertainty in the current map, all we need to do is to reduce
the entropy of the individual histograms in the coverage map since the cells
are assumed to be independent.

The entropy also allows us to define when the exploration task has been
completed. We regard the exploration task as completed as soon as the robot
reaches a defined level of certainty about the map. This is a more appropriate
choice than regarding an environment as explored as soon as all (reachable)
cells have been covered with the robots’ sensors. Suppose the environment
is of limited size. Then, we define the goal of the exploration process for a
coverage map m as H(p(c)) < ε for all cells c ∈ m that can be reached by the
robot. The value of ε describes the desired level of certainty about the state of
all cells. Additionally, the system has to detect a situation in which the robot
is unable to reduce the entropy of a cell below ε to ensure the termination
of the exploration task. In our system, this is achieved by monitoring the
change of entropy. If this change is below a threshold value for consecutive
measurements, the cell is regarded as explored.

In this section, we specified the termination criterion for our exploration
task based on the entropy in the map model. In the following, we explain
how we actually guide the robot through the environment.

3.4.1 Choosing the Closest Target Location (CL)

A popular exploration strategy is to drive to the closest location at which
the robot can gather information about a cell that has not been sufficiently
explored. This strategy has been shown to provide short trajectories for single
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robot exploration tasks [77]. As mentioned above, our approach uses the en-
tropy to measure the uncertainty about a grid cell. A cell is regarded as been
sufficiently observed if the entropy of the coverage belief does not exceed ε or if
it does not change any longer. The first strategy, called CL, does not take into
account how much information will be obtained at a particular viewpoint. It
rather seeks to minimize the distance to the next point by selecting

c∗ = argmin
c∈L(m)

distm(x, c). (3.14)

Here L(m) is the set of reachable cells which have a grid cell with high entropy
in its visibility range. distm(x, c) is the length of the shortest path between
the current pose x of the robot and the location c given the current map m
of the environment.

3.4.2 Exploration Using the Information Gain (IG)

The second strategy, called IG, is solely governed by the information gain
that can be obtained about the environment at a specific viewpoint. The
information gain is used to take into account the accuracy of the information
provided by the sensor. We compute the expected information gain which is
the expected change of entropy given that the robot obtains a measurement
at a certain location in the map.

For a given cell c and measurement z taken from x, the information gain
is defined as

I(c, x, z) = H(p(c)) − H(p(c | x, z)). (3.15)

Here p(c) is the coverage histogram of cell c and p(c | x, z) the same histogram
after integrating the measurement z taken from the pose x according to our
sensor model. The information gain of a measurement is then computed as the
sum of the information gains for all cells covered by that measurement. Since
we do not know which measurement we will receive if the robot measures at
a certain position x, we have to integrate over all possible measurements to
compute the expected information gain for that viewpoint

E[I(x)] =
∫

z

p(z | m, x)
∑

c∈Cov(x,z)

I(c, x, z) dz. (3.16)

Here Cov (x, z) is the set of cells covered by measurement z taken from loca-
tion x. In order to estimate Cov (x, z), we apply a ray-casting technique based
on the current maximum likelihood map. Considering only the maximum like-
lihood map to compute the observation p(z | m, x) is an approximation but
it allows us to compute this quantity in an efficient way. In our approach, we
take into account a discretized set of proximity measurements. In this way,
the integral turns into a sum
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E[I(x)] �
∑

z

p(z | m, x)
∑

c∈Cov(x,z)

I(c, x, z). (3.17)

Since the complexity of (3.17) depends exponentially on the number of dimen-
sions of the measurement, we consider all dimensions independently. Other-
wise the computation would be intractable. For example, for our B21r robot
Albert (see Figure 3.5) equipped with 24 ultrasound sensors, we compute the
average information gain over all 24 sensors independently.

To evaluate a potential viewpoint, we generate a set of potential proxim-
ity observations. This set is given by all possible distances the sensor can
return up to a given resolution. In our current implementation, we simulate
all proximity observations between 20 cm and 2.5m with a resolution of 2 cm.
We then determine the likelihood for each observation and its effect on the
entropy of the map. This simulation process is computationally intensive, but
it provides the expected reduction of entropy for each grid cell in the map.
This information is required when seeking for exploration strategies that min-
imize the uncertainty in the map model. In our approach, we consider each
grid cell c as a potential next viewpoint and select the one which provides
the highest expected entropy reduction

c∗ = argmax
c∈L(m)

E[I(c)]. (3.18)

In extensive experiments, we figured out that an approach that purely relies
on the information gained at particular viewpoints usually minimizes the
number of measurements needed to learn a map. However, it has the major
disadvantage that it does not take into account the overall path length of the
resulting trajectory.

Fig. 3.5. The left image depicts the B21r robot Albert used to carry out the
experiments. Albert is equipped with ring of 24 ultrasound sensors. The other
images show photographs taken within the corridor of our office environment.
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3.4.3 Using IG in a Local Window (IG WIN)

To overcome the disadvantage that the strategy IG does not take into account
the overall path length of the resulting trajectory, we defined the strategy
IG WIN. This technique restricts the search for potential viewpoints to a
local window. This window defines an area in the environment the robot has
to explore completely before focusing on a different area. The next viewpoint
can be determined by

c∗ = argmax
c∈Lwin(m)

E[I(c)]. (3.19)

Here, Lwin(m) refers to the potential goal locations which are located in the
local window. Once the window has been explored, there is no need for the
robot to return to this area again. As we point out in the experiments, the
distance to be traveled can be significantly reduced using this strategy.

3.4.4 Combination of IG and CL (IG CL)

The final strategy discussed in this chapter tries to combine the properties of
the strategies CL and IG. The goal is to find the best trade-off between the
expected information gain E[I(c)] of possible viewpoints c ∈ L(m) and the
costs distm(x, c) of reaching them. This is achieved by combining (3.14) and
(3.18)

c∗ = argmax
c∈L(m)

[
α

E[I(c)]
maxc′∈L(m) E[I(c′)]

−(1−α)
distm(x, c)

maxc′∈L(m) distm(x, c′)

]
. (3.20)

Thenormalization in (3.20) is performed to account for the fact that it is unclear
how to subtract a distance from an information gain. Therefore,we subtract the
relative cost from the relative information gain. As we show in the experiments
of this chapter, this leads to a well balanced exploration behavior.

Equation (3.20) combines the advantages of the strategies IG and CL. It
reduces the distance to be traveled by the robot and the number of measure-
ments necessary to achieve the desired level of certainty. By adapting the
weight α the user can easily influence the behavior of the robot and optimize
its performance for a special task. A value close to zero results in the strat-
egy CL, whereas a value close to 1, in contrast leads to a strategy that only
considers the information gain.

3.5 Exploration Using Occupancy Grid Maps

In general, the decision-theoretic exploration technique presented in this
chapter is not restricted to coverage maps. As long as the underlying map
representation allows the robot to compute the uncertainty of a local area
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like a grid cell. One can also compute the entropy of an occupancy grid
cell c as

H(p(c)) = −p(c) log p(c) − (1 − p(c)) log(1 − p(c)). (3.21)

An occupancy grid map can also be seen as a coverage map using coverage
histograms with two bins. Since each cell is represented by a binary variable,
the amount of information stored per cell is small compared to coverage maps.
This is due to the fact that coverage maps allow to model partly occupied
cells and use a full histogram instead of a binary variable. We therefore chose
this representation for our approach presented in this chapter.

3.6 Experimental Results

Our techniques described above have been implemented and evaluated using
a real robot as well as in simulation runs. In our experiments, the use of cover-
age maps with our decision-theoretic viewpoint selection strategy has shown
an advantage over standard exploration strategies often used in combination
with occupancy grids. We figured out that whenever a robot has to actively
control its motions in order to acquire all information necessary to generate
an accurate map, the uncertainty-driven approach is of utmost importance.

The experiments described in this section are designed to illustrate that
coverage maps in combination with our sensor model can be used to learn high
quality maps even if noisy sensor are used. We demonstrate that they allow us
a decision-theoretic control of the robot during exploration. We furthermore
compare our method to the scan counting technique for exploration. Scan
counting stores for each cell the number of times it has been observed and in
this way decides if a cell has been sufficiently explored. As we show, the use
of scan counting leads to either longer trajectories than our approach or to
less accurate maps.

Please note that the simulation of potential observation sequences is com-
putationally expensive. In our experiments, the robot had to stop after it
reached its viewpoint in order to evaluate future actions. Therefore, we do
not consider measures like average speed of the robots in this chapter.

3.6.1 Mapping with Noisy Sensors

The first experiment is designed to illustrate that we obtain highly accu-
rate coverage maps using our sensor model. In this real world experiment,
the mobile robot Albert explored parts of our office environment using our
decision-theoretic viewpoint selection technique. Albert traveled along the
corridor and entered three rooms. The middle and the right image of Fig-
ure 3.5 show pictures of this environment. As can be seen, there are lots of
glass panes which are hard to map with ultrasounds. The resulting coverage
map is shown in Figure 3.6. We would like to emphasize that even smaller
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Fig. 3.6. This figure depicts a coverage map learned by Albert using its ultrasound
sensors in the environment depicted in Figure 3.5. In the magnified view, partly
occupied cells are visible (grayish cells). The size of each grid cell within this map
is 10 cm by 10 cm.

details such as the narrow pillars at the walls are visible in the resulting map.
The left image of this figure shows a magnified view on partly occupied cells.

Figure 3.7 depicts snapshots of an exploration experiment in the same
environment using the exploration strategy IG CL. The individual images
depicts the map constructed so far as well as the entropy values of the in-
dividual map cells. The darker the value, the higher the entropy. The red
points represent the set L(m), which is the set of potential target locations
the robots considers to approach. As can be seen, the robot explores the en-
vironment until the set L(m) is empty, which means that all reachable cells
and their direct surroundings have a low entropy value.

Another example for a coverage map build from real sonar data is depicted
in the top image of Figure 3.8. The sonar data (see lower image of the same
figure) has been recorded while the robot was controlled manually using a
joystick. Since the robot was not performing an exploration task it did not
enter any of the rooms close to the corridor.

3.6.2 Comparing the Viewpoint Selection Strategies

Robots performing 2D exploration tasks with sonars or laser range scanners
typically integrate every sensor measurement because the amount of data is
reasonably small and easy to integrate. In this section, we also consider the
situation that analyzing a measurement produces high costs. This might by
the case if, for example, the distance information needs to be extracted from
stereo images. In such a situation, the number of measurements needed for
the exploration task is a value of interest.

As mentioned above, one of the major advantages of our decision-theoretic
exploration technique is that they allow us to integrate the uncertainty in the
map model into the selection process of the next viewpoint. The experiments



3.6 Experimental Results 35

robotrobotrobot

robot

robot

robot

Fig. 3.7. The images show snapshots during an exploration experiment. The upper
parts of each image shows the current map and the lower one corresponding entropy.
Darker values in the lower image indicate higher entropy. The poses of the robot
is indicated by the blue circle in the upper parts. The red points indicate potential
viewpoints.

in this section are designed to compare the performance of the different strate-
gies using the traveled distance and the number of required observations as
measure. To carry out the experiments, we varied the size of the local win-
dow when using IG WIN and the weight α in the evaluation function shown
in (3.20). In Figure 3.9, the numbers behind IG CL show the value of the
weight α and the numbers behind IG WIN indicate the radius of a circle
which defines the window. The results have been obtained using 20 runs per
strategy. Please note that further experiments carried out in alternative en-
vironments showed similar results. The maximum allowed entropy during all
experiments described in this section was set to 0.6 (using 11 histogram bins).

The left graph in Figure 3.9 shows the average number of measurements
necessary to complete the exploration task for each strategy. As can be seen
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Fig. 3.8. The top image depicts a coverage map build from recorded sonar data at
the University of Washington. The lower image shows 2% of all sonar scans used
to build the map above and illustrates the high noise in the measurement data.
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Fig. 3.9. The left graph shows the average number of measurements needed by
different strategies. The right one depicts the average path length of the exploration
for each strategy. The value behind IG WIN shows the size of the local window and
behind IG CL the value of the parameter α. The errorbars show the 5% significance
interval.

from the figure, the strategy IG needs the minimum number of measurements.
The strategy IG CL with α = 0.5 needs approximately the same number of
measurements as IG. The strategy CL requires the maximum number of
measurements compared to all other strategies considered here. The reason
is that it only seeks to minimize the path length without considering the
information gained at particular locations.

In our experiments, we found that a nearest neighbor viewpoint selection
strategy like CL outperforms an approach considering the information gain if
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the robot is allowed to integrate measurements while it is moving (assuming
that the acquisition and integration of measurements can be done fast). This
can be seen in right image of Figure 3.9 which plots the average path length
driven by the robot during the exploration task for all different strategies.
With respect to the path length the strategy CL shows the best behavior
as the resulting trajectories are shorter than those of all other techniques.
In contrast to that, the IG strategy ignores the distance to be driven and
therefore produces an extremely long path which results in the worst behavior
of all strategies. The IG CL strategy with α = 0.4 appears to yield a good
trade-off between the number of measurements and the overall path length.
According to our experiments, it slightly outperforms the IG WIN strategy.

3.6.3 Advantage over Scan Counting

The next experiment is designed to illustrate that an approach which con-
siders the uncertainty in the belief of a cell to select viewpoints yields more
accurate maps than techniques relying on scan counting approaches. Scan
counting techniques store for each cell the number of times this cell has been
intercepted by a measurement. Several exploration techniques [18, 36, 164]
use scan counting and assume that a place is explored if it has been scanned
once. This can be problematic especially when the underlying sensors are
noisy. Figure 3.10 shows a typical occupancy grid map of the corridor at
our laboratory obtained from real sonar data and using this approach. Al-
though this map reveals the structure of the environment, it lacks several
details that are contained in the corresponding coverage map obtained with
our uncertainty-driven exploration technique. Since the exploration process
stops as soon as all reachable locations were intercepted by a measurement at
least once, typically many cells of the resulting map have a high uncertainty.
Especially, if noisy sensors are used the robot has to scan cells multiple times.
This leads to an extension of scan counting in which one assumes that each
cell has to be covered n times and not only once. In practice, it is unclear
how to choose the value for n. A candidate value could be the maximum
number of measurements necessary for obtaining a coverage map that fulfills
the entropy threshold criterion.

technique path length |{c | H(h(c)) > ε}|
coverage maps 89.1m 0%

counting (n=1) 26.6m 21%

counting (n=50) 90.6m 1.5%

Table 3.1. This table shows the path length and number of cells with high entropy
for different exploration strategies. The values are obtained by a series of real world
explorations runs performed in our department.
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Fig. 3.10. The top image depicts an occupancy grid map obtained with scan
counting (n = 1). The bottom image shows the corresponding coverage map.

To analyze the quality of occupancy grid maps obtained for different values
of n, we performed several experiments. The results for n = 1 and n = 50
are summarized in Table 3.1 (in practical experiments we found that n =
50 yields coverage maps that typically fulfill the entropy criterion for the
majority of grid cells using ultrasound sensors). The right column of this
table contains the percentage of cells in m for which the entropy exceeds the
given threshold. As can be seen from the figure, more than 20% of the cells do
not fulfill the entropy criterion if n = 1. In the case of n = 50, still 1.5% of the
cells are above this threshold. In contrast to this, our approach considers the
uncertainty in the coverage of the individual cells so that the resulting maps
are more accurate. As this experiment demonstrates, even extended scan
counting does not guarantee that in the end every cell is explored sufficiently.
Typically, some cells will be measured too often, others not often enough.

To analyze the relationship between the overall distance traveled and the
percentage of sufficiently explored cells, we performed a series of 50 simulation
experiments. In these experiments, we forced the robot to reach a scan count
of n where n varied between 1 and 130. We counted the number of cells that
were sufficiently explored given the entropy criterion for coverage maps and
plotted it against the length of the overall path. The resulting graph is shown
in Figure 3.11. The cross on the right side indicates the path length obtained
when using our exploration strategy IG CL for coverage maps. If one requires
that 85% or more of the cells c of the map should satisfy H(h(c)) < ε (here
ε = 0.6), a decision-theoretic exploration strategy yields shorter trajectories
than extended scan counting.

3.7 Related Work

Exploration is the task of guiding a vehicle during mapping such that it covers
the environment with its sensors. In addition to the mapping task, efficient
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Fig. 3.11. This image shows the resulting path length for scan counting obtained
using a simulator. The cross shows the average path length when using coverage
maps.

exploration strategies are also relevant for surface inspection, mine sweeping,
or surveillance [21, 96]. In the past, several strategies for exploration have
been developed. A popular technique is to extract frontiers between known
and unknown areas [18, 78, 163, 164] and to visit the nearest unexplored
place. Koenig and Tovey [77] have shown that such a strategy which guides
the vehicle to the closest unexplored point keeps the traveled distance rea-
sonably small compared to the shortest trajectory which covers the whole
environment. Most approaches applying such a technique solely distinguish
between scanned and unscanned areas and do not take into account the ac-
tual information gathered at each viewpoint. To overcome this limitation,
González-Baños and Latombe [52] determine the amount of unseen area that
might be visible to the robot from possible viewpoints. To incorporate the
uncertainty of the robot about the state of the environment, Moorehead et
al. [105] as well as Bourgault et al. [15] use occupancy grids and compute
the entropy of each cell in the grid to determine the utility of scanning from
a certain location. Whaite and Ferrie [161] have presented an approach that
also uses the entropy to measure the uncertainty in the geometric structure
of objects that are scanned with a laser range sensor. In contrast to our work,
they use a parametric representation of the objects to be scanned.

Grabowski et al. [54] present an exploration technique based on occupancy
grids which is optimized for sonar sensors. In their approach, the robot is
forced to observe obstacles from different angles. In this way, they obtain
sharper boundaries between obstacles and free space area. To select the next
viewpoint, they choose the closest one.

Edlinger and von Puttkamer [36] developed a hierarchical exploration
strategy for office environments. Their approach first explores rooms and
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then traverses through doorways to explore other parts of the environment.
Tailor and Kriegman [144] describe a system for visiting all landmarks in
the environment of the robot. Their robot maintains a list of unvisited land-
marks that need to be approached and mapped by the robot. Dudek et al. [34]
propose a strategy for exploring an unknown graph-like environment. Their
algorithm does not consider distance metrics and is designed for robots with
very limited perceptual capabilities.

Additionally, several researchers focus on the problem of simultaneous lo-
calization and mapping during exploration [15, 22, 94], an aspect that we
do not address in this chapter. We assume that the relative pose informa-
tion of the robot is accurate enough to integrate a sequence of measurements
correctly into a grid map.

Our representation of the environment can be seen as an extension of occu-
pancy grid maps introduced by Moravec and Elfes [108] (see also Chapter 2).
Coverage maps are able to model partly occupied cells and provide tools to
reason about the uncertainty of the system about the state of grid cells. Com-
pared to occupancy grids, our approach is a richer representation because it
can store more information about cells. As a result, it has the disadvantage
of high memory requirements since it stores histograms instead of a single
probability values. Furthermore, the update of the cells upon sensory input
is computationally more expansive.

Very recently, our exploration framework including coverage maps have
been reimplemented by Rocha et al. [123] and applied to a stereo camera
sensor instead of sonars. In their system, they use the concept of coverage
maps to build up a three-dimensional grid instead of a two-dimensional one. A
further difference to the work presented here is that they compute a gradient
field based on the entropy to generate smoother trajectories for the robot.
Their experiments confirmed the results reported here: “Experimental results
obtained with a real robot and stereo-vision successfully validated the proposed
framework” [123].

3.8 Conclusion

In this chapter, we introduced coverage maps as a probabilistic representation
scheme for grid-based maps built by mobile robots from sensor data. Coverage
maps store in each cell a posterior about the coverage of that cell. In this way,
they offer the opportunity to model partly occupied cells. We also developed a
sensor model designed to update coverage maps upon sensory input. We then
presented a decision-theoretic approach to guide a vehicle during exploration.
This technique uses the coverage posterior in the map to reason about the
uncertainty of the robot about each location in the environment. It simulates
potential observations to be obtained at the different target locations and
takes into account their effect on the map model. The goal is to choose the
viewpoint that minimized the overall uncertainty in the map model.
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Our technique has been implemented and evaluated in extensive simula-
tion runs and in real world experiments. The experiments illustrate that by
using coverage maps it is possible to build accurate maps even with noisy
sensors. Additionally, they demonstrate that our decision-theoretic explo-
ration approach can be used to control a robot in order to obtain maps
not exceeding a given level of uncertainty, which is useful especially if the
robot uses noisy sensors such as ultrasounds. Experiments analyzing differ-
ent exploration strategies indicate that a technique combining the maximum
uncertainty reduction and the distance to be traveled yields the best trade-
off between the number of necessary measurements and the length of the
resulting paths.
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Coordinated Multi-Robot Exploration

4.1 Introduction

In the previous chapter, we introduced a framework for mobile robot explo-
ration. The goal of our approach was to select appropriate viewpoints for
a single robot in order to build a map with low uncertainty. In contrast to
that, we consider in this chapter the problem of exploring unknown environ-
ments with a team of cooperating robots. The use of multiple robots is often
suggested to have advantages over single robot systems [20, 35]. First, coop-
erating robots have the potential to accomplish a task faster than a single
robot [58]. By using several robots, redundancy can be explicitely introduced
so that such a team can be expected to be more fault-tolerant than a single
robot. Another advantage of robot teams arises from merging overlapping
sensor information, which can help to compensate for sensor uncertainty. As
a result, the map can be expected to be more accurate. Multiple robots have
also been shown to localize themselves more efficiently, especially when they
have different sensor capabilities [42, 122].

However, when robots operate in teams there is the risk of interference
between them [132, 50]. For example, if the robots have the same type of
active sensors such as ultrasound sensors, the overall performance can be
reduced due to cross-talk. The more robots that are used, the more time
each robot may spend on detours in order to avoid collisions with other
members of the team. Efficient exploration techniques that seek to minimize
the overall time to complete the task should consider techniques to distribute
the robots over the environment and to reduce the number of redundantly
explored areas.

Most approaches to multi-robot exploration proceed in the following way.
First, a set of potential target locations or target areas is determined. Sec-
ondly, target locations are assigned to the individual members of the team.
The robots then approach those target locations and include their observa-
tions obtained along the paths into a map. This process is repeated, until
the environment has completely been explored. A stopping criterion can be a
threshold on the entropy as applied in the previous chapter or a scan counting

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 43–71.
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technique (see Section 3.6.3) which requires that each cell is covered at least
once by the sensor of one robot.

In this chapter, we present an algorithm for coordinating a group of robots
that enables them to efficiently explore their environment. The goal is to com-
plete the task as fast as possible. Our technique assigns a utility to each target
location and follows a decision-theoretic approach to explicitly coordinate the
robots. It does so by maximizing the overall utility and by minimizing the
potential for overlap in information gain amongst the various robots. The
algorithm simultaneously considers the utility of observing unexplored areas
and the cost for reaching these areas. By trading off the utilities and the
cost and by reducing the utilities according to the number of robots that
are already heading towards this area, coordination is achieved in an elegant
way. The basic idea of discounting the utility of target locations that might
be visible by a different robot has originally been presented in [106] and has
been integrated into two different systems [17, 136].

In practice, one also has to deal with problems like limited communication
ranges of the network that limit the ability of the vehicles to exchange data.
Naturally, the task of exploring a terrain with limited communication range
is harder than without this constraint. If the distance between the robots be-
comes too large to be bridged by the wireless network or if a temporal network
error occurs, robots may explore an area another robot has already explored
before, which can lead to a suboptimal behavior. We describe how to use
our algorithm with robot teams that provide only a limited communication
range.

Our technique has been implemented on teams of heterogeneous robots
and has been proven to work effectively in real-world scenarios. Additionally,
we have carried out a variety of simulation experiments to explore the prop-
erties of our approach and to compare the coordination mechanism to other
approaches developed so far. As the experiments demonstrate, our technique
significantly reduces the time required to completely cover an unknown en-
vironment with a team of robots compared to an approach which lacks our
centralized coordination. We also consider other coordination techniques and
provide comparisons to our approach. Furthermore, we describe experiments
in which we analyze our algorithm in the context of teams of mobile robots
with a limited communication range.

The rest of this chapter on multi-robot exploration is organized as follows.
In the next section, we present the decision-theoretic approach to coordi-
nated exploration with mobile robots. In Section 4.3, we briefly describe the
technique used by our system to acquire and communicate maps of the en-
vironment. Section 4.4 presents a series of experiments carried out with real
robot systems and in simulation and Section 4.5 provides comparisons to ex-
iting coordination techniques. Finally, we discuss related work in Section 4.6.
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4.2 Coordinating a Team of Robots during Exploration

The goal of the exploration process is to cover the whole environment in a
minimum period of time. Therefore, it is essential that the robots keep track
of which areas of the environment have already been explored. Furthermore,
the robots have to construct a global map online in order to plan their paths
and to coordinate their actions. We first assume that at every point in time
both, the map of the area explored so far and the positions of the robots in this
map, can be communicated between the robots. We focus on the question of
how to coordinate the robots in order to efficiently cover the environment. We
then consider the situation in which the robots have a limited communication
range.

In this chapter, we focus on the coordination aspect of the exploration
problem. Since we deal with large teams of robots, we are interested in keep-
ing the memory requirements small. We therefore use standard occupancy
grids instead of coverage maps to model the environment since they store
only a binary random variable for each cell instead of a histogram. In case we
had enough memory resources available, coverage maps would have been a
better choice. However, the coordination aspect can be regarded as indepen-
dent from the underlying representation. We furthermore assume throughout
this chapter that “exploredness” is a binary concept, since we focus on the
coordination aspect. We regard a cell as explored as soon as it has been
intercepted by a sensor beam. This concept is also known as scan counting.

To guide the exploration process, we adopt the notation of frontiers which
has originally been introduced by Yamauchi [163]. As a frontier cell we denote
each already explored cell that is an immediate neighbor of an unknown,
unexplored cell. If we direct a robot to such a cell, we can expect that it
gains information about the unexplored area when it arrives at its target
location. The fact that a map generally contains several unexplored areas
raises the problem of how to assign exploration tasks represented by frontier
cells to the individual robots. If multiple robots are involved, we want to avoid
that several of them move to the same location. To deal with these problems
and to determine appropriate target locations for the individual robots, our
system uses a decision-theoretic approach. We simultaneously consider the
cost of reaching a frontier cell and the utility of that cell. For each robot, the
cost of a cell is proportional to the distance between the robot and that cell.
The utility of a frontier cell instead depends on the number of robots that
are moving to that cell or to a place close to that cell.

In the following sections, we describe how we compute the cost of reaching
a frontier cell for the individual robots, how we determine the utility of a
frontier cell, and how we choose appropriate assignments of frontier cells to
robots.
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4.2.1 Cost of Reaching a Target Location

To determine the cost of reaching a frontier cell, we compute the optimal
path from the current position of the robot to all frontier cells based on a
deterministic variant of the value iteration, a popular dynamic programming
algorithm [8, 66]. In the following, cx,y corresponds to the x-th cell in the
direction of the x-axis and the y-th cell in direction of the y-axis of the two-
dimensional occupancy grid map. In our approach, the cost for traversing a
grid cell cx,y is proportional to its occupancy value p(cx,y). The minimum
cost path is computed using the following two steps:

1. Initialization. The grid cell that contains the robot location is initialized
with 0, all others with ∞:

Vx,y ←−
{

0, if (x, y) is the position of the robot
∞, otherwise

2. Update loop. For all grid cells cx,y do:

Vx,y ←− min
{
Vx+Δx,y+Δy +

√
Δx2 + Δy2p(cx+Δx,y+Δy) |

Δx, Δy ∈ {−1, 0, 1} ∧ p(cx+Δx,y+Δy) ∈ [0, occmax ]
}

,

where occmax is the maximum occupancy probability value of a grid cell the
robot is allowed to traverse. This technique updates the value of all grid
cells by the value of their best neighbors, plus the cost of moving to this
neighbor. Here, cost is equivalent to the probability p(cx,y) that a grid cell
cx,y is occupied times the distance to the cell. The update rule is repeated
until convergence. Then each value Vx,y corresponds to the cumulative cost
of moving from the current position of the robot to cx,y. The convergence
of the algorithm is guaranteed as long as the cost for traversing a cell is not
negative and the environment is bounded. Both criteria are fulfilled in our
approach. The resulting cost function V can also be used to efficiently derive
the minimum cost path from the current location of the robot to arbitrary
goal positions cx,y. This is done by steepest descent in V , starting at cx,y.

The computation of V is done independently for each robot. This allows
us to coordinate also heterogenous teams of robots. For example, a robot
traveling faster than its team mates can be modeled by assigning lower travel
cost to this vehicle. As a result, this robot will be send to more distant target
locations compared to its team mates. Additionally, it is possible to model
robots of different size. This can be achieved by expanding the size of the
obstacles in the maps of the robots individually.

Figure 4.1 shows the resulting cost functions for two different robot po-
sitions. The black rectangle indicates the target point in the unknown area
with minimum travel cost. Note that the same target point is chosen in both
situations. Accordingly, if the robots are not coordinated during exploration,
they would move to the same position which obviously is not optimal.
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Fig. 4.1. Typical cost functions obtained for two different robot positions. The
black rectangle indicates the target points in the unknown area with minimum
cost.

Our algorithm differs from standard value iteration in that it regards all
actions of the robots as deterministic, which seriously speeds up the com-
putation. To incorporate the uncertainty in the motion of the robots into
the process and to benefit from the efficiency of the deterministic variant,
we smooth the input maps by a convolution with a Gaussian kernel. This
has a similar effect as generally observed when using the non-deterministic
approach: It introduces a penalty for staying close to obstacles so that the
robots generally prefer to move in open spaces.

4.2.2 Computing Utilities of Frontier Cells

Estimating the utility of frontier cells is more difficult. In fact, the actual
information that can be gathered by moving to a particular location is hard
to predict, since it strongly depends on the structure of the corresponding
area. However, if there already is a robot that moves to a particular frontier
cell, the utility of that cell can be expected to be lower for other robots.
But not only the designated target location has a reduced utility. Since the
sensors of a robot typically cover a certain region around a particular frontier
cell as soon as the robot arrives there, even the expected utility of frontier
cells in the vicinity of the robot’s target point is reduced.

In this section, we present a technique that estimates the expected utility of
a frontier cell based on the distance and visibility to cells that are assigned to
other robots. Suppose that in the beginning each frontier cell f has the utility
Uf which is equal for all frontier cells if no additional information about the
usefulness of certain positions in the environment is available. Whenever a
target point f is selected for a robot, we reduce the utility of all frontier cells
f ′ close to f . This is done according to the probability pvis(f, f ′) that the
robot’s sensors will cover f ′ given the robot moves to f .

One can estimate pvis(f, f ′) by learning a posterior about the estimated
distances to be measured. The longer the average proximity measurements
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are in an environment, the more likely the target f ′ can be observed from
f . While the robot moves through the environment, this posterior can be
updated and in this way adapt to the spacial structure.

Accordingly, we compute the utility U(fn | f1, . . . , fn−1) of a frontier cell
fn given that the cells f1, . . . , fn−1 have already been assigned to the robots
1, . . . , n − 1 as

U(fn | f1, . . . , fn−1) = Ufn −
n−1∑
i=1

pvis(fn, fi). (4.1)

The more robots move to a location from where fn is likely to be visible,
the lower is the utility of fn. Note that we also take into account whether
there is an obstacle between two frontier cells f and f ′. This is achieved by a
ray-casting operation on the grid map. If there is an obstacle between f and
f ′, we set pvis(f, f ′) to zero.

The obtained function for pvis typically has the shape of a decreasing,
more or less linear function. The gradient of that function was quite similar
for different environments. We observed only small differences in the result-
ing exploration time when applying the learned posterior pvis in a different
environment. We therefore use a linear function to represent pvis and use the
same parameters for all environments according to

pvis(f, f ′) =

{
1.0 − ||f−f ′||

max range , if ||f − f ′|| < max range
0, otherwise,

(4.2)

where max range is the maximum range of the used proximity sensor.

4.2.3 Target Point Selection

To compute appropriate target points for the individual robots, we need to
consider for each robot the cost of moving to a location and the utility of
that location. In particular, for each robot i we trade off the cost V i

f to move
to the location f and the utility Uf of f .

To determine the assignment of target points to robots, we use an iterative
approach. In each round, we compute that tuple (i, f) where i is the number of
a robot and f is a frontier cell which has the best overall evaluation Uf −βV i

f

(where β is a constant as explained below). We then recompute the utilities
of all frontier cells given the new and all previous assignments according to
(4.1). Finally, we repeat this process for the remaining robots. This results
in Algorithm 4.1. The complexity of this algorithm is O(n2F ) where n is the
number of robots and F is the number of frontier cells.

The quantity β ≥ 0 determines the relative importance of utility versus
cost. Experiments showed that the exploration time stays nearly constant if
β ∈ [0.1, 50]. For bigger values of β the exploration time increases because
the impact of the coordination is decreased too much. If β is close to 0, the
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Algorithm 4.1 Goal assignment for coordinated multi-robot exploration.
1: Determine the set of frontier cells.
2: Compute for each robot i the cost V i

f for reaching each frontier cell f .
3: Set the utility Uf of all frontier cells to 1.
4: while there is one robot left without a target point do
5: Determine a robot i and a frontier cell f which satisfy:

(i, f) = argmax(i′,f ′)

(
Uf ′ − βV i′

f ′
)
.

6: Reduce the utility of each target point f ′ in the visibility area according to
Uf ′ ← Uf ′ − pvis(f, f ′).

7: end while

robots ignore the distance to be traveled which also leads to an increased
exploration time. As a result of our experiments, β is set to 1 in our current
implementation.

Figure 4.2 illustrates the effect of our coordination technique. Whereas un-
coordinated robots would choose the same target position (see Figure 4.1),
the coordinated robots select different frontier cells as the next exploration
targets. When coordinating a team of robots, one question is when to re-
compute the target locations. In the case of unlimited communication, we
compute new assignments whenever one robot has reached its designated
target location or whenever the distance traveled by the robots or the time
elapsed after computing the latest assignment exceeds a given threshold.

Robot

Robot

(a) (b)

Fig. 4.2. Target positions obtained using the coordination approach. In this case,
the target point for the second robot is to the left in the corridor.

4.2.4 Coordination with Limited Communication Range

In practice, one cannot assume that the robots are able to exchange infor-
mation at every point in time. For example, the limited range of nowadays
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wireless networks can prevent robots from being able to communicate with
other robots at a certain point in time. If the distances between the robots
become too large so that not all robots can communicate with each other, a
centralized approach as described above can no longer be applied. However,
our algorithm can easily be adapted to cope with a limited communication
range. The key idea is to apply our centralized approach to each sub-team of
robots which are able to communicate with each other. Obviously, this can,
at least in the worst case, lead to a situation in which all robots individu-
ally explore the whole environment. In practical experiments, however, we
found that this approach still results in a quite efficient exploration process,
since the robots can quickly exchange the necessary information and coor-
dinate with each other again as soon a connection between them has been
reestablished.

In our experiments, we furthermore found that the risk of redundant work
is increased if the robots forget about the assignments of other robots as soon
as the communication breaks down. Instead, if each robot stores the latest tar-
get locations assigned to all other robots the overall performance is increased
in situations in which the communication range has been exceeded, since the
robots avoid going to places already explored by other robots. This approach
turned out to be useful especially in the context of small robot teams.

4.3 Collaborative Mapping with Teams of Mobile
Robots

As mentioned before, the robots must be able to build maps online, while
they are in motion. The online characteristic is especially important in the
context of the exploration task since mapping is constantly interleaved with
decision making as to where to move next.

Additionally, to map an environment a real robot has to cope with noise.
Our system applies the statistical framework presented in detail in [146] to
compute consistent maps while the robots are exploring the environment.
Each robot starts with a blank grid map in which each cell is marked as un-
seen. During exploration, each robot simultaneously performs two tasks: It
determines a maximum likelihood estimate for its own position and a max-
imum likelihood estimate for the map. To recover from possible localization
errors, each robot maintains a posterior density characterizing its “true” lo-
cation. The current version of the multi-robot mapping system relies on the
following two assumptions:

1. The robots must begin their operation in nearby locations, so that their
range scans show substantial overlap.

2. The software must be told the approximate relative initial pose of the
robots. Errors up to 50 cm and 20 degree in orientation are admissible.

To achieve the coordination, the team must be able to communicate the
maps of the individual robots during exploration. In our current system,
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we assume that the robots set up an ad-hoc network which forms clusters.
The messages sent by a robot are forwarded to all team-mates within the
corresponding cluster.

Whenever two clusters are merged, care has to be taken to avoid that
robots do not become overly confident in the state of the environment. Sup-
pose that each cluster maintains an occupancy grid map built from all obser-
vations made by the robots of that team and that two robots which currently
share a map m leave their communication range. As long as they explore the
environment individually, each robot needs to maintain its own map and up-
date it. As a result, they obtain two different maps m1 and m2. Now suppose
the robots can communicate again and exchange their maps. If they use the
recursive update rule for occupancy grids to combine m1 and m2 the infor-
mation originally contained in m is integrated twice in the resulting map.
Integrating the same information several times leads to overly confident map
of the environment.

There are several ways to avoid the multiple use of sensor information.
One solution is to prevent the robots from exchanging information more
than once [43], which reduces the benefit of a multi-robot system. An alter-
native solution is that each robot maintains an individual map for each other
robot. These maps can be combined to a joint map and at the same time
be updated separately. In our current system, we apply a different approach
that we found to be less memory intensive and requiring less communication
bandwidth. In this approach, each robot stores for each other robot a log of
sensor measurements perceived by this robot and integrates this information
into its own map. A robot only transfers those measurements that have not
been transmitted to the corresponding robot so far. Additionally, the robots
maintain a small data structure containing the time stamp of the most recent
sensor measurement of a robot that was transmitted to all other robots. This
allows the robots to discard those measurements which have been received by
all other robots already. In this scenario, one of the robots of each sub-team
is randomly selected as the leader. This leader performs all the necessary
computations to solve the assignment of target locations to robots.

4.4 Experimental Results

The approach described has been implemented on real robots and in different
environments. Additionally, we performed extensive simulation experiments.

4.4.1 Exploration with a Team of Mobile Robots

The first experiment is designed to demonstrate the capability of our ap-
proach to efficiently cover an unknown environment with a team of mobile
robots. To evaluate our approach, we installed three robots (two Pioneer 1
and one iRobot B21) in an empty laboratory environment. Figure 4.3 shows
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start locations

Fig. 4.3. Coordinated exploration by a team of three robots with unlimited commu-
nication abilities in a real world experiment. This experiment has been carried out
by Mark Moors at the Forschungsgesellschaft für Angewandte Naturwissenschaften
(FGAN), Wachtberg, Germany.

the map of this environment. The size of the environment is 18m by 14m.
Also shown are the paths of the robots which started in the upper left room.
As can be seen from the figure, the robots were effectively distributed over
the environment by our algorithm. In this experiment, the robots could com-
municate all the time.

4.4.2 Comparison between Uncoordinated and Coordinated
Exploration

The goal of the second experiment described here is to illustrate the ad-
vantage of our coordination technique over an approach in which the robots
share a map but in which there is no arbitration about target locations so
that each robot approaches the closest frontier cell [163]. This technique is
called implicit coordination. For this experiment, we used two different robots:
An iRobot B21 robot equipped with two laser range scanners covering a
360degree field of view (robot 1) and a Pioneer 1 robot equipped with a
single laser scanner covering a 180 degree field of view (robot 2). The size of
the environment to be explored in this experiment was 14m by 8m and the
range of the laser sensors was limited to 5m.

Figure 4.4 shows the behavior of the two robots when they explore their
environment without coordination, i.e., when each robot moves to the closest
unexplored location. The white arrows indicate the positions and directions
of the two robots. Both robots decide first to explore the corridor. After
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Fig. 4.4. Uncoordinated exploration with two robots, namely an ActivMedia Pio-
neer robot and an iRobot B21. In the images (a) and (b) both robots drive along
the corridor, but robot 1 is slower than robot 2. In image (c), robot 1 reached the
end of the corridor, but robot 2 already has explored the right room. Therefore,
robot 1 turns around and follows the corridor. In image (d) robot 2 has entered
the left room from the right hand side and explored it. This experiment has been
carried out by Mark Moors.
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Fig. 4.5. Coordinated exploration using two heterogenous robots. In image (b),
both robots focus on different frontiers due to the coordination strategy. Therefore,
robot 1 explores the left room and robot 2 the right one. This leads to a better
performance compared to the uncoordinated behavior. This experiment has been
carried out by Mark Moors.

reaching the end of the corridor robot 2 enters the upper right room. At that
point, robot 1 assigns the highest utility to the upper left room and therefore
turns back. Before robot 1 reaches the upper left room, robot 2 has already
entered it and has completed the exploration mission. As a result, robot 2
explores the whole environment almost on its own while robot 1 does not
contribute much. The overall time needed to complete the exploration was
49 seconds in this case.

However, if both robots are coordinated, they perform much better as
illustrated in Figure 4.5. Like in the previous example, robot 2 moves to the
end of the corridor. Since the utilities of the frontier cells in the corridor are
reduced, robot 1 directly enters the upper left room. As soon as both robots
have entered the rooms, the exploration mission is completed. This run lasted
35 seconds.
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Fig. 4.6. Simulated exploration with three robots.

4.4.3 Simulation Experiments

The previous experiments demonstrate that our approach can effectively
guide robots to collaboratively explore an unknown environment. To get a
more quantitative assessment, we performed a series of simulation experi-
ments in different environments.

To carry out these experiments, we developed a simulation system, that
allows us to consider the effects of various parameters on the exploration
performance. The simulator can handle an arbitrary number of robots and
can models interferences between the robots. Whenever robots are close to
each other, the system performs the planned movement with a probability of
0.7. Thus, robots that stay close to each other move slower than robots that
are isolated. This approach is designed to model time delays introduced by
necessary collision avoidance maneuvers.

Screenshots of this simulation system during a run in which three robots
explore the environment are shown in Figure 4.6. The simulator also allows
the specification of different properties of the robot systems and sensors. To
carry out these experiments, we used sensors with a 360degree field of view as
is the case, for example, for robots equipped with two laser range sensors or
with a ring of ultrasound sensors. Note that our approach does not require a
360degree field of view. We successfully applied our approach even to robots
with a limited field of view, equipped only with a single laser scanner.

Throughout the experiments presented in this section, we compare three
different strategies. The first approach is the implicit coordination technique
used by Yamauchi [163] as well as Singh and Fujimura [138], in which each
robot always approaches the closest unexplored area of a joint map. In the
sequel, this approach is denoted as uncoordinated exploration since it lacks a
component that arbitrates between the robots whenever they choose the same
frontier cells. The second approach is our coordination approach specified
by Algorithm 4.1. Additionally, we evaluated an alternative approach that
seeks to optimize the assignments computed in lines 4–7 of our algorithm.
Figure 4.7 illustrates a situation in which the assignment computed by our
approach is suboptimal. Here, two robots are exploring a corridor with two
rooms. The already explored area is depicted in yellow. Suppose both target
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211 2

a b a b

Fig. 4.7. The left image illustrates an assignment of frontiers to robots computed
by Algorithm 4.1. Here, yellow corresponds to known areas and white to unknown.
The assignment is suboptimal, when considering the overall time to complete the
exploration task. The situation shown in the right image provides a better assign-
ment because it leads to a shorter exploration time. In both depicted situation, the
sum of the travel cost of both robots are equal but the right one is more balanced.

points a and b have the same utility. In the first round of the iteration, our
algorithm assigns robot 2 to target a since this assignment has the least cost
of all other possible assignments. Accordingly, in the second round, robot 1 is
assigned to target b. The resulting assignment is depicted in the left image of
Figure 4.7. If we assume that both robots require the same period of time to
explore a room, this assignment is suboptimal. A better assignment is shown
in the right image of Figure 4.7. By directing robot 1 to the left room and
robot 2 to the right room, the whole team can finish the task faster, because
the overall time required to reach and than explore the rooms is reduced.
The sum of the travel cost, however, is the same for both assignments.

One approach to solve this problem is to consider all possible combinations
of target points and robots. As before, we want to minimize the trade-off
between the utility of frontier cells and the distance to be traveled. However,
just adding the distances to be traveled by the two robots does not make
a difference in situations like that depicted in Figure 4.7. Since the robots
execute their actions in parallel the time to complete the whole task depends
on the longest trajectory. To minimize the completion time (by choosing
more balanced trajectories for the individual robots), we therefore modify
the evaluation function so that it considers squared distances to choose target
locations f1, . . . , fn:

argmax
(f1,...,fn)

n∑
i=1

[
U(fi | f1, . . . , fi−1, fi+1, . . . , fn) − β(V i

fi
)2
]
.

The resulting algorithm that determines in every round the optimal as-
signment of robots to target locations according to this evaluation function
is given in Algorithm 4.2. Compared to the selection scheme of our previ-
ous algorithm, the major problem of this approach lies in the fact that one
has to figure out F !

(F−n)! possible assignments where F is the number of target
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Algorithm 4.2 Goal assignment over all permutations.
1: Determine the set of frontier cells.
2: Compute for each robot i the cost V i

f for reaching each frontier cell.
3: Determine a set of target locations f1, . . . , fn for the robots

i = 1, . . . , n that maximizes the following evaluation function:∑n
i=1 U(fi | f1, . . . , fi−1, fi+1, . . . , fn)− β(V i

fi
)2.

locations, n is the number of robots, and n ≤ F 1. This number can be handled
for small teams of robots but it becomes intractable for larger teams, because
the number of possible assignments grows exponentially in the number of
robots. In practice, one therefore needs appropriate search techniques to find
good assignments in a reasonable period of time. In the experiments described
here, we applied a randomized search technique combined with hill-climbing
to search for optimal assignments of frontiers to robots. The approach starts
with the assignment provided by Algorithm 4.1 and tries to optimize the
assignment by exchanging target locations between the robots. It also uses
several restarts based on the solution provided by Algorithm 4.1 in order to
reduce the risk of getting stuck in a local maxima. This technique is in the
following called randomized strategy.

Fig. 4.8. Maps used for the simulation experiments: unstructured (left), office
(middle), and corridor environment (right).

To compare the different exploration strategies, we chose three different
environments which are depicted in Figure 4.8. For each environment and
each number of robots, we performed 50 different simulation experiments for
each strategy. In each comparison of the three strategies, the robot team
was started at the same randomly chosen location. We then evaluated the
average number of time steps the robots needed to complete the job. The
resulting plots are shown in Figure 4.9. The error bars indicate the 5% con-
fidence level. As can be seen from the figure, the team using our algorithm
significantly outperforms the uncoordinated system with respect to the ex-
ploration time. This is mainly due to the fact that Algorithm 4.1 provides a
better distribution of the robots over the environment.
1 In case n > F , we allow each frontier to be assigned � n

F
	 times to a robot.
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Fig. 4.9. Performance of the different coordination strategies for the environments
shown in Figure 4.8: unstructured environment (top), office environment (middle),
and corridor environment (bottom).
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Fig. 4.10. Time required on a Pentium-4, 2.8 GHz machine to compute the assign-
ment of target locations to robots for three different strategies.

The randomized optimization strategy usually yields slightly better results
than our coordination technique although the improvement is not significant.
Thus, the usage of the complex search technique that seeks to determine
the optimal assignment from all F !

(F−n)! permutations appears to yield only
slight improvements compared to our original algorithm which has complexity
O(n2F ). Given the computational overhead introduced by the randomized
search in the space of all permutations (see Figure 4.10) especially for large
teams of robots, Algorithm 4.1 appears to be preferable over Algorithm 4.2.

4.4.4 Exploration with Limited Communication

The next experiments are designed to analyze the performance of our coordi-
nation strategy in case the robots have only a limited communication range.
As explained above, if the communication range is limited the robots cannot
globally coordinate their actions anymore. As a result, different robots may
explore the same regions which reduces the overall efficiency.

The next real world experiment was carried out with three robots. Through-
out this experiment, we limited the communication range to 5m. Figure 4.11
depicts the exploration process. Each row shows the maps of the individual
robots at different points in time. The initial situation is depicted in the
first row. The communication ranges of the robots are highlighted by colored
disks around each robot. As can be seen from the second row, the robots
quickly split up in this experiment and had to plan their trajectories indi-
vidually. In row three, the robots R1 and R3 are able to communicate again
and therefore can exchange their maps and coordinate their behavior again.
Robot R2, however, still acts independently of the other two robots. In row
five, R1 and R3 again leave their communication range, whereas R2 and R3
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are able to merge their maps and approach the last unexplored area in the
top left corner. In the last row, the robots R2 and R3 have covered the whole
environment and in this way have completed the exploration task.

To analyze the influence of the communication range, we performed a
series of simulation experiments. We carried out 50 simulation runs for each
configuration using a different number of robots and different communication
ranges. In each run, we chose a random starting point for the robot team.
We regard the exploration task as completed as soon as the known area in
the map of one robot covers the whole environment. The results are depicted
in Figure 4.12. The x-axis shows the communication range of the robots in
relation to the maximum distance in the map and the y-axis depicts the
average exploration time. If the communication range is close to zero the
coordinated and uncoordinated strategies behave similar because all robots
act independently most of the time. As the communication range increases,
the benefit of the coordinated approach improves. An interesting result of
this experiment is that a communication range of 30% of the diameter of the
environment appears to be sufficient to yield the same performance as with
unlimited communication.

4.5 Comparisons to Other Coordination Techniques

In this section, we compare our approach to other existing techniques to
assign targets to a team of robots. First, we compare our approach to the
Hungarian method [79]. We then discuss a priorization technique to distribute
the robots over the environment. Finally, we discuss exploration techniques
that apply a solution to the traveling salesman problem (TSP) to coordinate
the team of robots.

4.5.1 Target Assignment Using the Hungarian Method

In 1955, Kuhn [79] presented a general method to assign a set of jobs to a
set of machines given a fixed cost matrix. This method is often referred to as
the Hungarian method. Consider a given n× n cost matrix which represents
the cost of all individual assignments of targets to robots. The Hungarian
method, which is able to find the solution with the minimal cost given that
matrix, can be summarized by the following three steps:

1. Compute a reduced cost matrix by subtracting from each element the
minimal element in its row. Afterwards, do the same with the minimal
element in each column.

2. Find the minimal number of horizontal and vertical lines required to
cover all zeros in the matrix. In case exactly n lines are required, the
optimal assignment is given by the zeros covered by the n lines. Otherwise,
continue with Step 3.
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Fig. 4.11. Coordinated exploration by a team of three robots with limited com-
munication abilities. Each column shows the evolution of the map of one robot
over time. This experiment has been carried out by Mark Moors and Frank Schnei-
der at the Forschungsgesellschaft für Angewandte Naturwissenschaften (FGAN),
Wachtberg, Germany.
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Fig. 4.12. Performance of the coordinated strategy with limited communication
range for the different environments (unstructured (top), office (middle), and corri-
dor environment (bottom)). The x-axis shows the communication range in relation
to the size of the environment, the y-axis the average exploration time. As can be
seen, the results of these experiments look very similar in all tested environments.
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3. Find the smallest nonzero element in the reduced cost matrix that is not
covered by a horizontal or vertical line. Subtract this value from each
uncovered element in the matrix. Furthermore, add this value to each
element in the reduced cost matrix that is covered by a horizontal and a
vertical line. Continue with Step 2.

The computationally difficult part lies in finding the minimum number of
lines covering the zero elements (Step 2). Details can be found in [79, 80]. The
overall algorithm has a complexity of O(n3). This method can be applied to
assign a set of frontiers or target locations to the individual robots. In such
a scenario, the cost matrix is defined by the result of a deterministic value
iteration carried out for each robot (see Section 4.2.1).

Since the implementation of the Hungarian method described above re-
quires that the number of jobs and the number of machines is equal, we need
to slightly adapt the cost matrix computed in that way. We can distinguish
two situations:

1. In case n < F , where n is the number of robots and F the number of
frontier cells, we add F − n dummy robots which introduce zero cost
for any assignment. The frontier cells to which these dummy robots are
assigned to represent target locations that are not selected by a real robot.

2. In case n > F , some robots need to be assigned to the same target loca-
tion. To achieve a balanced distribution of robots over the environment,
we copy each frontier � n

F  times so that not more than � n
F  robots are

assigned to a single target location. In case n < F � n
F , we then add

F � n
F  − n dummy robots.

In this way, we obtain a square cost matrix even if n �= F . In the worst case,
the matrix has a dimension of 2 max{n, F}. Thus, the overall cost of coordi-
nating a team of n robots given F possible target locations is O(max{n, F}3).

The advantage of that method compared to our approach described in
Algorithm 4.1 is that the Hungarian method computes the optimal assign-
ment under the given cost matrix. In contrast to that, our algorithm applies
a greedy technique to assigned robots to frontiers. On the other hand, the
Hungarian method is not able to adapt the cost matrix during the assign-
ment process. Such an adaption is performed by our algorithm in order to
account for the fact, that assigning a frontier cell f to a robot affects the
unassigned frontier cells close to f . This fact cannot be modeled when using
the Hungarian method, since it requires a constant cost matrix.

We applied the Hungarian method in the same scenarios than our coordi-
nation technique presented in Algorithm 4.1 to evaluate its performance. We
figured out, that the Hungarian method yields similar results as our coordi-
nation technique for large teams of robots. Plots showing the performance of
both approaches are depicted in Figure 4.13. As can be seen from this figure,
if the team of robots is small, our coordination approach performs better.
This is due to the fact, that our technique considers the visibility between
frontiers when computing their utility in the assignment process. This leads
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Fig. 4.13. Coordination performance of the Hungarian method evaluated in the
unstructured (top), office (middle), and corridor environment (bottom).
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to a better distribution of robots over the environment, which typically re-
sults in shorter exploration times. However, as soon as the size of the team
gets bigger, this effect vanishes and both techniques perform equally well. An
additional advantage of our approach is that it is much easier to implement
compared to the Hungarian method.

4.5.2 Using a Priorization Scheme to Coordinate a Team of
Robots

The second method we compared our approach to is the usage of a prior-
ization scheme while selecting target locations. First, this approach assigns
priorities to the individual robots. After a target location is assigned to a
robot, this information is transmitted to all other robots. Each robot plans
its action by taking into account the decisions made by robots with higher
priority. Such a technique with a fixed priorization scheme typically performs
worse than our coordination technique especially in the context of large robot
teams. The reason for that is, that our approach can be regarded as a prior-
ized approach where in each planning step the priorization scheme is adapted
so that it promises the highest utility.

However, we compared this approach to our coordination scheme, since
a fixed priorization scheme can be directly applied in multi-robot systems
using a decentralized architecture. In contrast to this, our coordination al-
gorithm requires a central coordinator (or a coordinating robot within each
sub-team) that computes the assignment. Furthermore, such a decentralized
priorization scheme needs less network bandwidth compared to the central-
ized approach. Therefore, it makes sense to apply such a technique, if only
a slow network connection is available. This problem has been addressed
in detail in a joined work with Daniel Meier (see [98]). In this approach, a
polygonal approximation of the environment is computed. The polygons are
incrementally refined depending on the available network bandwidth. The
operations to carry out the refinement are computed using the minimum edit
cost between the polygons. In this way one is able to substantially reduce the
network traffic.

As can be seen in the plot in Figure 4.14, the quality of the priorized
scheme is satisfactory for small teams of robots. However, as soon as the group
gets larger, the performance of the algorithm decreases. In some situations
using around 20 robots, this approach was even worse than the uncoordinated
behavior. The reason for that is that the robots with a low priority do not
gather any useful information and are often redirected before they really
reach their desired goal location. At the same time, they cause interferences
between robots. We believe that this method can be further optimized by,
for example, reassigning priorities [10] or auction-based approaches that allow
the robots to trade with their target locations [167].
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Fig. 4.14. Coordination performance of the priorized coordination method evalu-
ated in the unstructured (top), office (middle), and corridor environment (bottom).
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4.5.3 Coordination of a Team of Robots by Solving a TSP

An alternative solution to the multi-robot coordination problem is to solve a
multi-agent traveling salesman problem (multi-agent TSP). In this approach,
all available target locations are assigned to the robots and each robot builds
a path by visiting multiple target locations instead of approaching a single
one.

It should be noted that the computation of the optimal solution is in most
cases impossible due to the online-characteristics of the exploration problem.
Approximative solutions, however, open additional problems like the question
how to balance the number of tasks assigned to the individual robots. Zlot et
al. [167] who used an online auction-based approach similar to a TSP write
“since new frontiers generally originate from old ones, the robot that discov-
ers a new frontier will often be the best suited to go on it (the closest).” This
observation indicates that often it is sufficient to consider only a single target
location. A typical situation, in which a suboptimal solution is obtained when
the workload is not balanced between the robots, is depicted in Figure 4.15.
In this example, all the work is done by one robot and the other remains idle.
This effect can get even stronger if the size of the team grows.

Applying TSP solutions in the context of exploration makes sense if, for
example, the structure of the environment is (partly) known but the world
needs to be covered by the sensors of the robots. This can be the case in the
context of de-mining or cleaning tasks. There exits evaluations of different
approximative solutions in the literature (compare [85]), but they typically
assume that the environment is at least partly known.

4.6 Related Work

The various aspects of the problem of exploring unknown environments
with mobile robots have been studied intensively in the past. Many ap-
proaches have been proposed for exploring unknown environments with
single robots [22, 34, 36, 53, 82, 105, 142, 144, 165]. Most of these ap-
proaches guide the robot to the closest unexplored area, just as our ap-
proach does when applied to a single robot system. These techniques mainly
differ in the way the environment is represented. Popular representations
are topological [22, 82], metric [36], or grid-based [163, 164, 165]. Further-
more, there exists theoretical works providing a mathematical analysis of
the complexity of exploration strategies including comparisons for single
robots [1, 2, 26, 27, 78, 77, 166, 93, 119]. Additionally, Lee and Recce [86]
provide an experimental analysis of the performance of different exploration
strategies for one mobile robot.

Also the problem of exploring terrains with teams of mobile robots
has received considerable attention in the past. For example, Rekleitis et
al. [120, 121, 122] focus on the problem of reducing the odometry error dur-
ing exploration. They separate the environment into stripes that are explored
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Fig. 4.15. An environment in which an online multi-agent TSP-solution can be
problematic. (a) Two robots start in a Y-shaped corridor. The only frontier is
assigned to robot B since it is the closest to this frontier. (b) The new frontier
originates from the old one and so robot B is the best suited to go on it. (c)
Robot B reaches the junction and the shortest path in this TSP is to guide robot B
to frontier 1 and than to frontier 2. (d) Robot B enters the upper corridor, robot A
has still no task assigned. (e) Robot B explores the upper corridor and turns back.
Since the upper corridor is shorter than the horizontal one, robot B still has the
frontier labeled as 1 in its route. (f) Robot B enters the lower corridor until the
whole environment is explored (g). This solution is clearly suboptimal, since robot A
was not used at all.
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successively by the robot team. Whenever one robot moves, the other robots
are kept stationary and observe the moving robot, a strategy similar to the
one presented by Kurazume and Shigemi [84]. Whereas this approach can
significantly reduce the odometry error during the exploration process, it is
not designed to distribute the robots over the environment like our approach
does. The robots are rather forced to stay close to each other in order to
remain in the visibility range. Thus, using these strategies for multi-robot
exploration one cannot expect that the exploration time is significantly re-
duced compared to single robot systems.

Yamauchi [163] presented a technique to learn maps with a team of mobile
robots. He introduced the idea of frontiers between known and unknown
areas in a grid map. The frontier technique is also used throughout this
work, since it is well-suited to find potential target locations for singe as
well as for multi-robot systems. In the approach of Yamauchi, the robots
exchange information via a joint map that is continuously updated whenever
new sensor input arrives. They also use map matching techniques [164] to
improve the consistency of the resulting map. To acquire new information
about the environment all robots move to the closest frontier cell. The authors
do not apply any strategies to distribute the robots over the environment or to
avoid that two or more robots exploring the same areas. This type of implicit
coordination via a joint map is used as a reference technique for comparisons
throughout this chapter. We called it the “uncoordinated technique” in this
chapter. As shown in the experimental section, our coordination technique
provides a more efficient coverage of terrain for multi-robot systems.

Cohen [23] considers the problem of collaborative of a navigator that has
to reach an initially unknown target mapping and navigation of teams of
mobile robots. The team consists location and a set of cartographers that
randomly move through the environment to find the target location. When
a robot discovers the goal point, the location is communicated among the
cartographers to the navigation robot which then starts to move to that lo-
cation. In extensive experiments, the author analyzes the performance of this
approach and compares it to the optimal solution for different environments
and different sizes of robot teams. In our approach, the robots do not have
that different capabilities or different tasks to complete. Our systems allows
the robots to travel with different speeds or to have a different size. Com-
pared to Cohen [23], we do not consider robots supposed to solve only one a
specific task within the exploration mission.

Koenig and colleagues [76, 77, 166] presented several evaluations of differ-
ent terrain coverage techniques for single and multi-robot systems. Koenig
and Tovey [77] for example demonstrated that for single robot systems, the
greedy approach that guides the robot always to the closest frontier behaves
reasonable well compared to the optimal solution. Recently, Zheng et al. [166]
showed that under certain assumptions like fixed sensor range and grid cell
ratios as well as unlimited communication, their greedy coverage algorithm
needs in the worst case only eight time longer than the optimal solution.
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Koenig et al. [76] analyze different terrain coverage methods for ants which
are simple robots with limited sensing and computational capabilities. They
consider environments that are discretized into equally spaced cells. Instead
of storing a map of the environment in their memory like done in our explo-
ration approach, the ants leave markers in the cells they visit. The authors
consider two different strategies for updating the markers. The first strat-
egy is “Learning Real-Time A∗” (LRTA∗), which greedily and independently
guides the robots to the closest unexplored areas and thus results in a similar
behavior of the robots as in the approach of Yamauchi [163]. The second
approach is “Node Counting” in which the ants simply count the number
of times a cell has been visited. The authors show that Learning Real-Time
A∗ (LRTA∗) is guaranteed to be polynomial in the number of cells, whereas
“Node Counting” can be exponential.

Billard et al. [13] introduce a probabilistic model to simulate a team of
mobile robots that explores and maps locations of objects in a circular en-
vironment. In several experiments, they demonstrate the correspondence of
their model with the behavior of a team of real robots.

In [7], the authors analyze the effects of different kinds of communication
on the performance of teams of mobile robots that perform tasks like search-
ing for objects or covering a terrain. The “graze task” carried out by the team
of robots corresponds to an exploration behavior. One of the results is that
the communication of goal locations does not help if the robots can detect
the “graze swathes” of other robots.

The technique presented by Kurabayashi et al. [83] is an off-line approach,
which, given a map of the environment, computes a cooperative terrain sweep-
ing technique for a team of mobile robots. In contrast to most other ap-
proaches, this method is not designed to acquire a map. Rather the goal is
to minimize the time required to cover a known environment which can lead
to a more efficient behavior in the context of cleaning or mowing tasks.

One approach towards cooperation between robots has been presented by
Singh and Fujimura [138]. This approach especially addresses the problem of
heterogeneous robot systems. During exploration each robot identifies “tun-
nels” to the so far unexplored area. If a robot is too big to pass through a
tunnel it informs other robots about this task. Whenever a robot receives a
message about a new task, it either accepts it or delegates it to smaller robots.
In the case of homogeneous teams, the robots follow a strategy similar to the
system of Yamauchi [163].

Howard et al. [64] presented an incremental deployment approach that
is similar to the technique described here. Their approach explicitly deals
with obstructions. They consider situations in which the path of one robot is
blocked by another but they do not consider the problem of limited commu-
nication. Zlot et al. [167] have recently proposed an architecture for mobile
robot teams in which the exploration is guided by a market economy. In con-
trast to our algorithm, they consider sequences of potential target locations
for each robot like in a TSP. They then trade the tasks using single-item
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first-price sealed-bid auctions. As illustrated in this chapter, the usage of a
TSP-approach can be disadvantageous in unknown environments. Whenever
a robot discovers a new frontier during exploration, this robot will often be
the best suited to go on it (see [167]). As illustrated in Section 4.5.3, we found
that this can lead to an unbalanced assignment of tasks to robots so that the
overall exploration time is increased. Ko et al. [74] present a variant of our
approach that uses the Hungarian method [79] to compute the assignments
of frontier cells to robots. The main focus of this work is to cooperatively
explore an environment with a team of robots in case the starting locations
of the individual robots are not known in advance. Practical experiments
presented in this chapter showed that the Hungarian method yields a similar
performance as our coordination algorithm. Only in the case of small robot
teams our approach appeared to be slightly superior since it provides a better
distribution of the robots over the environment.

Furthermore, there are approaches that address the problem of coordinat-
ing two robots. The work presented by Bender and Slonim [9] theoretically
analyzes the complexity of exploring strongly connected directed graphs with
two robots. Roy and Dudek [127] focus on the problem of exploring unknown
environments with two robots and present an approach allowing the robots
with a limited communication range to schedule rendezvous. The algorithms
are analyzed analytically as well as empirically using real robots.

There exist also coordination techniques optimized for a specific domain.
For example, Weigel et al. [159] presented an approach to coordinate a team
of soccer playing robots. This technique does not directly address the problem
of exploring unknown environments but of assigning roles to the individual
agents. These roles are soccer specific ones like, for example, “defense player”.
In this way, the team is able to adapt itself to the current situation of the
soccer field.

Several researchers have focused on architectures for multi-robot coopera-
tion. For example, Grabowski et al. [55] consider teams of miniature robots
that overcome the limitations imposed by their small scale by exchanging
mapping and sensor information. In this architecture, a team leader inte-
grates the information gathered by the other robots. Furthermore, it directs
the other robots to move around obstacles or to direct them to unknown ar-
eas. Jung and Zelinksy [70] present a distributed action selection scheme for
behavior-based agents which has successfully been applied to a cleaning task.
Stroupe et al. [143] recently presented the MVERT-approach. Their system
uses a greedy approach that selects robot-target pairs based on proximity.
The goal of the action selection is to maximize cooperative progress toward
mission goals. In contrast to our algorithm, the MVERT system does not dis-
count areas close to the selected goal locations. Matarić and Sukhatme [97]
consider different strategies for task allocation in robot teams and analyze
the performance of the team in extensive experiments. Parker [115] described
a project in which a large team of heterogeneous robots is used to perform
reconnaissance and surveillance tasks. This work differs from our approach
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in that it investigates how to jointly accomplish a task with heterogeneous
robots that cannot solve it individually.

4.7 Conclusion

In this chapter, we presented a technique for coordinating a team of robots
while they are exploring their environment. The key idea of our technique
is to simultaneously take into account the cost of reaching a so far unex-
plored location and its utility. The utility of a target location depends on
the probability that this location is visible from target locations assigned to
other robots. Our algorithm always assigns that target location to a robot
which has the best trade-off between utility and costs. We also presented an
extension of our technique to multi-robot systems that have a limited com-
munication range. In this case, the robots form sub-teams so that they are
able to communicate locally. The assignment problem is then solved within
each sub-team.

Our technique has been implemented and tested on real robots and in
extensive simulation runs. The experiments demonstrate that our algorithm
is able to effectively coordinate a team of robots during exploration. They
further reveal that our coordination technique significantly reduces the ex-
ploration time compared to exploration approaches that do not explicitly
coordinate the robots. Further experiments demonstrate that our technique
works well even if the robots can only partially exchange data. Addition-
ally, we compared our approach to three alternative coordination techniques,
namely the implicit coordination approach based on a joint map, the Hun-
garian method, and a coordination approach using a fixed priority scheme.
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Multi-Robot Exploration Using Semantic Place

Labels

5.1 Introduction

In the previous chapter, we introduced a technique to efficiently coordinate a
team of exploring robots. So far, we made no assumption about the environ-
ment itself. In this chapter, we extend our coordination approach presented
in Chapter 4 so that it takes into account additional information about the
environment.

Indoor environments constructed by humans often contain certain struc-
tures like corridors with adjacent rooms or offices. However, it is mainly
unexplored how robots can utilize such background information to more ef-
ficiently solve an exploration task. One of our observations is that the more
potential target locations are known when assigning targets to robots, the
faster the team can explore the environment. This is due to the fact that
especially large teams of robots can be better distributed over the environ-
ment when more target locations are available. In this way, the amount of
redundant work and the risk of interference is reduced. It therefore makes
sense to focus on areas first which are likely to provide a large number of new
target locations in order to obtain a better assignment of targets to robots.

The contribution of this chapter is a technique to estimate and utilize
semantic information during collaborative multi-robot exploration. In our
approach, the robots get a higher reward for exploring corridors, since they
typically provide more branchings to unexplored areas like adjacent rooms
compared to rooms itself. This allows us to make better assignments of target
locations to robots. As a result, the overall completion time of an exploration
task can be significantly reduced.

This chapter is organized as follows. First, we introduce our technique to
estimate semantic labels of places. In Section 5.3, we then present a hidden
Markov model-based extension to the labeling approach which improves the
classification in the context of exploration. We then propose our coordination
technique and describe how to utilize the place information in Section 5.4.

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 73–90.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Section 5.5 presents experimental results on exploration using semantic place
labels. Finally, Section 5.6 discusses related work.

5.2 Semantic Place Labeling

This section explains how semantic place labels can be obtained with mobile
robots based on laser range observations. We apply a technique for place
classification which was presented in a joint work with Mart́ınez Mozos [95].
The techniques allows a mobile robot to robustly classify places into different
semantic categories. In this chapter, we focus on learning a classifier, that is
able to distinguish corridors from other kinds of indoor structure. To obtain
such a classifier, we apply the AdaBoost algorithm introduced by Freund and
Schapire [48].

The key idea of AdaBoost is to form a strong binary classifier given a set of
weak classifiers. The weak classifiers hj only need to be better than random
guessing. Similar to the work of Viola and Jones [156], we construct our weak
classifier based on simple, single-value features fj as

hj(x) =
{

1 if pjfj(x) < pjθj

0 otherwise. (5.1)

This weak classifier returns 1 if the training example x is supposed to be
a positive example and 0 otherwise. θj is a threshold value and pj is either
−1 or +1 and thus represents the direction of the inequality. The AdaBoost
algorithm determines during the training process for each weak classifier hj

the optimal parameter tuple (θj , pj), such that the number of misclassified
training examples is minimized. To achieve this, it considers all possible com-
binations of pj and θj , whose number is limited since only an finite number
N of training examples is given. A training example is defined by the tuple
(xn, yn) where xn is the example and yn ∈ {0, 1} the class xn belongs to.
Using the training examples, (θj , pj) is determined by

(θj , pj) = argmin
(θi,pi)

N∑
n=1

|hi(xn) − yn| . (5.2)

Figure 5.1 illustrates the process to compute the optimal value of θj . First,
one computes for each training example (xn, yn) the feature value fj(xn) and
adds it to a list which is sorted according to that value; Second, one iterates
through this list and computes the error of the weak classifier using a θj value
between the feature value of the current and the next element. The θj value
which provides the highest classification rate is the optimal value for θj given
the training set.

We compute two sets of simple features for each observation. The first set
is calculated using the raw beams zt,i, i = 1, . . . , M in the full range scan zt.
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Fig. 5.1. This figure illustrates how the optimal value of θj is found. In the left
image, the x-value of each data point represents the feature value of a training
example and the y-value its true class. By iterating through this list of data points,
one can determine the optimal value θj for the given training examples. The right
image depicts the weak classifier hj .

The second set of features is calculated from a polygonal approximation P(zt)
of the area covered by zt. The vertices of the closed polygon P(zt) correspond
to the coordinates of the end-points of each beam relative to the robot.

P(zt) = {(zt,k cosαk, zt,k sin αk) | k = 1, . . . , M} , (5.3)

where αk is the angle of the k-th beam zt, k of the observation zt.
Examples for features extracted from laser range data are depicted in Fig-

ure 5.2. Such features are, for example, the average distance between con-
secutive beams, the area covered by a range scan, or the perimeter of that
area. All our features are rotational invariant to make the classification of
a position dependent only on the (x, y)-position of the robot and not on its
orientation. Most of the features are standard geometrical features used in
shape analysis [51, 129]. Table 5.1 and 5.2 provide a full list of features used
by our system to learn classifier for place recognition.

Fig. 5.2. Examples for features generated from laser data, namely the average
distance between two consecutive beams, the perimeter of the area covered by a
scan, and the length of the major axis of the ellipse that approximates the polygon
described by the scan.

The input to the AdaBoost algorithm is a set of labeled, positive and
negative training examples {xn, yn}. In our case, this is a set of laser range
observations recorded in a corridor and a second set taken outside corridors.
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Table 5.1. Simple features based on the individual beams of a laser range obser-
vation z

1. The average difference between the length of consecutive beams.
2. The standard deviation of the difference between the length of consecutive

beams.
3. Same as 1), but considering different max-range values.
4. The average beam length.
5. The standard deviation of the length of the beams.
6. Number of gaps in the scan. Two consecutive beams build a gap if their differ-

ence is greater than a given threshold. Different features are used for different
threshold values.

7. Number of beams lying on lines that are extracted from the range scan [131].
8. Euclidean distance between the two points corresponding to the two smallest

local minima.
9. The angular distance between the beams corresponding to the local minima in

feature 8).

Table 5.2. Features computed based on the polygon P(z)

1. Area of P(z).
2. Perimeter of P(z).
3. Area of P(z) divided by Perimeter of P(z).
4. Mean distance between the centroid to the shape boundary.
5. Standard deviation of the distances between the centroid to the shape bound-

ary.
6. 200 similarity invariant descriptors based on the Fourier transformation.
7. Major axis of the ellipse that approximates P(z) using the first two Fourier

coefficients.
8. Minor axis of the ellipse that approximate P(z) using the first two Fourier

coefficients.
9. The ratio of the major and minor.

10. Seven invariants calculated from the central moments of P(z).
11. Normalized feature of compactness of P(z).
12. Normalized feature of eccentricity of P(z).
13. Form factor of P(z).
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In a series of T rounds, the algorithm repeatedly selects the weak classi-
fier hj with the lowest error under the training data. To do so, AdaBoost
uses a weighted error function. The importance weight wn for each exam-
ple is updated in each round. The algorithm modifies the set of importance
weights by increasing the weights of the most difficult training examples in
each round. The optimal parameters (θj , pj) for each weak classifier hj are
also computed using the weighed examples. As a result, a single feature can
generate several weak classifiers with different parameters in the individual
rounds of the AdaBoost algorithm.

The final strong classifier H is a weighted majority vote of the best T weak
classifiers

H(x) =
{

1 if
∑T

t=1 ht(x)αt ≥ 1
2

∑T
t=1 αt

0 otherwise,
(5.4)

where the value of αt is computed according to the weighted error rates of
the individual weak classifiers. The full algorithm is given in Algorithm 5.1.
In our system, the resulting strong classifier takes as input a single 360degree
laser range scan recorded by a robot and is able to determine whether the
position from which the scan was taken belongs to the class corridor or not.

5.3 Estimating the Label of a Goal Location

The idea described in the previous section is well-suited to determine the type
of place the robot is currently in given a 360 degree laser range scan. Even if
the place to classify is not the current pose of the robot, one can simulated a
laser range observation in the map of the environment and apply the classifier
to the simulated scan. This works well for poses whose surroundings are
completely known.

In the context of exploration, however, we are interested in classifying
potential targets of the robot. Typically, target locations are located at the
frontiers between known and unknown areas. This means that large neighbor-
ing areas have not been observed so far which makes it impossible to generate
an appropriate observation taken from that location. As we will demonstrate
in the experiments, classifying a place at a frontier with the approach pre-
sented in the previous section leads to high false classification rates of around
20%. In the following, we therefore introduce a HMM-based technique that
takes into account spacial dependencies between nearby locations in order to
obtain a lower error rate for places located at frontiers.

In our approach, we generate a potential target location for each group
of frontier cells lying on the same frontier. This process is repeated for each
frontier. As an example, the left image of Figure 5.3 depicts a potential target
location extracted for the right-most frontier (the targets for the other two
frontiers are not shown in that image).
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Algorithm 5.1 The AdaBoost algorithm
Input: Input: set of examples (x1, y1), . . . , (xN , yN ).
1: k = number of negatives examples
2: l = number of positive examples.
3: for n = 1, . . . , N do
4: if yn = 1 then
5: w1,n = 1

l

6: else
7: w1,n = 1

k

8: end if
9: end for

10: for t = 1, . . . , T do
11: Normalize the weights wt,n so that

∑N
n=1 wt,n = 1.

12: for all features fj do
13: Train a weak classifier h′

j for the feature fj .
14: Compute the error ε′j of a classifier h′

jaccording to

ε′j =

N∑
n=1

wt,n

∣∣h′
j(xn)− yn

∣∣ .

15: end for
16: Determine the weak classifier with the lowest error:

(ht, εt) = argmin
(h′

j ,ε′j)

ε′j

17: βt = εt
1−εt

18: for n = 1, . . . , N do
19: wt+1,n = wt,nβ

1−|ht(xn)−yn|
t

20: end for
21: αt = log 1

βt

22: end for
23: The final strong classifier is given by

H(x) =

{
1 if

∑T
t=1 ht(x)αt ≥ 1

2

∑T
t=1 αt

0 otherwise,

24: return H

Due to the structure of environments made by humans, the semantic class
does not change randomly between nearby poses. Therefore, it makes sense
to consider smoothing or filtering between places located close together. To
do so, we generate a short virtual trajectory to the desired goal location. We
then simulate a laser range observation within the partially known map along
the virtual trajectory. Whenever the ray-casting operation used to simulate
a beam reaches an unknown cell in the grid map, the virtual sensor reports
a maximum-range reading. We then apply a hidden Markov model (HMM)
and maintain a posterior Bel(Lx) about the type Lx of the place x the virtual
sensor is currently at

Bel(Lx) = ηp(ox | Lx)
∑
Lx′

p(Lx | Lx′)Bel (Lx′). (5.5)
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In this equation, ox is the result of the classifier learned with AdaBoost for
the place x and η is a normalizing constant ensuring that the left-hand side
sums up to one over all semantic labels.

To implement this HMM, three components need to be known. First, we
need to specify the observation model p(ox | Lx) which is the likelihood that
the classification output is ox given the actual class is Lx. The observation
model is learned based on 5.000 observations, recorded at randomly chosen lo-
cations in different environments combined with the corresponding manually
created ground truth labeling.

Second, we need to specify the transition model p(Lx | Lx′) which defines
the probability that the virtual sensor moves from class Lx′ to class Lx. To de-
termine this motion model, we evaluated typical trajectories obtained during
exploration. We can directly compute p(Lx | Lx′) by counting the transitions
between places on that trajectories. The correct labels were manually set.

Furthermore, we need to specify how the belief Bel(Lstart ) is initialized.
In our current system, we choose a uniform distribution, which means that
all classes (here corridor and non-corridor) have the same likelihood.

potential
target

robot

observations
poses of sim.

virtual trajectory

Fig. 5.3. This figure illustrates the generation of the virtual trajectory used for the
HMM filtering. The left image depicts the current location of the robot, the frontiers
(dashed lines), and a potential target location to be evaluated. To do so, the robot
generates a virtual trajectory as shown in the right image and simulates observations
at several positions located on the trajectory. These sequence of observations is used
as the input of the HMM in order to obtain a more robust classification result.

Finally, we have to describe how the virtual trajectory is generated. The
endpoint of the trajectory is the frontier cell to be classified. Since locations
which have less unknown grid cells in their surroundings can typically be
classified with a higher success rate, the other positions on that trajectory
should be as far away from the unknown locations as possible. Therefore,
we apply the euclidian distance transformation [99] with respect to unknown
and occupied cells in the local area of the frontier. We then select the pose
in the free space within that local area with the highest distance to unknown
areas. An A* planner is used to generate the virtual trajectory to the target
location. An illustrating example is depicted in Figure 5.3.
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5.4 Using Semantic Place Information for Efficient
Multi-Robot Exploration

In this section, we describe how to integrate the semantic information into
the coordination technique presented in the previous chapter. As a result of
that integration, the robots prefer to explore corridors first. In this way, they
can identify more target locations in the beginning of the exploration run.
As mentioned before, our observations is that the more unexplored target
locations are known when assigning targets to robots, the faster the team
can explore the environment. This is due to the fact that especially large
teams of robots can be better distributed over the environment when more
target locations are available.

The knowledge about the semantic labels is integrated into the utility func-
tion used to select the next target locations for the individual robots.The places
which are supposed to provide several branchings to adjacent places are initial-
ized with a high utility. In our current implementation, all corridor locations
get a γ times higher initial utility (Uinit ) compared to all other potential tar-
get locations. In this way, the robots prefer targets in corridors and eventually
make slight detours in order to explore them first. To determine the actual value
of γ, we performed exploration runs in different environments with varying γ.
We figured out that we obtained the best results using a γ-value of around 5.
Algorithm 5.2 depicts the resulting coordination technique used in our current
system (using the same notation as in Chapter 4).

Algorithm 5.2 Target assignment algorithm using semantic place labels.
1: Determine the set of frontier cells.
2: Compute for each robot i the cost V i

f for reaching each frontier cell f .
3: Estimate for each frontier cell f the semantic labeling Lf (according to Sec-

tion 5.3).
4: Set the utility Uf of all frontier cells f to Uinit (Lf , n) according to their semantic

labeling Lf and the size n of the team (see text below).
5: while there is one robot left without a target point do
6: Determine a robot i and a frontier cell f which satisfy:

(i, f) = argmax(i′,f ′)

(
Uf ′ − V i′

f ′
)
.

7: Reduce the utility of each target point f ′ in the visibility area according to
Uf ′ ← Uf ′ − Pvis(f, f ′).

8: end while

Our approach distributes the robots in a highly efficient manner over the
environment and reduces the amount of redundant work by taking into ac-
count visibility constraints between targets and their semantic labels. The
labels are used to focus the exploration on unexplored corridors, because
they typically provide more branchings to adjacent rooms than other places.
The high number of branchings from the places explored first results in a
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higher average number of available target locations during exploration. This
leads to a more balanced distribution of robots over the environment when
doing the assignment. As we will demonstrate in the experiments, the inte-
gration of such semantic labels helps to reduce the overall exploration time
of multi-robot exploration approaches for large robot teams.

Please note that for very small teams of robots, we do not achieve a reduc-
tion of the exploration time using our technique. This fact can be explained
by considering the single-robot exploration scenario. In this case, it makes no
sense to focus on exploring the corridors first, since the robot has to cover the
overall environment with its sensors. Moving through the corridors first will
in general lead to an increased trajectory length and in this way will increase
the overall exploration time. We observed this effect for robots teams smaller
than five robots.

To prevent a loss of performance compared to approaches which do not con-
sider semantic place information for small robot teams, we trigger the influ-
ence of the semantic place information depending on the size of the team. We
linearly decrease the influence γ for teams smaller than 10 robots. The linear
interpolation of the influence of the semantic labels is encoded in the utility
function Uinit (Lf , n) in Algorithm 5.2, where n denotes the number of robots.

5.5 Experimental Results

This section is designed to evaluate the improvements of our multi-robot
coordination technique which makes use of semantic place information. Due
to the high number of robots in the team, we evaluated our collaboration
technique only in simulation experiments.

5.5.1 Performance Improvement Using Semantic Place
Information

Fig. 5.4. Maps of the Fort Sam Huston hospital and the Intel Research Lab.

The first experiment has been carried out in the map of the Fort Sam
Huston hospital which is depicted in the left image of Figure 5.4. This
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environment contains a long horizontal corridor, vertical corridors, and sev-
eral rooms adjacent to the corridors.
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Fig. 5.5. Coordination results obtained in the Fort Sam Huston hospital map em-
ploying the coordination strategy with and without the use of semantic place labels.

We varied the size of the robot team from 5 to 50 robots and applied the co-
ordination technique with and without taking into account semantic informa-
tion about places. Figure 5.5 depicts the result of the exploration experiment
by plotting the exploration time versus the number of robots. The error bars in
that plot indicate the 5% confidence level. As can be seen, our technique signif-
icantly outperforms the collaboration scheme that does not consider the place
information. This significant reduction of exploration time is due to the fact
that the robots focus on exploring the corridors first. As a result, a big number
of frontiers emerges due to typically numerous adjacent rooms. Especially in
the context of large teams, this results in a better distribution of robots over the
environments and thus speeds up the overall exploration process. This effect
can be observed in Figure 5.6. The graphs plot the number of available target
locations over time during an exploration task carried out using the Fort Sam
Houston map. During the assignment process, most of the time the number of
available target locations is higher compared to our previous approach. This
leads to a better assignment of target locations to robots and as a result the
amount of redundant work is reduced.

Furthermore, we observed a reduction of interferences between robots when
they plan their paths through the environment. The interferences lead to a
lower speed of the robots, since they often block their paths. Therefore, re-
ducing the number of interferences allows the robots to accomplish their task
faster. In our experiments, we observed a reduction of robot-robot interfer-
ences of up to 20%.
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Fig. 5.6. The number of potential target locations at the different decision steps
during exploration.

We performed similar experiments in different environments, like for ex-
ample in the Intel Research Lab depicted in the right image of Figure 5.4.
The result is comparable to the previous experiment and again the knowledge
about the semantic categories of places allows the robots to complete the ex-
ploration task more efficiently. The actual evolution of the exploration time
in this experiment is depicted in Figure 5.7. The same holds for experiments
carried out using the floor plan of the DLR building shown in Figure 5.8.

 5

 6

 7

 8

 9

 10

 5  10  15  20  25  30  35  40  45  50

ex
pl

or
at

io
n 

tim
e 

[m
in

]

number of robots

standard coordination
with semantic labels

Fig. 5.7. Results obtained in the Intel Research Lab.
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Fig. 5.8. Floor plan of the German Aerospace Center (DLR) and the corresponding
results of our exploration system.

5.5.2 Influence of Noise in the Semantic Place Information

In the experiments presented above, we assumed that the robots are able to
correctly classify the different target location into the semantic categories.
This assumption, however, is typically not justified. In this experiment, we
evaluate the performance of our approach for different classification error
rates. We evaluated the exploration time for a classifier which randomly mis-
classified 5%, 10%, and 15% of the places. Figure 5.9 depicts a plot comparing
the different error rates. As can be seen, even at a high error of 10%, our ap-
proach significantly outperforms the coordination technique that ignores the
semantic information. When the error of the classification exceeds 15%, the
exploration time is still reduced, although this result is not significant any-
more.

5.5.3 Applying a Trained Classifier in New Environments

This experiment is designed to illustrate that it is possible to train a classifier
in an environment and transfer it to a totally different one. Of course, the
performance of the classifier decreases, however, we obtained promising result.
Figure 5.10 shows two labeled maps. The one in the first row was labeled
manually and used to learn the classifier using AdaBoost. For the environment
depicted in the lower image, we simulated an observation for each grid cell
and than used the trained classifier to label the positions. As can be seen, the
spacial structures are quite different but the classification is good expect of a
small areas which are wrongly classified. Large parts of the misclassified areas
in this experiment are located at the ends of the corridors. This is mainly
due to the fact that large parts of the area covered by scans recorded at these
locations actually cover a corridor.

We then used this classification result to perform an exploration task. The
results of this experiment are depicted in Figure 5.11. The figure plots the
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Fig. 5.9. Exploration results with wrongly labeled places.

time needed to explore the environment using our approach with the true
labels, with the labels estimated by our classifier, and without using place
information at all. As can be seen, there is only a small time overhead when
using the estimated labels compared to the true ones. This indicates that even
transferring such a classifier to unknown environments provides a speed-up
in the context of multi-robot exploration.

5.5.4 Improvements of the HMM Filtering and Error Analysis of
the Classifier

In this experiment, we want to analyze the actual error of our place classifica-
tion system and illustrate the improvements of the HMM filtering. To do so,
we labeled an environment, trained a corridor classifier using AdaBoost, and
used a test set to evaluate the success rate. Whenever a single full 360degree
laser range scan was available, we obtained highly accurate classification re-
sults in different office environments. In this case, the error-rate was typically
between 2% and 4%.

Figure 5.12 depicts the result of our classifier depending on the number of
invalid readings caused by unknown grid cells close to frontiers. The x-axis
shows the size of a continuous block of maximum range measurements (here
with an angular resolution of the laser of 1 degree). As can be seen, if only
half of the observations are available, the classification error rate is between
18% and 19%.
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Fig. 5.10. The training examples for the classifier were trained in the map shown in
the top image. In contrast to this, the lower image shows the resulting classification
output. The classification for each place was performed based on a laser range scan
simulated at the corresponding location in the map. As can be seen, even if the
structure of the environment is significantly different, the classification output is
reasonable. Red corresponds to corridor locations, blue to rooms.
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Fig. 5.11. Results obtained in the Intel Research Lab using the ground truth and
the estimated semantic labels.
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Fig. 5.12. This plot illustrates the classification performance of the standard
classifier depending on how many consecutive beams of a 360 degree observation
(1 degree angular resolution) are maximum range readings.

First, we determined the success rate of directly classifying frontier cells
without using HMM filtering. In this case, the average classification rate was
in average 81.2%. By considering the exploration speed-up depending on the
classification rate depicted in Figure 5.9, such a high error rate is not sufficient
to obtain an significant speed-up.

Second, we applied our HMM-based filtering approach that generates vir-
tual trajectories towards frontiers and in this way incorporates the spatial
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dependencies between the nearby locations. As a result, we obtained an aver-
age success rate of 92.8%. This is a good result considering that we obtained
an average success rate in this scenario of 96.2% if all observations are per-
fectly known (see Figure 5.12). This fact illustrates that the HMM is an useful
tool to improve the place labeling especially if not the full 360degree range
scan is available. It allows us to estimate the semantic labels with a compa-
rably low error rate. In this way, our technique can be used to significantly
speed up multi-robot exploration by considering semantic information about
places in the environment.

In sum, our experiments demonstrate that semantic place information can
significantly reduce the exploration time even under classification errors.

5.6 Related Work

In order to improve the navigation capabilities of a team of robots, we use se-
mantic place information learned from sensor data. Several authors addressed
the problem of classifying typical structures of indoor environments. For ex-
ample, Koenig and Simmons [75] use a pre-programmed routine to detect
doorways from range data. In [19], a virtual sensor is described which auto-
matically segments the space into room and corridor regions, and computes a
set of characteristic parameters for each region. The algorithm is incremental
in the sense that it only maintains a local topological map of the space re-
cently explored by the robot and generates information about each detected
room whilst rooms are visited. Althaus and Christensen [3] use the Hough
transform from sonar readings to detect two parallel lines which are consid-
ered to be part of a corridor. The detection of doorways is carried out using
the gaps between these lines. With the detection of corridors and doorways,
they construct a topological map for navigation and obstacle avoidance.

Some authors also apply learning techniques to localize the robot or to
identify distinctive states in the environment. For example, Oore et al. [113]
train a neural network to estimate the location of a mobile robot in its envi-
ronment using the odometry information and ultrasound data. Kuipers and
Beeson [81] apply different learning algorithms to learn topological maps of
the environment. Additionally, Anguelov and colleagues [4, 5] apply the EM
algorithm to cluster different types of objects from sequences of range data.
In a recent work, Torralba et al. [151] use hidden Markov models for learning
places from image data.

In our work, we apply a technique based on the place classification ap-
proach proposed in a joint work [95]. The idea is to use simple features
extracted from laser range scans in order to train a set of classifiers using
AdaBoost. In this way, it is possible to label a place given a single laser range
observation. Furthermore, our filtering technique bears resemblance with the
approach presented in a joint work with Rottmann et al. [125], in which a
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hidden Markov model is applied to improve the classification result. In con-
trast to the work described here, we combine in [125] laser data and visual
information to obtain more features and in this way are able to distinguish
between more classes.

Different authors apply the AdaBoost algorithm to learn classifiers. Trep-
tow et al. [152] use the AdaBoost algorithm to track a ball without color
information in the context of RoboCup. Viola and Jones [156] presented a ro-
bust face detector using AdaBoost and single-value features. Their approach
considers integral images in order to compute such features.

Our classifier used to label places can be seen as background knowledge
about the environment. Fox et al. [45] presented a technique which aims to
learn background knowledge in typical indoor environments and later on use
them for map building. Their approach learns a Dirichlet prior over structural
models from previously explored environments. The presented technique is
applied to decide whether the robot is seeing a previously built portion of a
map, or is exploring new territory. This can be especially useful if the pose
information of the robots are affected by noise or they do not know their
relative locations.

In the context of coordination techniques for multi-robot exploration, we
would like refer the reader to Section 4.6 which discusses common approaches
in detail. Due to the best of our knowledge, there is no work that investigates
how semantic information about places in the environment can be used to
optimize the collaboration behavior of a team of robots. The contribution
of this chapter is an approach that estimates and explicitly uses semantic
information in order to more efficiently spread the robots over the environ-
ment. This results in an more balanced target location assignment with less
interferences between robots. As a result, the overall time needed to cover
the whole environment with the robots’ sensors can be significantly reduced.

5.7 Conclusion

In this chapter, we proposed a technique that takes into account semantic in-
formation about places in the context of coordinated multi-robot exploration.
Since indoor environments are made by humans, they typically consist of
structures like corridors and rooms. The knowledge about the type of place
of a potential target location allows us to better distribute teams of robots
over the environment and to reduce redundant work as well as the risk of
interference between the robots. As a result, the overall exploration time can
be reduced compared to collaboration approaches that ignore semantic place
information. The semantic labels are determined by learning a classifier using
AdaBoost in combination with an HMM to consider spacial dependencies.

Our approach has been implemented and tested in extensive simulation
runs with up to 50 robots. Experiments presented in this chapter illustrate
that a team of robots can complete their exploration mission in a significantly
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shorter period of time using our approach. Furthermore, we believe that uti-
lizing semantic information during exploration is not restricted to our explo-
ration technique and that it can be easily integrated into other coordination
approaches.



6

Efficient Techniques for Rao-Blackwellized

Mapping

6.1 Introduction

So far, we focused on guiding robots through the environment in order to
perceive it with their sensors. We assumed that the poses of the robots were
known. This assumption, however, does not hold in real world situations. In
the second part of this book, we therefore take into account the uncertainty
about the pose of a mobile robot.

In this chapter, we focus on how to estimate the trajectory of a robot as
well as the map of the environment given the perceived sensor data and the
odometry information. In the literature, the mobile robot mapping problem
under pose uncertainty is often referred to as the simultaneous localization
and mapping (SLAM) or concurrent mapping and localization (CML) prob-
lem [28, 30, 37, 57, 59, 101, 104, 109, 145, 88]. SLAM is considered to be a
complex problem because to localize itself a robot needs a consistent map
and for acquiring the map the robot requires a good estimate of its loca-
tion. This mutual dependency among the pose and the map estimates makes
the SLAM problem hard and requires searching for a solution in a high-
dimensional space.

Murphy, Doucet and colleagues [109, 30] introduced Rao-Blackwellized
particle filters as an effective means to solve the simultaneous localization
and mapping problem. The key idea of this approach is to first use a particle
filter to estimate the trajectory of the robot. One then uses this trajectory
estimate to compute a posterior about the map of the environment. The main
problem of the Rao-Blackwellized approaches is their complexity, measured
in terms of the number of particles required to build an accurate map. Reduc-
ing this quantity is one of the major challenges for this family of algorithms.
Additionally, the resampling step is problematic since it can eliminate good
state hypotheses. This effect is also known as the particle depletion prob-
lem [29, 155, 31].

In this work, we present two approaches to substantially increase the per-
formance of a Rao-Blackwellized particle filter applied to solve the SLAM
problem based on grid maps:

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 93–115.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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• A proposal distribution that considers the accuracy of the sensor of the
robot and allows us to draw particles in an highly accurate manner.

• An adaptive resampling technique, which maintains a reasonable variety
of particles and in this way enables the algorithm to learn an accurate
map and to reduce the risk of particle depletion.

As explained in Chapter 2, the proposal distribution within a particle filter
is used to draw the next generation of particles. In our approach, the proposal
distribution is computed by evaluating the observation likelihood around a
particle-dependent most likely pose obtained by a scan registration proce-
dure. In this way, the last reading is taken into account while generating a
new particle. This allows us to estimate the evolution of the system according
to a more informed and thus more accurate model than the one obtained us-
ing only a scan-matching procedure with fixed covariance as done by Hähnel
et al. [59]. The use of this refined model has two effects. The resulting map
is more accurate because the current observation is taken into account when
estimating the movement of the vehicle which yields a more accurate pose
estimate. The reduced error additionally leads to a smaller number of parti-
cle required to represent the posterior. The second technique, the adaptive
resampling strategy, allows us to perform a resampling step only when it is
needed and in this way allows us to keep a reasonable particle diversity. This
significantly reduces the risk of particle depletion. Our approach has been
validated by a large set of experiments in indoor as well as in outdoor envi-
ronments. In all experiments, our approach generated highly accurate metric
maps. Additionally, the number of the required particles is around one order
of magnitude smaller than with previous approaches.

This chapter is organized as follows. After explaining how a
Rao-Blackwellized filter can be used to solve the SLAM problem, we de-
scribe our improved mapping technique in Section 6.3. Experiments carried
out on real robots as well as in simulation are presented in Section 6.5. Sec-
tion 6.4 then analyzes the complexity of the presented approach and finally
Section 6.6 discusses related approaches.

6.2 The Concept of Rao-Blackwellized Mapping

Rao-Blackwellized particle filters for SLAM [109, 30] are used to estimate the
posterior p(x1:t, m | z1:t, u1:t−1) about the trajectory x1:t of the robot and
the map m given its observations z1:t and its odometry measurements u1:t−1.
The key idea of Rao-Blackwellized mapping is to separate the estimation of
the trajectory from the map estimation process

p(x1:t, m | z1:t, u1:t−1)
product rule

= p(x1:t | z1:t, u1:t−1)p(m | x1:t, z1:t, u1:t−1) (6.1)
= p(x1:t | z1:t, u1:t−1)p(m | x1:t, z1:t). (6.2)
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where (6.2) is obtained from (6.1) by assuming that m is independent of
the odometry measurements u1:t−1 given the poses x1:t of the robot and the
corresponding observations z1:t.

This factorization, which is also called the Rao-Blackwellization, allows
us to efficiently compute p(x1:t, m | z1:t, u1:t−1), since the posterior about
the map p(m | x1:t, z1:t) can be computed analytically, given the knowledge
of x1:t and z1:t. Learning maps under given pose information is also called
“mapping with known poses” (see Chapter 2).

To estimate the posterior p(x1:t | z1:t, u1:t−1) about the potential trajec-
tory, Rao-Blackwellized mapping uses a particle filter similar to Monte Carlo
localization (MCL) [25]. In contrast to MCL, the Rao-Blackwellized particle
filter for mapping maintains an individual map for each sample. Each map
is built given the observations z1:t and the trajectory x1:t represented by the
corresponding particle.

One of the most common particle filtering algorithms is the sampling im-
portance resampling (SIR) filter. A Rao-Blackwellized SIR filter for mapping
incrementally processes the observations and the odometry readings as they
are available. This is achieved by updating a set of samples representing the
posterior about the map and the trajectory of the vehicle. The process can
be summarized by the following four steps:

1. Sampling: The next generation of particles is obtained from the current
generation by sampling from a proposal distribution π.

2. Importance Weighting: An individual importance weight w
[i]
t is as-

signed to each particle, according to

w
[i]
t =

p(x[i]
t | x

[i]
1:t−1, z1:t, u1:t−1)

π(x[i]
t | x

[i]
1:t−1, z1:t, u1:t−1)

w
[i]
t−1. (6.3)

The weights w
[i]
t account for the fact that the proposal distribution π in

general is not equal to the target distribution.
3. Resampling: Particles with a low importance weight are typically re-

placed by samples with a high weight. This step is necessary since only
a finite number of particles is used to approximate a continuous distri-
bution. Furthermore, resampling allows us to apply a particle filter in
situations in which the true distribution differs from the proposal.

4. Map Estimating: The map of each particle is updated using “mapping
with known poses.”

An example for such a filter is illustrated in Figure 6.1. It depicts three
particles with the individually estimated trajectories and the maps updated
according to the estimated trajectory. In the depicted situation, the robot
closed a loop and the different particles produced different maps. Particle 1
has a comparably accurate pose estimate, whereas the map of particle 3
shows big alignments errors. Therefore, particle 1 will get a higher importance
weight compared to particle 3. The weight of particle 2 will be between the
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weight of particle 1 and 3 because its alignment error is smaller than the one
of particle 3 but bigger than the one of particle 1.

map of particle 2 map of particle 3map of particle 1

3 particles and their trajectories

alignment
errors

alignment
error

Fig. 6.1. Example for three particles used within Rao-Blackwellized mapping to
represent p(x1:t, m | z1:t, u1:t−1). Each particle estimates the trajectory of the robot
and maintains an individual map which is updated according to the estimated
trajectory.

In the literature on particle filtering, several methods for computing im-
proved proposal distributions and techniques for reducing the particle de-
pletion problem have been described [29, 107, 118]. Our approach applies
two concepts that have previously been identified as key pre-requisites for
efficient particle filter implementations by Doucet [29]: the computation of
improved proposal distributions and an adaptive resampling technique. Our
idea of computing an improved proposal is similar to the technique applied
by Montemerlo et al. [101] in FastSLAM-2. The major difference lies in the
fact that we compute the proposal based on dense grid maps and not based
on landmarks. To the best of our knowledge, adaptive resampling has never
been investigated in the context of mapping with Rao-Blackwellized particle
filters.

6.3 Improved Proposals and Selective Resampling

The generic algorithm specifies a framework for Rao-Blackwellized mapping
but it leaves open how the proposal distribution is computed and when the
resampling should be carried out. Throughout the remainder of this chapter,
we describe a technique that computes an accurate proposal distribution and
that adaptively determines when to resample.
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As described in Section 6.2, one needs to draw samples from a proposal
distribution π in the prediction step. In general, the proposal can be an arbi-
trary function (see Section 2.1 for further details). However, the more similar
the proposal is to the target distribution, the better is the approximation of
the next generation of samples. Therefore, π should approximate the true dis-
tribution as good as possible. Unfortunately, in the context of SLAM, a closed
form of this posterior is not available. The samples are usually drawn from
the transition model p(xt | xt−1, ut−1) of the robot. Following the importance
sampling principle, the weights w

[i]
t can be computed as in the localization

scenario (see Chapter 2)

w
[i]
t ∝ p(zt | m

[i]
t−1, x

[i]
t )w[i]

t−1. (6.4)

The motion model, however, is not the best choice for the proposal distribu-
tion. This fact has already been identified by Doucet et al. [31]. According
to this work, the following equation is the optimal choice of the proposal
distribution with respect to the variance of the particle weights and under
the Markov assumption

p(xt | m
[i]
t−1, x

[i]
t−1, zt, ut−1) =

p(zt | m
[i]
t−1, xt)p(xt | x

[i]
t−1, ut−1)∫

p(zt | m
[i]
t−1, x

′)p(x′ | x
[i]
t−1, ut−1) dx′

. (6.5)

We will now describe an efficient way for computing a per-particle proposal
distribution, which uses the information of the most recent laser observation
zt.

6.3.1 Using Laser Range Data to Compute an Improved Proposal
Distribution

In most particle filter applications [25, 104], the odometry motion model p(xt |
xt−1, ut−1) has been chosen as the proposal distribution. When modeling a
mobile robot equipped with a laser range finder, this choice is suboptimal in
most cases, since the accuracy of the laser range finder leads to extremely
peaked likelihood functions. In such a situation, the likelihood function p(zt |
m

[i]
t−1, xt) dominates the product p(zt | m

[i]
t−1, xt)p(xt | x

[i]
t−1, ut−1) within the

meaningful region L[i] of this distribution as illustrated in Figure 6.2.
In our current system, we therefore approximate p(xt | x

[i]
t−1, ut−1) by a

constant k within the region L[i] given by

L[i] =
{
x | p(zt | m

[i]
t−1, x) > ε

}
. (6.6)

Under this approximation, (6.5) turns into
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Fig. 6.2. The motion model for odometry as well as for laser data. Within the
region L[i] the product of both functions is dominated by the observation likelihood.
Accordingly, the model of the odometry error can safely be approximated by a
constant value.

p(xt | m
[i]
t−1, x

[i]
t−1, zt, ut−1) �

p(zt | m
[i]
t−1, xt)∫

x′∈L[i] p(zt | m
[i]
t−1, x

′) dx′
. (6.7)

We furthermore have to specify the computation of the particle weights. For
the importance weight w

[i]
t of i-th particle, we obtain

w
[i]
t =

p(x[i]
1:t | z1:t, u1:t−1)

π(x[i]
1:t | z1:t, u1:t−1)

(6.8)

∝
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[i]
t )p(x[i]

t | x
[i]
t−1, ut−1)

π(x[i]
t | m

[i]
t−1, x

[i]
t−1, zt, ut−1)

p(x[i]
1:t−1 | z1:t−1, u1:t−2)

π(x[i]
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[i]
t−1, ut−1)

p(zt|m[i]
t−1,x

[i]
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t )k
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[i]
t )∫
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t−1,x′) dx′

(6.12)
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This leads to

w
[i]
t = w

[i]
t−1k

∫

x′∈L[i]
p(zt | m

[i]
t−1, x

′) dx′. (6.13)

Additionally, we locally approximate our proposal given in (6.7) around the
maximum of the likelihood function by a Gaussian. This leads to the approx-
imated proposal

p(xt | m
[i]
t−1, x

[i]
t−1, zt, ut−1) � pN (zt | m

[i]
t−1, xt). (6.14)

where pN refers to the Gaussian approximation of p. With this approxima-
tion, we obtain a closed form which is suitable for efficient sampling. For each
particle i, the parameters μ

[i]
t and Σ

[i]
t can be determined by evaluating the

likelihood function for a set of points {xj} sampled around the corresponding
local maximum found by the scan-matching process:

μ
[i]
t =

1
η

K∑
j=1

xjp(zt | m
[i]
t−1, xj) (6.15)

Σ
[i]
t =

1
η

K∑
j=1

p(zt | m
[i]
t−1, xj)p(xj − μ

[i]
t )(xj − μ

[i]
t )T (6.16)

where

η =
K∑

j=1

p(zt | m
[i]
t−1, xj) (6.17)

is a normalizer.
Observe that the computation of μ

[i]
t and Σ

[i]
t as well as the scan-matching

process are carried out for each particle individually. In our current system,
we apply a scan-matching routine similar to that of Hähnel et al. [61]. The
sampled points {xj} are chosen to cover an area dependent on the uncertainty
of most recent odometry information

xj ∈ {xt | p(xt | xt−1, ut−1) > ε} . (6.18)

By assuming that the Gaussian approximation of the observation likelihood
is close to its real value (which is actually often the case) and by considering
sampled points in L[i], the weights can be expressed by

w
[i]
t ∝ w

[i]
t−1

∫

x′∈L[i]
p(zt | m

[i]
t−1, x

′) dx′ (6.19)

use points xj∈L[i]

� w
[i]
t−1

K∑
j=1

p(zt | m
[i]
t−1, xj) (6.20)

(6.17)
= w

[i]
t−1η, (6.21)
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(a) (b) (c)

Fig. 6.3. Particle distributions typically observed during mapping. In an open
corridor, the particles distributes along the corridor (a). In a dead end corridor, the
uncertainty is small in all dimensions (b). In a featureless open space the proposal
distribution is the raw odometry motion model (c). The trajectory of the robot is
depicted by the red line.

where η in (6.21) corresponds to the normalizer as given in (6.17).
The computations presented in this section allow us to determine the pa-

rameters of a Gaussian proposal distribution for each particle individually.
The proposal takes into account the most recent laser observation and at the
same time allows us efficient sampling. The resulting densities have a lower
uncertainty than in the situation in which the odometry motion model is
utilized. To illustrate this fact, Figure 6.3 depicts typical particle distribu-
tion obtained with our approach. In case of a straight featureless corridor,
the samples are typically spread along the main direction of the corridor as
depicted in Figure 6.3 (a). Figure 6.3 (b) illustrates the robot reaching the
end of such a corridor. As can be seen, the uncertainty in the direction of
the corridor decreases and all samples are centered around a single point.
Figure 6.3 (c) shows how the particle spread out when they are draw from
the odometry motion model.

During filtering, it can happen that the scan-matching process fails because
of poor observations or a small overlapping area among the current scan and
the previously computed map. In the case the scan-matcher reports an error,
the raw motion model of the robot is used as a proposal. Such a situation in
which the laser observation does not provide any information is depicted in
Figure 6.3 (c). However, we observed that these kind of situations occur rarely
in real datasets (see also Section 6.5.4 in the experiments of this chapter).

6.3.2 Selective Resampling

A further aspect that has a major influence on the performance of a particle
filter is the resampling step. During resampling, the particles with a low im-
portance weight w

[i]
t are typically replaced by samples with a high weight. On
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the one hand, resampling is necessary since only a finite number of particles
are used. On the other hand, the resampling step can delete good samples
from the sample set, causing particle depletion. In the context of map build-
ing, this is critical especially in the context of nested loops. During mapping
an inner loop, hypotheses that are not necessarily the ones with the highest
weight are often needed later on to correctly close an outer loop. Accordingly,
it is important to find a criterion when to perform a resampling step.

Lui [90] introduced the so-called effective number of particles or effective
sample size to estimate how well the current particle set represents the true
posterior. This quantity is defined as

Neff =
1

∑N
i=1

(
w

[i]
t

)2 , (6.22)

where the weights w
[i]
t are supposed to be normalized.

The intuition behind Neff is as follows. If the samples were drawn from the
true posterior, the importance weights of the samples would be equal to each
other, due to the importance sampling principle. The worse the approxima-
tion, the higher the variance of the importance weights. Neff can be regarded
as a measure for the dispersion of the importance weights. Thus, it is a use-
ful measure to evaluate how well the particle set approximates the true pos-
terior. Neff takes values between 1 and the number N of particles. Whenever
the weights are equally distributed, its value is N . In case all the probability
mass is concentrated in a single sample only, its value is 1. Neff can be used
to determine whether or not a resampling should be carried out. Whenever its
value is high, resampling is typically not required since the approximation of
the target distribution is good. We resample each time Neff drops below a cer-
tain threshold. In our current implementation, this threshold was set to N/2.
In extensive experiments, we found that this approach substantially reduces
the risk of replacing good particles, because the number of resampling opera-
tions is reduced and resampling operations are only performed when needed.

6.4 Complexity

This section discusses the complexity of the presented approach to Rao-
Blackwellized mapping using grid maps. Since our approach uses a particle
filter to represent the joint posterior about the map and the trajectory, the
number N of samples is the central quantity. To compute the proposal dis-
tribution for a single particle, our approach samples around the most likely
position reported by the scan matcher. This sampling step is performed a
constant number of K times for each sample and there is no dependency
between the particles when computing the proposal.

The most recent observation which is used to compute μ[i] and Σ[i], see
(6.15) and (6.16), covers only an local area in the environment. Additionally,
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the area of the sampled points is bounded by the odometry error. Since
the computation needs to be done for each sample, the complexity of this
computations depends only on the number N of particles. The same holds
for the update of the individual maps associated to each particles.

The computation of the particle weights is done by computing the like-
lihood of the observation zt according to (6.8). Again this leads only to a
complexity linear in the number of particles.

During a resampling action, the information associated to a particle needs
to be copied. In the worst case, N−1 samples are replaced by a single particle.
In our current system, each particle stores and maintains its own grid map.
To duplicate a particle, we therefore have to copy the whole map. As a result,
a resampling action introduces a complexity of O(NM), where M is the size
of a grid map. However, the size of the environment in which the robot moves
is typically limited. Furthermore, using our adaptive resampling technique,
only a few resamplings are required during mapping. To decide whether or
not a resampling is needed, the effective number of particles, see (6.22), needs
to be taken into account. The computation of this quantity introduces a linear
complexity in N .

Table 6.1 depicts the complexity of the individual operations. As a result,
if no resampling operation is required, the overall complexity for integrating
a single observation depends only linearly on the number of particles. If a
resampling is required, the additional factor M which represents the size of
the map is introduced and leads to a complexity of O(NM).

Table 6.1. Complexity of the different operations for integrating one observation.

Operation Complexity

Computation of the proposal distribution O(N)

Update of the grid map O(N)

Computation of the weights O(N)

Test if resampling is required O(N)

Resampling O(NM)

6.5 Experimental Results

The approach described above has been implemented and tested using real
robots and datasets gathered with real robots. Our implementation runs on-
line on several platforms like ActivMedia Pioneer 2 AT, Pioneer 2 DX-8,
and iRobot B21r robots equipped with a SICK LMS and PLS laser range
finders (see Figure 6.4). The experiments carried out in a variety of environ-
ments have shown the effectiveness of our approach in indoor and outdoor
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Fig. 6.4. Different types of robot used to acquire real robot data used for mapping
(ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, and an iRobot B21r).

environments. The quality of the resulting maps is extremely good, allowing
in some cases to generate a map with a resolution of 1 cm, without observ-
ing considerable inconsistencies. Even in big real world datasets covering an
area of approximately 250m by 250m, our approach never required more
than 80 particles to build accurate maps. Except of the MIT dataset (see
below), 30 particles where sufficient to build high quality maps of different
environments. In this section, we discuss the behavior of the filter in different
real world environments. Furthermore, we give a quantitative analysis of the
performance of the presented approach.

Note that all corrected datasets presented here as well as the maps as
high resolution images are available on the Internet [140]. We also provide a
set of animations showing the evolution of the different trajectory hypotheses
during mapping. Furthermore, an efficient open-source implementation of our
mapping system is available at the OpenSLAM.org repository [141].

6.5.1 Mapping Results

The datasets discussed here have been recorded at the Intel Research Lab in
Seattle, at the Killian Court at MIT, and on the campus at the University of
Freiburg. The maps of these environments are depicted in Figures 6.5, 6.6,
and 6.7.

Intel Research Lab

The Intel Research Lab is depicted in the left image of Figure 6.5 and has
a size of 28m by 28m. The dataset has been recorded with a Pioneer 2
robot equipped with a SICK sensor. To successfully correct this dataset,
our algorithm needed only 15 particles. As can be seen in the right image
of Figure 6.5, the quality of the final map is so high that the map can be
magnified up to a resolution of 1 cm without showing any significant errors
or inconsistencies.

Freiburg Campus

The second dataset has been recorded outdoors at the Freiburg campus. Our
system needs 30 particles to produce a good quality map such as the one
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Fig. 6.5. The Intel Research Lab: The robot starts in the upper part of the circular
corridor, and runs several times around the loop, before entering the rooms. The
left image depicts the resulting map generated with 15 particles. The right image
shows a magnified view with a grid resolution of 1 cm to illustrate the accuracy of
the map in the loop closure point.

shown in Figure 6.6. Note that this environment partly violates the assump-
tions that the environment is planar. Additionally, there were objects like
bushes and grass which are hard to be mapped with a laser range finder.
Furthermore, there were moving objects like cars and people. Despite the
resulting spurious measurements, our algorithm was able to generate an ac-
curate map. Note that no GPS, compass, or IMU information is used in all
our experiments.

MIT Killian Court

The third experiment was performed with a dataset acquired at the MIT
Killian court and the resulting map is depicted in Figure 6.7. This dataset is
extremely challenging since it contains several nested loops, which can cause a
Rao-Blackwellized particle filter to fail due to particle depletion. Furthermore,
there where people walking in front of the robot while it was moving through
a nearly featureless corridor.

Using this dataset, our selective resampling procedure turned out to be
extremely important. A consistent and topologically correct map can be gen-
erated with 60 particles. However, the resulting maps sometimes show arti-
ficial double walls. By employing 80 particles it is possible to achieve high
quality maps. To give an impression about the size of this dataset, Figure 6.8
provides a satellite view showing the MIT campus around the Killian Court
as well as the learned map on top of the satellite image.



6.5 Experimental Results 105

Fig. 6.6. The Freiburg campus: The robot first runs around the external perime-
ter in order to close the outer loop. Afterwards, the internal parts of the campus
are visited. The overall trajectory has a length of 1.75 km and covers an area of
approximately 250 m by 250 m. The depicted map was generated using 30 particles.

6.5.2 Quantitative Results

In order to measure the improvement in terms of the number of particles,
we compared the performance of our system using the informed proposal
distribution to the approach done by Hähnel et al. [59]. Table 6.2 summarizes
the number of particles needed by both RBPFs for providing a topologically
correct map in at least 60% of all runs of our algorithm (initialized with
different random seeds).

It turns out that in all of the cases, the number of particles required by
our approach was approximately one order of magnitude smaller than the one
required by the other approach. Moreover, the resulting maps are better due

Table 6.2. The number of particles needed by our algorithm compared to the
approach of Hähnel et al. [59].

Proposal Distribution Intel MIT Freiburg

our approach 8 60 20

approach of [59] 40 400 400
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Fig. 6.7. The MIT Killian Court: The robot starts from the point labeled a and
then traverses the first loop labeled b. It then moves through the loops labeled c,
d and moves back to the place labeled a and the loop labeled b. It the visits the
two big loops labeled f and g. The environment has a size of 250 m by 215 m and
the robot traveled 1.9 km. The depicted map has been generated with 80 particles.
The rectangles show magnifications of several parts of the map.

to our improved sampling process that takes into account the most recent
sensor reading.

Figure 6.9 summarizes results about the success ratio of our algorithm in
the environments considered here. The plots show the percentage of correctly
generated maps, depending on the number of particles used. The binary de-
cision if a run was successful or not was done by manual inspection of the
resulting map. As a measure of success, we used the topological correctness.
Map classified as incorrect typically showed double walls or corridors and/or
wrongly aligned corridors.



6.5 Experimental Results 107

MA, USA

Fig. 6.8. The MIT Killian Court from a satellite perspective. The corridors plotted
on top of the satellite view are the result of our mapping algorithm. Satellite image
source: Massachusetts Geographic Information System (MassGIS).

6.5.3 Effects of Improved Proposals and Adaptive Resampling

The increased performance of our approach is due to the interplay of two
factors, namely the improved proposal distribution, which allows to generate
samples with an high likelihood, and the adaptive resampling controlled by
monitoring Neff . For proposals that do not consider the whole input history,
it has been proven that Neff can only decrease (stochastically) over time [29].
Only after a resampling operation does Neff recover its maximum value. It is
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Fig. 6.9. Success rate of our algorithm in different environments depending on
the number of particles. The binary decision if a run was successful or not was
done by manual inspection of the resulting map. Each success rate in the plot was
determined using 20 runs. For the experiment MIT-2, we disabled the adaptive
resampling while correction the MIT dataset.

important to notice that the behavior of Neff depends on the proposal: the
worse the proposal, the faster Neff drops.

In our experiments, we found that the evolution of Neff using our proposal
distribution shows three different behaviors depending on the information ob-
tained from the robot’s sensor. Whenever the robot moves through unknown
terrain, Neff typically drops slowly. This is because the proposal distribution
becomes less peaked and the likelihoods of observations differ only slightly.
The second behavior can be observed when the robot moves through a known
area. In this case, each particle keeps localized within its own map due to the
improved proposal distribution and the weights are more or less equal. This
results in a constant evolution of Neff . Finally, when closing a loop, some par-
ticles are correctly aligned with their map while others are not. The correct
particles have a high weight, while the wrong ones have a low weight. Thus
the variance of the importance weights increases and Neff drops substantially.
This behavior is illustrated in Figure 6.10.

Accordingly, our resampling criterion based on Neff typically forces a re-
sampling action when the robot is closing a loop. In most cases, the resam-
pling is avoided which results in keeping the necessary variety of different
hypotheses in the particle set. To analyze this, we performed an experiment
in which we compared the success rate of our algorithm to that of a particle
filter which resamples at every step. The experiment was carried out based on
the MIT Killian Court dataset. As Figure 6.9 illustrates, our approach more
often converged to the correct solution (MIT curve) for the MIT dataset
compared to the particle filter with the same number of particles and a fixed
resampling strategy (MIT-2 curve).

To give a more detailed impression about the accuracy of our new mapping
technique, Figure 6.11 and 6.12 depict a collection of maps learned from
commonly used and freely available real robot datasets [65]. The datasets
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Fig. 6.10. The graph plots the evolution of the Neff function over time during an
experiment in the environment shown in the right image. At time B the robot closes
the small loop. At time C and D resampling actions are carried after the robots
closes the big loop.

used to build the maps shown in Figure 6.11 have been recorded at the MIT
Computer Science and AI Lab, at the University of Washington, at Belgioioso,
and at the University of Freiburg. Figure 6.12 depicts maps from the Bruceton
mine, the University of Texas, and the Acapulco Convention Center. Each
map was built using 30 particles to represent the posterior about the map of
the environment and the trajectory of the vehicle.

6.5.4 Situations in Which the Scan-Matcher Fails

As reported above, it can happen that the scan-matcher is unable to find a
good pose estimate based on the laser range data. In this case, we sample from
the raw odometry model to create the next generation of particles. In most
tested indoor dataset, however, such a situation never occurred at all. Only
in the MIT dataset, this effect was observed once due to a person walking
directly in front of the robot while the robot was moving though a corridor
that mainly consists of glass panes. A picture of that glass corridor can be
found in Figure 6.8.

In outdoor datasets, such a situation can occur if the robot moves through
large open spaces and therefore the laser range finder mainly reports maxi-
mum range readings. During mapping the Freiburg campus, the scan-matcher
also reported such an error at one point. In this particular situation, the robot
entered the parking area (in the upper part of the map, compare Figure 6.6).
On that day, all cars were removed from the parking area due to construc-
tion work. As a result, no cars or other objects caused reflections of the laser
beams and most parts of the scan consisted of maximum range readings. In
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Fig. 6.11. Maps of the MIT Computer Science and AI Lab (showing also the
trajectory of the robot), of the 4th floor of the Sieg Hall at the University of
Washington, of the Belgioioso building, and of building 101 at the University of
Freiburg.
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Fig. 6.12. Maps of the Bruceton mine, of the ACES building at University of
Texas, and of the Acapulco Convention Center.
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such a situation, the odometry information provides the best pose estimate
and this information is used by our mapping system to predict the motion of
the vehicle.

6.5.5 Computational Cost

In this last experiment, we analyze the memory and computational resources
needed by our mapping system. We used a standard PC with a 2.8GHz
processor. We recorded the average memory usage and execution time using
the default parameters that allows our algorithm to learn correct maps for
all real world datasets provided to us. In this setting, 30 particles are used to
represent the posterior about the map and the trajectory. A new observation
which consists of a full laser range scan is integrated whenever the robot
moved more than 0.5m or rotated more than 25degree. The Intel Research
Lab dataset (see Figure 6.5) contains odometry and laser range readings
which have been recorded over 45min. Our implementation required around
200MB of memory to store all the data using a map with a size of approx.
40m by 40m and a grid resolution of 5 cm. The overall time to correct the
log file using our software was less than 30min. This means that the time to
record a log file is around 1.5 times longer than the time to correct the log file.
Table 6.3 depicts the average execution time for the individual operations.

Table 6.3. Average execution time using a standard PC.

Operation Average Execution Time

Computation of the proposal distribution,
the weights, and the map update

1910 ms

Test if resampling is required 41 ms

Resampling 244 ms

6.6 Related Work

Mapping techniques for mobile robots can be roughly classified according
to the map representation and the underlying estimation technique. One
popular map representation are occupancy grid maps. Whereas such grid-
based approaches typically require a lot of memory resources, they do not
require a predefined feature extractor and provide detailed representations.
Feature-based representations are attractive because of their compactness.
However, they rely on feature extractors, which assumes that some structures
in the environments are known in advance.
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The estimation algorithms can be roughly classified according to their un-
derlying basic principle. The most popular approaches are extended Kalman
filters (EKFs), maximum likelihood techniques, sparse extended information
filters (SEIFs), least square error minimization approaches, smoothing tech-
niques, and Rao-Blackwellized particle filters (RBPFs). The effectiveness of
the EKF approaches comes from the fact that they estimate a fully correlated
posterior about landmark maps and robot poses [139, 87]. Their weakness
lies in the strong assumptions that have to be made on both, the robot mo-
tion model and the sensor noise. Moreover, the landmarks are assumed to
be uniquely identifiable. There exist techniques [111] to deal with unknown
data association in the SLAM context, however, if certain assumptions are
violated, the filter is likely to diverge [46]. Similar observations have been
reported by Julier et al. [69] as well as by Uhlmann [153].

A popular least square error minimization algorithm computes the map
given the history of sensor readings by constructing a network of relations
that represents the spatial constraints among the poses of the robot [92].
Gutmann and Konolige [57] proposed an effective way for constructing such
a network and for detecting loop closures while running an incremental esti-
mation algorithm. When a loop closure is detected, a global optimization on
the relation network is performed. Similar approaches use relaxation [32, 47]
in order to find configurations that reduce the overall least square error in
the network of relations between poses.

Hähnel et al. [60], proposed an approach which is able to track several
trajectory and map hypotheses using an association tree. It expands always
the best node in that tree. As a result, it switches to a different hypotheses
as soon as the current one seems to lead to an inconsistent map. However,
the necessary expansions of this tree can prevent the approach from being
feasible for real-time operation. Furthermore, it is somewhat unclear, how
the different hypotheses can be created autonomously.

Thrun et al. [150] proposed a method to correct the poses of robots based
on the inverse of the covariance matrix. The advantage of sparse extended
information filters (SEIFs) is that they make use of the approximative spar-
sity of the information matrix and in this way can perform predictions and
updates in constant time. Eustice et al. [39] as well as Walter et al. [157]
presented a techniques to more accurately compute the error-bounds within
the SEIF framework and in this way reduces the risk of becoming overly
confident. Paskin [116] presented a solution to the SLAM problem using thin
junction trees. In this way, he is able to reduce the complexity compared to
the EKF approaches since thin junction trees provide a linear time filtering
operation.

Recently, Dellaert proposed a smoothing method called square root
smoothing and mapping [24]. It has several advantages compared to EKF
since it better covers the non-linearities and is faster to compute. In con-
trast to SEIFs, it furthermore provides an exactly sparse factorization of the
information matrix.
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Bosse et al. [14] describe a generic framework for SLAM in large-scale envi-
ronments. They use a graph structure of local maps with relative coordinate
frames and always represent the uncertainty with respect to a local frame. In
this way, they are able to reduce the complexity of the overall problem and
reduce the influence of linearization errors.

Modayil et al. [100] presented a technique which combines metrical SLAM
with topological SLAM. The topology is utilized to solve the loop-closing
problem and metric information is used to build up local structures. Similar
ideas have been realized by Lisien et al. [89], which introduce a hierarchical
map in the context of SLAM.

In a work by Murphy [109], Rao-Blackwellized particle filters (RBPF) have
been introduced as an effective means to solve the SLAM problem. Each
particle in a RBPF represents a possible robot trajectory and a map. The
framework has been subsequently extended for approaching the SLAM prob-
lem with landmark maps [104, 103]. To learn accurate grid maps, RBPFs
have been used by Eliazar and Parr [37] and Hähnel et al. [59]. Whereas the
first work describes an efficient map representation, the second one presents
an improved motion model that reduces the number of required particles.

It should be noted that improvements on particle filters resulting from an
informed proposal distributions and an intelligent resampling technique are
known techniques within the particle filter community. We would like to es-
pecially refer to the work of Doucet [29] who already addressed these issues in
his work. However, due to the best of our knowledge, the adaptive resampling
has never been used in the context of map learning. The computation of our
proposal distribution is similar to the FastSLAM-2 algorithm presented by
Montemerlo et al. [101]. In contrast to FastSLAM-2, our approach does not
rely on predefined landmarks and uses raw laser range finder data to acquire
accurate grid maps. Particle filters using proposal distributions that take into
account the most recent observation are also called look-ahead particle filters.
Morales-Menéndez et al. [107] proposed such a method to more reliably esti-
mate the state of a dynamic system outside robotics where accurate sensors
are available.

The work described in this chapter can be seen as an extension of the
algorithm proposed by Hähnel et al. [59]. Instead of using a fixed proposal
distribution, our algorithm computes an improved proposal distribution on
a per-particle basis on the fly. This allows to directly use most of the infor-
mation obtained from the sensor while evolving the particles. As a result,
we require around one order of magnitude fewer samples compared to the
approach of Hähnel et al.

The advantage of our approach is twofold. First, our algorithm draws the
particles in a more effective way. Second, the highly accurate proposal dis-
tribution allows us to utilize the number of effective particles as a robust
indicator to decide whether or not a resampling has to be carried out. This
further reduces the risk of particle depletion.
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One aspect which has not been addressed so far in this chapter is the
question on how to deal with dynamically changing environments. Highly
dynamic objects like walking persons or moving cars can be filtered [62] so
that accurate maps without spurious objects can be obtained. The problem of
dealing with low-dynamic or temporarily dynamic objects will be addressed
in Chapter 10.

6.7 Conclusion

In this chapter, we presented an approach to learning highly accurate grid
maps with Rao-Blackwellized particle filters. Based on the likelihood model
of a scan-matching process for the most recent laser range observation, our
approach computes an informed proposal distribution. This allows us to draw
particles in an more accurate manner which seriously reduces the number
of required samples. Additionally, we apply a selective resampling strategy
based on the effective number of particles. This approach reduces the number
of unnecessary resampling actions in the particle filter and thus substantially
reduces the risk of particle depletion.

The approach has been implemented and evaluated on data acquired with
different mobile robots equipped with laser range scanners. We furthermore
successfully corrected a large number of available robotic datasets and pub-
lished an open-source implementation of our mapping software. Tests per-
formed with our algorithm in different large-scale environments have demon-
strated its robustness and the ability of generating high quality maps. In
these experiments, the number of particles needed by our approach often was
by one order of magnitude smaller compared to previous approaches.
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Actively Closing Loops During Exploration

7.1 Introduction

We presented so far approaches to autonomous exploration in Chapter 3-5
and a solution to the SLAM problem in Chapter 6. In general, the task of
acquiring models of unknown environments requires to simultaneously ad-
dress three tasks, which are mapping, localization, and path planning. In
the this chapter as well as in the two following ones, we focus on integrated
approaches which aim to solve these three tasks simultaneously in order to
build accurate models of the environment.

A näıve approach to realize an integrated technique could be to combine a
SLAM algorithm, which covers mapping and localization, with an exploration
procedure. Since classical exploration strategies often try to cover unknown
terrain as fast as possible, they avoid repeated visits to known areas. This
strategy, however, is suboptimal in the context of the SLAM problem because
the robot typically needs to revisit places in order to localize itself. A good
pose estimate is necessary to make the correct data association, i.e., to deter-
mine if the current measurements fit into the map built so far. If the robot
uses an exploration strategy that avoids multiple visits to the same place, the
probability of making the correct association is reduced. This indicates that
combinations of exploration strategies and SLAM algorithms should consider
whether it is worth reentering already covered spaces or to explore new ter-
rain. It can be expected that a system, which takes this decision into account,
can improve the quality of the resulting map.

Figure 7.1 gives an example that illustrates that an integrated approach
performing active place revisiting provides better results than approaches
that do not consider reentering known terrain during the exploration phase.
In the situation shown in the left image, the robot traversed the loop just once.
The robot was not able to correctly determine the angle between the loop
and the straight corridor because it did not collect enough data to accurately
localize itself. The second map shown in the right image has been obtained
after the robot traveled twice around the loop to relocalize before entering

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 117–134.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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start start

Fig. 7.1. This figure shows two maps obtained from real world data acquired at
Sieg Hall, University of Washington. The left image depicts an experiment in which
the robot traversed the loop only once before it entered the long corridor. As can
be seen, the robot was unable to correctly close the loop, which led to an error of
7 degrees in the orientation of the horizontal corridor. In the case in which the robot
revisited the loop, the orientation error was reduced to 1 degree (see right image).

the corridor. As can be seen from the figure, this reduces the orientation
error from approximately 7 degrees (left image) to 1 degree (right image).
This example illustrates that the capability to detect and actively close loops
during exploration allows the robot to reduce its pose uncertainty during
exploration and thus to learn more accurate maps.

The contribution of this chapter is an integrated algorithm for generating
trajectories to actively close loops during SLAM and exploration. Our algo-
rithm uses a Rao-Blackwellized mapping technique to estimate the map and
the trajectory of the robot. It explicitely takes into account the uncertainty
about the pose of the robot during the exploration task. Additionally, it ap-
plies a technique to reduce the risk that the robot becomes overly confident
in its pose when actively closing loops, which is a typical problem of particle
filters in this context. As a result, we obtain more accurate maps compared
to combinations of SLAM with standard exploration.

This chapter is organized as follows. In Section 7.2, we present our in-
tegrated exploration technique. We describe how to detect loops and how
to actively close them. Section 7.3 presents experiments carried out on real
robots as well as in simulation. Finally, we discuss related work in Section 7.4.

7.2 Active Loop-Closing

Whenever a robot using a Rao-Blackwellized mapper explores new terrain, all
samples have more or less the same importance weight since the most recent
measurement is typically consistent with the part of the map constructed from
the immediately preceding observations. Typically, the uncertainty about the
pose of the robot increases. As soon as it reenters known terrain, however,
the maps of some particles are consistent with the current measurement and
some are not. Accordingly, the weights of the samples differ largely. Due to
the resampling step, unlikely particles usually get eliminated and thus the
uncertainty about the pose of the robot decreases. One typical example is
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s*

s*
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Fig. 7.2. Evolution of a particle set and the map of the most likely particle (here
labeled as s∗) at three different time steps. In the two left images, the vehicle
traveled through unknown terrain, so that the uncertainty increased. In the right
image, the robot reentered known terrain so that samples representing unlikely
trajectories vanished.

shown in Figure 7.2. In the two left images, the robot explores new terrain
and the uncertainty of the sample set increases. In the right image, the robot
travels through known terrain and unlikely particles have vanished.

Note that this effect is much smaller if the robot just moves backward a
few meters to revisit previously scanned areas. This is because the map as-
sociated with a particle is generally locally consistent. Inconsistencies mostly
arise when the robot reenters areas explored some time ago. Therefore, vis-
iting places seen further back in the history has a stronger effect on the dif-
ferences between the importance weights and typically also on the reduction
of uncertainty compared to places recently observed.

7.2.1 Detecting Opportunities to Close Loops

The key idea of our approach is to identify opportunities for closing loops
during terrain acquisition in order to relocalize the vehicle. Here, closing a
loop means actively reentering the known terrain and following a previously
traversed path. To determine whether there exists a possibility to close a loop,
we consider two different representations of the environment. In our current
system, we associate to each particle s an occupancy grid map m[s] and a
topological map G[s]. Both maps are updated while the robot is performing
the exploration task. In the topological map G[s], the vertices represent po-
sitions visited by the robot. The edges represent the estimated trajectory of
the corresponding particle. To construct the topological map, we initialize it
with one node corresponding to the starting location of the robot. Let x

[s]
t be

the pose of particle s at the current time step t. We add a new node at the
position x

[s]
t to G[s] if the distance between x

[s]
t and all other nodes in G[s]

exceeds a threshold d (here set to 2.5m) or if none of the other nodes in G[s]

is visible from x
[s]
t
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∀n ∈ nodes(G[s]) :
[
distm[s](x[s]

t , n) > d ∨

not visiblem[s](x[s]
t , n)

]
. (7.1)

Whenever a new node is created, we also add an edge from this node to the
most recently visited node. To determine whether or not a node is visible from
another node, we perform a ray-casting operation in the occupancy grid m[s].

x
[s]
t

�

I(s)
���

�
x

[s]
t
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x
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Fig. 7.3. The red dots and lines in these three image represent the nodes and edges
of G[s]. In the left image, I(s) contained two nodes (indicated by the arrows) and
in the middle image the robot closed the loop until the pose uncertainty is reduced.
After this, it continued with the acquisition of unknown terrain (right image).

Figure 7.3 depicts such a graph for one particular particle during different
phases of an exploration task. In each image, the topological map G[s] is
printed on top of metric map m[s]. To motivate the idea of our approach, we
would like to refer the reader to the left image of this figure. Here, the robot
almost closed a loop. This can be observed by the fact that the length of the
shortest path between the current pose of the robot and previously visited
locations(here marked with I(s)) is large in the topological map G[s], whereas
it is small in the grid map m[s].

The shortest path in from the current pose of the robot to those locations
models a shortcut in the environment which has not been traversed to far.
Following such a path exactly characterized a loop closure.

Thus, to determine whether or not a loop can be closed, we compute for
each sample s the set I(s) of positions of interest. This set contains all nodes
that are close to the current pose x

[s]
t of particle s based on the grid map

m[s], but are far away given the topological map G[s]

I(s) = {x[s]
t′ ∈ nodes(G[s]) | distm[s](x[s]

t′ , x
[s]
t ) < d1 ∧

distG[s](x[s]
t′ , x

[s]
t ) > d2}. (7.2)

Here, distM(x1, x2) is the length of the shortest path from x1 to x2 given
the representation M. The distance between two nodes in G[s] is given by
the length of the shortest path between both nodes. The length of a path
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is computed by the sum over the lengths of the traversed edges. Depending
on the number of nodes in I(s), this distance information can be efficiently
computed using either the A∗ algorithm [112, 130] or Dijkstra’s algorithm
[114]. The terms d1 and d2 are constants that must satisfy the constraint
d1 < d2. In our current implementation, the values of these constants are
d1 = 6m and d2 = 20m.

In case I(s) �= ∅, there exist at least one shortcut from the current pose x
[s]
t

of the particle s to the positions in I(s). These shortcuts represent edges that
would close a loop in the topological map G[s]. The left image of Figure 7.3
illustrates a situation in which a robot encounters the opportunity to close
a loop since I(s) contains two nodes which is indicated by two arrows. The
key idea of our approach is to use such shortcuts whenever the uncertainty
of the robot in its pose becomes large. The robot then revisits portions of
the previously explored area and in this way reduces the uncertainty in its
position.

To determine the most likely movement allowing the robot to follow a
previous path, one in principle has to integrate over all particles and consider
all potential outcomes of that particular action. Since this would be too time
consuming for online-processing, we consider only the particle s∗ with the
highest accumulated logarithmic observation likelihood

s∗ = argmax
s

t∑
t′=1

log p(zt′ | m[s], x
[s]
t′ ). (7.3)

If I(s∗) �= ∅, we select the node xte from I(s∗) which is closest to x
[s∗]
t

xte = argmin
x∈I(s∗)

distm[s∗](x[s∗]
t , x). (7.4)

In the sequel, xte is denoted as the entry point at which the robot has the
possibility to close a loop. te corresponds to the last time the robot was at
the node xte .

7.2.2 Representing Actions under Pose Uncertainty

One open question is how to express an action if the robot acts under pose
uncertainty. A list of positions expressed in a global coordinate frame is usu-
ally not a good solution since this action is only valid for a single particle.
Whenever the particle s∗ which is used to compute the plan changes, the
robot would need to recompute its action. An alternative solutions is to ex-
press the action as a sequence of relative motion commands. This works fine
as long as the robot moves through unknown terrain or the pose uncertainty
is not too big.

We use a slightly different method that provides more stable plans. In-
stead of using a sequence of relative motions commands with respect to the
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current pose of the robot, we use the nodes in our topological maps as refer-
ence frames. An example for such an actions (expressed in human language)
could be “move to the position 1m north of the node 5, turn 90 degree right
and move to node 7.” As mentioned before, in our approach the actions are
planned based on the particle s∗. In case a different particle becomes the
particle s∗, it is likely that we do not need to replan our action since it is
expressed relative to the nodes of the topological map. Often such a plan is
still valid after s∗ changed. Valid means in this context that the planned path
does not lead to a collision. In case a collision with a wall is detected, the
action is recomputed or the loop-closing procedure is aborted.

7.2.3 Stopping the Loop-Closing Process

To determine whether or not the robot should activate the loop-closing be-
havior, our system constantly monitors the uncertainty H about the robot’s
pose at the each point in time. The necessary condition for starting the loop-
closing process is the existence of an entry point xte and that H(t) exceeds a
given threshold. Once the loop-closing process has been activated, the robot
approaches xte and then follows the path taken after previously arriving at
xte . During this process, the uncertainty in the pose of the vehicle typically
decreases because the robot is able to localize itself in the map built so far
and unlikely particles vanish.

We have to define a criterion for deciding when the robot actually has to stop
following a loop. A first attempt could be to introduce a threshold and to sim-
ply stop the trajectory following behavior as soon as the uncertainty becomes
smaller than a given threshold. This criterion, however, can be problematic
especially in the case of nested loops. Suppose the robot encounters the op-
portunity to close a loop that is nested within an outer and so far unclosed
loop. If it eliminates all of its uncertainty by repeatedly traversing the inner
loop, particles necessary to close the outer loop may vanish. As a result, the
filter diverges and the robot fails to build a correct map (see Figure 7.4).

To remedy this so-called particle depletion problem, we introduce a con-
straint on the uncertainty of the robot. Let H(te) denote the uncertainty of
the posterior when the robot visited the entry point last time. Then the new
constraint allows the robot to re-traverse the loop only as long as its cur-
rent uncertainty H(t) exceeds H(te). If the constraint is violated the robot
resumes its terrain acquisition process. This constraint is designed to reduce
the risk of depleting relevant particles during the loop-closing process. The
idea behind this constraint is that by observing the area within the loop,
the robot does not obtain any information about the world outside the loop.
From a theoretical point of view, the robot cannot reduce the uncertainty
H(t) in its current posterior below its uncertainty H(te) when entering the
loop since H(te) is the uncertainty stemming from the world outside the loop.

To better illustrate the importance of this constraint, consider the following
example: A robot moves from place A to place B and then repeatedly observes
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(a) (b)

(c) (d)

Fig. 7.4. An example for particle depletion. A robot explores an environment and
travels through the inner loop (a) several times. Due to the repeated visits the
diversity of hypotheses about the trajectory outside the inner loop decreases (b)
too much and the robot is unable to close the outer loop correctly (c) and (d).

B. While it is mapping B, it does not get any further information about
A. Since each particle represents a whole trajectory (and the corresponding
map) of the robot, hypotheses representing ambiguities about A will also
vanish when reducing potential uncertainties about B. Our constraint reduces
the risk of depleting particles representing ambiguities about A by aborting
the loop-closing behavior at B as soon as the uncertainty drops below the
uncertainty stemming from A.

Finally, we have to describe how we actually measure the uncertainty in the
position estimate. The typical way of measuring the uncertainty of a posterior
is to use the entropy. To compute the entropy of a posterior represented by
particles, one typically uses a multi-dimensional grid representing the possible
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(discretized) states. Each cell c in this (virtual) grid stores a probability which
is given by the sum of the normalized weights of the samples corresponding
to that cell. The entropy is then computed by

H(t) = −
∑

c

p(c) log p(c) (7.5)

= −
∑

c

⎡
⎣
⎛
⎝ ∑

i:x[i]∈c

w
[i]
t

⎞
⎠ log

⎛
⎝ ∑

i:x[i]∈c

w
[i]
t

⎞
⎠
⎤
⎦ , (7.6)

where i : x[i] ∈ c refers to the indices of all particles which current poses x[i]

lie within the area which is covered by the grid cell c.
In the case of multi-modal distributions, however, the entropy does not

consider the distance between the different modes. This distance, however,
is an important property when evaluating the pose uncertainty of a mobile
vehicle. As a result, a set of k different pose hypotheses which are located close
to each other but do not belong to the same cell c leads to the same entropy
value than the situation in which k hypotheses are randomly distributed over
the environment. The resulting maps, however, would look similar in the first
case, but quite different in the second case. In our experiments, we figured
out that we obtain better results if we use the volume expanded by the
samples instead of the entropy. We therefore calculate the pose uncertainty
by determining the volume of the oriented bounding box around the particle
cloud. A good approximation of the minimal oriented bounding box can be
obtained efficiently by a principal component analysis.

Note that the loop-closing process is also aborted in case a robot travels for
a long period of time through the same loop in order to avoid a – theoretically
possible – endless loop-closing behavior. In all our experiments, however, this
problem has never been encountered.

7.2.4 Reducing the Exploration Time

The experiments presented later on in this chapter demonstrate that our
uncertainty based stopping criterion is an effective way to reduce the risk
of particle depletion. However, it can happen that the perceived sensor data
after closing a loop does not provide a lot of new information for the robot.
Moving through such terrain leads to an increased exploration time since the
robot does redundant work which does not provide relevant information. It
would be more efficient to abort the loop-closing procedure in situations in
which the new sensor data does not help to identify unlikely hypotheses.

To estimate how well the current set of N particle represents the true
posterior, Liu [90] introduced the effective number of particles Neff , see (6.22).
In the previous chapter, we described how to use Neff to resample in an
intelligent way but it is also useful in the context of active loop-closing. We
monitor the change of Neff over time, which allows us to analyze how the
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new acquired information affects the filter. If Neff stays constant, the new
information does not help to identify unlikely hypotheses represented by the
individual particles. In that case, the variance in the importance weights of
the particles does not change over time. If, in contrast, the value of Neff

decreases over time, the new information is used to determine that some
particles are less likely than others. This is exactly the information we need
in order to decide whether or not the loop-closing should be aborted. As long
as new information helps to identify unlikely particles, we follow the loop.
As soon as the observations do not provide any new knowledge about the
environment for a period of k time steps, we continue to explore new terrain
in order to keep the exploration time small.

Note that this criterion is optional and not essential for a successful loop-
closing strategy. It can directly be used if the underlying mapping approach
applies an adaptive resampling technique. If no adaptive resampling is used,
one needs to monitor the relative change in Neff after integrating each mea-
surement, because after each resampling step the weights of all particles are
set to 1

N . In the experimental section of this chapter, we illustrate that Neff

is a useful criterion in the context of active loop-closing and how it behaves
during exploration.

As long as the robot is localized well enough or no loop can be closed, we
use a frontier-based exploration strategy to choose a target location for the
robot. As described before, a frontier is any known and unoccupied cell that is
an immediate neighbor of an unknown, unexplored cell [163]. By extracting
frontiers from a given grid map, one can easily determine potential target
locations which guide the robot to so far unknown terrain. As in Chapter 4,
the cost of the target locations is given by the cost function presented in
Section 4.2.1. In our current system, we determine frontiers based on the
map of the particle s∗.

A precise formulation of the loop-closing strategy is given by Algorithm 7.1.
In our current implementation, this algorithm runs as a background process
that is able interrupt the frontier-based exploration procedure.

Algorithm 7.1 The loop-closing algorithm
1: Compute I(s∗)
2: if I(s∗) �= ∅ then begin
3: H = H(te)

4: path = x
[s∗]
t + shortest pathG[s∗](xte , x

[s∗]
t )

5: while H(t) > H ∧ var(Neff (n− k), . . . , Neff (n)) > ε do
6: robot follow(path)
7: end
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Fig. 7.5. Active loop-closing of multiple nested loops.

7.2.5 Handling Multiple Nested Loops

Note that our loop-closing technique can also handle multiple nested loops.
During the loop-closing process, the robot follows its previously taken tra-
jectory to relocalize. It does not leave this trajectory until the termination
criterion (see line 5 in Algorithm 7.1) is fulfilled. Therefore, it never starts a
new loop-closing process before the current one is completed. A typical ex-
ample with multiple nested loops is illustrated in Figure 7.5. In the situation
depicted in the left picture, the robot starts with the loop-closing process for
the inner loop. After completing the most inner loop, it moves to the sec-
ond inner one and again starts the loop-closing process. Since our algorithm
considers the uncertainty at the entry point, it keeps enough variance in the
filter to also close the outer loop correctly. In general, the quality of the solu-
tion and whether or not the overall process succeeds depends on the number
of particles used. Since determining this quantity is still an open research
problem, the number of particles has to be defined by the user in our current
system.

7.3 Experimental Results

Our approach has been implemented and evaluated in a series of real world
and simulation experiments. For the real world experiments, we used an
iRobot B21r robot and an ActivMedia Pioneer 2 robot. Both are equipped
with a SICK laser range finder. For the simulation experiments, we used the
real-time simulator of the Carnegie Mellon robot navigation toolkit (CAR-
MEN) [128].

The experiments described in this section illustrate that our approach
can be used to actively learn accurate maps of large indoor environments.
Furthermore, they demonstrate that our integrated approach yields better
results than an approach which does not has the ability to actively close
loops. Additionally, we analyze how the active termination of the loop closure
influences the result of the mapping process.
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Fig. 7.6. The left image shows the resulting map of an exploration experiment
in the entrance hall of the Department for Computer Science at the University of
Freiburg. It was carried out using a Pioneer 2 robot equipped with a laser range
scanner (see right image). Also plotted is the path of the robot as well as entry and
exit points where the robot started and stopped the active loop-closing process.

7.3.1 Real World Exploration

The first experiment was carried out to illustrate that our current system can
effectively control a mobile robot to actively close loops during exploration.
To perform this experiment, we used a Pioneer 2 robot to explore the main
lobby of the Department for Computer Science at the University of Freiburg.
The size of this environment is 51m by 18m. Figure 7.6 depicts the final result
obtained by a completely autonomous exploration run using our active loop-
closing technique. It also depicts the trajectory of the robot, which has an
overall length of 280m. The robot decided four times to reenter a previously
visited loop in order to reduce the uncertainty in its pose. Figure 7.6 shows
the resulting map, the corresponding entry points as well as the positions
where the robot left the loops (“exit points”). As can be seen, the resulting
map is quite accurate.

7.3.2 Active Loop-Closing vs. Frontier-Based Exploration

The second experiment should illustrate the difference to approaches that do
not consider loop-closing actions. We used real robot data obtained with a B21r
robot in the Sieg Hall at the University of Washington. As can be seen from
the motivating example in the introduction of this chapter (see Figure 7.1),
the robot traversed the loop twice during map building. To eliminate the in-
fluence of unequal measurement noise and different movements of the robot,
we removed the data corresponding to one loop traversal from the recorded
data file and used this data as input to our SLAM algorithm. In this way,
we simulated the behavior of a greedy exploration strategy which forces the
robot to directly enter the corridor after returning to the starting location
in the loop. As can be seen from the same figure, an approach that does not



128 7 Actively Closing Loops During Exploration

Fig. 7.7. This figure depicts an environment with two large loops. The outer loop
has a length of over 220 m. The left image show the resulting map of a trajectory
in which the robot drove through the loops only once. In the second run, the robot
visited every loop twice and obtained a highly accurate map (see right image).

actively reenter the loop fails to correctly estimate the angle between the
loop and the corridor which should be oriented horizontally in that figure.
Whereas the angular error was 7 degrees with the standard approach, it
was only 1 degree in the case where the robot traversed the loop twice. The
depicted maps corresponded to the one of the particle s∗.

A further experiment that illustrates the advantage of place revisiting is
shown in Figure 7.7. The environment used in this simulation run is 80m by
80m and contains two large nested loops with nearly featureless corridors.
The left image shows the result of the frontier-based approach which traversed
each loop only once. Since the robot is not able to correct the accumulated
pose error, the resulting map contains large inconsistencies and two of the
corridors are mapped onto each other. Our approach, in contrast, first revisits
the outer loop before entering the inner one (see right image). Accordingly,
the resulting map is more accurate.

7.3.3 A Quantitative Analysis

To quantitatively evaluate the advantage of the loop-closing behavior, we
performed a series of simulation experiments in an environment similar to
Sieg Hall. We performed 20 experiments, 10 with active loop-closing and 10
without. After completing the exploration task, we measured the average
error in the relative distances between positions lying on the resulting esti-
mated trajectory and the ground truth provided by the simulator. The results
are depicted in Figure 7.8. As can be seen, the active loop-closing behavior
significantly reduces the error in the position of the robot.
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Fig. 7.8. This figure compares our loop-closing strategy with a pure frontier-based
exploration technique. The left bar in this graph plots the average error in the
pose of the robot obtained with our loop-closing strategy. The right one shows
the average error when a frontier-based approach was used. As can be seen, our
technique significantly reduces the distances between the estimated positions and
the ground truth (confidence intervals do not overlap).

7.3.4 Importance of the Termination Criterion

In this experiment, we analyze the importance of the constraint that ter-
minates the active loop-closing behavior as soon as the current uncertainty
H(t) of the belief drops under the uncertainty H(te) of the posterior when
the robot was at the entry point the last time.

In this simulated experiment, the robot had to explore an environment
which contains two nested loops and is depicted in Figure 7.9 (d). In the first
case, we simply used a constant threshold to determine whether or not the
loop-closing behavior should be stopped. In the second case, we applied the
additional constraint that the uncertainty should not become smaller than
H(te).

Figure 7.4 shows the map of the particle s∗ obtained with our algorithm
using a constant threshold instead of considering H(te). In this case, the
robot repeatedly traversed the inner loop (a) until its uncertainty was reduced
below a certain threshold. After three and a half rounds it decided to again
explore unknown terrain, but the diversity of hypotheses had decreased too
much (b). Accordingly the robot was unable to accurately close the outer loop
(c) and (d). We repeated this experiment several times and in none of the
cases was the robot able to correctly map the environment. In contrast, our
approach using the additional constraint always generated an accurate map.
One example is shown in Figure 7.9. Here, the robot stopped the loop-closing
after traversing half of the inner loop.

As this experiment illustrates, the termination of the loop-closing is im-
portant for the convergence of the filter and to obtain accurate maps in
environments with several (nested) loops. Note that similar results in prin-
ciple can also be obtained without this termination constraint if the number
of particles is substantially increased. Since exploration is an online problem
and each particle carries its own map it is of utmost importance to keep
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the number of particles as small as possible. Therefore, our approach can
also be regarded as a contribution to limit the number of particles during
Rao-Blackwellized simultaneous localization and mapping.

entry
point

(a) (b)

(c) (d)

Fig. 7.9. In image (a), the robot detected an opportunity to close a loop. It tra-
versed parts of the inner loop as long as its uncertainty exceed the uncertainty
H(te) of the posterior when the robot at the entry point and started the loop-
closing process. The robot then turned back and left the loop (b) so that enough
hypotheses survived to correctly close the outer loop (c) and (d). In contrast, a sys-
tem considering only a constant threshold criterion fails to map the environment
correctly as depicted in Figure 7.4.

7.3.5 Evolution of Neff

In this experiment, we show the behavior of the optional termination criterion
that triggers the active loop-closing behavior. Additionally, the constraint
that the uncertainty H(t) must be bigger than the uncertainty at the entry
point H(te) of the loop, the process is stopped whenever the effective number
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Fig. 7.10. The graph plots the evolution of the Neff function over time during an
experiment carried out in the environment shown in the right image. The robot
started at position A. The position B corresponds to the closure of the inner loop
and C corresponds to closure of the outer loop.

of particles Neff stays constant for a certain period of time. This criterion
was introduced to avoid that the robot moves through the loop even if no new
information can be obtained from the sensor data. The robot re-traverses the
loop only as long as the sensor data is useful to identify unlikely hypotheses
about maps and poses.

One typical evolution of Neff is depicted in the left image of Figure 7.10. To
achieve a good visualization of the evolution of Neff , we processed a recorded
data file using 150 particles. Due to the adaptive resampling strategy, only a
few resampling operations were needed. The robot started at position A and
in the first part of the experiment moved through unknown terrain (between
the positions A and B). As can be seen, Neff decreases over time. After
the loop has been closed correctly and unlikely hypotheses had partly been
removed by the resampling action (position B), the robot re-traversed the
inner loop and Neff stayed more or less constant. This indicates that acquiring
further data in this area has only a small effect on the relative likelihood of the
particles and the system could not determine which hypotheses represented
unlikely configurations. In such a situation, it therefore makes more sense to
focus on new terrain acquisition and to not continue the loop-closing process.

Furthermore, we analyzed the length of the trajectory traveled by the
robot. Due to the active loop-closing, our technique generates longer tra-
jectories compared to a purely frontier-based exploration strategy. We per-
formed several experiments in different environments in which the robot had
the opportunity to close loops and measured the average overhead. During
our experiments, we observed an overhead varying from 3% to 10%, but it
obviously depends on number of loops in the environment.
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7.3.6 Multiple Nested Loops

To illustrate, that our approach is able to deal with several nested loops,
we performed a simulated experiment shown in Figure 7.11. The individual
images in this figure depict eight snapshots recorded during exploration. Im-
age (a) depicts the robot while exploring new terrain and image (b) while
actively closing the most inner loop. After that, the robot focused on acquir-
ing so far unknown terrain and moves through the most outer loop as shown
in (c) and (d). Then the robot detects a possibility to close a loop (e) and
follows its previously taken trajectory (f). After aborting the loop closing
behavior, the robot again explores the loop in the middle (g), again closes
the loop accurately, and finishes the exploration task (h).

topological map

best frontier

robot

active loop closure

loop detected active loop closure

new terrain acquisition

(a) (b) (c) (d)

(e) (f) (g) (h)

new terrain acquisition

new terrain acquisition

Fig. 7.11. Snapshots during the exploration of a simulated environment with sev-
eral nested loops. The red circles represent nodes of the topological map plotted on
top of the most likely grid map. The yellow circle corresponds to the frontier cell
the robot currently seeks to reach.

7.3.7 Computational Resources

Note that our loop-closing approach needs only a few additional resources.
To detect loops, we maintain an additional topological map for each parti-
cle. These topological maps are stored as a graph structure and for typical
environments only a few kilobytes of extra memory is needed. To determine
the distances based on the grid map in (7.1) and (7.2), our approach directly
uses the result of a value iteration (alternatively Dijkstra’s algorithm) based
on the map of s∗, which has already been computed in order to evaluate
the frontier cells. Only the distance computation using the topological map
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needs to be done from scratch. However, since the number of nodes in the
topological map is much smaller than the number of grid cells, the computa-
tional overhead is comparably small. In our experiments, the time to perform
all computations in order to decide where to move next increased by around
10ms on a standard PC when our loop-closing technique was enabled.

7.4 Related Work

Several previous approaches to SLAM and mobile robot exploration are re-
lated to our work. In the context of exploration, most of the techniques
presented so far focus on generating motion commands that minimize the
time needed to cover the whole terrain [77, 160, 163]. Other methods like, for
example, the one presented in Chapter 3 or the work of Grabowski et al. [54]
seek to optimize the viewpoints of the robot to maximize the expected infor-
mation gain and to minimize the uncertainty of the robot about grid cells.
Most of these techniques, however, assume that the location of the robot is
known during exploration. A detailed discussion about those approaches is
provided in the related work sections of Chapter 3 and 4.

In the area of SLAM, the vast majority of papers focuses on the aspect
of state estimation as well as belief representation and update [28, 30, 37,
57, 59, 104, 109, 145]. A detailed discussion of related SLAM approaches
can be found in Section 6.6. Classical SLAM techniques are passive and only
consume incoming sensor data without explicitely generating controls.

Recently, some techniques have been proposed which actively control the
robot during SLAM. For example, Makarenko et al. [94] as well as Bourgault
et al. [15] extract landmarks out of laser range scans and use an extended
Kalman filter to solve the SLAM problem. Furthermore, they introduce a
utility function which trades off the cost of exploring new terrain with the
utility of selected positions with respect to a potential reduction of uncer-
tainty. The approaches are similar to the work done by Feder et al. [40] who
consider local decisions to improve the pose estimate during mapping. Sim
et al. [135] presented an approach in which the robot follows a parametric
curve to explore the environment and considers place revisiting actions if the
pose uncertainty gets too high. These four techniques integrate the uncer-
tainty in the pose estimate of the robot into the decision process of where
to move next. However, they rely on the fact that the environment contains
landmarks that can be uniquely determined during mapping.

In contrast to this, the approach presented here makes no assumptions
about distinguishable landmarks in the environment. It uses raw laser range
scans to compute accurate grid maps. It considers the utility of reentering
known parts of the environment and following an encountered loop to reduce
the uncertainty of the robot in its pose. In this way, the resulting maps
become more accurate.



134 7 Actively Closing Loops During Exploration

There exist techniques to combine topological maps with other kind of
spacial representations. This is typically done to handle large-scale maps or
to simplify the loop-closing problem [14, 82, 89]. Those approaches can attach
detailed local maps to the nodes of the topological map. Also our approach
makes use of topological maps. However, building up such a hierarchy is not
intended by our work, since we only use the topological map to detect loops
in the environment.

7.5 Conclusion

In this chapter, we presented an approach for active loop-closing during au-
tonomous exploration. We combined the Rao-Blackwellized particle filter for
simultaneous localization and mapping presented in the previous chapter
with a frontier-based exploration technique extended by the ability to ac-
tively close loops. Our algorithm forces the robot to re-traverse previously
visited loops and in this way reduces the uncertainty in the pose estimate.
The loop detection is realized by maintaining two different representations
of the environments. By comparing a grid map with a topological map, we
are able to detect loops in the environment that have not been closed so
far. As a result, we obtain more accurate maps compared to combinations
of SLAM algorithms with classical exploration techniques. As fewer particles
need to be maintained to build accurate maps, our approach can also be
regarded as a contribution to reduce the number of particles needed during
Rao-Blackwellized mapping.
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Recovering Particle Diversity

8.1 Introduction

We presented in Chapter 7 a technique that allows an exploring robot to
detect loops and to carry out place revisiting actions. We showed that the
quality of a map constructed by a mobile robot depends on its trajectory
during data acquisition. This is due to the fact that the vehicle needs to re-
localize itself during exploration in order to build an accurate model of the
environment. Our loop-closing technique uses a heuristic stopping criterion
in order to continue with the new terrain acquisition and to reduce the risk
that the particle depletion problem affects the filter. We showed that such an
approach works well in practice, however, the general problem of particle de-
pletion in the context of loop-closing still exists. To overcome this limitation,
we present in this chapter a technique that is able to approximatively recover
lost hypotheses. It enables a mobile robot to store the particle diversity of the
filter before entering a loop. When leaving the loop, the robot is then able to
recover that diversity and continue the exploration process. This technique
allows a mobile robot to stay – at least theoretically – arbitrarily long in a
loop without depleting hypotheses needed to close an additional, outer loop.

Figure 8.1 illustrates the problem of vanished particles in the context of
repeated loop traversals in environments with nested loops. Due to the risk
of particle depletion, the robot should spend only a limited period of time
in an inner loop. In situations in which the robot is forced to move through
a loop for a longer period of time, the particle diversity is likely to get lost.
This can, for example, be the case in environments with extremely long loops.
Even if the robots seeks to explore new terrain, it may need to travel for long
distances through the loop before it can reach a frontier (see Figure 8.2).
Such a situation can lead to particle depletion too.

The contribution of this chapter is a technique to recover the variety of
trajectory hypotheses represented by a Rao-Blackwellized particle filter in
the context of nested loops. Our approach determines an approximation of
the posterior given by the particles at the entry of a loop and propagates

C. Stachniss: Robotic Mapping and Exploration, STAR 55, pp. 135–142.
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one hypothesis inconsistencies

hypotheses
multiple

Fig. 8.1. This figure illustrates that a loss of particle diversity introduced by
repeated loop closing can lead to a wrong solution in the context of mapping with
a Rao-Blackwellized particle filter.

frontier1

frontier2

frontier1

frontier2

planned pathtrajectory

trajectory

large distances large distances

Fig. 8.2. In this experiment, the robot started the exploration process in the lower
right corner of the environment. In the left image, is activates the loop-closing
process and follows its previously taken trajectory. In the right image, the robot
aborts the loop-closing process. However, to reach the next frontier, the robots
needs to travel through known areas for a long time. This can lead to particle
depletion.

its uncertainty through the loop. This way, hypotheses needed to close an
outer loop are maintained. The major advantage of this approach is that the
robot can, in principle, stay arbitrarily long in an inner loop without losing
information necessary to close outer loops.

This chapter is organized as follows. Section 8.2 then describes how to
recover the diversity of a particle filter when the robot leaves a loop. Sec-
tion 8.3 contains experimental results carried out on real robots as well as in
simulation. Finally, Section 8.4 discusses related work.
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8.2 Recovering Particle Diversity after Loop Closure

To overcome the problems of particle depletion in the context of nested loops,
we need a way to recover hypotheses vanished from a particle filter during the
repeated traversal of an inner loop. Even if our active loop-closing technique
in combination with the stopping criterion based on Neff makes particle
depletion unlikely, the vanishing of important hypotheses and the resulting
problem of filter divergence remains. Note that the risk of particle depletion
increases with the size of the environment. Also, the smaller the number of
particles, the higher is that risk.

As an example, suppose a robot has accurately mapped an inner loop
in an environments which contains nested loops. In such a case, its likely
that the particle filter has converged to a highly peaked distribution and
only one hypothesis present at the entry point has survived. Thus, it is not
guaranteed that this hypothesis is the one which perfectly closes the outer
loop. In principle, a robot therefore has to maintain a sufficient variety of
particles allowing it to perform the next loop closure. Since the robot does
not know in advance how many loops it will find in the environment, this
problem cannot be solved in general with a finite number of particles only.

If one knew the starting point of such an inner loop in advance, one solution
would be to suspend the particle filter and to start for each particle a new
filter initialized with the current state of that particle. After the convergence
of all filters one can then attach their solutions to the corresponding particles
in the suspended filter. Apart from the fact that a loop cannot be recognized
in advance this approach is not feasible for online tasks like exploration since
the amount of computational resources needed grows exponentially in the
number of loops.

The technique described in the following is an approximation of this ap-
proach. The key idea is to simulate this process as soon as the robot detects
an opportunity to close a loop using our approach presented in the previous
chapter. The robot computes the trajectory posterior at the entry point of
the loop given the particles in its current belief. In this approximative particle
set, the states and weights are computed according to

x̃
[s]
te

� predte
(x[s]

t ) (8.1)

w̃
[s]
te

� w
[s]
t . (8.2)

Here predte
(x[s]

t ) is the state of the ancestor of x
[s]
t at time te. Note that espe-

cially the weight computation is an approximation. Typically, this value has
changed between time t and te since new observations have been integrated.

Whenever the robot stops the loop closing behavior it uses this posterior
to propagate the variety of the particles through the loop. In probabilistic
terms, this corresponds to rewriting the term p(x1:t | z1:t, u1:t−1) in (6.1) as
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p(x1:t | z1:t, u1:t−1)
product rule

= p(xte+1:t | x1:te , z1:t, u1:t−1)p(x1:te | z1:te , u1:te−1) (8.3)
= p(xte+1:t | x1:te , z1:t, ute:t−1)p(x1:te | z1:te , u1:te−1). (8.4)

The last transformation is valid under the assumption that previous odometry
readings can be neglected given the poses are known.

In our current implementation, the first posterior of the last equation is
approximated by importance sampling from p(xte+1:t | x1:te , z1:t, ute:t−1).
Then, the trajectory drawn from this posterior is attached to each particle in
p(x1:te | z1:te , u1:te−1). This process propagates the different hypotheses from
the entry point into the current belief before leaving the loop. If the robot
then has to close a second loop, it is more likely to maintain appropriate
hypotheses to close this loop accurately.

Equation (8.1) and (8.2) describe approximations of the sample set. Even
if no resampling is carried out between te and t the observation likelihoods
have been integrated into the weight of the particles. However, if a highly
accurate proposal like our one presented in Chapter 6 is used the error is
comparably small.

Note that in general a mapping system has to maintain a stack of saved
states especially in environments with several nested loops. Due to the fact
that we actively control the robot and never start a second loop-closing pro-
cess before completing the current one, we only have to maintain a single
saved state at each point in time.

As we demonstrate in the experiments, this technique is a powerful tool to
recover vanished hypotheses without restarting the mapping algorithm from
scratch. It only needs to attach a local trajectory to each particle which can
be done within a few seconds (on a 2.8GHz Pentium IV PC).

8.3 Experimental Results

Our approach has been implemented and evaluated on real robot data and
in simulation. The experiments described here are designed to illustrate the
benefit of our active loop closing technique with the ability to recover the
diversity of the particles after loop closing.

This experiment is designed to show the effect of our technique to recover
the particle variety when the robot leaves a loop. The environment used to
carry out this experiment is depicted in the right image of Figure 8.3. The
robot started in the outer loop, entered the inner loop, and moved through
this loop for a long period of time. As shown in Figure 8.1, without our re-
covering technique the filter can converge to a wrong solution. The reason
is that at the time when the robot leaves the loop only one hypothesis of
the original particle set at the entry point has survived. Accordingly, the
robot lacks an appropriate particle to accurately close the outer loop. Using
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our algorithm, however, the robot can recover the hypotheses at the entry
point and can propagate them through the loop (see left and middle image
of Figure 8.3). The most likely map of the posterior after closing the outer
loop is shown in the right image.

hypotheses left
only one

loop detected
(create backup)

hypotheses
recovered

(a)

(c) (d)

(b)

Fig. 8.3. This figure shows the same experiment as depicted in Figure 8.1, but using
our recovering technique. In the left image the robots saves the set of approximated
particles at time step te and later on recovers the vanished hypotheses (middle
image). This allows the robot to correctly close the outer loop (right image).

To provide a more quantitative analysis, we mapped the environment 30
times without the capability of restoring the filter and 30 times with this
option. The standard technique was able to build a correct map in only 40%
of all runs. In all other cases the algorithm did not produce an accurate
map. In contrast to this, our algorithm yielded a success rate of 93%. We
repeated this experiment in different environments and got similar results.
Figure 8.4 shows two (partial) maps of the Killian Court at the MIT. The left
map has been built without the recovering technique using 40 particles and
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shows inconsistencies due to vanished hypotheses. The right map has been
constructed using our recovering technique in which the correct hypothesis
has been restored. The average success rate of our approach was 55% whereas
the standard approach found the correct data association in only 5% of all
runs. We measured success by the fact that the map was topologically correct.
This means that there exist no double corridors or large alignment errors. The
evaluation if a map was topologically correct, was made by manual inspection
of the resulting map.

Note that the second experiment was carried out based on real robot data
taken from the MIT Killian Court dataset. Since we were unable to actively
control the robot during the experiment at the Killian Court, we had to
set the backup and restore points manually. The corresponding positions are
labeled are depicted in Figure 8.4.

Our experiments show that our recovering technique is a powerful ex-
tension to autonomous exploration with mapping systems based on RBPFs
especially in the context of (multiple) nested loops. Note that in general the
success rate of the standard approach increases with number of particles used.
Since each particle carries its own map, it is of utmost importance to keep
this value as small as possible.

Additionally, we analyzed in our experiments the approximation error ob-
tained by retrospectively recovering the particles at the entry point of a loop.
Using this system without adaptive resampling, we observed that in our ex-
periments typically around 75% of the particles in the filter at time step te
had a successor in the current set and were therefore saved. In principle, this
value drops for loops of increasing length. To provide a more quantitative
comparison, we computed th Kullback-Leibler divergence (KL-divergence)
between the recovered particle set and the true one. The KL-divergence be-
tween to probability distributions p and q is defied as

KLD(p, q) =
∑

x

p(x) log
p(x)
q(x)

. (8.5)

In out experiments the KLD at time step te was typically between 1.0 and
1.5 compared to a value around 13 in the situation in which only a single
hypothesis survived.

We then activated the adaptive resampling approach that carries out the
resampling step only if the effective sample size was smaller than N/2, where
N is the number of samples. As a result, the number of resamplings carried
out in the whole experiment was comparably small. We did not observed more
than one resampling step between the time te and t. The KL-divergence in
this second groups of experiments was around one order of magnitude smaller
compared to the set of experiments carried out without adaptive resampling.

The experiments presented in this section illustrate that our recovering
technique is well-suited to propagate the uncertainty of trajectory hypothe-
ses through a loop during Rao-Blackwellized mapping. Using the technique
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inconsistencies

start

hypotheses
recovered

hypotheses
saved

Fig. 8.4. This figure shows two maps of the Killian Court at the MIT. The size of
the environment is 150 m by 80 m. The left map was constructed with the standard
RBPF approach. If, in contrast, the robot is able to recover hypotheses the map
becomes more accurate (right image).

described here, the robot can move arbitrarily long through a (nested) loop
without depleting important state hypotheses.

8.4 Related Work

Most of the related work relevant for this chapter, has already been discussed
in Section 7.4. Most of these papers focus on reducing the uncertainty during
landmark-based SLAM or do not take into account the pose uncertainty in
the context of grid-based exploration.

In the literature, only a few works address the problem of revoking a pre-
viously made decision in the SLAM context. For example, Hähnel et al. [60]
maintain a data association tree in which each branch represents a sequence of
associations. Whenever a branch becomes more likely than the current best
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one, their approach switches to the alternative data association sequence.
Their work can be regarded as orthogonal to our technique for recovering
the uncertainty of a particle filter presented in this chapter. In fact, both
approaches can be combined.

Particle depletion leads to problems similar to the one of an overly confi-
dent filters in the context of extended Kalman filters or sparse extended infor-
mation filters (SEIFs). Especially the SEIF formulation of Thrun et al. [150]
can lead to underestimated landmark covariance matrixes. Recently, Eustice
et al. [39] as well as Walter et al. [157] presented a technique to more accu-
rately compute the error-bounds within the SEIF framework and in this way
reduces the risk of becoming overly confident.

Our approach presented here extends our work described in Chapter 7
and presents a way to recover particle diversity when applying a Rao-
Blackwellized particle filter to solve the SLAM problem. Our technique allows
the robot to stay – at least in theory – arbitrarily long within a loop without
suffering from particle deletion. Therefore, our algorithm enhances the ability
to correctly close loops, especially, in the context of nested loops.

8.5 Conclusion

In this chapter, we presented an extension of our loop-closing technique intro-
duced in Chapter 7. Our approach is able to maintain the particle diversity
while actively closing loops for mapping systems based on Rao-Blackwellized
particle filters. When closing a loop, our approach determines an approxi-
mation of the particle set at the time the robot entered the loop. It uses
this posterior to propagate the particle diversity through the loop after the
robot successfully closed it. Compared to our previous approach which used a
heuristic stopping criterion to abort the loop-closing, the technique presented
here allows the robot to traverse a nested loop for an arbitrary period of time
without depleting important particles. The approach has been implemented
and tested on real robot data as well as in simulation. As experimental results
demonstrate, we obtain a robust exploration algorithm that produces more
accurate maps compared to standard combinations of SLAM and exploration
approaches, especially in the context of nested loops.
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Information Gain-based Exploration

9.1 Introduction

So far, we investigated different aspects of the map learning problem. We
started in Chapter 3 with an information gain-based approach to exploration,
where we assumed that the poses of the robot were known during exploration.
After dealing with the problem of coordinating a team of robots, we addressed
the SLAM problem to find a way to deal with the pose uncertainty of a mobile
robot. We then presented in the previous two chapters an exploration system
that takes into account the pose uncertainty and carries out loop-closing
actions in order to relocalize the robot. This has been shown to provide
better maps than exploration approaches focusing on new terrain acquisition
only.

This chapter describes a decision-theoretic, uncertainty-driven approach
to exploration which combines most of the previously presented techniques.
We use a decision-theoretic framework similar to the one presented in the
beginning of this book. However, we now reason about sequences of observa-
tions and not only about a single one. Furthermore, we integrate our SLAM
approach in order to deal with the pose uncertainty of the vehicle. This allows
us to simulate observations based on the posterior about maps. Last but not
least, we consider loop-closing and place revisiting actions during exploration
in order to relocalize the vehicle.

As illustrated in Chapter 7, the quality of the resulting map depends on
the trajectory of the robot during data acquisition. In practice, the major
sources of uncertainty about the state of the world are the uncertainty in
the robot’s pose and the uncertainty resulting from the limited accuracy of
the sensor the robot uses to perceive its environment. Therefore, a robot
performing an autonomous exploration task should take the uncertainty in
the map as well as in its path into account to select an appropriate action.

As a motivating example consider Figure 9.1. The left image shows an ex-
ploring robot which has almost closed a loop. Suppose the vehicle has a high
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1

3
2?

Fig. 9.1. Suppose the robot has a high pose uncertainty and has to decide where
to go next. Shown are three opportunities in the left image. Action 1 acquires new
terrain and action 2 performs a loop closure without observing unknown areas.
Action 3 does both: After closing the loop, it guides the robot to unknown terrain.
Our map and pose entropy-driven exploration system presented in this chapter is
able to predict the uncertainty reduction in the model of the robot. As a result,
it chooses action 3 (as depicted in the right image) since it provides the highest
expected uncertainty reduction.

pose uncertainty and now has to decide where to go next. Three potential ac-
tions are plotted on the map. Action 1 leads the robot to unknown terrain and
action 2 performs a loop closure without observing unknown areas. Action 3
does both: After closing the loop, it guides the robot to unknown terrain.

Classical exploration approaches, which seek to reduce the amount of un-
seen area or which only consider the uncertainty in the posterior about the
map would choose action 1, since this action guides the robot to the closest
location from which information about unknown terrain can be obtained. In
contrast to that, approaches to active localization consider only the uncer-
tainty in the pose estimate of the robot. Therefore, they would choose either
action 2 or 3 to relocalize the vehicle. Our loop-closing approach presented in
Chapter 7 would select action 2 to reduce the entropy in the posterior about
potential trajectories. However, the best action to reduce the uncertainty in
the posterior about the map and the trajectory is action 3. Executing this
action yields new sensor information to make the correct data association
and closes the loop accurately. Additionally, it provides information about so
far unknown terrain. As this example shows, exploration approaches should
consider both sources of uncertainty to efficiently build accurate maps.

The contribution of this chapter is an integrated technique that combines
simultaneous localization, mapping, and path planning. In contrast to our
previous work described in Chapter 7, in which a heuristic was used to re-
traverse loops, the approach presented in this chapter is entirely decision-
theoretic. Based on the expected uncertainty reduction in the posterior about
the trajectory of the robot as well as about the map of the environment, we
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select the action with the highest expected information gain. We take into
account the sensor information, which is expected to be obtained along the
path when carrying out an action, as well as the cost introduced by this
action. Real world and simulation experiments show the effectiveness of our
technique for autonomously learning accurate models of the environment.

This chapter is organized as follows. Section 9.2 and 9.3 present our
decision-theoretic exploration technique and explain how to compute the ex-
pected change in entropy. Section 9.4 describes how the set of possible actions
is generated. Then, Section 9.5 contains experimental results carried out on
real robots as well as in simulation. Finally, we discuss related work.

9.2 The Uncertainty of a Rao-Blackwellized Mapper

In this approach to information gain-based exploration, we use the SLAM
approach presented in Chapter 6 to estimate the pose of the vehicle as well
as the map. The goal of our exploration task is to minimize the uncertainty in
the posterior of the robot. The uncertainty can be determined by the entropy
H . For the entropy of a posterior about two random variables x and y holds

H(p(x, y))
= Ex,y[− log p(x, y)] (9.1)
= Ex,y[− log(p(x)p(y | x))] (9.2)
= Ex,y[− log p(x) − log p(y | x))] (9.3)
= Ex,y[− log p(x)] + Ex,y[− log p(y | x)] (9.4)

= H(p(x)) +
∫

x,y

−p(x, y) log p(y | x) dx dy. (9.5)

The integral in (9.5) can be transformed as follows:
∫

x,y

−p(x, y) log p(y | x) dx dy

=
∫

x,y

−p(y | x)p(x) log p(y | x) dx dy (9.6)

=
∫

x

p(x)
∫

y

−p(y | x) log p(y | x) dy dx (9.7)

=
∫

x

p(x)H(p(y | x)) dx (9.8)

Equation (9.5) and (9.8) can be combined to

H(p(x, y)) = H(p(x)) +
∫

x

p(x)H(p(y | x)) dx. (9.9)
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Based on (9.9), we can efficiently compute the entropy of a Rao-Blackwellized
particle filter for mapping. For better readability, we use dt instead of
z1:t, u1:t−1:

H(p(x1:t, m | dt)) =

H(p(x1:t | dt)) +
∫

x1:t

p(x1:t | dt)H(p(m | x1:t, dt)) dx1:t (9.10)

Considering that our posterior is represented by a set of weighted particles,
we can approximate the integral by a finite sum:

H(p(m, x1:t | dt)) �

H(p(x1:t | dt)) +
#particles∑

i=1

w
[i]
t H(p(m[i] | x

[i]
1:t, dt)) (9.11)

Equation (9.11) shows that according to the Rao-Blackwellization, the en-
tropy of the whole system can be divided into two components. The first
term represents the entropy of the posterior about the trajectory of the robot
and the second term corresponds to the uncertainty in the map weighted by
the likelihood of the corresponding trajectory. Thus, to minimize the robot’s
overall uncertainty, one needs to reduce the map uncertainty of the individual
particles as well as the trajectory uncertainty. In this section, we will describe
how we determine both terms in our approach.

Throughout this work, we use grid maps to model the environment. Note
that our technique is not restricted to this kind of representation, it only
requires a way to compute the uncertainty for the used map representation.
Using occupancy grids, the computation of the map entropy is straightfor-
ward. According to the common independence assumption about the cells of
such a grid, the entropy of a map m is the sum over the entropy values of
all cells. Since each grid cell c is represented by a binary random variable the
entropy of m is computed as

H(m) = −
∑
c∈m

p(c) log p(c) + (1 − p(c)) log(1 − p(c)). (9.12)

Note that the overall entropy calculated for a grid map is not independent
from the resolution of the grid. One potential solution to this problem is
to weight the entropy of each cell with its covered area r2 (where r is the
resolution of the grid)

H(m) = −r2
∑
c∈m

p(c) log p(c) + (1 − p(c)) log(1 − p(c)). (9.13)

As a result, the entropy value stays more or less constant when changing the
grid resolution. Slight differences in the entropy may be caused by discretiza-
tion errors when changing the resolution.
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Unfortunately, it is more difficult to compute the uncertainty H(p(x1:t|dt))
of the posterior about the trajectory of the robot since each pose xt on
the trajectory depends on the previous locations x1:t−1. In the context of
EKF-based exploration approaches, the pose uncertainty is often calculated
by considering only the last pose of the robot, which corresponds to the
approximation of H(p(x1:t|dt)) by H(p(xt|dt)). It is also possible to average
over the uncertainty of the different poses along the path as done by Roy et
al. [126]:

H(p(x1:t | dt)) ≈
1
t

t∑
t′=1

H(p(xt′ | dt)) (9.14)

Instead, one can approximate the posterior about the trajectory by a high-
dimensional (length of the trajectory times the dimension of the pose vector
xt of the robot) Gaussian distribution. The entropy of a n dimensional Gaus-
sian N (μ, Σ) is computed as

H(N (μ, Σ)) = log((2πe)(n/2)|Σ|). (9.15)

Since a finite number of particles is used, the RBPF representation often
generates a sparse trajectory posterior for points in time lying further back
in the history. Unfortunately, this can lead to a reduced rank of Σ, so that
|Σ| becomes zero and the entropy H(N (μ, Σ)) approaches minus infinity.

Alternatively, one could consider the individual trajectories represented
by the samples as vectors in a high-dimensional state space and compute the
entropy of the posterior based on a grid-based discretization. Since the par-
ticles typically are extremely sparse, this quantity is in most cases equivalent
to or slightly smaller than the logarithm of the number of particles, which is
the upper bound for the entropy computed in this way.

In our current implementation, we use an approach that is similar to the
one proposed by Roy et al. [126], who computed the entropy over the tra-
jectory posterior as the average entropy of the pose posteriors over time, see
(9.14). Instead of averaging only over the time steps, we additionally consider
the different areas the robots visited. This allows us to give an area traversed
only once by the vehicle the same influence than an area the robot visited
several times. In our current implementation, the places are modeled by a
coarse resolution grid. An example on how the trajectory entropy evolves
over time using this measure is depicted in the left image of Figure 9.2.

9.3 The Expected Information Gain

To evaluate an action that guides the robot from its current location to a goal
location, we compute the expected information gain, which is the expected
change of entropy in the Rao-Blackwellized particle filter. In the last section,
we described how to compute the entropy of the robot’s world model and
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Fig. 9.2. The trajectory entropy of a robot during a real world experiment. The
numbers in the right image illustrate the time steps when the robot was at the
corresponding locations.

in this section we want to estimate the expected entropy after an action has
been carried out.

An action at generated at time step t is represented by a sequence of
relative movements at = ût:T−1 (see Section 7.2.2). During the execution of
at, it is assumed that the robot obtains a sequence of observations ẑt+1:T at
the positions x̂t+1:T . In the following, all variables labeled with ‘̂ ’ correspond
to points in time during the execution of an action at. For better readability,
we replace x̂t+1:T by x̂ and ẑt+1:T by ẑ.

To compute the information gain of an action, we have to calculate the
change of entropy caused by the integration of ẑ and at into the filter

I(ẑ, at) = H(p(m, x1:t | dt)) − H(p(m, x1:t, x̂ | dt, at, ẑ)). (9.16)

Since in general we do not know which measurements the robot will obtain
along its path while executing action at, we have to integrate over all possible
measurement sequences ẑ to compute the expected information gain

E[I(at)] =
∫

ẑ

p(ẑ | at, dt)I(ẑ, at) dẑ. (9.17)

In the following, we will explain how to approximate p(ẑ | at, dt) in order to
reason about possible observation sequences ẑ. The posterior p(ẑ | at, dt) can
be transformed into

p(ẑ | at, dt)

=
∫

m,x1:t

p(ẑ | at, m, x1:t, dt)p(m, x1:t | dt) dm dx1:t (9.18)

=
∫

m,x1:t

p(ẑ | at, m, x1:t, dt)p(x1:t | dt)p(m | x1:t, dt) dm dx1:t. (9.19)
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Equation (9.19) is obtained from (9.18) by using (6.1). If we again assume
that our posterior is represented by a set of particles, we can rewrite (9.19)
as follows:

p(ẑ | at, dt) ≈
#particles∑

i=1

p(ẑ | at, m
[i], x

[i]
1:t, dt)w

[i]
t p(m[i] | x

[i]
1:t, dt) (9.20)

Based on (9.20), we can compute ẑ for a given action at. The factor p(m[i] |
x

[i]
1:t, dt) in (9.20) is assumed to be computed analytically due to the assumptions

made in the Rao-Blackwellization, see (6.1), namely that we can compute the
map m[i] analytically given the positions x

[i]
1:t as well as the data dt. We can

also estimate the term p(ẑ | at, dt) of that equation by simulation. This can
be achieved by performing ray-casting operations in the map m[i] of the i-th
particle to estimate possible observations ẑ. In other words, the (discretized)
posterior about possible observations obtained along the path when executing
the action at can be computed by ray-casting operations performed in the map
of each particle weighted by the likelihood of that particle.

In cases where the ray-casting operation reaches an unknown cell in the
map, we have to treat the beam differently. Touching an unknown cell means
that we cannot say anything about the beam except that its length will be
at least as long as the distance between robot pose and the unknown cell
(with a high probability). Since such beams typically have a serious influence
on the map uncertainty, we computed statistics about the average change of
map entropy introduced by integrating a beam which reaches an unknown
cell in the map. One example for such a statistics from recorded laser range
data is shown in Figure 9.3. Note that in this situation, the change of entropy
is approximatively proportional to the number of unknown cells covered by
that beam. By computing the average beam length for such sensor observa-
tions from the statistics, one can predict the average change of entropy when
approaching a frontier. In this way, the system also accounts for unknown
areas which are visible from a planned path to any other destination.

This approximation dramatically reduces the number of potential observa-
tions that have to be simulated compared to the number of possible proximity
measurements a laser range finder can generate. Several experiments showed
the effectiveness of this approach for robots equipped with a laser range finder.

Despite this approximation, computing the expected information gain
based on (9.17) requires a substantial amount of computational resources.
Therefore, we furthermore approximate the posterior in this equation about
possible sensory data, by not considering all possible map instances of the
current posterior. We apply the computations only on a subset of potential
maps. This subset is obtained by drawing particles vi from the particle set,
where each particle is drawn with a probability proportional to its weight. We
then use the map associated to vi to generate the measurements ẑ(vi) along
the path. This reduces the computational complexity and allows us to run
the exploration system on a real robot. Under this simplifying assumption,
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Fig. 9.3. The plot shows the likelihood of a laser beam that covers an unknown
cell based on recorded sensor data. In this plot, a beam length of 12 m represents a
maximum range reading.

we can rewrite the expected information gain in (9.17) by

E[I(at)] ≈
1
n

∑
i

I(ẑ(vi), at). (9.21)

where n is the number of drawn samples. An observation sequence ẑ(vi) is
generated by a ray-casting operation in the map of vi. Note that if more com-
putational resources are available this approximation can easily be improved
by drawing more particles. This computation can even be parallelized, since
there is no interference between the integration of measurement sequences
into different copies of the RBPF.

Now all necessary equations have been introduced to compute the expected
information gain E[I(at)] for an action at. To summarize, E[I(at)] describes
the expected change of entropy in the Rao-Blackwellized particle filter when
executing at. To reason about possible observation sequences, the robot will
obtain along the path, we draw a subset of particle according to their like-
lihood and perform a ray-casting operation in the corresponding maps. The
expected measurements are then integrated into the filter and the entropies
before and after the integration are subtracted.

The complexity of the computation of E[I(at)] depends on two quantities.
First, the filter needs to be copied to save its current state. This introduces
a complexity linear in the size of the filter (which in turn depends on the
number of particles). The second quantity is the length l(at) of the planned
path from the current pose of the robot to the desired goal location, because
the expected observations along the path are taken into account. The number
of particles drawn to generate observations is assumed to be constant. The
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cost of integrating an observation is linear in the number N of particles. This
leads to an overall complexity of O(l(at)N) to evaluate an action at.

Besides the expected entropy reduction, there is a second quantity the
robot should consider when selecting an action. This is the cost of carrying
out an action measured in terms of traversability and trajectory length for
reaching the target location. The cost of an action is computed based on the
(convolved) occupancy grid map of the most likely particle. Traversing a cell
introduces a cost proportional to its occupancy probability (see Section 4.2.1
for further details).

The expected utility E[U(at)] of an action at in our exploration system is
defined as

E[U(at)] = E[I(at)] − αV (at). (9.22)

where V (at) refers to the cost of carrying out the action at. α is a weighting
factor which trades off the cost with the entropy. This free parameter can
be used to trigger the exploration process by adapting the influence of the
traveling cost. In our work, we determined α experimentally.

After having computed the expected utility for each action under consid-
eration, we select the action a∗

t with the highest expected utility

a∗
t = argmax

at

E[U(at)]. (9.23)

Every time the robot has to make the decision where to go next, it uses (9.23)
to determine the action a∗

t with the highest expected utility and executes it.
As soon as no action provides an expected reduction of uncertainty and no
frontiers to unseen areas are available, the exploration task is completed.

9.4 Computing the Set of Actions

So far, we have explained how to evaluate an action but have left open how
potential actions are generated. One attempt might be to generate a vantage
point for each reachable grid cell in the map. Since we reason about obser-
vations received along the path, we need to consider all possible trajectories
to all reachable grid cells in the map. The number of possible trajectories,
however, is huge which makes it intractable to evaluate all of them.

To find appropriate actions to guide a vehicle through the environment,
we consider three types of actions, so called exploration actions, place revis-
iting actions, and loop-closing actions. Exploration actions are designed to
acquire information about unknown terrain to reduce the map uncertainty.
To generate exploration actions, we apply the frontier approach introduced
by Yamauchi [163]. For each frontier between known and unknown areas, we
generate an action leading the robot from its current pose along the shortest



152 9 Information Gain-based Exploration

path to that frontier. Furthermore, actions that guide a robot to cell which
have a high uncertainty belong to the set of exploration actions.

Compared to the actions generated from frontiers, the place revisiting ac-
tions as well as the loop-closing actions do not focus on new terrain acquisi-
tion. They guide the robot back to an already known location or perform an
active loop closure. The goal of these actions is to improve the localization of
the vehicle, which means to reduce its trajectory uncertainty. In our current
implementation, place revisiting actions are generated based on the trajec-
tory of the robot. Such an action can simply turn the robot around and move
it back along its previously taken path. Additionally, we generate so called
loop-closing actions. To determine whether there exists a possibility to close
a loop, we would like to refer the reader to Chapter 7 in which we describe
how a mobile robot can robustly detect opportunities to actively close a loop.

Given this classification, the actions 1 and 3 depicted in the motivation
example in Figure 9.1 are exploration actions, whereas action 2 is a place
revisiting action performing an active loop closure.

9.5 Experimental Results

Our approach has been implemented and tested in real world and simulation
experiments. The experiments described here are designed to illustrate the
benefit of our exploration technique which takes into account the map as well
as the trajectory uncertainty to evaluate possible actions.

9.5.1 Real World Application

The first experiment was a real world experiment carried out in building 106
at the University of Freiburg using an ActivMedia Pioneer 2 robot equipped
with a SICK laser range finder. The exploration run was fully autonomous.
The robot started in the lower left room (see Figure 9.4 (a)). The robot
moved through the neighboring room and entered the corridor. After reach-
ing its target location in the horizontal corridor (Figure 9.4 (b)), the robot
decided to move back to in the lower left room to improve its pose estimate
(Figure 9.4 (c)). The robot then explored the neighboring room and after-
wards returned to the corridor (Figure 9.4 (d)). It then approached the lower
horizontal corridor and moved around the loop (Figure 9.4 (e)). Finally, the
robot returned to the lower left room and finished the exploration task. As
can be seen from this experiment, as soon as the robot gets too uncertain
about its pose, it performs place revisiting actions or chooses exploration ac-
tions which also reduce its pose uncertainty due to the information gathered
along the path.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9.4. Six different stages of an autonomous exploration run on the second
floor of building 106 at the University of Freiburg. The map was acquired fully
autonomously by our integrated approach.
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9.5.2 Decision Process

The next experiment is designed to show how the robot chooses actions to
reduce its pose uncertainty as well as its map uncertainty. Figure 9.5 depicts
parts of a simulated exploration task performed in a map acquired at Sieg
Hall, University of Washington. Each row depicts a decision step of the robot
during autonomous exploration. In the first step shown in the first row, the
robot has almost closed the loop. It had to decide whether it is better to
move through the loop again or to focus on exploring the horizontal corridor.
In this situation, the robot moved to target point 1 and actively closed the
loop, since this provided the highest expected utility (see right plot in the
first row of Figure 9.6). Target location 1 had the highest expected utility
because the robot expected a chance to relocalize itself by closing the loop
and to observe parts of the unknown areas close to the planned trajectory.
Therefore, this actions provided an expected reduction of map and trajec-
tory uncertainty. In the second decision, the robot focused on acquiring new
terrain and approached the horizontal corridor, since target location 6 had
the highest expected utility. The same happened in the third decision step,
shown in the last row of this figure. Moving back through the known areas
of the loop provided less expected entropy reduction and therefore the robot
continued exploring the horizontal corridor (target location 5).

Figure 9.7 shows the map after reaching target location 5 from the last
decision step. To visualize the change of entropy over time, the right plot
shows the evolution of the map as well as the pose uncertainty. The labels
in the left image show the time steps in which the robot was at the corre-
sponding location. As can be seen, the entropy stayed more or less constant
in the beginning, since the map uncertainty decreased while the pose un-
certainty increased. After closing the loop at around time step 45, the pose
uncertainty dropped so that the overall uncertainty was also reduced. Moving
through known areas between time step 50 and 80 did not provide a lot of
new information and did not change the entropy that much. As soon as the
robot entered especially the wide part of the horizontal corridor, the overall
uncertainty dropped again due to the serious reduction of map uncertainty
compared to the moderate increase of pose uncertainty.

9.5.3 Comparison to Previous Approaches

The third experiment addresses the decision problem of the motivating exam-
ple presented in the introduction of this chapter. It shows how our approach
chooses the actions which lead to the highest uncertainty reduction in the pos-
terior about poses and maps compared to previous techniques. As can be seen
in Figure 9.8, the robot has almost closed the loop. Suppose the robot has a
high pose uncertainty and considers three potential actions to approach dif-
ferent target locations (see left image of Figure 9.8). Action 1 is a new ter-
rain acquisition action and action 2 performs a loop closure. Action 3 leads
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Fig. 9.5. Three points in time in which the robot had to decide where to move next.
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Fig. 9.7. This figure illustrates the evolution of the entropy during the experiment
shown in Figure 9.5. The marker in the left image correspond to the different points
in time when the robot was at the corresponding location. The right plot depicts
the entropy during the data acquisition phase. It depicts the map entropy, the pose
uncertainty, and the overall (combined) entropy over time.

the robot to unknown terrain while simultaneously closing the loop. Since ac-
tion 3 combines a loop closurewith new terrain acquisition, it provides the high-
est expected utility (see right image of Figure 9.8). Therefore, our approach
chooses this target point. This is an advantage compared to other approaches
which seek to actively close loops in an heuristic way. Such a technique (like the
one we presented in Chapter 7) would typically choose action 2 to reduce the
pose uncertainty of the vehicle. Classical exploration approaches, which only
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take into account themapuncertainty or guide the robot to the closest unknown
area [77, 160, 161, 163, 164] would select action 1. Even an active localization
technique which seeks to reduce the pose uncertainty of the vehicle [71] would
choose either action 2 or 3 (with a 50% chance each).
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Fig. 9.8. This figure illustrates the decision process of where to go next. Shown in
the left image are three potential actions in the left image and the corresponding
expected utilities in the middle image. The situation after the robot has chosen
action 3 is depicted in the right image.

9.5.4 Corridor Exploration

The last experiment was performed in building 79 at the University of
Freiburg and is depicted in Figure 9.9. The environment has a long corri-
dor and contains no loop. To make the pose correction more challenging,
we restricted the range of the sensor to 3m. According to the short sensor
range used in this experiment, it was hard for the robot keep track of its own
position. As can be seen, this technique leads to an intuitive behavior. Due
to the large uncertainty in the pose of the vehicle, the robot chooses several
times actions which guide it back to a well-known place (which is the starting
location in this experiment) to reduce its pose uncertainty.

9.6 Related Work

In the context of exploration, most of the techniques presented so far focus
on generating motion commands that minimize the time needed to cover the
whole terrain [77, 160, 163, 17]. Most of these techniques, however, assume
that an accurate position estimate is given during exploration. Whaite and
Ferrie [161] present an approach that uses also the entropy to measure the
uncertainty in the geometric structure of objects that are scanned with a
laser range sensor. In contrast to the work described here, they use a para-
metric representation of the objects to be scanned and do not consider the
uncertainty in the pose of the sensor. Similar techniques have been applied
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Fig. 9.9. The images depict six stages during the autonomous exploration of a
long corridor. The maximum sensor range in this experiment was limited to 3m.
The short sensor range results in a comparably high pose uncertainty of the robot
when moving through the environment, since the current scan has typically a small
overlap with the previously seen area. Due to the high pose uncertainty, the explo-
ration system chooses actions which guide the robot on a path close to the starting
location in order to relocalize.

to mobile robots like, for example, our approach presented in Chapter 3 or
the work of Rocha et al. [123]. However, none of the approaches mentioned
above take the pose uncertainty into account when selecting the next vantage
point. There are exploration approaches that have been shown to be robust
against uncertainties in the pose estimates [32, 74, 82] but the selected actions
do depend on the uncertainty of the system. Note that a detailed discussion
about different exploration strategies for single and multi-robot systems has
been presented in Section 4.6.

In the area of SLAM, the vast majority of papers have focused on the
aspect of state estimation as well as belief representation and update [28, 30,
37, 56, 57, 59, 104, 109, 145]. These techniques are passive and only process
incoming sensor data without explicitly generating control commands. Again,
Section 6.6 presents a detailed discussion of SLAM approaches. In contrast
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to these techniques, our approach considers the active control of the robot
while learning accurate maps.

Recently, new techniques have been proposed which actively control the
robot during SLAM. For example, Makarenko et al. [94] as well as Bourgault
et al. [15] extract landmarks out of laser range scans and use an extended
Kalman filter (EKF) to solve the SLAM problem. They furthermore intro-
duce a utility function which trades off the cost of exploring new terrain with
the expected reduction of uncertainty by measuring at selected positions. A
similar technique has been applied by Sim et al. [135], who consider actions
to guide the robot back to a known place in order reduce the pose uncertainty
of the vehicle. These three techniques differ from the approach presented in
this chapter in that they rely on the fact that the environment contains land-
marks that can be uniquely determined during mapping. In contrast to this,
our approach makes no assumptions about distinguishable landmarks and
uses raw laser range scans to compute accurate grid maps. One disadvantage
of feature based exploration systems is that the underlying models of the en-
vironment typically do not provide any means to distinguish between known
an unknown areas. Therefore, an additional map representation needs to be
maintained (like, e.g., an occupancy grid in [15, 94] or a visual map in [135])
to efficiently guide the vehicle. Approaches which do not maintain an addi-
tional model to identify unknown areas typically apply strategies in which
the robot follows the contours of obstacles [162] or performs wall following
combined with random choices at decision points [41].

Duckett et al. [32] use relaxation to solve the SLAM problem in their
exploration approach. They condense local grid maps into graph nodes and
select goal points based on that graph structure, but do not consider the
expected change of uncertainty when choosing possible target locations.

In Chapter 7, we presented an approach to mobile robot exploration that
is able to deal with pose uncertainty and seeks for opportunities to active
close loops. Those loop-closing actions are used to relocalize the vehicle in
order to reduce the uncertainty in the pose estimate. As we demonstrated,
such an approach leads to better maps in the context of (nested) loops.
The work presented in this chapter extents our loop-closing technique and
is entirely decision-theoretic. It reasons about carrying out different types of
actions, including loop-closing action, and selects the one which provides the
highest expected uncertainty reduction considering also the cost of an action.
Our active loop-closing approach can therefore be regarded as a component
integrated in the technique presented in this chapter.

There are planning techniques that can compute optimal plans by main-
taining a belief over possible states of the world and by computing the strategy
that is optimal in expectation with respect to that belief. One solution to this is
the partially observable Markov decision process, also known as POMDP [72].
The major disadvantage of POMDPs are their extensive computational cost
and most solutions are not applicable to scenarios with more than around
one thousand states [117]. Since we reason about a high-dimensional state
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estimation problem, we have to be content with approximative solutions that
rely on strong assumptions. In essence, our approach can be regarded as an
approximation of the POMDP with an one step look-ahead.

Compared to the approaches discussed above, the novelty of the work
reported here is that the algorithm for acquiring grid maps simultaneously
considers the trajectory and map uncertainty when selecting an appropriate
action. We furthermore reason about the information gathered by the sensor
when the robot executes an action. Our approach also considers different
types of actions, namely so-called exploration actions, which guide the robot
to unknown areas and place revisiting actions as well as loop-closing actions,
which allow the robot to reliably close loops and this way reduce its pose
uncertainty.

9.7 Conclusion

In this chapter, we presented an integrated approach which simultaneously
addresses mapping, localization, and path planning. We use a decision-
theoretic framework related to the one presented in Chapter 3 for explo-
ration. To deal with the noise in the position of the robot, we applied a Rao-
Blackwellized particle filter presented in Chapter 6 to build accurate grid
maps. Our exploration approach considers different types of actions, namely
exploration actions forcing terrain acquisition as well as place revisiting and
active loop-closing actions that reduce the robot’s pose uncertainty. These
actions are generated based on the active loop-closing technique presented
in Chapter 7. By estimating the expected entropy of the particle filter after
carrying out an action, we are able to determine the action which promises
the highest expected uncertainty reduction, thereby taking potential mea-
surements gathered along the whole path into account. The simulation of
observations is done based on the posterior about the map.

We furthermore showed how the uncertainty in a Rao-Blackwellized parti-
cle filter can be separated into two components: The uncertainty in the trajec-
tory estimate and the uncertainty in the individual maps weighted with the
likelihood of the corresponding particle. Our approach has been implemented
and tested on real robots and in simulation. As a result, we obtain a robust
decision-theoretic exploration algorithm that produces highly accurate grid
maps. In practical experiments, we showed how the robot is able to select the
action that provides the highest expected uncertainty reduction in its pos-
terior about poses and maps. This is an advantage compared to exploration
approaches that seek to minimize the uncertainty in the map model only and
to active localization techniques which consider only the uncertainty in the
pose estimate.
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Mapping and Localization in Non-Static

Environments

10.1 Introduction

Throughout all previous chapters of this book, we assumed that the envi-
ronment does not change over time. This assumption however is not realis-
tic especially for environments populated by humans. People typically walk
around, open and close doors, add or remove things, or even move objects
like furniture. In the literature, most of the approaches to mapping with mo-
bile robots are based on the assumption that the environment is static. As
reported by Wang and Thorpe [158] as well as by Hähnel et al. [61], dynamic
objects can lead to serious errors in the resulting map. A popular technique to
deal with non-static environments is to identify dynamic objects and to filter
out the range measurements reflected by these objects. Such techniques have
been demonstrated to be more robust than traditional mapping approaches.
They allow a robot, for example, to filter out walking people or passing cars.
Their major disadvantage lies in the fact that the resulting maps only contain
the static aspects of the environment.

Avoiding that walking people or moving cars leave spurious objects in the
map is a desirable feature. However, there exist also non-static objects for
which is makes sense to integrate them into the model of the environment.
As an example, consider open and closed doors which can be classified as
low-dynamic or non-static objects that do not move randomly.

In this chapter, we explore an alternative solution to deal with dynamic
environments by explicitely modeling the low-dynamic or quasi-static states.
Our approach is motivated by the fact, that many dynamic objects appear in
only a limited number of possible configurations. As an example, consider the
doors in an office environment, which are often either open or closed. Another
scenario is cars in a parking space. Most of the time, a parking space is either
occupied by a car or is empty. In such a situation, techniques to filter out dy-
namic objects produce maps which do not contain doors or parked cars at all.
This can be problematic since, for example, in many corridor environments
doors are important features for localization. The explicit knowledge about
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the different possible configurations can improve the localization capabilities
of a mobile robot. Therefore, it is important to integrate such information
into the model of the environment. Our framework presented in this chapter
allows that highly dynamic objects can be filtered so that they do not leave
spurious objects in the map. This can be achieved by applying a filtering
technique like the one of Hähnel et al. [62] in a slightly modified way.

As a motivating example consider the individual local maps depicted in
Figure 10.1. These maps correspond to typical configurations of the same
place and have been learned by a mobile robot operating in an office environ-
ment. They show the same part of a corridor including two doors and their
typical states. The key idea of our work is to learn such local configurations
and to utilize this information to improve the localization accuracy of the
robot.

The contribution of this chapter is a novel approach to mapping in low-
dynamic environments. Our algorithm divides the entire map into several
sub-maps and learns for each of these sub-maps typical configurations for the
corresponding part of the environment. This is achieved by clustering local
grid maps. Furthermore, we present an extended Monte-Carlo localization
algorithm, which uses these clusters in order to simultaneously estimate the
current state of the environment and the pose of the robot. Experiments
demonstrate that our map representation leads to an improved localization
accuracy compared to maps lacking the capability to model different config-
urations of the environment.

This chapter is organized as follows. First, we introduce our mapping
technique that models different configurations of non-static objects in Sec-
tion 10.2. We then present our variant of Monte Carlo localization that esti-
mates the pose of the vehicle as well as the state of the environment at the
same time. In Section 10.4, we present a series of experiments using our tech-
nique for mapping and localization in non-static worlds. Finally, Section 10.5
discussed related approaches.

Fig. 10.1. Possible states of the same local area. The different configurations cor-
respond to open and closed doors within a corridor.
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10.2 Learning Maps of Low-Dynamic Environments

The key idea of our approach is to use the information about changes in
the environment during data acquisition to estimate possible spatial config-
urations and store them in the map model. To achieve this, we construct
a sub-map for each area in which dynamic aspects have been observed. We
then learn clusters of sub-maps that represent possible spacial states in the
corresponding areas.

10.2.1 Map Segmentation

In general, the problem of learning maps in dynamic environments is a high-
dimensional state estimation problem. A näıve approach could be to store
an individual map of the whole environment for each potential state. Obvi-
ously, using this approach, one would have to store a number of maps that is
exponential in the number of dynamic objects. In real world situations, the
states of the objects in one room are often independent of the states of the
objects in another room. Therefore, it is reasonable to marginalize the local
configurations of the individual objects.

Our algorithm segments the environment into local areas, called sub-maps.
In this chapter, we use rectangular areas which inclose locally detected dy-
namic aspects to segment the environment into sub-maps. For each sub-map,
the dynamic aspects are then modeled independently.

Note that in general the size of these local maps can vary from the size
of the overall environment to the size of each grid cell. In the first case, we
would have to deal with the exponential complexity mentioned above. In the
second case, one heavily relies on the assumption that neighboring cells are
independent, which is not justified in the context of dynamic objects.

In our current system, we first identify positions in which the robot per-
ceives contradictory observations which are typically caused by dynamic ele-
ments. Based on a region growing technique, we determine areas which inclose
dynamic aspects. By taking into account visibility constraints between re-
gions, they are merged until they do not exceed a maximum sub-map size
(currently set to 20m2). This limits the number of dynamic objects per lo-
cal map and in this way leads to a tractable complexity. Notice that each
sub-map has an individual size and different sub-maps can also overlap.

10.2.2 Learning Configurations of the Environment

To enable a robot to learn different states of the environment, we assume
that it observes the same areas at different points in time. We cluster the
local maps built from the different observations in order to extract possible
configurations of the environment. To achieve this, we first segment the sen-
sor data perceived by the robot into observation sequences. Whenever the
robot leaves a sub-map, the current sequence ends and accordingly a new
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observation sequence starts as soon as the robot enters a new sub-map. Ad-
ditionally, we start a new sequence whenever the robot moves through the
same area for more than a certain period of time (30s). This results in a set
Φ of observation sequences for each sub-map

Φ = {φ1, . . . , φn}, (10.1)

where each

φi = zstart(i), . . . , zend(i). (10.2)

Here zt describes an observation obtained at time t. For each sequence φi of
observations, we build an individual occupancy grid for the local area of the
sub-map. Such a grid is then transformed into a vector of probability values
ranging from 0 to 1 and one additional value ξ to represent an unknown
(unobserved) cell. All vectors which correspond to the same local area are
clustered using the fuzzy k-means algorithm [33]. During clustering, we treat
unknown cells in a slightly different way, since we do not want to get an
extra cluster in case the sensor did not cover the whole area completely. In
our experiment, we obtained the best behavior using the following distance
function for two vectors a and b during clustering

d(a, b) =
∑

i

⎧
⎨
⎩

(ai − bi) ai �= ξ ∧ bi �= ξ
0 ai = ξ ∧ bi = ξ
ε otherwise,

(10.3)

where ε is a constant close to zero.
When comparing two values representing unknown cells, one in general

should use the average distance computed over all known cells to estimate
this quantity. Such a value, however, would be significantly larger than zero
(except if the whole map is empty space). In our experiments, we experienced
that using the average distance between cells leads to additional clusters in
case a significant part of a sub-map contains unknown cells even if the known
areas of the maps are nearly identical. Therefore, we use the distance function
given in (10.3) which sets this distance value to zero.

Unfortunately, the number of different states is not known in advance.
Therefore, we iterate over the number of clusters and compute in each iter-
ation a model using the fuzzy k-means algorithm. We create a new cluster
initialized using the input vector which has the lowest likelihood under the
current model. We evaluate each model θ using the Bayesian information
criterion (BIC) [133]:

BIC = log p(d | θ) − |θ|
2

log n (10.4)

10.2.3 Map Clustering

The BIC is a popular technique to score a model during clustering. It trades
off the number |θ| of clusters in the model θ multiplied by the logarithm of the
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number of input vectors n and the quality of the model with respect to the
given data d. The model with the highest BIC is chosen as the set of possible
configurations, in the following also called patches, for that sub-map. This
process is repeated for all sub-maps.

The following example is designed to illustrate the map clustering process.
The input to the clustering was a set of 17 local grid maps. The fuzzy k-
means clustering algorithm started with a single cluster, which is given by
the mean computed over all 17 maps. The result is depicted in the first row
of Figure 10.2. The algorithm then increased the number of clusters and
recomputed the means in each step. In the fifth iteration the newly created
cluster is more or less equal to cluster 3. Therefore, the BIC decreased and
the clustering algorithm terminated with the model depicted in the forth row
of Figure 10.2.

↓ ↓

↓ ↓ ↓

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓

Fig. 10.2. Iterations of the map clustering process. Our approach repeatedly adds
new clusters until no improvement is achieved by introducing new clusters (with
respect to the BIC). Here, the algorithm ends up with 4 clusters, since cluster 3
and 5 are redundant.
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In the introduction of this chapter, we claimed that our approach can also
be used in environments which contain highly dynamic aspects like walking
people. This is be done by applying the filtering technique introduced by
Hähnel et al. [62] to the observations sequences φi, i = 1, . . . , n individually
and not to the whole set Φ at once. As a result, objects currently in motion
are eliminated by that technique, but objects changing their location while
the robot moves through different parts of the environment are correctly
integrated into the local maps. The different configurations are then identified
by the clustering algorithm.

Note that our approach is an extension of the classical occupancy grid
map. It relaxes the assumption that the environment is static. In situations
without moving objects, the overall map is equal to a standard occupancy
grid map.

The complexity of our mapping approach depends linearly on the number
T of observations multiplied by the number L of sub-maps. Furthermore,
the region growing applied to build up local maps introduces in the worst
case a complexity of P 2 log P , where P is the number of grid cells considered
dynamic. This leads to an overall complexity of O(TL + P 2 log P ). Using
a standard PC, our implementation requires around 10%-20% of the time
needed to record the log file with a real robot.

10.3 Monte-Carlo Localization Using Patch-Maps

In this section, we show how our patch-map representation can be used to es-
timate the pose of a mobile robot moving through its environment. Through-
out this chapter, we apply an extension of Monte-Carlo localization (MCL),
which has originally been developed for mobile robot localization in static
environments [25]. MCL uses a set of weighted particles to represent possible
poses (x, y, and θ) of the robot. As explained in Chapter 2, the motion model
is typically used to draw the next generation of samples. The sensor readings
are used to compute the weight of each particle by estimating the likelihood
of the observation given the pose of the particle and the map.

Besides the pose of the robot, we want to estimate the configuration of the
environment in our approach. We do not assume a static map in like standard
MCL and therefore need to estimate the map mt as well as the pose xt of
the robot at time t

p(xt, mt | z1:t, u1:t−1)
Bayes’ rule

=
ηp(zt | xt, mt, z1:t−1, u1:t−1)p(xt, mt | z1:t−1, u1:t−1). (10.5)

Here η is a normalization constant and ut−1 refers to the motion command
which guides the robot from xt−1 to xt. The main difference to approaches
on simultaneous localization and mapping (see Chapter 6) is that we do not
reason about all possible map configurations like SLAM approaches do. Our
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patch-map restricts the possible states according to the clustering of patches
and therefore only a small number of configurations are possible.

Under the Markov assumption, the second line of (10.5) can be transformed
to

p(xt, mt | z1:t−1, u1:t−1)
Markov & total prob.

=
∫

xt−1

∫

mt−1

p(xt, mt | xt−1, mt−1, z1:t−1, ut−1)

p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1 (10.6)
product rule

=
∫

xt−1

∫

mt−1

p(xt | xt−1, mt−1, z1:t−1, ut−1)

p(mt | xt, xt−1, mt−1, z1:t−1, ut−1)
p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1 (10.7)

=
∫

xt−1

∫

mt−1

p(xt | xt−1, ut−1)p(mt | xt, mt−1)

p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1. (10.8)

Equation (10.6) is obtained by using the law of total probability and the
Markov assumption. Furthermore, u1:t−2 is assumed to have no influence on
the estimate of xt and mt given xt−1 is known. In the recursive term of
(10.6), ut−1 is assumed to have no influence on xt−1, since ut−1 describes the
odometry information between xt−1 and xt.

Equation (10.8) is obtained from (10.7) by assuming that mt is indepen-
dent from xt−1, z1:t−1, ut−1 given we know xt and mt−1 as well as by assum-
ing that xt is independent from mt−1, z1:t−1 given we know xt−1 and ut−1.
Combining (10.5) and (10.8) leads to

p(xt, mt | z1:t, u1:t−1)
= ηp(zt | xt, mt, z1:t−1, u1:t−1)∫

xt−1

∫

mt−1

p(xt | xt−1, ut−1)p(mt | xt, mt−1)

p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1. (10.9)

Equation (10.9) describes how to extend the standard MCL approach so that
it can deal with different spacial configurations. Besides the motion model
p(xt | xt−1, ut−1) of the robot, we need to specify a map transition model
p(mt | xt, mt−1), which describes the change in the environment over time.

In our current implementation, we do not reason about the state of the
whole map, since each sub-map would introduce a new dimension in the state
vector of each particle, which leads to a state estimation problem, that is ex-
ponential in the number of local sub-maps. Furthermore, the observations
obtained with a mobile robot provide information only about the local en-
vironment of the robot. Therefore, we only estimate the state of the current
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patch each particle is currently in. This leads to one additional dimension in
the state vector of the particles compared to standard MCL.

In principle, the map transition model p(mt | xt, mt−1) can be learned
while the robot moves through the environment. In our current system, we
use a fixed density for all patches. We assume, that with probability α the
current state of the environment does not change between time t − 1 and
t. Accordingly, the state changes to another configuration with probability
1 − α. Whenever a particle stays in the same sub-map between t − 1 and
t, we draw a new local map configuration for that sample with probability
1−α. If a particle moves to a new sub-map, we draw the new map state from
a uniform distribution over the possible patches in that sub-map. Note that
this is a valid procedure, since one can draw the next generation of samples
from an arbitrary distribution according to the importance sampling principle
(see Chapter 2). To improve the map transition model during localization,
one in principle can update the values for α for each patch according to the
observations of the robot. Adapting these densities can also be problematic
in case of a diverged filter or a multi-modal distribution about the pose of the
robot. Therefore, we currently do not adapt the values of α while the robot
acts in the environment.

Note that our representation bears resemblance with approaches using
Rao-Blackwellized particle filters to solve the simultaneous localization and
mapping problem, as it separates the estimate of the pose of the robot from
the estimate of the map (compare Chapter 6). Our approach samples the state
of the (local) map and then computes the localization of the vehicle based on
that knowledge. The main difference compared to Rao-Blackwellized SLAM
is that we aim to estimate the current state of the sub-map based on the
possible configurations represented in our enhanced map model.

10.4 Experimental Results

To evaluate our approach, we implemented and thoroughly tested it on an
ActivMedia Pioneer 2 robot equipped with a SICK laser range finder. The
experiments are designed to show the effectiveness of our method to identify
possible configurations of the environment and to utilize this knowledge to
more robustly localize a mobile vehicle.

10.4.1 Application in an Office Environment

The first experiment has been carried out in a typical office environment. The
data was recorded by steering the robot through the environment while the
states of the doors changed. To obtain a more accurate pose estimate than
the raw odometry information, we apply a standard scan-matching tech-
nique. Figure 10.3 depicts the resulting patch-map. For the three sub-maps
that contain the doors whose states were changed during the experiment our
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Fig. 10.3. The patch-map represents the different configurations learned for the
individual sub-maps in a typical office environment.
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Fig. 10.4. The patch-map with the different configurations for the individual
patches used in the localization experiment in Figure 10.5.
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Fig. 10.5. The error in the pose estimate over time. As can be seen, using our
approach the quality of the localization is higher compared to approaches using
occupancy grid maps.
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algorithm was able to learn all configurations that occurred. The sub-maps
and their corresponding patches are shown in the same figure.

10.4.2 Localizing the Robot and Estimating the State of the
Environment

The second experiment is designed to illustrate the advantages of our map
representation for mobile robot localization in non-static environments com-
pared to standard MCL. The data used for this experiment was obtained in
the same office environment as above. We placed an obstacle at three different
locations in the corridor. The resulting map including all patches obtained
via clustering is depicted in Figure 10.4. Note that the tiles in the global map
illustrate the average over the individual patches. To evaluate the localiza-
tion accuracy obtained with our map representation, we compare the pose
estimates to that of a standard MCL using a classical grid map as well as
using a grid map obtained by filtering out dynamic objects according to [62].

Figure 10.5 plots the localization error over time for the three different
representations. The error was determined as the weighted average distance
from the poses of the particles to the ground truth. In the beginning of
this experiment, the robot traveled through static areas so that all localiza-
tion methods performed equally well. Close to the end, the robot traveled
through the dynamic areas, which results in high pose errors for both alter-
native approaches. In contrast to that, our technique constantly yields a high
localization accuracy and correctly tracks the robot.
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Fig. 10.6. The image in the first row illustrates the traveled path with time labels.
The left images in the second row depict the two patches and the graph plots the
probability of both patches according to the sample set. As can be seen, the robot
identified that patch 1 correctly models the configuration of the environment.
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phase 1 (door was closed) phase 2 (door was open)
true pose
and state
of the
environment

robot

door closed

robot

door open

standard
map with
closed door

standard
map with
open door

Fig. 10.7. This figure shows a global localization experiment using standard grid
maps. The first row depicts the true pose of the robot and the true state of the door.
The second row shows the same situation during a localization experiment using a
map in which the door is modeled as closed. In the experiment depicted in the third
row the used map was contained no doors at all. In the beginning of this experiment
the door was closed (left column) but was later on opened (right column). As can
be seen, both systems were unable to accurately localize the vehicle.

phase 1 (door was closed) phase 2 (door was open)

Fig. 10.8. Particle clouds obtained with our algorithm for the same situations as
depicted in Figure 10.7.

To further illustrate how our extended MCL algorithm is able to estimate
the current state of the environment, Figure 10.6 plots the posterior probabil-
ities for two different patches belonging to one sub-map. At time step 17, the
robot entered the corresponding sub-map. After a few time steps, the robot
correctly identified, that the particles, which localize the robot in patch 1,
performed better than the samples using patch 0. Due to the resamplings in
MCL, particles with a low importance weight are more likely to be replaced
by particles with a high importance weight. Over a sequence of integrated
measurements and resamplings, this led to an probability close to 1 that the
environment looked like the map represented by patch 1 (which corresponded
to the ground truth in that situation).
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10.4.3 Global Localization

Additionally, we carried out three global localization experiments in a sim-
ulated environment. First, we used a standard grid map which contains a
closed door. In the second run, we used a map which did not contain a door
at all and finally we used our patch-map representation using two patches
to represent the state of the door. The experiments with standard MCL are
depicted in Figure 10.7, the corresponding one using patch-maps is shown in
Figure 10.8. During localization, the robot moved most of the time in front of
the door, which was closed in the beginning and opened in the second phase
of the experiment.

As can be seen in the left column of Figure 10.7 and 10.8, the MCL ap-
proach which uses the occupancy grid that models the closed door as well as
our approach lead to a correct pose estimate. In contrast to that, the occu-
pancy grid which models the open door causes the filter to diverge. In the
second phase of the experiment, the door was opened and the robot again
moved some meters in front of the door (see right column of the same figure).
At this point in time, the MCL technique using the occupancy grid, which
models the closed door cannot track the correct pose anymore, whereas our
approach is able to correctly estimate the pose of the robot. This simulated
experiment again illustrates that the knowledge about possible configurations
of the environment is important for mobile robot localization. Without this
knowledge, the robot is not able to correctly estimate its pose in non-static
environments.

10.5 Related Work

In the past, several authors have studied the problem of learning maps in
dynamic environments. A popular technique is to track dynamic objects and
filter out the measurements reflected by those objects [61, 158]. Enhanced
sensor models combined with the Expectation Maximization (EM) algorithm
have been successfully applied to filter out arbitrary dynamic objects by
Hähnel et al. [62]. The authors report that filtering out dynamic objects can
improve the scan registration and lead to more accurate maps.

Anguelov et al. [4] present an approach which aims to learn models of non-
stationary objects from proximity data. The object shapes are estimated by
applying a hierarchical EM algorithm based on occupancy grids recorded at
different points in time. The main difference to our approach is that we esti-
mate typical configurations of the environment and do not focus on learning
geometric models for different types of non-stationary obstacles. They fur-
thermore presented a work in which they estimate the state of doors in an
environment [5]. They apply the EM algorithm to distinguish door objects
from wall objects as well as different properties like color, shape, and motion.
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The problem of dealing with walking people has also been investigated in
the context of mobile robot localization. For example, Fox et al. [44] use a
probabilistic technique to identify range measurements which do not corre-
spond to a given model. In contrast to our work, they use a fixed, static map
model and do not reason about configurations the environment can be in.
In a different project, a team of tour-guide robots has been reported to suc-
cessfully act in highly populated environments [134]. Their system uses line
features for localization resting on the assumption that such features more
likely correspond to walls than to moving people. Montemerlo et al. [102] use
a method to track walking people while localizing the robot to increase the
robustness of the pose estimate.

Romero et al. [124] describe an approach to global localization that clus-
ters extracted features based on similarity. In this way, the robot is able to
reduce the number of possible pose hypotheses and can speed up a Markov
localization process. The authors also perform a clustering of sub-maps, but
compared to our work, they do not consider changes in the environment.

In contrast to most of the approaches discussed so far, we do not address
the problem of filtering out or tracking dynamic objects. Our technique is
complementary to and can be combined with those approaches. In this work,
we applied the approach of Hähnel et al. [62] to eliminate high dynamic
objects in the short observation sequences φi instead of in the whole dataset.
We are interested in possible states of the environment like, for example,
open and closed doors or moved tables. In this context, it makes sense to
filter out measurements reflected by walking people, but to integrate those
which correspond to obstacles like doors or moved furniture. Our approach
learns possible states based on a clustering of local maps. The different state
hypotheses enable a mobile robot to more reliably localize itself and to also
estimate the current configuration of its surroundings.

In a recent work, Biber and Duckett [12] proposed an elegant approach
that incorporates changes of the environment into the map representation.
Compared to our work, they model temporal changes of local maps whereas
we aim to identify the different configurations of the environment. In their
work, they also construct local map but do not use grid maps like we do. For
each local map they maintain five different map instances over different time
scales . This is achieved by accepting changes differently fast. During Monte-
Carlo localization, they estimate only the pose of the robot and not state
of the environment. To compute the importance weight for a particle, they
evaluate the observation likelihood in each map and then choose the mode.
This is different to our Rao-Blackwellized approach in which each sample is
evaluated based on its individual map estimate.

Van Den Berg et al. [154] presented an approach to motion planning in
dynamic environments using randomized roadmaps. Their approach is able
to deal with multiple configurations of local areas in the environment. This
allows a mobile robot to replan its path given a passage is blocked by an



10.6 Conclusion 175

obstacle. Their technique focuses on path planning and leaves open how such
dynamic areas can be identified and mapped.

10.6 Conclusion

In this chapter, we presented a technique to model quasi-static environments
using a mobile robot. In areas where dynamic aspects are detected, our ap-
proach creates local maps and estimates for each sub-map clusters of possible
configurations of the corresponding space in the environment. This allows us
to model, for example, opened and closed doors or moved furniture.

Furthermore, we described how to extend Monte-Carlo localization to uti-
lize the information about the different possible states of the environment
while localizing a vehicle. We use a Rao-Blackwellized particle filter to esti-
mate the current state of the environment as well as the pose of the robot.

Our approach as been implemented and tested on real robots as well
as in simulation. The experiments demonstrate that our technique yields a
higher localization accuracy compared to Monte-Carlo localization based on
standard occupancy grids as well as grid maps obtained after filtering out
measurements reflected by dynamic objects. As illustrated in this chapter,
approaches which do not consider changes in the map model are unable to
localize a vehicle correctly in certain situations. This is especially a problem
when performing global localization while the environment is not static.
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Conclusion

Learning map is one of the key problems in mobile robotics, since many
applications require known spacial models. Robots that are able to acquire
an accurate map of the environment on their own are regarded as fulfilling
a major precondition of truly autonomous mobile vehicles. The autonomous
map learning problem has several important aspects that need to be solved
simultaneously in order to come up with accurate models. These problems
are mapping, localization, and path planning. Additionally, most mapping
approaches assume that the environment of the mobile robots is static and
does not change over time. This assumption, however, is unrealistic since most
places are populated by humans. Taking into account non-static aspects is
therefore an desirable feature for mapping systems.

In this book, we focused on the problem of learning accurate maps with
single- and multi-robot systems. We presented solutions to a series of open
problems in this context. We started with the problem of exploring an en-
vironment with a mobile robot equipped with a noisy sensor. We presented
a decision-theoretic framework that reasons about potential observations to
be obtained at the robot’s target locations. In this way, the robot is able
to select the action that provides the highest expected uncertainty reduc-
tion in its map. This allows the robot to build accurate environment models
not exceeding a given level of uncertainty. As the underlying representation,
we defined coverage maps which can be seen as an extension of occupancy
grid maps that allow us to model partly occupied cells. We then presented
in Chapters 4 and 5 a technique to coordinate a team of robots during ex-
ploration. The main challenge in this context is to assign appropriate target
locations to each robot so that the overall time to complete the exploration
task is minimized. This collaboration between the robots is achieved by as-
signing utilities to all potential target locations. Whenever a target location
is assigned to a robot, the utility of all locations that are visible from the
assigned one are discounted. This leads to a balanced distribution of robots
over the environment and reduces the amount of redundant work as well as
the risk of interference. As a result, we obtained a significant reduction of
the overall time needed to complete the exploration mission. We described
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a way of dealing with limited communication in the network link. This was
achieved by applying our centralized technique for sub-teams of robots which
are currently able to communicate. Furthermore, we learned typical proper-
ties of indoor environments using the AdaBoost algorithm in combination
with simple, single-valued features. By enabling the robots to add semantic
labels to the individual places in the environment, the coordination of large
robot teams can be optimized. We focused on the exploration of corridors,
which typically have a high number of branchings to adjacent rooms, where
large teams of robots can be better distributed over the environment. Using
this technique to cover the environment with a team of robots, the task can
be carried out in an even shorter period of time.

Whenever robots act in the real world, their actions and observations are
affected by noise. Building spacial models under those conditions without con-
sider active control is widely known as the simultaneous localization and map-
ping (SLAM) problem. It is often called a chicken or egg problem, since a map
is needed to localize a vehicle while at the same time an accurate pose estimate
is needed to build a map. We presented in Chapter 6 a solution to the SLAM
problem which is based on a Rao-Blackwellized particle filter using grid maps.
In such a filter, each sample represents a trajectory hypothesis and maintains
its own map. Each map is updated based on the trajectory estimate of the cor-
responding particle. The main challenge in the context of Rao-Blackwellized
mapping is to reduce its complexity, typically measured by the number of sam-
ples needed to build an accurate map. We presented a highly efficient technique
which uses an informed proposal distribution to create the next generation of
particles. We consider the most recent sensor observation to obtain an accu-
rate proposal distribution. This allows us to draw samples only in those areas
where the robot is likely to be located. We furthermore reduced the number of
resampling actions in the particle filter which helps to make particle depletion
less likely. As a result, our technique enables us to construct grid maps from
large datasets in which the robots traveled for around 2 km in indoor as well
as in structured outdoor environments. We are able to obtain maps with out-
standing accuracy requiring around one order of magnitude less samples than
other state-of-the-art Rao-Blackwellized mapping systems.

After having developed an efficient and accurate tool to deal with the
uncertainty in the pose of the vehicle, we considered the problem of how
to combine exploration and SLAM systems in Chapter 7. Since exploration
strategies typically try to cover unknown terrain as fast as possible, they avoid
repeated visits to known areas. This strategy, however, is suboptimal in the
context of the SLAM problem because the robot needs to revisit places in
order to localize itself. A good pose estimate is necessary to make the correct
data association, i.e., to determine if the current measurements fit into the
map built so far. In the case in which the robot uses an exploration strategy
that avoids multiple visits to the same place, the probability of making the
correct associations is reduced. To overcome this limitation, we developed a
relocalization technique for exploration based on loop-closing actions. First,
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the robot has to detect loops which have not been traversed to far. This
is done by maintaining a dual representation of the environment. Beside a
grid map, we construct a topological map based on the trajectory of the
vehicle. By comparing both models, we are able to reliably detect loops.
This information is then used to reenter the known parts of the environment
in order to relocalize the vehicle. This often leads to better aligned maps
especially at the loop closure point.

The problem of the presented technique lies in its heuristic estimation of
when to abort the loop-closing process. If the robot moves for an extremely
long period of time through known areas, the so-called particle depletion
problem can affect the filter. Particle depletion is the phenomenon that hy-
potheses which are needed later on, for example to close a second loop, vanish
while the robot stays in a first, inner loop. Chapter 8 describes a technique
that allows a mobile robot to propagate the particle diversity through a loop
after actively closing it. By creating a backup of the filter when entering a
loop and recovering the uncertainty when leaving the loop, the robot can stay
an arbitrary period of time in a loop without depleting important hypothe-
ses. As shown in our experiments, this approach yields accurate maps while
reducing the risk that the filter gets overly confident.

Chapter 9 presented an integrated approach that simultaneously addresses
mapping, localization, and path planning. It extends the ideas on decision-
theoretic exploration presented in Chapter 3 and allows us to deal with the
pose uncertainty of the vehicle. It applies the Rao-Blackwellized particle fil-
ter presented in Chapter 6 to model the posterior about the trajectory of
the vehicle and the map of the environment. The decision-theoretic action
selection technique aims to minimize the uncertainty in joint posterior about
the poses of the robot and the map. In this context, we showed that the
entropy of a Rao-Blackwellized filter can be separated into two components:
The uncertainty of the posterior about the trajectory and the uncertainty in
the map multiplied with the likelihood of the corresponding sample.

Whenever our approach evaluates a set of actions, it takes into account
sequences of potential observations in order to minimize the uncertainty in
the overall posterior. This is achieved by simulating observation sequences
based on the posterior about the map. The actions which are taken into
account guide the robot in order to explore unknown areas, move it to places
which are well-known in order to reduce the pose uncertainty, or actively
close loops according to Chapter 7. As a result, we obtain a robust active
map learning approach that

• minimizes the uncertainty in the robot’s world model,
• considers the cost of carrying out an action,
• reasons about potential observation sequences based on the posterior

about the map of the environment,
• considers exploration, place revisiting, and loop-closing actions, and
• is able to deal with uncertainty in the pose of the robot.
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Finally, we addressed the problem of mapping and localization in non-
static environments. The assumption of a static world is unrealistic since
most places in which robots are deployed are populated by humans. In the last
three years, different techniques that are able to deal with dynamic aspects
during mapping were presented. This was typically achieved by filtering out
the measurements which were reflected by dynamic objects. In Chapter 10, we
chose a different approach. Instead of removing the non-static aspects from
the map model, we presented a technique to map their typical configurations.
The idea behind this approach is that several non-static objects occur only
in a limited number of states. Doors, for example, are typically either open
or closed and a parking space is either free or occupied by a car. Therefore,
it makes sense to include their typical configurations into the environment
model. By clustering local sub-maps, we are able to come up with a map
model that maintains different possible configurations for local areas.

We then extended the standard Monte-Carlo localization approach to en-
able a mobile robot to localize itself in this kind of map and at the same time
estimate the current state of the environment. This allows us to perform
the localization task more robustly in case the environment is not static. In
practical experiments, we showed that an approach that is not able to model
different spacial states failed to localize a robot correctly whereas our ap-
proach succeeded.

The techniques described in this book are solutions to various previously
unsolved or unaddressed aspects of the map learning problem with mobile
robots. In Chapter 9, we developed an active map learning system that in-
tegrates most of our techniques described in the preceding chapters of this
work. In summary, the presented approaches allow us to answer the following
questions:

• How to coordinate a team of mobile robots so that the overall exploration
time and the amount of redundant work is minimized?

• How to accurately and efficiently solve the grid-based simultaneous lo-
calization and mapping problem for robots equipped with a laser range
finder?

• How to adapt an exploration technique to the needs of the underlying
SLAM approach?

• How to reduce the risk of particle depletion in the context of active Rao-
Blackwellized mapping?

• How to generate actions and reason about potential observation sequences
for an exploring mobile robot with the goal to minimize the uncertainty
in its world model?

• How to deal with non-static worlds in the context of map learning and
localization?
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A.1 Probability Theory

A.1.1 Product Rule

The following equation is called the product rule

p(x, y) = p(x | y)p(y) (A.1)
= p(y | x)p(x). (A.2)

A.1.2 Independence

If x and y are independent, we have

p(x, y) = p(x)p(y). (A.3)

A.1.3 Bayes’ Rule

The Bayes’ rule, which is frequently used in this book, is given by

p(x | y) =
p(y | x)p(x)

p(y)
. (A.4)

The denominator is a normalizing constant that ensures that the posterior of
the left hand side adds up to 1 over all possible values. Thus, we often write

p(x | y) = ηp(y | x)p(x). (A.5)

In case the background knowledge e is given, Bayes’ rule turns into

p(x | y, e) =
p(y | x, e)p(x | e)

p(y | e)
. (A.6)
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A.1.4 Marginalization

The marginalization rule is the following equation

p(x) =
∫

y

p(x, y) dy. (A.7)

In the discrete case, the integral turns into a sum

p(x) =
∑

y

p(x, y). (A.8)

A.1.5 Law of Total Probability

The law of total probability is a variant of the marginalization rule, which
can be derived using the product rule

p(x) =
∫

y

p(x | y)p(y) dy, (A.9)

and the corresponding sum for the discrete case

p(x) =
∑

y

p(x | y)p(y). (A.10)

A.1.6 Markov Assumption

The Markov assumption (also called Markov property) characterizes the fact
that a variable xt depends only on its direct predecessor state xt−1 and not
on xt′ with t′ < t − 1

p(xt | x1:t−1) = p(xt | xt−1). (A.11)
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active localization, 4
active loop-closing, 118, 152

stopping criterion, 122
AdaBoost, 74

Bayes’ rule, 181
Bayesian information criterion, 164
BIC, see Bayesian information criterion
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strong, 77
weak, 74

CML, see simultaneous localization and
mapping

collaboration, see coordinated
exploration

concurrent mapping and localization,
see simultaneous localization and
mapping

cost, 46
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Aces, 110
Belgioioso, 110
Bruceton mine, 111
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Freiburg building 79, 33, 157
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Intel Research Lab, 83, 103

MIT Killian Court, 104, 140
Seattle, 110, 154

dynamic objects, 161
low-dynamic, 161
non-static, 161

effective number of particles, 101
effective sample size, see effective

number of particles
entropy, 29
exploration, 4, 29

coordinated, 43, 48, 80
information gain-based, 30, 143
limited communication, 49

features, 74, 76

hidden Markov model, 78
HMM, see hidden Markov model
Hungarian method, 59

independence, 181
information gain, 30, 148

expected, 31, 147
integrated approaches, see simultaneous

planning localization and mapping
interference, 43

k-means, 164
KLD, see Kullback-Leibler divergence
Kullback-Leibler divergence, 140

law of total probability, 182
localization, 3
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clustering, 165
coverage, 24
feature, 13
geometric, 13
grid, 13
occupancy grid, 14

patch-map, 166
reflection probability grid, 18

mapping, 3
with known poses, 14

marginalization, 182
Markov assumption, 182
MCL, see Monte Carlo localization
Monte Carlo localization, 11, 166

particle diversity, 135

particle filter
adaptive resampling, 94
importance weighting, 8, 95
particle depletion, 10, 135
proposal distribution, 10, 94
Rao-Blackwellized, 93
resampling, 8, 95
sampling, 8, 95

sampling importance resampling
filter, 8

target distribution, 10

uncertainty, 145
path planning, 3
priorization, 64
product rule, 181

scan counting, 37
semantic place label, 73
sensor model, 16, 25
simultaneous localization and mapping,

3, 93
simultaneous planning localization and

mapping, 4, 144
SLAM, see simultaneous localization

and mapping
SPLAM, see simultaneous planning

localization and mapping

traveling salesman problem, 66
TSP, see traveling salesman problem

uncertainty
of a Gaussian, 147
of a grid map, 146
of a Rao-Blackwellized particle filter,

145
reduction, see information gain
trajectory, 147
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expected, 151
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