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Preface

This volume contains the papers presented at Robotics: Science
and Systems 2008, held at the Swiss Federal Institute of Technol-
ogy (ETH) in Zurich Switzerland, from June 25 to June 28, 2008.
This year’s meeting brought together more than 280 researchers
from Europe, Asia, North America, and Australia. The papers
presented at the meeting and compiled here cover a wide range
of topics in robotics spanning computer vision, mapping, terrain

identification, distributed systems, localization, manipulation, collision avoidance,
multibody dynamics, obstacle detection, micro-robotic systems, pursuit-evasion,
grasping and manipulation, tracking, spatial kinematics, machine learning, sensor
networks, and applications such as autonomous driving and design of manipulators
for use in functional-MRI.

Following the RSS tradition, there were a number of invited talks: two Early
Career Spotlight talks by rising stars in the robotics community, one banquet speaker,
and six invited talks on topics on the fringes of robotics. The latter talks were chosen
to give the audience new motivating perspectives on what is possible and on new
ways to approach robotics problems.

• Prof. Armin Gruen of ETH delivered “Positioning Modeling and Navigation
with Photogrammetric Techniques,” in which he argued convincingly for the
use of photogrammetric techniques in robotics and showed impressive results
in which accuracy on the order of one part per million was obtained.

• Prof. Miguel Nicolelis of Duke University spoke about “Computing with Neu-
ral Ensembles.” In this excellent talk, he discussed the functioning of neural
ensembles in animals providing evidence that the ensemble of neurons that
controls a given task is not fixed, thus raising questions about the design of
bio-inspired robot controllers.

• Prof. Jean-Louis Deneubourg of the Universit Libre de Bruxelles shared his
thoughts on “Shared Decision-Making in Mixed Societies of Animals and Robots.”
He provided deep insights into the “emergent” global behavior of large colonies
of small animals capable of only simple local communication.

• Dr. Kevin O’Regan, Director of Research of the Laboratory of the Psychology
of Perception at CNRS Paris discussed robot consciousness in his talk “How to
Build Consciousness into a Robot: the Sensori-motor Approach.” This was a
highly engaging talk, in which it was conjectured that given today’s computing
power, it is only a matter of time before robots become self-aware, which gives
rise to many complex questions of ethics.

• Prof. Howard Berg of Harvard University presented “Motile Behavior of E-
coli: a Remarkable Robot.” He showed detailed pictures of the inner workings
of the remarkable nano-machines called “flagella,” how they are constructed
by bacteria, and how they provide propulsion and directional control.

viii



• Prof. Toshio Yanagida of Osaka University described the engineering principles
behind biological molecular motors in his talk “Mechanism Involved in Utilizing
Thermal Fluctuations by Muscle Molecular Motor.” He showed how molecular
motors exploit thermal noise to achieve energy efficiency and talked about the
implications for building artificial muscles.

• Prof. Rob Wood of Harvard University gave an engaging Early Career Spotlight
presentation on his progress on meso-scale bio-inspired vehicles, that fly, walk,
and swim. These would be useful in many many applications ranging from
environmental monitoring to border surveillance. He covered aspects of design,
fabrication, analysis, and control.

• Prof. Eric Klavins of the University of Washington was the second Early Career
Spotlight speaker. He spoke about the motivations behind his Self-Organizing
Systems Lab and a string of results. Along the way, he provided insights into
the aspects of systems that lead to self-organization and robustness of global
behaviors He showed the application of these ideas to a macro-scale testbed
and discussed DNA applications.

• In an extremely engaging banquet talk, Prof. Luis von Ahn of Carnegie Mellon
Institute focused on the unwitting use of humans to solve difficult problems
while playing games on the Web. Among many other intriguing ideas, his talk,
“Human Computation,” described how the use of capchas to verify that a real
human is interacting with a web application, is also providing free labor to
translate old texts, not amenable to optical character recognition.

Thanks to the efforts of Workshop Chair Charlie Kemp of Georgia Tech., the
fourth day of RSS 2008 was devoted to the following well-attended workshops:

• Control of Locomotion: From Animals to Robots organized by Auke Ijspeert,
Paolo Dario, Sten Grillner;

• Underwater Robotics ... at the Microscale organized by Brad Nelson, Vijay
Kumar, Sylvain Martel, Metin Sitti, Lixin Dong;

• Topology and Minimalism in Robotics and Sensor Networks organized by Robert
Ghrist, Steve LaValle, George J. Pappas;

• Teaching with Robots organized by Chris Rogers, Pedro Lima, Roland Siegwart,
Illah Nourbakhsh, Aaron Dollar;

• Design and Control of Variable Impedance Actuators for Physical Interaction
of Robots with Humans and their Environment organized by Antonio Bicchi,
Alin Albu Schaeffer, Bram Vanderborght;

• Robot Manipulation: Intelligence in Human Environments organized by Robert
Platt, Sami Haddadin, Charlie Kemp, Lorenzo Natale, Neo Ee Sian;
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• Interactive Robot Learning organized by Andrea Thomaz, Geert-Jan M. Kruijff,
Henrik Jacobsson, Danijel Skocaj;

• Inside Data Association organized by Udo Frese, Jose Neira, Diedrich Wolter,
Jorg Kurlbaum;

• Quantitative Performance Evaluation of Navigation Solutions for Mobile Robots
organized by Raj Madhavan, Chris Scrapper, Alex Kleiner;

• Experimental Methodology and Benchmarking in Robotics Research organized
by Fabio Bonsignorio, John Hallam, Angel P. del Pobil;

• Advances in Simulation of Robot and Task Dynamics organized by Evan Drum-
wright, Kurt Anderson, Roy Featherstone; and

• Grand Challenges in Microrobotics and Microassembly organized by Pierre
Lambert, Stephane Regnier, Metin Sitti.

RSS 2008 was a success thanks to the efforts of many people. We gratefully
acknowledge the enormous time spent by the area chairs, who each handled about
20 papers and flew to Zurich for the in-person area chair meeting. The area chairs
were: Antonio Bicchi (University of Pisa), Karl Bohringer (University of Washing-
ton), Jaydev P. Desai (University of Maryland, College Park), Hugh Durrant-Whyte
(University of Sydney), Shin-ichi Hirai (Ritsumeikan University), Atsushi Konno
(Tohoku University), Kevin Lynch (Northwestern University), Yoky Matsuoka (Uni-
versity of Washington), Michael McCarthy (UC Irvine), Jose Neira (University of
Zaragoza), Giuseppe Oriolo (University of Rome), Nick Roy (Massachusetts Insti-
tute of Technology), Thierry Simeon (LAAS-CNRS, Toulouse), Metin Sitti (Carnegie
Mellon University), Frank van der Stappen (Utrecht University), and Kazuhito Yokoi
(AIST). Together, their expertise covered an extraordinarily broad swath of the
robotics landscape.

Paper reviewing was rigorous. All but two papers received four or more double-
blind reviews (neither the authors nor the reviewers knew each others’ identities) -
that’s over 650 reviews from 196 program committee members. After the reviews
were completed, the program committee members and area chairs discussed reviews
for each paper in an on-line forum within the conference management system. Then
the authors were invited to rebut the reviews. Following the rebuttals, the program
committee members reconsidered and finalized their reviews. Final acceptance de-
cisions and presentation categories were made at the area chair meeting in Zurich,
also attended by the program chair and general chair. Of the 163 submissions, 20
were selected for poster presentation and 20 were selected for oral presentation.

The local arrangement chairs were Roland Siegwart and Brad Nelson of ETH.
They and their support staff did a fantastic job in organizing everything from the
Travel Kit to the poster session at the faculty club to the alphorn player in the
opening ceremony to the banquet in the restaurant overlooking the lake and the
city. We particularly want to thank Cornelia Della Casa and Luciana Borsatti for
sweating all the details with such grace and efficiency. We cannot thank them enough.
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We sincerely thank Rudi Triebel and Ralf Kästner for taking the roles of general
Webmaster for the Conference. Finally our thanks go out to Janosch Nikolic and
Stefan Bertschi for dealing with all computer and wireless issues and to Markus Bhler
and Dario Fenner for setting up the welcoming reception.

RSS 2008 had many sponsors; thanks to ABB, Evolution Robotics, Intel, Mi-
crosoft Research, and Willow Garage, for providing funds for general conference use
and to the National Science Foundation and the Naval Research Lab for providing
funds to support student travel. Last, but not least, we thank Springer for providing
a $2500 prize for the best student paper award. The competition was fierce.

Finally, we would like to express our gratitude to the members of the robotics
community who have adopted RSS and its philosophy, and who have made RSS
2008 an outstanding meeting by submitting manuscripts, participating in the review
process, and by attending the Conference. We look forward to many more exciting
meetings of RSS in the years to come.

Oliver Brock, University of Massachusetts Amherst

Jeff Trinkle, Rensselaer Polytechnic Institute

Fabio Ramos, University of Sydney

July 2008
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Multi-Sensor Lane Finding in Urban Road Networks
Albert S. Huang† David Moore† Matthew Antone� Edwin Olson† Seth Teller†

†MIT Computer Science and Artificial Intelligence Laboratory �BAE Systems Advanced Information Technologies
Cambridge, MA 02139 Burlington, MA 01803

{ashuang,dcm,eolson,teller}@mit.edu matthew.antone@baesystems.com

Abstract—This paper describes a system for detecting and
estimating the properties of multiple travel lanes in an urban
road network from calibrated video imagery and laser range data
acquired by a moving vehicle. The system operates in several
stages on multiple processors, fusing detected road markings,
obstacles, and curbs into a stable non-parametric estimate of
nearby travel lanes. The system incorporates elements of a
provided piecewise-linear road network as a weak prior.
Our method is notable in several respects: it estimates multiple

travel lanes; it fuses asynchronous, heterogeneous sensor streams;
it handles high-curvature roads; and it makes no assumption
about the position or orientation of the vehicle with respect to
the road.
We analyze the system’s performance in the context of the 2007

DARPA Urban Challenge. With five cameras and thirteen lidars,
it was incorporated into a closed-loop controller to successfully
guide an autonomous vehicle through a 90 km urban course at
speeds up to 40 km/h amidst moving traffic.

I. INTRODUCTION

The road systems of developed countries include millions
of kilometers of paved roads, of which a large fraction include
painted lane boundaries separating travel lanes from each other
or from the road shoulder. For human drivers, these markings
form important perceptual cues, making driving both safer and
more time-efficient [12]. In mist, heavy fog or when a driver is
blinded by the headlights of an oncoming car, lane markings
may be the principal or only cue enabling the driver to advance
safely. Moreover, public-safety officials use the number, color
and type of lane markings to encode spatially-varying traffic
rules, for example no-passing regions, opportunities for left
turns across oncoming traffic, regions in which one may (or
may not) change lanes, and preferred paths through complex
intersections.
Even the most optimistic deployment scenario for au-

tonomous vehicles assume the presence of massive numbers
of human drivers for the next several decades. Given the
centrality of lane markings to public safety, it is clear that they
will continue to be maintained indefinitely. Thus autonomous
vehicle researchers, as they design self-driving cars, may
assume that lane markings will be encountered with significant
frequency.
We define the lane finding problem as divining, from

live sensor data and (when available) prior information, the
presence of one or more travel lanes in the vehicle’s vicinity,
and the semantic, topological, and geometric properties of each
lane. By semantic properties, we mean the lane’s travel sense
and the color (white, yellow) and type (single, double, solid,

Fig. 1. Our system uses many asynchronous heterogeneous sensor streams
to detect road paint and road edges (yellow) and estimate the centerlines of
multiple travel lanes (cyan).

dashed) of each of its boundaries. By topological properties,
we mean the connectivity of multiple lanes in regions where
lanes merge, split, terminate, or start. The term geometric
properties is used to denote the centerline location and lateral
extent of the lane. This paper focuses on detecting lanes where
they exist, and the determination of geometric information for
each detected lane (Figure 1). We infer semantic and topologi-
cal information in a limited sense, by matching detected lanes
to edges in an annotated input digraph representing the road
network.
Aspects of the lane finding problem have been studied for

decades in the context of autonomous land vehicle devel-
opment [5, 17] and driver-assistance technologies [8, 1, 2].
McCall and Trivedi provide an excellent survey [11]. Lane
finding systems intended to support autonomous operation
have typically focused on highway driving [5, 17], where roads
have low-curvature and prominent lane markings, rather than
on urban environments. Previous autonomous driving systems
have exhibited limited autonomy in the sense that they required
a human driver to “stage” the vehicle into a valid lane before
enabling autonomous operation, and to take control whenever
the system could not handle the required task, for example
during highway entrance or exit maneuvers [17].
Driver-assistance technologies, by contrast, are intended as

continuous adjuncts to human driving; one common class
of such systems, lane departure warning (LDW) systems, is
designed to alert the human driver to an imminent (unsignaled)
lane departure [13, 10, 15]. These systems typically assume

1



that a vehicle is in a highway driving situation and that a
human driver is controlling the vehicle correctly, or nearly so.
Highways exhibit lower curvature than lower-speed roads, and
do not contain intersections. In vehicles with LDW systems,
the human driver is responsible for selecting an appropriate
travel lane, is assumed to spend the majority of driving time
within such a lane, is responsible for identifying possible
alternative travel lanes, and only occasionally changes into
such a lane. Because LDW systems are essentially limited
to providing cues that assist the driver in staying within the
current lane, achieving fully automatic lane detection and
tracking is not simply a matter of porting an LDW system
into the front end of an autonomous vehicle.
Clearly, in order to exhibit safe, human-like driving, an

autonomous vehicle must have good awareness of all other
nearby travel lanes. In contrast to prior lane-keeping and LDW
systems, this paper presents a lane finding system suitable for
guiding a fully autonomous land vehicle through an urban road
network. In particular, our system is distinct from previous
efforts in several respects: it attempts to detect and classify
all observable lanes, rather than just the single lane occupied
by the vehicle; it operates in the presence of complex road
geometry, static hazards and obstacles, and moving vehicles;
and it uses prior information (in the form of a topological road
network with sparse geometric information) when available.
The apparent difficulty of matching human performance

on sensing and perception tasks has led some researchers to
investigate the use of augmenting roadways with a physical
infrastructure amenable to autonomous driving, such as mag-
netic markers embedded under the surface of the road [18].
While this approach has been demonstrated in limited settings,
it has yet to achieve widespread adoption and faces a number
of drawbacks. First, the cost of updating and maintaining hun-
dreds of thousands of miles of roadway is highly prohibitive.
Second, the danger of autonomous vehicles perceiving and
acting upon a different infrastructure than human drivers do
(magnets vs. visible markings) becomes very real when one is
modified and the other is not, whether through accident, delay,
or malicious behavior.
Advances in computer networking and data storage tech-

nology in recent years have brought the possibility of a data
infrastructure within reach. In addition to semantic and topo-
logical information, such an infrastructure might also contain
fine-grained road maps registered in a global reference frame;
advocates of these maps argue that they could be used to guide
autonomous vehicles. We propose that a data infrastructure is
useful for topological information and sparse geometry, but
reject relying upon it for dense geometric information.
While easier to maintain than a physical infrastructure, a

data infrastructure with fine-grained road maps might still
become “stale” with respect to actual visual road markings.
Even for human drivers, mapping staleness, errors, and in-
completeness have already been implicated in accidents in
which drivers trusted too closely their satellite navigation
systems, literally favoring them over the information from
their own senses [3, 16]. Static fine-grained maps are clearly
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Fig. 2. Use of absolute camera calibration to project real-world quantities
into the image.

not sufficient for safe driving; to operate safely, in our view,
an autonomous vehicle must be able to use local sensors to
perceive and understand the environment.
The primary contributions of this paper are:
• A method for estimating multiple lanes of travel in a
typical urban road network using only information from
local sensors;

• A method for fusing these estimates with a weak prior,
such as that derived from a topological road map with
sparse metrical information;

• Methods for using monocular cameras to detect road
markings; and

• Multi-sensor fusion algorithms combining information
from video and lidar sensors.

We also describe our method’s failure modes, and describe
possible directions for future work.

II. APPROACH
Our approach to lane finding involves three stages. In

the first stage, the system detects and localizes painted road
markings in each video frame, using lidar data to reduce the
false positive detection rate. A second stage processes the road
paint detections along with lidar-detected curbs [6] to estimate
the centerlines of nearby travel lanes. Finally, the detected
centerlines output by the second stage are filtered, tracked,
and fused with a weak prior to produce one or more non-
parametric lane outputs.
Separation of the three stages provides simplicity, modular-

ity, and scalability. Specifically, we are able to experiment with
each stage independently of the others and easily substitute
different algorithms for each stage. For example, we experi-
mented with and ultimately used two separate algorithms in
parallel for detecting road paint, both of which are described
below. By introducing sensor-independent abstractions of envi-
ronmental features, we are able to scale to many heterogeneous
sensors.

A. Absolute Camera Calibration
Our road-paint detection algorithms assume that GPS and

IMU navigation data are available of sufficient quality to
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Fig. 3. The shape of the one-dimensional kernel used for matching road
paint. By applying this kernel horizontally we detect vertical lines and vice
versa. The kernel is scaled to the expected width of a line marking at a given
image row and sampled according to the pixel grid.

correct for short-term variations in vehicle heading, pitch, and
roll during image processing. In addition, the intrinsic (focal
length, center, and distortion) and extrinsic (vehicle-relative
pose) parameters of the cameras have been calibrated ahead
of time. This “absolute calibration” allows preprocessing of
the images in several ways (Figure 2):

• The horizon line is projected into each image frame.
Only pixel rows below this line are considered for further
processing.

• Our lidar-based obstacle detector supplies real-time infor-
mation about the locations of obstructions in the vicinity
of the vehicle [6]. These obstacles are projected into the
image and their extents masked out as part of the paint
detection algorithms, an important step in reducing false
positives.

• The inertial data allows us to project the expected location
of the ground plane into the image, providing a useful
prior for the paint-detection algorithms.

• False paint detections caused by lens flare can be detected
and rejected. Precise knowledge of the date, time, and
Earth-relative vehicle pose allow computation of the solar
ephemeris; line estimates that point toward the sun in
image coordinates are then removed.

B. Road Paint Detection using Matched Filters

This section describes the first of two vision algorithms
we use for detecting painted lines on the road. For each
camera, we run a dedicated process that detects road paint and
outputs a list of candidate line markings for each frame. These
candidates are expressed as cubic hermite splines, which have
the convenient property that the spline passes through each
of the control points. Each frame is considered independently
from the others; cross-frame tracking techniques could be used
to improve the result.
The first step in our image processing pipeline is to construct

matched one-dimensional filters, tuned to the expected width
of a painted line marking at each row of the image. We
consider two types of lines: Those that extend roughly away
from the car towards the horizon and those that run transverse
to the line of sight. The former is detected by a horizontal
kernel; the latter by a vertical kernel. In both cases, each row
of the image has its own kernel as computed by the projection
of the expected ground plane into the image and the nominal
painted line widths that such projection would imply. The
shape of the kernel is shown in Figure 3.

(a) Original Image (b) Filtered Image

(c) Local maxima w/orientations (d) Spline fit

Fig. 4. Our first road paint detector: (a) The original image is (b) convolved
with a matched filter at each row (horizontal filter shown here). (c) Local
maxima in the filter response are enumerated and their dominant orientations
computed. The figure depicts orientation by drawing the perpendiculars to
each maximum. (d) Nearby maxima are connected into cubic hermite splines.

The kernel is sampled according to the pixel grid at each
row, then convolved with that row to produce the output
of the matched filter. As shown in Figure 4, this operation
successfully discards most of the clutter in the scene and
produces a strong response along line-like features. This is
done separately for the vertical and horizontal kernels, giving
two output images. We then compute a list of local maxima
of the filter responses and a principal direction of the line at
each maximum. This direction is computed using the dominant
eigenvector of the Hessian in a small window around each
maximum.

The system next connects nearby maxima into splines that
represent continuous line markings. To do so, it randomly
selects 100 “seed” maxima near the bottom of the image from
the list of all maxima. For each seed, we set it as the first
control point in a cubic hermite spline, and consider an annulus
around the seed of radius 50 pixels and width 10 pixels. Each
of the maxima within this annulus becomes a candidate for
the spline’s second control point and is assigned a score. The
score is computed by sampling along the spline’s length the
value of the distance transform function of the list of maxima.
The highest scored maximum is saved as the second spline
control point. If no maximum has a score above a certain
threshold, we reject the whole spline. We continue to “grow”
the spline in the same fashion by considering additional annuli
of successive control points and finish the spline when adding
another control point results in a poor score. The maxima
near finished splines are removed from the maxima list so that
the same lines are not re-detected. After finishing searching
the 100 seeds, the algorithm is complete. The splines are
inverse-perspective mapped, intersected with the ground plane,
discretized into piecewise linear curves, and transmitted for
further processing by the centerline estimator.
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C. Road Paint Detection using Symmetric Contours

A second road paint detection mechanism employed in our
system relies on more traditional low-level image processing.
In order to maximize frame throughput, and thus reduce the
time between successive inputs to the lane fusion and tracking
components, we designed the module to utilize fairly simple
and easily-vectorized image operations.
The central observation behind this detector is that image

features of interest – namely lines corresponding to road
paint – typically consist of well-defined, elongated, continuous
regions that are brighter than their surround. This charac-
terization encompasses solid and dashed lane markings, stop
lines, crosswalks, white and yellow paint on road pavements
of various types, and markings seen through cast shadows
across the road surface. Thus, our strategy is to first detect
the potential boundaries of road paint using spatial gradi-
ent operators, and then estimate the desired line centers by
searching for boundaries that enclose a brighter region; that
is, boundary pairs which are proximal and roughly parallel in
real-world space and whose local gradients point toward each
other (Figure 5).

p1

p2

Fig. 5. Progression from original image through smoothed gradients (red),
border contours (green), and symmetric contour pairs (yellow) to form a paint
line candidate.

Three steps constitute the contour-based road line detector:
low-level image processing to detect raw features; contour
extraction to produce initial line candidates; and contour post-
processing for smoothing and false alarm reduction. The first
step applies local lowpass and derivative operators to produce
the noise-suppressed direction and magnitude of the raw
(grayscale) image’s spatial gradients. The gradient magnitude
is thresholded, and non-maximal suppression is performed in
the gradient direction to produce a sparse feature mask.
Next, a connected components algorithm iteratively walks

the feature mask to generate smooth contours of ordered
points, broken at discontinuities in location and gradient
direction. This results in a new image whose pixel values
indicate the identities and positions of the detected contours,
which in turn represent candidate road paint boundaries. In
order to localize the centerlines between these boundaries, a
second iterative walk is applied. At each boundary pixel pi

(traversed in contour order), the algorithm extends a virtual
line in the direction of the gradient until it meets another
contour at pj . If the gradient of the second contour points
in the opposite direction, then the midpoint between pi and pj
is added to a growing centerline curve (Figure 2).
This step connects many short paint fragments, producing a

smaller number of longer centerline candidates. The gradient
constraint insures that each candidate is brighter than its sur-
round. Since this candidate set may be corrupted by small line
fragments and outliers, a series of higher-level post-processing
operations is performed. We enforce global smoothness and
curvature constraints by fitting parabolas to the curves and
recursively breaking them at points of high deviation or spatial
gaps. We then remove all curves shorter than a given threshold
length (in pixels) to produce the final road paint lines. As
with the first road paint detection algorithm, these are inverse-
perspective mapped and intersected with the ground plane
before further processing.

D. Lane Centerline Estimation

The second stage of lane finding estimates the geometry of
nearby lanes using a weighted set of recent road paint and
curb detections, both of which are represented as piecewise
linear curves. To simplify the process, we estimate only lane
centerlines, which we model as locally parabolic segments.
While urban roads are not designed to be parabolic, this
representation is generally accurate for stretches of road that
lie within sensor range.
Lanes centerlines are estimated in two steps. First, a cen-

terline evidence image D is constructed, where the value each
pixel D(p) of the image corresponds to the evidence that a
point p = [px, py] in the local coordinate frame lies on the
center of a lane. Second, parabolic segments are fit to the
ridges in D and evaluated as lane centerline candidates.

1) Centerline Evidence Image: To construct D, road paint
and curb detections are used to increase or decrease the values
of pixels in the image, and are weighted according to their age
(older detections are given less weight). The value of D at a
pixel corresponding to the point p is computed as the weighted
sum of the influences of each road paint and curb detection
di at the point p:

D(p) =
∑
i

e−a(di)λg(di,p)

where a(di) denotes how much time has passed since di was
received, λ is a decay constant, and g(di,p) is the influence
of di at p. We chose λ = 0.7.
Before describing how the influence is determined, we make

three observations. First, a lane is more likely to be centered
1
2 lane width from a strip of road paint or a curb. Second, 88%
of federally managed lanes in the U.S. are between 3.05 m and
3.66 m wide [14]. Third, a curb gives us different information
about the presence of a lane than does road paint. From these
observations and the characteristics of our road paint and curb
detectors, we define two functions frp(x) and fcb(x), where
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x is the Euclidean distance from di to p:

frp(x) = −e− x2
0.42 + e−

(x−1.83)2
0.14 (1)

fcb(x) = −e− x2
0.42 . (2)

The functions frp and fcb are intermediate functions used
to compute the influence of road paint and curb detections,
respectively, on D. frp is chosen to have a minimum at x =
0, and a maximum at one half lane width (1.83 m). fcb is
always negative, indicating that curb detections are used only
to decrease the evidence for a lane centerline. We elected this
policy due to our curb detector’s occasional detection of curb-
like features where no curbs were present. Let c indicate the
closest point on di to p. The actual influence of a detection
is computed as:

g(di,p) =

⎧⎪⎪⎨
⎪⎪⎩

0 if c is an endpoint of di,
else

frp(||p− c||) if di is road paint, else
fcb(||p− c||) if di is a curb

This last condition is introduced because road paint and
curbs are only observed in small sections. The effect is that
a detection influences only those centerline evidence values
immediately next to the detection, and not in front of or behind
it.
In practice, D can be initialized once and incrementally

updated by adding the influences of newly received detections
and applying an exponential time decay at each update. Addi-
tionally, we improve the system’s ability to detect lanes with
dashed boundaries by injecting imaginary road paint detections
connecting two separate road paint detections when they are
physical proximate and collinear.

2) Parabola Fitting: Once the centerline evidence image D
has been constructed, the set R of ridge points is identified
by scanning D for points that are local maxima along either a
row or a column, and also above a minimum threshold. Next,
a random sample consensus (RANSAC) algorithm [7] is used
to fit parabolic segments to the ridge points. At each RANSAC
iteration, three ridge points are randomly selected for a three-
point parabola fit. The directrix of the parabola is chosen to
be the first principle component of the three points.
To determine the set of inliers for a parabola, we first

compute its conic coefficient matrix C [9], and define the set
of candidate inliers L to contain the ridge points within some
algebraic distance α of C.

L = {p ∈ R : pTCp < α}

For our experiments, we chose α = 1. The parabola is then
re-fit once to L using a linear least squares method, and a
new set of candidate inliers is computed. Next, the candidate
inliers are partitioned into connected components, where a
ridge point is connected to all neighboring ridge points within
a 1 m radius. The set of ridge points in the largest component is
chosen as the set of actual inliers for the parabola. The purpose
of this partitioning step is to ensure that a parabola cannot be
fit across multiple ridges, and requires that an entire identified

Fig. 6. The second stage of our system constructs a centerline evidence
image. Lane centerline candidates (blue) are identified by fitting parabolic
segments to the ridges of the image. Front-center camera is shown in top left
for context.

ridge be connected. Finally, a score for the entire parabola is
computed.

s =
∑
p∈L

1
1 + pTCp

The contribution of an inlier to the total parabola score is
inversely related to the inlier’s algebraic distance, with each
inlier contributing a minimum amount to the score. The overall
result is that parabolas with many very good inliers have
the greatest score. If the score of a parabola is below some
threshold, then it is discarded. Experimentation with different
values resulted in us choosing a score threshold of 140.
After a number of RANSAC iterations (we found 200 to

be sufficient), the parabola with greatest score is selected as
a candidate lane centerline. Its inliers are removed from the
set of ridge points, and all remaining parabolas are re-fit and
re-scored using this reduced set of ridge points. The next best-
scoring parabola is chosen, and this process is repeated to
produce at most 5 candidate lane centerlines (Figure 6). Each
candidate lane centerline is then discretized as a piecewise
linear curve and transmitted to the lane tracker for further
processing.

E. Lane Tracking

The primary purpose of the lane tracker is to maintain a
stateful, smoothly time-varying estimate of the nearby lanes
of travel. To do so, it uses both the candidate lane centerlines
produced by the centerline estimator and an a-priori estimate
derived from a road map.
In the context of the Urban Challenge, the road map was

known as the Route Network Description File (RNDF). The
RNDF can roughly be thought of as a directed graph, where
each node is a waypoint in the center of a lane, and edges
represent intersections and lanes of travel. Waypoints are given
as GPS coordinates, can be separated by arbitrary distances,
and a simple linear interpolation of connected waypoints may
go off road, through trees and houses. For the purposes of
our system, the RNDF was treated as a strong prior on the
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(a) Two RNDF-derived lane centerline priors

(b) Candidate lane centerlines estimated from sensor data

(c) Filtered and tracked lane centerlines

Fig. 7. (a) The RNDF provides weak a-priori lane centerline estimates (white)
that may go off-road, through trees and bushes. (b) On-board sensors are used
to detect obstacles, road paint, and curbs, which are in turn used to estimate
lanes of travel, modeled as parabolic segments (blue). (c) The sensor-derived
estimates are then filtered, tracked, and fused with the RNDF priors.

number and type of lanes, and a weak prior on their position
and geometry.
As our vehicle travels, it constructs and maintains repre-

sentations of all portions of all lanes within a fixed radius of
75 m. The centerline of each lane is modeled as a piecewise
linear curve, with control points spaced approximately every
2 m. Each control point is given a scalar confidence value
indicating the certainty of the lane tracker’s estimate at that
point. The lane tracker decays the confidence of a control
point as the vehicle travels, and increases it either by detecting
proximity to an RNDF waypoint or by updating control points
with centerline estimates produced from the second stage.
As centerline candidates are generated, the lane tracker

attempts to match each candidate with a tracked lane. If a
matching is successful, then the candidate is used to update
the lane estimate. To determine if a candidate c is a good match
for a tracked lane l, the longest segment sc of the candidate is
identified such that every point on sc is within some maximum
distance τ to l. We then define the match score m(c, l) as:

m(c, l) =
∫
sc

1 +
τ − d(sc(x), l)

τ
dx

where d(p, l) is the distance from a point p to the lane l.
Intuitively, if sc is sufficiently long and close to this estimate,
then it is considered a good match. We choose the matching
function to rely only on the closest segment of the candidate,
and not on the entire candidate, based on the premise that
as the vehicle travels, the portions of a lane that it observes
vary smoothly over time, and previously unobserved portions
should not adversely affect the matching as long as sufficient
overlap is observed elsewhere.
Once a centerline candidate has been matched to a tracked

lane, it is used to update the lane estimates by mapping control
points on the tracked lane to the centerline candidate, with an
exponential moving average applied for temporal smoothing.
At each update, the confidence values of control points updated
from a matching are increased, and others are decreased. If
the confidence value of a control point decreases below some
threshold, then its position is discarded and recomputed as a
linear interpolation of its closest surrounding confident control
points. Figure 7 illustrates this process.

III. URBAN CHALLENGE RESULTS

Often, the most difficult part of evaluating a lane detection
and tracking system for autonomous vehicle operation lies
in finding a suitable test environment. Legal, financial, and
logistical constraints prove to be a significant hurdle in this
process. We were fortunate to have the opportunity to conduct
an extensive test in the 2007 DARPA Urban Challenge, which
provided a large-scale real world environment with a wide
variety of roads. Both the type and quality of roads varied
significantly across the race, from well-marked urban streets,
to steep unpaved dirt roads, to a 1.6 km stretch of highway.
Throughout the duration of the race, approximately 50 human-
driven and autonomous vehicles were simultaneously active,
thus providing realistic traffic scenarios.
Our most significant result is that our lane detection and

tracking system successfully guided our vehicle through a
90 km course in a single day, at speeds up to 40 km/h, with
an average speed of 16 km/h. A post-race inspection of our
log files revealed that at no time did our vehicle have a lane
centerline estimate more than half a lane width off of the
actual lane centerline, and at no time did it unintentionally
enter or exit a lane of travel. In saying this, we note that the
output of the lane tracking system was used directly to guide
the navigation and motion planning systems. Specifically, if
the lane tracking system produced an incorrect estimate, our
vehicle would have traveled along that estimate, possibly into
an oncoming traffic lane or off-road.
The first question that arises from these statements is that

of determining how much our system relied on perceptually-
derived lane estimates, and how much it relied on the prior
knowledge of the road as given in the RNDF. To answer
this, we examine the distance the vehicle traveled with high
confidence visually-derived lane estimates, excluding control
points where high confidence is a result of proximity to an
RNDF waypoint.
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Visual range (m) Distance traveled (km)
≤ 0 30.3 (34.8%)
1− 10 10.8 (12.4%)
11− 20 24.6 (28.2%)
21− 30 15.7 (18.0%)
31− 40 4.2 (4.8%)
41− 50 1.3 (1.5%)

> 50 0.2 (0.2%)

TABLE I
DISTANCE TRAVELED WITH HIGH-CONFIDENCE VISUAL ESTIMATES IN

CURRENT LANE OF TRAVEL.

Fig. 8. Aerial view of the Urban Challenge race course in Victorville,
CA. Autonomously traversed roads are colored blue in areas where the lane
tracking system reported high confidence, and red in areas of low confidence.
Some low-confidence cases are expected, such as at intersections and areas
with no clear lane markings. Failure modes occurring at the circled letters are
described in Fig. 9.

At a given instance, our system can either have no confi-
dence in its visual estimates of the current lane of travel, or
confidence out to a certain distance a in front of the vehicle.
If the vehicle then travels d meters while maintaining the
same confidence in its visual estimates, then we say that the
system had a high-confidence estimate a meters in front of the
vehicle for d meters of travel. Computing a for all 90 km of
the race allows us to answer the question of how far out our
system could typically see. This information is summarized in
Table I. From this, we can see that our vehicle maintained
high confidence visual estimates to some forward distance
for 56.8 km, or 65.2% of the total distance traveled. In the
remaining portion, the lane tracker relied on an interpolation
of its last high confidence estimates.
A second way of assessing the system’s performance is by

examining its estimates as a function of location within the
course. Figure 8 shows an aerial view of areas visited by
our vehicle, colored according to whether or not the vehicle
had a high confidence estimate at a given point. We note
that our system had high confidence lane estimates throughout
the majority of the high-curvature and urban portions of the
course. Some of the low-confidence cases are expected, such
as when the vehicle is traveling through intersections and roads
with no discernible lane boundaries. In other cases, our system

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Common failure cases. The most common failure was in areas with
strong tree shadows, as seen in (a) and (b). Dirt roads, and those with faint
or no road paint (c-e) were also common. In (f), a very wide lane and widely
spaced dashed markings were a challenge due to our strong prior on lane
width. In each of these failures, the system reported no confidence in its
visual estimates.

was unable to obtain a high confidence estimate whereas a
human would have little trouble doing so.
Images from our logged camera images at typical failure

cases are shown in Figure 9, and the locations at which these
failures occurred are marked in Figure 8. A common failure
mode was an inability to detect road paint in the presence of
dramatic lighting variation such as that caused by cast tree
shadows. However, we note that in all of these cases our
system reported no confidence in its estimates and did not
falsely estimate the presence of a lane.
Another significant failure occurred on the eastern part of

the course, with a 0.5 km dirt road followed by a 1.6 km stretch
of highway. Our vehicle traversed this path four times, for a
total of 8.4 km. The highway was an unexpected failure, and
the travel lane happened to be very wide. Its width did not fit
the 3.66 m prior in the centerline estimator, which had trouble
constructing a stable centerline evidence image. In addition,
the dashed lane markings on the highway were spaced much
further apart than dashed lane markings are on typical urban
roads.
The final common failure mode occurred in areas with faint

or no road paint, such as the dirt road and roads with well
defined curbs but no paint markings. Since our system uses
road paint as its primary information source, in the absence
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of road paint it is no surprise that no lane estimate ensues.
Other environmental cues such as color and texture may be
more useful [4].
The output of our system is used for high-speed motion

planning; thus we would like for its estimates to remain
relatively stable. Specifically, we desire that once the system
produces a high confidence estimate, that the estimate does not
change significantly. To assess the suitability of our system for
this purpose, we can compute a stability ratio that measures
how much its high confidence lane estimates change over time
in the transverse direction.
Consider a circle of radius r centered at the current position

of the rear axle. We can find the intersection p0 of this circle
with the current lane estimate that extends ahead of the vehicle.
When the lane estimate is updated at the next time step (10 Hz
in this case) we can compute p1, the intersection of the same
circle with the new lane estimate. We define the stability ratio
as:

R =
||p0 − p1||

dv
(3)

where dv is distance traveled by our vehicle in that time step.
Intuitively, the stability ratio is the ratio of the transverse

movement of the lane estimate to the distance traveled by the
car in that time, for some r. We can also compute an average
stability ratio for some r by averaging the stability ratios
for every time step of the vehicle’s trip through the course
(Figure 10). From this figure, we see that the average stability
ratio remains small and relatively constant, but still nonzero,
indicating that high-confidence lane estimates can be expected
to shift slightly as the vehicle makes forward progress.
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Fig. 10. (Left) The average stability ratio. (Right) The number of samples
used to compute the stability ratio varies with r, as only control points with
visually-derived high-confidence are used.

IV. CONCLUSION AND FUTURE WORK

Our system attempts to extend the scope of lane detection
and tracking for autonomous vehicles to the urban environ-
ment. We have presented a modular, scalable, perception-
centric lane detection and tracking system that fuses asyn-
chronous heterogeneous sensor streams with a weak prior to
estimate multiple travel lanes in real-time. The system makes
no assumptions about the position or orientation of the vehicle
with respect to the road, enabling it to operate when changing
lanes, at intersections, and when exiting driveways and parking
lots. The vehicle using our system was, to our knowledge, the
only vehicle in the final stage of the DARPA Urban Challenge
to employ vision-based lane finding.

Despite these advances, the method is not yet suitable for
real-world deployment. As with most vision-based systems,
it is susceptible to strong lighting variations such as cast
shadows. To address this, we are investigating the use of
lidar intensity data for detecting road paint. Typical road paint
has high infrared reflectivity and our preliminary lidar exper-
iments are promising. Our highway experience in the race
demonstrates the need to handle lanes with greater variance
in width, which could be accomplished by first estimating
lane width and then generating the centerline evidence image
accordingly. Finally, since many roads do not use paint as
boundary markers, we are extending our method to incorporate
other environmental cues.
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Abstract— Generating rich representations of environments
can significantly improve the autonomy of mobile robotics. In
this paper we introduce a novel approach to building object-type
maps of outdoor environments. Our approach uses conditional
random fields (CRF) to jointly classify laser returns in a 2D
scan map into seven object types (car, wall, tree trunk, foliage,
person, grass, and other). The spatial connectivity of the CRF
model is determined via Delaunay triangulation of the laser map.
Our model incorporates laser shape features, visual appearance
features, structural information extracted from clusters of laser
returns, and visual object detectors trained on image data sets
available on the internet. The parameters of the CRF are trained
from partially labeled laser and camera data collected by a car
moving through an urban environment. Our approach achieves
91% accuracy in classifying objects observed along a 3 kilometer
trajectory.

I. INTRODUCTION

Generating rich representations of environments can bring
another level of autonomy to mobile robotics. Over the last
decade, much of the research in map building has focused on
the simultaneous localization and mapping (SLAM) problem,
i.e., the problem of estimating the joint posterior distribution
over the robot’s location and the map of the environment.
Research in this topic has produced various techniques that are
able to build spatially consistent maps of large scale, cyclic
environments [22].

More recently, several research groups extended SLAM
approaches to generate maps that describe environments in
terms of object types and places. Such representations can
be extremely valuable, since they enable robots to perform
high-level reasoning about their environments and the objects
therein. For instance, in search and rescue tasks, a mobile
robot that can reason about objects such as doors, and places
such as rooms is able to coordinate with first responders in
a much more natural way, being able to accept commands
such as “Search the room behind the third door on the right
of this hallway”, and conveying information such as “There
is a wounded person behind the desk in that room” [11]. As
another example, consider autonomous vehicles navigating in
urban areas. While the recent success of the DARPA Urban
Challenge [5] demonstrates that it is possible to develop
autonomous vehicles that can navigate safely in constrained
settings, successful operation in more realistic, populated
urban areas requires the ability to distinguish between objects

such as cars, people, buildings, trees, and traffic lights.
In this paper we introduce a novel approach to building ob-

ject type maps of outdoor environments. Our approach applies
standard scan matching techniques to align 2D laser scans
collected by a vehicle driving through urban environments.
We use conditional random fields (CRF) to classify each
laser return into the seven object types: car, wall, tree trunk,
foliage, person, grass, and other. In contrast to previous work
on outdoor object mapping [18], our model performs joint
classification of the laser returns. This is done by connecting
the nodes of the CRF based on a Delaunay triangulation of
the laser data. An important aspect of CRFs is their ability
to incorporate many features with arbitrary dependencies. Our
model takes advantage of this ability by incorporating large
sets of laser shape features and visual appearance features
extracted from camera data. The parameters of our models
are learned from partially labeled laser and camera data. We
show that classification can be further improved by explicitly
modeling within a CRF the information contained in the
arrangement of clusters of returns. We also present results on
the incorporation of visual object detectors trained on publicly
available image data sets such as the LabelMe set [2].

We evaluate our technique on laser and camera data col-
lected by a vehicle navigating through an urban environment.
Tested using ten-fold cross validation, objects observed along
a 3 kilometer long trajectory are identified with an accuracy
of 91%.

This paper is organized as follows. Related work is dis-
cussed first, in Section II. In Section III, we introduce the
probabilistic models underlying our mapping approach, fol-
lowed by a description of features used for classification.
Experimental results are presented in Section V. Finally, we
conclude in Section VI.

II. RELATED WORK

Object recognition is a long-standing problem in robotics
and computer vision. Most of the approaches in computer vi-
sion aim at recognizing objects from single images. Classifiers
are trained on labeled data and used to either classify images
as containing or not an instance of the object, or to segment
the object in the image. Examples are [8, 23, 25]. In robotics,
the problem is different. Recognition can be performed in a
sequence of images, in many cases combined with other sensor

9



modalities. Alternatively, object recognition can be required on
a full map, as addressed in this paper.

Within the robotics community, recent developments have
created representations of the environment integrating more
than one sensor modality. In [17], a 3D laser scanner and
loop closure detection based on photometric information are
brought together into the Simultaneous Localization and Map-
ping (SLAM) framework. This approach does not generate
a semantic representation of the environment which can be
obtained from the same multi-modal data using the approach
proposed here.

In [20], a robust landmark representation is created by prob-
abilistic compression of high-dimensional vectors containing
laser and camera information. This representation is used in
a SLAM system and updated on-line when a landmark is re-
observed. However, it does not reason about landmark classes
and therefore does not support the higher-level object detection
described in this work.

Object recognition based on laser and video data has
been demonstrated in [15]. Using a sum rule, this approach
combines the outputs of two classifiers, each of them being
assigned to the processing of one type of data. More recently,
Posner and colleagues combine 3D laser range data with
camera information to classify surface types such as brick,
concrete, grass, or pavement in outdoor environments [18,
19]. The authors classify each laser scan return independently
which can disregard important neighborhood information. As
other researchers have shown, classification results can be
improved by jointly classifying laser beams using techniques
such as associative Markov networks [24] or conditional
random fields [7].

In [3], a Markov Random Field is used to segment objects
from 3D laser scans. The model is trained discriminatively
using a max-margin objective function. The features used
were simple geometric features capturing plane properties
of groups of points. The authors considered four classes:
ground, building, tree and shrubbery. Friedman and colleagues
introduced Voronoi Random Fields, which generate semantic
place maps of indoor environments by labeling the points on
a Voronoi graph of a laser map using conditional random
fields [10].

The key contribution of this paper is a methodology to build
maps of objects in which accurate classification is achieved by
exploiting the ability of CRFs to represent spatial correlations
and to model the structural information contained in clusters
of laser returns.

III. MAPPING IN CONDITIONAL RANDOM FIELDS

To augment geometric maps with semantic information,
we have developed three approaches corresponding to three
different models. All these models are based on the framework
provided by conditional random fields. Before describing how
these models are built from laser and camera data, we provide
background on learning and inference in conditional random
fields.

A. Conditional Random Fields

Conditional random fields (CRF) are undirected graphical
models developed for labeling sequence data [12]. CRFs
directly model p(x|z), the conditional distribution over the
hidden variables x given observations z. In our framework,
x is the set of object types to be estimated, a hidden state
being instantiated for each laser return. The observations z
correspond to shape and appearance features extracted from
laser and vision data, respectively. A CRF can be formulated
as follows:

p(x|z) =
1

Z
exp

(
wA

∑
i

A(xi, z) + wI
∑
e

I(xe, xe′ , z)

)
(1)

Here, the term 1/Z is a normalization factor. The func-
tions A and I are the association and interaction potentials,
respectively. In our framework, an association potential A is
instantiated as a logitboost classifier [9] and estimates the
object type of node xi using the set of observations z but does
not take into account information contained in the structure
of the neighborhood. An interaction potential I is a function
associated to each edge e of the CRF graph, where xe and xe′

are the nodes connected by edge e. Intuitively, interaction po-
tentials measure the compatibility between neighboring nodes
and act as smoothers by correlating the estimation across the
network.

In our system, the first step of the CRF training is learning
the logitboost classifier A which is performed as in [7]. The
second step of the learning consists in finding optimal values
for the set of weights wA and wI based on a labeled data
set. Depending on the connectivity structure of the network
to be trained, the system uses exact or approximate learning
techniques. For non-cyclic networks, the systems uses a Max-
imum Likelihood approach since inference can be performed
exactly. For networks containing cycles, the system uses the
approximate version of this technique which is known as
Maximum Pseudo-Likelihood learning [4].

Since the values of the local potential function A are ob-
tained as the output of a logitboost classifier, our approach for
training can be seen as an extension of boosting to structured
classification tasks. As a result, this approach is very flexible
and powerful. It not only learns the weights of the potentials,
but also selects the subset of dimensions in the observation
vectors z which are useful for classification [10, 13].

In this work, the maximum pseudo-likelihood learning is
slightly extended in such a way that the labels of neighbor
nodes are not required, allowing training to be performed
on partially labeled data. This is achieved by optimizing the
pseudo-likelihood written as:

pl(x|z) =
N∏
i=1

p(xi|MB(xi), z) ∝
N∏

i=1

exp(wAA(xi, z))∏
k∈MB(xi)

exp(wII(xi, xk, z) + wAA(xk, z))

where the last equation is obtained by breaking the expo-
nential in Eq. 1 into two terms (the full derivation is not given
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here due to space constraints). N refers to the number of nodes
in the network and MB(xi) is the Markov blanket of node xi.
The parameters to be adjusted to find the maximum value of
the pseudo-likelihood are wA and wI . In this formulation, the
usually required neighbor labels are replaced by the estimated
distribution over the neighbor’s label: exp(wAA(xk, z)). Via
this formulation, the learning algorithm can use the unlabeled
nodes in the neighborhood of each labeled node and be
performed on partially labeled data.

Inference in CRFs estimates either the marginal distribution
of each hidden variable xi or the most likely configuration of
all hidden variables x (i.e., MAP estimation), based on their
joint conditional probability (Eq. 1). We solve both tasks using
belief propagation (BP) for non-cyclic networks. For cyclic
networks, we use the approximate version of BP called Loopy
Belief Propagation (loopy BP) [16].

B. From Laser Scans to Conditional Random Field

The input to our system is a collection of spatially aligned
laser scans obtained by performing scan matching with the
iterative closest point (ICP) algorithm [27] 1. In this section,
we present three types of CRFs which will be compared in
order to better understand how to model the spatial correlations
in a semantic map. We show how the three different models
can be instantiated from aligned laser data and indicate which
learning and inference techniques are used in each case. For
these three networks, the hidden state for each node ranges
over the seven object types: car, trunk, foliage, people, wall,
grass, and other (any other object type).

1) Delaunay CRF: In this first type of network, each laser
return is instantiated as one node in the CRF. The connections
between the nodes are found using the Delaunay triangulation
procedure [6] which efficiently finds a triangulation with non-
overlapping edges. The system then removes links which are
longer than a pre-defined threshold (50 cm in our application)
since distant nodes are not likely to be strongly correlated.
The resulting network is displayed as a set of blue edges in
Fig. 2.

Since a Delaunay CRF contains cycles, training and in-
ference are performed with maximum pseudo-likelihood and
loopy BP, respectively.

2) Delaunay CRF with link selection: Generally speaking,
structured classification as performed by CRFs is expected
to improve on local classification since independence is not
assumed, i.e., neighborhood information is modelled through
interaction potentials. However, as illustrated by the experi-
mental results, the first type of CRF previously described does
not improve on local classification. A too coarse modelling
of the spatial correlations is responsible for this result. The
term exp(wII(xi, xk, z)) of Eq. 1 is learnt in this first type
of network as a constant matrix instantiated at each of the
links. This gives the network a smoothing effect on top of the
local classification. Since all the links are represented with
the same matrix, only one type of node-to-node relationship

1In spatially more complex data sets containing loops, consistently aligned
scans can be generated using various existing SLAM techniques [22]

is encoded, for example: neighbor nodes should have the same
label. Such links are appropriate in very structured parts of the
environment but may over-smooth in areas where the density
of objects increases.

In order to model more than one type of node-to-node rela-
tionships, the network is augmented with an additional node
T for every pair of nodes {xi, xj} as displayed in Fig. 1. The
state of this node specifies which type of link is instantiated.
For this second type of network, we consider two types of
links encoding the following node-to-node relationships: (1)
neighbor nodes have the same label, (2) neighbor nodes have
a different label. Node T receives an observation S which is
the output of a logitboost classifier learned to estimate whether
node xi and xj are similar based on their respective local
observation zi and zj . The observation S is a direct observation
of the state of node T.

Since this second type of network contains loops, training
and inference are also performed with maximum pseudo-
likelihood and loopy BP, respectively.

X4
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X1

Z2

Z3 Z4

Z5

Z1

X3

Association
Potential

Interaction
Potential

Zi Zj

Xi Xj

T

S
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Node T Defines 

The Interaction Potential Type

Fig. 1. Representation of the additional infrastructure required in a Delaunay
CRF to perform link selection.

3) Tree based CRF: The previous two types of network
contain cycles, which implies the use of approximate learning
and inference algorithms. We now present a third type of
network which is cycle free and does not require the use of
approximate techniques. To design non-cyclic networks we
start from the following observation: laser returns in a scan
map are naturally organized into clusters. These clusters can
be identified by analysising the connectivity of the Delaunay
graph and finding its disconnected sub-components. Discon-
nected components appear when removing longer links of
the original triangulation. In Fig. 2, the extracted clusters are
indicated by green rectangles.

Once the clusters are identified, the nodes of a particular
cluster are connected by a tree of depth one. A root node
is instantiated for each cluster and each node in the cluster
becomes a leaf node. The trees associated to the clusters in
Fig. 2 are represented by green volumes. A tree-based CRF
does not encode node-to-node smoothing but rather performs
smoothing based on the identified clusters of laser returns.

The root node does not have an explicit state. It allows
the instantiation of a network which does not contains cycles
enabling learning and inference to be performed exactly. With
this third type of network, the system uses a maximum
likelihood approach for learning and belief propagation for
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inference. The possibility of using exact learning and inference
is a strong advantage compared to the absence of theoretical
results in terms of convergence of maximum pseudo-likelihood
learning and loopy belief propagation.

Fig. 2. Representation of a Tree based CRF in one region of a graph generated
from data. The trajectory of the vehicle is displayed in orange. Laser returns
are instantiated as nodes in the network and connected using the Delaunay
triangulation. Nodes and edges are plotted in dark and light blue, respectively.
Identified clusters are indicated by the green rectangles while root nodes are
plotted in green. Root nodes are connected to all nodes in the cluster but for
clarity this is represented by a rectangle enclosing the cluster.

IV. FEATURES FOR OBJECT MAPPING

As formulated in Eq. 1, the computation of the posterior
probability requires the set of observations z. In this work,
z consists of high-dimensional feature vectors f computed
for each scan return. f results from the concatenation of
three types of features, geometric features, visual features and
features extracted from on-line datasets:

f = [fgeo, fvisu, fwww], (2)

Geometric and visual features are first described. We then
show how on-line labeled datasets freely available on the
internet can provide additional binary features.

A. Geometric Features

Geometric features capture geometric properties of the
objects in the laser returns. The feature vector computed for
one scan return has a dimensionality of 231 and results from
the concatenation of 38 different multi dimensional features.
Due to limited space we only present a subset of these features
below:

fgeo(i, zA) = [fdist, fangle, foor, fcluster, . . .] , (3)

where i indexes one of the returns in scan zA.
fdist or distance features are computed for each return zA,i

in scan A as its distance to other points in scan A:

fdist (i, k, zA) = ‖zA,i − zA,i+k‖ , (4)

where k varies from −10 to +10.

fangle or angle features are computed as angles formed by
various configurations of neighbor returns:

fangle (i, k, l, zA) = ‖� (zA,i−kzA,i, zA,izA,i+l)‖ . (5)

where k and l vary from −10 to +10. These two first types
of features provide information about the local shape of the
scan around return i.
foor or out of range features count the number of “out

of range” beams between pairs of successive returns. These
features allow the representation of open areas between valid
beams of the laser scan.
fcluster consists of various features computed to describe

a cluster of laser returns. Cluster of returns within a single
scan are extracted based on a simple distance criteria and
characterized through the following quantities: geodesic length
of the cluster, length of its two principal components, error
generated by the fit of a spline to the cluster points. Note that
two returns in the same cluster have the same fcluster vector.
The aim of the fcluster features is to capture the organization
of objects at the scale of one laser scan.

B. Visual Features

In addition to laser range scans, our system incorporates
visual appearance by projecting the laser returns into camera
images collected by a calibrated camera mounted on the
vehicle, similar approach to [7, 19].

The CRF learned with a logitboost based algorithm can
not only integrate geometric information but also any other
type of data and, in particular, visual features extracted from
monocular color images. As a consequence, the system ex-
tracts features in a region of interest (ROI) defined around the
projection of each return into the corresponding image. The
parameters required to carry out the projection are defined
through the camera laser calibration procedure developed in
[26]. The size of the ROI is changed depending on the range
of the return. This provides a mechanism to deal with changes
in scales across images. It was verified that the use of a size
varying ROI improves classification accuracy by 4%.

The visual feature vector associated to each return has a
dimensionality of 1239 and results from the concatenation of
51 multi-dimensional features computed in the ROI. Due to
limited space, we only describe the most important of these
features:

fvisu(i) = [fpyr, frgb, fhsv, fhaar, fedges, flines, fsift, . . .] , (6)

where index i refers to the ROI associated to return i.
fpyr returns texture information encoded as a vector con-

taining the steerable pyramid [21] coefficients of ROI i as
well as the minimum and the maximum of these coefficients.
These extrema are useful to classify cars which from most
point of views have a relatively low texture maxima due to
their smooth surface.
frgb and fhsv return a 3D histogram of the RGB and HSV

data in ROI i.
fhaar returns Haar features of ROI i computed using the

integral image approach proposed in [25].
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fedges uses a Canny edge detector to extract the number of
pixels within ROI i recognized as belonging to an edge.
flines processes the whole image with the line detector [1]

and extracts the number of lines intersecting ROI i as well as
the maximum length of this subset of lines.
fsift counts the number of Sift features [14] found in ROI i.

C. Using On-line Datasets

In our datasets, some of the classes such as the class people
have no more than one hundred training samples. This can be
detrimental to the accuracy of the classifier. To compensate
for the lack of training data, we have used binary features
computed with classifiers trained on on-line datasets. Across
the web, large labeled datasets such as the LabelMe dataset [2]
can be used to learn binary classifiers on large amount of
training data. We used the LabelMe data to train binary object
detectors for each of the ten classes: car, tree trunk, foliage,
pedestrian, building, grass, road, pole, fence and road; and
applied these detectors to our data to generate an additional
binary feature vector fwww of dimensionality 10.

In addition to an algorithm which can be trained with
partially labeled data, the use of on-line labeled data sets
decrease the labelling effort. The results reported in Sec. V-
B.4 with respect to the fwww features show the right trend
while no significant improvement has been obtained yet. This
part of the work is preliminary and aims at introducing the
idea of generating additional features as output of classifiers
trained on on-line datasets. We believe that understanding
the requirements for features to be portable from standard
datasets to a given robotics application is crucial for large-scale
autonomy and this paper opens up this direction of research.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Experiments were performed using outdoor data collected
with a modified car traveling at 0 to 40 km/h along a
3km long trajectory. The car drove in a university campus
which has structured areas with buildings, walls and cars,
and unstructured areas with bush, trees and lawn fields. The
overall dataset contains 4500 images representing 20 minutes
of logging. Laser and vision data was acquired at a frequency
of 4Hz. The laser sensor used belongs to the family of SICK
devices and the camera was a high-resolution wide angle
Hanvision camera.

The evaluation of the classifier was performed on a ten-fold
cross validation setup which involves training each classifier
on nine tenth of the trajectory and testing it on the remaining
one tenth. These two operations are repeated ten times by
changing the testing and training sets accordingly. The results
presented below are averaged over the cross validation runs.

Each set of scans was converted into a probabilistic network
as described in Sec. III-B. Training and testing sets were partly
hand labeled to provide labels to the learning algorithm and a
ground truth to evaluate classification accuracy.

The properties of the training and testing sets averaged over
the ten tests are provided in Table I.

Length vehicle # scans # nodes
trajectory total total

labeled labeled
Training set 2.6 km 3843 67612

72 5168
Testing set 290 m 427 7511

8 574

TABLE I

PROPERTIES OF THE TRAINING AND TESTING SETS

B. Classification Performance

This section presents the classification performances ob-
tained with the three models presented in Sec. III-B. Results
for local classification are first presented in order to provide a
baseline for comparison.

1) Local Classification: A seven-class logitboost classifier
is learned and instantiated at each node of the network as
the association potential A (Eq. 1). Local classification, i.e.,
classification which does not take neighborhood information
into account is performed with the confusion matrix presented
in Table II. This confusion matrix displays a strong diagonal
which corresponds to an accuracy of 90.4%. A compact
characterization of the confusion matrix is given by precision
and recall values. These are presented in Table III. Averaged
over the seven classes, the classifier achieves a precision of
89.0% and a recall of 98.1%.

Truth \ Inferred Car Trunk Foliage People Wall Grass Other
Car 1967 1 7 10 3 0 48

Trunk 4 165 18 0 4 0 11
Foliage 25 18 1451 0 24 0 71
People 6 2 2 145 0 0 6
Wall 6 6 21 0 513 1 39
Grass 0 0 1 1 1 146 4
Other 54 5 123 3 24 0 811

TABLE II

LOCAL CLASSIFICATION: CONFUSION MATRIX

In % Car Trunk Foliage People Wall Grass Other
Precision 96.6 81.7 91.3 90.1 87.5 95.4 79.5

Recall 97.9 99.3 96.4 99.7 98.5 99.9 95.4

TABLE III

LOCAL CLASSIFICATION: PRECISION AND RECALL

2) Delaunay CRF classification:
a) CRF without built-in link selection: the accuracy

achieved by this first type of network is 90.3% providing
no improvements on local classification. As developed in
Sec. III-B.2, the modelling of the spatial correlation is too
coarse since it contains only one type of link which cannot
accurately model the relationships between neighbor nodes. As
a consequence, the links end up representing the predominant
relationship in the data. In our application the predominant
neighborhood relationships are of the type “neighbor nodes
possessing the same label”. The resulting learned links enforce
this “same-to-same” relationship across the network leading
to over smooth estimates and explaining why this class of
networks fails to improve on local classification. To verify that
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a better modelling of the CRF links improves the classification
performance, we now presents results generated by the second
proposed type of CRF, characterized by a built-in link selection
process.

b) CRF with built-in link selection: the accuracy
achieved by this second type of network is 91.4% which
corresponds to 1.0% improvement in accuracy. Since the
local accuracy is already high, the improvement brought by
the network may be better appreciated when expressed as a
reduction of the error rate of 10.4%. This result validates the
claim that a set of link types encoding a variety of node-to-
node relationships is required to exploit the spatial correlations
in the laser map.

3) Tree based CRF classification: The two types of net-
works evaluated in the previous section contain cycles and
require the use of approximate learning and inference tech-
niques. The tree based CRFs presented in Sec. III-B.3 avoid
these issues by allowing the use of exact learning and inference
procedures.

This third type of network achieves an accuracy of 91.1%
which is slightly below the accuracy given by a CRF with
link selection while still improving on the CRF without link
selection. However, the major improvement brought by this
third type of network is in terms of computational time.
Since the network has the complexity of a tree of depth
one, learning and inference, in addition to being exact, can
be implemented very efficiently. As displayed in Table IV,
a tree based CRF is 80% faster at training and 90% faster
at testing than a Delaunay CRF. Since both network types
use as their association potential the seven classes logitboost
classifier, they require the same features extracted from a scan
and its associated image in 1.2 secs on average. As shown in
Table I, the test set contains 7511 nodes on average which
suggests that the tree based CRF approach is in its current
state is very close to real time, feature extraction being the
main bottleneck.

Feature Extraction Learning Inference
(per scan) (training set) (test set)

Delaunay CRF 1.2 secs 6.7 mins 1.5 mins
(with link selection)

Tree based CRF 1.2 secs 1.5 mins 10.0 secs

TABLE IV

COMPUTATION TIMES

4) Using on-line data sets for training: Based on the
LabelMe set, 10 binary object detectors are trained using the
logitboost algorithm. The 10 classes considered are: car, tree
trunk, foliage, pedestrian, building, grass, road, pole, fence
and road. Since the LabelMe dataset contains vision data only,
these binary classifiers are vision based detectors and, in order
to use their output as additional features, we run them on the
ROIs selected in each image of our urban dataset (the selection
of these ROIs is performed as described in Sec. IV-B).

Within our urban dataset as well as within the LabelMe
dataset, the size of the selected ROIs are not constant which
requires designing the various vision features in such a way
that the dimensionality of the vector fvisu is independent of

the ROI size. Our approach consist in using features which
are distributions (e.g. an histogram with a fixed number of
bins) and whose dimensionality is constant (e.g. equal to the
number of bins in the histogram). A larger ROI leads to a
better sampled distribution (e.g. a larger number of samples
in the histogram) and the actual feature dimensionality remains
invariant.

The use of these additional fwww features slightly improves
the local classification accuracy from 90.4% to 90.6%. We
believe that there is no further increase in accuracy due to
the fact that the lighting conditions in the two datasets differ
significantly (our urban dataset contains images which are on
average much darker than the ones in the LabelMe dataset).
In the context of preliminary investigations, these results are
encouraging and future tests will involve datasets with more
similar lighting conditions.

C. Map of Objects

This section presents a visualization of the mapping results.
It follows the lay out of Figure 3 in which the vehicle was
travelling from right to left.

At the location of the first inset, the vehicle was going up a
straight road with a fence on its left and right, and, from the
foreground to the background, another fence, a car, a parking
meter and bush. All these objects were correctly classified with
the fences and the parking meter identified as other.

In the second inset, the vehicle was coming into a curve
facing a parking lot and bush on the side of the road. Four
returns misclassified as other can be seen in the background of
the image. The class other regularly generated false positives
which is possibly caused by the dominating number of training
samples in this class. Various ways of re-weighting the training
samples or balancing the training set were tried without
significant improvements.

While reaching the third inset, a car driving in the opposite
direction came into the field of view of our vehicle’s sensors.
The trace let by this car in the map appears in the magnified
inset as a set of blue dots along side our vehicle’s trajectory.
Dynamic objects are not explicitly considered within this
work. They are assumed to move at a speed which does
not prevent ICP from performing accurate registration. In the
campus areas where the data was obtained, this assumption
has proven to be valid. In spite of a few miss-classifications
in the bush on the left side of the road, the pedestrians on the
side walk are correctly identified and the wall of the building
is recognised.

Entering the fourth inset, our vehicle was facing a second
car, scene which appears in the map as a blue trace intersecting
our vehicle’s trajectory. Apart from one miss-classified return
on one of the pedestrians, and one miss-classified return on the
tree in the right of the image, the inferred labels are accurate.
Note that the first right return is correctly classified illustrating
the accuracy of the model at the border between objects.

VI. CONCLUSIONS

This paper introduces a novel approach for object mapping
in outdoor environments. Our technique applies conditional
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Fig. 3. Visualization of 750 meters long portion of the estimated map of objects with total length of 3km. The map was generated using the tree based CRF
model. The legend is indicated in the bottom left part of the 2D plane. The color of the vehicle’s trajectory is specified in the bottom right part of the same
plane. The coordinate in the plane of the map are in meters. Each inset is magnified and associated to an image displayed with the inferred labels projected
back onto the original returns. The location of the vehicle is shown in each magnified patch with a square and its orientation indicated by the arrow attached
to it. The laser scanner mounted on the vehicle can be seen in the bottom part of each image.
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random fields to label individual points in a 2D laser map
annotated with camera data. We take advantage of CRFs’
ability to handle dependent features by incorporating large
sets of shape and appearance information extracted from laser
scans and cameras. Spatial dependencies are modeled by con-
necting nodes in the CRF based on a Delaunay triangulation
of the laser data. Label smoothing on the object level is
achieved by three different graph structures based on a spatial
segmentation of the laser data. Our approach learns both
feature functions and model parameters using a combination
of maximum likelihood and logitboost training on partially
labeled data.

Experiments conducted on data collected along a 3km
trajectory through an urban area indicate that our system
achieves very good classification rates for object types such
as car, trunk, foliage, people, wall, grass, and other. The
approach achieves a reduction of the classification error of
10.4% with respect to a local approach solely integrating
standard shape and appearance features. We also show how
on-line datasets can be integrated by incorporating object
detectors as additional features.

These results are extremely encouraging and the following
aspects are promising directions for future work. The accuracy
of our current system suffers from lack of training data,
especially for more sparsely observed objects such as tree
trunks and people. While this can be overcome by collecting
and labeling more data, our experiments indicate that lever-
aging the large number of labeled (and unlabeled) vision data
resources on the web is a more scalable technique. The CRFs
underlying our system are able to incorporate many externally
learned classifiers, and an interesting question is how to best
combine these classifiers with the shape information provided
by the laser data.

While the current mapping system is designed to run off-
line, the efficiency of feature extraction and inference makes
it possible to generate object maps on the fly, additionally
labeling objects as moving or not.

Finally, the most important limitation of our current system
is the reliance on 2D laser range data. However, we believe
that our approach can also be applied to 3D laser data,
which should greatly improve the accuracy and richness of
the generated maps.
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Abstract—This paper introduces a probabilistic, two-stage
classification framework for the semantic annotation of urban
maps as provided by a mobile robot. During the first stage,
local scene properties are considered using a probabilistic bag-
of-words classifier. The second stage incorporates contextual
information across a given scene via a Markov Random Field
(MRF). Our approach is driven by data from an onboard camera
and 3D laser scanner and uses a combination of appearance-
based and geometric features. By framing the classification
exercise probabilistically we are able to execute an information-
theoretic bail-out policy when evaluating appearance-based class-
conditional likelihoods. This efficiency, combined with low order
MRFs resulting from our two-stage approach, allows us to
generate scene labels at speeds suitable for online deployment
and use. We demonstrate and analyze the performance of our
technique on data gathered over almost 17 km of track through
a city.

I. INTRODUCTION

This paper addresses the fast labeling of mobile robot
workspaces using a camera and a 3D laser scanner. We mo-
tivate this work by noting that, although contemporary online
mapping and simultaneous localization techniques using lidar
now produce compelling 3D geometric representations (a.k.a
maps) of a mobile robot’s workspace, these maps tend to be
geometrically rich but semantically impoverished. Our work
seeks to redress this shortcoming. Maps in the form of large
unstructured point clouds are meaningful to human observers,
but are of limited operational use to a robot. There is much to
be gained by having the robot itself upgrade the map to include
richer semantic information and to do so online. In particular,
the semantics induced by online segmentation and labeling
has an important impact on the action selection problem. For
example, the identification of terrain types with estimates of
their spatial extent has a clear impact on control. Similarly the
identification of buildings and their entrances has a central role
to play in mission execution and planning in urban settings.
In this paper we outline a probabilistic method which

achieves fast labeling of 3D point clouds by using a combina-
tion of appearance and geometric features. In particular we use
combined 3D range and image data to perform inference at two
distinct levels. Firstly, over local scales, classification is based
on the co-occurrence of appearance descriptors, which capture
both visual and surface orientation information. We frame this
classification problem in probabilistic terms, which allows the
implementation of a principled ”bail-out” policy to be invoked
when evaluating class conditional likelihoods, resulting in very
large computational savings. Secondly, at the scene-wide scale,
we use a Markov Random Field (MRF) to model the expected

Fig. 1. Classification results for a typical urban scene: the original image
(top left); segments classified as ’pavement/tarmac’ (top right); segments
classified as ’textured wall’ (bottom left); segments classified as ’vehicle’
(bottom right). The colour-coding is wrt. to ground-truth: green indicates a
correct label; red indicates a false negative.

relationships between patch labels and to thus incorporate the
rich prior information common to many parts of our man-made
environment. Our MRFs have a relatively low node-count, just
one node for each scene patch, yielding rapid inference.

II. RELATED WORK

Recently there has been a surge in the literature regarding
environment understanding within robotics, particularly as
available sensory data becomes richer and the limitations of
unannotated maps become more apparent. A variety of ma-
chine learning approaches to the problem have been explored,
with more recent approaches utilizing contextual as well as
local information to improve classification performance. In [1]
the authors classify 2D laser data into types of indoor scenes
using boosting. Contextual information was used explicitly
in [2] by way of a model based on relational Markov networks
to learn classifiers from segment-based representations of
indoor workspaces. More recently [3] introduced an approach
which takes into account spatial relationships between objects
and object parts in 3D. 3D laser data were used in [4],
where they were segmented to detect cars and classify terrain
using Graph Cut applied to a Markov Random Field (MRF)
formulation of the problem, an approach which was extended
by [5].
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Particularly relevant to the work presented here are papers
which consider a combination of vision and laser data in an
outdoor setting. [6] considers the task of pedestrian- and vehi-
cle detection, using 2D laser data. In [7] a more sophisticated
inference framework based on Conditional Random Fields
was brought to bear on the vehicle detection problem, with
preliminary results also reported for multi-class labelling. 3D
laser data were combined with visual information in [8], which
used support vector machines for classification but did not
make use of contextual information.
The work presented here also leverages a combination of

laser data with vision. Our main contribution lies in the def-
inition of an efficient contextual inference framework, based
on a graph over plane patches rather than over measurements
(e.g. laser range data) directly. This yields substantial speed
increases over previous approaches. As an integral part of
this framework we further define a generative bag-of-words
classifier and describe an efficient inference procedure for it.
Finally, the work presented here further distinguishes itself
from related work by combining information from two compli-
mentary sensors – full 3D geometry and appearance. Thereby
our approach gains the capacity of providing more detailed
workspace descriptions such as the surface-type of building(s)
encountered or the nature of ground traversed.

III. CLASSES AND FEATURES

The system described in this paper utilizes data from a cali-
brated combination of 3D laser scanner and monocular camera,
both mounted on a mobile robot. Our basic processing pipeline
is similar to that described in [8] – the major contribution
of this paper is to extend the inference machinery. Briefly,
incoming 3D laser data are segmented into local plane patches
using a RANSAC procedure (see Figure 2). Plane patches are
then sub-segmented into visually homogeneous areas using an
off-the-shelf image segmentation algorithm [9]. The product of
this feature extraction pipeline is a set of visually similar image
patches which have 3D geometry attributes associated with
them. Our classification framework proceeds by classifying
each patch individually. The final stage then consideres scene-
wide interactions between these local patches.
In contrast to much of the existing work in the area,

we consider a relatively rich set of seven classes in three
categories. Classes are listed in Table I, and comprise ground
types, building types and two object categories. Labeling the
environment into classes such as these is a useful step towards
a number of autonomous tasks such as path following, location

TABLE I

CLASSES

Class Description
Ground Type
Pavement/Tarmac Road, footpath.
Dirt Path Mud, sand, gravel.
Grass Grass.
Building Type
Smooth Wall Concrete, plaster, glass.
Textured Wall Brickwork, stone.
Object
Foliage Bushes, tree canopy.
Vehicle Car, van.

Fig. 2. An original 3D laser scan (left) and its approximation by planar
patches as generated by the segmentation algorithm (right).

recognition and collision avoidance.
Classification is performed on the basis of the features listed

in Table II. These features are computed for all laser points in a
patch, proivded that the points are visible in the camera image.
Colour and texture features are computed over the 15x15 pixel
local neighbourhood of each projected laser point.

IV. GENERATIVE PROBABILISTIC
CLASSIFICATION

The inference framework proposed in this paper is a multi-
level approach based on successive combinations of lower-
level features. At the lowest level, individual laser points are
mapped to appearance-words based on the set of features
described in Section III. The next level of the hierarchy pools
information from multiple laser points by grouping them into
patches based on boundaries in both the image and the point
cloud. Each patch is then assigned a pdf over class membership
by a bag of words classifier.
The highest level of the hierarchy takes account of spatial

context by using an MRF defined over the set of patches. This
improves local decisions by incorporating information from
the gross geometric arrangement of classes in the scene.

A. Level 1 - Classification of Individual Laser Points

The lowest level input to our system is the collection of
laser points in the scene. Each laser point is described by
a feature vector, using the features described in Section III.
Rather than deal with raw data directly, we adopt the bag-
of-words representation [10], where the feature vectors are
quantized with respect to a “vocabulary”. The vocabulary is
constructed by clustering all the feature vectors from a set
of training data, using an incremental clustering algorithm.
This yields a vocabulary of size |v|, the vocabulary size being
determined by a user-specified threshold. The cluster centres
then define the vocabulary. When the system has been trained,

TABLE II

FEATURES USED FOR CLASSIFICATION

Feature Descriptions Dimensions
3D Geometry
Orientation of surface normal of local plane 1
2D Geometry
Location in image: mean of normalised x and y 2
Colour
HSV: hue & sat. histograms in local neighbourhood 30
Texture
HSV: hue & sat. variance in local neighbourhood 2
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incoming sensory data is mapped to the approximate nearest
cluster centre using a kd-tree. Each patch is then described
by a bag-of-words, which is the input to the next level of the
system.

B. Level 2 - Patch-level Classifier

Our patch-level classifier is inspired by the probabilistic
appearance model introduced in [11] and the theory presented
below is an extension of that work into a more general
classification framework. Building on the output of the lower-
level vector quantization step, an observation of a patch z ={
z1, . . . , z|v|

}
is a collection of binary variables where each

zi indicates the presence (or absence) of the ith word of the
vocabulary within the patch. We would like to compute p(C|z),
the distribution over the class labels given the observation,
which can be computed according to Bayes rule:

p(Ck|z) =
p(z|Ck)p(Ck)

p(z)
(1)

where p(z|Ck) is the class-conditional observation likelihood,
p(Ck) is the class prior and p(z) normalizes the distribution.

C. Representing Classes

Given a vocabulary, individual classes are represented
within the classification framework by a set of class-specific
examples, which we call exemplars. Concretely, for each class
k the model consists of nk exemplars Ck =

{
Ck

1 , . . . , C
k
nk

}
where Ck

i is the ith exemplar of class k. Exemplars them-
selves are defined in terms of a hidden “existence” vari-
able e, each exemplar Ck

i being described by the set{
p(e1|Ck

i ), . . . , p(e|v||Ck
i )

}
. The term ej is the event that a

patch contains a property or artifact which, given a perfect
sensor, would cause an observation of word zj . However, we
do not assume a perfect sensor — observations z are related
to existence e via a sensor model which is specified by

D :
{

p(zj = 1|ej = 0), false positive probability.
p(zj = 0|ej = 1), false negative probability.

(2)
with these values being a user-specified input. The reasons
for introducing this extra layer of hidden variables, rather
than modeling the exemplars as a density over observations
directly, are twofold. Firstly, it provides a natural framework
to incorporate data from multiple sensors, where each sensor
has different (and possibly time-varying) error characteristics.
Secondly, as outlined in the following section, it allows the
calculation of p(z|Ck) to blend local patch-level evidence with
a global model of word co-occurrence.

D. Estimating the Observation Likelihood

The key step in computing the pdf over class labels as
per Equation 1 is the evaluation of the conditional likelihood
p(z|Ck). This can be expanded as an integration across all the
exemplars that are members of class k:

p(z|Ck) =
nk∑
i=1

p(z|Ck
i , Ck)p(Ck

i |Ck) (3)

where Ck is the class k, and Ck
i is an exemplar of the class.

Given p(Ck|Ck
i ) = 1 (an assumption that none of the training

data is mislabeled) and p(Ck
i |Ck) = 1

nk
(all exemplars within

a class are equally likely), this becomes

p(z|Ck) =
1
nk

nk∑
i=1

p(z|Ck
i ) (4)

The likelihood with respect to the exemplar can now be
expanded as:

p(z|Ck
i ) = p(z1|z2, ..., zn, Ck

i )p(z2|z3, ..., zn, Ck
i )...p(zn|Ck

i )
(5)

This expression cannot be tractably computed — it is in-
feasible to learn the high-order conditional dependencies
between appearance words. We thus seek to approximate
this expression by a simplified form which can be tractably
computed and learned for available data. A popular choice
in this situation is to make a Naive Bayes assumption —
treating all variables z as independent. However, visual words
tend to be far from independent, and it has been shown in
similar contexts that learning a better approximation to their
true distribution substantially improves performance [11]. The
learning scheme we employ is the Chow Liu tree, which
locates a tree-structured Bayesian network that approximates
the true distribution [12]. Chow Liu trees are optimal within
the class of tree-structured approximations, in the sense that
they minimize the KL divergence between the approximate
and true distributions. Because the approximation is tree-
structured, its evaluation involves only first-order conditionals,
which can be reliably estimated from practical quantities of
training data. Additionally, Chow Liu trees have a simple
learning algorithm that consists of computing a maximum
spanning tree over the graph of pairwise mutual information
between variables — this readily scales to very large numbers
of variables.
We use the Chow Liu tree to model the fact that certain

combinations of visual words tend to co-occur. It can be
learnt from unlabeled training data across all classes, and
approximates the distribution p(z). To compute p(z|Ck), the
class-specific density, we find an expression that combines this
global occurrence information with the class model outlined
in section IV-C. Returning to Equation 5 and employing the
Chow Liu approximation, we have

p(z|Ck
i ) = p(z1|z2, .., zn, Ck

i )p(z2|z3, .., zn, Ck
i )..p(zn|Ck

i )

≈ p(zr|Ck
i )

|v|∏
q=1

p(zq|zpq , Ck
i ) (6)

where zr is the root of the Chow Liu tree and zpq is the
parent of zq in the tree. Each term in Equation 6 can be
further expanded as an integration over the state of the hidden
variables in the exemplar appearance model, yielding

p(zq|zpq , Ck
i ) =∑

seq∈{0,1}
p(zq|eq = seq , zpq , C

k
i )p(eq = seq |zpq , Ck

i ) (7)

which, assuming that sensor errors are independent of class
and making the approximation p(ej |zj) = p(ej)∀i �= j
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becomes

p(zq|zpq , Ck
i ) =

∑
seq∈{0,1}

p(zq|eq = seq , zpq )p(eq = seq |Ck
i )

(8)
further manipulation yields an expansion of the first term in
the summation as

p(zq = szq |eq = seq , zp = szp) =
a

a+ b
(9)

where szq , seq , szp ∈ {0, 1} and

a = p(zq = szq )p(zq = szq |eq = seq )p(zq = szq |zp = szp)

b = p(zq = szq )p(zq = szq |eq = seq )p(zq = szq |zp = szp)

which is now expressed entirely in terms of the known detector
model and marginal and conditional observation probabilities.
These can be estimated from training data. Thus we have a
procedure for computing p(z|Ck).
Returning to Equation 1, the prior p(Ck) can be learned

simply from labeled training data, p(z|Ck) we have discussed
above, and to normalize the distribution we make the naive
assumption that our set of classes fully partitions the world.
Clearly this work would benefit from a background class, a
change we plan to make in future versions of the system.
The posterior distribution across classes, p(Ck|z), can now be
computed for each patch.

E. Learning A Class Model

The final issue to address in relation to the patch-level
classifier is the procedure for learning the class models de-
scribed in section IV-C. Class models consist of a list of
exemplars obtained from ground-truth (i.e. labeled) data. The
term p(eq = 1|Ck

i ) represents the probability that exemplar
i of class k contained word q (this is a probability because
our detector has false positives and false negatives). Given an
observation labeled as this class, the properties of the exemplar
can be estimated via

p(eq = 1|Ck
i , z) =

p(z|eq = 1, Ck
i )p(eq = 1|Ck

i )
p(z|Ck

i )
(10)

where p(z|Ck
i ) can be evaluated as described in the previous

section and the prior term p(eq = 1|Ck
i ) we initialize to the

global marginal p(eq = 1).

F. Approximation Using Bounds

Computing the posterior over classes, p(Ck|z), requires an
evaluation of the likelihood p(z|Ckj ) for each of the exemplars
in the training set. As the number of exemplars grows, this
rapidly becomes the limiting computational cost of the infer-
ence procedure. This section outlines a principled approxima-
tion that accelerates this computation by more than an order of
magnitude. The key observation is that while the posterior over
classes depends on the summation over all exemplars (as per
Equation 4), typically the value of the summation is dominated
by a small number of exemplars, with the rest providing
negligible contribution. By evaluating the exemplar likelihoods
in parallel, those with negligible contribution can be identified
and excluded before the computation is fully complete. This

Fig. 3. Conceptual illustration of the bail-out test. After considering the first
j words, the difference in log-likelihoods between two exemplars is Δ. Given
some statistics about the remaining words, it is possible to compute a bound
on the probability that the evaluation of the remaining words will cause one
exemplar to overtake the other. If this probability is sufficiently small, the
trailing exemplar can be discarded.

is a kind of preemption test, similar to procedures which have
been outlined in other domains [13].
Recalling Equation 6, the log-likelihood of the current

observation having been generated by exemplar i is given by

ln(p(z|Ck
i )) ≈

|v|∑
q=1

ln(p(zq|zpq , Ck
i )) (11)

Now, define
diq = ln(p(zq|zpq , Ck

i )) (12)

and

Di
j =

j∑
q=1

diq =
j∑

q=1

ln(p(zq|zpq , Ck
i )) (13)

where diq is the log-likelihood of the i
th exemplar given word

q, and Di
j is the log-likelihood of the ith exemplar after

considering the first j words. At each step of the accelerated
computation Di

j is computed for all i, and incrementally
increased j - that is, we are computing the log likelihoods
of all exemplars in parallel, considering a greater proportion
of the words at each step. After each step, a bail-out test is
applied. This identifies and excludes from further computation
those exemplars whose likelihood is too far behind the current
leader. Too far can be quantified using concentration inequal-
ities [14], which yield a bound on the probability that the
discarded exemplar will catch up with the leader, given their
current difference in log-likelihoods and some statistics about
the properties of the words which remain to be evaluated.
Concretely, consider two exemplars a and b, whose log

likelihood has been computed under the first j words, and
whose current difference in log-likelihoods is Δ, as shown in
Figure 3. Now, let Xj be the relative change in log likelihoods
due to the evaluation of the jth word, and define

Sj =
|v|∑

q=j+1

Xq (14)

so that Sj is that total relative change in log likelihoods
due to all the words that remain to be evaluated. We are
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interested in p(Sj > Δ) – the probability that the evaluation
of the remaining words will cause the trailing exemplar to
catch up. If the probability is sufficiently small, the trailing
hypothesis can be discarded. The key to our bail-out test is
that a bound on the probability p(Sj > Δ) can be computed
quickly, using concentration inequalities such as the Hoeffding
or Bennett inequality [15]. These concentration inequalities
are essentially specialized central limit theorems, bounding
the form of the distribution Sj , given the statistics of the
components Xj (which we can think of as distributions before
their exact value has been computed). For the Hoeffding
inequality, it is sufficient to know max(Xj) for each j, that
is, the maximum relative change in log likelihood between
any two exemplars due to the jth word. We can compute this
statistic quickly - it is simply the difference in log likelihoods
between the exemplars with highest and lowest probability of
having generated word j, which we can keep track of with
some simple book-keeping. Bennett’s inequality additionally
requires a bound on the variance of Xj , which can also be
cheaply computed.
Applying the Bennett inequality, the form of the bound is

p(S > Δ) < exp
(

σ2

M2
cosh(f(Δ))− 1− ΔM

σ2
f(Δ)

)
(15)

where

f(Δ) = sinh−1

(
ΔM

σ2

)
(16)

and M and v are the maximum and variance values of the
remaining features, such that

p (|Xq| < M) = 1, ∀q ∈ [j + 1, |v|] (17)

|v|∑
q=j+1

E
[
X2

q

]
< σ2 (18)

Typically we set our bail-out threshold p(S > Δ) < 10−6.
The speed increase due to this bail-out test is data dependent
— in our experiments it is typically a factor of 60 times faster
than performing the full classification without bail-out test.

V. MARKOV RANDOM FIELDS FOR SPATIAL CONTEXT

The estimation of the set of most likely values of a set
of interdependent random variables from available data is a
standard machine learning problem. Such context-dependent
inference can be achieved using a family of graphical models
known as Markov Random Fields (MRFs). An MRF models
the joint probability distribution, p(x,Z), over the (hidden)
states of the random variables, x and the available data,
Z . For pairwise MRFs, it is well known that this joint
probability can be maximised by equivalently minimising an
energy function incorporating a unary term modelling the
data likelihood for each node and a binary term specifying
the interaction potentials between neighbouring nodes over
the set of possible values [16]. Under the assumption of
every datum being equally likely (i.e. p(Z) being uniform)
a minimisation of this energy function is equivalent to finding

the most likely configuration of labels given the observed data
- i.e. a maximum a posteriori (MAP) estimate of p(x|Z). In
the following we describe how an MRF can be applied in
the context of our scene labelling endeavour. In particular, we
outline how the model structure of an MRF is derived for each
scene from the available data, how the model parameters are
obtained and, finally, how a MAP estimate over p(x|Z) is
achieved.

A. Model Structure

MRFs are a family of graphical models where the set
of interdependent variables is modelled as a graph G(V, E),
where V denotes the set of vertices and E denotes the set
of edges connecting neighbouring nodes, respectively. In the
context of our scene labelling problem, each vertex represents
a patch as introduced in Section IV. Neighbourhood relations
within each scene are established using the segmented image
obtained in Section III using [9]. Of course, adjacency in an
image implies, but does not guarantee, adjacency in the 3D
scene. Therefore, in estimating adjacency from 2D information
a trade-off is made between the ability of determining neigh-
bourhood relations efficiently and the introduction of incorrect
adjacencies due to the loss of depth information. In practice,
we found the number of false adjacencies introduced by this
approach to be negligible. Typical examples of graph structure
extracted from scenes recorded by our mobile platform are
shown in Figure 4.
It should be noted that the one-to-one correspondence

between vertices and image patches implies that the number
of nodes in the MRF for a particular frame is independent
of the number of measurements taken of the scene. Thus,
the abstraction away from individual measurements (e.g. laser
range data) to the patch level decouples the complexity of our
inference stage from the density of the underlying data. This
provides a substantial advantage in terms of speed over related
works [7, 4] where the complexity of the graphical models is
directly proportional to the density of the underlying data.

B. Model Parameters

The specification of an energy function to be optimised
provides a convenient and intuitive way of incorporating scene
properties. Consider the set of labels, x ∈ ZNn , for a particular
configuration of a graph with Nn nodes. Each node s has an
observation vector, zs, associated with it (c.f. Section IV) and
can be assigned one of Nc labels such that xs ∈ {1, . . . , Nc}.
We specify the energy of any such configuration to be given
by

E(x|θ, λ) = λ
∑
s∈V

θs(xs) + (1− λ)
∑

(s,t)∈E
θst(xs, xt) (19)

where we adopt the notation of [17] in that θ defines the
parameters of the energy: θs(·) is a unary data penalty func-
tion; and θst(·) is a pairwise interaction potential. λ represents
a trade-off parameter which will be explained shortly. θs
specifies the cost of assigning a given vertex any of the
available labels. Intuitively, for a given node s, θs can be
specified as a function of the posterior distribution over all
classes for that node given the associated data, p(C|zs), as
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Fig. 4. Typical graphs extracted from urban scenes as recorded by our mobile robot. Top: the original scenes. Bottom: the corresponding segmented images
with the extracted graph overlaid. Circles indicate nodes, lines indicate edges. For images patches which are not marked as nodes no reliable geometry
estimates could be extracted from the laser data.

provided by the patch classifier introduced in Section IV. In
particular, the penalty of assigning label k to node s can be
expressed as

θs(xsk) = 1− p(Ck|zs) (20)

The complement of p(Ck|zs) is used since θs refers to a
penalty function which is to be minimised.
The pairwise potential θst encodes prior domain information

in the form of penalties incurred by assigning specific labels to
adjacent (i.e. connected) nodes. This is an intuitive formulation
of the preference that nodes of certain labels are more likely
to be connected to nodes of certain other labels. It follows that
θst can be specified in terms of a square-symmetric matrix Φ
of size Nc ×Nc such that

θst(xi, xj) = 1− φi,j (21)

where again the complement is used since a penalty function
is specified. In this work we have chosen to specify Φ such
that, for two classes i and j,

φi,j =
Li,j

Li + Lj − Li, j
(22)

Here Li,j denotes the total number of links connecting nodes
of labels i and j, and Li denotes the total number of links
originating from nodes of label i. It follows that φi,j ≤
1 ∀(i, j). Appropriate values for both Li,j and Li are obtained
from a hand-labelled training set.
Finally, Equation 19 is a function of the trade-off parameter,

λ, which provides control over the relative contributions of the
unary and the binary terms to the overall energy. It is specified
such that λ ∈ [0, 1]. In this work λ is obtained by grid-search
which selects a value that optimizes a measure of classifier
performance on a set of labeled data. MAP estimation is
performed using sequential tree-reweighted message passing

(TRW-S) [17] because of its desirable convergence properties
and speed.

VI. RESULTS

We tested our algorithm using two extensive outdoor data
sets spanning nearly 17 km of track gathered with an ATRV
mobile platform. The system was equipped with a colour
camera mounted on a pan-tilt unit and a custom-made 3D
laser scanner consisting of a standard 2D SICK laser range
finder (75 Hz, 180 range measurements per scan) mounted in
a reciprocating cradle driven by a constant velocity motor. The
camera records images to the left, the right and the front of the
robot in a pre-defined pan-cycle triggered by vehicle odometry
at 1.5 m intervals. The Jericho data set was recorded in a built-
up area in Oxford over 13.2 km of track (16,000 images in
total). The Oxford Science Park data set was recorded in the
science park area in Oxford over 3.3 km of track (8,536 images
in total). The two datasets were collected in different areas
of the city, with only a very small overlap between the two
regions.
The Jericho data set was used for training. The features

from this set were used to learn the visual vocabulary and the
Chow Liu tree. The class models were built from 1,055 patches
which were segmented and labeled by hand. Automatically
segmented versions of the same labeled data were used to
learn the MRF binary potentials. An appropriate value for the
sensor model used by our patch-level classifier was determined
empirically as p(zi = 1|ei = 1) = 0.35 and p(zi = 0|ei =
1) = 0.
The Jericho data set is unsuitable for training the parameter

λ since the patch-level classifier will correctly classify all
patches in the training set, thus placing complete confidence in
the unary potentials and leading to biased results. Therefore,
λ was instead determined using an independent training set
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obtained by sampling randomly from the Oxford Science Park
data. The sample comprised a quarter of the entire data set
(55 of 220 frames). The parameter value was then determined
by grid search over its range. Different values of λ lead to
different classification results, thus to select a value we must
define a measure of classifier performance which we wish to
optimize. We present results for two different such ’tuning
policies’:
Tuning Policy 1. Define a per-class error function as

e = 1− p • r (23)

where p is the vector of class precision values, r is the vector
of class recall values and • denotes the Hadamard product.
Thus, classes with a low precision-recall product will have a
large error. Tuning policy 1 selects λ so as to minimize ‖e‖2.
The intention here is to maximize the precision-recall product,
with a bias toward improving the worst performing classes.
Tuning Policy 2.Maximize the number of true positives across
all classes.
We evaluated the performance of the classifier using

3,938 patches from the Oxford Science Park data set, which
were not involved in training λ and whose ground truth had
been labeled by hand. Classification performance is summa-
rized in Figure 5 and in Table III. A typical example is shown
in Figure 1.
We present three sets of results, with confusion matrices

visualized in Figure 5. 5(a) is based entirely on the output of
the patch-level classifier, showing performance before MRF
smoothing is applied. 5(b) shows the results incorporating
the MRF tuned according to policy 1, and 5(c) the results
from MRF policy 2. Prior to incorporating the MRF (5(a)),
there is notable confusion between the vehicle, foliage and
wall classes. Results incorporating the MRF (5(b),5(c)) show
a visible improvement of the confusion matrix. Particularly
noteworthy is improvement on the vehicle and foliage classes,
where confusion with wall classes has been substantially
reduced. The remaining confusion is primarily between closely
related classes such as the two wall types.
Numerical measures of performance are presented in Ta-

ble III. It should be noted that our test data is unbalanced,
in the sense that there are many more instances of some
classes than others, reflecting their relative frequency in the
world. A consequence of this is that performance figures such
as overall accuracy are not very informative, because they
mostly represent classifier performance on the largest class.
We chose not to balance the data because such an evaluation
would be unrepresentative of classifier performance in the real
world. We quote instead the per-class precision and recall. F0.5

measures are also provided in order to provide a measure of
overall classification performance per class for all policies.
The timing properties of our algorithm are outlined in

Table IV. Run times are from a 2Ghz Pentium laptop. The
mean total processing time was 3.9 seconds, which compares
favourable to similar systems such as [7], where the authors
quote 7 seconds to classify a single 2D laser scan.

VII. CONCLUSIONS

This paper has described and provided a detailed analysis
of a two-stage approach to fast region labeling in 3D point-

TABLE IV

TIMING INFORMATION (IN MILLISECONDS).

Process Mean (ms) Max (ms)
Plane Segmentation 2000 2800
Feature Extraction 89 125
Feature Quantization 4 90
Image Segmentation 960 1130
Patch Classification 850 3480

MRF 2 9
Overall 3.9 seconds 7.6 seconds

cloud maps of cities. The contributions of this work are two-
fold: the first stage classifier is framed using a probabilistic
bag-of-words approach, which provides for a principled bail
out policy that greatly decreases the computational cost of
evaluating likelihood terms. Further contribution lies in an
efficient formulation of the MRF to integrate contextual in-
formation. In contrast to related approaches, the size of graph
we use is small — indeed with just one node per region rather
than one per laser range measurment. As a result, the overall
per-scene compute time of this method is compelling: at 3.9
seconds (on average 5.6 times faster than our previous support-
vector machine based approach [8]) it is suitable for online
deployment.
The approach presented in this paper further provides sev-

eral attractive features above and beyond our own previous
work: the probabilistic nature of this approach enables a
principled extraction of confidence estimates for classification
results; the sensor model provides a mechanism to incorporate
the notion that some of the robot’s observations are more
trustworthy than others; and finally, the class models can
readily be updated online, allowing, in principle, for lifelong
learning.
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Abstract—In this paper we are interested in autonomous
systems that can automatically develop terrain classifiers without
human interaction or feedback. A key issue is clustering of sensor
data from the same terrain. In this context, we present a novel off-
line windowless clustering algorithm exploiting time-dependency
between samples. In terrain coverage, sets of sensory measure-
ments are returned that are spatially, and hence temporally
correlated. Our algorithm works by finding a set of parameter
values for a user-specified classifier that minimize a cost function.
This cost function is related to change in classifier probability
outputs over time. The main advantage over other existing
methods is its ability to cluster data for fast-switching systems
that either have high process or observation noise, or complex
distributions that cannot be properly characterized within the
average duration of a state. The algorithm was evaluated using
three different classifiers (linear separator, mixture of Gaussians
and k-NEAREST NEIGHBOR), over both synthetic data sets and
mobile robot contact feedback sensor data, with success.

I. INTRODUCTION

Identifying the local terrain properties has recently become
a problem of increasing interest and relevance. This has been
proposed with both non-contact sensors, as well as using
tactile feedback. This is because terrain properties directly
affect navigability, odometry and localization performance.
As part of our research, we are interested at using simple
internal sensors such as accelerometers and actuator feedback
information to help discover and identify terrain type. Real
terrains can vary widely, contact forces vary with locomotion
strategy (or gait, for a legged vehicle), and are difficult to
model analytically. Therefore, the problem seems well suited
to statistical data-driven approaches.
We approach the problem using unsupervised learning (clus-

tering) of samples which represent sequences of consecutive
measurement from the robot as it traverses the terrain, perhaps
moving from one terrain type to another. Since those signals
are generated through a physical system interacting with a
continuous or piece-wise continuous terrain, time-dependency
will be present between consecutive samples. The clustering
algorithm we are proposing in this paper explicitly exploits this
time-dependency. It is a single-stage batch method, eliminating
the need for a moving time-window. The algorithm has been
developed for noisy systems (i.e., overlapping clusters), as
well as for systems that change state frequently (e.g., a robot
traversing different terrain types in quick succession).

The paper is organized as follow. In Section II, we present
an overview related work on the subject, pointing out some
limitations with these methods. Our algorithm is then de-
scribed in Section III, with theoretical justifications. In Sec-
tion IV-A, Section IV-B and Section IV-C, we evaluate the
performance of the algorithm on synthetic data with a linear
separator classifier, a mixture of Gaussians classifier and k-
NEAREST NEIGHBOR classifier, respectively. We compare our
algorithm with a window-based method in Section IV-D. We
then show in Section V how applying this method on data
collected from a mobile robot enables robust terrain discovery
and identification. This is followed by Section VI where we
further point at differences between this algorithm and others.

II. RELATED WORK

Other techniques have been developed to exploit time
dependencies for segmenting time-series or clustering data
points. In Pawelzik et al. [1], an approximate probabilistic
data segmentation algorithm is proposed on the segmentation
algorithm on the assumption that the probability of having
a transition within a sub-sequence is negligible, given a low
switching rate between generating modes. Kohlmorgen et al.
[3] present a method that uses mixture coefficients to analyze
time-series generated by drifting or switching dynamics. In a
similar fashion to the work we present here, these coefficients
are found by minimizing an objective function that includes
a squared difference between temporally adjacent mixture
coefficients. The main argument behind their choice is that
”solutions with a simple temporal structure are more likely
than those with frequent change”, an assumption we also
exploit. In Kohlmorgen et al. [2], they present another segmen-
tation method for time series. It is based again on minimizing
a cost function that relates to the number of segments in the
time series (hence minimizing the number of transitions), as
well as minimizing the representation error of the prototype
probability density function (pdf ) of those segments. The
distance metric used to compare pdf s is based on a L2-
Norm. Their simplified cost function has been designed to
be computed efficiently using dynamic programming.
Lenser et al. [4] present both an off-line and on-line

algorithm to segment time-series of sensor data for a mobile
robot to detect changes in lighting conditions. The algorithm
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works by splitting the data into non-overlapping windows of
fixed size, and then populating a tree structure such that similar
regions are stored close to each other in the tree, forcing them
to have common ancestor nodes. The tree is built leaf by leaf,
resulting in an agglomerative hierarchical clustering. If the
number of clusters is known, information in the tree structure
can be used to group the data together and form clusters. The
distance metric used to compare regions correspond to the
absolute distance needed to move points from one distribution
to match the other distribution.
For terrain identification using a vehicle, several techniques

have been developed (Weiss et al. [5] [6], Brooks et al.
[7], DuPont et al. [8], Sadhukan et al. [9]). Features are
extracted from acceleration measurements (i.e., spectrum of
acceleration, multiple moments, etc) and supervised learning
is used to train a classifier, such as a support vector machine
(Weiss et al. [5]) or a probabilistic neural network (DuPont
et al. [8]). Another work by Lenser et al. [10], a non-
parametric classifier for time-series is trained to identify states
of a legged robot interacting with its environment. These
techniques require part of the data to be manually labelled, and
thus cannot be employed in the current context of unsupervised
learning.

A. Limitations of Window-Based Clustering Algorithms

As long as a system is switching infrequently between states
and the distributions are well separated, there will be enough
data points within a window of time to properly describe
these distributions. Algorithms such as Lenser et al. [4] or
Kohlmorgen et al. [2] will be able to find a suitable pdf
to describe the distributions or to detect changes, and the
clustering or segmentation will be successful.
As the system switches state more frequently however, the

maximum allowable size for a window will be reduced. This
has to be done in order to keep the probability of having no
transition in a window reasonably low. With this in mind, two
particular cases become difficult:

• Noisy systems with closely-spaced distribution, resulting
in significant overlap. According to Srebro et al. [11], the
difficulty in properly clustering data from two normally
distributed classes with means μa, μb, and identical
standard deviation σa = σb is related to the relative
distance |μa−μb|

σa
.

• Complex distribution that cannot be characterized within
a small window size. In this case, there is enough
information within a time-window to classify samples,
but if the distributions are unknown, there is not enough
information to decide whether the samples belong to the
same cluster.

III. APPROACH

The algorithm works as follow. Given that we have:
• a data set �X of T time-samples of feature vectors �xi,

�X = {�x1, �x2, ..., �xT } generated by a Markovian process
with Nc states, with probability of exiting any state less
than 50 percent,

• the sampled features �xi ∈ �X are representative, implying
that locally, the distance between two samples is related
to the probability that they belong to the same class,

• a classifier with parameters �θ used to estimate the proba-
bility p(ci|�xt, �θ) that sample �xt belongs to class ci ⊂ C,
|C| = Nc,

• a classifier exploiting distance between data points �xi ∈
�X to compute probability estimates,

• a set of parameters �θ that is able to classify the data set
�X reasonably well.

The algorithm searches for the parameters �θ that minimize:

argmin
�θ

Nc∑
i=1

∑T−1
t=1 (p(ci|�xt+1, �θ)− p(ci|�xt, �θ))2

var(p(ci| �X, �θ))2
(1)

In our context of terrain identification, �X represents a time-
series of vehicle sensory information affected by the terrain
e.g., acceleration measurements.
Roughly speaking, the cost in Eq. 1 tries to strike a

balance between minimizing variations of classifier posterior
probabilities over time, while simultaneously maintaining a
wide distribution of posterior probabilities (var(p(ci| �X, �θ))).
This is all normalized by the number of samples in each
class (approximated as var(p(ci| �X, �θ))), thus preventing the
algorithm from clustering all samples into a single class. A
more thorough derivation of this cost function is provided in
Section III-A.
An important feature of this algorithm is that it can employ

either parametric or non-parametric classifiers. For example,
if two classes that can be modelled with normal distributions,
a linear separator is sufficient. On the other hand, a four-class
problem requires a more complex classifier, such as mixture
of Gaussians. If the shape of the distributions is unknown,
k-NEAREST NEIGHBOR can be used.

A. Derivation of the Cost Function using Fisher Linear Dis-
criminant

Let us assume that two classes, a and b, are normally
distributed with means μa and μb with identical variance σa
= σb. In Linear Discriminant Analysis (LDA), the data is
projected on a vector �ω that maximizes the Fisher criterion
J(ω):

J(ω) =
(μaω − μbω)2

σ2
aω + σ2

bω

(2)

with μaω, μbω , σaω, σbω being the means and variances of
the data after projection onto �ω. Data labels are required
in order to compute Eq. 2. For an unlabelled data set �X
containing two normally distributed classes a and b, Eq. 2 can
be approximated if the probability that consecutive samples
belong to the same class is greater than 0.5. The within-
class variance Cvar projected on �ω is approximated by the
average squared difference between consecutive time samples
�xt projected on �ω :

Cvar(�ω, �X) =
1

T − 1

T−1∑
t=0

(�ω · �xt+1 − �ω · �xt)2 (3)
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Its expected value is:

E{Cvar(�ω, �X)} = σ2
aω + σ2

bω + (μaω − μbω)2Ptrans (4)

The between-class variance Cdist can be estimated by the
variance of the projected data. Provided that each class has
the same prior probability,

E{Cdist(�ω, �X)} = E{var(�ω · �X)} =

(μaω − μbω)2

4
+

σ2
aω + σ2

bω

2
(5)

Dividing Eq. 5 by Eq. 4 and letting the probability of a
transition Ptrans → 0, we get:

E{Cdist(�ω, �X)

Cvar(�ω, �X)
} → 1

2
+

(μaω − μbω)2

4(σ2
aω + σ2

bω)
(6)

Minimizing the inverse of Eq. 6 corresponds to finding the
Fisher criterion J(ω):

argmin
�ω

Cvar(�ω, �X)

Cdist(�ω, �X)
= argmax

�ω

Cdist(�ω, �X)

Cvar(�ω, �X)
≈ argmax

�ω
J(�ω)

(7)
with

Cvar(�ω, �X)

Cdist(�ω, �X)
=

∑T−1
t=0 (�ω · �xt+1 − �ω · �xt)2

var(�ω · �X)
(8)

The probability that sample �xt belongs to class c, for a linear
separator classifier, can be expressed by a sigmoid function:

p(c|�xt) =
1

1 + e−kd
(9)

where d is the distance between �xt and the boundary decision,
and k is a parameter that determines the ”sharpness” of the
sigmoid. Given a sufficiently small k and significant overlap of
the clusters, most of the data will lie within the region d� 1

k .
Eq. 9 can then be approximated by:

p(c|�xt) ≈
d

k
(10)

and Eq. 8 approximated as:

Cvar(�ω)
Cdist(�ω)

≈
∑T−1

t=0 (p(c|�xt+1, �θ)− p(c|�xt, �θ))2

var(p(c| �X, �θ))
(11)

Where �θ correspond to the linear separator parameters. Eq.
11 is then normalized by p(ca| �X, �θ)p(cb| �X, �θ) to reflect the
probability of leaving a given state c. This normalizing factor
can be approximated by var(p(c| �X, �θ)), and the final cost
function is:

E( �X, �θ) =
∑T−1

t=0 (p(c|�xt+1, �θ)− p(c|�xt, �θ))2

var(p(c| �X, �θ))2
(12)

B. Optimization: Simulated Annealing
The landscape of the cost function being unknown, sim-

ulated annealing was used to find the classifier parameters �θ
that minimize E( �X, �θ) described in Eq. Eq. 12. Although very
slow, it is necessary due to the presence of local minima. For
classifiers with few (less than 20) parameters, one parameter
was randomly modified at each step. For k-NEAREST NEIGH-
BOR classifiers, modifications were made to a few points
and a small random number of their neighbors. This strategy
improved the speed of convergence. The cooling schedule
was manually tuned, with longer schedules for more complex
problems. Three random restart runs were used, to avoid being
trapped in a deep local minimum.

IV. TESTING THE ALGORITHM ON SYNTHETIC DATA SETS
The algorithm was first evaluated using three different

classifiers (linear separator, mixture of Gaussians, and k-
NEAREST NEIGHBOR) on synthetic data sets. This was done
to demonstrate the range of cases that can be handled, as our
real robot data sets cannot cover some of those cases (e.g.,
complex-shaped distributions in Section IV-C.5). These sets
were generated by sampling a distribution s times (our so-
called segment length), then switching to the next distribution
and drawing s samples again. This segment length determined
the amount of temporal coherence present in the data. This
process was repeated until a desired sequence length was
reached. Fig. 1(b) shows a sequence of 12 samples drawn
from two Gaussian distributions, with a segment of length
3. For the test cases presented in this section, the segment
lengths were relatively short (between 3 and 5), to demonstrate
how the algorithm is capable of handling signals generated
from a system that changes state frequently. Results for these
synthetic distributions are shown in the following subsections.

A. Linear Separator Classifier with Two Gaussian Distribu-
tions
For linear separators, we used two closely-spaced two-

dimensional Gaussian distributions (Fig. 1(a)) with identical
standard deviation σx{1,2} = 0.863, σy{1,2} = 1, and the
distance between the means was 1. This simulated cases where
features are extremely noisy. Without labels, the combination
of the distributions is radially symmetric (Fig. 1(b)). The
optimal Bayes classification rate for a single data point for
these distributions was 70.7 percent, an indication of the
difficulty of the problem. The linear separator was trained
using Eq. 1, with probabilities computed from Eq. 9. A value
of k = 3 was chosen, although empirically results were similar
for a wide range of k values. 100 time sequences of 102
samples were randomly generated. The average classification
success rate was 68.5±6.8 percent, which is close to the Bayes
classification rate. Fig. 2 shows an example of the classifier
posterior probability over time after cost minimization.

B. Mixture of Gaussians Classifier with Three Gaussian Dis-
tributions
For mixture of Gaussians classifiers, three normal distribu-

tions in two dimensions (see Fig. 3) were used. The classi-
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(a) Individual distributions (b) Combined Distributions
Fig. 1. Contour plot 1(a) of the two normal distributions used in testing
the algorithm with a linear separator. Their combination 1(b) is resembles a
single, radially-symmetric Gaussian distribution. A synthetic sequence of 12
data samples with segment length of 3 is also shown in 1(b), with a line
drawn between consecutive samples.

Fig. 2. Classifier posterior probability over time for the two classes drawn
from Gaussians distributions depicted in Fig. 1(a), after optimization (dashed
line). Ground truth is shown as solid green line. The segment length is 3. The
first 50 samples are shown.

fier itself had 9 free parameters: 6 for the two-dimensional
Gaussian locations, and 3 for the standard deviation (the
Gaussians were radially-symmetric). The three distributions
had covariance equal to:

σ1 =
(

.5 0
0 1

)
, σ2 =

(
.8 .1
.1 .6

)
, σ3 =

(
.8 −.1
−.1 .6

)
The distribution centers were located at a distance of 0.95

from the (0, 0) location and at 0, 120 and 240 deg angles.
The optimal Bayes classification rate for these distributions is
74 percent. 100 time sequences of 207 samples with segment
length of 3 were generated. The average classification rate was
69.2± 9.3 percent.

(a) Individual distributions (b) Combined Distributions
Fig. 3. Contour plot of the three normal distributions 3(a) and their sum
3(b) used to test the algorithm with a mixture of Gaussians classifier.

C. K-Nearest-Neighbor Classifier with Uniform Distributions

As an instance-based learning method, k-NEAREST NEIGH-
BOR [12] has the significant advantage of being able to
represent complex distributions. A major drawback associ-
ated with this classifier is the large number of parameters

(proportional to the number of points in the data set). This
results in lengthy computation time in order to find the
parameters that minimizes the cost function. Five different test
cases (few data points, unequal number of samples per class,
overlapping distributions, six-class distributions and complex-
shaped distributions) were designed to test the performance of
the algorithm using this classifier.

1) Few Data Points: For each test sequence, only 36
samples were drawn from 3 square, non-overlapping uniform
distributions, with a segment length of 3. The classifier used
k = 10 neighbors with a Gaussian kernel σ = 0.8. The
mean classification success rate over 100 trials was 93.7±6.1
percent. Fig. 4 shows these results in more detail.

Fig. 4. Results of clustering method applied on a data set of 36 points drawn
from three equal distributions. The best a) and worst b) results of clustering
are shown, with distributions shown as background grey boxes. c) shows the
histogram of success rates over 100 trials.

2) Unequal Number of Samples per Class: Three uniform
rectangular distributions of equal density, but different area
were sampled with a segment length is 3. In total, 84 samples
were drawn from the smallest, 168 from the medium and
252 from the largest distribution. The classifier used k = 20
neighbors with a Gaussian kernel σ = 0.8. The average
classification success rate over 80 trials was 87.8 ± 11.6
percent. Fig. 5 shows these results in more details.

Fig. 5. Results of clustering method applied on a data set of 504 points,
drawn from three distributions of different sizes. The best a) and worst b)
results of clustering are shown, with distributions shown as background grey
boxes. c) shows the histogram of success rates over 80 trials.
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3) Overlapping Distributions: Two distributions with sig-
nificant overlapping (40 percent) were used to generate
the data. The overlapping regions were selected so non-
overlapping regions within a class would be of different
sizes. The classifier used k = 20 neighbors with a Gaussian
kernel σ = 0.8. 57 test sequences of 504 points, with a
segment length of 3 were randomly generated. The average
classification success rate was 76.3± .6.4 percent, not too far
from the maximum possible rate of 80 percent.

4) Six-Classes Distributions: Six square uniform distribu-
tions were used in these tests. The classifier used k = 10
neighbors with a Gaussian kernel σ = 0.8. 100 test sequences
of 306 points, with a segment length of 3 were randomly
generated, with detailed results shown in Fig. 6. The average
classification rate was 90.0± 5.7 percent.

Fig. 6. Clustering results for a data set of 306 points drawn from 6
distributions of equal sizes, with segment length of 3. The best a) and worst
b) results are shown, with distributions shown as background grey boxes. c)
shows the histogram of success rates over 100 trials.

5) Complex-Shaped Distributions: Complex-shaped distri-
butions were simulated using two, two-dimensional spirals.
Data was generated according to the following equations:

x1 = (tt+ d⊥) ∗ cos(φ+ φ0), x2 = (tt+ d⊥) ∗ sin(φ+ φ0)
(13)

with φ = darc
√
rand{0..1} the arc distance from the center,

d⊥ = N(0, σSRnoise) a perpendicular, normally distributed
distance from the arc, and φ0 equal to 0 for the first distribution
and π for the second. 5,000 data points were drawn for
each trial, with segment length of 5 using darc = 15 and
σSRnoise = 0.9 for the distributions. Fig. 7 shows time
sequences of 10 and 50 samples from the test sequence used.
One can see that the shape of the distributions cannot be
inferred from short sequences, even when data labelling is
provided.
The k-NEAREST NEIGHBOR classifier used k = 40 neigh-

bors, with a Gaussian kernel of σ = 0.4. Fig. 8 shows classi-
fication success rate achieved for the 19 test cases generated.
Fig. 9 shows a successful and unsuccessful case of clustering.
If we exclude the 3 unsuccessful cases, considering them as
being outliers due to the simulated annealing getting stuck in
a local minimum, the average value of classification success
was 92.6± 0.4 percent.

Fig. 7. Time sequence shown in feature space for a) ten samples and b)
fifty samples drawn randomly from the distributions described in Eq. 13 and
shown in c), with segment length of 5 samples. The spirals are not visible in
a) and barely discernible in b).

Fig. 8. Histogram showing the distribution of the 19 classification success
rates after clustering. The majority of results were located around 92 percent,
with three cases failing to completely identify the underlying structure.

D. Comparison with a Window-based Method

Performance of this algorithm was compared to the seg-
mentation algorithm described in Lenser et al. [4]. The latter
algorithm was run until only two clusters were left. The data
used was generated from a simpler version of the two-spiral
distributions, with darc = 5 and σSRnoise = 0.9., with 250
samples per test case. A test case is shown in Fig. 10 a),
without temporal information for clarity. For long segment
lengths (over 60 samples), success rates are similar for both
methods. As expected, Fig. 10 b) shows that shorter seg-
ment lengths negatively affect the window-based method, with
larger windows being affected most. This can be explained by
the merger of the two clusters through windows containing
data from both distributions. The number of such windows is
greater for a larger window size and a smaller segment length.

V. TESTING ALGORITHM ON ROBOT SENSOR DATA:
AUTONOMOUS TERRAIN DISCOVERY

The vehicle used to collect various ground surfaces data
(Fig. 11) [14] was a hexapod robot specifically designed for
amphibious locomotion. It was previously shown in Giguere et
al. [15] to be able to recognize terrain types using supervised
learning methods. The robot was equipped with a 3-axis Iner-
tial Measurement Unit (3DM-GX1TM ) from Microstrain. The
sensors relevant for terrain identification are: 3 accelerometers,
3 rate gyroscopes, 6 leg angle encoders and 6 motor current es-
timators. Each sensor was sampled 23 times during a complete
leg rotation, thus forming a 23-dimensions vector. Multiple
vectors could be concatenated together to improve detection,
forming an even higher dimensionality feature vector for
each complete leg rotation. Dimensionality was subsequently
reduced by applying Principal Component Analysis (PCA). In
the following experiments, only the two first main components
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Fig. 9. Successful (92 percent) a) and unsuccessful b) clustering for a two-
class problem of 5,000 points generated according to Eq. 13. The segment
length was 5.

Fig. 10. Average clustering success rate for the windowless algorithm and the
segmentation algorithm in Lenser et al. [4] for time-window sizes of 5, 10 and
15 samples. When transitions are infrequent (corresponding to segment length
over 60), success rates are similar for both methods. For shorter segment
lengths, the window-based method fails to identify the two clusters and instead
simply merge them together.

were used. Even though some information is discarded, our
previous results in [15] indicated that this was sufficient
to distinguish between small numbers of terrains. If more
discrimination is needed, other components can be added.

These experiments were restricted to level terrains, with
small turning maneuvers. Changes in terrain slopes or complex
robot maneuvers impact the dynamics of the robot, and
consequently affects how a particular terrain is perceived
by the sensors. Discarding data when the robot performs a
complicated maneuver or when the slope of the terrain crosses
a threshold would mitigate this issue. Terrains were selected
to offer a variety of possible environments that might be
encountered by an amphibious robot. They were also different
enough that, from a locomotion point of view, they are distinct
groups, and thus form classes on their own.

Fig. 11. The hexapod robot, shown equipped with semi-circle legs for land
locomotion. The vehicle moves forward by constantly rotating legs in two
groups of three, forming stable tripod configurations.

A. Overlapping Clusters with Noisy Data

The first data set was collected in an area covered with
grass, with a section that had been recently tilled. The robot
was manually driven in a straight line over the grass, crossing
eventually to the tilled section. The robot was then turned
around, and manually driven towards the grass. Eight transi-
tions were collected in this manner. The problem was made
more challenging by using only the pitch angular velocity
vector. Using more sensor information would have reduced
the noise and increased the relative separation between the
two clusters.
Two classifiers were used in the clustering algorithm for

this data set. The first one was a linear separator with a
constant k = 3.0. Classification success after clustering was
78.6 percent (see Figs. 12 and 14(a)), a value certainly close to
the Bayes error considering the overlap between the classes.
The second classifier used for clustering was a k-NEAREST
NEIGHBOR classifier with k = 10 and σ = 1.0 for the kernel.
As expected, k-NEAREST NEIGHBOR had slightly inferior
results, with a classification success rate of 73.9 percent (see
Figs. 13 and 14(b)). The larger number of parameters (454
compared to 2 for the linear separator) makes this classifier
prone to over-fit the data, potentially explaining the difference
in performance.

Fig. 12. Sensor data set collected for a robot walking on grass and tilled
earth, with eight transitions present in the data. The solid line represents
the separator found on the unlabelled data using the algorithm with a linear
separator as classifier. Even though the clusters have significant overlap, the
algorithm still managed to find a good solution. Notice how the separator is
nearly perpendicular to a line joining the distribution centers, an indication
that the solution is a close approximation to LDA on the labelled data.

Fig. 13. Same data set as Fig. 12, clusterized with the algorithm using a k-
NEAREST NEIGHBOR classifier. The circled data points are wrongly labelled.
Most of them are located either at the boundary between the two distributions,
or deep inside the other distribution.

30



(a) Linear Separator (b) k-NEAREST NEIGHBOR
Fig. 14. Confusion matrix for classification of two-terrain data obtained after
clustering using a) a linear separator and b) the k-NEAREST NEIGHBOR.

B. Fast-Switching Semi-Synthetic Data
Another data set was collected over five different terrains,

and a high-dimensionality feature vector for each complete
leg rotation was generated using 12 sensors (all 3 angular
velocities, all 3 accelerations and all 6 motor currents). As
in the previous case, only the two first principal components
were used. Of all sensors, the motor currents were the most
informative.
No rapid terrain changes were present in the original data

set, so segments of data were selected according to the random
state change sequence shown in Fig. 15. This artificially
decreased the average segment length to a value of 6, with
individual states having average segment lengths between 3.5
and 9.8. A classifier with a mixture of five radially-symmetric
Gaussians was used in the clustering algorithm. Fig. 16 shows
the labelling of the data set and Fig. 17 shows the confusion
matrix. Overall, 91 percent of the data was grouped in the
appropriate class. Even though some of the distributions are
elongated (for example linoleum), the combination of sym-
metric Gaussians managed to capture the clusters. Standard
clustering techniques struggled with these distributions, with
average classification success rates of 68.2 and 63.0 percent
for mixture of Gaussians and K-means clustering, respectively.

Fig. 15. State (from 1 to 5) sequence used to generate the time sequence of
data in the clustering problem shown in Fig. 16. The shortest segment length
is 3, and the average segment length is 6.

VI. DISCUSSION
A. Comparing Cost Functions from Previous Works
In [3], the cost function to be minimized is:

E(Θ) =
T∑
t=1

(yt−
N∑
s=1

ps,tfs(�xt))2+C
T−1∑
t=1

N∑
s=1

(ps,t+1−ps,t)2

(14)
with fs(.) as a kernel estimator for data �xt for state s,
ps,t as the mixing coefficient for state s at time t, θ =
ps,t : s = 1, ..., N ; t = 1, ..., T as the set of coefficients to be
found, and C as a regularization constant. In [2], the cost
function is:

o(�s) =
T∑

t=W

d(ps(t)(�x), pt(�x)) + Cn(�s) (15)

Fig. 16. Applying the clustering algorithm on a data set of five environments,
with a mixture of five Gaussians as a classifier. Labels shown are the ground
truth. The samples surrounded with a small square are wrongly labelled.
The five red cross-hairs are the location of the Gaussians, the thick circles
representing their standard deviation. The decision boundary is represented
by the red curved lines.

Fig. 17. Confusion matrix for the clustering shown in Fig. 16.

With d(., .) being a L2-Norm distance metric function, �s a
state sequence, pt(�x) the pdf estimate within the window at
time t, ps(t)(�x) the prototype pdf for state s(t), n(�s) is the
number of segments and C a regularization constant.
Eq. 14 and Eq. 15 can be separated in two parts: the first part

minimizes representation errors, and the second part minimizes
changes over time. A regularization constant C is needed to
balance them, and selecting this constant is known to be a
difficult problem. In contrast, our cost function (Eq. 12) does
not take into account the classifier fit to the actual data �X .
Instead we solely concentrate on the variation of the classifier
output over time, thus completely eliminating the need for
a regularization constant and associated stabilizer. This is a
significant advantage. The fact that the classifier fit is not taken
into account by our algorithm can be seen in the mixture of
Gaussian result case shown in Fig. 16: the location of the
Gaussians and their width (marked as circled red cross-hairs)
do not match the position of the data they represent. Only
the decision boundaries matter in our case. If the actual pdf s
are required, a suiting representation can be fitted using the
probability estimates found.

B. Distances and Window Size for Complex Distributions

Algorithms relying on distances between pdf s described
within small windows such as the one used by Kohlmorgen et
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al. [2] succeed if the distance between a sample and other
members of its class is much smaller than its distance to
members of the other class. For complex distributions such
as the one used in the spirals case, this is not the case: the
average distance between intraclass points and interclass points
is almost identical: 13.4 vs 13.9. This can be seen in Fig. 18,
were the distribution of distances are almost overlapping. Our
algorithm with a k-NEAREST NEIGHBOR classifier succeeds
because it concentrates on nearby samples collected over the
whole duration, and these have the largest difference between
intraclass and interclass distances (distance less than 2 in Fig.
18).

Fig. 18. Distribution of distances between samples belonging to the same
class (intraclass) and samples belonging to different classes (interclass), for
the spirals data set used in Fig. 9. The distributions almost completely overlap,
except at shorter distances.

Moreover, to avoid transitions in their time-windows, these
algorithms would have to limit their time-window sizes. Bear-
ing in mind that for the spirals data set in Fig. 9 the segment
length was 5, this would result in window sizes of 2 to
3 samples. These distributions cannot be approximated in a
satisfactory manner with so few points. From simple visual
inspection one can see that it requires, at a minimum, 10 to
20 points. An advanced dimensionality reduction technique
such as Isomap [16] could be used to simplify this type of
distribution. If data points bridging the gap between the spirals
were present at regular intervals however, Isomap would be of
little help.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a new clustering method based
on minimizing a cost function related to the probability output
of classifiers. Synthetic test cases were used to demonstrate
its capabilities over a range of distribution types. The same
method was employed on data collected with a walking robot,
clustering its sensor data in terrain categories successfully.
As future work, we intend to quantify the impact of segment

lengths, overlap and number of points in sequence on the
clustering process. We are also looking at methods to estimate
the number of classes present in the data set, so it would not
need to be known beforehand. Since merging classes together
does not affect the cost but splitting a valid class does, a rapid
increase of cost-per-data point as we increase the number of
clusters in the algorithm is a potential indicator that we have
found the proper number of classes.
A major drawback of using simulated annealing to find

the minimum cost is its prohibitive computing time, in the

order of hours on a dual CPU 3.2 GHz Xeon machine for
the most complex distributions. There are indications that
other optimization techniques could be employed to drastically
reduce the amount of computation required.
We are looking at applying this algorithm outside the scope

of terrain discovery. Many segmentation problems exhibit
continuity in their sets, such as texture segmentation (spa-
tial continuity) or video (temporal continuity) segmentation.
Feature ranking for continuous processes is another possible
application, where the cost function could be employed to
evaluate each feature individually.
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Abstract—Internal localization, the problem of estimat-
ing relative pose for each module (part) of a modular
robot is a prerequisite for many shape control, locomotion,
and actuation algorithms. In this paper, we propose a
robust hierarchical approach that uses normalized cut to
identify dense subregions with small mutual localization
error, then progressively merges those subregions to localize
the entire ensemble. Our method works well in both 2D
and 3D, and requires neither exact measurements nor
rigid inter-module connectors. Most of the computations
in our method can be effectively distributed. The result is
a robust algorithm that scales to large, non-homogeneous
ensembles. We evaluate our algorithm in accurate 2D and
3D simulations of scenarios with up to 10,000 modules.

I. INTRODUCTION

Large self-reconfigurable modular robots have re-
ceived a growing interest from the robotics community.
A self-reconfigurable modular robot (SRMR) is com-
prised of many discrete, physically connected modules
which can be rearranged to adapt the robot’s shape or
capabilities to the task at hand. These robot ensembles
have been proposed for various applications, such as
product design and visualization [1], emergency search
and rescue, and rapid prototyping [2, 3]. A fundamental
task in such robot ensembles is internal localization, the
establishment of relative pose amongst the robot’s many
individual components. Accurate internal localization is
required for many tasks, including motion planning,
mechanical stability, and control.
Internal localization for large robot ensembles presents

a number of challenges. As systems scale to larger
ensembles of smaller, finer grain modules, one can
expect only limited capabilities at individual modules. In
particular, modules only make noisy observations of their
immediate neighbors, and do not have access to long
distance measurements, such as global time-of-flight
measurements, or external beacons. A lack of strong me-
chanical latches in small modules precludes mechanical
constraints for accurate alignment and orientation.

This work is supported in part by the NSF under grants CNS
0428738 (ITR: Synthetic Reality) and NeTS-NOSS CNS-0625518, by
the ONR under grant MURI N000140710747, by Intel Corporation,
and by Carnegie Mellon University.

Although localization algorithms have been well stud-
ied in robotics, many of the existing approaches do
not directly apply to large-scale internal localization.
Constraint-based approaches [4, 3, 5] rely on strong prior
assumptions about ensemble structure (e.g., lattices) or
require exact observations to scale up to large ensembles.
They are neither robust to noise nor well suited to irreg-
ular, non-lattice structures, common in some SRMRs.
Local probabilistic approaches have been shown to be ef-
fective in localization of relatively small modular robots,
such as PolyBot[6], but require assumptions of strong
sensing, or robust mechanical latching to reduce errors
in larger systems. Sparse approximation techniques [7, 8]
used in simultaneous localization and mapping (SLAM),
are effective in dealing with large amounts of noisy
observations, but are difficult to apply to SRMRs, where
modules are densely packed, forming grids and loops.
A more closely related problem is localization of wire-

less sensor networks. Here the nodes need to combine
distance information about other nodes in order to accu-
rately triangulate their positions. A standard formulation
is to treat the distance information as weights of edges
in a graph and obtain a Euclidean embedding, using
methods such as regularized semidefinite programming
relaxations [9, 10]. Internal localization can also be
viewed as Euclidean embedding; however, only distances
to immediate neighbors are known. As indicated by our
experiments in Section VI, this restriction appears to
impair the performance Euclidean embedding methods.
Therefore, it is necessary to develop new techniques that
are effective in this domain.
A key problem with applying incremental approaches

like the ones seen in SLAM is that they can accumulate
error, and this error takes a long time to resolve. In the
case of a modular ensemble, the greatest error will tend
to accumulate in a region with only a few inter-module
observations, which we call a weak region. A substantial
rotational uncertainty will be introduced in the partial so-
lution, and will be magnified by subsequent additions. If
we selectively incorporate the observations in the densely
connected regions first, the partial solution will be con-
strained and the error will be substantially reduced. We
use this intuition to formulate a hierarchical algorithm,
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Fig. 1. Connectivity graph of ensemble with 8008 nodes, and resulting
estimate of module positions; the results are accurate, subject to a
rotation and translation of the coordinate space.

where we recursively split the ensemble connectivity
graph into well-connected components using normalized
cut [11]. In order to keep the normalized cut computa-
tions tractable, we perform graph abstraction, analogous
to over-segmentation in image segmentation [11].
A key challenge in internal localization is that obser-

vations are not stored centrally, and it is not feasible to
collect the observations to a single node. This calls for
a distributed approach, but the recursive nature of our
algorithm and top-down partitioning make a distributed
implementation difficult to achieve. We used a declara-
tive, logical programming language called Meld to help
address these issues and create an efficient distributed
implementation of our algorithm.
We evaluate our algorithm on realistic 2D and 3D

problems with up to 10,000 modules that accurately
model unreliable observations and physical interactions
among the modules. We demonstrate that the compu-
tational complexity of the approach is nearly linear in
the size of the ensemble for a fixed ensemble structure,
and outperforms methods from wireless sensor network
localization based on classical multidimensional scal-
ing [12] and semidefinite programming (SDP) relax-
ations [9, 10], as well as simpler incremental heuristics.

II. LOCALIZATION OF MODULAR ENSEMBLES

We assume that the location of each module can be
described by a small number of parameters, such as the
coordinates of its center and orientation in space. In
this paper, we focus primarily on circular and spherical
modules in 2D and 3D space, respectively. Each module
is equipped with sensors, such as infrared transmit-
ters/receivers, that allow a pair of modules to detect
when they are in close proximity. Such observations are
inherently uncertain: two modules may be in sensing
range, but not in physical contact, or a measurement can
be made when sensors are not aligned. We do, however,
assume that (i) the observations are symmetric (that is,
whenever module i observes module j then module j
also observes module i), and (ii) the modules know the
identity of modules they sense (that is, we do not need
to address the data association problem).

(a) module prototypes (b) sensor model

Fig. 2. (a) Sensor board from module prototype. (b) Sensor model,
used in the paper. Each observation zi,j is represented as the location
of the sensor, projected to the perimeter of the module. The circle in-
dicates the midpoint of the two modules’ centers. The model penalizes
the module locations xi and xj , based on the distance between the
midpoint and the observations zi,j and zj,i.

Figure 2(a) shows a current working prototype of
a sensing subsystem fitting the properties described
above. Each module shown has 8 IR transmitters and
16 IR receivers, oriented radially and spaced evenly
around the circular perimeter. Note that for these mod-
ules, multipath interference, scattering, shadowing, and
small dimensions effectively preclude techniques such as
acoustic or radio time-of-flight-based localization.

III. LOCALIZATION AS PROBABILISTIC INFERENCE

In this section we define the probabilistic model that
underlies our algorithm. We then discuss a simple incre-
mental optimization method that motivates our approach.

A. Probabilistic Model With Attractive Potentials

We use a probabilistic model that describes the prob-
ability of a joint assignment of module locations X =
(X1, . . . , XN ), given observations Z made by all mod-
ules in the ensemble. The location of each module i is
represented by a vector, Xi � (Ci, Ri), where Ci is the
center of the module and Ri is its orientation (repre-
sented in 2D as an angle, and in 3D as a quaternion).
When two modules i and j are in the immediate neigh-

borhood of each other, a pair of observations (zi,j , zj,i) is
generated which represent the sensors at module i and j,
respectively, that made the observation. We use a discrete
model that captures whether two modules observe each
other and with which sensors, but not the intensity of the
readings. Also, for simplicity of notation, we assume that
there is at most one pair of observations for every pair of
modules, and we take zi,j to be the location of the sensor
at module i, in module i’s local reference frame (see
Figure 2(b)). The model penalizes an observation zi,j ,
based on how well it predicts the displacement between
the two module centers.

φ(xi, xj ; zi,j) ∝ exp

{
−1

2

∥∥∥∥ri(zi,j)− cj − ci
2

∥∥∥∥2

2

}
.

(1)

Note that this model does not explicitly represent the
constraint that the modules must not overlap; instead, we
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Fig. 3. (a) Ensemble, consisting of two tightly connected clusters.
The clusters are connected by two pairs of observations. Within each
component, modules make observations with all of their immediate
neighbors, whereas the two components share only two observations,
one at each side. (b) Intermediate result, obtained when incrementally
conditioning on observations, starting from the lower left corner. The
numbers indicate the order of conditioning. The solution accumulates
substantial error; this error is not detected until loop closure, at step 21,
and takes many iterations to resolve with conjugate gradient descent.
(c) The number of iterations at each step to reach convergence.

have chosen to rely on the observations to obtain a non-
overlapping solution. Alternatively, we could use a more
accurate mode that captures properties of IR transmitters
and receivers, such as quadratic decay and multi-modal
response, but such a refinement is not key to the methods
presented in this paper.
Combining the observation model (1) for each pair of

neighboring modules i, j and instantiating the observa-
tions zi,j gives the likelihood of the joint state x:

p(z|x) ∝
∏
i,j

φ(xi, xj ; zi,j). (2)

For internal localization, we wish to compute the max-
imum likelihood estimate (MLE) of the location of all
the modules, given all observations z:

x∗ = argmax
x

p(z|x), (3)

up to some global translation and rotation.

B. Computing the MLE Solution Incrementally

It is not easy to maximize the likelihood (2) directly,
since the likelihood function is non-convex and high-
dimensional. One approach is to compute the solution (3)
incrementally, that is, compute the maximum likelihood
estimate

x∗A = argmax p(zA|xA) = argmax
∏
i,j∈A

φ(xi, xj ; zi,j)

for progressively larger connected sets of modules A.
Here, xA denotes the locations of the modules in A and
zA denotes all observations among the modules in A. At
each step, the set zA is expanded, incorporating modules
connected to its perimeter, and then iteratively refining
the position estimates with the correspondingly expanded
set of observations.
Figure 3 illustrates the behavior such an incremental

approach on a small ensemble with 200 modules that

consists of two dense components. The observations are
incorporate observations in breadth-first order, starting
from the lower left corner. Figure 3(c) shows the run-
ning time of the algorithm at each step, expressed as
the number of iterations of conjugate gradient descent
until convergence. We see that while the number of
iterations is typically small, it increases dramatically
midway through the experiment when the observations
close a loop, formed by the two square components. The
computed solution accumulates error that takes a long
time to resolve once the algorithm closes the loop.

IV. GUIDING LOCALIZATION WITH NORMALIZED
CUT

The experiment in Figure 3 points to an important
drawback of an incremental maximum likelihood es-
timate (MLE) solution. Highly uncertain observations
may be incorporated early, and errors magnified by
subsequent module additions. With a simple MLE rep-
resentation, this will remain undetected until a single
observation closes the loop, at which point significant
iterative computations are needed to shift the estimates
back into low error bounds. However, if we were to first
incorporate the observations within each dense cluster in
Figure 3 and defer the observations that join the two clus-
ters until later, the intermediate results would be more
accurate, and would serve as a better starting solution
for adding new observations. This suggests a hierarchical
solution (Algorithm 1) that partitions the ensemble using
clustering, recursively computes the estimates for each
cluster, and uses the partial solutions to compute the
globally optimal solution.

A. Determining an Effective Partition

Sparsely connected regions where only a few obser-
vations are made (weak regions) are one of the main
sources of error and uncertainty as localization pro-
gresses. As illustrated in Figure 3, certain occurrences of
weak regions can introduce a substantial rotational error
– those that do not occur in pairs in 2D or triplets in 3D.
An effective heuristic for identifying these weak regions
is a cut on the connectivity graph of the ensemble:
starting from a graph G, whose edges correspond to ob-
servations between modules, we seek to partition G, such
that each component is well-connected and the inter-
component observations are as few as possible. This
criterion is effectively the one optimized in normalized
cut [11]:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)
assoc(B, V )

, (4)

where Ncut(A,B) is the cut value, cut(A,B) is the
number of observations between module sets A and B,
and assoc(A, V ) is the number of observations between
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the modules A and all modules in the graph. Minimizing
(4) yields a partition of G into two components A,B.
Our heuristic will first incorporate observations within
the clusters A and B, and then the observations between
A and B.1

Intuitively, normalized cut prefers partitions such that
the number of observations between A and B is small,
compared to all observations made by A and B. For
example, in Figure 3a, the vertical cut that separates
the two well-connected components has value Ncut =
O( 1

N ), where N is the number of modules, whereas the
value of the horizontal cut is Ncut = O( 1√

N
). Indeed,

we see that normalized cut strongly discriminates these
two orderings and yields the correct ordering.

B. Summary of the Algorithm

Our proposed approach is summarized in Algorithm 1.
The algorithm starts by computing the normalized cut
(A,B) for the connectivity graph G. By applying the lo-
calization procedure recursively, the algorithm computes
a partial solution for the modules A, conditioned on all
observations among A (in the algorithm description, GA

denotes the subgraph induced by A) and similarly for
the modules B. We then use the partial solutions x∗A and
x∗B to initialize the search for the optimum solution for
the entire graph: we transform the observations between
A and B, zA,B � {zi,j : i ∈ A, j ∈ B}, into the global
coordinate frame, using the module locations given by
the partial solution x∗A; similarly for modules B. This
procedure yields two sets of points p = {pi} and
q = {qi}, such that pi and qi are locations of matching
observations in the global coordinate frame. Recall that
the likelihood is maximal when sensors are in close
proximity; thus, an effective initialization is to hold the
relative locations of modules fixed within each cluster
A,B, and compute the optimal rigid body transform
between the clusters:

arg min
R∈SO(d),t∈Rd

∑
k

‖pk − (Rqk + t)‖22 , (5)

where R is the rotation matrix (in 2D or 3D) and t is
the translation vector. The optimal rigid body alignment
(5) can be computed with closed-form solution in time
linear in the number of observations between A and
B [13]. This procedure yields an initial estimate of the
locations of all modules, x0

V . The initial estimate is
then refined using iterative methods, such as conjugate
gradient descent or a quasi-Newton method.

1We selected binary partition, since as discussed below, the solutions
between two clusters can be merged very efficiently.

Algorithm 1 NormCutLocalize(G, V )
1: if V is sufficiently small then
2: compute argmax p(xV |zV ) using local heuristics
3: else
4: Compute the normalized cut (A,B) =

NormCut(G)
5: x∗A ⇐ NormCutLocalize(GA, A)
6: x∗B ⇐ NormCutLocalize(GB , B)
7: p ⇐ transform the observations zA,B into the

coordinate frame, given by x∗A.
8: q ⇐ transform the observations zB,A into the

coordinate frame, given by x∗B .
9: Compute the optimal rigid alignment R, t:

arg min
R∈SO(d),t∈Rd

∑
k

‖pk − (Rqk + t)‖22 ,

10: Let x0
V = (x∗A, Rx

∗
B + t).

11: x∗V ⇐ argmax p(xV |zV ), starting from x0
V

C. Scaling Up the Solution

While the normalized cut formulation yields an effec-
tive sequence in which observations should be incorpo-
rated, computing the exact normalized cut is costly and
dominates other operations. Specifically, the cost of the
rigid alignment is linear in the total number of obser-
vations, whereas the complexity of computing a single
normalized cut is O(|V |3/2), where |V | is the number
of nodes [11]. A standard method to decrease the
computational complexity is to compute an abstraction of
the graph, using a simpler clustering algorithm, such as
k-means [11]. In particular, in image segmentation, this
procedure amounts to computing an over-segmentation
of the image. The normalized cut is then computed on
a smaller graph G′, where each node of G′ corresponds
to a cluster of nodes in the original graph G.
Compared to other clustering tasks, the clustering task

in localization is simpler in two ways. First, unlike in
applications, such as image segmentation, where shifting
the cut can adversely affect the visual quality of the
segmentation, the clustering here is only used as a
heuristic, and offsetting the cut does not substantially
decrease the quality of location estimates. Furthermore,
since the connectivity graph G has unit edge weights,
the cut value itself increases at most linearly (in 2D)
or quadratically (in 3D) in the number of hops away
from the optimal cut. Therefore, we have found that it
is often sufficient to partition the graph greedily into a
fixed number of components. As discussed in Section
VI, using as few as twenty components yields accurate
solutions (the actual number of needed components will
depend on the amount of uncertainty in the ensemble).
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level k

1. Abstraction 2. Normalized cut 3. Alignment

level k+1

4. Refinement

level k − 1

Fig. 4. Control flow for level k of the distributed implementation

V. DISTRIBUTED LOCALIZATION

While centralized localization in a self-reconfigurable
modular robot is useful, a distributed localization is
much more appealing, since it can significantly reduce
the communication cost, enables online control, and
avoids a centralized point of failure. In this section, we
propose a distributed version of Algorithm 1 that uses
a combination of data aggregation techniques and local
refinement steps to compute each module’s own location.
In combination with a declarative programming language
[14], we obtain a fully executable distributed solution.

A. Localization through Aggregation and Dissemination

Our distributed solution mirrors the operations of the
centralized algorithm. Figure 4 summarizes the control
flow for one level of the algorithm execution. The first
three steps – graph abstraction, normalized cut, and
rigid body alignment – use data aggregation techniques
and perform key steps of the computation at the group
leader. Note that the gradient of the log-likelihood (2)
decomposes linearly over the nodes of the cluster and
their neighbors. Therefore, the iterative refinement step
can be performed locally, without global coordination.
In order to compute the graph abstraction, we use a

random sampling strategy that partitions the graph into
a set of connected subgraphs, centered around randomly
chosen leaders. Each node elects itself as a leader with a
small probability, and the nodes greedily join the nearest
leader (as measured by the hop-count). The description
of the abstracted graph is then aggregated to a single
node that computes the normalized cut using a standard
centralized implementation. Since we need to perform
normalized cut only on small graph abstractions, a cen-
tralized implementation is sufficient. Alternatively, one
could use a distributed algorithm based on decentralized
power iteration. [15]
A key step in Algorithm 1 is computing the optimal

rigid body alignment between two sides of the partition.
While, at first glance, it is not clear how to distribute
this step, a closer look at the method in [13] reveals that
the method only depends on the first- and second-order
statistics of the points {(pi, qi)} in Equation 5. These
statistics can be aggregated from the boundary towards
the group leader. The leader then computes the optimal
transform and disseminates the result. Since the aggre-
gated information depends only on the dimensionality of

the aligned points (2 or 3), rather than their count, the
communication cost of aggregating and disseminating
the optimal transform is small.

B. Declarative Implementation using Meld

The distributed algorithm described in the previous
section presents a number of implementation challenges.
Unlike simple message-passing style inference algo-
rithms found commonly in literature [16], our localiza-
tion approach uses multiple aggregation and dissemina-
tion steps that require both local and non-local commu-
nication across the ensemble and operate in asynchrony.
These steps rely on a number of data structures, used
to represent the graph, the location, and the rigid body
transform statistics. Due to the recursive nature of the
algorithm, the implementation may need to maintain
parallel data structures for all of the concurrently active
levels. These challenges make it tedious to implement
the algorithm in a standard message-passing framework.
In this section, we briefly outline our implementation
that uses Meld [14], a logical, declarative, high-level
programming language for modular robots.
Meld is a declarative language with syntax similar to

Prolog. A Meld program consists of rules that specify
sufficient preconditions to derive new facts from existing
ones. A key benefit of Meld is that it lets the programmer
focus on the logical, information processing aspects of
an algorithm, while automatically taking care of the
mechanics of distributed programming, such as com-
munication. For example, a simple distributed spanning
tree algorithm can be specified in two rules: a rule that
determines the root of the tree, and a rule that lets a
node join a tree that extends to one of its neighbors.
In a similar manner, Meld simplifies implementation of
other distributed data structures.
We found that many features of Meld fit well with

the needs of our algorithm, but also exposed some
drawbacks of our approach. The language let us naturally
represent the graph abstraction process and aggregate
and disseminate sufficient statistics for the rigid align-
ment. The results of different phases were easily chained
together. Furthermore, when intermodule connections
were lost or network layout changed, Meld was able to
automatically recover, recomputing the relevant portions
of these distributed data structures and rerunning parts
of the localization algorithm. On the downside, Meld’s
declarative programming model made it more difficult
to express certain imperative sequences and loops. More
fundamentally, a change in or removal of one fact
(for example, the origin of the coordinate system) may
trigger the removal and subsequent rederivation of a
large number of other facts. This drawback is inherent
to our localization algorithm and is subject to ongoing
research.
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(a) solid (b) sparse (c) open

Fig. 5. Scenarios used in our experiments. The scenarios were
generated by settling randomly inserted modules in a gravitational field.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results that
illustrate both the centralized and the distributed aspects
of our solution. We generated input scenarios with
a C++ simulator [17] that models IR sensing and
physical interactions between the modules. Each module
in the simulation had 12 IR transceivers (colocated
emitter/detector pairs), whose IR response was modeled
according to an inverse-square law, similar to the model
in [18]. The threshold for detecting observations between
a pair of neighboring nodes was set to 20 per cent of
the peak intensity. At this setting, a sensor can report
a connection even if the modules are not in a physical
contact and if the transmitter and the receiver are not
perfectly aligned.

A. Scenarios

We constructed both 2D and 3D test ensembles.
The 2D ensembles were generated by randomly settling
simulated spheres under a simulated gravity field into
a fixed container of the desired overall shape. The re-
sults were configurations with realistic, irregular, largely
amorphous structures. Several of these configurations,
illustrated in Figure 5 mimic planar slices of a 3D
shape capture scenario [4]. Each shape in Figure 5 was
instantiated ten times, with different initial velocities and
locations of the modules, allowing us to average results
across repeated runs using configurations very similar
in overall shape but where module connectivity and
spacing varies. The 3D test ensembles were generated
by rasterizing 3D outlines (defined by OBJ files from
various shape libraries) into a designated target lattice,
either hexagonal-close-packed or cubic.

B. Scalability

In the first experiment, we evaluated the performance
of the proposed method as the number of modules in
an ensemble increases. We selected the structured triple
scenario in Figure 5(b) and formed a set of progressively
larger ensembles. At each scale, the ensemble retains the
same overall shape and the proportions, but the number
of modules that form the shape increases. We then run
Algorithm 1 such that, at each level of the hierarchy,
the estimate x∗A reaches a fixed level of accuracy, as
measured by the norm of the gradient of the likelihood
function at x∗A. This procedure ensures that each estimate
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Fig. 7. The location RMS error
for the triple scenario with 2000
modules, when using the normal-
ized cut approximation in Sec-
tion IV-C. The horizontal dashed
line indicates the fidelity of the
solution, obtained with exact nor-
malized cut.

x∗A is sufficiently accurate, before it is used at the higher
level. Figure 6 shows the average number of iterations in
preconditioned conjugate gradient descent as a function
of the number of modules. We see that the number
of iterations, needed to attain the same accuracy (as
measured by the gradient norm), increases very slowly.

C. Sensitivity to Abstraction

In the second experiment, we evaluated the sensitivity
of the proposed localization method to errors, introduced
by performing normalized cut on the abstracted, rather
than the original connectivity graph. We took the struc-
tured scenario in Figure 5(b) with 2000 modules. Fig-
ure 7 shows the root mean square (RMS) error as we vary
the number of nodes in the abstraction of the connectivity
graph (since we controlled the maximum diameter of
clusters, rather than their count, the displayed node count
is approximate). In order to account for the overlap,
introduced by the objective (1), we uniformly scale the
locations of the modules, so that the average spacing
equals the module diameter. Then, using the ground truth
locations of the modules, we compute an optimal rigid
alignment and report the error for the aligned solution.
We see that the performance of the proposed localization
method is insensitive to abstraction errors: with 20 or
more nodes in the abstracted graph, the approach yields
a sufficiently small RMS error. These results suggest that
small graph abstractions provide meaningful results and
can be analyzed at each leader node centrally.

D. Performance in 3D

In the third set of experiments we extended the
algorithm to three dimensions, using a quaternion rep-
resentation for each catom’s 3D orientation rather than
the scalar orientation parameter used in the 2D case.
Since the quaternion may become unnormalized in the
process of gradient descent computations, we implicitly
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(a) incremental (b) SDP relaxation (c) our solution

Fig. 8. Example results using three algorithms on the triple scenarios.
Lower images reflect results after additional iterative refinement steps.

(a) incremental (b) SDP relaxation (c) our solution

Fig. 9. Example results using three algorithms on the open scenarios.
Lower images reflect results after additional iterative refinement steps.

normalize the quaternion in the observation model (1)
and in the corresponding gradient.
We generated lattice-bound test ensembles from var-

ious 3D outlines. (The lattice-bound property of these
ensembles was due to limitations of our ensemble-
generation code.) We simulated spherical modules each
with 50 sensors scattered across their surfaces. Despite
the larger number of sensors when compared to the 2D
case, the available angle constraints in the 3D test cases
were generally much weaker. We found that our algo-
rithm was capable of determining positions in these 3D
tests very accurately, within 1 module radius. Figure 1
shows an example of the results obtained on a large 3D
scenario with 8008 modules.

E. Comparison with Prior Work

In the fourth set of experiments, we compared the
performance of the proposed algorithm to Euclidean
embedding methods, used in wireless sensor network
localization, as well as simpler incremental heuristics.
Figures 8 and 9 show examples of how incremental
and semidefinite programming approaches qualitatively
perform poorly compared to our algorithm, even after
applying significant number of iterative refinement steps.
SDP in particular suffers from overestimation of dis-
tances, and artifacts due to projection to a 2D space from
a manifold in a higher dimensional space.
Quantitatively, we evaluated the following methods:

(i) classical multi-dimensional scaling [12], (ii) the in-
equality formulation of regularized semidefinite pro-
gramming [9], (iii) the simpler incremental approach,
discussed in Section III-B, (iv) a simple hierarchical
approach that merges pairs of clusters bottom-up, in
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Fig. 10. RMS error of the location estimates. (a) Global RMS error,
averaged over all modules. (b) RMS error of modules relative to their
neighbors. Here, we greedily partition the ensemble into connected
regions with diameter of 6 modules or less and compute the RMS
error using the optimal rigid alignment for each region.

the order given by their algebraic connectivity, and
(v) the proposed method, using exact normalized cut.
We perform repeated experiments on the scenarios in
Figure 5 with 1000 modules. The initial solution, ob-
tained by each method is refined with 300 iterations of
preconditioned conjugate gradient descent.
Figure 10 shows the average RMS error for each

scenario. We see that approaches, based on Euclidean
embedding (classical MDS, regularized SDP) generally
do not perform very well in this setting, especially for the
sparse version of the triple scenario and the large open-
loop scenario. For classical multi-dimensional scaling,
the error results from approximating true distances with
hop-count; for regularized SDP, the errors come either
from the SDP relaxation or the underlying solver. The
incremental and simple hierarchical approaches perform
better, but are outperformed by our normalized cut
formulation on the scenarios with non-homogeneous
structure (triple, sparse). It is worth noting that the
Euclidean embedding methods are substantially more
computationally expensive: an optimized implementation
of a state-of-the-art SDP relaxation method [10] takes 5-
10 minutes to run on an input with 5000 nodes, whereas
the Matlab implementation of our hierarchical algorithm
runs in less than a minute.

F. Distributed Results

Finally, we evaluate the message complexity of the
distributed implementation. Figure 11 shows the average
number of messages sent by each module as a function of
the ensemble size. The figure confirms that the number of
messages per module required by the algorithm increases
only logarithmically in the total number of modules in
the ensemble. Thus, the implementation scales to large
ensembles. Figure 12 shows the split of the messages
among different components of the algorithm for two
ensemble sizes. Interestingly, the messages sent are
dominated by the gradient descent. In particular, the
extra work done to determine the normalized cut is small
compared to the cost of iterative refinement.
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Procedure / Test case 5× 5× 5 10× 10× 10
Neighbor detection 0.5% 0.3%
Graph abstraction 7.7% 7.3%
Normalized cut 6.4% 6.5%
Rigid alignment 9.7% 9.5 %
Gradient descent 75.8% 76.3 %

Fig. 12. The relative number of messages sent by each component.

VII. DISCUSSION AND FUTURE WORK

In this paper, we examine large-scale localization in
modular robot ensembles using uncertain, local observa-
tions. We formulate internal localization as a probabilis-
tic inference problem and introduce a novel approach
which hinges on selection of an effective ordering of
observations using a normalized cut criterion. In com-
bination with closed-form solutions for rigid alignment
and simple graph abstraction scheme, this approach leads
to accurate, scalable solutions. We perform an extensive
evaluation of our proposed approach on a test suite of
realistic 2D and 3D configurations with up to 10,000
nodes and demonstrate that our approach outperforms
both recent methods using Euclidean embedding and
simpler heuristics. Finally, we describe a fully distributed
implementation of our algorithm that computes the re-
sults by sending only a few messages between the nodes.
While this paper goes a long way towards robust

internal localization, there are some questions left to
be answered. For example, it would be interesting to
examine the merits of fast iterative methods developed
for SLAM, such as [19]. These methods may make
it possible to quickly recover from small changes in
the ensemble and cope with dynamic settings. More
broadly, one may hope to combine the normalized cut
heuristic with additional structure in the problem to
obtain a fully probabilistic solution. Such an approach
would recover not only a point estimate, but also its
uncertainty. Addressing both these questions would lead
to truly robust solution to internal localization in modular
robotics and drive research in other fields.
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Abstract—In this paper we focus on the construction of
distributed formation control laws that permit the control of
individual mobile ground robots in a formation to a desired
distribution with minimal knowledge of the global state. As in
previous work, we consider an abstraction of the team that
is derived from a shape descriptor of the ensemble and the
position and orientation of the ensemble. We consider the control
of the abstract state with decentralized control laws which are
independent of the number of agents. However, we incorporate an
important departure from previous work by explicitly modeling
the shape of the robot, the geometric, non-interpenetration
constraints and nonholonomic, kinematic constraints. Further,
we propose a motion planning technique to plan motions for
ensembles of robots and a technique for the splitting and merging
of groups and subgroups. We demonstrate the effectiveness of the
algorithms on a team of differential drive robots in simulation
and on real hardware.

I. INTRODUCTION

Effective strategies for controlling large teams of robots in
complex environments are becoming increasingly relevant as
the development of pervasive embedded computing, sensing,
and wireless communication enables the application of multi-
agent systems to challenging tasks such as environmental
monitoring [1], surveillance and reconnaissance for security
and defense [2], and support for first responders in a search
and rescue operation [3]. In such scenarios, it is necessary to
apply control strategies that allow robots to adapt to differ-
ent environments and execute complex tasks, while avoiding
collisions. Further, robot controllers must be robust to permit
robot failures or changes in the team size.
Several methodologies exist to control large teams of robots.

One way of reducing the complexity of the controller is to
require the team to conform to a geometric rigid virtual struc-
ture [4]. Most of the recent works on stabilization and control
of virtual structures model formations using formation graphs
[5]. The controllers guaranteeing local asymptotic stability of a
given rigid formation can be derived using standard techniques
such as input-output linearization [6], input-to-state stability
[7], Lyapunov energy-type functions [8], and biologically-
inspired artificial potential functions [9]. Virtual structures
unnecessarily constrain the problem, making this approach
inappropriate for tasks in complex environments. Additionally,
graph formulations and leader-follower architectures require
identification and ordering of robots, which makes the overall
architecture sensitive to failures.

The problem of controlling the trajectory of the group and
shape of a large team of point robots was studied in [10],
[11]. The authors defined an abstraction of the team that
has a product structure of the Euclidean group and a shape
space, and is independent of the number of robots. The group
captures the pose of an ellipsoid spanning the team with
semi-axes given by the shape variables. The overall abstract
description is invariant to robot permutations. In addition, the
model and the formulation is invariant to left actions of the
group. This description allows one to define and control the
behavior of the abstract state or the abstract description of the
team at a high level, with automatic generation of individual
robot control laws based only on the feedback of this abstract
state. However, the control laws do not account for the physical
constraints of the robots and ignore inter-agent interactions.

Coverage control schemes proposed by [12], [13] and their
variants have a similar flavor. They enable large groups of
robots to use local information to distribute themselves so
that a suitable integral over this distribution is maximized.
However, this formulation does not lend itself to the control
of the position and orientation of the overall team.

In this paper we focus on a basic problem, the control of
the position and orientation of a formation of mobile robots
and the adaptation of the shape to the environment. Two
related problems, the planning of the shape and trajectory of
the ensemble and the development of effective coordination
strategies to split the team into subgroups and to merge two
subgroups, are also considered. We view these problems and
their solutions to be building blocks that can enable a robot
team to navigate an environment, adapting to the constraints
imposed by obstacles in the environment. In contrast to most
previous work we model the physical shape of the robot and
consider controllers that are guaranteed to avoid collisions
between the robots. Although the approach assumes global
observation of the abstract state, it is possible to develop an
estimator for individual robots to estimate this abstract state
[14]. However, in the context of our work, we emphasize the
control of the team of robots and decouple the challenges of
considering the estimation problem. Further, we believe that
some element of centralization is essential to command a large
team of robots.
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Fig. 1. The frame B fixed to the group of robots moves with respect to the
inertial frame.

II. BACKGROUND
This paper builds on the previous work in [10], [11], [15]. In

these papers, an abstraction map is used to transform the high-
dimensional state space into a smaller, tractable state space
which captures only the position, orientation, and shape of the
formation. The main advantages of this abstract representation
are: (a) its dimension is independent of the number of robots
in the team; and (b) it lends itself to planning in a lower
dimensional space.
The state space of the N -robot system is constructed by

creating N copies of Qi, the state space of the ith robot:

Q = Q1 ×Q2 × . . .×QN .

The abstract space, M , whose dimension is smaller and
independent of the dimension of Q, is defined by a smooth,
differentiable map

φ : Q→M, φ(q) = x, (1)

where φ is a mapping of the higher-dimensional state q ∈ Q to
the lower-dimensional abstract state x ∈M . In this paper, we
consider kinematic robots in the plane (see [11] for a treatment
of the three-dimensional case). Thus, q reflects the collection
of the positions of the robots, q = [q1, . . . , qi, . . . , qN ]T

where qi ∈ R2.
As in previous work, the shape is modeled by characterizing

the distribution of robots about the mean position. The centroid
of the group is given by:

μ =
1
N

N∑
i=1

qi.

We can define a local frame, B, whose origin is at the centroid,
as shown in Fig. 1, by requiring the orientation to be such
that the coordinates of the robots in this frame, pi = [xi, yi],
satisfy

N∑
i=1

xiyi = 0.

The distribution of robots in this local frame can be approxi-
mated by the inertia tensor (assuming uniform unit mass) or
by a matrix of second moments:

I =
N∑
i=1

pi p
T
i =

[
I11 0
0 I22

]
.

We define two shape variables proportional to the diagonal
elements:

s1 = κI11, s2 = κI22,
where κ �= 0. Choosing κ = 1

N−1 gives the shape variables
a geometric interpretation. They become the semi-major and
semi-minor axes for a concentration ellipse for a group of
robots whose coordinates in the plane are chosen to satisfy a
normal distribution. Alternatively, the shape variables may be
defined such that abstract shape is described by a bounding
rectangle as discussed in [10].
The abstract description of the team of robots, x, is given

by the position and orientation of the team, g, and the shape
s. In this paper, we take g to be the position and orientation
of B:

g =

⎡
⎣ cos θ − sin θ μ1

sin θ cos θ μ2

0 0 1

⎤
⎦

where μ = (μ1, μ2) are the components of the centroid in the
inertial frame and the shape s = (s1, s2). The map φ defined
in this way can be easily shown to be a submersion [10].
The abstract space,M , is naturally decomposed into a shape

space, S, and a Lie group, G, which in our case is SE(2).
Since φ is a submersion, it follows that there is a unique ẋ
for every q̇ but not the other way around.
Using the natural kinetic energy metric on Q, it is possible

to derive the optimal velocity (tangent vector) at any point q ∈
Q for a desired ẋ at the corresponding point x = φ(q) ∈M .
It was shown in [10] that this input u�, for the system can be
found by considering the time derivative of the transformation
described by (1),

dφq̇ = ẋ. (2)

From (1), the definitions of (μ, θ, s1, s2), and algebraic
simplification, the transformation dφ becomes

dφ = κ

⎡
⎢⎢⎢⎣

1
κN I2 · · · 1

κN I2
(q1−μ)

T

s1−s2
H3 · · · (qN−μ)

T

s1−s2
H3

(q1 − μ)TH1 · · · (qN − μ)TH1

(q1 − μ)TH2 · · · (qN − μ)TH2

⎤
⎥⎥⎥⎦ . (3)

Here H1, H2, and H3 are defined by

H1 = I2 +R2E2, H2 = I2 −R2E2, H3 = R2E1,

where I2 is the 2× 2 identity matrix and

E1 =
[
0 1
1 0

]
, E2 =

[
1 0
0 −1

]
.

In [10] (and the extension to three-dimensions in [11]) it
was shown that the minimum-energy solution satisfying (2)
is obtained using the Moore-Penrose Inverse:

u� = dφT(dφdφT)−1ẋ. (4)

Further algebraic simplification of (4) using (3) results in the
control law for each individual agent, ui = q̇i,

u�i = μ̇+
s1 − s2
s1 + s2

H3(qi − μ)θ̇

+
1

4s1
H1(qi − μ)ṡ1 +

1
4s2

H2(qi − μ)ṡ2.
(5)
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Although the description of shape variables is fairly simple,
it is generalizable to include higher moments (beyond second
order). However, the development of minimum-norm control
inputs, such as (5), are harder with more general shapes.
In the next section, we will pursue a slightly different

formulation by writing these equations in the moving frame
B.

III. PROBLEM FORMULATION

A. Dynamics in the moving frame

At any point x = (g, s) ∈ M in the abstract space, the
derivative can be written as:

ẋ =
[
ġ
ṡ

]
=

[
g 0
0 I2

] [
ξ
σ

]
. (6)

ẋ = (ġ, ṡ) is the time derivative of the abstract space in the
inertial frame while ζ = (ξ, σ) is the time derivative in the
moving frame B, and

Γ =
[

g 0
0 I2

]
is a non-singular 5×5 transformation matrix. If νi is the robot
velocity in the frame B so that ui = Rνi,

κ

⎡
⎢⎢⎣

I2
κN · · · I2

κN
1

s1−s2
p1
TE1 · · · 1

s1−s2
pN

TE1

p1
T(I2 + E2) · · · pN

T(I2 + E2)
p1
T(I2 − E2) · · · pN

T(I2 − E2)

⎤
⎥⎥⎦
⎡
⎢⎣ ν1
...
νN

⎤
⎥⎦ =

[
ξ
σ

]
.

The minimum-energy solution (5) can be written as:

ν� = dφT(dφdφT)−1ζ, (7)

with the simplification:

ν�i =
[
ξ1
ξ2

]
+

s1 − s2
s1 + s2

E1piξ3

+
1

4s1
(I2 + E2)piσ1 +

1
4s2

(I2 − E2)piσ2.

(8)

The control law defined by (8) does not consider inter-agent
collisions or the spatial size of individual robots. Although [15]
proposed an extension that resolved collisions, the strategy
requires communication and negotiations during collisions,
which adds unnecessary complexity. In the next subsection
we address an approach in which collision avoidance is done
without explicit arbitration.

B. Collision avoidance

The separation distance between the reference points on
robots i and j is:

δij = ‖pi − pj‖.

To avoid collisions between robots, we define a safe separation
distance between two robots:

ε = 2ρ+ εs, (9)

where ρ is the radius of each robot and εs is a specified safety
region.

We define the neighborhood Ni as the set of all robots
sensed by or communicating with robot i such that i is able
to gain knowledge of its neighbors’ positions and velocities,
{pj , νj}, ∀j ∈ Ni. To ensure that the robots do not collide,
we require that

(pi − pj) · (νi − νj) ≥ 0, (10)

for all j ∈ Ni such that δij ≤ ε.

C. Asymptotic convergence to a desired abstract state

In the absence of collisions, the easiest way to guarantee
convergence to a time-invariant abstract state xdes is to require
the error x̃ = (xdes − x) to converge exponentially to zero:

ẋ = K x̃,

or equivalently,
ζ = Γ−1 K x̃, (11)

where K is any positive-definite matrix, and use (7, 8) to
obtain robot velocities that guarantee globally asymptotic
convergence to any abstract state.
We next discuss the first contribution of this paper, where

we propose a control law that guarantees convergence to an
abstract state satisfying certain conditions, while guaranteeing
safety (i.e., there are no inter-agent collisions).

IV. CONTROL WITH COLLISION AVOIDANCE

A. Monotonic convergence

We relax the requirement of exponential convergence to an
abstract state and replace it with a slightly different notion of
convergence in order to accommodate the safety constraints in
(10). Specifically instead of insisting on the minimum-energy
solution, (7), we find the solution closest to the minimum-
energy solution satisfying the safety constraints.
First, we require that the error in the abstract state decrease

monotonically:
x̃TKẋ ≥ 0. (12)

Substituting (2) into (12), this inequality reduces to

x̃T K Γ

⎡
⎢⎢⎣

I2 · · · I2
1

s1−s2
p1
TE1 · · · 1

s1−s2
pN

TE1

p1
T(I2 + E2) · · · pN

T(I2 + E2)
p1
T(I2 − E2) · · · pN

T(I2 − E2)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ν1
ν2
· · ·
νN

⎤
⎥⎥⎦ ≥ 0.

(13)
A sufficient condition to satisfy this monotonic convergence
condition in (13) is that each robot select inputs that satisfy:

x̃T K Γ

⎡
⎢⎢⎣

I2
1

s1−s2
pi
TE1

pi
T(I2 + E2)

pi
T(I2 − E2)

⎤
⎥⎥⎦ νi ≥ 0. (14)

If all robots choose controls satisfying (14), the error in
the abstract state will monotonically decrease. It is useful to
show that the minimum-energy control law (8) satisfies this
inequality.
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Proposition 1. The minimum-energy control law (8) with ζ
given by (11) satisfies the monotonic convergence condition
(14).

Proof: We define gi and mi such that

mi =
[
I2,

s1 − s2
s1 + s2

E1pi,
1

4s1
(I2 + E2)pi,

1
4s2

(I2 − E2)pi

]

gi =
[
I2,

1
s1 − s2

pTi E1, pi
T(I2 + E2), piT(I2 − E2)

]T
.

Substituting (8) and (11) into the left hand side of (14) gives
the quadratic form:

x̃T K Γ [gi mi] Γ−1 K x̃.

The 5× 5 matrix [gi mi], although asymmetric, can be shown
to be positive semi-definite with the two non-zero eigenvalues
to be given by:

λ1 = 1 +
‖pi‖2
s1 + s2

and λ2 = 1 +
p2i,x
s1

+
p2i,y
s2

.

Since K is chosen to be positive definite the inequality (14)
is satisfied.

B. A safe minimum-energy control law

In this subsection we derive a decentralized control law that
selects a control input as close as possible to the minimum-
energy controls while satisfying the monotonic convergence
inequality and the safety constraints.

Proposition 2. Equation (15) is a decentralized control law
that selects a unique control input that has the smallest energy
instantaneously while satisfying the monotonic convergence
inequality and the safety constraints.

νi = argmin
ν̂i∈U

‖ν�i − ν̂i‖2, s.t. (10, 14) (15)

Proof: The constraints in (10, 14) provide the safety guar-
antees and the monotonic convergence condition. The function
being minimized is the discrepancy from the minimum-energy
input. Since the inequality constraints are linear in νi and
the function being minimized is a positive-definite, quadratic
function of νi, (15) is a convex, quadratic program with a
unique solution. Further, since each robot only relies on its
own state and knowledge of the error in the abstract state, it
is a decentralized control law.

Convergence properties of (15)
To investigate the global convergence properties, we intro-

duce the Lyapunov function

V (q) =
1
2
x̃Tx̃.

Since the solution of (15) must satisfy the inequality (14), we
know that x̃TKẋ ≥ 0. If K is chosen to be diagonal with
positive entries, this condition also implies x̃Tẋ ≥ 0. In other
words,

V̇ (q) = −x̃Tẋ ≤ 0.

From [10], we know that q is bounded given that x is
bounded and that V (q) → ∞ as ‖q‖ → ∞. Further, V (q)
is globally uniformly asymptotically stable. Therefore, from
LaSalle’s invariance principle, we know that the abstract state
will converge to the largest invariant set given by x̃Tẋ = 0.
From (2), we know that ẋ = 0 only when ν = 0. Thus the
invariant set is characterized by the set of conditions that lead
to the system of inequalities given by (10, 14) to have ν = 0
as the only solution.

Proposition 3. For any desired change in the abstract state
x̃, subject to the condition x̃4 ≥ 0, x̃5 ≥ 0, (i. e., a condition
where the size of the shape of the formation is not decreasing),
there is a non-zero solution to the inequalities (10, 14).

Proof: Consider the solution given by the minimum-
energy control law (8). In component form,

ν�i =
[
ξ1 + s1−s2

s1+s2
yiξ3 + xi

4s1
σ1

ξ2 + s1−s2
s1+s2

xiξ3 + yi
4s2

σ2

]
.

It is easy to see that this satisfies the collision constraints (10)
for every pair of robots (i, j):

[(xi − xj) (yi − yj)]
[
ν�i,x − ν�j,x
ν�i,y − ν�j,y

]
≥ 0.

As shown earlier in Proposition 1, (8) also satisfies the
monotonic convergence inequality.

Remark 1. It is clear from the above proof that there are no
guarantees when the shape in the abstract state is shrinking
in area. If x̃4 < 0 or x̃5 < 0, there may not be a non-zero
velocity vector ν that satisfies the inequalities (10, 14). It is
only in this condition that the system will reach an equilibrium
away from the desired abstract state.

We next discuss the second contribution of this paper,
where we propose an energy metric for motion planning of
a deformable ellipse. Such a metric permits the computation
of optimal motion plans in complex environments.

V. MOTION PLANNING IN THE ABSTRACT SPACE

The abstract representation of the team of robots permits
the planning of motions that only require consideration of an
abstract state space of fixed dimension, rather than one that
scales with the number of robots. In this section we consider
the problem of generating reference trajectories in the abstract
space.
We start by defining a metric on M . On SE(2), we can

define a Riemannian metric as a bi-linear form derived by an
inner product on se(2). Given two twists {ξ1, ξ2} ∈ se(2),
we can define [16]:

< ξ1, ξ2 >= ξT1 W ξ2,

where W is a positive definite matrix. At an arbitrary element
g ∈ SE(2), the inner product between two velocities or
tangent vectors ġ1, ġ2 is obtained by left translation:

< ġ1, ġ2 >g =< g−1ġ1, g
−1ġ2 >e,
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where g−1ġi are tangent vectors at the identity element e
(the 3×3 identity homogeneous transformation) and therefore
lie in se(2). A metric defined in this way is a left-invariant
Riemannian metric. Following [17], we can use the inertia
tensor of a rigid body and its kinetic energy to define Wg:

Wg =
[
mI2 0
0 I11 + I22

]
,

in the body-fixed coordinate system B.
The above treatment was for a rigid shape. However, since

M = G × S is a product space, we treat the shape space
independently. We assume a constant metric Ws = αI2 to
model the “cost” in changing the shape. Thus the rate of
change of the abstract shape in B given by ζ has the norm:

‖ζ‖ =
1
2
ζT

[
Wg 0
0 Ws

]
ζ, (16)

which is well-defined everywhere on M .
Realistically one must also model the potential energy

associated with deforming the shape. The simplest approach
to creating an abstract model for potential energy storage is to
think of the expansion or contraction as a reversible, adiabatic
process in which no energy is lost. Compression results in an
increase of internal energy which can then be recovered during
expansion. It is well known that in such processes the pressure
p and the volume v are related by the ratio of specific heats
γ by the equation:

pvγ = constant

and the work done to effect a change in volume from v1 to
v2, and therefore an increase in internal energy, is given by:

ΔV = k

(
1

vγ−1
2

− 1
vγ−1
1

)
,

where k is a constant. In the plane, we can use the area of the
ellipse (with a unit depth) instead of volume, which we know
to be π

√
s1s2. We define a reference shape s0(N) as a circular

shape for N robots with zero potential energy. It is intuitively
clear that the radius of a zero-energy circular shape, r0(N),
must increase with N . In this paper, we take r0(N) = Nε

2 .
The potential energy associated with any shape s ∈ S is given
by:

V (s) = β

(
1

(s1s2)
γ−1
2

− 1
(r20(N))γ−1

)
, (17)

where β is a constant. Thus, the total energy associated with
any motion at any configuration is given by:

E(g, s, ζ) =
1
2
ζT

[
Wg 0
0 Ws

]
ζ + V (s). (18)

Equation (18) gives us a principled approach to determine the
cost of changes in configuration using a kinetic and potential
energy with two constants α and β. It also allows us to
formulate trajectory generation and motion planning problems
as problems of finding geodesics.

(a) (b)

Fig. 2. Two motion plans depict the effects of changing the radius of zero-
energy, r0, from r0 = 1 (Fig. 2(a)) to r0 = 5 (Fig. 2(b)). Although α =
β = 1 in both cases and the initial (red) and final (blue) abstract states are
consistent, two different optimal motion plans are computed (using a Bellman-
Ford search in a discretized abstract space). Obstacles are shown in magenta.

It is possible to split the space and derive the trajectories
for μ ∈ R2 and (θ, s1, s2) ∈ R2 × SO(2) separately in open
environments because of the product structure of the metric
(18). Instead, we propose the design of motion plans using a
discretization of the abstract space with constraints defined by
obstacles and admissible abstract states. Many discrete optimal
planning algorithms exist that permit the application of the
energy metric defined by (18) to solve the for the minimum-
energy path through open or cluttered environments [18].

VI. SPLITTING AND MERGING OF GROUPS OF ROBOTS

When an ensemble of robots are forced to squeeze through
constrained spaces, the only allowable shapes have small areas
and correspond to large values of internal energy V (s) as
seen from (17). Therefore we define a threshold so that when
V (s) > Vmax the group splits into two subgroups with shapes
identical to the original shape but each with half the number
of robots. This allows the group to reset its energy to a lower
level by reducing the number of constraints, while remaining
in the same configuration. Alternatively, a supervisory agent
can decide when to divide the robots into subgroups. The
formulation of Sect. IV can be applied to multiple subgroups
with the new abstraction manifold M = M1 × M2, where
Mi = Gi×Si. The only additional mechanism that is required
is a protocol for each robot to determine to which subgroup it
belongs. Clearly the motion plan for each subgroup, xdesi (t),
can be generated and this desired trajectory can be broadcast
to the group. With the feedback of the abstract state, xi, each
robot can compute its own controls with the knowledge of
the specific subgroup i to which it belongs. We propose two
different event-triggered techniques for splitting and merging
teams of robots in a decentralized and distributed manner.

A. Market-based auctioning method

Our first approach is based on the market-based auctioning
method proposed in [19] which is guaranteed to converge
in polynomial time but requires communication between the
robots. It allows a team of robots to divide into subgroups
by defining an auction determined by the desired abstract
subgroup states {xdes1 , . . . , xdesk }, and the maximum number
of agents allowed in each subgroup {n1, . . . , nk}, where k
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is the number of desired subgroups. The end result of the
auction is that all agents are associated with a subgroup and
distributed in agreement with the maximum number of agents
in each group. To ensure correctness, the algorithm requires
that N =

∑k
i=1 ni.

B. Stochastic policy for splitting

As the number of robots grows, it is beneficial to use
a mean-field model to model the distribution of robots and
develop stochastic switching rules that guarantee the desired
ensemble properties [20]. As N →∞, the ensemble properties
of the group of robots using the stochastic switching rules
converge to the desired properties. In other words, if each robot
uses a probability distribution to select one subgroup versus
the other, the ensemble properties of the group can be inferred
from this probability distribution. From a practical standpoint,
a split between k subgroups with {n1, . . . , nk} robots can be
implemented approximately by each robot preferring group i
with probability pi = ni

N .

C. Merging of groups

The merging of separate groups is trivial in the proposed
framework using the controller (15). The redefinition of x̃ to
account for the desired merged abstract state results in a single
group, while accounting for inter-agent collision avoidance.

VII. SIMULATION AND EXPERIMENTAL RESULTS

The remainder of the paper is dedicated to verifying the
effectiveness of the control algorithm with collision avoidance
presented in Sect. IV. We begin by discussing implementation
details relevant to the analysis and experiment discussion that
follows.

A. Implementation Details

The control algorithm was implemented in C++ us-
ing the open-source robotics software Player, part of the
Player/Stage/Gazebo project [21]. The Player server enables
network communications between multiple robots. Gazebo is
a three-dimensional simulation environment incorporating a
dynamics engine and collision detection. Player also permits
integration with Gazebo, allowing the same code base to
be used in both simulation and experimentation on the real
hardware.
The algorithm was tested in simulation via Gazebo and on

an experimental infrastructure consisting of a team of small
differential-drive robots, an indoor tracking system for ground-
truth purposes, and a computer infrastructure to support wire-
less communication and data logging. Accurate models of the
robots were created for use in simulation to emulate the real
robots. Further, the asynchronous and distributed nature of
the hardware was emulated by creating separate execution
threads for each agent where all inter-agent communication
was accomplished through the Player server.
Although robot dynamics play a significant role when

considering inter-agent interactions, we are able to ignore these
effects due to the fact that the robot platforms use stepper

(a) (b)

(c) (d)

Fig. 3. A top view of the robot model used in both simulation and
experimentation showing the body-fixed coordinate system. P is a reference
point on the robot whose position is regulated by the vector fields (Fig 3(a)).
The convergence of a team of four robots in simulation to xdes = x
(Fig. 3(b)). The team of robots controlling to the desired abstract state
xdes = {2, 2, 0.5, 0.2, 0.1} (Figs. 3(c)–3(d)). The abstract states x and
xdes are shown in green and black, respectively. The ε radius safety region
is shown in blue, which for the differential drive robots is defined with respect
to the feedback linearization point.

motors which permit “instantaneous” changes in velocity for
sufficiently small magnitudes given the mass of the robot. We
ensure during simulation and experimentation that the control
velocities respect these thresholds.
In both simulation and experimentation, the abstract state

x (assessed using simulation data or the tracking system) and
the desired abstract state xdes were broadcast to the robots. As
the control law updates, each robot broadcasts its current pose
and velocity while listening for the pose and velocity of its
neighbors. The optimization defined by (15) is solved using
the quadratic program routines provided by the open-source
Computational Geometry Algorithms Library [22].
We consider a simple model of a point robot with co-

ordinates (x, y) in the world coordinate system. On the
differential-drive robot in Fig. 3(a), these are the coordinates
of a reference point P on the robot which is offset from the
axle by a distance l. Its velocities in the inertial frame and
moving frame B are ui and νi, respectively. The velocity of
the reference point P can be converted into linear and angular
velocities for the robot through the equations below:[

v
ω

]
=

[
cos θ sin θ
− sin θ

l
cos θ
l

] [
ẋ
ẏ

]
.

It is well-known that if a robot’s reference point is at the point
P , and if r is the radius of a circle circumscribing the robot, all
points on the robot lie within a circle of radius r+ l centered
at P . In other words, if the reference point tracks a trajectory
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(a) (b)

(c) (d)

Fig. 4. The optimal control, u�i , and ui from (15) defined in the robot’s local
frame (Figs. 4(a)–4(b)). In general, the optimal control law is the solution to
(15). However, during inter-agent interactions the resulting control varies from
the optimal solution. The linear and angular velocities resulting from feedback
linearization (Figs. 4(c)–4(d)).

(xd(t), yd(t)), the physical confines of the robot are within a
circle of radius r + l of this trajectory. This allows us to use
a geometric abstraction of a circular robot at P with a radius
ρ = r + l. By ensuring that the reference points of adjacent
robots are at least ε away as in (9), we guarantee that there
are no collisions for the real robot.

B. Simulation

In this section we present two representative trials of the
control law for collision avoidance: a basic system with limited
interactions, and a large team of robots with numerous inter-
actions. In both cases, we let K = diag(1, 1, 0.8, 0.8, 0.8),
r = 0.15m, εs = 0.1m, l = 0.1m, and the maximum linear
and angular velocities are 0.3m/s and 1 rad/s, respectively.

1) Controlling four robots with limited interactions: A
small team of four stationary differential-drive ground robots
were sent a desired abstract state (see Fig. 3). The convergence
of the controller to the desired abstract state is shown in
Fig. 3(b). A comparison of the resulting optimal control law
(5) and the collision avoidance control law (15) in the separate
kinematic controller dimensions is depicted in Figs. 4(a)–4(b).
Indeed, as stated in Proposition 1, in general the optimal
control law, u�i , is applied. However, during collisions, the
control varies from the optimal control to account for the inter-
agent interactions. The linear and angular velocities of the
first agent resulting from feedback linearization and velocity
saturation are shown in Figs. 4(c)–4(d). These interactions are
apparent after feedback linearization.

2) Controlling a team of twenty robots: The team of twenty
robots depicted in Fig. 5 demonstrates the effectiveness of
the controller in large groups to ensure collision avoidance
while controlling to a desired shape. From Fig. 5(c) it is clear

(a) (b)

(c) (d)

Fig. 5. A team of twenty robots control to xdes = {3, 3, 0.5, 1.5, 1}. A
red ε safety region indicates a state where δij < ε, but in this case ẋ = 0
(Fig. 5(b)). A comparison of ui,x from (15) and the optimal control, u�i,x
defined in the robot’s local frame (Fig. 5(c)). A comparison of ui,y to u�i,y
results in similar control variations. Although there are numerous interactions
between the agents, as depicted by the many variations of ui,x from u�i,x,
the system converges to the desired shape (Fig. 5(d)).

Fig. 6. The convergence of the team of seven robots in experimentation
to xdes. The trial represents a merging scenario where the robots were
distributed in distinct groups separated by several meters.

that numerous interactions occur between the agents and yet
the system converges to the desired shape. In general, agents
will control to a separation distance of ε since each agent is
individually computing the collision constraints (10). However,
it is possible that robots remain within the ε safety region of
other robots at the time of convergence (see Fig. 5(b)) but do
not collide since the solution to (15) when x̃ = 0 is ui = 0.

C. Experiments

The control algorithm was verified on a team of seven
nonholonomic robots. A trial run is depicted in Fig. 7. The
algorithm was tested with several trials over a variety of
desired states and scenarios with performance consistent with
the convergence shown in Fig. 6. The noise associated with
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(a) (b) (c) (d)

Fig. 7. A team of seven robots control through a series of abstract states in a corridor passing maneuver. A visualization of the experiment (following the
representation defined in Fig. 3) corresponding to the system state in Fig. 7(a) depicts the current and desired abstract states, robot states, and corridor location
(Fig. 7(b)).

the estimation of the abstract state via the localization system
is observable in the smoothness of x̃ in Fig. 6.

VIII. CONCLUSION AND FUTURE WORK
We presented solutions to the problem of planning and

controlling the position, orientation, and shape of a formation
of a team of robots. In contrast to most previous work, we
model the physical shape of the robot and consider controllers
that are guaranteed to avoid collisions between the robots.
We also derive software abstractions that lend themselves to
implementation on real platforms and to experimentation. In
addition, we present a metric for the planning of deformable
shapes and trajectories of the ensemble and the development
of effective coordination strategies to split the team into
subgroups and to merge subgroups. We view these problems
and their solutions to be building blocks that can enable a
robot team to navigate an environment adapting to the con-
straints imposed by obstacles in the environment. Simulation
and experimental results demonstrate the effectiveness of the
control algorithm when applied to nonholonomic robots.
As a direction of future research, we are interested in

pursuing time-parameterized trajectories in the abstract space.
We have also assumed the existence of a global observer in
past work and are currently considering distributed estimation
algorithms to relax this requirement.
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Stochastic Recruitment: A Limited-Feedback Control Policy for
Large Ensemble Systems

Lael Odhner and Harry Asada

Abstract—This paper is about stochastic recruitment, a control
architecture for centrally controlling the ensemble behavior of
many identical agents, in a manner similar to motor recruitment
in skeletal muscles. Each agent has a finite set of behaviors, or
states, which can be switched based on a broadcast command. By
switching randomly between states with a centrally determined
probability, it is possible to designate the number of agents
in each state. This paper covers stochastic recruitment policies
for the case when little or no feedback is available from the
system. Feed-forward control policies based on rate equilibria
are presented, with an analysis of the performance trade-offs
inherent in the problem. Minimal feedback control laws are also
discussed, and a policy is presented which minimizes the expected
convergence time of the system given only the ability to halt the
system when the desired output has been achieved.

I. INTRODUCTION

Finding methods for centrally controlling the collective
behavior of many identical agents is an active research topic
across diverse communities, including robotics, bioengineer-
ing, and control. Many different systems can be modeled as
a swarm of identical agents, such as bacteria, cells, robots
in a swarm, or computers in a network. In this paper, we
will explore control of a class of finite state or hybrid state
agents that we believe to be applicable to a variety of these
problems. In particular, we wish to regulate the ensemble
distribution of many agents over their discrete states, or the
fraction of agents having a particular discrete state. The
discrete states in question could be tasks performed by swarm
robots, cell migration behaviors, or switched modes governing
the time evolution of some continuous state variable. One of
the key components of the these regulatory mechanisms is
stochasticity. In biological systems, stochasticity is a ubiqui-
tous phenomenon that can be observed in mechanochemical
cell and molecular behaviors. For example, angiogenesis cell
migration and tissue development are often treated as directed
random walks, where stochastic behaviors play key roles for
developing multi-cellular structures that meet morphological
and functional requirements [1], [2]. Natural systems are built
upon random processes, and biological systems in particular
exploit the stochastic nature of their building blocks. In
control engineering, randomness has been treated as unwanted
behavior that should be filtered out or avoided. Except for
communication technology and some of the system identifica-
tion techniques, randomness has not yet been fully exploited
as a useful concept. In general, we assume that the transition
between states can be modeled as a Markov state transition
graph whose state transition probabilities are determined by
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some input given to all agents in the system. The authors are
actively working on applying this control framework to the
problems of endothelial cell migration and artificial muscle
actuators. Figure 1 illustrates the basic system architecture.

Fig. 1. Many systems in nature can be thought of as an ensemble of
functionally similar discrete-state agents that each respond independently to
some global stimulus. The ensemble output behavior of many such agents is
the number of agents in each discrete state.

In this paper, we discuss the performance of feed-forward
control policies for controlling the number of agents in each
discrete state. If rich information usable for feedback control
is available, then many control techniques that presume full-
state knowledge can be applied. The authors have shown that
simple feedback policies can be formulated for controlling the
ensemble state distribution based on linear feedback laws [3],
expectation-based control laws [4], and dynamic programming
[5]. However, the output measurements from real systems
often provide only uncertain estimates of system state dis-
tribution. For example, a robot swarm might have limited
communication with a central control station. An artificial
muscle composed of many individual sub-units may (and
usually will) exhibit some output delay or hysteresis, so that
some estimating filter must be used to predict the individual
units’ states. Uncertainty of this form will lead to increased
uncertainty in the closed-loop behavior of the system.We will
show that we can formulate open-loop control policies that
cause the state distribution to reach a stochastic equilibrium
that is close to any desired state distribution, having well-
characterized variance. The performance of policies depending
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on minimal or no feedback provide a good bounding case
guidelines for examining the performance of closed-loop laws.
Depending on the degree of uncertainty in the state distribution
estimated from measurements, it may actually be advantageous
to use an open-loop policy instead of a closed-loop policy.

In this paper a stochastic cellular system with limited output
feedback will be formulated in its simplest form. Basic conver-
gence properties and control policy will be discussed to gain
insights into collective behaviors of stochastic cellular systems.
The framing of the problem is based on cell and systems
biology and motivated by needs in robotics and control. The
paper, however, does not aim to apply the results directly to
a speci�c area; instead the objective is to better understand
the possible regulatory mechanism that may govern a large
population of cellular agents.

II. INTRODUCING STOCHASTIC RECRUITMENT

In an attempt to investigate a regulatory mechanism that
works with limited or no feedback, we look at biological
control systems, extract key features from there, and formulate
a simple, abstract problem for detailed analysis. One striking
difference from traditional engineered systems is that bio-
logical cells are living in a wet environment, where signals
propagate through diffusion. Stimuli to the process pervasively
affect all the cells involved in the wet environment. It is not
likely that each cell receives a speci�c control signal from
a central controller. Rather, the control signal, if it exists, is
broadcast in nature.

In response to stimuli, an important property of biological
systems is that each cell’s behavior is stochastic in nature.
Although receiving the same stimuli, the cell’s response is
randomly chosen, conditioned on the environmental factors.
Endothelial cell migration, for example, each cell’s move-
ment is a random process, switching directions stochastically
[1]. Furthermore, the state transition probabilities often vary
depending on the stimuli that individual cells receive. It is
known that biochemical kinetics highly depend on temperature
and other factors, resulting in changes to state transition
probabilities. In the case of endothelial cell migration, state
transition probabilities are modulated by the stimuli each agent
receives as well as the conditions of the wet environment to
which it is exposed [2].

These stochastic behaviors of biological cells suggest a
new control methodology for engineered systems; a central
controller broadcasts signals that modulate state transition
probabilities to be used at individual agents, or directly broad-
casts state transition probabilities across the cell population.
Whichever the case, the central controller does not dictate each
agent to take a speci�c transition, but only speci�es the prob-
abilities of transition. The actual control action is up to each
cellular agent, but the collective behavior may be effectively
controlled with the central controller. This broadcast control
protocol will be useful for engineered systems, since it requires
very little bandwidth, and allows each cellular agent to be
completely anonymous.

The authors have developed several types of stochastic
broadcast control [3], [5], [6]. The major difference is that the

previous control architecture exploits feedback of aggregate
output, while this paper addresses control issues with no
feedback or limited feedback. We call this control “Stochastic
Recruitment”, which will be formally described next.

Fig. 2. Muscles are composed of many small motor units, which are either
relaxed or activated, producing force. The net power and stiffness of the
muscle depend on the number of recruited motor units.

Fig. 3. A small automaton having two states, ON and OFF , can be
commanded to transition between states with probabilities p and q.

The concept of recruitment is best explained by examining
the function of skeletal muscle. A muscle is not a homogenous
collection of individual cells; rather it is organized as a net-
work of many small motor units, which respond autonomously
to stimulus from the spinal column, as shown in Figure 2. A
command from the nervous system produces a varied level
of force by affecting the percentage of motor units which
contract. [7]. Each motor unit has a threshold for response to
the nervous excitation, so that varying the excitation being sent
to the muscle acts to modulate the force produced [8]. This
architecture can be replicated in engineered systems composed
of a similar arrangement of subunits, like an arti�cial muscle
[3]. A central controller broadcasts some excitation to all of
the subunits, which change their behavior at a rate based on
the excitation. The authors have been using two-state agents of
this kind to control shape memory alloy muscle actuators made
up of many binary units [5]. Collectively, N small actuators
produce binary outputs which are modulated so that varied
force and displacement are produced as a function of the
number of ON (force-producing) agents, Non

t . The probability
per unit time of state transitions between the ON and OFF
states are described by parameters p and q, as shown in Figure
3.

A. The Dynamics of Randomized Recruitment

A key appealing feature of this state transition framework
is its similarity to statistical models for many real-world
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phenomena, including the dynamics of gene regulation [9],
chemical reactions [10], and even swarms of insects [11].
It is well understood how kinetic chemical reaction mod-
els yield well-described transient and steady-state behaviors.
These dynamics can be exploited in engineered systems, since
an artificial system can be designed to arbitrarily vary the
state transition probabilities of its agents. To demonstrate this,
we will consider the simplest recruitment problem, a system
made up of N small subsystems or agents having just two
states, ON and OFF . The control task is to recruit a specific
number of agents, N ref , into the ON state. These states could
represent two different modalities or behaviors exhibited by
each individual agent. To keep track of the state evolution of
the system, we will introduce a discrete distribution variable,
xt, describing the probability with which each agent is ON
at time t,

xt = P (state = ON) (1)

Of course, using xt as a sufficient statistic for predicting
system behavior does not guarantee that NON

t can be known
exactly. Instead, the likelihood that k units are on is calculated
as a function of xt using a binomial distribution,

P (Non
t = k|xt) =

(
N
k

)
xkt (1− xt)N−k (2)

There are multiple reasons why using xt makes more
sense than considering Non

t , if little feedback information
is available. First and foremost, it is quite simple to predict
the future behavior of x given an initial condition and a
broadcast command. In the absence of other information, such
as a measured ensemble output, this will provide a good
guess of long-term behavior. Second, as N becomes large, the
central limit theorem will guarantee that Non

t will approach
its expected value,

E(Non
t |xt) = Nxt (3)

The evolution of xt can be written as a recursive sequence
based on the Markov graph parameters p and q,

xt+1 = (1− q)xt + p(1− xt) = (1− p− q)xt + p (4)

The time evolution of xt can also be written as a determin-
istic sequence which satisfies (4),

xt+1 =
p

p+ q
+

(
x0 −

p

p+ q

)
(1− p− q)t (5)

Here x0 is the initial likelihood that an arbitrarily selected
unit is in the ON state. Some physical meaning can be
gleaned from (5). The time-independent term of the sequence
corresponds to the fraction of ON agents at steady state. This
is equal to the probabilistic rate at which agents transition from
OFF to ON , normalized by the sum of all transition rates
between states,

xss =
p

p+ q
(6)

The rate at which xt exponentially approaches xss from an
initial condition x0 is is represented in the transient term,

λ = 1− p− q (7)

These observations are important in formulating an open-
loop control policy.

III. A NO-KNOWLEDGE CONTROL POLICY

In previous work, the authors formulated closed-loop con-
trol laws by finding the state transition graph parameters that
minimize the expected future error,

E(Non
t+1|p, q,Non

t ) = N ref (8)

If the central controller has no knowledge of the number of
agents in each state, then the control policy must produce feed-
forward dynamics that move the state distribution toward the
desired goal. Equation (6) demonstrated that the time evolution
of xt has a steady-state component. Instead of choosing p and
q to minimize the one-step ahead error conditioned on the
present state distribution, p and q could be chosen so that
some desired number of cells N ref is expected in the steady
state according to (3),

E(Non
ss |p, q) = Nxss = N

p

p+ q
= N ref (9)

Many policies satisfy this constraint for any given N ref .
For example, setting p = 0.1 and q = 0.1 will drive the
agents to a 50% likelihood of being in either state. So will
setting p = q = 0.3. In order to distinguish between these
cases, a scaling analysis can be used to weigh the performance
tradeoffs between these policies.

A. Convergence Rate and Steady State Distribution are Inde-
pendent.

The control policy parameters p and q can be rewritten as
βp0 and βq0, where p0 + q0 = 1 and β is a scaling factor that
varies subject to the constraint that 0 < p < 1 and 0 < q < 1.
When the transition probabilities are scaled in this way, The
steady-state distribution xss is independent of β,

xss =
βp0

β(p0 + q0)
=

p0
p0 + q0

(10)

However, the rate of convergence still depends on β,

1− p− q = 1− β(p0 + q0) = 1− β (11)

This means that β is a free parameter with which the
convergence time can be arbitrarily varied while still satisfying
the condition imposed in (9). In the most extreme case, β is
chosen to be 1, so that λ = 0. In this case, xt converges
to p/(p+ q) after only one time interval. Figure 4 shows xt
converging to the same steady-state behavior from the same
initial conditions, for several values of β.
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B. Accuracy Varies Only as xss and N .

The other point of concern for this control system is the
accuracy of the control system once it reached steady state.
Specifying xss does not guarantee that the number of recruited
cells Non

ss will converge. Instead, the distribution from (2) will
have some variance. When expressed as a variance normalized
by the total number of units, this yields a measure of accuracy
for recruitment,

V ar (Non
ss /N |xss) = xss(1− xss)N =

pq

(p+ q)2N
(12)

The β scaling argument from (10) and (11) can be applied
to the variance calculation. The numerator and denominator of
(12) both vary by a factor of β2, so the variance is independent
of the rate at which the actuator converges to its steady state
probability distribution,

β2p0q0
β2(p0 + q0)2N

=
p0q0

(p0 + q0)2N
(13)

This is an important observation; it means that nothing is
to be gained by taking “baby steps”, that is, selecting very
small values of p and q in hopes of improving the accuracy
of recruitment in exchange for a slower rate of response. The
only parameter that can be varied to improve accuracy is N .

Fig. 4. The expected value of Nont and probability distribution of Nont at
several points in time are shown for N = 500, p0 = 0.8, q0 = 0.2, and
β = 0.2, 0.5 and 1. This plot illustrates the fact that the variance of Nont is
independent of the rate of convergence. All three cases approach the same
probability distribution in Nont .

C. The Number of Transitions per Unit Time

In a physical system, there is often a significant energy cost
associated with switching agents from one behavior to another.
For example, a mobile robot switching between patrolling two
different areas will expend energy in driving from place to
place. A shape memory alloy actuator has significant latent
heat associated with the phase transition used for actuation, so
spurious phase transitions are costly. As a consequence, it may
be useful to consider the expected number of state transitions
per unit time when formulating a control policy. The expected

number of transitions can be calculated conditioned on xt, p
and q,

E(N trans
t |xt, p, q) = N(qxt + p(1− xt)) (14)

In the steady state (9) can be substituted in, so that (14) is
a function of N , p and q,

E(N trans
ss |p, q) = 2Npq

p+ q
(15)

Using the scaling argument again, (15) can be rewritten
in terms of βp0 and βq0. This implies that an increase in β
implies more expected transitions per unit time in the steady
state,

E(N trans
ss |βp0, βq0) =

β22Np0q0
β(p0 + q0)

= β(2Np0q0) (16)

The value of β minimizing the number of expected transi-
tions is, naturally, 0, corresponding to the control policy that
allows no random transitions between state.

D. Generalization to Many States

Both closed-loop and open-loop control laws of this form
are not limited to the two-state case. In general, the centrally-
specified state transition probabilities for a k-state graph could
be represented as a matrix M,

M =

⎡
⎢⎢⎢⎣

p11 p21 · · · pk1
p12 p22 · · · pk2

...
...

. . .
...

p1k p2k · · · pkk

⎤
⎥⎥⎥⎦ (17)

Each column of M must add up to 1. These k2 − k
independent parameters could be chosen to minimize the
expected error conditioned on the present knowledge for the
number of agents in states N1

t+1 . . .N
k−1
t+1 , as was done in (8),

E(N i
t+1|M, N1

t , . . . N
k
t ) = N i,ref (18)

Similarly, (9) can be extended to multiple states so that the
steady-state expected number of agents in each state is equal
to the reference,

E(N i
ss|M) = Nv1(M) = N i,ref (19)

Here v1(M) is the eigenvector of M having eigenvalue 1.
The second-largest eigenvalue will dominate the rate at which
the feed-forward policy converges corresponding to the rate
found in (7). Solving for these two conditions (the steady-
state distribution and the rate of convergence) can be done
algebraically or numerically. The other performance criteria
also translate nicely to the multi-state case. The variance of
the number of agents in state i is still determined only by the
steady state probability of an agent being in that state, v1i(M),
and by the total number of agents, N ,

V ar
(
N i
ss|M

)
= v1i(M)(1 − v1i(M))N (20)
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Finally, the expected number of transitioning agents from
(15) can be written for the k-state case in terms of the steady-
state distribution,

E(N trans
ss ) = N

k∑
i=1

v1i(1− pii) (21)

The trade-offs for the multi-state case are not as easy to
quantify nicely. However, the general observation is that as
the second-largest eigenvalue of M decreases, the convergence
time decreases and the expected number of transitions in-
creases.

E. The One-Shot Policy

So far we have observed that it is impossible to minimize
both convergence time and the number of transitions at steady
state. This performance trade-offs in the no-knowledge, con-
stant policy recruitment problem can be addressed by varying p
and q with time. Suppose that we want to recruit, as accurately
as possible, a specific number of agents, given no knowledge
of Non

t or x0, in minimal time with minimal steady-state cost.
It was demonstrated above that the accuracy of recruitment
depends only on N and xss. As a consequence, the accuracy
obtained by the β = 1 policy will not improve for more than
one round of state transitions. This motivates the one-shot,
time-varying recruitment policy:

1) Compute p and q that satisfies the steady state condition
from (9), and sets the second-largest eigenvalue λ equal
to 0.

2) Broadcast p and q to all agents.
3) After one round of stochastic state transitions, broadcast

a command to all agents to set p = 0 and q = 0, so that
all transitions cease.

This policy will guarantee that the agents get as close to
the desired distribution as possible, subject to the variance of
Non
ss determined by (13).

IV. A MINIMAL KNOWLEDGE FEEDBACK POLICY

Often, it may be useful to consider the case in which the
central controller has limited knowledge of the number of
ON agents. Let yt be a Boolean measurement which lets
the controller know if the current distribution has reached the
desired distribution, or is close enough. One definition of this
could be when exactly the desired number of agents are in the
ON state,

yt =
{

true, Non
t = N ref

false, Non
t �= N ref (22)

The policy space to be searched is all policies for which
a constant command (p, q) is broadcast, until the minimal
feedback measurements determine that the desired state has
been reached. At this point, all state transitions are commanded
to cease, by setting p = q = 0. The broadcast command is
assumed to be constant because, in the absence of additional
information, there is no good reason for changing the com-
mand. This problem will be posed as a stochastic shortest path
problem. In this framework, the cost function to be minimized

in formulating a policy is the expected time that the system
takes to converge to the desired state or output. We will
formulate the cost J to be minimized as a function of the
initial probability that agents are ON, x0, given the additional
knowledge that the system has not converged at time t = 0.

J = 1 +E

[ ∞∑
t=1

g(yt)

∣∣∣∣∣x0

]
(23)

Here g(yt) is the cost per stage of the system, equal to 1
when the system has not yet reached the target, and 0 when
the system is already there:

g(yt) =
{

1, yt = false
0, , yt = true

(24)

At each point in time, Bellman’s equation can be used to
express the truncated cost Jt recursively forward in time,

Jt = E [g(yt)|xt] + E [Jt+1|xt] (25)

Keep in mind that the sequence {x0, x1, x2, ..., xt, ...} is
determined by (5), as long as the broadcast command (p, q)
is constant. The stochastic nature of the cost function arises
from the uncertainty about when the exact number of desired
ON agents has been reached. After this point, the cost
function becomes zero. The practical result of this is that the
expectation of the cost-to-go will be equal to the probability of
not converging at time t multiplied by the expected cost-to-go
assuming that the desired state has not yet been reached. The
likelihood of reaching the desired state can be described by
thinking of the number of ON agents as a Bernoulli variable
(the sum of many binary random variables),

Ht = P (yt|xt) =
(

N
N ref

)
xN

ref

t (1 − xt)N−Nref

(26)

Similarly, the likelihood of not reaching the desired state
will be defined as H̄t,

H̄t = P (ȳt|xt) = 1−Ht (27)

Using this, the expectation in (25) can be evaluated,

Jt = H̄t + H̄tJt+1 = H̄t[1 + Jt+1] (28)

The benefit of rewriting the series representation of Jt re-
cursively is that each term in the series carries a multiplicative
term from the previous time step,

Jt = H̄t + H̄tH̄t+1 + H̄tH̄t+1H̄t+2 + ...+
m−1∏
k=t

HkJm

The recursive form of this expression can be used to derive
the optimal policy. In order to demonstrate that a policy locally
minimizes this cost function, we must first find a policy for
which the gradient of J with respect to the policy parameters
is zero, indicating that the policy lies at an extremum of J
in parameter space. As in the no-knowledge case, nothing
is known about the number of ON agents until the target
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distribution is achieved, so a policy with constant p and q
must be pursued until yt is true. The optimal policy to pursue
is not hard to imagine; Essentially, it is to re-run the one-shot
policy again and again until yt is true. This can be proved
analytically.

(p, q) =
(

Nref

N , 1− Nref

N

)
(29)

The first condition is that the gradient of J with respect
to p and q is zero, for any initial probability x0. J can be
expanded recursively forward as a recursive series from any
point in time using (28),

∂Jt
∂p

=
∂H̄t

∂p
[1 + Jt+1] + H̄t

∂Jt+1

∂p
(30)

The sign of each term in this series is determined by the sign
of the partial derivative of H̄t at each point in time. The other
terms in the expression are probabilities, which are positive,
or truncated cost functions, which must also be positive. The
derivative of H with respect to xt reduces to an expression in
terms of Ht,

∂Ht

∂xt
= Ht

N ref −Nxt
xt(1− xt)

(31)

The partial derivative of H̄t with respect to p is:

∂H̄t

∂p
= Ht

Nxt −N ref

xt(1− xt)
∂xt
∂p

(32)

One multiplicative term within this expression, Nxt−N ref ,
is particularly interesting. Using the allegedly optimal policy
from (29), the value of xt can be found for all t using (5):

xt =
{

x0, t = 0
N ref/N, t > 0 (33)

For all t > 0, Nxt−N ref is equal to N ·N ref/N−N ref =
0. Consequently ∂H̄t/∂p = 0 for t > 0, and by extension
every term in the series defining ∂Jt/∂p. Furthermore, this
line of reasoning also works to show that ∂Jt/∂q = 0, because
each term of the series defining it will also contain a factor of
N ref−Nxt. The task remaining is to show that J is increasing
as the policy parameters deviate from the optimal policy. It will
not be shown here, but it is straightforward to demonstrate
that J increases with even infinitesimal perturbations in p0.
As Figure 5, shows, however, the increase in J as β varies
is very gradual, and second derivative tests do not suffice.
One approach is to show that the gradient of J at some finite
distance away from the critical point is always pointing away
from the optimal policy. This is shown by making sure that
the inner product between the vector distance to the optimal
policy and the gradient at that point is positive:

(Δp,Δq) · ∇Jt = Zt =
Ht[1 + Jt+1]
xt(1− xt)

Gt + H̄tzt+1 (34)

The sub-expression Gt determines the sign of each term in
the series,

Gt =
(
Nxt −N ref

)(
Δp

∂xt
∂p

+ Δq
∂xt
∂q

)
(35)

As above, the only terms in the series defining the inner
product which can be negative are within Gt. Gt can be
evaluated for p = βNref/N and q = β(1 − N ref/N), to
obtain the expression:

Gt = Nt(x0 − p0)2(1− β)2t (36)

This is greater than zero for β �= 1, so the cost function
is also increasing in that direction. Gt can be shown to
be positive for any small perturbation in p and q, but the
expressions involved are lengthy and will not be repeated here.

Contour plot of J, N=500, Nref=200

β

p 0

0.5 1 1.5
0.35

0.4

Fig. 5. The contour lines of the cost function for N = 500, Nref = 200
show the shallowness of the minimum with respect to the scaling factor β. The
cost steeply increases as p0 is varied for a fixed Nref . In contrast, changes
in β result in only modest increases in J .

V. COMPUTATIONAL RESULTS

A swarm of 500 two-state agents was simulated with the
goal of recruiting 200 agents into the ON state. The results
illustrate the behaviors described above. Simple feed-forward
control policies were computed, one setting β = 0.1 and
the otherβ = 1. As predicted, the number of ON agents
approaches 200 in both cases. The recruitment behavior of
the β = 0.1 policy seems less random; however, this is the
result of the auto-covariance of the system, not a difference
in the actual variance of Non

t . The cumulative distribution of
values of Non

t in the steady-state regime of both simulations
shows that the overall distribution of both processes is nearly
identical, as shown in Fig. 7 using the cumulative distribution
function of Non

t for each policy. However, the number of state
transitions per unit time, shown in red on Figure 6, is much
lower for the β = 0.1 policy, as predicted by (15).

The one-shot policy was simulated using the same reference
as the constant policies, N ref = 200. Figure 8 shows the
result of 20 simulations. This control policy produces constant
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steady-state errors, unlike the constant policies. However, the
distribution of these errors is exactly equal to those plotted
in Fig. 7. Figure 9 demonstrates this using the result of 1000
simulations.

The minimal feedback policy introduced in Section IV was
simulated for N ref = 200, showing the typical convergence
behavior. Figure 10 shows a simulated result, as well as
the expected the expected convergence time to the desired
distribution, 27.5 time intervals. The authors’ previous work
found that the expected convergence time under these same
conditions, but with full knowledge of Non

t was about 4.5
time intervals [5]. This gives a sense scale when considering
the value of state information for feedback in recruitment
problems.
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Fig. 6. A simulation of the constant policy recruitment algorithm. The
number of ON cells for Nref = 200 is plotted (blue) for β = 0.1 and
β = 1, with the number of transitions per unit time (red). As predicted,
reducing β by a factor of 10 reduces the number of transitions per unit time
by a factor of 10.
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Fig. 7. The cumulative distribution of Nont in steady state, for the two
simulations shown in Fig. 6. Despite the difference in convergence rate
and smoothness of the time evolution, any value of β produces the same
cumulative distribution.

VI. CONCLUSION

This paper has demonstrated that “recruiting” finite state
agents into specified states in specified numbers is possible
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Fig. 8. Twenty simulation runs of the one-shot policy. This plot illustrates the
trade-off made in this controller. In exchange for a steady-state error having
the same variance as the constant policy, the agents make no state transitions
at steady state.
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Fig. 9. A cumulative distribution function for the steady-state errors in
the one-shot distribution. This distribution will approach exactly the same
binomial limit distribution as the constant control policies.
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Fig. 10. The minimal feedback policy consists of using the β = 1 constant
policy until some measurement confirms that the desired number of agents
are recruited; The central controller then commands all agents to cease any
state transitions.
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using stable, feed-forward control policies as long as the
controller can find inputs that satisfy a few eigenvector and
eigenvalue constraints on the state evolution equation. Unlike
the previously described closed-loop policies, these feed-
forward control laws cannot cause the system to converge.
However, the random distribution of agents among states
will be tightly grouped about the desired distribution with
a well-characterized variance. Because the variance is well-
characterized and relatively independent of the other perfor-
mance measures for the system, it is straightforward to assess
whether a closed-loop law or a feed-forward law provides
greater accuracy simply by comparing the variance in the re-
sponse of the closed-loop policy with uncertain information to
the variance of the feed-forward law. This analysis is restricted
to very limited knowledge of the state of agents in the swarm;
Past work on recruitment policies having full knowledge of
Non
t has yielded good results in finding numerically optimal

control policies. Finding policies for systems in which partial
knowledge is obtainable in the form of an estimating filter, or
for systems with a limited range of control inputs both remain
interesting future directions.
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Abstract— We consider the task of training an obstacle de-
tection (OD) system based on a monocular color camera using
minimal supervision. We train it to match the performance of a
system that uses a laser rangefinder to estimate the presence
of obstacles by size and shape. However, the lack of range
data in the image cannot be compensated by the extraction of
local features alone. Thus, we investigate contextual techniques
based on Conditional Random Fields (CRFs) that can exploit
the global context of the image, and we compare them to a
conventional learning approach. Furthermore, we describe a
procedure for introducing prior data in the OD system to increase
its performance in “familiar” terrains. Finally, we perform
experiments using sequences of images taken from a vehicle for
autonomous vehicle navigation applications.

I. INTRODUCTION

Obstacle detection (OD) is important in many mobile robot
applications and autonomous vehicles. The most successful
OD systems rely on range information to detect obstacles by
size and shape. Among all the range sensors, laser rangefinders
are the most popular and widely used range sensors, due to
their quality of data.

Unfortunately, laser rangefinders contain mobile parts in
their design which makes them complex and expensive. Fur-
thermore, they may require extra hardware to scan the scene
and a precise calibration. In contrast, color cameras are mass-
produced and are comparatively inexpensive. However, the
lack of range data makes the OD problem more challenging.
Local features alone are not enough to extract enough infor-
mation to detect obstacles reliably. We alleviate this problem
by exploiting the contextual information in the image. For
example, since we cannot measure the shape of the rock
directly, we learn that rocks are gray objects with certain
texture properties and surrounded by brown dirt.

This paper investigates several contextual techniques based
on Conditional Random Fields (CRFs), which have been suc-
cessfully used in the past for classification and segmentation
tasks, and allow to exploit contextual features in the image.
One of the CRF models presented in this paper uses a log-
linear model which imposes a linear combination of the input
features. Then, we apply the “kernel trick” to this model to
allow the use of different kernels with the hope that, in the
projected space, classes become linearly separable.

1: A John Deere tractor (4710 series) was used for some of
the experiments in agricultural applications. It was equipped
with cameras, positioning sensors, a computer and a SICK
laser for perception.

Moreover, we present an algorithm to improve the OD sys-
tem performance in agricultural environments and, in general,
in applications where the system re-visits the same areas. In
this case, we build a database of hand -or automatically- clas-
sified images of the terrain and integrate them in a contextual
model to improve the obstacle detection process.

The contextual methods presented in this paper are com-
pared to conventional non-contextual learning approaches. We
use a OD system equipped with a SICK laser, a color camera,
positioning sensors (IMU, GPS and wheel encoders for speed
measurements) to extract the precise location of the obstacles
(see fig. 1). Then, all the algorithms are trained to match the
performance of this OD system.

This paper is structured as follows. The next section gives
a short overview of prior work in this area. In section III
we introduce the basic CRF model. Section IV describes our
procedure to apply the kernel trick to a log-linear CRF model.
In section V we show an algorithm to make use of prior data.
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2: Left: MRF graph structure. Right: CRF graph structure.

Finally, we show the effectiveness of our algorithm in a batch
of experiments in section VII.

II. RELATED WORK

In the obstacle detection and avoidance field, Dima pre-
sented an algorithm which combined the information provided
by different sensors in the image frame [3]. The data from each
sensor was transformed to image coordinates, thus each part
of the image contained features from the image plus features
from other sensors (i.e. infrared, LADAR, etc). Whereas the
algorithm enabled the fusion of heterogeneous sensors, the
classifier that was used assumed independence among all the
parts in the image.

Many cues needed for obstacle detection are contextual
information, and Markov Random Fields (MRFs) are widely
used machine learning tools to exploit this information. How-
ever, in the MRF framework, the observed data is assumed to
be conditionally independent which can be very restrictive in
some applications (see fig. 2). Unlike MRFs, CRFs model di-
rectly the conditional distribution. Thus, the relations between
the input variables do not need to be explicitly represented. In
the past, their main limitation was the use of slow training
algorithm (such as iterative scaling -IIS-); however, recent
advances in CRF theory have found efficient algorithms for
parameter learning and inference in general CRF graphs [15].

Log-linear CRFs have been successfully used in the past
for image labeling. In this form, CRFs allow for a parameter
estimation guaranteed to find the global optimum due to the
convex property of their conditional likelihood function. For
instance, CRFs have been used for detection of man-made
structures in natural images [7]. CRFs have been used for
object detection and recognition given its parts in images [11].
They have been also used for object segmentation tasks in
images [14], and with occlusion handling [17]. Also, this idea
has been extended to segmentation in video sequences [16].
Saxena el al. [12] uses a discriminative MRF model to estimate
the depth using a single still camera, which could be used as
the input to an obstacle detection algorithm.

A linear relation between features and random variables in
the CRF model has been widely used, but in some cases this
can be a restrictive constraint. To overcome this limitation, an
extension to the CRF model to allow the use of custom kernels
was proposed by [8]. In this paper, we present an alternative
algorithm. In general, the possibility of changing the kernel
allows the model to adapt better to a specific problem resulting
in better performance.

III. CONDITIONAL RANDOM FIELD MODEL

A. CRF model

A Conditional Random Field (CRF) is an undirected graph-
ical model in which edges represent conditional dependencies
between random variables at the nodes. The distribution of
each random variable yi is conditioned on an input sequence
x. The conditional dependency of the random variables on
x is defined by using feature functions with some associated
weights. Together, they can be used to determine the probabil-
ity of each yi. Dependencies among the input variables x do
not need to be represented because the model is conditional,
affording the use of complex and rich features of the input.
Thus, CRFs are discriminative models, that is, they model
p(y|x)1.

In a general way, to model the conditional probability
distribution of a sequence of labels y given the observations
x, p(y|x) takes the form shown in (1):

p(y|x) =
1

Z(x)

∏
c∈C

Ψc(υc), (1)

where Ψc(υc) is a potential function that depends on the
variables in a cluster c (defined as υc). Z(x) is called the
partition function, and it is a normalization factor to make
sure that

∑
yi
p(yi|x) = 1. It depends on the data, therefore

it takes different values as the input (x) changes.
In this paper, we use a log-linear model for the CRF. Thus,

Ψ are potentials of the form shown in (2):

Ψc(υc) = exp

{∑
k

λkfk (xc,yc)

}
, (2)

where xc,yc ∈ υc and fk is feature k function over x,y.
In the image labeling task, the CRF model we use is a

lattice, forming an undirected graph G = (V,E). V are the
nodes or vertices and E are the edges. Every node and every
edge contain a potential function that operates on a subset
of the random variables present in G. Thus, we define the
conditional probability distribution of the CRF as shown in
(3):

p(y|x) = 1
Z(x)

∏
i∈VΨ(xi, yi)

∏
(i,j)∈EΨ(yi, yj , xi, xj)

Z(x) =
∑

y

∏
i∈VΨ(xi, yi)

∏
(i,j)∈EΨ(yi, yj , xi, xj),

(3)
where, functions Ψ are of the form:

Ψ(xi, yi) = exp {
∑

k μkyigk (xi)}
Ψ(yi, yj , xi, xj) = exp

{∑
k λkyiyj fk (xi , xj )

} (4)

We set μ ∈ �K×L and λ ∈ �K×L×L. L is the number of
different labels or classes and K is the number of features.

1Bold letters denote an array of elements or variables. Functions are
represented by non-bold letters followed by parentheses, i.e. p(x). All non-
bold no-function letters represent variables. In the CRF context, unless stated
differently, x denotes data and y denotes labels. Sub-indexes denote elements
of the array, i.e. xi denotes the data at the i-th node. yi denotes the label at the
i-th node. {yi, yj} denotes a pair of labels of y at nodes i, j. y = {yi, yj}
represents all pair of labels of adjacent nodes of y equal to the pair {yi, yj}.
ym denotes the m-th sequence of y labels.
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Unlike other representations found in the literature, we chose
functions gk and fk which only depend on the data, and not
on the labels. Because of this representation, the weights are
the ones that depend on the labels. Thus, to account for the
different classes, L− 1 hyper-planes are needed.

The total number of node weights is (L − 1)K and it
is equivalent to use L × K node weights and set ∀k =
1..K μkL = 0. We chose the edge weights to be the absolute
value of the difference of features in adjacent nodes. Hence,
the total number of edge weights in this representation is
L×L×K because we need as many weights as node features
and combinations of pairs of labels. However, we restrict
λkls = −λkll∀l �= s, which reduces the number of edge
weights to L×K.

It is interesting to note that the model defined in (3) contains
a logistic regression classifier in each node. Simply, by setting
the edge weights to 0 (i.e., define ∀i, j ∈ E λkyiyj = 0) it
is easy to see that every node contains a multi-class logistic
regression classifier.

In summary, the set of parameters for the CRF in our
representation is the union of the node weights and the edge
weights (φ = {μ1...K,1...L−1, λ1...K,1...L}), giving a total of
K × (2L− 1) parameters.

B. Inference in 2D CRF

It is worth noting that inference problems like marginal-
ization and maximization are NP-hard to solve exactly and
approximately (at least for relative error) in lattice graphical
models, and in general, for most of the graph structures. In
a CRF graph model, maximization is to find the most likely
sequence of labels y given an input x, that is:

ymax = argmax
y

p(y|x, φ) (5)

However, finding ymax exactly is infeasible in practical
cases for 2D CRFs. A brute force algorithm would need to
explore all possible labelings, which in a binary CRF of size
24× 32 would be 1.5× 10231. In theory, the marginalization
problem for graphical models with loops is #P-complete and
maximization is NP-complete. Thus, approximate inference is
used to solve these problems.

There are several methods in the literature for approximate
inference in graphs (i.e. maxent -although only works for
binary labels-, variational methods, Monte Carlo methods,
Belief Propagation (BP), etc...). We used BP for approximate
inference, because it gives good results in practice [9] and
provides solution to the marginalization and maximization
problems.

C. Maximum Likelihood parameter learning

In our work, we use the MLE principle to learn the
parameters φ such that the regularized negative log-likelihood
is minimized. The algorithm assumes that we are given set of
i.i.d. labeled images (Xm ,Ym) ∈M. Regularization is added
in the form of a Gaussian centered at 0 over the parameters to

avoid over-fitting. The negative regularized log-likelihood for
a CRF model is given by (6):

nll(φ) = −
∑
m∈M

log{p(y|xm , φ)}+ λ

2
φTφ (6)

Ignoring the regularization term, the derivatives of the log-
likelihood over the parameters φ yield to equations in (7).
The first term is the value of the features under the empirical
distribution. The second term, which arises from the derivative
of logZ(x), is the expectation of the features under the model
distribution. Equation (7) shows the derivatives corresponding
to μ and λ, respectively:

∂nll(φ)
∂μkl

= −Ep̃(y=l,x)[gk ] +Ep(y=l|x;φ)p̃(x)[gk ]
∂nll(φ)
∂λkls

= −Ep̃(y={l,s},x)[fk ] + Ep(y={l,s})|x;φ)p̃(x)[fk ]
(7)

Unfortunately, there is no analytic solution to this equation
(setting the gradient to 0 and solving for λ does not always
yield to a closed-form solution). Thus, an iterative algorithm
is needed in order to approximate the optimal solution. Note
that the function nll(φ) is concave, which follows from the
convexity of functions of the form g(x) = log

∑
i exp xi .

This property shows that every local optimum is also a global
optimum. Adding L2 regularization to the NLL ensures that
log l(φ) is strictly concave, which implies that it has exactly
one global optimum.

Thanks to this property, methods like steepest descent can
be used, although they may require many iterations to converge
making them slow. Newton’s method can converge much faster
because it takes into account the curvature of the likelihood.
However, computing the Hessian can be expensive, too, since
it is quadratic in the size of the parameters. An intermediate
solution for this problem is to use quasi-Newton methods, such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [1,
4, 6, 13], in which the Hessian is updated by analyzing
successive gradient vectors. BFGS is the algorithm that we use
in this work for optimization (through fminunc in Matlab),
and, as it is discussed in [15], it provides a rapid convergence
to the optimal solution.

IV. KERNEL CONDITIONAL RANDOM FIELDS

A. “Kernel Trick” and Logistic Regression

Logistic Regression (LR) is a discriminative linear classifier
that estimates the p(y|x) by using a linear combination of
features of x. The conditional likelihood for LR is defined in
(8):

p(y|x) =
exp {

∑
k μkygk (x )}

1 +
∑y=L−1

y=1 exp {
∑

k μkygk (x )}
(8)

By applying the “kernel trick”, one can convert a linear
classifier algorithm into a non-linear one by using a non-
linear function to map the original observations into a higher-
dimensional space; this makes a linear classification in the
new space equivalent to non-linear classification in the original
space (see fig. 3). We apply the Mercer’s theorem, which states
that any continuous, symmetric, positive semi-definite kernel
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3: Example of a dataset not linearly separable in the orig-
inal dimension space (on the left), but it becomes separable
after using a quadratic kernel (on the right), augmenting the
dimensionality of the input space by 1.

function K(xi, xj) can be expressed as a dot product in a
high-dimensional space, to equation 8:

p(y|x) =
exp

{∑
xi∈S αiyK (x , xi)

}
1 +

∑L−1
y=1 exp

{∑
xi∈S αiyK (x , xi)

} , (9)

where S is the space of vectors that span the kernel. As
with LR, the log-likelihood is a convex function, and it is
possible to compute the gradient and the Hessian of the
log-likelihood, making suitable Newton-Raphson methods for
rapid optimization. However, there are several performance
penalties by using this method:

• Computing the kernel matrix can be computationally
expensive (O(N2), where N is the number of vectors).

• A N × N matrix must be inverted at each iteration of
Newton-Raphson method, increasing the computational
cost of the training algorithm to the order of O(N3).

• In practice, most (if not all) αi have non-zero values,
which increases the cost of classifying samples (each new
sample needs to be projected into all the xi in the kernel).

These problems can be solved by fixing S to use a small subset
of xi. However, we need an algorithm to determine which and
how many xi should be in S.

In this paper, we will use the method proposed by [18]. The
sub-model S found by IVM algorithm is an approximation to
the full model found by KLR. The algorithm starts with an
empty set of vectors for S. Then, at every iteration the vector
that minimizes de NLL the most is added to S. The vectors
in the kernel space S are called import vectors. The algorithm
stops when the NLL does not decrease after some number of
iterations. A toy example is shown in fig. 4.

B. “Kernel trick” for CRFs (K-CRFs)

K-CRFs were originally introduced in [8], and they allow
the use of implicit feature spaces through Mercer kernels. Our
approach differs mainly in the way we find the kernel space.
In our algorithm, we use the IVM algorithm as described in
section IV-A to find the vectors xi that will span the kernel
space S in the node potentials. Then, we compute the gk
projected into the kernel space found by the IVM algorithm

4: Example of boundaries obtained by a multi-class IVM
classifier, 36 import vectors and a a Gaussian kernel (σ = 0.1).

in order to extract the set of node features that will be used
by KCRF. Finally, we use the algorithm described in section
III-C for parameter learning till its convergence.

In this work, we experiment with Gaussian kernels because
they often provide good performance [2]. When they are used,
the corresponding feature space is a Hilbert space of infinite
dimension. However, the regularization used for parameter
learning avoids the infinite dimension to spoil the results. In
this paper, we refer to the Gaussian kernels the ones that take
the form in (10):

K(xi, xj) = e−
‖xi−xj‖2

2σ2 , (10)

where xi, xj are input vectors.

V. PRIOR DATA AND K-CRFS (PK-CRF)

In this section, we introduce an algorithm to take advan-
tage of situations where prior labeled data is available (i.e.,
agricultural applications where vehicles revisit the same areas
multiple times). If we label the data that corresponds to the
working area once, we may be able to use these labelings to
improve future labeling performances. Thus, in cases where
the input image is similar to one in the prior data set, we
may be able to re-use the prior labels. The parts of the image
which experience changes (i.e. illumination, pose, new/missing
objects, etc) may need new evaluations.

The algorithm described in this section assumes that the
input data is tagged with pose (which does not need to be
exact), and that the ground plane is mostly flat. For this task,
we build a database with the prior labeled images tagged with
pose. Then, for every new input image, the closest image
in pose is recovered from the database and aligned with the
input image (see section VI). At this point, we can refer each
part/region in one image to the other. Thus, if we know the
ground truth for the labels of one of the images, we can use
this information in the image that we are trying to label.

In practice, there are differences between the input image
and the reference image, even after the alignment, due to errors
in the alignment process, errors in pose, possible changes in
the environment, moving obstacles, etc. However, we let the
CRF to decide for us whether the label in the reference image
should be used.
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5: PK-CRF model. White nodes represent random variables.

We added the prior data into the CRF model in the form
of binary features for the nodes and real features for the
edge. These features incorporate labeling information of the
reference image to the input image. The node features have a
value of 1 if the hypothesis about the label in the input image
is the same as the reference image, and 0 otherwise. The edge
features contain information about the differences between the
region in the input image and the region in the reference image
(similar to the edge features in the CRF). We refer to these
features as hk.

Each of these features is multiplied by a weight that depends
on the class (γnl). Putting together this new features with the
CRF model, we get the following node potentials:

Ψ(xi, yi) = exp

{
K∑
k

μkyigk (xi) +
N∑
n

γnyihn(xi)

}
(11)

Where, K is the number of node features and N is the number
of prior features for each node. Fig. 5 shows a graphical
representation of the model. Discrete random variables are
connected to the image features and also connected to the
features and label information from the reference image. Some
of the prior features may be missing in the cases where no
match is found for a patch in the reference image.

By adding these features we expect the CRF model to learn
that if the node of the image and the node in the reference
image are similar, then there should be a bias towards using the
same label in the input image as the one used in the reference
image. However, if the regions differ, then the information
coming from the image taken in the past should be discarded
and a full evaluation of the region would be required. We
called this model Prior K-CRF (PK-CRF).

VI. IMAGE REGISTRATION

We use an algorithm for aligning two images with different
poses based in [10]. We work under the assumption that
our test environment has a planar surface. Thus, we use an
homography to transform the image to an orthonormal view
(top-down in our case) by means of four fixed reference points
in the ground. This transformation works for the ground (if it
is planar) but does not work for trees or other objects which
are not in the same plane which will often experience several
distortion (see bushes in rightmost images in fig. 6).

6: Axes alignment for two images. Images are rectified,
transformed to a top-down view, and rotated to align their
axes.

7: Normalized correlation between two images.

Once both images are transformed in these coordinates,
the optical axes are parallel. We can use the yaw angle to
rotate one of the images and align the axes of the two images
as shown in fig. 6. Due to differences in the actual X,Y, Z
coordinates where each image was taken, the resulting images
may not align, yet. However, after these transformations, the
camera axes are parallel and we can compensate for these
differences in pose by a simple translation. We use normalized
correlation to compute the relative translation of one image
w.r.t. the other (see fig. 7 for details). Finally, we can relate
each patch from the reference image to each one in the input
image (see fig. 8).

In our experiments, images with differences in position
smaller than 3m, and differences in yaw smaller to 10 de-
grees were successfully registered. Beyond these numbers, this
method may fail to successfully recover the correct translation
for every patch in one image to match the patches in the
reference image. Hence, it is important to find images in the
database which are very close in pose to the image that we
are labeling.

VII. EXPERIMENTS

In this section, we show that the use of contextual models
improves the performance for obstacle detection tasks from
images. We compare the different contextual models presented
in this paper (CRF, KCRF, PK-CRF), a logistic regression
classifier (LR) and the Import Vector Machine (IVM).
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8: Left: Flow for every 16×16 pixels patch to match patches
in the right image. Right: Reference image.

A. Data acquisition platform and features

In our experiments, we use data collected with a vehicle
equipped with several sensors: a color camera, an Inertial
Measurement Unit (IMU), a wheel encoder (for vehicle speed
input), a scanning laser and a Global Positioning System
(GPS).

Camera and laser sensors are registered w.r.t. each other
and the vehicle. We use a Kalman filter to compute the local
pose of the vehicle using the speed of the vehicle and the
information collected by the IMU. Finally, the GPS is used to
acquire the global position of the vehicle at the start time, thus
we can reference the local position among different sequences
of data collected at different times (we call them logs).

Every image is divided into a grid of patches of 16×16, and
we extract feature information from each patch independently,
as described in [3]. The features extracted contain the mean
and standard deviation for the U,V components in the LUV
color space and texture information for a total of 28 features.
Every feature was scaled to have 0 mean and standard devia-
tion of 1.

The ground truth contains binary labels (obstacle/not ob-
stacle) for every patch in each image and it is automatically
computed using the laser data. The 3D data extracted from the
laser is very accurate and it is used to get a good estimation
of the ground. Once the ground is estimated, the detection
of obstacles becomes very simple (i.e. any 3D point above
the ground more than 0.5 m is an obstacle). We project the
object location to the image frame and use that information
for automatically getting the labels for every image patch in
the grid.

LR classifier is trained using the 28 features + a constant
feature to account for the bias. Similarly, we use the same
features for the CRF node potentials and a total of 57 edge
features (28 × 2(classes) + 1(bias)). The edge features were
computed as the Euclidean distance of two adjacent node
features. Therefore, the total number of variables of the linear
CRF was 86, which were successfully learned using the
algorithm described in section III-C.

B. Comparison of LR and CRF

We compare the performance of LR and CRF (trained
using the same features as described in section VII-A)
for obstacle detection in an agricultural application. One

(a) Original images (b) CRF labelings (c) LR labelings

9: Red boxes denote detections. Top row: Orchard detection.
Bottom row: People detection.

of the tasks is to be able to drive a vehicle (i.e. trac-
tor) through orchard tree lanes. The classifier must prop-
erly segment and detect the orchard tree lanes. We acquired
two sequences of images and we used one for training
the classifiers and the second one for producing the video:
http://www.cs.cmu.edu/∼cvalles/videos/orchard.avi

As can be seen in the video and in fig. 9 (top row),
CRF provides a cleaner segmentation of the orchard tree
lanes. Furthermore, the number of false positives produced
by the CRF classifier is much lower. LR produces false
positives continuously, some of them just in front of the
vehicle, which would make the vehicle to stop. However, CRF
does not produce any false positive in front of the vehicle
while properly segmenting the orchard tree lanes throughout
the video sequence. CRF significantly outperformed LR for
detection and segmentation of people in our experiments as it
is shown bottom row of fig. 9.

C. Comparison of LR, CRF, IVM, KCRF and PKCRF

We collected 8 sequences of data in a mostly flat and
grassy environment, driving at 2m/s for about 4 minutes, with
several obstacles scattered around. We logged 2 images per
second. Two sequences were used for training and the other
6 were used for testing. Our definition of obstacle in this
environment is anything that is above the ground more than
a certain distance (i.e. 0.5m). Thus, in our gathered data, the
obstacles are bushes, cones, trees, vehicles, fences, etc (see
fig. 10). The data was collected in two different days, and
some of the obstacles were placed in different positions. We
followed similar trajectory for every log we took, just allowing
deviations from the original path smaller than 5m.

CRF and LR were trained as described in section VII-A.
We used a Gaussian kernel for IVM, KCRF and PKCRF
classifiers, and we experimentally found the optimal kernel
width to be σ = 3 by plotting the histogram of distances
mapped by the kernel as proposed in [5]. The IVM algorithm
found 119 import vectors. K-CRF used an extra 57 variables
for the edge potentials (same ones as in the linear case) and
1 for bias, totaling 177 variables. In the case of PK-CRF,
one of the sequences was used as reference to extract features
described in section V, and was used as database for the test
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10: Some snapshots of the environment in which data was
collected. Note that an obstacle can be anything that may be
a hazard for the vehicle (bushes, cones, other vehicles, trees,
etc.)

TPR LR IVM CRF KCRF PKCRF
0.95 61.6% ± 0.4 37.3% ± 0.7 37.0% ± 1.3 20.1% ± 2.8 13.5% ± 5.4
0.92 38.9% ± 0.5 16.6% ± 3.0 10.5% ± 6.1 4.3% ± 3.3 2.9% ± 2.4
0.90 24.3% ± 4.4 10.9% ± 2.2 4.1% ± 3.2 1.9% ± 1.6 1.6% ± 0.8
0.88 15.2% ± 3.5 7.2% ± 1.0 2.0% ± 1.6 1.2% ± 0.5 0.9% ± 0.3
0.85 9.5% ± 1.4 4.7% ± 0.5 1.0% ± 0.3 0.6% ± 0.2 0.4% ± 0.2
0.80 5.1% ± 0.6 2.8% ± 0.2 0.6% ± 0.1 0.3% ± 0.1 0.2% ± 0.1
0.75 3.3% ± 0.3 1.9% ± 0.1 0.4% ± 0.1 0.2% ± 0.1 0.1% ± 0.1

I: False Positive Rate (FPR) for a given True Positive Rate
(TPR) for each algorithm evaluated in this paper.

experiments.
In order to compare the performance of the different al-

gorithms, we considered a false positive an alarm from the
classifier in an area of a 3 × 3 image patches that does not
contain an obstacle. In this application, a false positive may
cause the vehicle to stop for no apparent reason, degrading
the performance of the autonomous vehicle. However, a false
negative may be fatal. Hence, it is very important to achieve
high obstacle detection rates when working at low false
positive rates.

Table I shows the false positive rate of the various classifiers
at different performance points. In this case, differences among
the classifiers become apparent, specially at low false positive
rates. The false positive rate (FPR) for a fixed true positive
rate (TPR) is shown in table II. Whereas neither LR nor
IVM could be used in practice because of its large FPR at
any performance point in the table, contextual methods give
enough performance boost to be considered.

At low FPRs, contextual methods perform several times
better than non-contextual ones. For instance, at a fixed FPR of
1/250, LR and IVM achieve obstacle detection rates of 30%
and 43%, respectively (see table II). Contextual methods (CRF,
KCRF and PKCRF) give performances over 75%. PKCRF
gives a performance just shy of 85% at the same FPR.

Also, note that PKCRF achieves an obstacle detection

FPR LR IVM CRF KCRF PKCRF
1/1000 4.5% ± 0.2 15.0% ± 1.3 57.1% ± 2.5 70.5% ± 3.3 75.3% ± 3.3
1/750 7.6% ± 0.50 21.2% ± 0.9 63.5% ± 2.8 73.2% ± 3.3 77.2% ± 3.3
1/500 12.7% ± 1.3 28.4% ± 1.5 68.5% ± 3.0 76.9% ± 3.0 80.0% ± 3.3
1/250 29.7% ± 1.5 43.3% ± 1.8 76.3% ± 2.7 82.1% ± 2.9 84.7% ± 3.0
1/100 50.2% ± 1.8 64.3% ± 2.2 84.7% ± 2.6 87.4% ± 2.8 88.2% ± 2.6
1/75 56.3% ± 2.0 70.2% ± 2.5 86.2% ± 2.6 88.7% ± 2.6 89.0% ± 2.7
1/50 66.46% ± 2.0 75.9% ± 2.6 88.1% ± 2.4 90.3% ± 2.5 91.0% ± 2.4
1/25 77.3% ± 2.3 83.6% ± 2.7 89.9% ± 2.4 91.8% ± 2.3 92.7% ± 2.1
1/10 85.5% ± 2.3 89.9% ± 2.3 91.9% ± 2.2 93.7% ± 1.9 94.4% ± 1.8

II: True Positive Rate (TPR) for a given False Positive Rate
(FPR) for each algorithm evaluated in this paper.

LR IVM CRF KCRF PKCRF
> 100 img/s ∼ 20 img/s ∼ 10 img/s ∼ 3 img/s ∼ 1 img/s

III: Number of processed images per second in a Intel Core
2 Duo class machine.

rate of 75% generating a false positive every 1000 positive-
classified patches. IVM and LR produce 1 false positive every
50 and 25 positive-classified patches to get the same obstacle
detection rate. At this performance point, PKCRF performs 20
and 40 times better, respectively.

We briefly evaluated the computational complexity of these
methods. We ran these experiments in a Intel Core 2 Duo class
machine running at 2.0 Ghz. Code was not optimized to make
use of the two cores, though. Table III shows the number of
images per second that every classifier was able to process.
This timing does not take into account the time needed to
pre-process the image and extract its features.

We included the full Receiver Operator Characteristic
(ROC) curves in fig. 11 and in table IV, we show the Area
Under the Curve(AUC) for each of the methods. Note that the
differences among the various algorithms shown in this table
are small, and AUC is not significative enough to establish
conclusions. However, in practice, non-contextual algorithms
do not offer enough performance to be used in practice in
these experiments, due to its bad obstacle detection rates at
low false alarm rates.

Finally, we generated a video for one of the sequences
with the outputs of each classifier discussed in the paper:
http://www.cs.cmu.edu/∼cvalles/videos/test-obs.avi
In this sequence, the vehicle was manually driven and there
were obstacles at different locations. The video shows red
patches for detections, and a blinking red box around the
image of the classifier that produces a false positive that
would make the vehicle to stop. A snapshot of the video is
shown in fig. 12 where the outputs of the different classifiers
evaluated in this paper are displayed.

VIII. CONCLUSION

In this work, we presented an obstacle detection algorithm
for autonomous vehicles using a monocular color camera. We
extended a CRF model to allow the use of non-linear kernels
and prior data. In the experimental section, we showed that
the use of lattice models for image labeling tasks helps to
obtain globally more accurate segmentations than classifiers
that make locally independent decisions. Furthermore, we
showed that Gaussian kernels work better than linear kernels
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LR IVM CRF KCRF PKCRF
91.9% ± 1.4 94.9% ± 1.1 95.7% ± 1.2 97.0% ± 0.9 97.4% ± 0.8

IV: Area Under the Curve (AUC) for each algorithm.

11: ROC curves for LR, IVM, CRF, KCRF and PKCRF.

in our obstacle detection experiments. Finally, prior data was
introduced in the CRF model to produce better segmentations
in “familiar” environments.

Even though the set of features we used for every image
part was very limited (just color and texture features), the
obtained results are promising towards building an obstacle
detection system based only on a monocular color camera.
Gaussian K-CRFs were the best performers when no prior
data was available. However, PK-CRFs performed even better
when prior data was available.

The algorithms proposed in this paper are not limited to
monocular camera approaches. Future work includes the use
of multiple camera solutions with different filters on them, the
use of stereo features, experiments with different patch sizes
(or non-uniform image divisions, such as super-pixels), the use
of more node features, and extracting specific edge features for
the CRF model. As one of the main issues when dealing with
camera-only solutions is the exposure, High Dynamic Range
(i.e. capture images at different exposures) could be used to
address this problem.

In conclusion, CRFs provide a probabilistic framework
with superior performance compared to classifiers that do not
exploit context in image labeling applications. The model for
CRFs is flexible enough to support different kernels, or the
addition of a large variety of features. In our experiments,
features that incorporate prior data helped to boost the obstacle
detection performance, making PK-CRFs suitable for some
robotic applications that use a monocular color camera.
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Abstract—Motion planning in uncertain and dynamic environ-
ments is an essential capability for autonomous robots. Partially
observable Markov decision processes (POMDPs) provide a
principled mathematical framework for solving such problems,
but they are often avoided in robotics due to high computational
complexity. Our goal is to create practical POMDP algorithms
and software for common robotic tasks. To this end, we have
developed a new point-based POMDP algorithm that exploits
the notion of optimally reachable belief spaces to improve com-
putational efficiency. In simulation, we successfully applied the
algorithm to a set of common robotic tasks, including instances
of coastal navigation, grasping, mobile robot exploration, and
target tracking, all modeled as POMDPs with a large number
of states. In most of the instances studied, our algorithm
substantially outperformed one of the fastest existing point-based
algorithms. A software package implementing our algorithm is
available for download at http://motion.comp.nus.edu.
sg/projects/pomdp/pomdp.html.

I. INTRODUCTION

Partially observable Markov decision processes (POMDPs)
[17] provide a principled mathematical framework for plan-
ning under uncertainty, an essential capability for robots
operating in uncertain and dynamic environments. However,
POMDPs are often avoided in robotics, because solving
POMDPs exactly is computationally intractable [9]. Not long
ago, the best algorithms could spend hours computing exact
solutions to POMDPs with only a dozen states, which are
woefully inadequate for modeling realistic robotic tasks. In
recent years, point-based POMDP algorithms [5, 10, 16,
19, 20] have made impressive progress by computing good
approximate solutions: POMDPs with hundreds of states have
been solved in a matter of seconds (e.g., [5, 16, 19]). These
algorithms have the potential to make POMDPs practical for
many applications in robotics and beyond.
Our goal is to create practical POMDP algorithms and

software for common robotic tasks. To this end, we have
developed a new point-based POMDP algorithm that exploits
the notion of optimally reachable belief spaces to improve
computational efficiency. In simulation, we successfully ap-
plied our algorithm to a set of common robotic tasks, including
coastal navigation, grasping, mobile robot exploration, and
target tracking, all modeled as POMDPs with a large number
of states.
POMDP algorithms typically operate in a robot’s belief

space. A belief is a probability distribution over all possible
robot states, and the set of all beliefs form the belief space.
Intuitively, the difficulty of solving POMDPs is due to the
“curse of dimensionality”: in a discrete POMDP, the belief
space B has dimensionality equal to |S|, the number of robot

b0

B

R(b0)
R∗(b0)

Fig. 1. Belief space B, reachable space R(b0), and optimally reachable
space R∗(b0). Note that R∗(b0) ⊆ R(b0) ⊆ B.

states. The size of B thus grows exponentially with |S|.
Consider, for example, robot navigation in a simple planar
environment modeled as a 10 × 10 grid. The resulting belief
space is 100-dimensional!
To overcome this difficulty, one key idea of point-based

POMDP algorithms is to sample a set of points from B
and use it as an approximate representation of B, instead
of representing B exactly. Some early POMDP algorithms
sample the entire belief space B, using a uniform sampling
distribution, such as a grid. However, it is difficult to sample
a representative set of points from B, due to its large size. More
recent point-based algorithms sample only R(b0), the subset
of belief points reachable from a given initial point b0 ∈ B,
under arbitrary sequences of actions (Fig. 1). It is generally
believed that R(b0) is much smaller than B. Indeed, focusing
on R(b0) allows point-based algorithms to scale up to larger
problems. To push further in this direction, we would like to
sample near R∗(b0), the subset of belief points reachable from
b0 under optimal sequences of actions, as R∗(b0) is usually
much smaller than R(b0). Of course, the optimal sequences
of actions constitute exactly the POMDP solution, which is
unknown in advance. In fact, knowingR∗(b0) is in some sense
“equivalent” to knowing the POMDP solution (see Section III-
A). So we need to approximate R∗(b0).
The main idea of our algorithm is to compute successive

approximations of R∗(b0) and converge to it iteratively. Since
R∗(b0) is unknown in advance, the algorithm relies on heuris-
tic exploration to sample R(b0) and improves sampling over
time through a simple on-line learning technique. It then uses
a bounding technique to avoid sampling in regions that are
unlikely to be optimal and focus sampling on the region near
R∗(b0), the subset of B most relevant to the POMDP solution.
This leads to substantial gain in computational efficiency.
Focusing on R∗(b0) also brings an indirect benefit. Under

fairly general conditions, the solution to a POMDP can be
represented as a convex, piecewise-linear value function [17].
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We represent the value function as a set Γ of hyperplanes, each
of which must dominate the rest at some sampled point. By
pruning away sampled points that are suboptimal, i.e., outside
R∗(b0), we can reduce the size of Γ, thus further improving
computational efficiency.

II. BACKGROUND

A. POMDPs

A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its reward. Formally it is
specified as a tuple (S,A,O, T , Z,R, γ), where S is a set
of states, A is a set of actions, and O is a set of observations.
In each time step, the agent lies in some state s ∈ S; it takes

some action a ∈ A and moves from s to a new state s′. Due
to the uncertainty in action, the end state s′ is modeled as a
conditional probability function T (s, a, s′) = p(s′|s, a), which
gives the probability that the agent lies in s′, after taking action
a in state s. The agent then makes an observation to gather
information on its state. Due to the uncertainty in observation,
the observation result o ∈ O is again modeled as a conditional
probability function Z(s, a, o) = p(o|s, a).
In each step, the agent receives a real-valued reward R(s, a),

if it takes action a in state s, and the goal of the agent is to
maximize its expected total reward by choosing a suitable se-
quence of actions. For infinite-horizon POMDPs, the sequence
of actions has infinite length. We specify a discount factor
γ ∈ [0, 1) so that the total reward is finite and the problem is
well defined. In this case, the expected total reward is given
by E [

∑∞
t=0 γ

tR(st, at)], where st and at denote the agent’s
state and action at time t.
The solution to a POMDP is an optimal policy that maxi-

mizes the expected total reward. Normally, a policy is a map-
ping from the agent’s state to a prescribed action. However,
in a POMDP, the agent’s state is partially observable and
not known exactly. So we rely on the concept of beliefs. As
described earlier, a belief is a probability distribution over S. A
POMDP policy π:B → A maps a belief b ∈ B to a prescribed
action a ∈ A.
A policy π induces a value function V π(b) that specifies

the expected total reward of executing policy π starting from
b. It is known that V ∗, the value function associated with the
optimal policy π∗, can be approximated arbitrarily closely by
a convex, piecewise-linear function

V (b) = max
α∈Γ

(α · b),

where Γ is a finite set of vectors called α-vectors, b is the
discrete vector representation of a belief, and α · b is the inner
product of vectors α-vector and b. Each α-vector is associated
with an action. The policy can be executed by selecting the
action corresponding to the best α-vector at the current belief.
So a policy can be represented as a set of α-vectors.

B. Related Work

POMDPs are a principled approach for planning and deci-
sion making under uncertainty [6, 17], but they are notoriously
hard to solve [7, 9]. There have been significant efforts in

developing approximation algorithms. See [1] for a recent
survey.
Point-based algorithms have been particularly successful

in computing approximate solutions to large POMDPs [2,
5, 10, 16, 19, 20]. Most of them use value iteration [13].
Exploiting the fact that the optimal value function must satisfy
the Bellman equation [13], value iteration algorithms start with
an initial policy represented as a value function V and perform
backup operations on V by iterating on the Bellman equation
until the iteration converges. One important idea shared by
the point-based algorithms is to sample a representative set of
points from the belief space B and compute an approximately
optimal value function by performing backup operations over
the sampled points rather than the entire B. They differ
in how they sample the belief space and perform backup
operations. To improve computational efficiency, recent point-
based algorithms sample only the reachable space R(b0) from
an initial belief point b0.
PBVI [10] is the first point-based algorithm that demon-

strated good performance on a large POMDP called Tag,
which has 870 states. Later point-based algorithms im-
proved the performance significantly on this and other larger
POMDPs. To our knowledge, HSVI2 [19] so far has the
best performance in general. HSVI2 uses heuristics to guide
the sampling towards regions that help cut down the gap
between the upper and lower bounds on the optimal value
function. FSVI [16] is another point-based algorithm, which
uses a Markov decision process (MDP) to guide the sampling.
MDP-guided sampling is effective for some problems, but
the performance degrades when uncertainty is high and long
sequences of information-gathering actions are required.
Our algorithm is related to HSVI2 and FSVI, but it explicitly

attempts to sample the optimally reachable space R∗(b0)
through learning-enhanced exploration and a bounding tech-
nique. Experimental results show that focusing on R∗(b0)
is a promising idea. An early version of our algorithm [5]
exploits bounding in a limited way: bounds are compared
locally at individual belief points to prune suboptimal actions.
In contrast, the current algorithm sets up the bounds to reach
a specified value function approximation level at b0, thereby
leveraging information globally to reduce the number of poor
samples—those that are in R(b0) but not in R∗(b0).
One crucial reason for the computational intractability of

POMDPs is the high dimensionality of B. Low-dimensional
approximations of B therefore improve computational effi-
ciency greatly (e.g., [12, 14]). These approaches are important,
but beyond the scope of this paper.

III. SARSOP

We now describe our algorithm, SARSOP, which stands
for Successive Approximations of the Reachable Space under
Optimal Policies.

A. Optimally Reachable Spaces

A key idea of point-based POMDP algorithms is to sample
a representative set of points from the belief space and
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Algorithm 1 SARSOP.
1: Initialize the set Γ of α-vectors, representing the lower
bound V on the optimal value function V ∗. Initialize the
upper bound V on V ∗.

2: Insert the initial belief point b0 as the root of the tree TR.
3: repeat
4: SAMPLE(TR, Γ).
5: Choose a subset of nodes from TR. For each chosen

node b, BACKUP(TR,Γ, b).
6: PRUNE(TR, Γ).
7: until termination conditions are satisfied.
8: return Γ.

use it as an approximate representation of the space. For
efficiency, most recent algorithms sample from R(b0), the
set of points reachable from a given point b0 ∈ B under
arbitrary sequences of actions. Theoretical analysis shows that
approximate POMDPs solutions can be computed efficiently,
when R(b0) has a small covering number [4]. Informally, the
δ-covering number C(δ) of a set S is the minimum number of
balls of radius δ needed to cover S. So it is a measure of the
“volume” of S.

Theorem 1: For any b0 ∈ B, let C(δ) be the δ-covering
number of R(b0). Given any constant ε > 0, an approximation
V (b0) of V ∗(b0), with error |V ∗(b0) − V (b0)| ≤ ε, can be
found in time

O

(
C
(
(1− γ)2ε
4γRmax

)2

logγ
(1− γ)ε
2Rmax

)
.

However, for many realistic robotics tasks, the assumption
of small R(b0) may not hold. We would like our algorithm
to do well when R(b0) may be large, but Rπ∗(b0), the
space reachable under an optimal policy π∗, is small. As
Rπ∗(b0) is often much smaller than R(b0), the assumption
of small Rπ∗(b0) is more likely to hold. Unfortunately, this
relaxed assumption is too weak, and the problem of comput-
ing approximate POMDP solutions remains hard, despite the
assumption [4].

Theorem 2: Let b0 be any point in B and π∗ be an optimal
policy. Given a constant ε > 0, computing an approximation
V (b0) of V ∗(b0), with error |V (b0) − V ∗(b0)| ≤ ε|V ∗(b0)|,
is NP-hard, even if the covering number of Rπ∗(b0) is
polynomial-sized.
On the other hand, if we are given a set of balls of radius δ
that covers Rπ∗(b0), the problem becomes much easier [4].
We call the set C, which contains the centers of this set of
balls, a δ-cover of Rπ∗(b0).
Theorem 3: For any b0 ∈ B and any optimal policy π∗,

given a proper δ-cover C of Rπ∗(b0) with δ = (1−γ)2ε
2γRmax

, an
approximation V (b0) of V ∗(b0), with error |V ∗(b0)−V (b0)| ≤
ε, can be found in time

O

(
|C|2 + |C| logγ

(1− γ)ε
2Rmax

)
,

where |C| is the size of C and Rmax = maxs,a |R(s, a)| is
the maximum one-step reward.

b0

a1 a2

o1 o2

Fig. 2. The belief tree TR rooted at b0.

Together, Theorems 2 and 3 say that computing approximate
POMDP solutions is hard, but the problem becomes much
easier, if a proper δ-cover of Rπ∗(b0) is given. It follows that
the key difficulty must lie in computing such a cover. Once
the cover is obtained, we can find an approximate POMDP
solution in time polynomial in the cover size. So, instead of
following the common approaches of directly approximating
V ∗ or searching for π∗, our SARSOP algorithm focuses on
finding an approximate cover of Rπ∗(b0) through sampling.
Since there may be multiple optimal policies, SARSOP aims

to sample R∗(b0) =
⋃

π∗ Rπ∗(b0), the union of all optimally
reachable spaces.
In the following, to simplify the notations, we omit the

argument b0 in R(b0) and R∗(b0). It is understood that R
and R∗ are reachable from a given initial point b0.

B. Overview of the Algorithm

SARSOP iterates over three main functions, SAMPLE,
BACKUP, and PRUNE. A sketch is shown in Algorithm 1.
Like all point-based algorithm, SARSOP samples a set of

points from the belief space. The sampled points form a tree
TR (Fig. 2). Each node of TR represents a sampled point. As
there is no confusion, we use the same symbol b to denote
both a sampled point and its corresponding node in TR. The
root of TR is the initial belief point b0. To sample a new
point b′, we pick a node b from TR as well as an action
a ∈ A and an observation o ∈ O according to suitable
probability distributions or heuristics. We then compute b′

using the formula

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑
s

T (s, a, s′)b(s),

where η is a normalization constant, and insert b′ into TR as a
child of b. Clearly, every point sampled this way is reachable
from b0. If we apply all possible sequences of actions and
observations, the set of nodes in TR is exactly R. The key is,
of course, to avoid doing so and focus the sampling, instead,
on R∗.
To achieve this, SARSOP maintains both a lower bound V

and an upper bound V on the optimal value function V ∗. The
set Γ of α-vectors represents a piecewise-linear approximation
to V ∗ (Section II-A), and is also a lower bound when suitably
initialized, using, e.g., a fixed-action policy [1]. For the upper
bound V , SARSOP uses the sawtooth approximation [1]. The
upper bound can be initialized in various ways, using the MDP
or the Fast Informed Bound technique [1]. SARSOP uses the
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Algorithm 2 Perform α-vector backup at a node b of TR.
BACKUP(TR, Γ, b)
1: For all a ∈ A, o ∈ O, αa,o ← argmaxα∈Γ(α · τ(b, a, o)).
2: For all a ∈ A, s ∈ S,

αa(s)← R(s, a) + γ
∑

o,s′ T (s, a, s′)Z(s′, a, o)αa,o(s′).
3: α′ ← argmaxa∈A(αa · b)
4: Insert α′ into Γ.

upper and the lower bounds to bias sampling towards R∗ (
(see Section III-C).
Next, we perform backup at selected nodes in TR. A backup

operation at a node b collates the information in the children
of b and propagates it back to b. We perform the standard α-
vector backup (Algorithm 2), with the value function approxi-
mation represented as a set Γ of α-vectors. The value function
approximation at b, obtained from the α-vector backup, is the
same as that from the Bellman backup. However, the Bellman
backup propagates only the value, while the α-vector backup
propagates the gradient of the value function approximation
along with the value to obtain a global approximation over
the entire belief space rather than a local approximation at b.
Invocation of SAMPLE and BACKUP generates new sampled

points and α-vectors. However, not all of them are useful
for constructing an optimal policy and are pruned to improve
computational efficiency (see Section III-D).
SARSOP is an anytime algorithm that returns the best policy

found within a pre-specified amount of time. It gradually
reduces the gap ε between the upper and lower bounds on
the value function at b0, until it reaches either a pre-specified
gap size or the time limit.

C. Sampling

The NP-hardness result described in Section III-A suggests
that sampling from R∗ is hard. We use heuristics and infor-
mation gathered from earlier samples to guide the sampling
and improve the sampling distribution over time. Furthermore,
by using value function bounds, we try to avoid sampling in
regions that are unlikely to be reachable under any optimal
policy, i.e., outside ofR∗. See Algorithm 3 for the pseudocode.
To sample new belief points, SARSOP sets a target gap size

ε between the upper and lower bound at the root b0 of TR and
traverses a single path down TR by choosing at each node the
action with the highest upper bound and the observation that
makes the largest contribution to the gap at the root of TR.
This is the same action and observation selection strategy used
in HSVI2 [19]. The sampling path is terminated under suitable
conditions. Together, the strategies for action and observation
selection and the choice of termination conditions control the
resulting sampling distribution.
One termination condition is to stop when the sampling

path reaches a node whose gap between the upper and lower
bounds is smaller than γ−tε, where t is the depth of the node
in TR [19]. If each leaf of TR has a gap smaller than γ−tε,
the gap at the root is guaranteed to be smaller than ε. This
condition, although reasonable, is inadequate. As the target
gap ε at the root gets smaller, the sampling path must traverse

deeper down the tree. As we go down the tree, the set of points
in R increases much faster than the set of points in R∗, and
it becomes increasingly difficult to sample from R∗. To focus
sampling nearR∗ and minimize sampling inR\R∗, we would
like to make the sampling path as shallow as possible while
still achieving the target gap ε at the root of TR. A potential
dilemma here is that some nodes with high expected rewards
lie deep in the tree, and we must allow the sampling path to
go deep enough in order to reach them.

a) Selective deep sampling: As each backup operation
chooses the action that maximizes the expected reward, im-
provements in lower bounds are quickly propagated to the root
when nodes with high expected rewards are found. This not
only directly improves the policy but also provides information
to stop sampling more quickly in regions that are likely outside
R∗. In contrast, upper bounds cannot be propagated beyond a
node until the upper bounds for all the actions at the node are
sufficiently improved. Finding the best action is not enough.
Thus we give preference to lower bound improvements and
continue down a sampling path beyond the node with a gap of
γ−tε, if we predict that doing so likely leads to improvement
in the lower bound at the root.
To make such a predication, conceptually we predict the

optimum value V ∗(b) at a node b and propagate the predicted
value V̂ up towards the root. If V̂ improves the lower bound
at the root, we expand b and then repeat the procedure at the
next selected node down the sampling path. Otherwise, we
proceed to check the gap termination criterion described in
the next subsection.
To predict the optimal value V ∗(b), we use a simple learning

technique. We cluster beliefs according to suitable features and
use previously computed values of beliefs in the same cluster
as b to predict the value of b. This allows us to learn which
parts of the belief space is worth exploring. Currently, we use
the initial upper bound and the entropy of b as the features
and discretize the belief space into a finite number of bins
according to these two features. The average value of beliefs
in a bin is used as the prediction for the value of any new
belief falling into the bin. If a bin is empty, the initial upper
bound of the new belief is used as its predicted value.
To implement this idea efficiently, we do not actually

propagate the predicted value V̂ back to the root. Instead,
we pass a lower-bound target level L down the sampling path.
The predicted value V̂ is checked against L. If V̂ fails to
meet the target L at a node b, the lower bound at b will not
be propagated further up towards the root of TR.
Let us now consider how to pass the target L at a node b to

a child node b′ = τ(b, a, o). First, observe that value function
information is propagated up from b′ to b only if the action a
that takes b to b′ has higher value than all other actions at b.
We thus calculate an intermediate target level L′ for a, which
is set to the maximum over L and the values of all the actions
at b (Algorithm 3, lines 7–8). Next, observe that the lower
bound on the value of action a is

Q(b, a) =
∑
s

R(s, a)b(s) + γ
∑
o

p(o|b, a)V (b′).
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Algorithm 3 Sampling near R∗.
SAMPLE(TR, Γ)
1: Set L to the current lower bound on the value function at
the root b0 of TR. Set U to L+ ε, where ε is the current
target gap size at b0.

2: SAMPLEPOINTS(TR, Γ, b0, L, U , ε, 1).

SAMPLEPOINTS(TR, Γ, b, L, U , ε, t).
3: Let V̂ be the predicted value of V ∗(b).
4: if V̂ ≤ L and V (b) ≤ max{U, V (b) + εγ−t} then
5: return
6: else
7: Q← maxa Q(b, a).
8: L′ ← max{L,Q}.
9: U ′ ← max{U,Q+ γ−tε}.
10: a′ ← argmaxa Q(b, a).
11: o′ ← argmaxo p(o|b, a′)

(
V (τ(b, a′, o))−

V (τ(b, a′, o))).
12: Calculate Lt so that L′ =

∑
sR(s, a′)b(s) +

γ
(
p(o′|b, a′)Lt +

∑
o�=o′ p(o|b, a′)V (τ(b, a′, o))

)
.

13: Calculate Ut so that U ′ =
∑

sR(s, a′)b(s) +
γ
(
p(o′|b, a′)Ut +

∑
o�=o′ p(o|b, a′)V (τ(b, a′, o))

)
.

14: b′ ← τ(b, a′, o′).
15: Insert b′ into TR as a child of b.
16: SAMPLEPOINTS(TR , Γ, b′ , Lt , Ut , ε, t+ 1).

Hence the target level for b′ is the value needed for Q(b, a)
to achieve its target L′ (Algorithm 3, line 12).
To guard against misleading predictions that result in un-

necessarily deep samplings paths, we only continue down a
sampling path until the gap between the upper and lower
bounds is κγ−tε for some κ < 1. The κ value is set to 0.5 in
our current implementation.

b) The gap termination criterion: If our prediction shows
no improvement of the lower bound at the root, we use the
target gap size ε at the root to decide whether to terminate
the sampling path and avoid sampling in regions unlikely to
be in R∗. As mentioned earlier, the straightforward way of
achieving the target gap size ε between the upper and lower
bounds at the root of TR is to require a gap size γ−tε for all
leaves of TR. However, it is in fact sufficient to ensure that the
condition is satisfied somewhere along all the paths from the
root to the leaves, rather than at the leaves themselves. This
has the advantage of leveraging information globally from the
other parts of TR to terminate a sampling path as early as
possible and thus improving computational efficiency.
To do this, we pass an upper-bound target level U down

the sampling path as well. For a node b at depth t, we can
terminate sampling if its upper bound is lower than V (b) +
εγ−t or the upper-bound target U passed down from parent of
b. This termination criterion has the same effect as requiring
all leaves to have a gap of no more than εγ−t: if all leaves
in TR meet this termination criterion, the root b0 achieves the

target gap size of ε. The upper-bound target level U can be
passed down a sampling path in a way similar to that for the
lower-bound target level L. See Algorithm 3, lines 9 and 13.
The combination of selective deep sampling and the gap

termination criterion leads to an effective sampling strategy
that goes deep into TR when need. This avoids unnecessarily
sampling in R\R∗ and gives a better approximation to R∗.

D. Pruning

The efficiency of backup operations, which take up a
significant fraction of the total computation time, depends
significantly on the size of the set Γ of α-vectors. To improve
computational efficiency, existing point-based algorithms usu-
ally prune an α-vector from Γ if it is dominated by others over
the entire belief space B. The notion of optimally reachable
space suggests an alternative and more aggressive pruning
technique: ideally, we want to prune an α-vector if it is
dominated by other α-vectors over R∗, rather than B. Since
R∗ is potentially much smaller than B, this may substantially
reduce the size of Γ and improve the efficiency of the backup
operations and thus the overall algorithm.
As R∗ is not known in advance, we use B, the set of all

sampled belief points contained in TR, as an approximation.
To improve this approximation and to keep the size of B small,
we prune from B those points that are provably suboptimal
and do not lie in R∗. For a node b in TR, if Q(b, a) < Q(b, a′)
for two actions a and a′, then we prune all the sampled points
in the subtree resulting from taking action a at b, as an optimal
policy will never take the action a at b and traverse the subtree
underneath. It is possible that some pruned points may turn out
to lie in R∗, as there are other paths in TR to reach them under
an optimal policy. However, the benefits of keeping B small
usually outweighs the loss in the approximation quality due to
over-pruning. These points can also be eventually recovered
from the other paths in TR.
Belief point pruning in turn enables more aggressive α-

vector pruning. In SARSOP, an α-vector is pruned if it is
dominated by others over B. A simple criterion for dominance
is to say that for two α-vectors α1 and α2, α1 dominates α2

at a belief point b if α1 ·b ≥ α2 ·b. However, this is not robust.
The set B is a finitely sampled approximation of R∗. Since
SARSOP computes an approximately optimal policy over B
only, the computed policy may choose an action that causes
it to slightly veer off R∗ and get into a region in which the
value function approximation is poor. To address this issue, we
impose the more stringent requirement of dominance over a δ-
neighborhood: α1 dominates α2 at a belief point b if α1 · b′ ≥
α2 · b′ at every point b′ whose distance to b is less than δ,
for some fixed constant δ. We call this δ-dominance. We can
check δ-dominance very quickly by computing the distance d
from b to the intersection of the hyperplanes represented by α1

and α2 and making sure that d ≥ δ. In the implementation, the
value of δ can be set adaptively according to the effectiveness
of α-vector pruning. A similar idea for α-vector pruning, but
without using the δ-neighborhood, is described in [15].

69



(a) Underwater Navigation, an
instance of coastal navigation,
shown on a reduced map with
a 11 × 12 grid. “S” marks
the possible initial positions for
the robot. The robot is equally
likely to start in any of these
positions. “D” marks the des-
tinations. “R” marks the rocks.
“O” marks places that the robot
can fully localize itself.

(b) Grasping. A fingered robot
arm grasps a stepped block.
Courtesy of L.P. Kaelbling and
T. Lozano-Pérez.

(c) Integrated Exploration. A robot navigates with an uncertain
map. Areas shaded in black represent obstacles. Areas shaded in
light gray represent (possibly damaged) bridges. “S” marks the start
location for the robot. “D” marks destination locations.

bathroom

target

robot

(d) Homecare. A robot fol-
lows a moving person, the
target. The light blue areas
indicate obstacles. The black
dashed curve indicates the
target’s path. The green area
around the robot indicates the
the robot sensor’ visibility re-
gion. The various shades of
gray show the robot’s belief
of the current target position.

Fig. 3. Some common robotic tasks modeled as POMDPs.

IV. EXPERIMENTS

We have successfully applied SARSOP to a set of distinct
robotic tasks. In this section, we describe these tasks, the
experimental setup, and the results.

A. Robotic Tasks Studied

Uncertainty arises in various ways in robotic systems.
Suppose that the state of a robotic system is given by (xr, xe),
where xr represents the state of the robot and xe represents
the state of the environment. Inaccuracies in robot control and
sensing are the typical causes for uncertainty in xr. They are

almost always present to some degree. Uncertainty in xe, On
the other hand, varies widely. We thus divide the robotic tasks
studied here into three categories according to the uncertainty
in xe. In the first category, the environment is static and known
with high accuracy. So uncertainty in xe can be ignored, and
we only need to consider uncertainty in xr in planning the
robot’s actions. In the second category, the environment is
static, but not known accurately. Thus, we must take into
account the uncertainty in both xr and xe in planning. In the
last category, the environment is not static and changes over
time. We need a dynamic model of the environment and use
it to plan actions for the robot to respond to changes in the
environment.

a) Underwater Navigation: We start with an instance of
the well known coastal navigation problem. An autonomous
underwater vehicle (AUV) navigates in an environment mod-
eled as a 51 × 52 grid map (Fig. 3a). The AUV needs to
navigate from the left border of the map to the right border. It
must avoid rocks scattered near the goals, as they may cause
severe damages to the vehicle. In each step, the AUV can either
stay in the current position or move to any of the four adjacent
positions (directly above, below, left, and right). Due to poor
visibility conditions, the AUV can only localize itself along
the top or bottom borders, where there are beacon signals. The
environment is static and known in advance. So this problem
belongs to the first category.
Roughly, the optimal policy for the AUV is to move

diagonally until it reaches the top or bottom border to localize
itself. It can then safely pass through the rocks and get to
the destinations on the right border. A feature of this problem
is that heuristics assuming full observability (e.g., an MDP
policy) favor shorter horizontal paths rather than diagonal
paths and thus often choose the wrong action.

b) Grasping: This problem was introduced in the work
of Hsiao, Kaelbling, and Lozano-Pérez [3]. As a POMDP, this
problem is similar to coastal navigation: the environment is
static and known, but due to limited sensing capabilities, the
robot has difficulty in determining its own state exactly. It
needs to perform information-gathering actions to reduce the
state uncertainty in order to reach the goal. However, as a
robotic task, grasping has quite different physical character-
istics. Here, a two-dimensional Cartesian robot arm with two
fingers tries to grasp a stepped block on a table (Fig. 3b).
It has only contact sensors at the tip and the sides of each
finger to help determine the state. The robot performs com-
pliant guarded moves (left, right, up, and down) and always
maintains contact with the surface of the block or the boundary
of the environment at the beginning and end of each move.
The goal is to move the robot arm and have its two fingers
straddle the block so that grasping is possible. More details
on this problem can be found in [3].

c) Integrated Exploration: For some tasks, robots must
traverse an area whose map is highly uncertain, for example,
when robots perform SLAM tasks. In this situation, the robot
must gather information to reduce map uncertainty, localize
itself, and navigate to reach the goal. This is sometimes
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called integrated exploration [8]. When the environment is
static, integrated exploration belongs to our second category.
Unfortunately, despite a static environment, uncertainty in the
environment map causes the number of states for xe to grow
exponentially. Recall further that increase in the number of
states in turn causes the belief space size to grow expo-
nentially. Currently, such doubly exponential growth is too
difficult to manage, even for point-based POMDP algorithms.
Our problem here models a similar, but simplified scenario

(Fig. 3c). In one step, the robot can move from its current
location to one of the eight adjacent locations horizontally,
vertically, and diagonally. The result of a move is uncertain.
The robot can localize itself in several locations scattered
around the environment. To reach the destination, the robot
may follow one of the long routes along the far left and right
sides of the environment or take a shortcut through one of the
bridges (shaded in light gray in Fig. 3c). Due to flood damages,
at most two bridges are still functional. The robot’s goal is to
reach the destination nodes as quickly as possible, using such
an uncertain environment map. Even in this simplified setting,
we still end up with more than 15,000 states.

d) Rock Sample: The Rock Sample problem first ap-
peared in the work on HSVI [18]. In this problem, a rover
explores an area modeled as a small grid and looks for rocks
with scientific value. The rover always knows its own position
exactly, as well as those of the rocks. However, it does not
know which rocks are valuable. The rover can take noisy long-
range sensor readings to gather information on the rocks. The
accuracy of the sensor depends on the distance between the
rover and the rocks. The rover can also sample a rock in the
immediate vicinity. It receives a reward or a penalty, depending
on whether the sampled rock is valuable.
In this problem, the environment is static, and a map with

exact rock positions is available. However, the environment
map that really matters is the one that marks the positions of
valuable rocks. This map is unknown in advance. and the rover
must infer this map from sensor readings. So this problem can
be regarded as an instance of integrated exploration.

e) Tag: The Tag problem first appeared in the work on
PBVI [10]. In Tag, the robot’s goal is to follow a target that
intentionally moves away. The robot and the target operate
in a grid environment with 29 positions in total. In one step,
they can either stay or move one of four adjacent positions
(above, below, left, and right). The robot always knows its own
position, but can observe the target’s position only if they are
in the same position. The robot pays a cost for each move and
receives a reward every time it arrives in the same position
as that of the target. Here, the environment changes over time
due to the target motion. Thus the problem belongs to the third
category.

f) Homecare: This problem models a robot following a
person around at home for caretaking purposes (Fig. 3d). It
is related to Tag, but involves a much larger number of states
and more complex environment dynamics. Imagine that an
elderly person moves around at home. His motion is non-
deterministic: he follows a fixed path (marked as a black

dashed curve in Fig. 3d), but in each time step, he may pause
or proceed along the path with equal probabilities. Along the
path, there is special location representing a bathroom, where
the person may stay for an extended duration. The person has a
call button to call the robot over for help. The call button stays
on for some uncertain duration and then goes off. The robot
gets a reward only if it arrives in time. The robot can observe
the person’s position when they are close enough. Clearly the
robot should stay close to the person in order to track his
position well and improve the chance of receiving rewards. At
the same time, it also wants to minimize movement in order
to reduce power consumption. POMDP provides a principled
way to evaluate such trade-offs.

B. Experimental Setup

We applied SARSOP to the above tasks. For each task,
we first performed long preliminary runs to determine ap-
proximately the reward level for the optimal policies and the
amount of time needed to reach it. We then ran SARSOP for
a maximum of two hours to reach this level and recorded the
resulting policy. To estimate the expected total reward of the
policy, we performed sufficiently large number of simulation
runs until the variance in the estimated value was small. For
comparison, we also ran HSVI2 on these tasks, following the
same procedure. Both algorithms are implemented in C++.
They were compiled with g++ v4.1.2. The experiments were
performed on a PC with a 2.66GHz Intel processor and 2GB
memory. For HSVI2, we used the newest software released by
its original author, zmdp v1.1.3, which is a highly optimized
implementation.
For SARSOP, the δ value for α-vector pruning was set at

1 × 10−2 for the two largest problems, Rock Sample and
Homecare, and 1 × 10−4 for the rest. The performance of
SARSOP is affected by the δ value, but not sensitive to it. One
important consideration in the choice of δ is the dimensionality
of the belief space involved, i.e., the number of states. The
rough guide that we have been using is 1×10−2 for POMDPs
with about 10,000 states or more and 1× 10−4 for those with
substantially fewer states. We are currently implementing an
adaptive technique to set δ automatically and will include it
in the final software release.

C. Results

The results are shown in Table I. Column 2 of the table
lists the estimated expected total rewards for the computed
policies and the 95% confidence intervals. Column 3 lists the
corresponding computation times.
For all six tasks, SARSOP obtained good approximate

solutions within the two-hour limit. In five out of the six
tasks, SARSOP substantially outperformed HSVI2, sometimes
by several times. For two tasks (Integrated Exploration and
Tag), HSVI2 was unable to reach a comparable reward level
as that of SARSOP within the two-hour time limit. Thus, for
these two tasks, we also report the reward level that HSVI2
was able to reach at the end of two hours (Table I).
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TABLE I
PERFORMANCE COMPARISON.

Reward Time (s)
Underwater Navigation,
|S|=2,653,|A|=6,|O|=103

SARSOP 722.59± 1.30 72
HSVI2 721.45± 0.75 720
Grasping
|S|=1,253,|A|=6,|O|=96

SARSOP 320.00± 0.16 8
HSVI2 319.88± 0.14 60
Integrated Exploration
|S|=15,517,|A|=8,|O|=1,015

SARSOP (1.58± 0.03)× 106 5,400
HSVI2 (1.41± 0.02)× 106 5,400

(1.43± 0.02)× 106 7,200
Rock Sample (7,8)
|S|=12,545,|A|=13,|O|=2

SARSOP 21.27± 0.13 400
HSVI2 21.27± 0.09 250
Tag
|S|=870,|A|=5,|O|=30

SARSOP −6.13± 0.12 6
HSVI2 −7.43± 0.11 6

−6.40± 0.10 7,200
Homecare
|S|=5,408,|A|=9,|O|=928

SARSOP 16.86± 0.45 960
HSVI2 16.88± 0.37 2,880

On Rock Sample, SARSOP did not perform as well as
HSVI2 for a very specific reason. HSVI2 implements an α-
vector masking technique, which opportunistically computes
only selected entries in the α-vectors. This technique is
particularly beneficial here, because in Rock Sample, the
robot position is fully observed, which substantially reduces
the overall level of uncertainty involved. Furthermore, the
remaining state variables that specify the status of rocks are
independent, which also helps to improve the effectiveness of
masking. Without masking, HSVI2 was only able to reach the
reward level of 18.98±0.09 after 400 seconds of computation
time. This is worse than that of SARSOP. The effectiveness of
masking degenerates for uncertain robot movements and noisy
observations, which are the more common case in practice. For
this reason, we currently do not incorporate masking in our
implementation.

V. CONCLUSION

Point-based algorithms have greatly improved the speed of
POMDP solution by sampling from the reachable space. This
paper presents a new point-based algorithm, SARSOP, which
exploits the notion of optimally reachable spaces to further
improve computational efficiency. We applied SARSOP to a
set of distinct robotic tasks, all modeled as POMDPs with a
large number of states. SARSOP computed good approximate
solutions to all of them in reasonable time. Further, it out-
performed one of the fastest existing point-based algorithm in
most of these tasks. These results indicate that approximating
optimally reachable spaces through sampling is an interesting
new angle to look at the problem. It has led to the more
effective sampling and pruning strategies in SARSOP.
Along with other reports in literature [2, 3, 10, 11, 14,

19], our results indicate that with the advances in POMDP
solution algorithms, the POMDP approach is gradually be-
coming practical for non-trivial robotic tasks. We have imple-
mented SARSOP as a software package, and it is available
for download at http://motion.comp.nus.edu.sg/
projects/pomdp/pomdp.html.
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Abstract—Autonomous navigation in unknown but well-
structured environments (e.g., parking lots) is a common task for
human drivers and an important goal for autonomous vehicles.
In such environments, the vehicles must obey the standard
conventions of driving (e.g., passing oncoming vehicles on the
correct side), but often lack a map that can be used to guide path
planning in an appropriate way. The robots must therefore rely
on features of the environment to drive in a safe and predictable
way. In this work, we focus on detecting one of such features,
the principal directions of the environment.
We propose a Markov-random-field (MRF) model for estimat-

ing the maximum-likelihood field of principal directions, given
the local linear features extracted from the vehicle’s sensor data,
and show that the method leads to robust estimates of principal
directions in complex real-life driving environments. We also
demonstrate how the computed principal directions can be used
to guide a path-planning algorithm, leading to the generation of
significantly improved trajectories.

I. INTRODUCTION

Autonomous navigation in outdoor environments is an ac-
tive area of research in robotics, with extensive work being
done in two distinct areas: i) the creation of robotic vehicles
capable of driving on streets and highways [7, 24, 25, 23],
and ii) the development of robots for off-road navigation [14,
22, 4, 21, 1, 16]. In the former case of on-street driving, it
is sensible and commonplace to assume that there is a map
of the global road network available, and the robot must obey
the standard rules of driving (drive on the appropriate side of
the street, not straddle the lane boundaries, etc). In the other
mode of off-road driving, a detailed map of the environment
is typically not available to the robot a priori, but the robot
is not confined by any rules of the road and is free to choose
any drivable and safe path to its goal.
There is also a large middle ground between these two

areas, consisting of well-structured environments where it is
not reasonable to assume knowledge of a detailed map, but
the robotic vehicle must nonetheless obey the common rules
of driving. Such conditions arise, for example, in parking lots,
shopping malls, and construction zones. In such areas—even
in the absence of typical road markings and signs—human
drivers are usually able to partition the space into drivable
lanes and drive appropriately. For instance, when driving in a
parking lot such as the one shown in Figure 1a, most people

(a) (b)
Fig. 1. Detecting structure of the driving environment. a) Aerial imagery of
a parking lot; b) A typical structure imposed on the environment by human
drivers.

will not have any difficulty detecting the main drivable lanes,
similar to the ones shown in Figure 1b.
Similarly, a robot operating in such an environment needs

to be able to—by using data from its on-board sensors—
recognize features of the environment that will allow it to drive
in accordance with common rules. Compliance to established
rules and driving conventions is an especially important safety
requirement if robots are to share the environment with human
drivers, because it then becomes an issue of predictability.
In this work, we take a step towards this goal by considering

one of the most basic features of environments: their principal
directions. Knowing the principal directions of the environ-
ment is a prerequisite condition for implementing many high-
level driving behaviors, such as driving on the correct side of
the road (which is critical for collision avoidance) and avoiding
diagonal paths across parking lots (which is often considered
rude and unsafe).
Finding principal directions based purely on data from the

robot’s on-boards sensors is a challenging task due to the
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Fig. 2. Stanford Racing Team’s robotic vehicle, Junior. The results presented
in this work were obtained using the Applanix GPS+IMU system and the
Velodyne 3D LIDAR.

following issues: i) Many environments have several principal
directions that vary from point to point (e.g., Figure 1), ii)
Sensor data is noisy and can give rise to conflicting local
hypotheses regarding the global principal directions, and iii)
Computation of principal directions has to be done efficiently
to be useful for navigation.
We approach the problem of computing the field of principal

directions in a probabilistic framework. Assuming that at every
point in the two-dimensional space of the driving environment
there is a main preferred direction of motion, we formulate a
Markov-random-field (MRF) [6] model that allows us to infer
a high-likelihood field of principal directions, corresponding
to the observed evidence provided by the vehicle’s on-board
sensors. This approach is inspired by the extensive use of
MRFs for image processing [18, 26].
The main steps of our approach are as follows. First, a map

of the environment is computed from the robot’s on-board
sensors. In this work, we present results based on LIDAR data,
but our approach can be applied to other sensor modalities,
such as cameras (potentially even leading to improvements
in accuracy). We then scan the resulting map for local linear
features that provide evidence regarding the principal direc-
tions of the environment. Having thus obtained local evidence,
we formulate an MRF whose nodes form a 2D grid and
represent the global principal direction of the environment at
the corresponding locations. A solution to the MRF is obtained
using fast numeric-optimization techniques.
We also present results demonstrating the robust perfor-

mance of the MRF approach on several real environments
driven with our robotic vehicle (Figure 2), and show how the
resulting field of principal directions can be used to guide path
planning, leading to a significant improvement in generated
trajectories.

II. LOCAL PRINCIPAL DIRECTIONS

The core of our MRF-based approach is independent of the
method used to obtain features of the environment that serve

as local evidence. However, for completeness and continuity,
in this section, we briefly describe the specifics of our method
for obtaining evidence for the MRF.
We used a vehicle equipped with a 3D Velodyne LIDAR

as the sole environmental sensor. Below, we outline the
techniques we used to find lines in the environment, given
the range data produced by the LIDAR. The main steps of the
process are illustrated in Figure 3.
The Velodyne LIDAR outputs a 3D point cloud, as shown

in Figure 3a. In the first step, we filter out the ground plane,
integrate data over time, and project the points onto a plane,
leading to a 2D obstacle map shown in Figure 3b. Any line
segments in this 2D map (e.g., curbs, other cars) are evidence
of the principal driving directions, and we can detect those
local lines using common computer-vision approaches.
There are several good known techniques for detecting lines

in images. We found that the following sequence of standard
transforms leads to satisfactory results for out application.
First, we smooth the data using a symmetric 2D Gaussian
kernel (Figure 3c) and then apply a binary threshold (25%) to
the result (leading to the data shown in Figure 3d). The effect
of these two steps is to remove small noise from the data,
smooth out jagged lines, and “fill in” small gaps within objects
(such as cars or trees), thereby eliminating extra edges. We
then apply the Canny algorithm [5] for edge detection, yielding
the image shown in Figure 3e. Finally, we use a randomized
Hough transform (RHT) [27] to find line segments in the data
(Figure 3f).

III. MARKOV RANDOM FIELD FOR ESTIMATING GLOBAL
PRINCIPAL DIRECTIONS

The lines obtained in the previous section can be viewed
as local evidence regarding the principal directions of the
environment. Our goal is therefore to estimate the maximum
likelihood field of principal directions θ(x, y), which specifies
the principal orientation at every point x, y in the region of
interest. Note that most complex driving environments—e.g.,
Figure 1—do not have a single global orientation, but rather
have several principal directions that differ from point to point.
We formulate a discrete version of the inference problem on

a regular 2D grid, associating with each point 〈xi, yi〉 an MRF
node with a scalar continuous value θi. Figure 4 illustrates
our MRF construction. Each MRF node θi ∈ [0, π/2) has
associated with it a set of evidence nodes αik ∈ [0, π/2), one
for the angle of each line segment k ∈ [1,Ki] that crosses the
grid cell i.
All angles are normalized to [0, π/2), because orthogonal

lines (e.g., edges of a car) support the same hypothesis for the
principal direction at a point.
Our MRF uses two sets of potentials associated with the

nodes and edges of the graph in Figure 4. The first potential
(Ψ) is defined on the nodes of the MRF and ties each θi to
its local evidence αik. It is defined as follows:

Ψ(θ, α) =
∑
i

Ki∑
k=1

λikψ(θi, αik), (1)
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(a) 3D LIDAR data (b) 2D OBstacle Map (c) Gaussian Smoothing

(d) Binary Threshold (e) Canny Edge Detection (f) Hough Transform

Fig. 3. Line detection in a parking lot: a) 3D LIDAR data; b) Obstacle map; c) After smoothing with a Gaussian kernel; d) After binary thresholding;
e) After Canny edge detection; f) After Hough transform.

Fig. 4. MRF for inferring the field of principal directions of the environment.
MRF variables θi are shown as red circles, αik are the input nodes,
corresponding to the angles of the observed lines.

where λik is the weight associated with line k, and ψ is a
distance measure between two angles; both are defined below.
The second potential (Φ) is defined on the edges of the MRF

and encodes a prior that enforces a smoothness relationship
between the principal directions at neighboring nodes:

Φ(θ) =
1
2

∑
i

∑
j∈N (i)

φ(θi, θj), (2)

where N (i) is the set of neighbors of node i, and φ is a
distance measure between two angles (defined below).

There are many reasonable choices for the distance mea-
sures ψ and φ, as well as the weights λik. We evaluated several
options for each, and experimentally settled on the following.
For the weights λik, we used the length of the correspond-
ing line segment (the longer the segment, the stronger the
evidence). The choice of the distance measures ψ and φ is
an interesting topic in itself: some distances favor smoother
fields (e.g., L2 norm), others (e.g., L1 norm) have better
discontinuity-preserving properties; see [9] for an applicable
discussion of different norms in optimization. We empirically
investigated several functions, and found the following to be
a good choice of a norm for both evidence and smoothness
potentials:

ψ(β, γ) = φ(β, γ) = sin2
(
2(β − γ)

)
. (3)

This measure behaves quadratically for small β − γ, and has
natural wrap-around properties for our angles in the interval
[0, π/2).
Finally, the distribution of the MRF variables θ for a specific

set of observed α is given by a Gibbs distribution:

P(θ|α) =
1
Z

exp
(
− (wψΨ(θ, α) + wφΦ(θ))

)
, (4)

where wψ and wφ are weights, and Z is a normalizer or the
partition function.
Our goal is to find the maximum-likelihood field of principal
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directions θ, given the observed evidence α:

θ∗α = argmax
θ
P(θ|α), (5)

or, in other words, find θ that minimizes the Gibbs energy
U = wψΨ + wφΦ.

IV. OPTIMIZATION

For computational reasons, it is infeasible to compute an
exact maximum-likelihood solution to the MRF defined in
the previous section for anything but the simplest problems
(a typical MRF for a realistic environment will have several
thousand to tens of thousands nodes). Similarly to the ap-
proach of Diebel and Thrun [8, 9], we therefore settle for
a high-probability mode of the posterior, which we compute
using conjugate-gradient (CG) optimization [12, 20].
CG works best when an analytical gradient of the energy is

specified, which is easily computed for our MRF potentials:

∂Ψ
∂θi

= 4
Ki∑
k

λik sin
(
2(θi − αik)

)
cos

(
2(θi − αik)

)
,

∂Φ
∂θi

= − ∂Φ
∂θj

= 2 sin
(
2(θi − θj)

)
cos

(
2(θi − θj)

)
.

Given the above potentials and the gradient, the imple-
mentation of conjugate gradient is standard [20]. The output
of the optimization is a high-likelihood field θ(xi, yi) that
corresponds to the observed lines α.

V. RESULTS

In this section, we present results on the performance of
our MRF-based approach to computing principal directions.
The use of these directions in path-planning is discussed and
evaluated in the next section.
We tested our algorithm using a vehicle equipped with an

Applanix pose estimation GPS-IMU system and a Velodyne
3D LIDAR. Some representative examples of executing our
method are shown in Figure 5. The left column shows the 2D
obstacle map obtained from the vehicle’s sensors. The center
column shows the lines detected in the obstacles map using the
method described in Section II; these lines serve as the input
to our MRF. The right column of Figure 5 shows the resulting
field of principal directions computed by conjugate-gradient
optimization.
The top row of Figure 5 shows a nearly ideal scenario:

a parking lot with two main orthogonal principal directions,
which are easily computed by our algorithm. The second row
shows data for another, more complex, parking lot. Notice the
presence of trees and a second, differently oriented, parking lot
in the bottom-left part of the map. Despite these challenges,
the MRF computes a very good estimate of the preferred
driving directions for this environment. The third row of
Figure 5 demonstrates the ability of our approach to handle en-
vironments with gradually-changing orientations. Notice that
the field of principal directions correctly follows the curved
road segment. The fourth row of Figure 5 depicts another
challenging situation with a curved street, an intersection,

Fig. 6. The MRF computes the correct orientation for the drivable region of
the parking lot, despite bad evidence provided by an adjacent building corner.

and an adjacent parking lot. It also highlights an interesting
challenge for our method: parking lots with diagonally-parked
cars (upper-right corner of the map). In this situation, the
parked cars—whose sides are usually detected as lines—and
features of the parking lots themselves (e.g., curbs) present
conflicting evidence regarding the principal orientation of the
environment.
Another complex situation is shown in Figure 6, where a

building is located very close to a parking lot, but is oriented
at a different angle, providing bad evidence for the MRF.
However, as can be seen from the vector field in Figure 6, the
MRF is able to compute the correct orientation for the drivable
area, despite the fact that the curb separating the corner of the
building from the parking lot is not detected.
Additional examples illustrating the computation of prin-

cipal directions in real driving environments are shown in
Figure 9.
Figure 7 shows the running time of our algorithm as

performed on a 3Ghz Intel Core-2 PC. The data presented
in Figure 7 is for the parking lot shown in the second row of
Figure 5).
Figure 7a compares the running times of the main com-

ponents of our approach. The timing results in Figure 7a
are for experiments run with the following parameters: the
obstacle grid was 260m×260m with 15cm resolution, the MRF
evidence grid was 260m×260m with 5m resolution (resulting
in an MRF with 2704 nodes). As can be seen from the data,
the performance of our algorithm is usually dominated by the
running time of the conjugate-gradient algorithm, and with
the average computation time of under 300ms, the method is
well-suited for use in online path planning (since it is usually
not necessary to update the field of principal directions during
every planning cycle).
Figure 7b shows how our MRF inference scales with the size

of the MRF grid (with a 5-meter discretization of the MRF
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Fig. 5. Results of computing principal directions in several real driving environments.

grid). Figure 7c illustrates the scaling of the MRF inference as
a function of the number of MRF variables θi (corresponding
to MRF grids of size 40m to 300m, at 2.5m resolution).

We should note that a finer discretization of the MRF grid
does not necessarily lead to better results. In fact, we found a
resolution of around 5m to work best for typical driving areas.
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Fig. 7. (a) Running time of the main components of our method on a sequence of real obstacle maps: i) Time for map pre-processing and Canny edge
detection, ii) Time for the Hough Tranform, iii) Time for the MRF conjugate-gradient optimization, and IV) Number of local linear features detected via the
Hough transform. (b) MRF inference time as a function of the MRF grid size at a 5-meter resolution (number of MRF variables is quadratic in the size). (c)
MRF inference time as a function of the number of MRF variables (grid cells) at a 2.5-meter discretization.

VI. PATH PLANNING
There are several ways in which knowledge of principal

directions can be fruitfully utilized in path planning, some of
which were outlined in the Introduction. Below, we describe
a path-planning algorithm that favors trajectories aligned with
the environment, and illustrate the improvements this leads to,
compared to a standard planner with a bias towards smooth
trajectories with arbitrary headings.
In what follows we leave aside the problem of global

planning, which in practice can be accomplished via several
existing algorithms, such as continuous forward search via
path sampling (e.g., [3, 13, 17, 19]) or discrete search (e.g.,
[10, 15, 11]), just to name a couple classes of algorithms.
Assuming that a rough global plan has been computed, we
show how the field of principal directions can be used in a
path-smoothing phase of planning.
Given a global plan represented as a sequence 〈xl, yl〉, l ∈

[1, N ], we can formulate the smoothing problem as a contin-
uous optimization on the coordinates of the vertices of the
trajectory. For illustrative purposes, below we focus on two
terms: smoothness and compliance with principal directions;
other important aspects of a realistic path smoother (such as
kinematic constraints of the vehicle and collision-avoidance
terms) are omitted for brevity.
For a given trajectory {〈xl, yl〉}, let us define the displace-

ment vector at vertex l:

Δxl =
(
xl
yl

)
−

(
xl−1yl−1

,

)
(6)

and the heading of the trajectory at vertex l:

σl = tan−1
( yl+1 − yl
xl+1 − xl

)
. (7)

The smoothness of the trajectory and the bias towards
driving along principal directions can then be expressed as:

f =wsm

N−1∑
l=1

(Δxl+1 −Δxl)2+

wpd

N∑
l=1

μ
(
θ(xl, yl), σl

)
,

(8)

where θ(xl, yl) is the principal direction at the MRF node
closest to 〈xl, yl〉; wsm and wpd are the weights on smoothness
and the principal-direction bias, respectively; μ is a potential
on the difference of the two angles, which can be defined in
a variety of ways, for example:

μ(θ(xl, yl), σl) = 1− cos
(
2(θ(xl, yl)− σl)

)
. (9)

This smoothing problem can be solved using several effi-
cient numerical techniques. One approach is to again use the
conjugate-gradient algorithm as in Section IV.
Figure 8 shows the output of different variants of path

smoothing on the same problem. Figure 8a and Figure 8c
shows the output of the smoother that minimizes the quadratic-
curvature term in (8), subject to constraints on collision avoid-
ance and kinematics of the car, but wpm = 0 and principal
directions are ignored. The driving style exemplified by such
trajectories might in some cases be considered undesirable.
Turning on the bias for aligning the trajectory with the
principal directions leads to solutions shown in Figure 8b
and Figure 8d; such compliance with the orientation of the
environment can be useful in many driving situations.

VII. DISCUSSION

We presented an MRF-based method for inferring princi-
pal directions of unknown environment using data from 3D
LIDAR, and illustrated the usefulness of principal directions
for path-planning in well-structured environments, such as
parking lots. We evaluated the performance of our approach
in real driving scenarios, demonstrating its ability to robustly
estimate the field of principal directions in the presence of
noise, conflicting local evidence, and regions with smoothly
curved boundaries.
This work takes a step towards designing autonomous

vehicles that can operate predictably in unknown environments
and follow the standard conventions of human driving.
Still, the principal directions are a rather crude property of

the environment, and it is necessary to detect more compre-
hensive features and use them in path planning to achieve
predictable human-like driving. For instance, another high-
level driving behavior that is challenging to implement is the
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(a) (b) (c) (d)
Fig. 8. Path planning using principal directions. a) and c) Principal directions are not used. b) and d) Planning favors trajectories that are aligned with
principal directions of the environment.

adherence to the established convention of passing oncom-
ing traffic on the correct side. A straightforward method of
partitioning the space into “left” and “right” regions can be
developed by using the Voronoi diagram [2] of the obstacle
map and labeling points based on which side of the Voronoi
edge they fall. However, a straightforward application of this
method is brittle with respect to sensor noise, producing
fragmented obstacle maps that can lead to highly irregular
Voronoi diagrams. A more sophisticated method is needed for
robust identification of drivable lanes in order for the robot to
correctly handle situations involving other cars.
Another interesting thread of our current and future work

lies along the direction of combining obstacle data with
visual camera data as well as surface-reflectivity data from
LIDARs for detecting and recognizing more advanced features
in unknown environments (e.g., lane markings, curbs, other
vehicles) and their use in path planning.
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Fig. 9. Additional results of computing principal directions in several real driving environments.
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Abstract—In this paper, we consider the problem in which
a mobile pursuer attempts to maintain visual contact with an
evader as it moves through an environment containing obstacles.
This surveillance problem is a variation of traditional pursuit-
evasion games, with the additional condition that the pursuer
immediately loses the game if at any time it loses sight of the
evader. We present schemes to approximate the set of initial
positions of the pursuer from which it might be able to track the
evader.
We first consider the case of an environment containing only

polygonal obstacles. We prove that in this case the set of initial
pursuer configurations from which it does not lose the game is
bounded. Moreover, we provide polynomial time approximation
schemes to bound this set. We then extend our results to the case
of arbitrary obstacles with smooth boundaries.

I. INTRODUCTION

Target tracking is an interesting class of motion planning
problems. It considers motion strategies for a mobile robot
to track a moving target among obstacles. In case of an
antagonistic target, the problem lies in the framework of
pursuit-evasion which belongs to a special class of problems
in game theory. The two players in the game are the pursuer
and the evader. The goal of the pursuer is to maintain a line
of sight to the evader that is not occluded by any obstacle.
The goal of the evader is to escape the visibility region of the
pursuer (and break this line of sight) at any instant of time.
This problem has some interesting applications. In security

and surveillance systems, tracking strategies enable mobile
sensors to monitor moving targets in cluttered environments. In
home care settings, a tracking robot can follow elderly people
and alert caregivers of emergencies. Target-tracking techniques
in the presence of obstacles have been proposed for the graphic
animation of digital actors, in order to select the successive
viewpoints under which an actor is to be displayed as it moves
in its environment [16]. In surgery, controllable cameras could
keep a patient’s organ or tissue under continuous observation,
despite unpredictable motions of potentially obstructing people
and instruments.
In this work, we address the problem of a single pursuer

trying to maintain visibility of a single evader in a planar
environment containing obstacles. The pursuer and the evader
have bounded speeds. We address the following question:
Given the initial position of the evader, what are the initial
positions of the pursuer from which it can track successfully ?

We use the term decidable region to refer to the set of initial
positions of the pursuer at which the result of the game is
known. Similarly, we use the term undecidable region to refer
to the set of initial positions of the pursuer at which the result
of the game is unknown.
The main contributions of this work are as follows. First;

we prove that in an environment containing obstacles, the
initial positions of the pursuer from which it can track the
evader is bounded. Though this result is trivially true for
a bounded workspace, for an unbounded workspace it is
intriguing. Second; In this work, we provide polynomial-time
approximation schemes to bound the set of initial positions of
the pursuer from which it might be able to track successfully.
If the initial position of the pursuer lies outside this region,
the evader escapes. The size of the region depends on the
geometry of the environment and the ratio of the maximum
evader speed to the maximum pursuer speed. Third; we
address the problem of target tracking in an environment
containing non-polygonal obstacles. In the past, researchers
[15] have addressed the problem of searching an evader in
non-polygonal environments. However, we do not know of
any prior work that addresses the problem of tracking an
evader in non-polygonal environments. Fourth; although, we
do not provide a complete solution to the decidability [5] of the
tracking problem in general environments, we present partial
solutions by providing polynomial time algorithms to bound
the undecidable region.
The rest of the paper is organized as follows. Section II

provides the related work. Section III presents the problem for-
mulation. Section IV presents polynomial time approximation
schemes to compute the decidable region. Section V extends
the approximation schemes to environments containing non-
polygonal obstacles. Section VI presents the conclusions and
future research directions.

II. RELATED WORK

Some previous work has addressed the motion planning
problem for maintaining visibility of a mobile evader. In [4],
an algorithm is presented that operates by maximizing the
probability of future visibility of the evader. In [14], algorithms
are proposed for discrete-time representations of the system in
deterministic and stochastic settings. The algorithms become
computationally expensive as the number of stages of the
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game is increased. In [8], the authors take into account the
positioning uncertainty of the robot pursuer. Game theory is
proposed as a framework to formulate the tracking problem,
and an approach is proposed that periodically commands
the pursuer to move into a region that has no localization
uncertainty in order to re-localize and better track the evader
afterward.
In [5], the problem of tracking an evader around a sin-

gle corner is addressed. The free workspace is partitioned
according to the strategies used by the players to win the
game. The authors have shown that the problem is completely
decidable around a single corner. However, in reality, we
seldom encounter environments having single corner. Hence
the results about a single corner have limited application in
real scenarios. In [18], the authors show that the problem
of deciding whether or not the pursuer is able to maintain
visibility of the evader in a general environment is at least
NP-complete. This motivates the necessity to use randomized
or approximation techniques to address the problem since any
deterministic algorithm would be computationally inefficient.
Some variants of the tracking problem have also been

addressed. [7] presents an off-line algorithm that maximizes
the evader’s minimum time to escape for an evader moving
along a known path. In [9][3], a target tracking problem is
analyzed for an unpredictable target and an observer lacking
prior model of the environment. It computes a risk factor based
on the current target position and generates a feedback control
law to minimize it. [2] deals with the problem of stealth target
tracking where a robot equipped with visual sensors tries to
track a moving target among obstacles and, at the same time,
remain hidden from the target. Obstacles impede both the
tracker’s motion and visibility, and also provide hiding places
for the tracker. A tracking algorithm is proposed that applies
a local greedy strategy and uses only local information from
the tracker’s visual sensors and assumes no prior knowledge
of target tracking motion or a global map of the environment.
In [19], the problem of target tracking has been analyzed at a
fixed distance between the pursuer and evader. Optimal motion
strategies are proposed for a pursuer and evader based on
critical events.
Research has been done to track one or more evaders using

multiple pursuers. [12] presents a method of tracking several
evaders with multiple pursuers in an uncluttered environment.
In [11] the problem of tracking multiple targets is addressed
using a network of communicating robots and stationary
sensors. A region-based approach is introduced which controls
robot deployment at two levels, namely, a coarse deployment
controller and a target-following controller.

III. PROBLEM FORMULATION

In this paper we consider a mobile pursuer and evader
on a plane. They are point robots and move with bounded
speeds, vp(t) and ve(t). Therefore, vp(t) : [0,∞) → [0, vp]
and ve(t) : [0,∞) → [0, ve]. We use r to denote the ratio of
the maximum speed of the evader to that of the pursuerr = ve

vp
.

The workspace contains obstacles that restrict pursuer and

v

d e

d p

p

e
Star region

Fig. 1. Star Region associated with the vertex

evader motions and may occlude the pursuer’s line of sight to
the evader. The initial position of the pursuer and the evader
is such that they are visible to each other. To prevent the
evader from escaping, the pursuer must keep the evader in
its visibility region. The visibility region of the pursuer is the
set of points from which a line segment from the pursuer to
that point does not intersect the obstacle region. The evader
escapes if at any instant of time it can break the line of sight to
the pursuer. Visibility extends uniformly in all directions and
is only terminated by workspace obstacles (omnidirectional,
unbounded visibility).
Now we present a sufficient condition of escape for an

evader in general environments. We use it to prove some
important results in the next section. The sufficient condition
is based on the the concept of a star region. The star region
associated with a vertex is defined as the region in the free
workspace bounded by the lines supporting the vertex of the
obstacle. The shaded region in Figure 1 shows the star region
associated with the vertex v. The concept of star region is
only applicable for a convex vertex(a vertex of angle less than
π). Using the idea of the star region, a sufficient condition
for escape for the evader can be stated as follows.

Sufficient Condition: If the time required by the pursuer
to reach the star region associated with a vertex is greater
than the time required by the evader to reach the vertex, the
evader has a strategy to escape the pursuer’s visibility region.

The sufficient condition arises from the fact that if the
evader reaches the corner before the pursuer can reach the
star region associated with the corner, the evader may escape
from the side of the obstacle hidden from the pursuer. This
is illustrated in figure 2. In the figure, the evader, e, is at the
corner while the pursuer, p, is yet to reach the star region
associated with the corner. If the pursuer approaches the star
region from the left side as shown by the solid arrow, the
evader can escape the visibility region of the pursuer by

82



e

p

p

Star region

Fig. 2. Sufficient condition for escape

moving in the direction of the solid arrow. On the other hand,
if the pursuer approaches the star region from the right side as
shown by the dotted arrow, the evader can escape the visibility
region of the pursuer by moving in the direction of the dotted
arrow.
The relation between the time taken by the pursuer and

evader can be expressed in terms of the distances traveled
by the pursuer and the evader and their speeds. Referring to
Figure 1, if de is the length of the shortest path of the evader
from the corner, dp is the length of the shortest path of the
pursuer from the star region associated with the corner and r
is the ratio of the maximum speed of the evader to that of
the pursuer, the sufficient condition can also be expressed in
the following way

SC: If de < rdp, the evader wins the game.

For the sake of convenience, we refer to the sufficient
condition as SC in the rest of the paper.

IV. APPROXIMATION SCHEMES FOR POLYGONAL
ENVIRONMENT

In this section, we show that in any environment containing
polygonal obstacles, the set of initial positions from which
a pursuer can track the evader is bounded. First, we prove
the statement for an environment containing a single convex
polygonal obstacle. Then we extend the results to prove
in case of a general polygonal environment. This leads to
our first approximation scheme. Then we present two more
approximation schemes to bound the set of initial positions of
the pursuer from which it might be able to track the evader.
The results presented in this section hold for unbounded as
well as bounded environments.
Consider an evader, e, in an environment with a single

convex polygonal obstacle having n sides. The edges of the
polygonal obstacle are e1, e2 · · · en. Every edge ei is a line
segment that lies on a line lei in the plane. Let re = (xe, ye)
and rp = (xp, yp) denote the initial position of the evader and
the pursuer respectively. Let {hi}n1 denote a family of lines,
each given by the equation hi(x, y, re, r) = 0. The presence
of the terms re and r in the equation imply that the equation
of the line depends on the initial position of the evader and
the speed ratio respectively. Each line hi divides the plane into
two half-spaces, namely, h+

i = {(x, y) | hi(x, y, re, r) > 0}

a b
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Fig. 3. Proof of Lemma 1

and h−i = {(x, y) | hi(x, y, re, r) < 0}. Now we use the
SC to prove an important property related to the edges of the
obstacle.

Lemma 1: For every edge ei, there exists a line hi parallel
to ei and a corresponding half-space h+

i such that the pursuer
loses the game if rp ∈ h+

i .
Proof: Consider an edge ei of a convex obstacle as shown
in Figure 3. Since the obstacle is convex, it lies in one of
the half-spaces generated by the line lei . Without the loss of
generality, let the obstacle lie in the half-space below the line
lei . Let da and db be the length of the shortest path of the
evader from vertices a and b of the edge ei respectively. Since
the obstacle lies in the lower half-space of lei , the star region
associated with vertices a and b are in the upper half-space of
lei as shown by the green shaded region. Let la and lb be the
lines at a distance of da

r and db
r respectively, from the line lei .

If the pursuer lies at a distance d greater than min( dar , dbr )
below the line lei , then the time taken by the pursuer to reach

the line lei is tp ≥ d
v̄p
≥ min( da

r ,
db
r )

v̄p
. The minimum time

required by the evader to reach corner a or b, whichever is
nearer, is given by te = min(da,db)

v̄e
. From the expressions of

tp and tp we can see that tp > te. Hence the pursuer will
reach the nearer of the two corners before the evader reaches
line lei . Hence from SC, we conclude that if the pursuer lies
below the line hi parallel to ei at a distance of min(dar , dbr ),
then the evader wins the game by following the shortest path
to the nearer of the two corners. In Figure 3, since db > da
the line hi coincides with line la.
Given an edge ei and the initial position of the evader,

proof of Lemma 1 provides an algorithm to find the line hi
and the corresponding half-plane h+

i as long as the length of
the shortest path of the evader to the corners of an edge is
computable. For example, in the presence of other obstacles,
the length of the shortest path of the evader to the corners can
be obtained by Dijkstra’s algorithm.
Now we present some geometrical constructions required to

prove the next theorem. Refer to Figure 4. Consider a convex
obstacle. Consider a point c strictly inside the obstacle. For
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each i, extend the line segment vic to infinity in the direction
�vic to form the ray cv′i. Define the region bounded by rays cv

′
i

and cv′i+1 as sector v
′
icv

′
i+1. The sectors possess the following

properties
1) Any two sectors are mutually disjoint.
2) The union of all the sectors is the entire plane.

We can extend the above idea to any n sided convex polygon.
We use the construction to prove the following theorem.

Theorem 1: In an environment containing a single convex
polygonal obstacle, given the initial position of the evader, the
initial positions of the pursuer from which it can win the game
is a bounded subset of the free workspace.
Proof: Refer to Figure 5. Consider an edge ei of the convex
obstacle with end points vi and vi+1. WLOG, the obstacle lies
below lei . Let c be a point strictly inside the convex polygon.
Extend the line segments vic and vi+1c to form sector v′icv

′
i+1.

By Lemma 1, using the initial position of the evader, we can
construct a line hi parallel to ei such that if the initial pursuer
position lies below hi, the evader wins the game. In case the
line hi intersects the sector v′icv

′
i+1, as shown in Figure 5(a),

the evader wins the game if the initial pursuer position lies
in the shaded region. In case the line hi does not intersect
the sector v′icv

′
i+1, as shown in Figure 5(b), the evader wins

the game if the initial pursuer position lies anywhere in the
sector. Hence for every sector, there is a region of finite area
such that if the initial pursuer position lies in it then it might
win the game. Every edge of the polygon has a corresponding
sector associated with it. Since each sector has a region of
finite area such that if the initial pursuer position lies in it,
the pursuer might win the game, the union of all these regions
is finite. Hence the proposition follows. Figure 6 shows the
evader in an environment consisting of a hexagonal obstacle.
The polygon in the center bounded by thick lines shows the
region of possible pursuer win.
In the proof of theorem 1, we generate a bounded set for

each convex polygonal obstacle such that the evader wins the
game if the initial position of the pursuer lies outside this set.
In a similar way, we can generate a bounded set for a non-
convex obstacle. Given a non-convex obstacle, we construct
its convex-hull. We can prove that Lemma 1 holds true for
the convex-hull. Finally, we can use Theorem 1 to prove the
existence of a bounded set. Due to limitations in space, the
proof is omitted.
From the previous discussions, we conclude that any polyg-

onal obstacle, convex or non-convex, restricts the set of initial
positions from which the pursuer might win the game, to a
bounded set. Moreover, given the initial position of the evader
and the ratio of the maximum speed of the evader to the
pursuer, the bounded set can be obtained from the geometry of
the obstacle by the construction used in the proof of Theorem
1. For any polygon in the environment, let us call the bounded
set generated by it, as the B set. If the initial position of the
pursuer lies outside the B set, the evader wins the game. For an
environment containing multiple polygonal obstacles, we can
compute the intersection of all B sets generated by individual
obstacles. Since each B set is bounded, the intersection is a
bounded set. Moreover, the intersection has the property that
if the initial position of the pursuer lies outside the intersection,
the evader wins the game. This leads to the following theorem.

Theorem 2: Given the initial position of the evader, the set of
initial positions from which the pursuer might win the game is
bounded for an environment consisting of polygonal obstacles.
Proof: The bounded set referred in this theorem is the
intersection of the B sets generated by the obstacles. If the
initial pursuer position does not lie in the intersection it implies
that it is not contained in all the B sets. Hence there exists at
least one polygon in the environment for which the initial
pursuer position does not lie in its B set. By Theorem 1, the
evader has a winning strategy. Hence the theorem follows.
The intersection of the B sets generated by all the obstacles

provides an approximation of the size of the decidable regions.
For any initial position of the pursuer outside the intersection,
the evader wins the game and hence the result is known. But
we still do not know the result of the game for all initial
position of the pursuer inside the intersection. However, we
can find better approximation schemes and reduce the size of
the region in which the result of the game is unknown. In the
next subsection, we present one such approximation scheme.
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A. U set

Now we present another approximation scheme that gives
a tighter bound of the undecidable region. From Lemma 1,
the evader wins the game if rp ∈ h+

i for any edge. We can
conclude that if rp ∈ ∪ni=1h

+
i , the evader wins the game.

Since (∪ni=1h
+
i )c = ∩ni=1(h

+
i )c = ∩ni=1h

−
i , where S

c denotes
the complement of set S, if rp lies outside ∩ni=1h

−
i , the evader

wins the game. Hence the set of initial positions from where
the pursuer might win the game is contained in ∩ni=1h

−
i . We

call ∩ni=1h
−
i as the U set. An important point to note is that

the intersection can be taken among any number of half-
spaces. If the intersection is among the half-spaces generated
by the edges of an obstacle, we call it the U set generated
by the obstacle. If the intersection is among the half-spaces
generated by all the edges in an environment, we call it the U
set generated by the environment.
The next theorem proves that the U set generated by a

single obstacle is a subset of the B set and hence a better
approximation.

Theorem 3: For a given convex obstacle, the U set is a subset
of the B set and hence bounded.
Proof: Consider a point q that does not lie in the B set. From
the construction of the B set, q must belong to some half-plane
h+
j . If q ∈ h+

j , then q /∈ h−
j =⇒ q /∈ ∩ni=1h

−
i . This implies

that the complement of the B set is a subset of the complement
of the U set. This implies that the U set is a subset of the B
set.
Figure 7 shows the B set and U set for an environment

containing a regular hexagonal obstacle. In the appendix, we
present a polynomial-time algorithm to compute the U set for
an environment with polygonal obstacles. The overall time-
complexity of this algorithm is O(n2 logn) where n is the
number of edges in the environment. Figure 8 shows the
evader in a polygonal environment. The region enclosed by
the dashed lines is the U set generated by the environment for
the initial position of the evader. The U set for any environment
having polygonal obstacles is a convex polygon with at most
n sides[6]. Figure 9 shows the U set for an environment for
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Boundary of U set 

e

Fig. 8. U set for a general environment

various ratio of the maximum speed of the evader to that of
the pursuer. In Figure 9, it can be seen that as the speed ratio
between the evader and the pursuer increases, the size of the
U set decreases. The size of the U set diminishes to zero at
a critical speed ratio. At speed ratios higher than the critical
ratio, the evader has a winning strategy for any initial position
of the pursuer. Hence the problem becomes decidable [5] when
the ratio of the maximum speeds is higher than a critical limit.
The next theorem provides a sufficient condition for escape

of the evader in an environment containing obstacles using the
U set.

Theorem 4 If the U set does not contain the initial position
of either the pursuer or the evader, the evader wins the game.
Proof: To prove the theorem we need the following lemma.

Lemma 2: For r ≤ 1, the evader lies inside the U set.
Proof: For r ≤ 1, v̄p ≥ v̄e. If the pursuer lies at the same
position as the evader, its strategy to win is to maintain the
same velocity as that of the evader. Hence if the pursuer and
the evader have the same initial position, the pursuer can track
the evader successfully. Since all the initial positions from
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Fig. 10. A polygon in free space. The region shaded in red is obtained by
using Lemma 1. The region shaded in green gets added by using a better
approximation scheme.

which the pursuer can win the game must be contained inside
the U set, the evader position must also be inside the U set.

Referring back to the proof of Theorem 4, by definition of the
U set, if the pursuer lies outside the U set, it loses.
If the evader lies outside the U set, Lemma 2 implies r > 1.

If r > 1, v̄e > v̄p. If v̄e > v̄p, the evader wins the game in
any environment containing obstacles. Its winning strategy is
to move on the convex hull of any obstacle.

B. Discussion

In the previous sections, we have provided a simple ap-
proximation scheme for computing the set of initial pursuer
positions from which the evader can escape based on the
intersection of a family of half-spaces. A slight modification
to the proposed scheme leads to a better approximation. In
the proof of Lemma 1, we presented an algorithm to find a
half-space for every edge of the polygon such that if the initial
position of the pursuer lies in the half-space, the evader wins
the game. All the points in the half-space are at a distance
greater than da

r from lei . By imposing the condition that the
minimum distance of the desired set of points from lei in the
free workspace should be greater than da

r , we can include
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Fig. 11. A circular obstacle in free space

more points in the decidable regions as shown in Figure 10.
The figure shows an obstacle in free space. From the proof
of Lemma 1, we get the half-space shaded in red. By adding
the new condition, the region shaded in green gets included.
When we repeat this for every edge, the set of initial positions
from which the pursuer might win the game gets reduced and
leads to a better approximation of the decidable regions. The
boundary of the shaded region consists of straight lines and
arc of circles. The boundary of the desired set is obtained
by computing the intersections among a bunch of rays and
arcs of circles generated by each edge. In this case a better
approximation comes at the cost of expensive computation. We
believe that better approximation schemes exist and one of our
ongoing efforts is in the direction of obtaining computationally
efficient approximation schemes.
None of the approximation schemes we have suggested

so far restrict the initial position of the pursuer to be in
the evader’s visibility region. This condition can be imposed
by taking an intersection of the output of the approximation
algorithm with the visibility polygon at the evader’s initial
position. Efficient algorithms exist for computing the visibility
polygon of a static point in an environment[10].
In the next section we extend the idea of U set to environ-

ments containing non-polygonal obstacles.

V. APPROXIMATION METHODS FOR NON-POLYGONAL
OBSTACLES

In this section we extend the approximation schemes pre-
sented in the previous section to non-polygonal obstacles.
In order to illustrate the techniques required to handle non-
polygonal obstacles, we compute an approximation for the
initial positions of the pursuer from which the evader wins
the game for the simple case of an evader in an environment
containing a circular obstacle. Then we present the algorithm
for any environment containing convex obstacles with smooth
boundaries.
Figure 11 shows an evader, e, in an environment containing

a circular obstacle of radius a in free space. The boundary of
the obstacle is denoted by C. Let t be a point on C such that
∠Ote = θ and | te |= d′. T denotes the tangent to C at t. Let
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ht be a line at a distance of d′
r from T on the same side of T

as the obstacle. By Lemma 1, the evader wins the game if the
pursuer lies in the half-space h+

t , shown by the shaded region.
The equation of line ht is y+x cot θ− (a− d′

r ) csc θ = 0. For
every point t on C, there exists a line ht and the corresponding
half-space h+

t such that if the initial position of the pursuer lies
in h+

t , the evader wins the game. Hence if the initial pursuer
position lies in ∪t∈Ch+

t , the evader wins the game=⇒ if the
initial pursuer position lies outside ∩t∈Ch−t , the evader wins
the game. Let us call ∩t∈Ch−t as the U set.
Now we compute the boundary of the U set. Let l(x, y, θ)

denote the family of lines ht generated by all points t lying
on C. Due to symmetry of the environment about the x-
axis, the U set is symmetric about the x-axis. We present
the construction of the boundary of the U set generated as θ
increases from 0 to π. Let ∂U denote the boundary of the U
set.

Theorem 6- ∂U is the envelope of the family of lines
l(x, y, θ).
Proof: Consider any point q on ∂U . Since q belongs to the
boundary of the U set, it belongs to some line, hq , in the family
l(x, y, θ). Either hq is tangent to ∂U or else it intersects ∂U .
In case it intersects ∂U , there is a neighborhood around q in
which ∂U lies in both the half-spaces generated by hq. This
is not possible since one of the half-spaces generated by hq
has to be entirely outside the U set. Hence hq is tangent to
∂U . Since q is any point on B, it implies that for all points q
on ∂U , the tangent to ∂U at q belongs to the family l(x, y, θ).
A curve satisfying this property is the envelope to the family
of lines l(x, y, θ). Hence the proposition follows.
Using the Envelope theorems [20], the envelope of a family

of lines l(x, y, θ) can be obtained by solving the following
equations simultaneously

l(x, y, θ) = y + x cot θ − (a− d′

r
) csc θ = 0 (1)

∂l

∂θ
= 0 (2)

d′ as a function of θ is given by

d′(θ) =
{ √

a2 + d2 − 2ad cos θ if θ ≤ θ0√
d2 − a2 + a(θ − θ0) if θ ≥ θ0

where θ0 = cos−1 a
d .

The solution is

A. Case 1 (θ ≤ θ0)

x = (a−
√
a2 + d2 − 2ad cos θ

r
) cos θ+

ad sin2 θ

r
√
a2 + d2 − 2ad cos θ

y = (a−
√
a2 + d2 − 2ad cos θ

r
) sin θ− ad sin θ cos θ

r
√
a2 + d2 − 2ad cos θ
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Fig. 12. (a) shows a circular obstacle with the initial position of the evader.
The smaller circle is the evader. In (b),(c) and (d), d = 5, 7and 9 units
respectively. In each of the figures (b), (c) and (d), the black boundary is for
r = 0.5, the green boundary is r = 1 and the red boundary is for r = 10

B. Case 2 (π ≥ θ ≥ θ0)

x = (a−
√
d2 − a2 + a(θ − θ0)

r
) cos θ +

sin θ
r

y = (a−
√
d2 − a2 + a(θ − θ0)

r
) sin θ − cos θ

r

Since ∂U is symmetrical about the x−axis, the other half
of ∂U is obtained by reflecting the above curves about the
x−axis. Figure 12(a) shows an evader in an environment
consisting of a disc-like obstacle. Figures 12(b),(c) and (d)
show the boundary of the U set for varying distance between
the evader and the obstacle. In each of these figures, the
boundary of the U set is shown for three different values of
r. We can see that for r ≤ 1, the evader lies inside the U set
as given by Lemma 2.
The above procedure can be used to construct the U set for

any convex obstacle with smooth boundary. Given the initial
position of the evader, we present the procedure to construct
the boundary of the U set for a obstacle with smooth boundary.
Consider an obstacle with smooth boundary given by the

equation f(x, y) = 0. The procedure to generate the boundary
of the U set is as follows
1) Given any point t on the boundary, compute the min-
imum distance of the point from the evader. Let it be
dt.

2) Find the equation of the line ht at a distance of dt
r from

the tangent to the obstacle at t.
3) Find the family l(x, y, θ) of lines generated by ht as

t varies along the boundary of the obstacle. θ is a
parameter that defines t.
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4) Compute the envelope of the family l(x, y, θ). This is
the boundary of the U set. This is true since the proof of
Theorem 5 does not depend on the shape of the obstacle.

VI. CONCLUSION AND FUTURE RESEARCH
In this work we address the problem of target-tracking in

general environments. We prove that in a general environment
containing obstacles, given the initial position of the evader,
the set of initial positions from which the pursuer might be
able to track the evader is bounded. Moreover we provide
an approximation algorithm to construct a convex polygonal
region to bound that region. We provide a sufficient condition
for escape of the evader in a general polygonal environment
that depends on the geometry of the obstacles, the initial
position of the evader and the ratio of the maximum speed of
the evader to that of the pursuer. We extend the approximation
schemes to obstacles with smooth boundaries.
Given the complete map of the environment, our results

depend only on the initial position and the maximum speeds
of the pursuer and evader. Hence our results hold for various
settings of the problem such as an unpredictable or predictable
evader [14] or localization uncertainties in the future positions
of the players [8] or delay in pursuer’s sensing abilities [17].
In the future, we would like to provide an algorithm to

approximate the initial positions of the pursuer from which
it can track the evader and also the strategies used by the
pursuer to track successfully. We are using game-theory as a
framework to provide feedback strategies for the pursuer to
track successfully. We are also investigating the problem of
target-tracking with multiple pursuers.
An interesting direction of future research would be to

extend our results to the target-tracking in R3. Researchers
have addressed the problem of target-tracking in R3 [1].
We believe that some of our results can be used in 3-d by
considering polyhedrons as bounding sets instead of polygons.
Another direction of future research would be to incorporate
dynamics in the player’s motion model.
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VII. APPENDIX
A. Algorithm for generating the U-set

Algorithm CONSTRUCTUSET(S,r,(xe, ye))
Input: A set S of disjoint polygonal obstacles, the evader
position re = (xe, ye), ratio of maximum evader speed to
maximum pursuer speed r
Output: The coordinates of the vertices of the U set
1) For every edge ei in the environment with end-points

ai, bi
2) l1 =DIJKSTRA(VG(S),re, ai)
3) l2 =DIJKSTRA(VG(S),re, bi)
4) dei = min(l1,l2)

r
5) Find the equation of hi using Lemma 1.
6) INTERSECTHALFPLANES(h−

1 , ....h
−
n )

The subroutine VG(S), computes the visibility graph of the
environment S. The subroutine DIJKSTRA(G,I,F) computes
the least distance between nodes I and F in graph G. The
subroutine INTERSECTHALFPLANES(h−

1 , ..., h
−
n ) computes

the intersection of the half planes h−
1 , ..., h

−
n [6]. The time

complexity of the above algorithm is O(n2 log n), where n is
the number of edges in the environment.
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Abstract—This paper presents a numerically robust algorithm
for solving linear complementarity problems (LCPs), and applies
it to simulation of frictional contacts of articulated rigid bodies
each modeled as a general polygonal object. We first point out two
problems of the popular pivot-based LCP solver called Lemke
Algorithm and its extension with lexicographic ordering, due to
numerical errors especially for ill-conditioned LCPs. Our new
algorithm solves these problems by storing all pivot candidates
and searching for a sequence of pivots that leads to a solution.
An LCP-based contact dynamics formulation is combined with
a forward dynamics algorithm for articulated rigid bodies to
perform the whole simulation using a dynamic programming
approach. Simulation examples using a humanoid robot show
that the Lemke Algorithm (with or without lexicographic order-
ing) cannot solve complex contact problems, while our algorithm
can successfully simulate such situations. We also demonstrate
that the simulation results are qualitatively similar to those of
hardware experiments.

I. INTRODUCTION

Modeling collisions and contacts has been a long term
research issue in both robotics and graphics. Most models can
be categorized into penalty- and constraint-based methods. In
penalty-based models, contact force at each contact point is
modeled as the force exerted by a spring and damper. Although
contact forces are easily computed from penetration depths
and relative velocities, the approach suffers from numerical
instability problem due to impulsive forces. This paper deals
with the constraint-based approach, where we determine con-
tact forces such that unilateral constraints on the post-contact
relative motion and force are satisfied.
Constraint-based approaches often employ linear comple-

mentarity problem (LCP) [1] to formulate the constraints. An
n-dimensional LCP is to find a set of vectors w ∈ Rn and
z ∈ Rn that satisfy

w = Mz + q (1)

w ≥ 0, z ≥ 0, wTz = 0 (2)

for a given square matrixM ∈ Rn×n and vector q ∈ Rn. In
the rest of the paper, we shall denote condition (2) as

w ≥ 0 ⊥ z ≥ 0. (3)

LCPs can be solved by either iterative or pivot-based
approach. Iterative approaches (e.g. [2]) utilize the fact that the
solution of an LCP is the equilibrium point of the associated

quadratic cost function and employ numerical root-finding
techniques such as Newton’s method to find the equilibrium.
Pivot-based approaches (such as Lemke Algorithm [3]), on the
other hand, sequentially pivot a pair of elements of w and z
according to specific rules until all elements of q of the pivoted
equation become zero or positive. Once such pivot sequence is
found, we can obtain the pivoted solution by setting w = q,
z = 0 and then moving the pivoted elements back to the
original vectors.
Iterative approaches are generally easier to implement and

numerically robust, although convergence is proven only for a
limited class of M . Pivot-based approaches are theoretically
guaranteed to find a solution with finite number of trials (2n)
for general problems, and several systematic procedures are
proposed to efficiently find a solution [1]. However, it is known
that pivot-based approaches often suffer from numerical prob-
lem especially for large-scale and/or ill-conditioned problems.
There have been a body of research on developing efficient

and robust methods for solving LCPs in the context of colli-
sion/contact modeling. Jourdan et al. [4] applied an iterative
LCP solver similar to Gauss-Seidel algorithm to frictional
contacts of rigid bodies and proved convergence in most
practical cases. Förg et al. [5] utilized the sparsity of M to
accelerate an iterative LCP solver. Stewart et al. [6] formulated
frictional contacts between rigid bodies as an LCP and applied
Lemke Algorithm. Lloyd [7] also utilized the structure ofM
in rigid-body contact model for reducing the computational
cost for Lemke Algorithm. Guendelman et al. [8] combined a
number of stabilization techniques to obtain visually plausible
simulation results for highly complex scenes. All of these
papers address contact dynamics between free rigid bodies,
in which case M is generally sparse and the LCP is likely
to be relatively easily solved by both iterative and pivot-based
approaches.
In contrast, we are interested in modeling frictional contacts

between articulated rigid bodies, each represented as a general
polygonal object. A possible solution is to treat all links as
free rigid bodies and extend the work described above to
solve both unilateral (contact) and bilateral (joint) constraints
at the same time. With such modeling strategyM would have
similar structure as in free rigid-body case. This type of model
has been employed in some dynamics engines such as [9].
However, integrating linear and angular accelerations of each
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rigid body independently occasionally breaks joint constraints,
which should be corrected by applying heuristic recovering
forces. Weinstein et al. [10] takes a different approach where
joint constraints are maintained by sequentially applying im-
pulses to joints, while contact constraints are handled as
described in [8]. Although these models can generate visually
plausible results for highly complex scenes, they are not
suitable for applications that require physical precision.
Another approach is to combine a forward dynamics al-

gorithm for articulated rigid bodies such as [11], [12] with
an LCP-based contact formulation. Kokkevis [13] utilized
Articulated-Body Algorithm [11] for computing the mass
matrix in the LCP formulation and applied an iterative al-
gorithm for solving the LCP. Gayle et al. [14] applied an
adaptive forward dynamics algorithm [15] based on Divide-
and-Conquer Algorithm (DCA) [12] to a collision and contact
model based on Mirtich et al. [16]. Kry and Pai [17] derived
an LCP-based contact formulation for simulating interactions
between a rigid body and compliant fingers.
The general problem of the latter approach is that the

associated LCP tends to be dense and ill-conditioned, in which
case iterative methods do not guarantee convergence to a
solution. In this paper, we pursue the application of Lemke
Algorithm [3] to simulation of articulated rigid bodies under
frictional contacts because of its potential generality, although
its numerical robustness should be considerably improved
to be practically applicable to complex problems. Lemke
Algorithm has been successfully applied to contact problems
of articulated rigid bodies in Kry and Pai [17], but they only
consider one contact point per finger and hand dynamics is
represented by finger compliance rather than its inertia.
The main contribution of this paper is improvement of

Lemke Algorithm to deal with large-scale and ill-conditioned
LCPs derived from frictional contacts between articulated
rigid bodies of arbitrary geometry. The contact dynamics is
formulated in a similar way as Stewart et al. [6], while the
spatial mass matrix of free rigid bodies are replaced by inverse
articulated-body inertias (IABI) [11] at all contact points. The
contact model is combined with a forward dynamics algorithm
called Assembly-Disassembly Algorithm (ADA) [18], which
internally uses IABI for resolving the joint constraints and
therefore fits well with our contact formulation.
A well-known extension of Lemke Algorithm is lexico-

graphic ordering [1], [19] to solve cycling problem where the
same pivot sequence is infinitely repeated when an inappropri-
ate pivot choice is made. The problem is often encountered in
ill-conditioned problems and the extension has been employed
in [6], [7], [20].
Although lexicographic ordering can theoretically avoid

cycling, we found that it is not enough for solving our
contact problem under round-off errors. We will also point
out another practical problem of numerical instability that, to
our knowledge, has never been described in literature. Our
solver addresses both of these problems. The basic idea of
the method is to store all possible pivots at each pivot step
and, in case a particular choice of pivot sequence resulted in

an infinite pivot loop or numerical instability, track back the
queue of possible pivots and try other possible pivots. In other
words, the method searches for the best pivot sequence that
leads to a solution of the LCP.
The rest of the paper is organized as follows. Section II

reviews the Lemke Algorithm and point out the problems
caused by round-off errors. In section III, we describe our
numerically robust algorithm for solving LCPs. Section IV
presents the LCP formulation of frictional contacts of articu-
lated rigid bodies, along with several implementation issues.
In Section V, we first show that the problems described in
Section II actually happen in practical simulations using a
simple example, and then demonstrate the robustness of the
proposed solver by a number of simulation examples. Finally
we conclude the paper in Section VI.

II. LEMKE ALGORITHM

A. Algorithm Outline

We first show the outline of Lemke Algorithm [3] as
explained in [7]. In general, pivot-based methods try to find a
partition of Eq.(1):(

wα̃

wβ̃

)
=

(
M α̃α M α̃β

M β̃α M β̃β

)(
zα
zβ

)
+

(
qα̃
qβ̃

)
(4)

such that the pivoted system(
zα
wβ̃

)
= M ′

(
wα̃

zβ

)
+ q′ (5)

satisfies the following conditions:

Condition 1: wα̃ and zα contain the same set of indices,
and

Condition 2: q′ ≥ 0.
The vectors (zTα wT

β̃
)T and (wT

α̃z
T
β )

T are called basic and
non-basic variables, respectively.
M ′ and q′ are computed from the original matrix and vector

as follows:

M ′ =
(

M−1
α̃α −M−1

α̃αM α̃β

M β̃αM
−1
α̃α M β̃β −M β̃αM

−1
α̃αM α̃β

)
(6)

q′ =
(
q′α̃
q′
β̃

)
=

(
−M−1

α̃αqα̃
qβ̃ −M β̃αM

−1
α̃αqα̃

)
. (7)

Once such pivot is found, we can easily obtain the solution as
wα̃ = 0,wβ̃ = q′

β̃
,zα = q′α̃,zβ = 0.

Lemke Algorithm is one of the systematic methods to
efficiently find an appropriate pivot. In Lemke Algorithm, we
first introduce an auxiliary variable z0 and modify the original
LCP (1) as follows:

w = M̄

(
z
z0

)
+ q (8)

where

M̄ =
(
M c

)
c = (1 1 . . . 1)T .

The solution of Eq.(8) can be found by the following steps:
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Step 0 If q ≥ 0, stop: w = q,z = 0 is the solution.
Otherwise, obtain r = argmin qi/ci and pivot z0
with wr. Compute M̄

′
and q′, and set the driving

variable yr = zr.
Step 1 Letm′ denote the column vector of M̄

′
correspond-

ing to yr. Ifm′ ≥ 0, stop: there is no solution or this
algorithm cannot solve the LCP. Otherwise, obtain
s = argmin {−qi/m′

i : m
′
i ≤ 0} and let ys denote

the s-th element of the basic variables.
Step 2 Pivot ys with yr and update M̄

′
and q′. If ys = z0,

stop: q′ gives the solution. Otherwise set yr to the
complement of ys and return to Step 1.

After Step 0, q′ ≥ 0 holds with the choice of r and the
update rule Eq.(7). Similarly, all elements of subsequent q′ are
always equal to or larger than 0 with the choice of s in Step 1.
The second condition above is therefore satisfied at every
iteration. In Step 2, the first condition is met by setting the
driving variable to the complement of the previously pivoted
basic variable ys, and by terminating when z0 returns to a
non-basic variable.

B. Problems of Lemke Algorithm

A well-known problem of Lemke Algorithm is that the
minimum ratio test in Step 1 can result in tie, i.e. −qi/m′

i

can take the same minimum value at multiple i’s, in which
case the LCP is said to be degenerate. This problem often
occurs when the LCP includes redundant constraints, such as
when there are more than three contact points between a pair
of rigid bodies. Inappropriate choice of pivot in such cases
can lead to cycling and should be avoided. It is known that an
extension of Lemke Algorithm by lexicographic ordering [1],
[19] (Lexicographic Lemke Algorithm) can resolve the tie by
considering additional columns of M̄

′
.

According to our experience, however, this solution still has
a problem if the algorithm is implemented and executed on
computers. In computer programs, exact tie of floating-point
numbers almost never happens due to round-off errors even
if two numbers are analytically equal. They would have very
small difference and Step 1 would proceed without encounter-
ing a tie. However, the choice of pivot in such situations does
not have any logical basis and, if the choice was inappropriate,
the algorithm would fall into cycles. Alternatively, we could
set some small threshold to determine if two values are equal.
This approach however imposes another issue of choosing an
appropriate threshold because if the threshold is too small the
desirable pivot may be discarded due to numerical errors, and
if too large even lexicographic ordering may not be able to
discriminate the best pivot choice.
Another problem that, to our knowledge, has never been

addressed in literature is that M α̃α to be inverted in Eq.(6)
may be close to singular with some of the pivots encountered
during the process. In such cases, even if a solution is found, it
may have large error with respect to the original equation (1).
In contact simulation, this problem would result in physically
unrealistic behavior such as penetration.

After presenting our new LCP solver and contact model in
the following sections, we will demonstrate that these numeri-
cal problems actually occur in real simulation in Section V-A.

III. ROBUST PIVOT-BASED SOLVER FOR LCPS

The idea of our new algorithm is to store all the pivot
candidates at every iteration of Steps 1 and 2, and return to
them when cycling or numerical problem occurs. We store
the i-th row as a pivot candidate at Step 1 if m′

i < 0 and the
minimum element of q′ after pivoting at row i is larger than
a user-defined threshold. The threshold is usually chosen as
a negative value with small absolute value to allow round-off
errors. We define the cost function as a decreasing function
of the minimum value of q′ to prioritize pivot sequences with
smaller errors.
In the algorithm, we construct a search tree composed of

nodes each representing one pivot between a pair of basic and
non-basic variables. The descendants of a node represent the
possible pivots found in Step 1. The goal node is the one that
includes z0 in the pivot pair, and a successful sequence of
pivots is reconstructed by tracing the ancestor nodes from the
goal. We also construct a queue of nodes in which the nodes
are sorted in the ascending order of the cost associated to each
node.
Algorithm 1 shows the higher-level search algorithm, where

• Q is a queue of nodes,
• Q.appendNode(x) adds a new node x to the queue,
• Q.getBest() finds and pops the node with the smallest
total cost,

• x.isGoal() determines if node x is a goal by checking if
z0 is in the non-basic variables, and

• Q.addDescendants(x) adds all possible descendant
nodes of x to Q.

Details of Q.addDescendants(x) is described in Algo-
rithm 2, where

• x.q min(i) computes the smallest element of q′ after the
i-th basic variable is pivoted,

• ε is a user-defined positive constant,
• x.newNode(i) creates a new node representing a pivot
of the i-th basic variable, and

• x′.error() computes the norm of the current error wx′−
Mzx′−z0x′c−q where wx′ , zx′ and z0x′ are the values
of w, z and z0 after performing the pivot x′,

• emax is a user-defined permissible numerical error,
• Q.unique(x′) returns true if Q does not include the same
pivot set as x′.

After updating M ′ and q′ in accordance with the current
pivot set, the addDescendants() function checks the min-
imum element of q′ when the i-th basic variable is further
pivoted (line 4). The minimum value would ideally be zero
when −qi/m′

i is the minimum and negative otherwise. In our
problem, however, there may be multiple i’s that yield small
negative qmin due to round-off errors as mentioned in the
previous section. We keep such rows as pivot candidates if
qmin > −ε (ε > 0) (line 5). For each pivot candidate, we
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Algorithm 1 Search Pivot Sequence
Require: an LCP
1: perform Step 0
2: create initial (dummy) node x0

3: Q.appendNode(x0)
4: while Q not empty do
5: x← Q.getBest()
6: if x.isGoal() then
7: return x
8: end if
9: Q.addDescendants(x)
10: end while
11: return NULL

Algorithm 2 Q.addDescendants(x)

1: update M̄
′
and q′

2: for i = 1, 2, . . . , n do
3: if m′

i < 0 then
4: qmin ← x.q min(i)
5: if qmin > −ε then
6: x′ ← x.newNode(i)
7: x′.totalCost← x.totalCost+ exp(−qmin)
8: if x′.error() ≤ emax and Q.unique(x′) then
9: Q.appendNode(x′)
10: end if
11: end if
12: end if
13: end for

verify that the error is smaller than the user-defined permissible
error and that the same pivot set has never been visited before
to avoid cycling (line 8).

The advantage of this method over directly comparing
−qi/m′

i as in Lemke Algorithm is that |qmin| has a clear
physical meaning: either contact force or relative velocity
in the normal direction, and therefore it is much easier to
choose the threshold. The cost of each node is computed by
exp(−qmin) (line 7), which takes the maximum value exp(ε)
when qmin = −ε. This cost penalizes the pivots with larger
error, and as a result the optimal solution would be more
physically reasonable.

Choosing ε and emax is much easier than it would be with
the threshold for determining tie in lexicographic ordering
because we only have to make sure that it is sufficiently
large not to drop correct pivots from the candidate list. Larger
threshold degrades the speed because more candidates are kept
in the queue, but it does not harm the result because the pivot
sequence with the minimum cost is chosen anyway.

UpdatingM ′ and q′ (line 1) based on Eqs. (6)(7) requires
the inversion of a matrix of the size of pivot number, which
can be computationally expensive for large problems. In fact,
the update can be performed incrementally with less computa-
tional cost by using theM ′ and q′ in the direct ancestor [7].

f1

f2
v1

v2

......
1 2

.

.

Fig. 1. Inverse articulated-body inertia.

IV. CONTACT MODEL FOR ARTICULATED RIGID BODIES

A. IABI [11]

Inverse articulated-body inertia (IABI) is the inverse of
the apparent inertia matrix of articulated bodies. This matrix
describes the relationship between a force applied to a link
called handle and resulting spatial acceleration, at current
configuration. Furthermore, we can consider multiple handles,
in which case we need m2 IABIs to describe the relationship
between forces and accelerations of m handles. In Fig. 1, for
example, suppose links 1 and 2 are handles. The relationship
between forces f1,f2 and accelerations v̇1, v̇2 is described
using IABIs Φij (i, j = 1, 2) as follows:(

v̇1

v̇2

)
=

(
Φ11 Φ12

Φ21 Φ22

)(
f1

f2

)
+

(
φ1

φ2

)
(9)

where φ1 and φ2 are the bias accelerations of links 1 and 2,
respectively. IABIs can be computed recursively as described
in [12].
Forward dynamics algorithms such as DCA [12] and

ADA [18] utilize IABI to describe the equation of motion
of articulated bodies. We may be able to directly use IABIs
in our contact model. The contact model of Kokkevis [13] is
based on Articulated-Body Algorithm (ABA) [11], which uses
articulated-body inertia (ABI) rather than IABI. In [13], IABIs
are computed by applying unit test forces to the contact links
and computing link accelerations by ABA. Gayle et al. [14]
uses an extension of DCA as the basic forward dynamics
engine; however, they apply a method similar to [13] to
compute IABIs between contact links. In our implementation,
we explicitly specify contact links as handles and let the
forward dynamics algorithm compute IABIs between contact
links.

B. LCP Formulation of Contacts

We apply the formulation in [7] to articulated rigid bodies,
whose dynamics is represented by ABIs instead of spatial
inertia matrix of rigid bodies.
Suppose NL links are mutually in contact at NC contact

points. We first compute IABIs Φ̂ij (i, j = 1, 2, . . . , NL) and
bias accelerations φ̂i (i = 1, 2, . . . , NL) of the NL links using
DCA or ADA. These IABIs describe the relationship between
forces applied to contact links and their accelerations as

˙̂v = Φ̂f̂ + φ̂ (10)
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where v̂ ∈ R6NL and f̂ ∈ R6NL are vectors composed of the
spatial velocities and forces of all links respectively, and

Φ̂ =

⎛
⎜⎜⎜⎝

Φ̂11 Φ̂12 . . . Φ̂1NL

Φ̂21 Φ̂22 . . . Φ̂2NL

...
...

. . .
...

Φ̂NL1 Φ̂NL2 . . . Φ̂NLNL

⎞
⎟⎟⎟⎠

φ̂ =
(
φ̂
T

1 φ̂
T

2 . . . φ̂
T

NL

)T
.

Let f ∈ R3NC and v ∈ R3NC denote contact forces
and relative velocities at contact points, respectively. The
relationship between forces and velocities of links and contact
points can be described by a Jacobian matrix J as

v = Jv̂ (11)

f̂ = JTf . (12)

Substituting Eqs.(11)(12) into Eq.(10) yields

v̇ = JΦ̂JTf + Jφ̂+ J̇ v̂

= Φf + φ (13)

Φ
	
= JΦ̂JT

φ
	
= Jφ̂+ J̇ v̂

which represents the dynamics at contact points.
We then discretize the equation of motion Eq.(13). Let v−

and v+ denote relative velocities at contact points before and
after the current integration. Assuming that we apply Euler
integration with time step Δt, we can write v+ as

v+ = Φ̄f + φ̄ (14)

where

Φ̄ = ΔtΦ (15)

φ̄ = v− + Δtφ. (16)

We now derive an LCP formulation of unilateral constraints
to model the contact, similar to the one used in [7]. The friction
cone is approximated by an M -sided polyhedral cone. We
also assume that each contact point has the same static and
slip friction coefficients. Let ni denote the normal vector at
contact i, and cim (m = 1, 2, . . . ,M) the normal vectors of
the side faces of the cone projected onto the contact tangential
plane and normalized.
We write the contact force at contact point i, f i, as a linear

combination of ni and cim (m = 1, 2, . . . ,M) by the non-
negative coefficients ai and bik (k = 1, 2, . . . ,M), i.e.

f i = aini +
M∑

m=1

bimcim

= aini +Cibi (17)

where

Ci =
(
ci1 ci2 . . . ciM

)
∈ R3×M (18)

bi =
(
bi1 bi2 . . . biM

)T ∈ RM . (19)

By combining Eq.(17) at all contact points, we obtain

f = Na+Cb (20)

where

N = diag {ni} ∈ R3NC×NC

a =
(
a1 a2 . . . aNC

)T
C = diag {Ci} ∈ R3NC×NCM

b =
(
bT1 bT2 . . . bTNC

)T
and diag{∗} denotes a block diagonal matrix.
The linear complementarity condition for normal directions

is described as
NTv+ ≥ 0 ⊥ a ≥ 0. (21)

The condition for the friction force and tangential velocity
is described as

μa−Eb ≥ 0 ⊥ λ ≥ 0 (22)

CTv+ +ETλ ≥ 0 ⊥ b ≥ 0 (23)

where λ ∈ RNC is a Lagrangian, μ is a diagonal matrix
composed of the friction coefficients at all contact points, and
E ∈ RNC×NCM is a constant block-diagonal matrix defined
as

E = diag{1}, 1 =
(

1 . . . 1
)
∈ RM . (24)

Substituting Eqs.(14)(20) into Eqs.(22)(23), we obtain the
whole LCP:⎛
⎝ NT Φ̄N NT Φ̄C 0

CT Φ̄N CT Φ̄C ET

μ −E 0

⎞
⎠

⎛
⎝ a

b
λ

⎞
⎠+

⎛
⎝ NTφ

CTφ
0

⎞
⎠

=

⎛
⎝ wa

wb

wλ

⎞
⎠ (25)

⎛
⎝ a

b
λ

⎞
⎠ ≥ 0 ⊥

⎛
⎝ wa

wb

wλ

⎞
⎠ ≥ 0. (26)

C. Implementation Issues

As with many contact models, the most important factor in
determining the computational cost is the number of contact
points. Because our collision detection library handles gen-
eral polygonal objects, many contact points are detected for
complex objects. We accelerate the computation by removing
unnecessary contact points such as those placed within some
small distance δ from another point or inside the contact area.
Note that there still may be redundant constraints even after
removing some contact points. Although in some papers [16],
[21] contact points with positive normal velocities are also
removed, we found that ignoring these points can cause
penetration because contact forces at other points may change
their normal velocities negative.
We also applied a two-step solution to further accelerate

the computation. We first solve the frictionless version of the
contact problem by considering only the normal direction of
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each contact point to identify which points are likely to be
active in the current contact state. We then solve the frictional
problem from the initial guess that the normal directions of all
active contact points are constrained (zero velocity and positive
contact force), while others are unconstrained. We expect that
this method greatly reduce the number of additional pivots
required to reach a solution.

V. RESULTS

The experiments presented in this section were executed on
a workstation with a Pentium Xeon 3.8GHz processor. The
code was written in C++ and the compiler was Microsoft
Visual Studio .NET 2003 with optimization. We used 4-th
order Runge-Kutta integration with 1 ms time step except
when otherwise noted. Collision detection between general
polygonal objects was performed by a library called PQP [22]
with an extension to compute penetration depths and normal
vectors [23]. The constants were set as emax = 1 × 10−3,
ε = 1×10−3,M = 8 and δ = 1×10−3 (m), and we employed
the incremental update of M ′ and q′ mentioned in the last
paragraph of Section III. The search queue is implemented as
a binary tree to efficiently find the node with minimum cost.

A. Comparison with Conventional Algorithm

We first compare our LCP solver with Lemke and Lex-
icographic Lemke algorithms. The example used here is a
squat motion of a small 20-joint humanoid robot [24] on a
horizontal flat floor. The simulated robot is under high-gain
feedback mode, i.e. the joint angle, velocity and acceleration
computed from the reference trajectory were directly applied
to each joint. The geometry data of the links were extracted
from the CAD model.
We used our own implementations of the conventional

algorithms with the following details (refer to the algorithm
outline in Section II-A):

• Lemke Algorithm—Always chooses the row with the
minimum −qi/m′

i for pivot in Step 1. In case of tie (in
the sense of floating-point numbers), the row with the
minimum index is chosen.

• Lexicographic Lemke Algorithm—A row is regarded as
tie if its −qi/m′

i is within a threshold Δ from the
minimum, and the lexicographic ordering test is repeated
until a unique minimum is identified using the same
threshold. If multiple rows are in tie in the last test, the
row with the minimum value is chosen. If z0 is among
the tie rows in any test, it is immediately chosen as the
pivot variable and hence the algorithm terminates.

The implementations were tested using the examples in [1]
that are known to be solvable by Lemke and/or Lexicographic
Lemke algorithms.
There are the following three possible failure modes:
1) no solution is the case whenm′ ≥ 0 occurred in Step 1,
2) cycle is emitted when the same set of pivot was already
found in one of the previous steps, and

3) error is emitted when the error of the solution is larger
than emax.

TABLE I

COMPARISON OF THE PROPOSED SOLVER, ORIGINAL LEMKE ALGORITHM

AND LEXICOGRAPHIC LEMKE ALGORITHM WITH FOUR DIFFERENT

THRESHOLDS Δ.

proposed Lemke Lexicographic Lemke
0 10−8 10−6 10−4

contacts 15.4 16.1 16.0 15.9 12.1 15.5
active 2.18 3.03 3.02 3.03 2.30 2.55

total frames 999 998 998 998 1000 1000
success 999 506 514 900 990 996
failure 0 492 484 98 10 4

no solution 0 52 27 17 3 3
cycle 0 157 147 18 2 0
error 0 283 310 63 5 1

If the algorithm failed in solving the LCP with friction and the
frictionless LCP was successfully solved, the frictionless result
is applied to prevent penetration, although it causes slipping.
The number of frames where both LCPs failed was at most
three and resulting penetration was practically negligible in all
simulations.

The results are summarized in Table I. The first two rows
represent the average numbers of detected contact points and
those identified to be active respectively, and the next three
rows represent the number of total frames with contact, suc-
cessfully terminated frames, and failure frames respectively.
The number of frames with each failure mode is shown in
the last three rows. We also tested Lexicographic Lemke
Algorithm with Δ = 10−3 but the robot fell down due to
a slip caused by applying a frictionless solution.

The three algorithms behaved differently even for this rela-
tively static motion. The results obviously show the advantage
of our algorithm. Lemke Algorithm could solve only around
half of the frames, and Lexicographic Lemke Algorithm did
not help much either when the threshold is too small. Δ =
10−4 gave the best result in this example, but still had a few
failure frames. In contrast, our algorithm successfully solved
the LCP in all frames.

Note that 12 to 16 contact points were detected in average
even with the contact point reduction described in Section IV-
C, and only 2 to 3 of them were identified to be active. This is
physically reasonable because three contact points are enough
to constrain the motion of the robot in high-gain feedback
mode, and the original contact points would yield highly ill-
conditioned LCP. This is probably the reason for failures in
conventional algorithms.

Fig. 2 compares real and simulated total vertical forces of
left and right feet. The simulation was performed using the
proposed algorithm, and a single force plate measured the total
contact forces and moments at the feet. The simulated force
exhibits qualitatively similar pattern to the real one, but the
measured force shows more oscillation. This discrepancy is
probably because the real hardware has some elasticity in the
links, joints and controller. The constant offset is due to the
error in the mass parameters estimated from the CAD model
that does not include wires and screws.
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Fig. 2. Measured and simulated vertical forces for the humanoid motion.

TABLE II

COMPARISON OF SUCCESS RATE AND AVERAGE COMPUTATION TIME OF

LEXICOGRAPHIC LEMKE AND PROPOSED ALGORITHMS FOR THE

HUMANOID EXAMPLE.

Lemke proposed
contacts 6.89 7.19
active 2.02 1.70

total frames 9656 9670
success 9620 9670
failure 36 0

no solution 13 0
cycle 7 0
error 16 0

LCP solve time (ms) 0.375 0.182
simulation time (ms) 3.49 3.54

total pivots 71102 34335

B. Tap-Dancing of a Humanoid Robot

We perform another comparison including computation time
using a tap-dancing motion of the same humanoid robot.
This is a more challenging task because it includes frequent
collisions as well as static contacts. We applied our solver
and Lexicographic Lemke Algorithm. The best Δ was 10−10

in this case, which implies the necessity of finding threshold
tailored to each task.

The result is shown in Table II, where “LCP solve time”
indicates the time for solving the main frictional LCP. The
time for solving the frictionless one is included in the total
simulation time. Lexicographic Lemke Algorithm still failed to
find a solution in about 0.4% of the frames with contact, while
the proposed algorithm succeeded in all frames. Our LCP
solver is also faster because lexicographic ordering requires
more pivot computations than the search in our algorithm as
shown in the “total pivots” row, although the total simulation
time is longer because of the larger number of contact points
that require preprocessing. A visual comparison of simulated
and actual motions is shown in Fig. 3. Note the qualitatively
similar behaviors such as yaw rotation.

TABLE III

COMPUTATION TIME FOR THE LONG AND CLOSED CHAIN EXAMPLES.

hoist hoist (10 ms) ring net
duration (s) 10 10 4 2

contacts 34.2 48.4 26.1 25.7
active 20.8 23.0 21.7 16.9

total frames 9357 935 3926 1818
failure 0 0 0 0

LCP solve time (ms) 62.0 96.5 35.0 9.72
simulation time (ms) 120 187 80.6 62.5

C. More Complex Scenarios

Figure 4 shows three simulation examples involving com-
plex collisions and contacts of open and closed articulated
rigid bodies. In the hoist example, a string-like object modeled
as a 25-joint chain is subject to continuous contact with the
rod and therefore takes long time for solving the LCP. We
also varied the time step for integration. The simulation result
with 10 ms timestep was similar to that with 1 ms and the total
computation time was about 4.5 times shorter, although each
step requires longer computation time because the penetration
depth tends to be larger due to integration errors and more
contact points are detected.
The ring example includes a number of contacts of non-

convex objects. Each wire is composed of five spherical joints
with two ring-shaped links at the ends. In the net example,
five cylinders fall onto a net composed of four strings each
modeled as a 16-joint chain with both ends fixed to the inertial
frame, forming closed loops. Our algorithm still yields realistic
results without failure.

VI. CONCLUSION

The conclusions of this paper are summarized by the
following three points:
1) We pointed out two numerical issues of Lemke and
Lexicographic Lemke algorithms, and proposed a robust
algorithm for solving general LCPs. The main idea of
the new algorithm is to store all pivot candidates at
each step, and back trace the queue in case a numerical
problem is found.

2) We modeled frictional contact of articulated rigid bod-
ies as an LCP using inverse articulated-body inertia
(IABI) [11], and applied above algorithm to solve the
LCP. We combined the formulation with a forward
dynamics algorithm called ADA [18] but it can also be
combined with DCA [12].

3) Experimental results showed that our algorithm can
robustly solve LCPs formulating contact dynamics of
articulated bodies, which cannot be solved by Lexico-
graphic Lemke Algorithm.
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Fig. 3. Comparison of simulated (left) and actual (right) motions of humanoid tap-dancing.

Fig. 4. Examples of contact simulation of articulated rigid bodies; from the top row: hoist, ring, and net.
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Abstract—Probabilistic and deterministic planners are two
major approximate-based frameworks for solving motion plan-
ning problems. Both approaches have their own advantages
and disadvantages. In this work, we provide an investigation
to the following question: Is there a planner that can take the
advantages from both probabilistic and deterministic planners?
Our strategy to achieve this goal is to use the point-based
Minkowski sum of the robot and the obstacles in workspace. Our
experimental results show that our new method, called M-sum
planner, which uses the geometric properties of Minkowski sum
to solve motion planning problems, provides advantages over the
existing probabilistic or deterministic planners. In particular, M-
sum planner is significantly more efficient than the Probabilistic
Roadmap Methods (PRMs) and its variants for problems that can
be solved by reusing configurations.

I. INTRODUCTION

In motion planning, we study the problem of finding a
feasible path for a movable object to navigate in an envi-
ronment with obstacles. Researchers have shown that any
complete method that solves a general motion planning prob-
lem exactly will take time exponential to the complexity of
the robot [1]. Approximate motion planners have since been
intensively studied; see surveys by LaValle [2]. One of the
most well known approximate planners is the probabilistic
motion planners (e.g., PRMs [3] and its variants [4], [5], [6]).
These planners are able to solve high dimensional problems
that were not solvable before.

The success of the probabilistic motion planners is largely
due to their simplicity and efficiency gained from sacrificing
the completeness. As a consequence, when such a planner
fails to find a solution, it cannot be certain whether a path
exists or not. One of the most common reasons causing
the failure of the PRM planners is the presence of narrow
passages (the so called ‘narrow passage problem’). Due to
these problems, some recent work focused on developing
deterministic approximate motion planners [7], [8], [9] that use
more sophisticated geometric algorithms to approximate the
obstacles in configuration space. These methods are provably
less sensitive to narrow passages, thus providing stronger
confidence on the path nonexistence problem. However, as
far as we know, the motion planners in this category can only
handle problems in low (≤ 4) dimensions and are in general
more difficult to implement than PRMs.

Even with active research on probabilistic and deterministic
motion planners, it is clear that the gap between these two
approaches is still huge. Therefore, in order to bridge the gap,
the question that we will investigate in this paper is:

• Is there a planner that can take the advantages from both
probabilistic and deterministic planners?

The same question has also been raised by Hirsch and
Halperin [10] although their focus is on a more specific
problem: two-disc motion planning. By combining a complete
planner for a single disc with a PRM strategy to coordinate
two discs, their hybrid motion planner efficiently solves prob-
lems with narrow passages. In this paper, we adapt a totally
different strategy and focus on more general problems. More
specifically, we are interested in developing a planner that is
simple and easily extensible to high dimensional space (the
advantages from probabilistic planners) and remains efficient
even with the presence of the narrow passages (the advantages
from deterministic planners).

Our strategy in developing such a planner is to combine
PRMs with the point-based Minkowski sum [11] of the robot
and the obstacles in the workspace. Minkowski sum boundary
is closely related to the concept of the “contact space” of
translational robots in motion planning. We will discuss in
detail regarding the definition of the Minkowski sum and its
relationship to the contact space in Section II. For the rest of
this section, we will provide an overview of our planner.

Our Approach. We investigate a method, called M-sum
planner, that uses the Minkowski sum of the robot and the
obstacles to facilitate the process of creating a roadmap.
Similar to the probabilistic roadmap methods (PRMs) [3], [4],
[5], [6], the roadmap constructed by M-sum planner represents
the connectivity of the entire free space and can be used to
solve motion planning queries. Due to this similarity we will
focus on the process of building the roadmap only.

Intuitively, M-sum planner produces a set of n “shapes”
of a robot by rotating or changing its joint angles. We
treat each shape as one translational robot and compute the
Minkowski sum of each shape and obstacles. The vertices
of the Minkowski sum are then connected to form a small
graph. There will be n such graphs constructed at the end of
the process. Finally, we will merge these graphs into a global
roadmap.

An important property of M-sum planner is that it is
significantly more efficient than the Probabilistic Roadmap
Methods (PRMs) and its variants for problems, e.g., Fig. 1,
that can be solved by reusing configurations.

II. RELATED WORK

In this section, we will discuss closely related work on PRMs
and Minkowski sum.

97



Fig. 1. A motion planning problem that can be solved more efficiently
by M-sum planner. The workspace is composed of five parallel walls with
horizontal and vertical windows. M-sum planner takes advantage of

A. Probabilistic Roadmap Methods

Probabilistic roadmap methods (PRMs) generally operate
as follows (see, e.g., [3]). During a preprocessing phase,
a set of configurations in the free space is generated by
sampling configurations at random and retaining those that
are valid. These nodes are then connected to create a roadmap
by inserting edges between nodes if they can be connected
by a simple and fast local planning method. This roadmap
is then queried by first connecting the given start and goal
configurations to the roadmap and then searching for a path
in the roadmap connecting them.

An important shortcoming of PRMs is their poor perfor-
mance on problems requiring paths that pass through narrow
passages in the free space. This is a direct consequence of how
the nodes are sampled. For example, using the traditional uni-
form sampling [3], any corridor of sufficiently small volume
is unlikely to contain any sampled nodes whatsoever.

Effort has been made to modify the sampling strategy to
increase the number of nodes sampled in narrow corridors.
Intuitively, such narrow corridors may be characterized by
their large surface area to volume ratio. For example, in
[4], [12], nodes are sampled from the contact space, the set
of configurations for which the robot is in contact with an
obstacle. In [5], the sampling strategy samples pairs of nearby
configurations that are separated by a Gaussian distance d. If
one configuration is free and the other is in collision, then the
free configuration is added to the roadmap. Otherwise, both
configurations are discarded. The Gaussian sampler generates
a higher density of nodes near C-obstacle boundaries. Follow-
ing a similar strategy, the bridge test approach [6] samples two
in-collision configurations separated by a Gaussian distance d
and keeps their midpoint if it is free. In [13], preliminary con-
figurations are generated by allowing the robot to penetrate the
obstacles by a small amount. The areas near these nodes are
then re-sampled to find nearby collision-free configurations.
Work has also been proposed to address the narrow passage
problem by analyzing the workspace properties. However,
most of the work using this strategy [14], [15], [16] only
focused on properties of the obstacles. On the contrary, our
method considers both the robot and the obstacles.

B. Hybrid Motion Planners

Recently, several hybrid motion planners have been pro-
posed [17], [18], [19], [20]. All these meta-planners focus on
combining different PRMs using machine learning or statistics

collected during sampling to discover when and where to apply
certain sampling strategies.

Few hybrid methods attempt to combine deterministic and
probabilistic planning strategies. Hirsch and Halperin’s hybrid
planner [10] studied two-disc motion planning. Zhang et al. [9]
combines adaptive cell decomposition with PRMs but can only
handle problems up to 4 DOF. Another ‘hybrid’ planner that
connects ‘slices’ of configuration space into a global roadmap
has also been discussed in the book by de Berg et al. [21, pp.
283–287] and by Lamiraux and Kavraki [22]. Each slice is
computed by a complete planner for 2D translational robot
using cell decomposition. Two slices are connected if the
subdivisions from both slices overlaps. Unlike these methods
that are limited in specific problems or in low dimensional
space (≤ 4), our hybrid method can handle high dimensional
problems.

C. Minkowski Sum

The Minkowski sum of two sets P and Q in Rd is defined
as:

P ⊕Q = {p+ q | p ∈ P, q ∈ Q}. (1)

Typically, P and Q represent polygons in R2 or polyhedra
in R3. Minkowski sum boundary is closely related to the
concept of “contact space.” Every point in the contact space
represents a configuration that places the robot in contact with
(but without colliding with) the obstacles. Given a translational
robot P and obstacles Q, the contact space of P and Q can be
represented as ∂((−P )⊕Q), where −P = {−p | p ∈ P}. In
other words, if a point x is on the boundary of the Minkowski
sum of two polyhedra P and Q, then the following condition
must be true:

(−P ◦ + x) ∩Q◦ = ∅ , (2)

where Q◦ is the open set of Q and P + x denotes translating
P to x.

Many methods have been proposed to compute Minkowski
sum (see surveys in [23], [24], [25]). Ghosh [23] proposed a
unified approach to handle 2-d or 3-d convex and non-convex
objects by introducing negative shape and slope diagram rep-
resentation. Slope diagram is closely related to Gaussian map,
which has been used to implement very efficient Minkowski
sum computation of convex objects by Fogel and Halperin
[25]. Several other methods have been proposed to handle
convex objects. Guibas and Seidel [26] proposed an output
sensitive method to compute convolution curves, a super-set of
the Minkowski sum boundaries. Kaul and Rossignac [27] pro-
posed a linear time method to generate a set of Minkowski sum
facets. Output sensitive methods that compute the Minkowski
sum of polytopes in d-dimension have also been proposed by
Gritzmann and Sturmfels [28] and Fukuda [29].

Because computing the Minkowski sum of convex polyhe-
dra is easier, most methods that compute the Minkowski sum
of non-convex polyhedra first compute the convex decompo-
sition and then compute the union of the Minkowski sums of
the convex components [30], [24]. Unfortunately, neither the
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convex decomposition nor the union of the Minkowski sums
is trivial.

Peternell et al. [31] proposed a method to compute the
Minkowski sum using points densely sampled from the solids,
and compute local quadratic approximations of these points.
However, their method only identifies the outer boundary of
the Minkowski sum, i.e., no hole boundaries. This can be
a serious problem in particular for motion planning. In this
paper, we use the point-based Minkowski sum proposed by
Lien [11] that does not have the undesirable issues above.

III. PRELIMINARY & OVERVIEW

In this section, we define notations that we will use through-
out this paper. We will also give a more detailed overview of
our method (M-sum planner) to end this section.

Separating translational and rotational motions. Given
a configuration C, we separate the configuration into two
components: Translational and rotational configurations. We
represent the configuration as C = {TC×RC}, where TC and
RC represents the translational and rotational components of
the configuration C, respectively. To ease our discussion, we
use the notation C(x) to denote the coordinate of a point x
on the robot after the robot is placed at the configuration C.
Similarly, we denote TC(x) (or RC(x)) as the coordinates of
a point x after the robot is translated (or rotated) by TC (or
RC). By separating motions, we can handle translational and
rotational motions differently. As we will see later, this sep-
aration provides many benefits in generating and connecting
configurations.
C-slice. Intuitively, a C-slice is a slice (subspace) of the

entire C-space. All configurations in a C-slice are generated
from a “seed” configuration S and the Minkowski sum of the
robot and the obstacles. That is a configuration C in a C-slice
must has the following form: C = {p× RS}, where p is the
position of a point on the Minkowski sum surface and RS

is the rotational component of S. Therefore, a C-slice resides
only in a translational-subspace of the C-space. An example
of C-slice is shown in Fig. 2.

Origins. A point x on the Minkowski sum surface is a
combination of two points, which are called the origin of x.
To simplify our discussion later, we define an operation O(x)
to denote the origin of x.

Definition 3.1: The origin O(x) of a point x on the
Minkowski sum surface is a pair of points p and q
from the robot and the obstacles, respectively, such that
x = p+ q.

Note that later in Definition 4.2, we will encounter another
definition of origin for points on the surface of the robot or
the obstacles.

Overview of M-sum planner. Essentially, we iteratively
generate n C-slices from n randomly selected seeds and then
we connect C-slices into a global roadmap. The main steps of
M-sum planner include: Generate C-slices (see Section IV),
connect configurations in each C-slice (see Section V-A), and
connect configurations among C-slices (see Section V-B).

⊕

⊕

⊕

⊕⊕⊕

⊕

robot

start

path

start goal

cross sections

goal

Fig. 2. A set of configurations sampled from the boundary of C-obst using the
Minkowski sum of the robot and the obstacles. Four C-slices are highlighted
in this figure.

IV. MINKOWSKI SUM ROADMAP
GENERATE CONFIGURATIONS

As mentioned earlier, we generate configurations by com-
puting the vertex coordinates of the Minkowski sum of the
obstacles and the robot whose rotation and joint angles are
sampled at random. That is we sample a random configuration
as our ‘seed.’ The translational information of the seed is
discarded (i.e., set to zeros). Then the seed configuration is
placed at the positions of the Minkowski sum vertices to
generate a family of configurations, which we call a ‘C-slice.’
Note that our method does not depend on any kind of sampling
strategy. For example, we can use a configuration generated
by an obstacle-based PRM [4], [5], [6] as our seed.

Even though our strategy is straightforward, the difficulty
of computing the Minkowski sum and its boundary remains
unsolved. As we have seen in Section II, no existing methods
can provide a robust and efficient method to compute the
Minkowski sum boundary of polyhedra. Fortunately, using the
recent work proposed by Lien [11], we can efficiently compute
the Minkowski sum boundary if it is represented by points
only. In the following section, we will provide a sketch of
how to create such a point-based representation.

A. Generate points on the Minkowski sum boundary

Our goal is to produce a set of points that cover the
boundary of the Minkowski sum of two given polyhedra, P
and Q. More specifically, we will generate a point set S so
that S is a d-covering of the Minkowski sum boundary, where
d is a user-specified value. Intuitively, d controls the sampling
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density of a boundary. A smaller d will produce a denser
approximation of the boundary.

Our approach is composed of three main steps. First, we
sample two point sets from the input P and Q. Second, we
generate the Minkowski sum of the point sets simply using the
definition in Eqn. 1. Third, we separate the boundary points
(both hole and external boundaries) from the internal points.

Step 1: Sample points. Let P and Q be two polyhedra. We
generate two point sets from P and Q, denoted as SP and SQ.
The point set S representing the Minkowski sum boundary of
P and Q is simply

(SP ⊕ SQ) ∩ ∂(P ⊕Q) . (3)

Because we want the point set S to cover the entire Minkowski
sum boundary w.r.t. a user specified interval d, we have to
make sure that the points SP is a dp-covering of ∂P and the
points SQ is a dq-covering of ∂Q. It is our task to determine
the values of dp and dq from the input d.

As shown in Theorem 4.1, we can guarantee that the final
point set is at least a d-covering of the Minkowski sum
boundary of P and Q by simply letting dp = dq = d.
Moreover, since the boundaries of P and Q are known, we
can easily generate SP and SQ that d-cover ∂P and ∂Q,
respectively.

Theorem 4.1: [11] Let SP and SQ be two d-covering
point sets sampled from two polyhedral surface ∂P and
∂Q and let SP⊕Q = SP⊕SQ and S = SP⊕Q∩∂(P⊕Q).
Then, S must be a d-covering point set of ∂(P ⊕Q).

Step 2: Compute the Minkowski sum. This step is
straightforward. Using SP and SQ, we compute SP⊕Q by
simply following the Minkowski sum definition in Eqn. 1.

Step 3: Extract boundary points. In this final step, we
separate (filter) points to two groups: Boundary points and
inner points. Boundary points will be returned as our final
answer and inner points will be discarded.

The first filter, named normal filter determines if a pair of
sample points (from P and Q, resp.) is an inner point by
examining their origins (defined later in Definition 4.2) and
orientations. Kaul and Rossignac [27] have shown that a facet
of the Minkowski sum boundary can only come from a facet
of P and a vertex from Q (or vice versa) or from a new
facet formed by two edges of P and Q if the facet, vertex
and edges are properly oriented [27]. Our strategy is derived
directly from their observation. Since our points are sampled
from the polyhedral surface, we define the origin of a sample
to ease our discussion.

Definition 4.2: The origin of a sample x, denoted as
O(x), is a facet, an edge or a vertex of a polyhedron
from which x is sampled.

Let p and q be a pair of points sampled from P and Q,
respectively. We decide if p+ q is an inner point by checking
the orientation of O(p) and O(q).

Consider the case when O(p) is a vertex and O(q) is a
facet (or vice versa). We first define a supporting plane P at

the point p + q parallel to facet O(q). Then, we translate P
by q so that vertex O(p) coincides with the point p+ q. The
point p+ q must be an inner point when the (open) half space
defined by the plane P intersects at least one edge incident to
the vertex O(p).

Now, consider the case when O(p) and O(q) are both edges.
Similarly, we define a supporting plane P at point p+q whose
outward normal is the cross product of two vectors parallel to
edges O(p) and O(q). Then, we translate P by q and Q by
p so that edges O(p) and O(q) coincide with the plane P .
The point p + q must be an inner point when the facets that
incident to edges O(p) and O(p) are on the different sides of
the plane P .

When O(p) and O(q) are both vertices or when O(p) and
O(q) are a vertex-edge pair, we can break them into several
instances of the edge-edge and vertex-facet cases above.

This filter is efficient, but it alone cannot filter out all
inner points. The second filter, named CD filter uses collision
detection to separate boundary points from inner points. CD
filter is computational more expensive but it provides an
unambiguous decision. An example of the Minkowski sum
generated by this point-based representation is shown in Fig. 3.

P Q P ⊕Q

Fig. 3. This figure shows a 0.01-covering point set of the Minkowski sum
boundary of two hook-like models. Note that all P , Q and P ⊕ Q are
represented by densely sampled points.

V. MINKOWSKI SUM ROADMAP
CONNECT CONFIGURATIONS

Connecting configurations is usually the most expensive
step in building a roadmap. In the following, we will show
that, using some simple properties of the Minkowski sum,
not only we can connect configurations more efficiently but
also can increase the chance of connecting configurations. It
is important to note that the new local planners proposed
below are not applicable to samples generated by regular
PRMs. To ease our discussion, we separate our approaches into
connecting configurations within a C-slice and among C-slices.

A. Connecting Configurations within A C-slice

Connecting configurations in a C-slice can be done more
efficiently than connecting configurations generated by random
sampling. The reason for this is that we can quickly eliminate
configurations that cannot be connected by simply examining
the connectivity of the geometries (mesh) of the robot and the
obstacles. We will make this claim more clearly next.

100



Let C1 and C2 be two configurations in the same C-slice
i.e., C1 and C2 have the same rotation and joint angles.
Moreover, we can represent Ci as pi + qi where pi is a point
from the robot P and qi is a point from the obstacle Q. Now,
we can only make a connection between C1 and C2 if C1 and
C2 satisfy one of the following requirements:

• q1 = q2 and p1p2 lies on a triangle of P .
• p1 = p2 and q1q2 lies on a triangle of Q.
• Origins of p1, p2, q1, q2 are edges and O(p1) = O(p2)

and O(q1) = O(q2).
These tests can be done in constant time. All we have

to do is to keep these information during the construction
of the Minkowski sum. If C1 and C2 do not satisfy all the
requirements above, we will skip the pair. Otherwise, we will
use collision detection of check of they are indeed connectable.
The following theorem supports this approach.

Theorem 5.1: Only a pair of configurations that satisfy
one of the criteria above can form a connection.

Proof: The boundary of the Minkowski sum of two
polygons can only come the edges of the polygons. Therefore
if two vertices on the Minkowski sum boundary are connected,
then they must come from an edge of one of the polygons.

The boundary of the Minkowski sum of two polyhedra can
only come the facets of the polyhedra or from the sweep area
of two edges, one from each polyhedron, i.e., one edge from
the robot and one edge from the obstacle. In both cases, if
two vertices on the Minkowski sum boundary are connected,
then they must come from a facet of the polyhedra or from a
new facet that is generated by a pair of edges; each from one
of the polyhedra.

Note that if there are more than one obstacle in the
workspace, the method mentioned above will not connect
configurations that are generated from different obstacles. We
still need the traditional approaches (e.g., k-closest) to connect
the configurations between obstacles.

B. Connecting Configurations Among C-slices

Connecting configurations among C-slices is similar to
connecting configurations among connected components of a
roadmap in PRMs. Similar to connecting individual configu-
rations, it is also more desirable to connect each connected
component (CC) to its k-closest CCs (instead of to all CCs).
However, in PRMs, there is no well defined distance metrics
for CCs [32]. On the contrary, for M-sum planner, the distance
between two C-slices can simply be measured as the difference
between their rotation and joint angles (of the seeds). There-
fore connecting configurations among C-slices can be handled
more naturally for M-sum planner when we attempt to order
C-slices (or CCs) from near to far.

Moreover, following the same strategy of connecting config-
urations within a C-slice, we are allowed to use the properties
of Minkowski sum to increase the chance of connecting
configurations from two C-slices. In the rest of this section,
we will proposed two local planners. The key characteristic

of these local planners is that they connect configurations by
‘walking’ on the C-obst boundary.

Connecting two configurations with the same origins.
Given two configurations C1 and C2 that are generated from
different C-slices and have the origins (see Definition 3.1) from
the same points p and q of the robot and the obstacle, respec-
tively, i.e, O(C1) = O(C2) = (p, q). Let C1 = S1(p) + q and
C2 = S2(p) + q, where Si are the seed configurations of the
C-slice i.

When a straight-line local planner (or other simple local
planners [33]) fails to connect C1 and C2, we can attempt
to connect them as follows. First, we construct a new seed
configuration S3 = S1+S2

2 , which is the mid point the two
seed configurations S1 and S2. Next, we use C3 to compute
a new Minkowski sum point C3 = S3(p) + q. If C3 is on the
C-obst surface, i.e., C3 is collision free, then we recursively
connect C1C3 and C3C2 in the same manner (because now
C1, C2 and C3 all have the same origin). In short, this local
planner connects two configurations between two C-slices by
walking on the surface of C-obst.

Connecting two configurations whose origins are con-
nected in workspace. Given two configurations C1 and C2

that are generated from different C-slices. Assuming C1 and
C2 share one of the point in their origins. Let the shared point
be a point q of the obstacle. That is C1 = S1(p1) + q and
C2 = S2(p2)+q, where p1 and p2 are two points on the robot
and Si is the seed configurations of the C-slice i. Everything
will be the same if the shared point is from the robot. Next, we
will see that we can increase the chance of connecting C1 and
C2 if p1 and p2 are from the same edge or the same triangle
of the robot.

We first compute the midpoint p3 = p1+p2
2 . Then,

we can split C1C2 into three segments: C1(S1(p3) + q),
(S1(p3) + q)(S2(p3) + q), and (S2(p3) + q)C2. Observe that
the first and the last segments connect two configurations in
the same C-slice, which is a problem that we have already
handled in Section V-A and the second segment connects two
configurations with the same origin in different C-slices. This
is exactly the problem that we have encountered earlier.

VI. PUTTING IT ALL TOGETHER

Algorithm VI.1 summarizes all the methods we have dis-
cussed so far. The output of Algorithm VI.1 is a roadmap.

In the rest of this section, we will discuss the advantages
and the limitations of the M-sum planner.

A. Advantages of M-sum planner

There are several important advantages of M-sum planner
over the PRM planners. First, M-sum planner can connect the
configurations more efficiently (see Sections V-A and V-B)
using more powerful local planners, which are not applicable
to the regular PRM samples. In addition, M-sum planner reuses
configurations, including the “good” configurations that fit into
the narrow passages. This property allows M-sum planner
to solve problems more efficiently even in high dimensions.
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Algorithm VI.1: M-SUM-ROADMAP(P,Q, n, k)

comment: P and Q are the robot and the obstacles, respectively

Initialize the roadmap R← ∅
Initialize C-slices S ← ∅
for i← 1 to n

do

⎧⎨
⎩

Sample a configuration Ci and set its translation to 0
Si ←points on ∂(− Ci(P )⊕Q)
S ← S ∪ {Ci, Si}

R← S
Sort S using the distance from a randomly picked C-slice
for i← 1 to n

do

⎧⎨
⎩
R← R ∪ (edges in Si)
for j ← (i− k

2 ) to (i+ k
2 )

do R← R ∪ (edges between Si and Sj)

In our experiments, we see that M-sum planner outperforms
PRMs regardless the dimensionality of the C-space.

Second, M-sum planner expresses different behaviors when
different inputs are given. For example, given problems with
the translational robot, M-sum planner automatically becomes
a deterministic planner. These are the problems that can be
solved significantly more efficiently by the deterministic plan-
ners than by the probabilistic planners, in particular when there
are narrow passages. M-sum planner becomes a probabilistic
planner for problems whose rotational motions dominate the
C-space.

Third, M-sum planner separates the translational and ro-
tational motions. Configurations are first generated and con-
nected using only translation. Then the configurations are
connected into the final roadmap using only rotation. This
strategy provides several advantages. For example, we can
use a deterministic manner to generate translational portion of
the configuration and use a probabilistic manner to generate
rotational portion of the configuration. We can also use a dis-
tance metric for translation and use another distance metric for
rotations and avoid the confusing of combining or weighting
different distance metrics [33].

Finally, M-sum planner can generate samples that cover the
surface of the C-space obstacles (C-obst). This can be done
by giving M-sum planner a small d (smaller than the length
of the shortest edge in workspace). The consequences of this
is that the possibility of generating configurations in narrow
passages must be increased.

Theorem 6.1: Given a translational robot, the possibility
of generating configurations using M-sum planner in nar-
row passages must be larger than that using the traditional
PRM if the same number of configurations are generated.

Proof: Sketch. Because narrow corridors can be charac-
terized by their large surface area to volume ratio, M-sum
planner that generates samples that cover the surfaces of C-
obst must has higher probability of generating samples inside

the corridors than PRM does.
Although Theorem 6.1 is theoretically interesting since no

existing obstacle-based PRMs can guarantee this, practically
speaking, a small d makes computation more expensive.
Moreover, M-sum planner cannot guarantee to increase the
sampling inside the narrow passages surrounded by C-obst
that is the result of robot’s self-collision. This leads us to the
limitations of the M-sum planner.

B. Limitations of M-sum planner

We envision M-sum planner provide a new framework to
combine probabilistic and deterministic planners. Even though
it does not provide a total solution to our question, M-sum
planner provides a simple and efficient planner to solve a
certain type of common motion planning problems. In this
section, we discuss its limitations.

One of the limitations of M-sum planner is that the user need
to decide the value of d. From the completeness perspective,
a small d is desirable since it allows M-sum planner to tightly
cover the C-obst surfaces. From the efficiency perspective, a
larger d (e.g., larger than the length of the longest edge of
the robot and obstacles in the workspace) is desirable since
fewer configurations are generated. In the optimal situation,
only the vertices of the Minkowski sum boundary are included
in the samples. However, it is well known that the Minkowski
sum of the vertices of two polyhedra may not include all the
vertices of the Minkowski sum of the polyhedra. Because this
happens only in some rare cases (e.g., two grate-like shapes),
in our experiments, we simply use a large d. Further research
is required to determine the value of d from a given problem.

Another limitation of M-sum planner is that it cannot
efficiently handle problems, such as the alpha puzzle or fixed-
base robot arms, which require simultaneous translations and
rotations or have no translational degrees of freedom. In these
problems, reusing configurations will not be helpful and M-
sum planner downgrades to a PRM planner.

VII. EXPERIMENTAL RESULTS

Implementing M-sum planner is straightforward. We devel-
oped software based on the proposed planner in C++. All
experimental results are collected on an Intel CPU at 2.13
GHz with 3 GB of RAM. The software is available from our
project webpage.

In this section, we compare M-sum planner to three PRM

variants: PRM [3], Gaussian PRM [5], and Bridge-test PRM [6].
In our experiments, we use four workspaces shown in Fig. 4.
These problems have robots with 3, 6, 8, 10 degrees of
freedom, respectively. We study the efficiency of configuration
generation and the efficiency of solving these four motion
planning problems. The results are summarized in Tables I
and II.

M-sum planner generates configurations near C-obst
more efficiently than PRMs do in all studied cases. In
Table I, we collect the configuration generation times from
the planners. It is clear that PRM is the most efficient method
since it does not deliberately place or filter samples. M-sum
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(a) (b)

(c)

(d)

(e)

Fig. 4. (a) Bug trap environment. The robot (bug) is a translational robot
in a 3D workspace. The width of the workspace is 23.5 (units). (b) A 3D
free-flying rigid robot with 6 DOF. The width of the workspace is 10 (units)
(c) A 8-DOF articulated robot. The width of the workspace is 30 (units).
(d) A 10-DOF articulated robot. The width of the workspace is 40 (units).
It also shows a roadmap with 3000 nodes generated by M-sum planner (e)
A roadmap with 3000 nodes generated by Gaussian PRM (with d = 0.1) is
shown.

TABLE I
COMPUTATION TIME TO GENERATE n CONFIGURATIONS

Gaussian Bridge test
Environment n M-sum PRM PRM PRM

Fig. 4(a) 50 0.04 s 0.02 s 0.20 s 105.05 s
Fig. 4(b) 200 0.25 s 0.02 s 0.74 s 53.77 s
Fig. 4(c) 1000 0.32 s 0.06 s 2.58 s 336.13 s
Fig. 4(d) 2000 14.54 s 0.30 s 23.50 s 8176.41 s

planner is the most efficient among the planners that attempt
to generate configurations near the C-obst. Figs. 4(d) and
(e) show two roadmaps generated by M-sum planner and
the Gaussian PRM, respectively. It is clear that configurations
generated by M-sum planner are much denser around the
boundary while the configurations generated by Gaussian PRM

are more scattered. A reason of the scatteredness is because
the Gaussian PRM not only samples configurations near the C-
obst generated from the workspace obstacle but also samples
near the C-obst generated from self-collisions. Another reason
of the scatteredness is due to the Gaussian distance parameter
d required by Gaussian PRM. Picking a good value of d used
by both Gaussian and Bridge test PRMs is usually tricky and
is problem dependent.

M-sum planner solves all studied cases more efficiently
than PRMs do. In Table II, we study the expected computation
time to solve these four problems. The expected solution time
Et is measured as:

Et =
tx
p
,

TABLE II
EXPECTED SOLUTION TIME (Et =

tx
p

)

Gaussian Bridge test
Environment M-sum PRM PRM PRM

Fig. 4(a) 0.3 s 21.9 s 14.9 s 513.4 s
Fig. 4(b) 0.4 s 104.0 s 10.9 s 1760.8 s
Fig. 4(c) 27.2 s 2002.6 s 82.0 s 7023.4 s
Fig. 4(d) 22.8 s 5073.1 s 3509.6 s 35735.1 s

(All PRMs connect a configuration to its k = 20 closest configurations.
Gaussian and Bridge-test PRMs use d = 0.1 in all environments. Bridge-
test PRM is not combined with uniform PRM.)

where tx is the averaged running time over x runs using a
given planner and p is the probability of successfully solving
the problem from these x runs using the same planner. In all
experiments, we set x = 100. One can view Et as the time
spent before the planner can find a solution (which may require
several runs).

We observe from our experimental results that M-sum
planner is the most efficient planner in all four environments.
More precisely, in all four environments, M-sum planner is 40,
35, 3 and 150 times, respectively, faster than Gaussian PRMs,
the best planner among the three PRMs.

It is clear that in the bug-trap environment M-sum planner
is much more efficient than the all the other PRMs because
M-sum planner essentially becomes a deterministic motion
planner. In the U-shape robot environment (Fig. 4(b)), M-
sum planner still outperforms PRM planners because once a
configuration that fits into the hole in the wall is generated, M-
sum planner will use this particular configuration to generate
a family of configurations (i.e., C-slice) around the hole and
solves the problem.

Although we expect the performs of M-sum planner and
PRMs become closer when the C-space has higher dimension-
ality (> 6), M-sum planner still outperforms PRM planners
in the cases with articulated robots (Figs. 4(c) and (d)). This
is because M-sum planner has ability to reuse configurations
including the “good” configurations, e.g., configurations that
fit into the narrow passage. For example, in Fig. 4(c), the robot
can fold into a triangle and fit into the hole, and in Fig. 4(d)
the robot can make itself flat and slide through the bottom
of the obstacle. M-sum planner picks up these promising
configurations and generates more configurations from them
(C-slices). In PRMs, good configurations are generated and
used only once.

VIII. CONCLUSION

We proposed a motion planner, called M-sum planner, that
takes advantages from the probabilistic and the deterministic
approximate motion planners. We have shown that Minkowski
sum is the key of this hybrid planner. Using the properties
of the Minkowski sum, we are able to generate configura-
tions uniformly on the surface of the C-obst and make more
connections between configurations than PRMs do using more
powerful local planners. In our experimental results we show
that M-sum planner outperforms PRMs in all studied problems,
even for problems with a 10 DOF robot.
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Finally, we would like to conclude this paper by pointing out
the similarity between M-sum planner and the ideas sketched
in the ‘Future Research’ section in [10].

One way to [solve the full rigid motion planning
problem for polyhedron among polyhedra] is to
use a “slicing” method, where we build a coarse
gird (which fixes the rotational dofs of the robot)
we construct an explicit representation of the free
space (we call these representations complete cross-
sections). We then use PRM techniques to connect
between the complete cross-sections. How to ef-
fectively make these connections is a non-trivial
challenge. — Hirsch and Halperin [10].
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[30] T. Lozano-Pérez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. C-32, pp. 108–120, 1983.

[31] M. Peternell, H. Pottmann, and T. Steiner, “Minkowski sum boundary
surfaces of 3d-objects,” Vienna Univ. of Technology, Tech. Rep., August
2005.

[32] D. Xie, M. A. Morales, R. Pearce, S. Thomas, J.-M. Lien, and N. M.
Amato, “Incremental map generation (IMG),” in Proc. Int. Workshop on
Algorithmic Foundations of Robotics (WAFR), July 2006.

[33] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for probabilistic
roadmap methods,” IEEE Trans. Robot. Automat., vol. 16, no. 4, pp.
442–447, August 2000.

104



Bridging the gap of abstraction for probabilistic decision making
on a multi-modal service robot

Sven R. Schmidt-Rohr, Steffen Knoop, Martin Lösch, Rüdiger Dillmann

Abstract—This paper proposes a decision making and con-
trol supervision system for a multi-modal service robot. With
partially observable Markov decision processes (POMDPs) uti-
lized for scenario level decision making, the robot is able to
deal with uncertainty in both observation and environment
dynamics and can balance multiple, conflicting goals. By us-
ing a flexible task sequencing system for fine grained robot
component coordination, complex sub-activities, beyond the
scope of current POMDP solutions, can be performed. The
sequencer bridges the gap of abstraction between abstract
POMDP models and the physical world concerning actions, and
in the other direction multi-modal perception is filtered while
preserving measurement uncertainty and model-soundness. A
realistic scenario for an autonomous, anthropomorphic service
robot, including the modalities of mobility, multi-modal human-
robot interaction and object grasping, has been performed
robustly by the system for several hours. The proposed filter-
POMDP reasoner is compared with classic POMDP as well
as MDP decision making and a baseline finite state machine
controller on the physical service robot, and the experiments
exhibit the characteristics of the different algorithms.

I. INTRODUCTION
Service robots are meant to act autonomously and robustly

in real world environments. Yet, observations of the physical
world by robots are limited and noisy, thus the environment
is partially observable. Also, the course of events in the
real world is never completely deterministic but stochastic.
Both aspects of uncertainty need to be regarded by decision
making of an autonomous service robot.
In general, decision making of a multi-modal robot uses

perceptions of multiple sensors together with background
knowledge to choose one of the available actions which will
contribute most likely to mission success. The chosen action
is performed by coordinating available actuators.
This paper introduces a decision making and supervision

system considering uncertainty, which utilizes partially ob-
servable Markov decision processes (POMDPs) for sym-
bolic, scenario-level decisions. A main focus is bridging the
gap of abstraction between symbolic POMDPs and multi-
modal, real world perception as well as multiple actuators.
Sensor information, including uncertainty, is filtered and
fused into belief states. Abstract POMDP decisions are
executed by processing sequential task programs to execute
more complex and deterministic sub-tasks.
The presented approach is evaluated on a physical, au-

tonomous, anthropomorphic service robot within a realistic
waiter cup-serving scenario.

Supported by European Community’s projects DexMART, COGNIRON
Institute of Computer Science and Engineering (CSE), Univer-

sity of Karlsruhe, Germany {srsr|knoop|loesch|dillmann}
@ira.uka.de

II. STATE OF THE ART

Research has approached the challenge of building pow-
erful reasoning systems for real world environments from
two directions: construction of reasoning and supervision
systems for robots in environments with assumed simplified
properties like fully observable, deterministic or discrete on
the one hand and the development of probabilistic decision
theory coupled with algorithms for decision retrieval on the
other hand.
A hierarchical approach for the design of reasoning and

control systems for robots has proven to help coping with the
complexity of task environments [1]. Three layer architec-
tures are a very popular design [2]. The first layer performs
low level processing of sensory data and reactive controlling
of actuators. The second layer usually supervises an ongoing
task on a symbolic level while the third layer handles the
deliberative selection of abstract tasks. The supervisor and
deliberative layer of most systems use classical planning
which is not aimed at dealing with uncertainty.
Uncertainty in observation and environment dynamics can

be handled by using probabilistic techniques. Probabilistic
decision theory deals with reasoning of rational agents in the
presence of uncertainty. A very promising framework within
general probabilistic decision theory are partially observable
Markov decision processes (POMDPs), especially the class
of discrete, model based POMDPs. A POMDP is an abstract
environment model for reasoning under uncertainty [3], [4].
A POMDP models a flow of events in discrete states and
discrete time. A specific POMDP model is represented by the
8-tupel (S,A,M, T,R,O, γ, b0). S is a finite set of states,
A is a discrete set of actions and M is a discrete set of
measurements. The transition model T (s′, a, s) describes the
probability of a transition from state s to s′ when the agent
has performed action a. The observation model O(m, s)
describes the probability of a measurement m when the
intrinsic state is s. The reward model R(s, a) defines the
numeric reward given to the agent when being in state s and
executing action a. The parameter γ controls the time dis-
count factor for possible future events. The initial belief state
is marked by b0. As POMDPs handle partially observable
environments, there exists only an indirect representation of
the intrinsic state of the world. In POMDPs, the belief state,
a discrete probability distribution over all states in a scenario
model, forms this representation. At each time step, the belief
state is updated by Bayesian forward-filtering.
A decision about which action is most favorable for the

agent when executed next, can be retrieved from a policy

Bridging the Gap of Abstraction for Probabilistic Decision
Making on a Multi-Modal Service Robot
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which contains information about the most favorable action
for any possible belief distribution. The policy incorporates
balancing the probabilities of the course of events into
the future with the accumulated reward which has to be
maximized.
Computing a policy is computationally challenging and

computing exact, optimal policies is intractable [5]. Approx-
imate solutions as point based value iteration (PBVI) [6],
discrete PERSEUS [7] or HSVI2 [8], however, are quite fast
and yield good results for most mid-size scenarios.
For scenarios which can be modelled as fully observable,

Markov Decision Processes (MDPs) can be used for decision
making. In MDPs, the decision is derived from a policy
function based on the known true world state.
POMDP decision making has already been applied to

several different modalities in robotics, like autonomous
navigation [9], dialog management [10] and grasping [11],
however only for low level controlling of one modality at a
time.
These recent investigations encourage to integrate abstract

POMDP decision making into reasoning and supervision
architectures for autonomous, multi-modal robots now and
especially bridging the gap of abstraction between the phys-
ical world and discrete decision models. This paper presents
such an approach and an evaluation in the following.

III. APPROACH: filterPOMDP

When using real world sensory data, there are two pos-
sibilities to perform the belief update during scenario run-
time when using POMDP decision making. The first is the
classical approach, where a distinct observation is perceived
and is then processed by using the observation and transition
models of a POMDP in a Bayesian update step. The same
models are used for calculating the policy. These models
must be known a priori and are formulated as classical linear
POMDP models. As a drawback, one cannot benefit from
any dedicated models of uncertainty which might exist in
the lower level algorithms.
The second approach uses dedicated Bayesian filtering

methods for each sensor complex, which are then fused into
a single belief state. The classic POMDP models are only
used for calculating the policy with an approximation of
the specific filtering methods. This filterPOMDP approach
has the advantage that the uncertainty, as determined by
specific methods, is much more precise concerning the
current situation than it could be delivered by a static linear
observation model.
Therefore, the question about which approach to take de-

pends on the tradeoff between uncertainty precision concern-
ing the belief and policy precision concerning the process on
which the belief is calculated. In mono-modal settings, e.g.
mobile robot navigation settings as often used in conjunction
with POMDPs, the classical approach is superior, because a
general observation and transition model can be set up which
models the behavior of both the self-localization process and
the general POMDP well. In multi-modal settings, e.g. a ser-
vice robot with mobility, manipulation, spoken dialogue and

Fig. 1. The system architecture showing the three layer architecture. Low
level component control for perception and actuation is at the bottom, the
feature filter is on the left, the deliberative layer at the top and the sequencer
at the right.

visual human activity recognition, the specific uncertainties
are better derived from each sensor complex. In this case,
the static observation model of the POMDP which is used
to calculate the actual policy is in any case a simplification
of the process taking place in the specific filters, while the
transition model in the POMDP may be able to represent the
predictions taking place in the filters.
Discrete POMDP models, including all computationally

tractable POMDP policy calculation algorithms, for real
world scenarios are always approximations of the real dy-
namics. Thus, in real world scenarios, the policies are an
approximation of an ideal policy in both approaches. In
practice, in a multi-modal scenario, the approximate POMDP
models and policy generated from it will be quite similar,
while the belief reflects the true sensor uncertainties better
in the second case.
This paper presents the filterPOMDP approach and com-

pares it in real settings with classic POMDP and MDP
reasoning as well as a FSM controller on a multi-modal
service robot system.

IV. SYSTEM ARCHITECTURE

Fig. 1 shows the general architecture of the presented
approach. It is designed along the classical structure of
a three-layer architecture, with low-level control on the
lowest, measurement filtering and execution supervision on
the middle and decision making on the top level.

A. Control layer

Three different capability domains exist on the control
level: mobility, human-robot interaction and manipulation.
Low level modules control the corresponding hardware di-
rectly, closely managing low level commands while process-
ing sensor readings and delivering measurements, including
uncertainty, to the layer above. The available capabilities
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Fig. 2. Schematic computation of a feature.

in the mobility domain are driving and self-localization.
Human-robot interaction is possible by speech output, speech
recognition, robot arm/hand gestures and human body track-
ing with symbolic activity recognition by a state-of-the-art
procedure [12], [13]. Manipulation capabilities include arm
movement, hand grasping as well as force-torque measure-
ments. All measurements delivered by low level modules
are probability distributions - either continuous, paramet-
ric (e.g. self localization) or discrete, non-parametric (e.g.
speech recognition). Actuator commands use a wide range
of parameter types - e. g. symbolic utterances or numeric
positions.

B. Filter

The filtering module handles processing of measurement
data from low level modules. It is basically a modification of
the Bayesian forward filter of the POMDP belief state. This
forward filter has been sourced out from the main POMDP
reasoning, split into a variable number of individual filters,
each of which uses an algorithm specialized on a certain
observation element and performs a discretization of the
continuous data of the logical sensor at the same time. For
some components, measurements already include Bayesian
updates on the lowest layer, as e.g. for self localization.
Fig. 2 shows the filtering process of an exemplary feature.

An individual feature filter takes the data of one or several
low level modules, which can also include past observa-
tions and applies its specific algorithm, parameterized by
the knowledge base. The result is a discrete probability
distribution over a set of symbolic categories having their
origin in the feature parameter set.
With a new observation, all features have to be updated

and after the updates, there exists a new feature state which
is a set of m discrete probability distributions p, defined over
nj sets of categories ci,j with i ≤ m, j ≤ nj .

feature state =
p(c1,1) ... p(c1,n1)
... ... ...
p(cm,1) ... p(cm,nm)

(1)

In the state model, each state in a POMDP scenario model
is defined by at least one category from each feature. This
mapping connects the abstract, symbolic state through the
numerical descriptions of the feature categories to properties
of the real world. Given both models, the space of all state
models loaded from the knowledge base and the feature state
created by feature extraction, the belief state can easily be
calculated by calculating the probability b of each state sk:

b(sk) =
m∏
i=1

∑
j,ci,j∈sk

p(ci,j) (2)

This can also be seen as fusing all feature distributions
into a single belief state by the means of state descriptions.
The set b(s1)...b(sk) is the probability distribution of the new
belief state.
In the following some specific feature filters are presented.
1) Robot mobility: The low level self-localization module

delivers a trivariate gaussian describing position and un-
certainty of the robot. The region occupation feature filter
computes the cumulative distribution function (CDF) of the
robot’s position distribution for a set of certain, predefined
regions. As the orientation is neglected, the CDF over each
region is computed over the bivariate by a state-of-the art
numerical algorithm [14]. It currently works with rectangles,
and larger, complex regions describing a single category can
be constructed out of many, smaller cells:

p(rij) =

xrp2∫
xrp1

yrp2∫
yrp1

N(x, y; �μpos,Σpos) dx dy (3)

p(cj) =
∑
ri∈cj

p(ri) (4)

This approach is much more flexible than the usual primitive,
one square per state, grid-based one. The resulting discrete
probability distribution p(c1), ..., p(cn) describes the proba-
bility of the robot being in the corresponding region. The
regions are defined in the knowledge base.
2) Dialog and human activity filter: POMDPs are also

very suitable for spoken dialog [10]. However, because no
decision takes place at the filter level, the dialog filter uses
a hidden Markov model (HMM), although enhanced with
properties found only in MDPs. The dialog HMM model is
constructed in the following way:
S is a set of abstract states in which the dialog can

be, which reflects human intention. U is a set of possible
utterances of the robot, and M is a set of possible human
utterances, the robot can detect. T (s′, u, s) represents the
transition model for each robot utterance, while O(m, s) is
the observation model mapping human utterances to states.
Because not any dialog step might consist of alternating

human and robot utterances, idle utterances fill gaps. In
perception, idle utterances are recognized as longer periods
of no utterance by either human or robot. The transition
model takes into account actions (utterances) of the robot
which is not a characteristic in standard HMMs, but in
MDPs. A dialog filter probability distribution is forward
filtered by the following equation:

f ′(s′) = α(
∑
m

P (m)O(m, s′)) (
∑
s

T (s′, u, s) f(s)) (5)

With P (m) being the probability for a specific utterance
concerning the last detection as delivered by the speech
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Fig. 3. Connection between reasoner and sequencer. The reasoner contin-
ually generates a decision, which is handed to the task sequencer whenever
the previous task is finished.

recognition module which delivers discrete probability dis-
tributions over recognized utterances. The models for certain
dialog scenarios are defined in the knowledge base.
The human activity filter works in the same way. The hu-

man activity recognition module delivers discrete probability
distributions over a set of perceived, symbolic activities M .
U is a set of specific actions of the robot in this case. The
states S are a set of true activities.

C. Sequencer

The sequencer receives and processes the commands to ex-
ecute symbolic programs which represent the actions selected
by the reasoner. These symbolic programs represent basic
actions for the reasoner. On the sequencing level, they are
expanded into complex robot tasks, which are then triggered
from the sequencer and executed within the control layer.
The task is described as a hierarchical network of basic
actions which is processed with a depth-first left-to-right
search strategy. A detailed description of the task description
called Flexible Programs can be found in [15].
The task set in the task database for the presented experi-

ments comprises the tasks DriveToPos, GraspObject, Speak-
Text,MonitorHumanActivity and PlaceObject. By decoupling
the atomic sensor and actuator controlling from abstract
reasoning, it is possible to reduce the decision state space
to computationally reasonable dimensionality. The reasoning
system decides on the global task to be carried out, while
the sequencer performs the actual subtasks that reach the
associated goal.
The connection between reasoner and sequencer is de-

picted in fig. 3. The reasoning system continually generates
a decision for a most promising action, based on the current
belief state. This decision is passed to the sequencer for
execution each time the previous task in the sequencer is
finished. Execution of an action may take a non-fixed time
span (e.g. DriveToPos), while a sensory filter update is quite
fast (self-localization, speech recognition etc.). The feature
filter runs at a frequency of 20Hz and updates the belief
many times during execution of an action. However, as
each action is performed completely and the new action is
chosen based on the latest belief, the discrete-step (PO)MDP
principle is not violated, while the latest belief reflects the
world more precisely.

D. Reasoner

The deliberative layer utilizes established algorithms for
discrete decision making: it takes a concrete belief state

or a state distribution as input, uses it to query a policy
and retrieves a favorable action to perform. The action
command is sent to the sequencer to be processed there. The
policy for a scenario model can either be computed offline
or incrementally calculated online by the PBVI anytime
algorithm.
For the results and comparison presented in this paper,

MDP and POMDP decision making algorithms are used on
the reasoning level.

V. MODEL DESIGN

A fundamental and mostly unsolved question is how to
obtain the observation and transition models for real-world
scenarios. For model generation, we propose a rule-based
approach.
The stochastic behavior of a single feature can often be

described by parametric rules (e.g. taking the distance into
account when modeling the uncertainty in driving around).
Based on the definition of the states, actions and features of
the scenario, we define parametric rules as Rule = {M,S, S′,
F,Op, P} with M corresponding matrix, S corresponding
origin state, S′ target state, F sub state space, Op operation
name and P the parameters. Wildcards can be used in
M,S, S′ which applies a rule to a row, column, matrix or
the whole transition model.
The application of such rules shall be addressed by

using an example of those actually used in our system. The
mobile platform with topological navigation on a graph is
more likely not to reach the goal when driving long sections
and over many nodes. It is more likely to get stuck in the
origin or close to the goal than in between, however most
of the time it reaches a goal successfully. Applied to a
POMDP transition model T this means that for all actions
including a Goto command ag , transition probabilities
between states which represent different locations have
to include the aforementioned characteristics. It can be
achieved by two functions, one realizes getting stuck in

the origin: b(i, j, loc) =

{
p(stuck), if si = s′j
0, otherwise

and one

calculates the likelihood to end up at the goal p(g) and less
likely, depending on distance d, somewhere close before,
with scaling φ():

b(i, j, loc) =

⎧⎪⎨
⎪⎩

max (0, p(g)− φ(d)) , if s′j on shortest
path to goal from si

0, otherwise
A few dozen rules can describe a quite complex scenario

with non-uniform transition models containing several thou-
sand probability entries.

VI. EXPERIMENTS AND RESULTS

A. Scenario design

The system was evaluated on an anthropomorphic robot
acting in a typical service scenario where the mission is to
fetch a cup for persons expressing their interest and bring
it to a location they choose. The robot can move to several
locations or wait for humans interested in interaction. In case
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a person interacts, the robot can find out if it shall fetch a
cup or not. When finally holding the cup, it can interact with
the person to find out where to bring the cup. The scenario
design is open, not strictly sequential, thus the interaction can
stop at any moment, as the human might leave. Therefore,
the human behavior is modeled as stochastic - the intention
of a person is not deterministically predictable. The duration
of a scenario is not fixed, as the robot may wait for humans
and serve cups indefinitely.
The scenario is realized as a POMDP model with specific

states and actions, as well as dynamics of uncertainty.
Complex, deterministic tasks are modeled as single actions
(Flexible Programs) within the POMDP decision process,
taking advantage of the sequencer. There are 11 actions,
consisting of idleing, driving to different locations, human
activity information gathering, utterances of the robot as well
as pick and place actions. The state space is composed of the
sub-spaces of self-localization, dialog and human activity. By
combining redundancy in the state-space, the state-space can
be reduced to 28 distinct and relevant states.
The observation model is derived from rules describing the

uncertainty of self-localization, the speech recognizer and the
human activity recognizer. The transition probabilities model
the behavior of each action, e.g. glitches in moving and also
stochastic human behavior in the scenario. Finally, the reward
model contains the rules to define the mission motives of
the robot. Actions (except idle) cost a small penalty while
fetching the cup when desired as well as delivering it to the
correct location give a reward.
The POMDP policy is generated from this model and used

for decision making during the experiments.

B. Setup for experiments with a physical robot

To evaluate the presented filterPOMDP approach on a
physical robot, it had to be controlled exclusively and
completely autonomously by the presented system, running
on onboard-computers, with the sole input being the sensor
domains as presented in sec. IV. For evaluation, the system
was also provided with the ability to use the MDP as
well as the classical POMDP approach for decision making
while using the same models and in the POMDP case
the same policy. In these cases, the observation probability
distributions of the sensor complexes were discarded and
instead the observation with the highest probability assumed
as distinct measurement. Additionally in one experiment, the
robot was controlled by an enhanced version of Flexible
Programs exclusively, which include dynamic branching and
recursive tree expansion, being able to model a complete
finite state machine (FSM).
Because of the open-ended nature of a scenario, time is

the only relevant measure of duration of an experiment when
comparing gathered rewards. In case a method takes a lot
of reassurance actions to determine a human intention, it
will be able to fetch and bring a cup less often. Thus, all
four experiments had exactly the same duration and starting
condition. Concerning the behavior of interacting persons
during experiments, it was assured that the behavior of

Fig. 4. The robot during experiments, after fetching a cup and awaiting a
destination order. The camera-head contains a stereo-color-camera and a 3D-
time-of-flight camera for human activity recognition. Speech recognition is
performed using an onboard microphone. The platform uses a laser-scanner
for self-localization. A live-visualisation of the belief state, a 3D cut of the
28D value function and the current Flexible Program as sent from the robot
over wireless can be seen projected at the background.

the human corresponded on average to the probabilities in
the transition model. Finally, true requests and actual robot
behavior were recorded by a human supervisor.

C. Results

A representative set of four runs with our robot Albert
2 (see fig. 4), each lasting exactly 30 minutes, but con-
trolled by different methods: FSM, MDP, classical POMDP
and filterPOMDP shall be further analyzed to compare the
techniques. The following tables show these correlations be-
tween the action requested (Req.) and the actually performed
behavior (Perf.) for the most important parts of the scenario.
Desired behavior is shown on the main diagonal, the first
column shows reassurance actions of all kinds, while other
entries indicate bad behavior.

1) Finite state machine experiment:
������Req.

Perf. Reassure Fetch cup Put to A Put to B

Other 0 1 0 1
Fetch cup 3 4 0 0
Put to A 5 0 2 0
Put to B 7 0 0 2

While the state machine does not make many big mistakes, it
is conservative and annoys the human with many reassurance
questions. Thus, it is not able to perform many delivery
actions in the given time, as it has no inherent risk assessment
as POMDP methods.

2) MDP experiment:
������Req.

Perf. Reassure Fetch cup Put to A Put to B

Other 0 0 0 3
Fetch cup 0 8 0 0
Put to A 5 0 2 1
Put to B 2 0 0 2

First, it should be noted that the reassurance actions in
this case are performed, when only one of the two human
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indicators (say and point) of the intention where to bring the
cup, are present. The MDP has problems with contradicting
point and say indicators because as soon as one of the two
indicators is measured with highest probability - even if it
is only slightly ahead of the other - the MDP will decide
for the wrong location. In that case a POMDP still performs
information gain actions.

3) Classical POMDP experiment:
������Req.

Perf. Reassure Fetch cup Put to A Put to B

Other 0 4 0 1
Fetch cup 1 5 0 0
Put to A 6 0 4 1
Put to B 3 0 0 3

In the POMDP, reassurance actions also include actions
indicating typical POMDP information gain. Concerning
the location to bring the cup to, the POMDP performs
information gain until it is quite sure that both indicators
(say and point) refer to the same location, thus it performs
better than the MDP. However, it tends to bring the cup even
when not requested, because of the reliance on a uniform
distribution concerning prediction of human intention and
the static observation model when calculating the belief.

4) filterPOMDP experiment:
������Req.

Perf. Reassure Fetch cup Put to A Put to B

Other 0 0 0 1
Fetch cup 1 9 0 0
Put to A 3 0 5 1
Put to B 1 0 0 2

The filterPOMDP shows to match both the strong points of
the MDP and the classical POMDP. When being requested
to fetch the cup, the decision is made, based on the actual
speech recognition uncertainty. In the case of deciding where
to bring the cup, it also performs information gain, but not as
often as the classical POMDP, because there is more precise
knowledge about current uncertainty.

5) Comparison:
��������Type

Method FSM MDP POMDP fPOMDP

Correct fetch/put 8 12 12 16
Incorrect fetch/put 2 4 6 2
Reassurance 15 7 10 5

The table shows the performance summary. The FSM is
very conservative, as it has no dynamic risk assessment, the
MDP has more problems with initial human interaction than
the POMDP, thus it wastes time and the total number of
fetch/put actions is slightly smaller.

D. Discussion

As shown by the results, exploiting available information
about specific uncertainty of current perceptions can be
beneficial for decision making by a multi-modal service
robot. Static POMDP observation models only contain in-
formation about average uncertainty, not about the current
one. Using available dedicated methods for determining
this uncertainty is especially promising with multi-modal
robots where complex perceptive components like speech

recognition or human activity recognition exist. However,
the POMDP model is still valid for policy generation as it
has to use average observation uncertainties. This also holds
for the transition model.

VII. CONCLUSION AND OUTLOOK

As shown, using the reasoning capabilities of POMDPs in
real robot scenarios is promising as it leads to very robust
reasoning in partially observable and stochastic domains.
This work has presented a feature filter concept which incor-
porates sensor uncertainty directly, instead of using only an
indirect, static observation model for obtaining belief states.
The main remaining challenge is obtaining the transition
and observation models for arbitrary scenarios. As there has
been only very little research to learn models of real world
domains for discrete, model based POMDPs so far [16], this
should be pursued intensively now.
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Abstract— Truly autonomous systems require the ability to
monitor and adapt their internal body scheme throughout their
entire lifetime. In this paper, we present an approach allowing
a robot to learn from scratch and maintain a generative model
of its own physical body through self-observation with a single
monocular camera. We represent the robot’s internal model as
a compact Bayesian network, consisting of local models that
describe the physical relationships between neighboring body
parts. We introduce a flexible Bayesian framework that allows to
simultaneously select the maximum-likely network structure and
to learn the underlying conditional density functions. Changes in
the robot’s physiology can be detected by identifying mismatches
between model predictions and the self-perception. To quickly
adapt the model to changed situations, we developed an efficient
search heuristic that starts from the structure of the best explai-
ning memorized network and then replaces local components
where necessary. In experiments carried out with a real robot
equipped with a 6-DOF manipulator as well as in simulation, we
show that our system can quickly adapt to changes of the body
physiology in full 3D space, in particular with limited visibility,
noisy and partially missing observations, and without the need
for proprioception.

I. INTRODUCTION

Autonomous robots deployed in real world environments
have to deal with situations in which components change
their behavior or properties over time. Such changes can for
example come from deformations of robot parts or material
fatigue. Additionally, to make proper use of tools, a robot
should be able to incorporate the tool into its own body scheme
and to adapt the gained knowledge in situations in which the
tool is grabbed differently. Finally, components of the robot
might get exchanged or replaced by newer parts that no longer
comply with the models engineered originally.

Kinematic models are widely used in practice, especially in
the context of robotic manipulation [1, 2]. These models are
generally derived analytically by an engineer [3] and usually
rely heavily on prior knowledge about the robots’ geometry
and kinematic parameters. As robotic systems become more
complex and versatile or are even delivered in a completely
reconfigurable way, there is a growing demand for techniques
allowing a robot to automatically learn body schemes with no
or only minimal human intervention.

Clearly, such a capability would not only facilitate the de-
ployment and calibration of new robotic systems but also allow
for autonomous re-adaptation when the body scheme changes,
e.g., through regular wear-and-tear over time. Furthermore, the

Fig. 1. Upper left: Our 6-DOF robotic manipulator arm learns and monitors
its own body-scheme using an external monocular camera and visual markers.
Upper right: After a different tool is placed in the robot’s end-effector, the
model predictions do not fit the current observations anymore. Bottom: The
current body scheme linking action signals ai and body parts Xj using local
models Δj→k . Here, a mismatch between the internal model and recent self-
observation has been detected at Δ6→7.

ability to learn a body scheme is important in the context of
tool use scenarios in which a robot has to identify the effects
of its actions on the tool.

In this paper, we investigate how to equip autonomous
robots with the ability to learn and adapt their own body
schemes and kinematic models using exploratory actions and
self-perception only. We propose an approach to learn a
Bayesian network for the robot’s kinematic structure including
the forward and inverse models relating action commands and
body pose. More precisely, we start with a fully connected
network containing all perceivable body parts and available ac-
tion signals, perform random “motor babbling,” and iteratively
reduce the network complexity by analyzing the perceived
body motion. At the same time, we learn non-parametric
regression models for all dependencies in the network, which
can later be used to predict the body pose when no perception
is available or to allow for gradient-based posture control.

One of the major advantages of the approach presented in
this paper is that it addresses all of the following practical
problems that frequently arise in robotic manipulation tasks
in a single framework:

• Prediction: If both the structure and the CDFs of the
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Fig. 2. Continued experiment from Figure 1. The robot samples a local
model as replacement for the mismatching component Δ6→7. Left: The first
newly sampled model (Δgp6→7) has high uncertainty, because of the missing

dependency on action a6. Right: The second sampled model (Δgp
′

6→7) is a
more suitable replacement for the mismatching component.

Bayesian network are known, the robot is able to predict
for a given action command the expected resulting body
configuration.

• Control: Conversely, given a target body pose, our ap-
proach is able to generate appropriate action commands
that will lead to this pose.

• Model testing: Given both a prediction and an observati-
on of the current body pose, the robot is able to estimate
the accuracy of its own pose predictions. Model accuracy
can, for example, be defined in terms of a distance metric
or a likelihood function.

• Learning: Given a sequence of action signals and the
corresponding body postures, the Bayesian network and
its parameters can be learned from the data.

• Discovering the network structure: When the structure
of the Bayesian network is unknown, the robot is able to
build it from the available local models which are most
consistent with the observed data.

• Failure detection and model adaptation: When the ro-
bot’s physiology changes, e.g., when a joint gets blocked
or is deformed, or a visual marker is changed, this is
efficiently detected so that only the affected local models
of the Bayesian network need to be replaced.

II. RELATED WORK

The problem of learning kinematics of robots has been
investigated heavily in the past. For example, Kolter and
Ng [4] enable a quadruped robot to learn how to follow om-
nidirectional paths using dimensionality reduction techniques
and based on simulations. Their key idea is to use the simulator
for identifying a suitable subspace for policies and then to
learn with the real robot only in this low-dimensional space.

A similar direction has been explored by Dearden et al. [5],
who applied dimensionality reduction techniques to unveil the
underlying structure of the body scheme. Similar to this work,
their approach is formulated as a model selection problem
between different Bayesian networks. Another instance of
approaches based on dimensionality reduction is the work by
Grimes et al. [6] who applied the principal component analysis
(PCA) in conjunction with Gaussian process regression for
learning walking gaits on a humanoid robot.

In previous work [7], we have presented an approach to deal
with the problem of learning a probabilistic self-model for a
robotic manipulator. This approach, however, neither covered
aspects of failure detection and life-long model revision nor
did it address partial observability of model components. In
this work, we give a more rigorous formulation of the the
body-scheme learning framework, we significantly extend the
model toward life-long adaptation and self monitoring, and we
give experimental results in complex and realistic scenarios.

Yoshikawa et al. [8] used Hebbian networks to discover the
body scheme from self-occlusion or self-touching sensations.
Later, [9] learned classifiers for body/non-body discrimination
from visual data. Other approaches used for example nearest-
neighbor interpolation [10] or neural networks [11]. Recently,
Ting et al. [12] developed a Bayesian parameter identification
method for nonlinear dynamic systems, such as a robotic arm
or a 7-DOF robotic head.

The approach presented in this paper is also related to
the problem of self-calibration which can be understood as
a subproblem of body scheme learning. When the kinematic
model is known up to some parameters, they can in certain
cases be efficiently estimated by maximizing the likelihood of
the model given the data [13]. Genetic algorithms have been
used by Bongard et al. [14] for parameter optimization when
no closed form is available. To a certain extend, such methods
can also be used to calibrate a robot that is temporarily using
a tool [15]. In contrast to the work presented here, such
approaches require a parameterized kinematic model of the
robot.

To achieve continuous self-modeling, Bongard et al. [16]
recently described a robotic system that continuously learns
its own structure from actuation-sensation relationships. In
three alternating phases (modeling, testing, prediction), their
system generates new structure hypotheses using stochastic
optimization, which are validated by generating actions and
by analyzing the following sensory input. In a more general
context, Bongard et al. [17] studied structure learning in
arbitrary non-linear systems using similar mechanisms.

In contrast to all the approaches described above, we
propose an algorithm that both learns the structure as well
as functional mappings for the individual building blocks.
Furthermore, our model is able to revise its structure and
component models on-the-fly.
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III. A BAYESIAN FRAMEWORK FOR ROBOTIC BODY

SCHEMES

A robotic body scheme describes the relationship bet-
ween available action signals 〈a1, . . . , am〉, self-observations
〈Y1, . . . , Yn〉, and the configurations of the robot’s body parts
〈X1, . . . , Xn〉. In our concrete scenario, in which we consider
the body scheme of a robotic manipulator arm in conjunc-
tion with a stationary, monocular camera, the action signals
ai ∈ R are real-valued variables corresponding to the joint
angles. Whereas the Xi ∈ R6 encode the 6-dimensional poses
(3D Cartesian position and 3D Euler angles) of the body
parts w.r.t. a reference coordinate frame, the Yi ∈ R6 are
generally noisy and potentially missing observations of the
body parts. Throughout this paper, we use capital letters to
denote 6D pose variables to highlight that these also uniquely
define homogeneous transformation matrices, which can be
concatenated and inverted. Note that we do not assume direct
feedback/proprioception telling the robot how well joint i has
approached the requested target angle ai.

Formally, we seek to learn the probability distribution

p(X1, . . . , Xn, Y1, . . . , Yn | a1, . . . , am) , (1)

which in this form is intractable for all but the simplest
scenarios. To simplify the problem, it is typically assumed
that each observation variable Yi is independent from all other
variables given the true configuration Xi of the corresponding
body part and that they can thus be fully characterized by an
observation model p(Yi | Xi). Furthermore, if the kinematic
structure of the robot was known, a large number of pair-wise
independencies between body parts and action signals could
be assumed, which in turn would lead to the much simpler,
factorized model

p(X1, . . . , Xn | a1, . . . , am) = (2)∏
i

p(Xi | parents(Xi)) · p(parents(Xi) | a1, . . . , am).

Here, parents(Xi) denotes the set of locations of body parts,
which are directly connected to body part i.

The main idea behind this work is to make the factorized
structure of the problem explicit by introducing (hidden)
transformation variables Δi→j := X−1

i Xj for all pairs of
body parts (Xi, Xj) as well as their observed counterparts
Zi→j := Y −1

i Yj . Here, we use the 6D pose vectors X and
Y as their equivalent homogeneous transformation matrices,
which means that Δi→j reflects the (deterministic) relative
transformation between body parts Xi and Xj . Figure 3
depicts a local model, which fully defines the relationship
between any two body parts Xi and Xj and their dependent
variables, if all other body parts are ignored.

Since local models are easily invertible (Δi→j are homoge-
neous transformations), any set of n − 1 local models which
form a spanning tree over all n body parts defines a model
for the whole kinematic structure.

In the following, we explain (1) how to continuously learn
local models from data and (2) how to find the best spanning

Fig. 3. Graphical model for two body parts Xi and Xj as well as their
dependent variables. A denotes the set of independent action variables that
cause a local transformation Δi→j . Yi and Yj are the observed part locations,
and Zi→j is their relative geometric transformation.

tree built from these local models that explains the whole
robot. In this work, we consider the single best solution only
and do not perform model averaging over possible alternative
structures.

Please note that in theory, it would be straight-forward to
keep multiple structure hypotheses and to average over them
using Bayes’ rule. Control under structure uncertainty is a
slightly more difficult problem. One would have to average
over all possible structures and assess the individual risks
and gains for possible actions. Then, the one action sequence
should be selected that maximizes the overall gain while
keeping all possible risks low [18].

In practice, we found that considering the most-likely struc-
ture only is sufficient for most relevant tasks. Our approach is
conservative in this respect since it requires a certain minimal
model accuracy from all parts of the body scheme.

A. Local Models

The local kinematic models are the central concept in
our body scheme framework. A local model M describes
the geometric relationship pM(Zi→j | Ai→j) between two
observed body parts Yi and Yj , given a subset of the action
signal Ai→j ⊂ {a1, . . . , an}.

The probability distribution underlying a local model can
be defined in various ways. If an analytic model of the
robot exists from its specifications, it can be used directly
to construct pM(Zi→j | Ai→j). The standard way to describe
a geometric model for robot manipulators is in terms of the
Denavit-Hartenberg parameters [1, 19]. When available, the
advantages of these models are outstanding: they are exact
and efficient in evaluation. In practice, however, such models
need to be calibrated carefully and often require re-calibration
after periods of use.

B. Learning Local Models from Noisy Observations

On the real robotic platform used in our experiments, the
actions ai correspond to the target angle requested from joint
i and the observations Yi are obtained by tracking visual
markers in 3D space including their 3D orientation [20] (see
the top right image of Figure 1). Note that the Yi’s are
inherently noisy and that missing observations are common,
for example in the case of (self-)occlusion.
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The probability distribution pM(Zi→j | Ai→j) of a local
model M can be learned from a sequence of observations
D = {(Zi→j ,Ai→j)}1:t. If we assume Gaussian white noise
with zero mean on the observations, the sensor model becomes
Yi ∼ Xi + N (0, σsensor ). Note that we can connect the
two body parts Xi and Xj in Figure 3 either by lear-
ning pM(Δi→j | Ai→j) or pM(Zi→j | Ai→j). The link
p(Δi→j | Ai→j) = p(X−1

i Xj | Ai→j) is noise-free. It,
however, requires inference starting from Yi and Yj through
both observation models via the indirect Bayesian pathway
Yi ← Xi → Δi→j → Xj → Yj . Thus, we propose to learn
the model for pM(Zi→j | Ai→j) = pM(Y −1

i Yj | Ai→j)
directly. As the noise distribution pM(Zi→j | Δi→j) is
determined by integrating Gaussian random variables along
Xi → Yi → Zi→j → Yj → Xj it can nicely be approximated
by a Gaussian [21].

The problem of learning the probability distribution now
comes down to learning the function fM : R|Ai→j | →
R6, Ai→j �→ Zi→j , from the training data. A flexible model
for solving such non-linear regression problems given noisy
observations is the popular Gaussian process (GP) approach.
The main feature of the Gaussian process framework is, that
the observed data points are explicitly included the model
and, thus, no parametric form of fM needs to be specified.
Data points can be added to the training set at any time,
which facilitates incremental and online learning. Due to
space constraints, we refer the interested reader to work by
Rasmussen [22] for technical details about GP regression. For
simplicity, we assume independence between all 12 free com-
ponents of fM(Ai→j) and consider the functional mapping
for each component separately. Due to this simplification, we
cannot guarantee that the prediction corresponds to a valid,
homogeneous transformation matrix. In practice, however,
invalid transformations occur only rarely and they lie close to
similar, valid transformations, such that a simple normalization
step resolves the problem.

C. Learning a Factorized Full Body Model

We seek to find the best factorized model according to
Eqn. 3 and, thus, require a suitable optimization criterion. Gi-
ven a training set D of independent, time-indexed actions and
their corresponding observations, D = {(Y t

i , Y
t
j ,At

i→j)}Tt=1,
or, equivalently for our purposes, {(Zt

i→j ,At
i→j)}Tt=1, the data

likelihood p(D | M) under a local model M can directly be
computed from its probability distribution pM(Zi→j | Ai→j)
as

p(D | M) =
t∏

k=1

pM(Zk
i→j | Ak

i→j) . (3)

In practice, this product is highly sensitive to outliers, and
makes the comparison of different classes of models difficult.
We therefore developed an alternative model quality measure
q(D | M) that is proportional to both the prediction accuracy
and a penalty term for model complexity:

log q(D | M) := log(1/εpred (D | M)) + C(M) log θ (4)

Fig. 4. In an early learning phase, the robot knows only little about its body
structure, i.e., all possible local models need to be considered in parallel. From
the subset of valid local models, a minimal spanning tree can be constructed
which, in turn, forms a Bayesian network. This can subsequently be used as
a body scheme for prediction and control.

where C(M) ∈ Z is the complexity of model M and
εpred (D | M) is the prediction error defined as

εpred (D | M) :=
1
|D|

∑
(Zi→j ,Ai→j)∈D

εpred (Zi→j | Ai→j ,M)

(5)

with

εpred (Zi→j | Ai→j ,M) :=
∫
Z

‖Zi→j − Z‖· (6)

pM(Z ′ | Ai→j) dZ . (7)

We define a local model M to be validM(D) given a set
of observations, if and only if its observed prediction error is
below some threshold θ, i.e., εpred (D) < θ. Our experiments
revealed that a good value for θ is 3σ, where σ is the standard
deviation of the sensor model.

1) Bootstrapping: If no prior knowledge of the robot’s
body scheme exists, we initialize a fully connected network
model (see Figure 4), resulting in a total set of

∑m
k=0

(
n
2

)(
m
k

)
local models. Given a set of self observations, the robot can
determine the validity of the local models by evaluating Eq. 7.
Certain ambiguities will, however, remain even after infinitely
many training samples: if, for example, pM1(Z1→2 | a1) has
been determined to be a valid local model, then pM2(Z1→2 |
a1, a2) will also be. Although M1 and M2 might not be
distinguishable regarding prediction accuracy, these models
differ significantly in terms of complexity and therefore in
model quality q(D | M).

2) Finding the Network Topology: From the superset of all
valid local models Mvalid = {M1, . . .}, we seek to select
the minimal subset M ⊂ Mvalid that covers all body part
variables and simultaneously maximizes the overall model fit
q(D | M) :=

∏
M∈M q(D | M). It turns out that M can

be found efficiently by computing the minimal spanning tree
of Mvalid taking the model quality measure of the individual
local models as the cost function. Such a body spanning tree
needs to cover all body parts X1, . . . , Xn but not necessarily
all action components of a1, . . . , am. Note that, in order to
connect all n body poses in the Bayesian network, exactly
(n − 1) local models need to be selected. This yields the
astronomical number of #structures =

(
#local models

n−1

)
possible net-

work structures to be considered. In practice, however, simple
search heuristics allow us to strongly focus the search on the
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relevant parts of the structure space. Recall that the quality
measure q(D | M) for a local model is composed of the
(data-dependent) prediction accuracy and a (data-independent)
complexity penalty. If we consider two valid local models, i.e.,
with εpred (D | M1|2) < θ, then by the definition of q(D | M),
the quality of a model with lower complexity is always higher
compared to a local model with higher complexity for any D,
i.e.,

C(M1) < C(M2)⇐⇒ ∀D : q(D | M1) > q(D | M2) .

Thus, it is sufficient to evaluate only the first k complexity
layers of local models in Mvalid until a minimal spanning tree
is found for the first time. This spanning tree then corresponds
to the global maximum of overall model quality.

D. Prediction and Control

The kinematic forward model is directly available by noting

p(Y1, . . . , Yn | a1, . . . , am)

=
∏
i

p(Yi | parents(Yi))p(parents(Yi) | a1, . . . , am)

= p(Yroot )
∏

M∈M
pM(Zi→j | Ai→j) , (8)

where Yroot is the position of the robot’s trunk, which is
serving as the coordinate origin of all other body parts. In
practice, instead of a probability distribution p(Y1, . . . , Yn |
a1, . . . , am), we rather require the maximum likelihood (ML)
estimate of the resulting body posture given an action signal.
This can be computed efficiently by concatenating the geome-
tric transformations of the individual mapping functions fMi

.
Although the inverse kinematic model can in principle be

derived by applying the rules of Bayes,

p(X1, . . . , Xn | a1, . . . , am)

=
p(X1, . . . , Xn)
p(a1, . . . , am)

p(a1, . . . , am | X1, . . . , Xn)

∝ p(a1, . . . , am | X1, . . . , Xn), (9)

it is in general difficult to determine the maximum likelihood
(ML) estimate for the action signal a1, . . . , am that is supposed
to generate a given target body posture X1, . . . , Xn. Since all
individual functions fMi

are continuous, and so is the ML
posture estimate f of the forward kinematic model, we can
compute the Jacobian ∇f(a) of the forward model as

∇f(a) =
[
∂f(a)
∂a1

, . . . ,
∂f(a)
∂am

]T
. (10)

A gradient descent algorithm can then be used to minimize
f(a) and thereby to iteratively control the manipulator to its
target position [7].

E. Failure Awareness and Life-Long Model Adaptation

Until now, we have assumed that the robot’s physiology
remains unchanged during its whole life-time. It is clear, ho-
wever, that in real-world applications, the robot will change in
the course of time. This insight requires that the robot revises

parts of its experience over time, allowing it to discriminate
between earlier and more recent observations. This enables the
robot to detect changes in its physiology by testing the validity
of its local models at different points in time and at different
temporal scales.

It might even be useful for the robot to maintain multiple
body schemes at different time scales. Consider, for example,
a robot that uses an accurate pre-programmed model over a
long period of time, but simultaneously is able to create and
use a short-term model that takes over as soon as the body
structure of the robot changes occur (which could be as little
as the displacement of one visual marker). From a formal point
of view, time is simply another dimension in the model space
which can be included in the definition of local models.

A temporal local model MT describes the geometric re-
lationship pTM(Zi→j | Ai→j , T ) between two observed body
parts Yi and Yj , given a subset of the action signal Ai→j ⊂
{a1, . . . , an} and a particular time interval T .

However, the size of the learning problem in the boot-
strapping case now grows exponentially in time yielding the
immense upper bound of

∑m
k=0

(
n
2

)(
m
k

)
2|T | local models to be

considered. As it would be practically infeasible to evaluate
all of these local models even for small periods of time, three
additional assumptions can be made such that an efficient
algorithm for real-time application can be devised:

1) Changes in body physiology can be assumed to be
relatively rare events.

2) Changes in physiology most probably happen incremen-
tally.

3) Whatever local models were useful in the past, it is likely
that similar (or maybe even the same) local models will
be useful in the future.

Because of the first assumption it is not necessary to
consider new local models as long as the current body scheme
still yields a high prediction accuracy. Only when one of the
local models of the current body scheme becomes invalid,
incremental learning (assumption 2) has to be triggered. Then,
according to assumption 3, it is reasonable to begin the search
for new models that are similar to previously useful models.
To incorporate these assumptions in the quality measure for
local models, we first define the concept of relative complexity
of a local model M2 given a previously used model M1 as

C(M2 | M1) := d(M2,M1),

where d(·, ·) is a (data-independent) similarity metric between
two local models and C(M2 | M1) ∈ Z. In practice,
d(·, ·) can for example be defined as the ratio of shared
nodes between two local models in the Bayesian network. The
refined version of the model quality measure q2(D | M1,M2)
of some recent observations D given a newly sampled model
M2 as a replacement for an invalidated previous model M1

can then be defined as

log q2(D | M1,M2) := log(1/errorprediction(D))
+ C(M2 | M1) log θ
+ log |TM2 | . (11)
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Fig. 5. At t = 100, a joint gets blocked, which causes the initial local
model pengineered (Z6→7 | a4) to produce substantially larger prediction
errors. At t = 126, the robot samples a new local model plearned (Δ6 → 7)
as replacement.

Please note that, by construction, the quality measure of
two local models with different relative complexity have no
overlapping ranges in model quality independently of the
observation data D, i.e.,

C(M1 | M3) < C(M2 | M3))
⇐⇒ ∀D : q(D | M1) > q2(D | M2) . (12)

It is, like in the static case, sufficient to sample and evaluate
only the first k complexity layers of local models until a
minimum spanning tree is found. By definition of the quality
function, this minimum spanning tree is then by construction
the global maximum of overall model quality.

IV. EXPERIMENTS

We tested our approach in a series of experiments, both on
a real robot and in simulation. The goal of our experiments
was to verify that

1) physiological changes are detected confidently (blocked
joints / deformations),

2) the body scheme is updated automatically without hu-
man intervention, and

3) the resulting body scheme can be used for accurate
prediction and control.

The robot used to carry out the experiments is equipped
with a 6-DOF manipulator composed of Schunk PowerCube
modules. The total length of the manipulator is around 1.20m.
With nominal noise values of (σjoints = 0.02◦), the reported
joint positions of the encoders were considered to be suffi-
ciently accurate to compute the ground truth positions of the
body parts from the known geometrical properties of the robot.
Visual perception was obtained by using a Sony DFW-SX900
FireWire-camera at a resolution of 1280x960 pixels. On top
of the robot’s joints, 7 black-and-white markers were attached
(see Figure 1), that were detectable by the ARToolkit vision
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Fig. 6. The absolute prediction error of the combined kinematic model
p(Z1→7 | a1, . . . , a4) of our 6-DOF manipulator. This model is composed of
6 individual local models of which one is replaced by a newly learned model
at t = 126 (cmp. Figure 5). As can be seen from the plot, the prediction
accuracy recovers quickly after each of the three external events.

module [20]. Per image, the system perceives the unfiltered
6D poses of all detected markers. The standard deviation of
the camera noise was measured to σmarkers = 44mm in 3D
space, which is acceptable considering that the camera was
located two meters apart from robot.

We averaged the prediction error over a test set of the latest
|Dtesting | = 15 data samples. New local models were trained
with |Dtraining | = 30 succeeding training samples after the
model was instantiated. In order for a local model to be valid,
its translational and rotational error on the test set needed to be
below a threshold of θtrans = 3σtrans = 150mm and θrot =
3σrot = 45◦, with σtrans and σrot as the standard deviation of
the translational and rotational observation noise, respectively.
New local models were only sampled when no valid spanning
tree could be constructed for |Dtesting | succeeding time steps,
as this is the time it takes to replace most if not all (because
of possibly missing observations) data samples of the test set.
Note that otherwise it could happen that available local models
cannot be selected because the test set temporarily consists of
data samples partly observed just before and partly after a
change in physiology.

A. Evaluation of Model Accuracy

To quantitatively evaluate the accuracy of the kinematic
models learned from scratch as well as the convergence be-
havior of our learning approach, we generated random action
sequences and analyzed the intermediate models using a 2-
DOF robot of which the kinematic model is perfectly known.

Figure 7 gives the absolute errors of prediction and control
after certain numbers of observations have been processed. For
a reference, we also give the average observation noise, i.e.
the absolute localization errors of the visual markers.

As can be seen from the diagram, the body scheme con-
verges robustly within the first 10 observations. After about
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Fig. 7. Prediction and control errors for a kinematic model that is learned
from scratch. Already after 7 samples, the average prediction error is lower
than the average localization error of the visual markers.

15 training samples, the accuracy of the predicted body
part positions even outperformed the accuracy of the direct
observations. The latter is a remarkable result as it means that,
although all local models are learned from noisy observations,
the resulting model is able to blindly predict positions that
are more accurate than immediate perception. The figure also
gives the accuracy of the gradient-based control algorithm.
Here, we used an additional marker for defining a target
location for the robot’s end effector. We learned the full body
scheme model from scratch as in the previous experiment and
used the gradient-based control algorithm to bring the end
effector to the desired target location. The average positioning
error is in the order of the perception noise (approx. 50mm, see
Figure 7), i.e. slightly higher than the prediction error alone.

B. Scenario 1: Joint stuck

We generated a large sequence of random motor commands
〈a1, . . . , am〉. Before accepting a pose, we checked that the
configuration would not cause any (self-)collisions, and that
the markers of interest (X6 and X7) would potentially be
visible on the camera image. This sequence was sent to the
robot and after each motion command, the observed marker
positions 〈Y1, . . . , Yn〉 were recorded. In the rare case of a
anticipated or a real (self-)collision during execution, the robot
stopped and the sample was rejected. Careful analysis of the
recorded data revealed that, on average, the individual markers
were visible only in 86.8% of the time with the initial body
layout. In a second run, we blocked the robot’s end-effector
joint a4, such that it could not move, and again recorded a log-
file. Note that we allow arbitrary 3D motion (just constrained
by the geometry of the manipulator) and thus do not assume
full visibility of the markers.

An automated test procedure was then used to evaluate the
performance and robustness of our approach. For each of the
20 runs, a new data set was sampled from the recorded log-
files, consisting of 4 blocks with N = 100 data samples each.

The first and the third block were sampled from the initial body
shape, while the second and the fourth block were sampled
from the log-file where the joint got blocked.

Figure 5 shows the prediction error of the local models
predicting the end-effector pose. As expected, the prediction
error of the engineered local model increases significantly after
the end-effector joint gets blocked at t = 100. After a few
samples, the robot detects a mismatch in its internal model
and starts to learn a new dynamic model (around t = 130),
which quickly reaches the same accuracy as the original,
engineered local model. At t = 200, the joint gets repaired
(unblocked). Now the estimated error of the newly learned
local model quickly increases while the estimated error of the
engineered local model decreases rapidly towards its initial
accuracy. Later, at t = 300, the joint gets blocked again in the
same position, the accuracy of the previously learned local
model increases significantly, and thus the robot can re-use
this local model instead of having to learn a new one.

The results for 20 reruns of this experiment are given in
Figure 6. The hand-tuned initial geometrical model evaluates
to an averaged error at the end-effector of approx. 37mm.
After the joint gets blocked at t = 100, the error in prediction
increases rapidly. After t = 115, a single new local models
gets sampled, which already is enough to bring down the over-
all error of the combined kinematic model to approximately
51mm. Training of the new local model is completed at around
t = 135.

Later at t = 200, when the joint gets un-blocked, the error
estimate of the combined kinematic model increases slightly,
but returns much faster to its typical accuracy: switching back
to an already known local model requires much fewer data
samples than learning a new model (see Table I). At t = 300,
the same quick adaption can be observed when the joint gets
blocked again.

C. Scenario 2: Deformed limb

In a second experiment1, we changed the end-effector limb
length and orientation and applied the same evaluation proce-
dure as in the previous subsection. This was accomplished by
placing a tool with an attached marker in the robot’s gripper
at different locations (see Figure 1).

1A demonstration video of this experiment can be found on the in-
ternet at http://www.informatik.uni-freiburg.de/˜sturm/
media/resources/public/zora-7dof-demo.avi

TABLE I

EVALUATION OF THE RECOVERY TIME REQUIRED AFTER BEING EXPOSED

TO DIFFERENT TYPES OF FAILURES. IN EACH OF THE 4× 20 RUNS, FULL

RECOVERY WAS AFTER EACH EVENT ROBUSTLY ACHIEVED.

Visibility Failure Recovery time after
rate type failure repair same failure

91.9% Joint blocked 16.50 0.45 0.65
± 1.20 ± 0.86 ± 1.15

79.0% Limb deformed 20.20 11.10 12.10
±1.96 ± 0.83 ± 1.64
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Fig. 8. The manipulator robot with a deformed limb has to follows the blue
target trajectory. With a static body model, it suffers from strong derivation
(red trajectory). By using our approach, the body scheme is dynamically
adapted, and the trajectory is very well approached (green trajectory).

Although the overall result closely resembles the case of a
blocked joint, there are a few interesting differences. After the
tool gets displaced at t = 100, on average two local models
need to be sampled because the first one is not sufficient.

Also note that it takes much more training samples for the
GPs to learn and validate the underlying probability distribu-
tion p(Z6→7 | a4) (see Table I). The prediction accuracy of
the whole system closely resembles the levels as in the case
of the blocked joint: On average, we measured after recovery
an accuracy of 47mm.

D. Controlling a Deformed Robot

Finally, we ran a series of experiments to verify that dy-
namically maintained body schemes can be used for accurate
positioning and control. The experiments were executed on a
4-DOF manipulator in simulation.

We defined a 3D trajectory consisting of 30 way-points
that the manipulator should approach by inverse kinematics
using its current body scheme, see Figure 8. When the initial
geometric model was used to follow the trajectory by using
the undamaged manipulator, a positioning accuracy of 7.03mm
was measured. When the middle limb was deformed by 45◦,
the manipulator with a static body scheme was significantly
off course, leading to an average positioning accuracy of
189.35mm. With dynamic adaptation enabled, the precision
settled at 15.24mm. This shows that dynamic model adaption
enables a robot to maintain a high positioning accuracy after
substantial changes to its body physiology.

V. CONCLUSION

In this paper, we presented a novel approach to life-long
body scheme adaptation for a robotic manipulation system.
Our central idea is to continuously learn a large set of
local kinematic models using non-parametric regression and to
search for the best arrangement of these models to represent
the full system.

In experiments carried out with a real robot and in simu-
lation, we demonstrated that our system is able to deal with
missing and noisy observations, operates in full 3D space, and
is able to perform relevant tasks like prediction, control, and
online adaptation after failures. Challenging topics for further
investigation include developing an active exploration strategy,
learning from marker-less observations, point-like features, or

range observations and learning for fully unobservable parts
of the robot.
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Abstract— For a group of constant-speed ground robots, a
simple control law is designed to stabilize the motion of the group
into a balanced circular formation using a consensus approach. It
is shown that the measurements of the bearing angles between the
robots are sufficient for reaching a balanced circular formation.
We consider two different scenarios that the connectivity graph
of the system is either a complete graph or a ring. Collision
avoidance capabilities are added to the team members and the
effectiveness of the control laws are demonstrated on a group of
mobile robots.

I. INTRODUCTION

Inspired by the social aggregation phenomena in birds and
fish [1]–[3], researchers in robotics and control theory have
been developing tools, methods and algorithms for distrib-
uted motion coordination of multi-vehicle systems. Two main
collective motions that are observed in nature are parallel
motion and circular motion [4]. One can interpret stabilizing
the circular formation as an example of activity consensus,
that is, individuals are “moving around” together. Stabilizing
the parallel formation is another form of activity consensus in
which individuals “move off” together [5].

The circular formation is a circular relative equilibrium in
which all the agents travel around the same circle. This kind of
behavior is observed in fish schooling, a well studied topic in
ecology and evolutionary biology [3]. The balanced formation
is an interesting family of equilibrium states where the agents
are evenly spaced on a circular trajectory, and the geometric
center of the agents is fixed. At the equilibrium, the relative
headings and the relative distances of the agents determine the
shape of the formation [6].

The primary contribution of this work is the presentation
of a simple control law for achieving a balanced circular
formation that only requires visual sensing such as bearing
angles, i.e., the input is in terms of quantities that do not
require communication among nearest neighbors. In contrast
with the work of Paley et al. [5], Sepulchre et al. [6], and
Moshtagh et al. [7], where it is assumed that each agent has
access to the values of its neighbors’ positions and velocities,
we design distributed control laws that use only visual clues
from nearest neighbors to achieve motion coordination.

In [8]–[10] circular formations of a multi-vehicle system
under cyclic pursuit is studied. The proposed strategy is
distributed and relatively simple because each agent needs to
measure the relative information from only one other agent. It

is also shown that the formation equilibria of the multi-agent
system are generalized polygons. In contrast to [8] our control
law is a nonlinear function of the bearing angles and as a result
our system converges to a different set of stable equilibria.

Verification of the theory through multi-robot experiments
demonstrated the effectiveness of the bearing-only control law
to achieve the desired formation. Of course in reality any
formation control requires collision avoidance, and indeed
collision avoidance cannot be done without range. In order
to improve the experimental results, we provided inter-agent
collision avoidance properties to the team members. What we
show in this work is that the two tasks of formation-keeping
and collision-avoidance can be done with decoupled additive
terms in the control law, where the terms for keeping circular
formation depends only on the bearing parameters.

The outline of the paper is as follows. First we provide
some background information on graph theory and polygons
that we are going to use throughout the paper. In Section III
we derive the bearing-only controller that stabilizes a group of
mobile agents into a balanced circular formation. In Section
IV collision avoidance capabilities are added to the control
laws. The derived controllers are tested on real robots and the
experimental results are presented in Section V.

II. BACKGROUND

In this section we briefly review a number of important
concepts that we use in this paper.

A. Graph Theory

An (undirected) graph G consists of a vertex set, V , and
an edge set E , where an edge is an unordered pair of distinct
vertices in G. If x, y ∈ V , and (x, y) ∈ E , then x and y are
said to be adjacent, or neighbors and we denote this by writing
x ∼ y. The number of neighbors of each vertex is its valence.
A path of length r from vertex x to vertex y is a sequence
of r + 1 distinct vertices starting with x and ending with y
such that consecutive vertices are adjacent. If there is a path
between any two vertices of a graph G, then G is said to be
connected.

The adjacency matrix A(G) = [aij ] of an (undirected) graph
G is a symmetric matrix with rows and columns indexed by
the vertices of G, such that aij = 1 if vertex i and vertex j
are neighbors and aij = 0, otherwise. We also assume that
aii = 0 for all i. The valence matrix, D(G), of a graph G
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is a diagonal matrix with rows and columns indexed by V , in
which the (i, i)-entry is the valence of vertex i.

The symmetric singular matrix defined as:

L(G) = D(G)−A(G)

is called the Laplacian of G. The Laplacian matrix captures
many topological properties of the graph. The Laplacian L is
a positive semidefinite M-matrix (a matrix whose off-diagonal
entries are all nonpositive) and the algebraic multiplicity of
its zero eigenvalue (i.e., the dimension of its kernel) is equal
to the number of connected components in the graph. The n-
dimensional eigenvector associated with the zero eigenvalue
is the vector of ones, 1n = [1, . . . , 1]T .

Given an orientation of the edges of a graph, we can define
the incidence matrix of the graph to be a matrix B with
rows indexed by vertices and columns indexed by edges with
entries of 1 representing the source of a directed edge and −1
representing the sink. The Laplacian matrix L(G) of graph G
is represented in terms of its incidence matrix as L = BBT

independent of the orientation of the edges.

B. Regular Polygons

Let d < n be a positive integer and define p = n/d. Let y1
be a point on the unit circle. Let Rα be a clockwise rotation
by the angle α = 2π/p. The generalized regular polygon {p}
is given by the points yi+1 = Rαyi, and edges between points
i and i+ 1 [11].

When d = 1 the polygon {p} is called an ordinary regular
polygon and its edges do not intersect. If d > 1 and n and
d are coprime, then the edges intersect and the polygon is a
star. If n and d have a common factor l > 1, then the polygon
consists of l traversals of the same polygon with {n/l} vertices
and edges. If d = n the polygon {n/n} corresponds to all
points at the same location. If d = n/2 (with n even), then
the polygon consists of two end points and a line between
them, with points corresponding to an even index on one end
and points corresponding to an odd index on the other.

C. Kronecker Product

The Kronecker product, denoted by ⊗, is an operation on
two matrices of arbitrary size resulting in a block matrix. If A
is an m×n matrix and B is a p×q matrix, then the Kronecker
product A⊗B is a mp×nq block matrix. If A, B, C and D
are matrices of such size that one can form the matrix products
AC and BD, then (A ⊗ B)(C ⊗ D) = AC ⊗ BD. This is
called the mixed-product property. Also the following property
holds (A⊗B)T = AT ⊗BT .

III. CIRCULAR FORMATIONS OF PLANAR ROBOTS

Consider a group of n unit-speed planar agents. Each agent
is capable of sensing information from its neighbors. The
neighborhood set of agent i, Ni, is the set of agents that can
be “seen” by agent i. The precise meaning of “seeing” will
be cleared later. The size of the neighborhood depends on
the characteristics of the sensors. The neighboring relationship
between agents can be conveniently described by a graph.

Definition 3.1 (Connectivity Graph): The connectivity
graph G = {V, E} is a graph consisting of:

• a set of vertices V indexed by the set of mobile agents;
• a set of edges E = {(i, j) | i, j ∈ V , and i ∼ j};
The edge set E represents the links among the agents, and

the neighborhood of agent i is defined by

Ni
.= {j|i ∼ j} ⊆ {1, . . . , n}\{i}.

A circular formation is a circular relative equilibrium in
which all the agents travel around the same circle. At the
equilibrium, the relative headings and the relative distances
of the agents determine the shape of the formation. We are
interested in balanced circular formations as defined by:

Definition 3.2 (Balanced Circular Formation): The set
of equilibrium states where the agents are evenly spaced on a
circular trajectory, and the geometric center of the agents is
fixed is called the balanced circular formation.

A. Kinematic Model for Mobile Robots

Let ri represent the position of agent i, and vi be its velocity
vector. The dynamics of each unit-speed agent is given by:

ṙi = vi
v̇i = ωi v⊥

i

v̇⊥
i = −ωivi (1)

where v⊥
i is the unit vector perpendicular to the velocity vector

vi. The orthogonal pair {vi,v⊥
i } forms a body frame for

agent i (See Figure 1). We represent the stack vector of all
the velocities by v = [vT1 , . . . ,v

T
n ]

T ∈ R2n×1 .
The control input for each agent is the angular velocity ωi.

Since it is assumed that the agents move with constant unit
speed, the force applied to each agent must be perpendicular to
its velocity vector, i.e., the force on each agent is a gyroscopic
force, and it does not change its speed (and hence its kinetic
energy). Thus, ωi serves as a steering control [12] for each
agent. In the following we design a distributed control law
for achieving a balanced formation.

Let ci represent the position of the center of the i-th circle
with radius 1/ωo, as shown in Figure 1, thus

ci = ri + (1/ωo)v⊥
i .

The shape controls for driving agents to a circular formation
depend on the shape variables vij = vj − vi and rij =
rj − ri. The relative equilibria of the balanced formation are
characterized by

∑n
i=1 vi = 0, and ci = co ∈ R2 for all

i ∈ {1, . . . , n}, where co is the fixed geometric center of the
agents.

The control input for each agent has two components:

ωi = ωo + ui

The constant angular velocity ωo takes the agents into a circu-
lar motion, and ui puts the agents into a balanced formation. In
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Fig. 1. Center of the circular trajectory is defined as ci = ri+(1/ω0)v⊥i .

order to design ui we express the system in a rotating frame,
which greatly simplifies the analysis. By a change of variable

zi = ωo(ri − ci) = −v⊥
i

the problem reduces to balancing the agents on a unit circle
as shown in Figure 2. The new coordinate system is rotating
with angular velocity ωo. The dynamics in the rotating frame
is given by

żi = viui
v̇i = −ziui , i = 1, . . . , n (2)

The new position vector zi is a unit vector, however its speed
|żi| is not constant anymore, and it is proportional to ui, which
goes to zero as the group reaches a balanced formation.

Let us define zij = zj − zi and qij = zij/|zij | as the unit
vector along the relative position vector zij . We note that at
the balanced equilibrium the velocity of each agent must be
perpendicular to q̄i =

∑
j∈Ni

qij , which is a vector along
the average of the relative position vectors that are incident to
agent i. Thus, the quantity < vi, q̄i > vanishes at the balanced
equilibrium. Hence we propose the following control law for
the balanced formation:

ui = −κ < vi, q̄i >= −κ
∑
j∈Ni

< vi,qij > , κ > 0. (3)

B. Complete-Graph Topology

Suppose the underlying connectivity graph is a complete
graph. We have the following theorem for reaching the bal-
anced circular formation in a group of mobile planar agents
with a complete-graph connectivity.

Theorem 3.3: Consider a system of n agents with kine-
matics (2). Given a complete connectivity graph G, and
applying control law (3), the n-agent system (almost) globally
asymptotically converges to a balanced circular formation as
defined in Definition 3.2.

Proof: Let us define vector p that points towards the
geometric center of the group:

p =
1
n

n∑
i=1

zi =
1
n
1T z , 1 = 1n ⊗ I2 ∈ R2n×2 .

The minimum |p| = 0 is reached when the position vectors
zi are in a balanced position (splay state); and the maximum

zizj

vi

qij

vj
θi

Fig. 2. By a change of coordinate zi = ωo(ri−ci) = −v⊥i the problem of
generating circular motion in the plane reduces to the problem of balancing
the agents on a circle.

|p| = 1 is reached when all the position vectors are aligned
(state synchronized). Note that the balancing input (3) can be
bounded above by a function of vector p:

ui = −κ
∑
j∈Ni

<
zij
|zij |

,vi >= −κ
n∑

j=1

1
|zij |

< zj ,vi >

≤ − κ

|z|max

n∑
j=1

< zj ,vi >

= − nκ

|z|max
< p,vi > (4)

where |z|max = max{|zij |, (i, j) ∈ E}, and we have used the
fact that vi ⊥ zi.

Now consider the following Lyapunov function

w(z) =
n

2
|p|2 =

1
2n
zT11T z (5)

which is minimized for the balanced formation. Given the
gradient of w(z):

∂w(z)
∂zi

=
1
n
(11T z)i =

1
n
1T z = p

the time derivative of w(z) becomes

ẇ(z) =
n∑
i=1

<
∂w(z)
∂zi

, żi >=
n∑
i=1

< p,vi > ui

≤ − nκ

|z|max

n∑
i=1

< p,vi >2 ≤ 0 (6)

where we have used (4).
A simple application of LaSalle’s invariance principle over

the configuration space which is an n-torus and therefore
compact reveals that all trajectories starting in anywhere on
the n-torus converge to the largest invariant sets in E =
{z | ẇ(z) = 0}. This set is characterized by < p,vi >= 0,
for all i ∈ {1, . . . , n}. Therefore the equilibria are given by
either p = 0, or p ⊥ vi for all i ∈ {1, . . . , n}. p = 0
is the global minimum of w(z) and is asymptotically stable.
At the equilibrium we have ui = 0 for all i ∈ {1, . . . , n}
and as a result the geometric center remains fixed because
ṗ =

∑
i uivi = 0.

The critical points given by p ⊥ vi correspond to a set of
configurations that m agents are at antipodal position from the

121



other n −m agents, where 1 ≤ m < n/2. The instability of
these equilibria is proved by showing that if we perturb the
system at those equilibria, the system moves away from them
and w(z) will be decreasing.

Remark 3.4: The Laplacian matrix of a complete graph
equals to Lc = In − (1/n)1n1Tn . Thus, one can see that
minimizing w(z) in (5) is equivalent to maximizing zT L̄cz
with L̄c = Lc ⊗ I2. The maximum is achieved when all the
agents are evenly spaced around the circle.

C. Ring Topology

Next we consider the situation that the connectivity graph
has a ring topology. We denote this graph with Gring . We have
the following theorem for the balanced circular formations of
a group of mobile agents with ring topology.

Theorem 3.5: Consider a system of n agents with kinemat-
ics (2). Suppose the connectivity graph has the ring topology
Gring and each agent applies the balancing control law (3).
Let φo be the angle to which the relative headings converge,
then if φo ∈ (π/2, 3π/2) the balanced equilibrium is locally
exponentially stable.

Proof: Let Lr be the Laplacian matrix of a graph with
a ring topology, and L̄r = Lr ⊗ I2. Input (3) can be written
in terms of the Laplacian of the connectivity graph:

ui = κ
∑
j∈Ni

1
|zij |

< zi − zj ,vi >

≥ κ

|z|max

∑
j∈Ni

< zi − zj ,vi >

=
κ

|z|max
< (L̄rz)i,vi >, κ > 0 (7)

where (L̄rz)i ∈ R2 is the subvector of L̄rz associated with
the ith agent. Now consider the function

s(z) =
1
2
zT L̄rz

that is maximized for the balanced formation, and this max-
imum exists because s(z) is bounded from above. Using the
dynamics (2) and input (3) we have that

ṡ(z) =
n∑
i=1

<
∂s(z)
∂zi

, żi >=
n∑
i=1

< (L̄rz)i,vi > ui

≥ |z|max

n∑
i=1

< (L̄rz)i,vi >2≥ 0 (8)

Thus s(z) monotonically increases along the trajectories of
system (2) with input (3), and converges to equilibria corre-
sponding to

< (L̄rz)i,vi >= 0, ∀i ∈ {1, . . . , n} . (9)

Let us characterize the set of equilibria given by (9). We
represent the unit vector zi in the rotating frame by zi =

[cos θi sin θi]T . Then vi = [− sin θi cos θi]T , and (9) is
equivalent to∑

j∈Ni

sin(θi − θj) = 0, ∀i ∈ {1, . . . , n} . (10)

Let θ = [θ1, . . . , θn]T . Then (10) becomes

B sin(BTθ) = 0 , (11)

where B ∈ Rn×e is the incidence matrix of Gring , where
e = |E|. For Gring , n = e and B is a circulant matrix that
satisfies B1e = 0. Let φ = BTθ. Then the equilibria of
system (11) are characterized by

sinφ = α1e (12)

1Te φ = mπ . (13)

Vector φ satisfies equation (12) iff φk = {φo, π − φo} for all
k ∈ {1, . . . , e} and φo ∈ (0, 2π). Equation (13) is satisfied if
φo = (m/e)π for m ∈ N.

Next we prove the (local) exponential stability of the
relative equilibria, i.e., the balanced state. For the proof of the
exponential stability of the equilibrium φ = φo1e we consider
the linearization of system (11) about φo. The Jacobian of
system θ̇ = κB sin(BTθ) at the equilibrium is

J = κBdiag
(
cosφo

)
BT = κ cosφoBBT

where diag
(
cosφo

)
is an e × e matrix with cosφo as its

diagonal elements. Since κ > 0, the linearized system θ̇ = Jθ
is exponentially stable if φo ∈ (π/2, 3π/2).

As a result at the equilibrium the final configuration for
Gring is either a star polygon (for n odd), or a line (for n
even) with odd-indexed agents on one side and even-indexed
agents on the other side. This can be seen by noting that for
a {n/d} polygon, the angle between the connected nodes is
2πd/n. Thus, the stable equilibria given by φo ∈ (π/2, 3π/2)
correspond to polygons with d ∈ (n/4, 3n/4).

For example, for n = 5, the stable polygons are {5/3}
and {5/4} which are the same polygons with reverse ordering
of the nodes. Simulations suggest that the largest region of
attraction for n even belongs to a polygon {n/d} with d =
n/2, and a star polygon {n/d} with d = (n±1)/2 for n odd.
These results are observed in experiments with real robots as
demonstrated in Section V.

D. Bearing-based control law

In this section, we write input (3) in terms of a parameter
that is measurable using a simple visual system. Similar
attempt was done in [13] to obtain vision-based control laws
for flocking of a group of nonholonomic agents. Let ri =
[xi yi]T be the location of agent i in a fixed world frame, and
vi = [ẋi ẏi]T be its velocity vector. The heading or orientation
of agent i is then given by

θi = atan2(ẏi, ẋi) . (14)
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Fig. 3. Bearing angle βij is measured as the angle between the velocity
vector (along body x-axis) and vector rij , which connects the two neighboring
agents.

Given the above definitions, dynamic model (1) becomes the
unicycle model:

ẋi = v cos θi
ẏi = v sin θi
θ̇i = ωi (15)

where ωi is the angular velocity of agent i, and v is the
constant linear velocity (assuming v = 1 in this section). Let
βij be the relative angle between agents i and j as measured
in the local coordinate frame of agent i. The bearing angle βij
is defined as (see Figure 3):

βij
.= atan2(yi − yj , xi − xj)− θi . (16)

The only visual parameter that is required for generating
a balanced circular formation is the bearing angle, βij . It is
remarkable that we can generate interesting global patterns
using only a single measurement of the bearing angle. Note
that the inner product of two vectors is independent from the
coordinate system in which they are expressed. Thus, given
vi = [1 0]T and qij = [cosβij sinβij ]T in the body frame
of agent i, the control input for a balanced circular formation
can be written as:

ωi = ωo − κ
∑
j∈Ni

< vi,qij >= ωo − κ
∑
j∈Ni

cosβij , (17)

where κ > 0. Input (17) is the desired bearing-only control
input.

IV. BALANCED CIRCULAR FORMATION WITH COLLISION

AVOIDANCE

The central contribution of this work is providing a simple
bearing-only control law for reaching a balanced circular
formation. Of course in reality any formation control requires
collision avoidance, and indeed collision avoidance cannot be
done without range. What we show here is that the two tasks
can be done with decoupled additive terms in the control law,
where the term for circular formation depends only on bearing.

To ensure collision avoidance and cohesion of the formation,
an inter-agent potential function [14], [15] is defined. A
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Fig. 4. Artificial potential function fij , and the norm of its gradient μij .

control law from this artificial potential function results in
simple steering behaviors known as separation and cohesion
that govern how each agent maneuvers based on the relative
position of its neighbors. The global minimum of this function
is where all the agents are at the desired distances.

It was shown in [15] that only if the underlying proximity
graph is a spanning tree, the formation stabilizes at a state
where the potential function is at the global minimum, and
all the agents are at the desired distances. Whereas, in the
general case, the multi-agent system reaches a stable state
where the potential energy of the system is minimized (a local
minimum). Next we formally define the notion of potential
function used in this paper.

The potential function fij(|rij |) is a symmetric function of
the distance |rij | = lij between agents i and j, and is defined
as follows [15]:

Definition 4.1 (Potential Function): Potential fij is a dif-
ferentiable, nonnegative function of the distance |rij | between
agents i and j such that,

• fij →∞ as |rij | → 0.
• fij attains its unique minimum when agents i and j are

located at a desired distance.
This definition ensures that minimization of the inter-agent

potential functions leads to the desired cohesion and separation
in the group. Agent i’s total potential is given by

fi =
∑
j∈Ni

fij(|rij |) . (18)

The requirements for fij given in Definition 4.1 support
a large class of functions. Similar potential functions as the
following are used in both [15] and [16]:

fij =
d0

|rij |
+ log |rij | ,

where d0 is the desired distance between the pair (i, j). This
choice of fij provides an attractive force when an agent is
moving away from the group, and a repulsive force when two
agents get too close to each other. The gradient of this function
is given by

∇rijfij =
rij
|rij |

(
1
|rij |

− d0

|rij |2

)
= μ(|rij |)qij = μijqij (19)
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where qij is the unit-length bearing vector between agent i
and its neighbor j. See Figure 4 for the plots of the potential
function fij , and the norm of its gradient μij = |∇rijfij |.

The control input for balanced formations must have an
additional components αi that controls the spacing between
the agents. αi steers the agents to avoid collisions or pull
them together if they are separating too far apart. For the
inserted force to be gyroscopic, it must be perpendicular to
the velocity vector vi and along v⊥

i . The force is proportional
to the negative gradient of the potential function fi. Thus, as
a result the spacing control must have the form

αi = −κs < v⊥
i ,∇rifi >, κs > 0 . (20)

Note that since rij = rj − ri we have

∇rifi = −∇rijfi = −
∑
j∈Ni

∇rijfij = −
∑
j∈Ni

μijqij .

Finally, we have the following proposition for reaching the
balanced circular formation with collision avoidance:

Proposition 4.2: Consider a system of n agents with dy-
namics (1) and applying the control input

ωi = ωo + ui + αi (21)

= ωo − κb
∑
j∈Ni

< vi,qij > +κs
∑
j∈Ni

μij < v⊥
i ,qij >

where κb > 0 and κs > 0. Given that G remains connected,
the n-agent system asymptotically reaches the balanced for-
mation, and collisions between the interconnected agents are
avoided.

V. EXPERIMENTS

In this section we show the results of experimental tests for
two important cases: (a) the complete-graph topology and (b)
the ring topology. But first, let us describe the experimental
testbed.

A. Experimental Testbed Components

The experimental testbed consists of many components
that are interfaced together to create the total system. In the
discussion that follows, we present the robots, software and
infrastructure of the testbed.

Fig. 5. Scarab is a small robot with a differential drive axil. LED markers
are placed on top of each Scarab for tracking and ground-truth verification.

Robots: We use a series of small form-factor robots called
Scarab [17]. The Scarab is a 20 x 13.5 x 22.2 cm3 indoor
ground platform with a mass of 8 kg. Each Scarab is equipped
with a differential drive axle placed at the center of the
length of the robot with a 21 cm wheel base (See Figure 5).
Each Scarab is equipped with an onboard computer, power
management system and wireless communication. Each robot
is actuated by stepper motors that allows us to model it as
a point robot with unicycle kinematics (15) for its velocity
range. The linear velocity of each robot is bounded at 0.2 m/s.
Each robot is able to rotate about its center of mass at speeds
below 1.5 rad/s. Typical angular velocities resulting from the
control law were below 0.5 rad/s.

Software: Every robot is running identical modularized
software with well defined interfaces connecting modules via
the Player robot architecture system [18], which consists of
libraries that provide access to communication and interface
functionality. The Player also provides a close collaboration
with the three-dimensional physics-based simulation environ-
ment Gazebo. Gazebo provides the powerful ability to transi-
tion transparently from code running on simulated hardware
to real hardware.

Infrastructure: In the experiments, visibility of the robot’s
set of neighbors is the main issue. Using omnidirectional
cameras seems to be a natural solution. However, in order to
reduce the on-board computation, a tracking system consisting
of LED markers on the robots and eight overhead cameras is
designed. This ground-truth verification system can locate and
track the robots with position error of approximately 2 cm
and an orientation error of 5◦. The overhead tracking system
allows control algorithms to assume pose is known in a global
reference frame. The process and measurement models fuse
local odometry information and tracking information from the
camera system. Each robot locally estimates its pose based on
the globally available tracking system data and local motion,
using an extended Kalman filter. We process global overhead
tracking information but hide the global state of the system
from each robot, providing only the current state of the robot
as well as the positions of each robot’s set of neighbors. In
this way, we use the tracking system in lieu of an inter-robot
sensor implementation.

In all the experiments the neighborhood relations, i.e., the
connectivity graphs, are fixed and undirected. Each robot
computes the bearing angles with respect to its neighbors
from equation (16), and applies the vision-based control input
(17). The conclusions for each set of experiments are drawn
from significant number of successful trials that supported the
effectiveness of the designed controller. The results of the
experiments are provided in the following subsections.

B. Complete-Graph Topology

First we applied the bearing-only control law (17) to a
group of n = 5 robots without considering collision avoidance
among the agents. In Figures 6 (a) through 6 (d) snapshots
from the actual experiment are shown, and in Figures 6 (e)
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Fig. 6. Five Scarabs form a circular formation starting with a complete-graph topology. (a) At time t = 0 robots starts at random positions and orientations.
(b) t = 2 sec. (c) t = 11 sec. (d) At t = 25 sec. the robots reach a stable balanced configuration around a circle with radius of 1m. Figures (e) through (h)
show the actual trajectories of the robots and their connectivity graph at the times specified above. Figure 6(h) shows that the final configuration is a regular
polygon.
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Fig. 8. Five Scarabs form a circular formation starting with a complete-graph topology while avoiding collisions. (a) t = 0 sec. (b) t = 8 sec. (c) t = 20
sec. (d) At t = 36 sec. the robots reach a stable balanced configuration around a circle with radius of 1m. Figures (a) through (d) show the actual trajectories
of the robots and their connectivity graph at the times specified above.
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Fig. 9. Five Scarabs form a circular formation starting with a ring topology while avoiding collisions. (a) t = 0 sec. (b) t = 16 sec. (c) t = 40 sec. (d)
At t = 80 sec. the robots reach a stable balanced configuration, which is the star polygon {5/3}, around a circle with radius of 1m. Figures (a) through (d)
show the actual trajectories of the robots and their connectivity graph at the times specified above.

through 6 (h) the corresponding trajectories, generated from
overhead tracking information, are demonstrated. Note that for
the complete-graph topology the ordering of the robots in the
final configuration is not unique, and it depends on the initial
positions.

Since there was no collision avoidance implemented in the
experiments of Figure 6 the robots could become undesirably
close to one another as it can be seen in Fig. 6 (b). However,
by applying control input (21) no collisions occur among the
robots as they reach the equilibrium. The actual trajectories

125



50 100 150 200 250 300 350 400 450 500

320

325

330

335

 (a) without collision avoidance

po
te

nt
ia

l e
ne

rg
y

50 100 150 200 250 300 350 400 450 500

325

330

335

 (b) With collision avoidance

time

po
te

nt
ia

l e
ne

rg
y

Fig. 7. Comparison of the values of the 5-agent system’s potential energy
while robots are applying (a) control input (17) and (b) control input (21)
with collision avoidance.

of n = 5 robots for this scenario are shown in Figure 8.
The comparison of the potential energies of the system with
and without αi term (20) are presented in Figure 7. The
potential energy of the system is computed from f =

∑n
i=1 fi

where fi is given by (18). The peak in Fig. 7 (a) corresponds
to the configuration observed in Fig. 6 (b) where robots
become too close to each other. By using the control input
(21) the potential energy of the 5-agent system monotonically
decreases (see Fig. 7 (b)) and the system stabilizes on a state
that the potential energy of the entire system is minimized.

C. Ring Topology

If every robot can only “sense” two other robots in the
group, the topology of the connectivity graph will be a ring
topology. Since the connectivity graph is assumed fixed, the
agents need to be numbered during the experiments. For n
even, the largest region of attraction is an {n/d} polygon with
d = n/2, which is not physically possible, because it requires
that robots with even indices to stay on one side of a line
segment and robots with odd indices to stay at the other side.
For n odd, both simulations and experiment suggest that the
largest region of attraction belong to star polygon {n/d} with
d = (n±1)/2, therefore, there are only two possible ordering
of the robots in the final circular formation. Figure 9 shows
that in our experiment the robots are stabilized to the star
polygon {5/3}.

Remark 5.1: When the communication graph is a fixed,
directed graph with a ring topology, where agent i could only
see agent (i + 1)/mod(n), then the n-agent system would
behave like a team of robots in cyclic pursuit [9].

VI. CONCLUSIONS

We developed a control input for balanced circular for-
mations of a group of ground robots that required only the
measurements of the bearing angles with respect to the set of
neighbors. Since the bearing angles could be simply measured

using basic visual sensors on a robot, this control input could
be considered a vision-based input. The results show how
we can generate interesting global patterns using only local
information, and without knowing a global reference frame.
To improve the experimental results, we added collision avoid-
ance capabilities to our control input for balanced formations.

In future we would like to implement the proposed control
algorithm on robots with vision sensors. If the robot-mounted
visual sensor for bearing measurements is a camera with a
limited field of view, the underlying connectivity graph will
be a directed graph. The study of circular formations with a
directed graph is an ongoing work.
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CPG-based Control of a Turtle-like Underwater
Vehicle

Keehong Seo, Soon-Jo Chung, Jean-Jacques E. Slotine

Abstract—We present a new bio-inspired control strategy for
an autonomous underwater vehicle by constructing coupled non-
linear oscillators, similar to the animal central pattern generators
(CPGs). Using contraction theory, we show that the network of
oscillators globally converges to a specific pattern of oscillation.
We experimentally validate the proposed control law using a
turtle-like underwater vehicle, whose fin actuators successfully
exhibit a pattern that resembles the motion of fore limbs of a
swimming sea turtle. In order to further fulfill the potential of
the CPG-based control, we propose to feed back the actuator
states to the coupled oscillators, thereby achieving not only the
synchronization of the oscillators, but also the synchronization of
actual foil states. Such a closed-loop version of CPGs makes the
controller more robust and practical in the presence of external
disturbances.

I. INTRODUCTION

Biologically inspired approaches to locomotion have been
studied in robotics to develop robots like snake [1], fish [2],
salamander [3], and so on. The flexibility and adaptability of
the bio-inspired mechanism in dealing with the environment
has been discussed in the literature, especially in the context
of an alternative solution to traditional means of locomotion
such as wheels and propellers. To control these biologically
inspired types of robotic locomotion, a plausible approach is
to mimic or get inspired from animal central pattern generators
(CPGs), leading to modular designs.
A CPG is a neuronal network that exists in animal spinal

cord to govern the locomotion [4], [5], [6]. CPGs are believed
to relieve the burdens of the central nerve system in controlling
the locomotion. In other words, animals walk or run even
without paying much attention to the periodic movement
of their legs. The CPG system has inspired many robotic
researchers since it can reduce the control bandwidth required
from the main controller to its actuators.
In engineering applications, the dominant approach is using

governing oscillators to represent the neurons in the CPG
network and the outputs of the oscillators are used to generate
torque inputs or reference signals for servos. Some [7], [8]
use feedback from sensors to adapt phase of the governing
oscillators while others [9], [10], [11] use open-loop approach
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without the feedback from sensors to the oscillators, depending
on the complexity of the application.
For many types of robots, the actuation for locomotion is

essentially an oscillatory motion. It is also true for our testbed
of interest, a turtle-like autonomous underwater vehicle (AUV)
as introduced in [12]. Its fluidic maneuvers are controlled
by the roll and pitch motion of its four fins that mimic the
fore limbs of a sea turtle. The roll and pitch motions used
for the operation of vehicle in [12] was basically harmonic
oscillations.
Our new approach for biologically inspired control simpli-

fies the conventional CPG-based control to establish a robust
coordination of the actual fin motions. While our method is
based on limit cycle oscillators, we induce the oscillation
to emerge by feeding the fin states directly back to the fin
actuators. Independent from our study, the emerging oscillation
in the close-loop has been studied in a neuro-mechanical
system as in [13]. The resulting oscillator exhibits a limit
cycle behavior and the oscillation properties can be adjusted by
modifying the system parameters. Once the oscillation of the
fin motion is established, we can let the motions synchronize
among the fins by using diffusive coupling of velocities from
other fins. The rolling motion of fins synchronize themselves
and the pitch motion in a fin synchronize with its rolling
motion with a 90-degree phase difference.
One advantage of the proposed approach over the open-

loop CPG method is that we enforce the synchronization
of the actuators directly while the open-loop CPG approach
enforces only the synchronization of the reference inputs to the
actuators. In the open-loop approach, if some disturbance was
applied to a fin, the reference input from CPG still produces
sinusoidal waves regardless of the current state of the fin,
thereby potentially inducing large errors at some moment,
which could in turn result in unnecessarily large control effort
for recovery. In contrast, if the fin itself is already a self-
sustaining oscillator, it does not need the clock-like reference
input. In case of the recovery from the disturbance, it can
return to its limit cycle from where it was, which would require
less control effort than tracking a time-specific reference
trajectory. During the recovery phase, the synchronization with
other fin is simultaneously achieved through the diffusive
velocity couplings, as we prove theoretically and demonstrate
experimentally. In essence, the proposed approach serves as
a flexible means to recover from disturbances, which is an
important characteristic of the robustness to rapidly changing
environments.
The paper is organized as follows. Section II describes the
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(a)

Roll Pitch

(b)

Fig. 1. “The biomimetic flapping foil autonomous underwater vehicle
(BFFAUV) was conceived as a test platform and proof of concept for the
use of flapping foils as the sole source of propulsion and maneuvering forces
in an underwater vehicle,” quoting [12]

turtle-like AUV as the testbed for the experimental validation.
In section III, we introduce previous CPG-based control ap-
proaches. In section IV, the new CPG-based control strategy is
proposed and its performance of synchronization is discussed.
In section V, we present experimental results by implementing
the proposed approach in the AUV.

II. THE BIO-INSPIRED UNDERWATER VEHICLE SYSTEM

As the test platform of our approach for the biologically
inspired control of locomotion, we use an autonomous under-
water vehicle (AUV) propelled by flapping foils that resemble
the fore fins of a sea turtle. As shown in Figure 1, it has four
flapping foils with two degrees of freedom for each. Each fin
has freedom in the roll and the pitch directions, actuated by
two independent electric motors. The size of the vehicle is as
large as 2m × 0.5m × 0.5m. The top operating speed is near
2 m/s and the flapping foils provide the whole propulsion as
well as the control of the attitude and position. The detailed
description of the turtle underwater vehicle can be found in
[12].

III. TOP-DOWN CPG-BASED CONTROL MODELS

In this section, we propose models of CPG-based control of
the AUV, based on a top-down architecture. In the top-down
CPG-based control architecture, there are two separate layers.
One is the CPG layer composed of governing oscillators and
the other is the mechanical layer composed of actuators and
sensors. Sometimes the architecture is enhanced with sensory
feedback from the mechanical layer to the CPG layer.
Similar models are also widely used in the bio-inspired

robotics community. In our specific model, the CPG layer is
based on the coupled Hopf oscillators. Notice that the artificial
CPG model we use is rather a simplification of animal CPGs
since we only capture properties essential to our purpose. The
fins connected to motors and sensors comprise the mechanical
layer.
Based on such an architecture, we propose two CPG-

based controllers — one is the open-loop method without any
feedback from the mechanical layer to the CPG layer while
the other is a feedback approach where the coupling in the
CPG layer is wholly composed of mechanical layer elements.

A. Top-down Open-loop approach

One can implement a CPG-based control law with a tracking
control law that follows any oscillatory reference signal. In
our top-down models, coupled Hopf oscillators form the CPG
layer. A Hopf oscillator is a limit-cycle oscillator with circular
symmetry on a two-dimensional plane [10], [14]. By feeding
states of the oscillator to the servo system of each fin, we
can coordinate the ensemble of fin motions and thus control
the locomotion of the vehicle. An advantage of using coupled
oscillators as the reference is, when we want to extend the
system by connecting multiple modules, we have the authority
for global synchronization or concurrent synchronization as
discussed in [10], [14]. The model introduced in the following
is a special case of [10] modified for the AUV.
Let us denote the state vector of Hopf oscillator associated

with the roll control of the i-th fin as xi, and the one associated
with the pitch control of the fin as yi. The state vectors pi
and qi are the roll and the pitch state vectors of the i-th fin,
respectively. Each state vector consists of angular velocity and
position. A top-down CPG-based control law is proposed as

{ẋ} = {fx}({x})− kxLx {x} (1)
{ẏ} = {fy}({y})− kyLy {y}

+kxy

([
R

(π
2

)]
{x} − {y}

)
(2)

{ṗ} = {fp}({p}) + [Bp]{x} (3)
{q̇} = {fq}({q}) + [Bq]{y}, (4)

where [ ] denotes a block diagonal matrix of appropriate
dimension, { } an aggregation of the state vectors in a column
vector, and R(φ) a planar rotational transformation of angle
φ. L is the coupling matrix in each network of oscillators
distinguished by its subscript, k is the scalar coupling strength
for each network. The dynamics of the oscillators and the
tracking controllers are given as

fx(xi) = fH(xi; ρx, λx) (5)
fy(yi) = fH(yi; ρy, λy) (6)
fp(pi) = fPD(pi;Bp, Dp,Kp, Pp, Ip) (7)
fq(qi) = fPD(qi;Bq, Dq,Kq, Pq, Iq) (8)

with input matrices

Bp =
(

ωDp/Ip Pp/Ip
0 0

)
(9)

Bq =
(

ωDq/Iq Pq/Iq
0 0

)
, (10)

where
fH((ui, vi); ρ, λ) =⎛

⎝ −ωvi − λ
(
u2i+v2i
ρ2 − 1

)
ui

ωui − λ
(
u2i+v2i
ρ2 − 1

)
vi

⎞
⎠ (11)

and fPD((ui, vi);B,K,D, P, I) is a general PD control law;
ω is the common frequency for roll and pitch; ρ the limit
cycle radius; λ the convergence rate to the limit cycle; B
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the damping coefficient; D the differential gain; K the spring
constant; P the proportional gain; and I the moment of inertia.
Notice that (1) and (2) represent a network of coupled

oscillators as a special case of [10] while (3) and (4) represent
PD controlled mass-spring-damper systems. Hence, the first
two consist the CPG layer and the latter two the mechanical
layer.
Using partial contraction analysis as in [10], [14], [15], one

can find a lower limit of k > 0 that ensures the exponential
synchronization of the oscillators in the CPG layer. Once
synchronized, the diffusively coupled terms (e.g., q1 − q2)
vanish and thus each oscillator behaves as if it were uncoupled
to exhibit its intrinsic limit-cycle behavior. The sinusoidal
output vi of fH is used as a reference input for the position
tracking system of the roll and the pitch controllers. One
condition on L is that it should represent a connected network
[14].
We can also set an arbitrary phase bias between oscillators

in the CPG layer by adjusting L. The synchronization with
phase difference is proved in [10], [14]. For example, one can
set Lx as follows for two-way ring couplings:

Lx =

⎛
⎜⎜⎝

2I −R(φ12) −R(φ13) 0
−R(φ21) 2I 0 −R(φ24)
−R(φ31) 0 2I −R(φ34)

0 −R(φ42) −R(φ43) 2I

⎞
⎟⎟⎠
(12)

with φij = −φji. By setting φij = 0 for all i and j, one
can establish the in-phase synchronization for roll motions.
Setting φij = 0 for i + j = 0 mod 2 and φij = π for
i + j = 1 mod 2 yields the bound gait where the fins are
synchronized ipsilaterally out of phase and contralaterally in
phase. Exponential synchronization implies that the change of
phase bias at any moment yields exponentially fast conver-
gence to a new pattern.
Essentially, in the top-down open-loop approach, the cou-

pled oscillators generate coordinated reference signals for
the fin actuators. The amplitude and the frequency can be
modulated by commanding a small number of parameters such
as ρ and ω, thereby reducing the control space.

B. Top-down CPG with Feedback Coupling

One drawback of the open-loop CPG is that the synchro-
nization occurs only in the CPG level and the synchronization
of fin motions depends on the performance of the position
tracking controller. One can easily consider a scenario where
the fins are not ideally identical or the position tracking
systems have slightly different performance among fins. As
a result, the fins remain slightly unsynchronized while the
reference signals are synchronized. To overcome the limit of
the top-down open-loop CPG controller, the couplings in CPG
are modified to accommodate the state of the fins as in

{ẋ} = {fx}({x})− kxLx {p} (13)
{ẏ} = {fy}({y})− kyLy {q}

+kxy

([
R

(π
2

)]
{p} − {q}

)
(14)

{ṗ} = {fp}({p}) + [Bp]{x} (15)
{q̇} = {fq}({q}) + [Bq]{y}. (16)

By applying differential coordinate transformations in (3)
and (4), one can see that the position tracking system is semi-
contracting in the absence of the input. Hence, the solutions
forget the initial conditions asymptotically, and after some
transient time they oscillate at the frequency of the input
signals. The amplitude and the phase lag can be computed
given the input frequency. By ignoring the transient behavior,
we can reduce the preceding model in (13-16) as

{ẋ} = {fx}({x})− kxLx {ApR(φxp)x} (17)
{ẏ} = {fy}({y})− kyLy {AqR(φyq)y}

+kxy

([
R

(π
2

)]
{ApR(φxp)x} − {AqR(φyq)y}

)
, (18)

where Ap = Ap(ω) (or Aq = Aq(ω)) is the amplitude as
a function of the eigenfrequency ω, and φxp = φxp(ω) (or
φyq = φyq(ω)) is the phase lag from x to p (or y to q,
respectively), also a function of ω.
The performance of the proposed model depends on the

dynamics of p and q. If the dynamics is more complex than a
mass-spring-damper as we assumed, the direct coupling e.g.,
between x and p could disturb the CPG layer. When φxp is
larger than π, the system bifurcates to anti-synchronization,
where the coupling acts like repulsion instead of attraction.

IV. SINGLE LAYER ARCHITECTURE

While the top-down approach can serve as a good motion-
planning method from its simplicity and modularity, the
synchronization via coupling is limited only to the CPG
oscillators. Actual synchronization of the fins are affected by
how identical the dynamics of the fins are. To extend the
synchronization of the coupled oscillators beyond the layer
of the CPG oscillators to the actual fins, we propose a control
law that induces self-sustained oscillation in the fin motions
and also enforces direct synchronization of the oscillations.
In this section, we let oscillations emerge from the me-

chanical layers by feeding a nonlinear function of velocity
back to the motor torque. The result is comparable to the
neuro-mechanical oscillation discussed in [13] in that the
oscillation is induced by coupling non-oscillatory elements.
As a result, the CPG layer is eliminated from the top-down
architecture to form a single-layer architecture. On top of the
oscillating fins, coupling input for synchronization is applied
within the mechanical layer. In summary, we can synchronize
the oscillation of fins without using a reference oscillator.
One can model the servo-actuated fins by using Euler-

Lagrange equations. The aim here is to apply nonlinear state
feedback to construct a limit cycle oscillator. Consider the
following second-order coupled roll-pitch actuator dynamics

M(p,q) +C(p,q, ṗ, q̇) +K(p,q) = (τroll, τpitch)T (19)

In order to focus on verifying the feasibility of the proposed
closed-loop CPG method, let us assume that the coupling
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between p and q is relatively small. Then, each decoupled
dynamics can be represented by

Iẍ+B(ẋ)ẋ+Kx = τ, (20)

where I is the moment of inertia, B the nonlinear damping
term as a function of ẋ, K the spring constant, and τ the
input torque. x represents angular displacement, and ẋ angular
velocity.
The nonlinear damping of the fin in the fluid can be

modelled as
B(ẋ) = β0 + β1|ẋ|, (21)

where β0, β1 > 0. The term led by β1 is justified by the
experimental observation [12], [16], where the lift force of a
single fin oscillating in the fluid is in phase with the angular
velocity and its magnitude is proportional to the angular
velocity squared.

A. Velocity feedback

Let us design a torque control law as

τ = −Px+ γ0ẋ− γ1|ẋ|ẋ+ Is(t), (22)

where s(t) is a synchronizing input to be discussed further
below. The closed-loop dynamics of (20) and (22) is

Iẍ+ (β0 − γ0 + β1|ẋ|+ γ1|ẋ|)ẋ+ (K + P )x = Is(t). (23)

After dividing the equation by I and setting ω0 =
√

K+P
I

and C(ẋ) = β0−γ0+β1|ẋ|+γ1|ẋ|
I , we have

ẍ+ C(ẋ)ẋ+ ω2
0x = s(t). (24)

By choosing γ0 and γ1 to satisfy β0 − γ0 < 0 and β1 +
γ1 > 0, the system shows limit cycle behavior. If we denote
(γ0 − β0)/I = σ0 and (β1 + γ1)/I = σ1, then

ẍ+ (σ1|ẋ| − σ0)ẋ+ ω2
0x = s(t). (25)

The resulting dynamics shows limit cycle property. Different
feedback controllers yield different types of limit cycle oscil-
lators and we may also use them to control the AUV.
We can deliberately select the values σ1, σ0, and ω0 for the

feedback controller to shape the limit cycle and its frequency.
Depending on the scale of the nonlinearity in the damping
term, we can compute its amplitude and frequency as follows.

B. Weak Nonlinearity

For a weakly nonlinear case, i.e., for σ1 � 1 and σ0 � 1,
the phase portrait is close to a circle. We can apply singular
perturbation theory for two-time scales (see [17], [18]) to
estimate the amplitude and frequency of the oscillation when
it is uncoupled (s(t) = 0).
The small parameters σ0, σ1 � 1 can be written using ε�

1 and 0 < B0, B1 ∼ O(1) as in

ẍ+ ε(B1|ẋ| −B0)ẋ+ w2
0x = 0. (26)

The amplitude of oscillation is an important parameter to
generate proper swimming motion. We can assume a sinu-
soidal solution with amplitude r. The amplitude r is found to
have “slow” dynamics as

r′ = −1
2
w−1

0 B0r +B1r|r|
4
3π

, (27)

where r′ is the time derivative of r with respect to the “slow”
time. Its stable equilibrium is found at r∞ = 3π

8w0

B0
B1

. The
frequency of motion is not modulated during the swimming.
However, we need to set the frequency at a certain range to
ensure agility of the vehicle. It is dealt with the perturbation
theory as well. The result is found as ω = ω0 +O(ε2).

C. Strong Nonlinearity

In the strong nonlinearity, represented by σ0, σ1 ! 1, the
phase portrait looks distorted compared to that of weakly
nonlinear oscillator. We replace ε in (26) with μ! 1 to have

ẍ+ μ(B1|ẋ| −B0)ẋ+ ω2
0x = 0. (28)

It is often called a relaxation oscillator. The name follows
from the fact that the cycle of oscillation composed of slow
build-up and fast relaxation. After some work on the analysis
on the phase portrait, one can find an approximate period and
amplitude of the solution x(t) as follows. The period is found
as

T =
2μ
ω2
0

(
B0 ln

B0

B0 +
√
B0(B0 + ω0)

+
√
B0(B0 + ω0)

)
(29)

and the amplitude of oscillation can also be approximated by
considering its nullclines as r∞ = μB0

4ω0B1
.

D. Bias

The center of oscillation has been at the origin through the
discussion so far, which can be extended to a biased oscillation
centered at x = x0. To implement a bias x0 in x, the feedback
input must be modified as

τ = −Px+ γ0ẋ− γ1|ẋ|ẋ+ Is(t) + (K + P )x0 (30)

and the closed loop dynamics becomes

ẍ+ C(ẋ)ẋ+ ω2
0(x− x0) = s(t). (31)

One can define a new variable such as x′ = x − x0 to apply
the results above.

E. Integration with Underwater Vehicle Control System

For each cycle of the oscillation, the main CPU determines
the oscillation parameters such as the amplitude, frequency,
and bias by comparing the current attitude and the desired
attitude. Such updates of the oscillation parameters are per-
formed at a much slower rate than the sampling rate of the
feedback controller that governs the oscillatory motion of fins.
The oscillation parameters commanded by the main CPU need
to be mapped to the parameters for the feedback controller.
Although we derived all the equations regarding how the
parameters of the feedback controller determines the oscillator
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parameters, there are some unknown constants that present the
physical property of the system. It is also possible that there
are some dynamics that are not accounted for in (20). Hence,
for the successful implementation of the proposed CPG-based
controller, we chose to determine the relation of controller
parameters versus oscillation parameters through experimental
tests and the curve fitting method. To determine the order of
the curve, the equations derived above are helpful.

F. Coupling Input for Synchronization

The synchronizing input for i-th system si(t) can be de-
signed in various ways. If we assume the dynamics of the
oscillators are identical, then we can use

si(t) = κ(yj − yi), (32)

where yi = ẋi/ω0. Partial contraction analysis, similar to that
in [15], can show that they will synchronize asymptotically for
strong enough coupling gain κ > 0. Furthermore, to force the
oscillators to synchronize with a phase difference of φ, one
can use

si(t) = κ(sin(φ)xj + cos(φ)yj − yi). (33)

Notice that the phase φi of the state (xi, yi) can be defined in
terms of xi and yi as φi = tan−1 yi

xi
.

As for the synchronization of the roll oscillator and the
pitch oscillator, it is often desired that their amplitudes remain
independent. In that case, one can simply modify the coupling
by scaling with the estimate amplitudes ri and rj of the
oscillations as in

si(t) = κ

(
ri
rj
yj − yi

)
. (34)

To present the coupling input si(t) for synchronization in a
brief form, let us define xi = (xi, yi)T, R(φ) ∈ SO(2) to be
a planar rotational transformation of angle φ, and S = (0 1).
Then, after integrating the discussion above on si(t), we can
propose the coupling input for synchronization to the fin i as

si(t) = κS
(
ri
rj
R(φ)xj − xi

)
. (35)

G. Synchronization Analysis for One-way Ring Network

Using partial contraction theory and its extended theorems
in [15], one can analyze the stability of synchronization.
1) Special Case with φ = 0, π: The analysis for asymp-

totical synchronization with phase difference of φ = 0 or π
is found in [15] for van der Pol oscillators. Below, we derive
the same conclusion using the method of projected jacobian
introduced in [14].
Let us start with the synchronization of roll oscillations with

φ = 0. The result can be easily extended for φ = π. The
angular position and the angular velocity of the roll motions
are represented by a vector xi for fin i. For φ = 0, we have
R(0) = I and the dynamics of the coupled oscillators can be
written as

ẋi =
(

0 ω0

−ω0 σ0 − σ1ω0|yi|

)
xi + kK (xj − xi) , (36)

where k = κω−1 and

K =
(

0 0
0 1

)
(37)

with j = i+ 1 (modulo 4) for the one-way ring network.
The subspace for synchronization is M = {x1 = x2 =

x3 = x4}, which is verified to be flow-invariant under (36).
According to [14], if the jacobian of the projected dynamics
onM⊥ has negative definite symmetric part, then the system
is contracting towardM, i.e., synchronizing.
The jacobian Ji of uncoupled dynamics of an oscillator is

Ji =
(

0 ω0

−ω0 σ0 − 2σ1ω0|yi|

)
(38)

and its symmetrical part Jis is

Jis =
(

0 0
0 σ0 − 2σ1ω0|yi|

)
. (39)

Define

L =

⎛
⎜⎜⎝

K −K 0 0
0 K −K 0
0 0 K −K
−K 0 0 K

⎞
⎟⎟⎠ (40)

and its symmetric part as Ls. Now the jacobian of the coupled
oscillator has its symmetric part as

Js = [Jis]− kLs, (41)

where [ ] denotes a block diagonal form. An orthogonal
projection V toM⊥ can be found as [19]

V=
1
2

⎛
⎝ I −I I −I

0 −
√
2I 0

√
2I

−
√
2I 0

√
2I 0

⎞
⎠ (42)

using the eigenvectors of Ls.
From [14], if the projected jacobian Ps = VJsVT is

uniformly negative definite, then V{x} converges to 0, which
is equivalent to {x} converging toM.
Ruling out the zero columns and rows from Ps yields

Ps = V[Jis]VT − k

⎛
⎝ 2 0 0

0 1 0
0 0 1

⎞
⎠ , (43)

where ( ) denotes the remaining part after removing the zero
columns and rows. The eigenvalues of VLsVT is (2, 1, 1) and
V[Jis]VT is upper-bounded by supyi(σ0 − 2ω0σ1|yi|) = σ0.
Hence, a sufficient condition for Ps to be negative definite

is k > σ0. Since the removed columns and rows correspond
to positions xi, the negative definiteness of Ps implies that
Ps negative semi-definite (semi-contracting). By Barbalat’s
lemma, it is straightforward to show that the velocities ẋi
synchronize asymptotically from any initial condition. Once
the oscillators synchronize their velocities, i.e., ẋi − ẋj → 0,
the coupling inputs si vanish, resulting in a stable limit cycle.
Since δ{x}T δ{x} tends to a lower limit asymptotically, its
higher-order Taylor expansion, similar to [15], indicates that
the angular positions on the resulting limit cycle synchronize
as well, i.e., xi − xj → 0.
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2) General Case with Arbitrary Phase Bias: The following
is a general form in the sense that it accommodates an arbitrary
phase bias φ in the coupling as well as scaling for amplitude
difference as ri/rj .

ẋi =
(

0 ω0

−ω0 σ0 − σ1ω0|yi|

)
xi

+kK
(
ri
rj
R(φ)xj − xi

)
, (44)

whereK is defined in (37) and set j = i+1 with modulo 4 for
a one-way ring network. We use shorthand notation Ti−1 =
ri

ri+1
R((i−1)φ). Also, we assume that the phase bias φ is the

same for each oscillator. For the same one-way ring topology
represented by (40), we present the proof of the synchroniza-
tion of xi to M = {Tixi+1 = Ti−1xi, ∀i mod 4}. Hence,
the flow-invariant setM contains phase-shifted variables such
as x1 = T1x2 = T2x3 = T3x4. Therefore,

∏n
i Ti−1 = I is

required as a constraint.
For simplicity, let us assume rj = ri. (For rj �= ri, one can

use the coordinate transformation introduced in [10]). If we
define zi = R((i− 1)φ)xi = Ti−1xi, then

xi+1 = R(−φ)xi ⇔ zi+1 = zi. (45)

The virtual system dynamics for δzi can be obtained by left-
multiplying (44) with Ti−1:

δżi =
(
Ti−1JiTT

i−1

)
δzi + kTi−1KTT

i−1(zi+1 − zi) (46)

Let us introduce the shorthand notation KTi = Ti−1KTT
i−1.

The jacobian Jz of the congregated system in the space of z
is

Jz =
[
Ti−1JiTT

i−1

]
− kLz, (47)

where [ ] is a notation for block diagonal matrix, Ji is defined
from (38), and

Lz =

⎛
⎜⎜⎝

KT1 −KT1 0 0
0 KT2 −KT2 0
0 0 KT3 −KT3

−KT4 0 0 KT4

⎞
⎟⎟⎠ . (48)

Notice that the eigenvalues of the symmetric part of
Ti−1JiTT

i−1 are equal to those of the symmetric part of Ji.
The eigenvalues of the symmetric part of Lz also agree with
the Laplacian L in (40). Hence, the proof in the previous
section still holds. As a result, we can conclude that the oscil-
lators asymptotically converge to the flow-invariant manifold
M of phase synchronization for any k > σ0. This result holds
generally for an arbitrarily large number of oscillators with
phase shift φ.
If we assign the first oscillator to the fore-left fin, the second

to the hind-left fin, the third to the fore-right fin, and the fourth
to the hind-right fin, then using the one-way ring structure
allows us to implement such gaits [20] as walk, bound, and
pronk by setting φ = π

2 , π and 0, respectively.
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Fig. 2. The states of the four fins are plotted for angles versus filtered
angular rate with respect to the roll axis. The circular trajectory and slow
convergence to the limit cycle are the characteristics of weak nonlinearity. (a)
The oscillation grows from the origin. (b) The trajectories after 25 seconds
are plotted to illustrate limit cycle clearly.
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Fig. 3. Roll positions of the four fins are plotted when the synchronization
is not applied. The phase differences persist.

H. Network of the oscillators for AUV Fins

The following is the principles that we put on the design of
the CPG network for AUV fins.
1) The coupling from a roll oscillator to a pitch oscillator
of the same fin is one-way and one-to-one with a 90-
degree phase shift.

2) Roll oscillators are coupled with each other and the
phase bias between oscillators can be arbitrarily chosen.

3) Pitch oscillators are not connected to each other.
Once the roll oscillators synchronize themselves, we can show
that the pitch oscillators also synchronize with the associated
roll oscillators in a leader-follower fashion. We refer the
readers to [14], [15], [21] for the detailed proof of the leader-
follower synchronization using contraction theory. Although
the pitch and roll oscillators have different dynamics and
different frequencies, after simplifying the model as phase
oscillators, one can show that they synchronize to oscillate
at a common frequency with some constant phase delay that
depends on the coupling strength and the difference between
the intrinsic frequencies [22].

V. EXPERIMENTS USING THE SINGLE-LAYER APPROACH

We experimentally validated the feasibility of the proposed
single-layer CPG-based control for synchronized fin motions
with the turtle AUV. After observing that the oscillation
actually occurs by using the velocity feedback and that the roll
and pitch motions of a fin show stable limit-cycle behaviors,
the coupling among the oscillators was activated. Figure
2(a) shows the phase portrait of the oscillation. The x-axis
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Fig. 4. Unsynchronized behaviors of roll and pitch motions of the four fins
when the coupling for synchronization is not applied.

Fin 4 (RH)

Roll PitchRollPitch

Roll PitchRollPitch
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Fin 2 (LH)

Fig. 5. One-way ring architecture was used to achieve the synchronization
of roll motions among fins. Pitch motion synchronizes to its corresponding
roll motion.

represents the angular position and the y-axis the angular
velocity. The initial condition is near the origin, and the spiral
trajectories grow outward to converge to the limit cycle. Figure
2(b) shows the trajectories after 25 seconds to clearly show
the resulting limit cycle. The time series of the roll positions
are plotted in Figure V, where one can see the motions are not
fully synchronized without the couplings between them. The
roll motions and pitch motions are plotted together without
any couplings to indicate their unsynchronized behaviors (see
Figure 4). Notice that their frequencies are also different.
To achieve the synchronization of the fin motions, we

applied one-way diffusive ring couplings for the roll con-
trollers of the turtle AUV. For the pitch controllers, we added
one-way diffusive coupling with a 90-degree phase lag from
the corresponding roll controllers. The coupling scheme is
illustrated in Figure 5.
Figure 6 shows the synchronized roll and pitch motions of

all four fins. We commanded the bound gait after 25 seconds
by applying a phase bias of π in the one-way ring network
of roll motions. In Figure 7(a), the pattern starts to shift from
the pronk gait (4-fin in-phase synchronization) to the bound
gait (the fore fins are out of phase from the hind fins). Since
the transition occurred slowly, Figure 7(b) shows the correct
bound gait about 30 seconds after the phase bias is changed
to π.
Figure 8 demonstrates the property of robustness of the
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Fig. 6. Synchronized behaviors of roll and pitch motions of the four fins: all
the roll motions are synchronized among themselves and the pitch motions
are phase locked to the roll motions with 90-degree phase lag
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Fig. 7. Gait transition starts at t=25s. (a)The synchronization starts bifurca-
tion. (b)The new pattern “bound” gait settles around t=55s.

60 65 70 75 80 85 90 95
�15

�10

�5

0

5

10

15

20
Roll, Fin 1�4

60 65 70 75 80 85 90 95
�4

�2

0

2

4
Roll Phase, Fin 1�4
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rolling motion.
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Fig. 9. Underwater mission to follow the reference yaw, pitch, roll angles
and heave (depth) was performed using the proposed CPG-based controller.

proposed controller. The rolling motion was disturbed by
human intervention and the motion recovers to its limit cycle
while all the four fins recover to synchronization.
Finally, to demonstrate the feasibility of the proposed CPG-

based controller for underwater missions, the attitude control
of the vehicle was tested in a water tank in the MIT Tow Tank
Lab. The vehicle is neutrally buoyant and the center of the
gravity is located higher than the center of buoyancy, hence the
vehicle cannot maintain its attitude without proper controller.
Figure 9 shows results of underwater experimentation, where
the turtle robot follows the reference heave, pitch, roll, and
yaw angles by synchronized oscillatory motions of the foil
fins.

VI. CONCLUSION

We first introduced several conventional top-down CPG-
based control strategies for biologically inspired robot loco-
motion. In order to improve the synchronization performance
of the actual fin states, we developed and experimentally
validated the new CPG-based approach for a biomimetic AUV.
The proposed method can be summarized as follows. By
applying a nonlinear velocity feedback, we rendered each fin
actuator to exhibit stable limit cycle dynamics. Further, the
coupling inputs were added to synchronize multiple fins from
any initial conditions. By adjusting the phase bias parameters
in the coupling gains, we could also implement gait transitions.
The proposed approach was experimentally validated using
the turtle-like underwater vehicle. The proposed CPG-based
method successfully controlled the attitude and altitude of the
underwater vehicle by synchronizing the actuator foil fins in
the presence of external disturbances.
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Abstract—This paper presents a hybrid particle-element ap-
proach, HyPE, suitable for recursive Bayesian searching-and-
tracking (SAT). The hybrid concept, to synthesize two recursive
Bayesian estimation (RBE) methods to represent and maintain
the belief about all states in a dynamic system, is distinct from the
concept behind “mixed approaches”, such as Rao-Blackwellized
particle filtering, which use different RBE methods for different
states. HyPE eliminates the need for computationally expensive
numerical integration in the prediction stage and allows space
reconfiguration, via remeshing, at minimal computational cost.
Numerical examples show the efficacy of the hybrid approach,
and demonstrate its superior performance in SAT scenarios when
compared with both the particle filter and the element-based
method.

I. INTRODUCTION

Recursive Bayesian estimation (RBE) of the state of a dy-
namic system, under uncertain observation and state transition
processes, forms the basis for a variety of autonomous estima-
tion and control problems, including mobile robot localization,
environment mapping and exploration, target tracking and
optimal searching [1]. RBE techniques recursively update and
predict a probability density function (PDF) over the system’s
state with respect to time. Recursive Bayesian searching-
and-tracking (SAT) refers to those RBE problems involving
incorporation of sensor data, both when the target is observed
(tracking) and when it is not (searching) [2]. SAT may be
applied to any searching or tracking tasks (in the general sense
of the terms), or multi-objective tasks such as those requiring
a lost target to be found and then subsequently tracked.

Many of the fundamental concepts of search theory were
first posed by B. O. Koopman and colleagues in the Anti-
submarine Warfare Operations Research Group (ASWORG)
during World War II [3]. Since the search problem is primarily
concerned with the area to be searched, initial studies simpli-
fied the search problem to an area coverage problem. The in-
troduction of the probability of detection along with advances
in computational hardware led to more optimal allocation of
search effort [4], [5], [6]. Later years saw the implementation
of RBE for manned search and rescue and anti-submarine
search operations [7]. More recently, techniques have been
formulated for decentralized search using multiple vehicles [8]

and optimal autonomous search using the grid-based method
for RBE [9].

On the other hand, target tracking, which initially consisted
of simple feedback motion tracking, has evolved with the de-
velopment of a variety of RBE techniques such as the Kalman
filter (KF) [10], the extended Kalman filter (EKF) [11],
sequential Monte Carlo (SMC) methods [12] and sequential
quasi-Monte Carlo (SQMC) methods [13], [14], and their
variants. These techniques for tracking seek computational
efficiency in representing the sharp and often near-Gaussian
PDF of an observable target, with little thought about repre-
senting the boundary of the target search space, which is an
important consideration for search missions. While the KF and
EKF represent the target PDF with a mean and a covariance
matrix, the SMC and SQMC methods represent it with a
set of particles (the particle filter, PF), which move freely
with a resampling technique such as sequential importance
sampling [15], [16].

Recently, the unified SAT approach was introduced using
the grid-based method (GBM), and subsequently the element-
based method (EBM) [17]. However, the maintenance of a
large search space, necessary to include all the possible states
of the moving targets, yields an excessively large amount
of computational effort. Thus SAT approaches involving re-
configurable search spaces have been developed, using the
EBM [18] or PF [19]. The element-based space reconfiguration
guarantees the inclusion of the full extent of the target’s
motion, but introduces significant computational overheads in
doing so. Alternatively, PFs inherently reconfigure themselves,
but the representation of the full target space, desirable for
searching, is limited because only a finite set of discrete
samples are considered.

This paper presents HyPE, a hybrid particle-element ap-
proach, suitable for recursive Bayesian SAT. The hybrid con-
cept, to synthesize two RBE methods to represent and maintain
the belief about all states in a dynamic system, is distinct
from the concept behind “mixed approaches”, such as Rao-
Blackwellized particle filtering [20], which use different RBE
methods for different states. HyPE performs a static conver-
sion between an element-based representation, used during
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update and evaluation of the PDF, and a particle-based rep-
resentation, used for Bayesian prediction, and thus eliminates
the need for computationally expensive numerical integration.
The static conversion process also allows reconfiguration, via
remeshing of the target space, at minimal computational cost
(the cost associated with remeshing only).

This paper is organized as follows. RBE and SAT are
outlined in Sect. II along with a description of PFs and the
EBM. Section III details the concept behind HyPE, and its
implementation. Numerical examples are shown in Sect. IV
and conclusions and future work are contained in the final
section.

II. RECURSIVE BAYESIAN SEARCHING-AND-TRACKING

This section outlines the general form of RBE, and describes
the formulation for the SAT class of problems. Various meth-
ods for representing PDFs, the belief metric generated with
RBE, are also reviewed.

A. Recursive Bayesian Estimation

RBE seeks to estimate the state, x, of a dynamical system
by considering sensor data in light of all previously collected
data. The belief about xk, the state of the system at a
discrete time step k, is represented by p(xk|z1:k,u1:k−1), the
posterior probability density over the state space X . Here,
z1:k = {z1, . . . , zk} and u1:k−1 = {u1, . . . ,uk−1} are,
respectively, the sequence of all observations, including the
current observation, and the sequence of all previous control
actions.

The posterior is recursively updated using Bayes’ Theorem,

p(xk|z1:k,u1:k−1) =
p(zk|xk)p(xk|z1:k−1,u1:k−1)∫
p(zk|xk)p(xk|z1:k−1,u1:k−1)dx

,

(1)
where p(zk|xk) is the likelihood of the observation, de-
scribed by a sensor model, and p(xk|z1:k−1,u1:k−1) is the
predicted probability density. Given a posterior, the prediction
may be performed in light of a state transition probability,
p(xk+1|xk,uk), using the Chapman-Kolmogorov equation

p(xk+1|z1:k,u1:k) =∫
p(xk+1|xk,uk)p(xk|z1:k,u1:k−1)dxk. (2)

Note that when k = 1, the prior belief, p(x0), is used in place
of the prediction in (1).

This general form of RBE is a basis for probabilistic
state estimation, however the implementation of RBE requires
specific observation likelihood and state transition probability,
p(zk|xk) and p(xk|z1:k−1,u1:k−1), but also a method for
representing the updated and predicted PDFs, p(xk|z1:k,u1:k)
and p(xk+1|z1:k−1,u1:k−1).

B. Searching-and-Tracking

1) SAT observation likelihood: In SAT problems the obser-
vation likelihood for a sensor platform s making observations
about a target t, is denoted p(sz̃tk|x̃tk, x̃sk), as it depends on
not only the state of the target, x̃tk ∈ X t, but also the state of

the sensor platform, x̃sk ∈ X t. Note that the tilde is used to
signify an instance ( ·̃ ) of a variable ( · ).

Furthermore, the SAT observation likelihood also depends
on sdtk ∈ {0, 1}, where sdtk = 1 signifies a detection event and
sdtk = 0 signifies a non-detection event. The SAT observation
likelihood is therefore given by

p(sz̃tk|x̃tk, x̃sk) =
{
ld(x̃tk|x̃sk,s z̃tk), sdtk = 1
lnd(x̃tk|x̃sk), sdtk = 0

(3)

where ld(xtk|x̃sk,s z̃k) is the detection, or tracking, likelihood
function, and lnd(xtk|x̃sk) is the non-detection, or searching,
likelihood function. Note that for a sensor with a field of
view, or ‘detection space’, sX d

k ⊂ X t, there is a possibility
of missing a detection or falsely detecting a target, that is
Pr(sdtk = 0|∃x̃tk ∈ sX d

k , x̃
s
k) > 0 and Pr(sdtk = 1|�x̃tk ∈

sX d
k , x̃

s
k) > 0. Therefore the detection and non-detection

likelihoods are typically defined to represent the uncertainty
in both the positional observation error, e �= 0, and the truth of
the detection. Example detection and non-detection likelihoods
and shown in figure 1. One consequence of considering
such observation likelihoods is that the resulting update and
prediction PDFs are typically non-linear, non-Gaussian and
potentially multimodal. For this reason RBE methods which
can accommodate arbitrary PDFs are generally preferred for
SAT.

2) SAT state transition probability: Often the search vehicle
cannot know the control actions of the target vehicle, however
many SAT can be considered to be “one-sided” problems. One-
sided problems describe SAT tasks where the target cannot
deliberately act to aid nor avoid detection. An example of a
one-sided SAT problem would be a search and rescue mission
involving a powerless vessel adrift at sea. In such cases the
state transition probability depends only on the target state,
and may be written as p(xtk|xtk−1).

The SAT update and prediction equations are therefore given

Fig. 1. SAT observation likelihoods.
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by

p(xtk|sz̃t1:k, x̃s1:k)

=
p(sz̃tk|x̃tk, x̃sk)p(xtk|sz̃t1:k−1, x̃

s
1:k−1)∫

p(sz̃tk|x̃tk, x̃sk)p(xtk|sz̃t1:k−1, x̃
s
1:k−1)dx

t
k

(4)

and

p(xtk+1|sz̃t1:k, x̃s1:k) =∫
p(xtk+1|xtk)p(xtk|sz̃t1:k, x̃s1:k)dxtk, (5)

respectively.
Furthermore, autonomous SAT may be achieved by utilizing

RBE for SAT in the selection of search vehicle control actions.
For an objective function J and a finite planning horizon of
nk time steps, a sequence of control actions can be found by
solving

argmax J(uk:k+nk−1|
x̃sk, {p(xtk+κ|sz̃t1:k, x̃s1:k), ∀κ ∈ {1, . . . , nk}}) (6)

where p(xtk+κ|sz̃t1:k, x̃s1:k) can be recursively predicted using
the Chapman-Kolmogorov equation,

p(xtk+κ|sz̃t1:k, x̃s1:k)

=
∫

p(xtk+κ|xtk+κ−1)p(x
t
k+κ−1|sz̃t1:k, x̃s1:k)dxtk+κ−1. (7)

C. Particle and Element Based PDF Representations

1) Particle Filtering: Particle filtering approximates the
posterior distribution with a finite set of particles, Pt

k =
{tp1

k,
tp2

k, . . . ,
tpMk }, where each particle, tpmk , m ∈

{1, . . .M}, represents a hypothetical state of the target t.
The update is performed by sampling the M particles in
the filter with a probability proportional to an importance
weighting, corresponding to the latest observation. As a result,
the particles are distributed according to the current posterior,
tpmk ∼ p(xtk|sz̃t1:k, x̃s1:k). The prediction stage is carried out
by taking M samples from the state transition probability
and applying a single instance of the target’s motion to each
particle, thus avoiding any costly numerical integration in the
prediction stage.

2) Element Based Method: The element-based method
continuously approximates the target space and PDF using
irregularly shaped elements described by shape functions.
Generally the target space is first defined by a number of nodes
which are then connected so as to create elements. For two-
dimensional search spaces the simplest such elements are lin-
ear triangular elements generated via Delaunay triangulation.
However elements need not be limited by shape or linearity;
triangular or quadrilateral elements and higher-order elements
with more nodes are all possible, as shown in Figs. 2 and 3.

Let an approximate target space X e, consisting of ne
elements, be described by

X e ≡
{
X e

1 , . . . ,X e
ne

}
≈ X t, (8)

(a) 3 nodes (b) 6 nodes

Fig. 2. Triangular Element Types

(a) 4 nodes (b) 8 nodes (c) 9 nodes

Fig. 3. Quadrilateral Element Types

where
⋃ne

i=1 X e
i = X e and

⋂ne

i=1 X e
i = ∅. As such, any point

in the target space, x̃t ∈ X t may be located in one of the
elements. For a point in the the ith element, x̃t ∈ X e

i , the point
may be expressed in terms of the nv nodes of the element.
For nodes, x̌eij = [x̌eij , y̌

e
ij ]

T , ∀j ∈ {1, . . . , nv}, x̃t may be
expressed as

xt = ϕx(ξ, η) ≡
nv∑
j=1

x̌eijNj(ξ, η)

yt = ϕy(ξ, η) ≡
nv∑
j=1

y̌eijNj(ξ, η) (9)

where Nj(ξ, η) is the shape function, which must satisfy

0 < Nj(ξ, η) < 1
nv∑
j=1

Nj(ξ, η) = 1 (10)

and ξ ∈ Ξ = [ξmin, ξmax) and η ∈ H = [ηmin, ηmax) are
known as the natural coordinates.

The shape function and the ranges of the natural coordinates
vary according to the type of element. In general the shape
function takes the form

Nj(ξ, η) =
nv∑
k=1

ajkbk(ξ, η) (11)

where ajk is a coefficient determined by the constraints (10)
and bk(ξ, η) is the basis function of monomials in the natural
coordinates. bk(ξ, η) may be determined using the binomial
theorem:

137



b1(ξ, η) = 1
b2(ξ, η) = ξ, b3(ξ, η) = η

b4(ξ, η) = ξη

b5(ξ, η) = ξ2, b6(ξ, η) = η2

b7(ξ, η) = ξ2η, b8(ξ, η) = ξη2

b9(ξ, η) = ξ2η2

. . . (12)

For triangular elements the ranges of the natural coordinates
are [ξmin, ξmax] = [0, 1] and [ηmin, ηmax] = [0, 1− ξ], and for
quadrilateral elements the ranges of the natural coordinates are
[ξmin, ξmax] = [−1, 1] and [ηmin, ηmax] = [−1, 1].

In order to perform RBE using the EBM, one must be
able to both evaluate a function at a point in the state
space, and integrate a function over the search space. Using
the EBM the evaluation of a function at a point and the
integration of a function may be carried out by considering the
natural coordinates. For a point in the ith element, x̃t ∈ X e

i ,
the natural coordinates of the point in the element may be
determined using [

ξ̃, η̃
]T

= ϕ−1(x̃t) (13)

where ϕ−1 is the inverse of the set of functions ϕ = {ϕx, ϕy}.
The function value at x̃t is then given by

f(x̃t) ≈ fe(x̃t) =
nv∑
j=1

f(x̌eij)Nj(ξ̃, η̃). (14)

Integration is performed with respect to the natural coordi-
nates according to the transformation

dxt = detJ(ξ, η)dξdη (15)

where J is the Jacobian matrix

J(ξ, η) =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (16)

Integration over the target space is given by

I =
∫
X t

f(xt)dxt ≈
ne∑
i=1

Iei (17)

where Iei , the integral over an element, is

Iei =
∫
X e

i

fe(xt)dxt =
∫
Ξ,H

fe(ϕ(ξ, η)) detJdξdη. (18)

Note that this integral is only analytically derivable for trian-
gular elements with three nodes. In general, Gauss integration
may be used to numerically calculate the integral over each
element.

III. HYPE: HYBRID PARTICLE-ELEMENT APPROACH

HyPE seeks to imbue the RBE process with the strengths
of each of its constituent methods. The key idea being the
synthesis of the two methods, in order to utilize the most
appropriate representation at different stages of the estima-
tion process. Through processes of static conversion between
particle and element representations, HyPE is able to switch to
either representation, without the need to maintain the other.

Before HyPE is described in detail, certain terms must
be defined. The set of nn nodes forming the element-based
representation of the search space is given by,

N = {n1, ...,nnn} = {x̌eij |∀i ∈ {1, .., ne}, ∀j ∈ 1, ..., nv}}.
(19)

The sets of posterior and prediction values, evaluated at each
node in the mesh, represent element-based beliefs, and are
given by

Bk = {p(xtk = ni|sz̃t1:k, x̃s1:k)|∀i ∈ {1, . . . , nn}} (20)

and

Bk = {p(xtk = ni|sz̃t1:k−1, x̃
s
1:k−1)|∀i ∈ {1, . . . , nn}}, (21)

respectively. Also, the set of observation likelihood values,
evaluated at the nodes, is given by,

Zk = {p(sz̃tk = ni|x̃tk, x̃sk)|∀i ∈ {1, . . . , nn}} (22)

The HyPE approach is described by Algorithm 1. The
algorithm takes as input the prediction for the current state, the
current observation likelihood, the state transition probability,
the set of nodes and the number of particles. The update is
performed using the element-based representation, whereas
prediction is carried out using the particle-based representa-
tion. The algorithm returns the element-based representation
of the prediction for the next time step.

Therefore line 1 of Algorithm 1 calls the element-based
update function, update, to determine the posterior values

Algorithm 1: HyPE: Hybrid Particle-Element Approach

Input : Bk, Zk, p(xtk+1|xtk), N , M
Output: Bk+1

Bk = update(Bk, Zk);1

W = calculate_weights(Bk, N);2

Pk = generate_particles(W , N , M);3

Pk+1 = particle_prediction(Pk, p(xtk+1|xtk));4

[Optional] N = remesh(Pk+1);5

Bk+1 = extract_prediction(Pk+1,N);6

Function update(Bk, Zk)

Output: Bk
forall nodes, i do1

B(i)k = αB(i)kZ(i)k;2

end3
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at each of the nodes. The α which appears in the update stage
is a normalization constant, used to ensure the PDF integrates
to unity. Note that neglecting to normalize the PDF using α
will not alter the performance of HyPE.

Line 2 of Algorithm 1 calls the function
calculate_weights in order to determine a sampling
weight for each of the nodes in the mesh. The set of sampling
weights is denoted W . The sampling weight for each node
is its posterior density, given by the product of its posterior
density value and its relative volume. Voronoi cells are used
to calculate the relative volume associated with each node.
Line 1 of calculate_weights computes X v the Voronoi
tessellation of N , where X v

i is the Voronoi cell corresponding
to node i.

The Voronoi tessellation of a set of nodes randomly dis-
tributed in the plane is shown in Fig. 4. Each Voronoi cell
X v
i defines the space within which all points are closer to ni

than nj �=i. Some Voronoi cells are unbounded, such as those
shown unshaded in Fig. 4, and therefore have infinite volume.
For that reason the relative volume, calculated in line 2, takes
the intersection of the Voronoi cell and the search space X t.
Note that if the nodes are equally spaced, such as in a regular
mesh, then the relative volumes of all nodes are equal. In such
cases, calculation of the relative volume, and also therefore the
Voronoi tessellation, is unnecessary and can be neglected.

The M particles to be used for the prediction stage are
then generated by calling generate_particles in line 3
of Algorithm 1. The particles are generated by sampling
with replacement from the nn nodes. The probability of a
node i being selected is proportional to its weighting, W(i),
resulting in the particle set being distributed according to
Bk. The standard particle filter prediction is then performed
by calling particle_prediction, resulting in Pk+1. All

Function calculate_weights(Bk, N)

Output: W
X v(= {X v

1 , . . . ,X v
nn
}) = voronoi(N);1

forall nodes, i do2

v =volume(X v
i

⋂
X t)/volume(X t);3

W(i) = vB(i)k;4

end5

Fig. 4. 2D Voronoi Tessellation.

Function generate_particles(W , N , M)

Output: Pk
Pk = ∅;1

for m = 1 to M do2

draw i with probability ∝ W(i);3

add tpmk = ni to Pk;4

end5

Function particle_prediction(Pk, p(xtk+1|xtk))

Output: Pk+1

Pk+1 = ∅;1

for m = 1 to M do2

sample tpmk+1 ∼ p(xtk+1|xtk = tpmk );3

add tpmk+1 to Pk+1;4

end5

that remains to complete the HyPE approach is to extract
the density of the predicted particle set node locations by
calling extract_prediction. Existing density extraction
techniques which extract particle densities at certain points
may be called in line 6. An example of such a technique
is kernel density estimation, where each particle represents
the center of a “kernel”, with a known density function. The
mixture (sum) of all kernel densities at a point in the search
space, gives the overall density at that point.

An alternative density extraction technique is described
by the function extract_prediction (Voronoi Extrac-
tion). This technique may be considered as an element-based
generalization of the grid-based technique in which a grid
is superimposed on the search space and the number of
particles which fall in each grid cell gives the density of
the cell. In the Voronoi extraction approach the density is
given by the number of particles which fall within a node’s
Voronoi cell, weighted by the cell’s relative volume, (and
normalized using a new α value if necessary). Again, if a
regular mesh is employed the relative volume need not be
calculated. Line 4 in extract_prediction makes use of
the indicator function,

δi(tpmk+1 − ni) =

{
1, tpmk+1 ∈ X v

i

0, tpmk+1 �∈ X v
i .

(23)

Function extract_prediction(Pk+1, N)
(Voronoi Extraction)

Output: Bk+1

X v(= {X v
1 , . . . ,X v

nn
}) = voronoi(N);1

forall nodes, i do2

v =volume(X v
i

⋂
X t)/volume(X t);3

w =
∑M

m=1 δi(
tpmk+1 − ni);4

B(i)k+1 = αw/v;5

end6

139



Both kernel density estimation and the Voronoi extraction
technique can be used to extract the density at arbitrary points
in the search space. For that reason the option of remeshing
the search space has been included in line 5 of the HyPE
algorithm, before the density extraction function is called.
Doing so eliminates the need for extraneous interpolation at
the new node locations, and enables the search space boundary
and interior nodes to be reconfigured, in order to better capture
the nature of the target state, at only the computational cost
required to generate the new mesh.

Also, HyPE can perform the multistep prediction often
required for the SAT control problem, simply by repetition of
the particle prediction step, with density extraction as needed.

IV. NUMERICAL EXAMPLES

Ten two-dimensional SAT scenarios were considered in
order investigate the efficacy of HyPE and for comparison
with the EBM and PF. In each scenario a single sensor
platform searched for a single target. The sensor was assumed
to have perfect detection capabilities (no false negatives or
false positives), with a range of 30 meters, but observations
of the target location were assumed to be noisy. The prior
density used in all the scenarios was a mixture of two Gaussian
distributions with means at [250, 250]T and [450, 450]T and
covariances

Σ1 =
[

150 0
0 100

]
,Σ2 =

[
90 0
0 90

]
.

The element and particle based representation of the prior
density are shown in Figs. 5(a)&(b), along with the initial
position of the sensor platform and the targets from all ten
scenarios. Figure 5(c) shows the velocity map which the
targets follow. The state transition probability considered in
the RBE used a Gaussian distributions of the velocity at each
point, with means given by the velocity map. The control limits
of the sensor platform and targets are given in Table I. A
time step of Δk = 1 second was used, and 210 instances
of the sensor control actions (speed and steering angle) were
used to evaluate a single step lookahead control strategy.
The maximum allowable iteration time to complete the the
observation, update, prediction and control was set to Δk.

TABLE I
VEHICLE MODEL CONTROL LIMITS

Sensor Platform Target
Maximum Speed [knots] 100 50
Minimum Speed [knots] 10 0

Maximum Steer Angle [deg/s] 15 N/A

Two implementations of HyPE were evaluated, HyPE(a)
and HyPE(b), both using regular meshes and the optional
remeshing step, to resize the mesh based on the underlying
particle distribution. The only difference in implementation
between HyPE(a) and HyPE(b) was that HyPE(a) used fewer
nodes in the mesh than HyPE(b). Despite running faster than
HyPE(b), only one iteration of HyPE(b) (including control
optimization) was performed per time step. The search space

(a) Element-Based Prior
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(b) Particle Filter Prior
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(c) Velocity Map

Fig. 5. Search and Tracking Scenarios

reconfiguration technique for the EBM was prohibitively slow
for meeting the iteration time requirement, thus a static mesh
was used for the EBM. A fixed sample size was used in the
PF. The number of sample points used for each representation
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are shown in Fig. 6. It can be seen that the median number
of sample points used for HyPE(a) was 30% of the number
used for the EBM and 14% of the number used for the PF. For
HyPE(b) the percentages were 76% compared with the EBM
and 35% compared with the PF.

Figure 7 shows the evolution of position errors over time for
a single scenario. It can be seen that all approaches enabled
the sensor to find the target (indicated by the distance between
sensor and target falling below the 30m range line). Further-
more, despite using fewer sample points, the fast remeshing
ability of HyPE allowed higher resolution of sample points
during tracking, resulting in smaller estimation errors. This
is demonstrated in terms of the error between the mode of
the posterior density and true target state (note that the mean
of the particle positions was used calculate this error for the
PF due to the ease its computation and because, for tracking,
the discrepancy between the two was negligible). Furthermore,
whilst the EBM and PF approaches had trouble maintaining
sensor contact with the found target, both implementations
of HyPE remained well within sensor contact subsequent to
finding the target.

Figure 8 shows the performance of each approach during
tracking (subsequent to the first detection of the target). The
boxplot represents the distribution of the average sensor and
posterior position errors taken over the tracking periods of
each scenario. It can be seen that the median sensor position
error for HyPE(a) was 33% of the median error for the EBM
and 25% of the error for the PF. For HyPE(b) the percentages
were 29% compared with the EBM and 22% compared with
the PF. The median posterior position error for HyPE(a) was
39% of the median error for the EBM and 26% of the error
for the PF. For HyPE(b) the percentages were 26% compared
with the EBM and 16% compared with the PF.

In terms of searching performance, the time taken to make
the first detection of the target was recorded for each scenario
and each approach. The detection times for each scenario were
then ranked to determine in which order the approaches found
the target. Figure 9(a) shows that on three occasions HyPE(a)
was quicker than both the EBM and PF in detecting the target.
In the other seven scenarios HyPE(a) was second behind either
the EBM (6 times) or the PF (once). Figure 9(b) shows that in
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4

Fig. 6. Number of nodes used in each SAT implementation.
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Fig. 7. Example of the evolution of position errors over time.
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Fig. 8. Average position errors during tracking.

half of the scenarios HyPE(b) was quicker than both the EBM
and PF in detecting the target. In in the other five scenarios
HyPE(b) was second behind either the EBM (4 times) or the
PF (once).
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V. CONCLUSION

This paper presented HyPE, a hybrid particle-element ap-
proach, suitable for recursive Bayesian SAT. The hybrid
concept, to synthesize two RBE methods to represent and
maintain the belief about all states in a dynamic system, is
distinct from the concept behind “mixed approaches”, such
as Rao-Blackwellized particle filtering, which use different
RBE methods for different states. HyPE performs a static con-
version between an element-based representation, used during
update and evaluation of the PDF, and a particle-based rep-
resentation, used for Bayesian prediction, and thus eliminates
the need for computationally expensive numerical integration.
The static conversion process also allows reconfiguration, via
remeshing of the target space, at minimal computational cost
(the cost associated with remeshing only). The efficacy of the
proposed approach was shown through a number of simulated
SAT scenarios. Furthermore, it was shown that the ability
to quickly remesh the search space allowed HyPE to reduce
estimation and position errors by over 39%, whist also using as
little as 14% of the number of sample points used by existing
methods for RBE.

It should be noted that the two static conversion processes
necessarily introduce a degree of approximation error into the
estimation which would not otherwise occur. Furthermore, the
resolution of the mesh with respect to the range of motion in
the target states must be considered, as within the GBM and
EBM. If the mesh is too coarse, the predicted particles may
never escape the influence of the nodes from which they are
sampled.

As this paper represents a first proof of concept for the
hybrid particle-element approach, investigation of some of the
practical consequences of using the approach remains. For
example, an investigation into how the time and memory
requirements and transmissibility scale with the scope and
dimension of the problem, has been left for future work. Also,
the reduction in the number of sampling points required using
HyPE may hold significance for the area of data communi-
cation in multi-robot cooperation and coordination missions.
This will be a focus of future work.
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Abstract—In this paper, we will study abstractions and algo-
rithms for planar manipulation systems using two cooperating
robots under uncertainties. We propose a formal framework
for developing abstractions, which are simpler models of the
original systems that preserve properties of interest to facilitate
the development of planning and control algorithms. Our abstrac-
tions are derived from robust motion primitives that correspond
to control inputs leading to system trajectories which preserve
the properties of interest under uncertainties. We then use the
proposed framework to construct an abstraction and design
planning and control algorithms for a multiple robot cooperative
manipulation system. Finally, we present experimental results to
validate our approach.

I. INTRODUCTION
It is well known that conventional approaches to robotic

manipulation, where deliberative planning is augmented by
feedback controllers, are difficult to implement except in the
simplest of cases. This is primarily because of non smooth dy-
namics engendered by frictional contacts and uncertainties in
the parameters governing the contact dynamics. Experiments
in robotic juggling [8], locomotion [11, 25], non prehensile
manipulation [35], manipulation via caging (Fig. 2) [13],
and part-feeding [29] have shown that feedback controllers,
behaviors or designs, which are specially designed to preserve
a specific set of properties (e.g., convergence to sub manifolds
or limit sets), are more robust to uncertainties than those that
follow optimally-planned trajectories in the full state space.
Indeed, this philosophy of designing components that each
drive the system to a state that satisfies a specific property is
used extensively in manufacturing operations, where designers
carefully structure the environment to ensure that devices like
bowl-feeders [14], conveyors [1], traps [5], and pick-and-
place arms work in concert to accomplish the given task.
Many paradigms in robotics such as caging [7], the one-
joint-over-conveyor part positioning [1], and remote-center-
of-compliance assembly [12] are also illustrative of this phi-
losophy. While these examples are arguably special-purpose
solutions, they illustrate a very important point. By designing
planners/controllers that drive the system to submanifolds
in the state space, one can derive abstractions of complex
processes, i.e., conceptual models that are much simpler than
the complex real-world system, that lend themselves to the
design of algorithms that can reason about these abstractions
and the composition of these complex processes.
We use the simple example of multi-fingered or multi-

robot manipulation in the plane via caging to illustrate the
role of abstractions and algorithms (Fig. 2). The modeling

Initial configuration

Goal configuration

Circular robots

Static obstacles

Fig. 1. A representative assembly problem.

of multi-fingered hands or multi-robot manipulation is com-
plicated by the fact it involves multi-body dynamics with
frictional contacts. Static indeterminacy and frictional impacts
introduce additional difficulty making the design of provably-
correct planners and controllers impractical. However, in many
manipulation tasks the main goal is to position and orient
an object to some destination with a specified tolerance.
Since the main property of interest is the geometric property
of containing or enclosing the manipulated object, one is
motivated to derive geometric abstractions for the complex,
multi-dimensional dynamics problem. This is the central idea
in configuration-space abstractions used to derive algorithms
for multi-robot manipulation: motion planning algorithms for
caging [33, 32], control algorithms for object closure [21], and
composition of controllers for multi-robot manipulation [13].
Each robot or finger is abstracted into a geometric model.
And the planning/control problem is to determine how to
move/control these geometric entities to enforce geometric
closure.
In this paper, we will construct abstractions and design

planning and control algorithms for multi-contact, planar
manipulation tasks in which multiple nonholonomic mobile
robots cooperate to manipulate a 2.5-dimensional object on an
even, rough surface (see Fig. 1). The manipulation problem in
such scenario is very challenging due to non-smooth dynamics
and frictional contacts as well as uncertainties in sensing,
actuation, and system parameters (e.g. friction coefficient and
unknown support distribution). It has been studied in [19, 2,
4, 18, 33, 22]. Our work is very similar to [33, 13] in appli-
cation (using circular robots to manipulate polygonal parts).
However, geometric abstractions of caging are used in [33,
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(a) (b) (c)
Fig. 2. Approaches to cooperative manipulation and multi-fingered grasping
that rely on form or force closure [6, 23, 24, 26] are not as robust to
uncertainties as object closure, in which the robots or fingers enclose or
cage the object. Robots can approach (Fig. 2(a)), surround (Fig. 2(b)), cage
(Fig. 2(c)) and manipulate or transport the object reliably using geometric
abstractions associated with caging [13].

13], which require at least three robots and large operational
space. Also, caging in [13] provides few guarantees on part
orientation. In assembly tasks like the one in Fig. 1, it is hard
to use caging to drive the part to a goal configuration within a
specified tolerance in a constrained environment. The property
preserved by our abstraction is neither enclosing nor caging,
but to maintain contacts between two manipulation robots and
the part. This idea is similar to stable pushing [18]. However,
instead of preserving sticking contact between the part and a
single pushing bar, we are using two robots to cooperatively
manipulate the part by preserving contacts (either rolling or
sliding) between both robots and part.
The remainder of the paper is organized as follows. Sec-

tion II provides a formal framework of abstractions for the
manipulation system. The multiple robot cooperative manip-
ulation problem is described in Section III. Abstraction and
algorithms for such system are provided in Section IV-B with
a focus on abstraction. In Section V, we provide experimental
results to validate the proposed approaches.

II. ABSTRACTIONS OF MANIPULATION SYSTEMS

We define a manipulation system by the tuple, M =
{f,X,U,P, T}, where X denotes the state space, U the
input space, P the space of (possibly time-varying) model
parameters, T a finite time interval, and f the differential
equation characterizing the flow of the system. To distinguish
between the value of controls (u ∈ U ), parameters (p ∈ P)
or state (x ∈ X) from the corresponding trajectories, we use
the notation (̃·) to indicate histories or trajectories. Thus ũ is
the input history, while p̃ is the history of parameter variation
and will be used to represent uncertainties. Given a control
ũ : T → U , a parameter history p̃ : T → P , and an
initial state x0 ∈ X , the trajectory is given by x̃(x0, ũ, p̃, t) =
x0 +

∫ t

0
f (x̃(η), ũ(η), p̃(η)) dη, t ∈ T .

We use X̃ to denote the set of trajectories with all possible
initial states, controls, and parameter histories. We now define
the property of interest for the system that characterizes the
successful execution of a task or subtask as a polymorphic
characteristic function, Φ : X̃ → {0, 1}, which determines
whether or not a trajectory of model M satisfies the given
property. It is polymorphic (in analogy to polymorphism in
object-oriented programming [3]) because, as we will see,
the property function can be used to characterize either the
original model or its abstraction. We can also define a subset,
a collection of trajectories, S ⊂ X̃ , satisfying a given property:
S = {x̃ ∈ X̃ | Φ(x̃) = 1}. In particular, we will be interested
in the trivial property, Φ0, that is satisfied by all trajectories

iX~

jX~

i
j

S

S

S

Fig. 3. The surjective map Θij maps X̃i to X̃j . Sα, Sβ , and Sγ are sets of
trajectories preserving the properties Φα, Φβ , and Φγ .

satisfying the system equations for the modelM. In this case,
S = X̃ . We now establish conditions under which a model
Mj is an abstraction ofMi with respect to a property, Φ. We
use subscript i and j to distinguish components from model
Mi and Mj . Thus, xi ∈ Xi is a state in model Mi and
xj ∈ Xj is associated with Mj . To keep matters simple, we
assume the system is time-invariant and the system dynamics
are characterized by a vector of constant parameters for both
models and we will omit the dependence on p in the discussion
in this subsection. We construct Mj so that the underlying
state space Xj is an image of Xi under the surjective map
Θi
j . This in turn induces a map in trajectory space as shown
in Fig. 3. We say that Mj is a sufficient abstraction1 of Mi

if, for any trajectory x̃j(xj , ũj , t) in Sj ⊂ X̃j satisfying the
property Φ, there exist ũi and xi ∈ Xi so that Θi

j(xi) = xj
and

Φ
(
x̃j(Θi

j(xi), ũj , t)
)
= Φ(x̃i(xi, ũi, t)) = 1. (1)

A simple example of this sufficient condition is seen in fully-
actuated, six degree-of-freedom robot arms. We frequently
use kinematic abstractions (Mj) and inverse-kinematics-based
algorithms to plan tasks and trajectories for the tasks because
we know that computed-torque-based nonlinear feedback con-
trollers for the real dynamic system (Mi) can be used to
realize paths synthesized by simpler kinematic controllers. In
other words, these two models satisfy the sufficient condition
with respect to the trivial property Φ0.

III. COOPERATIVE PLANAR MANIPULATION

A. The task

We consider the representative problem, depicted in Fig. 1,
in which multiple robots are able to manipulate the object into
the desired goal. The robots are position-controlled without
force or contact sensors. They are able to sense the relative
position and orientation of the object and coordinate via
communication before manipulation. Because of latency in
the network and imperfect sensing, the control during the
pushing motion must be open-loop. This paradigm is typical
of assembly tasks in industry where robot tasks often involve
sequences of subtasks each involving sensing before the sub-
task, computation, followed by execution. Our goal is to design

1One can also define necessary abstractions using a necessary condition in
a similar way but since we will not use this concept, we will not discuss this
further in this paper.
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in the body-fixed frame (right). The object has three, unknown support points
(i = 1, 2, 3) denoted by unfilled circles. The center of mass is denoted by o,
denoted by a filled circle. The contact point between the object and the robot
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controls for multiple robots to manipulate the part to a given
configuration within specified tolerances.
Alternative approaches based on force closure require force

sensors which lead to expensive and unreliable hardware.
Instead we use Roomba-like nonholonomic robots that are
position-controlled to follow desired trajectories.
Accordingly, we restrict ourselves to the quasi-static regime

where the inertial forces are small compared to the contact
forces applied by the robots. Further, we use circular robots
to simplify the geometry and the algorithms required for
planning and control. Because the application of more than
two frictional contacts always results in static indeterminacy
we only use two robots at any given time.

B. Modeling and notation

Consider the representative part shown in Fig. 4. We adopt
the frictional, three-point support model from [22] but recog-
nize that these support points can change as the part moves and
their locations are unknown. The robot(s) exhibit frictional,
point contact with the object. All coefficients of friction are
unknown but lie within a known set. The part geometry, its
inertial properties, and the location of the center of mass are
known.
The weight of the part, w = mg, is supported by three,

unknown support points Si (i = 1, 2, 3) with coordinates
(xi, yi). The position and orientation of the part is denoted
by q = (x, y, θ) and its velocity in the inertial frame is
q̇ = (ẋ, ẏ, θ̇). The body-fixed frame, xl − yl, has its origin
at the center of mass ol. The jth contact with the jth robot
occurs at Pj whose position vector in the body-fixed frame is
�ci.
The robot velocity is vR,j while the velocity of the point

Pj on the part is vP,j . The relative velocity at Pj is given by
components (vn,j , vt,j) denoting the separation velocity and
sliding velocity respectively:

vn,j = (vP,j − vR,j).�nj , vt,j = (vP,j − vR,j).�tj .

The forces on the object include the normal forces wi,
the tangential frictional forces at support Si (fs,i,x, fs,i,y), as
well as the robot-object contact force at Pj , with components
(λn,j , λt,j) along the inward-pointing normal �nj and tangent
�tj . μs is the coefficient of surface friction while μc is the
coefficient of friction at the robot-object contact.

C. Uncertainties
Although we use the three-point support model to predict

the force distribution, we allow the support points Si to vary.
They are chosen to lie within a specified set Es with the
constraint that the center of mass falls within the support
triangle.
The friction coefficients between the part and the support

and between the part and robots are unknown, but they are
assumed to belong to a known, compact set Ef .
The errors in sensing the position and orientation of the

object/part and the errors in controlling individual robots
must be modeled. The errors in positioning and orienting are
denoted by Et and Eθ. Ed denotes the errors on the relative
positions of the robots. In our case, since this is related to the
sensing error, Ed = 2Et. We use Ev to denote the error in
relative velocity.

D. Quasi-static model for planar manipulation
The non negative normal force at Si denoted by wi are

uniquely determined from the force equilibrium in the vertical
(out-of-plane) direction and the coordinates of the support
points: ∑

wi = w,
∑

wi�si = 0. (2)

The force-balance equations (forces and moments about ol) in
the plane are:

Wn(q)λn +Wt(q)λt = ws (3)

where λn = [λn,1, λn,2]T and λt = [λt,1, λt,2]T and
ws =

∑3
i=1 ws,i is the resultant support wrench. The wrench

matrices Wn and Wt are given by:

Wn =
[

�n1 �n2

�c1 × �n1 �c2 × �n2

]
, Wt =

[
�t1 �t2

�c1 × �t1 �c2 × �t2

]
We write the tangential sliding velocity as the difference of

two non negative quantities:

vt,j = v+
t,j − v−t,j . (4)

We can now write the following complementarity condi-
tions [30]:

0 ≤ vn,j · nj ⊥ λn,j ≥ 0. (5)

0 ≤ v+
t,j ⊥ λn,jμc + λt,j ≥ 0 (6)

0 ≤ v−t,j ⊥ λn,jμc − λt,j ≥ 0. (7)

Note that Equations (2-7) provide a comprehensive descrip-
tion of the system independent of whether each contact is
separating, rolling or sliding [34]. Although the uniqueness
and existence properties for this set of equations has not been
established for the general case, it is possible to show that
under conditions of positive-linear independence [28], there is
a unique solution. This is discussed again in the next section.

E. Practical considerations
In order to ensure the quasi-static assumption is satisfied,

we must ensure that the kinetic energy of the object never
exceeds the energy that can be dissipated due to friction in
some small time interval. Specifically, we are concerned with
errors in sensing Et and Eθ and we want to make sure that
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the kinetic energy of the object does not cause it to translate
more than Et or rotate more than Eθ. Accordingly we require

ẋ2 + ẏ2 � Etgμs Rθ̇2 � Eθgμs. (8)

which in turn restricts the velocity of our robots. Second, we
cannot require forces that exceed the maximum frictional force
or traction between the robot and the support surface.√

λ2
n,i + λ2

t,i < tmax (9)

The robot sensors and controllers, their dynamic properties
and the properties of the object will impose further constraints.
To ensure robustness to communication latencies and delays
we assume that all robots coordinate their execution but do
not exchange state information during the manipulation task.
The robots used for experiments are approximately 8 Kg.
We choose an L-shaped object for manipulation whose mass
is around 2.5 Kg. The coefficients of friction are μs =
0.08± 0.02 and μc = 0.6± 0.02. In order to satisfy Eq. (8),
robot speeds are restricted to approximately 10 ± 1 cm/sec
with positioning errors of Et = 2 cm and orienting errors of
Eθ = 5◦. As we will see, only those motion primitives that
result in a contact force less than tmax = 5 N are allowed.

IV. ABSTRACTION AND ALGORITHMS FOR COOPERATIVE
PLANAR MANIPULATION

In this section, we will focus on using the proposed
abstraction framework in Section II to construct a simple
kinematic sufficient abstraction for the original complex quasi-
static model in Section III-B. Then, we will briefly describe
the planning and tracking control algorithms using such ab-
straction.

A. Overview and purpose of abstraction
With the notation of Section II, the original complex

quasi-static model in Section III-B is represented by Mi =
{fi, Xi, Ui,Pi, Ti}, where fi is given in Equations (2-7), Xi

includes all configurations of the robots and part, Ui includes
all the inputs {vi, φi, ni, ci} for robots, Pi includes all system
parameters (part geometry, friction coefficients μs and μc,
and three support points {xi, yi}), and Ti includes the time
intervals of arbitrary length.
The objective of abstraction is to be able to predict the

motion of the part via an efficient approximation of the reach-
able set. Since the original system has complicated motion
behaviors under uncertainties in sensing, actuation, and system
parameters, (e.g. unknown and changing three support points),
it is impossible to compute a reachable set approximation for
general inputs. Instead, we construct an abstraction model,
which consists the motions of a finite set of robust motion
primitives for which the following properties of interest are
satisfied and preserved under uncertainties such that their
reachable sets can be computed.
1) Two contacts between the robots and part, i.e.,.

λn,j > 0, j = 1, 2. (10)

2) Straight line motion at speeds that imply quasi-static
dynamics, (Eqs. 8 and 9).

In other words, for a trajectory x̃i : [0, tf ]→ Xi, the property
function Φ returns 1 if Eqs. 10, 8 and 9 are satisfied for any
t ∈ [0, tf ].

A robust motion primitive for the model Mi is a nominal
control ũi : [0, tf ] → Ui with ũi(0) = u0 and nominal x0 ∈
Xi such that with respect to nominal parameter history p̃i ∈ Pi
and p̃i(0) = p0

Φ(x̃i(x0 + δxi, ũi + δui, p̃i + δp̃i, t)) = 1 (11)

for t ∈ [0, tf ] and uncertainties δxi in sensing, δui in
actuation, and δp̃i in system parameters.
After constructing a finite set of robust motion prim-

itives, the resulting sufficient abstraction model Mj =
{fj , Xj , Uj ,Pj , Tj} will be: fj only include kinematic part
of fi. Xj is still the same as Xi under the identify map Θi

j .
Uj is a discrete subset of Ui, each of which corresponds to a
resulting motion of a robust motion primitive. Tj only includes
a set of time intervals of specific length corresponding to each
input in Uj .
Because the dynamics of Mj are invariant (or robust)

to the three support points and friction coefficient, we are
able to ignore the three point support parameters and friction
coefficients in the system parameter set Pj . This greatly
reduces the uncertainty in the abstraction model.
While we will use the specific example and parameters

described in Section III-E in our development, the same ideas
are extensible to any planar object and to any set of position
controlled robots.

B. Construction of robust motion primitives

The fundamental question in searching for robust motion
primitives is to whether the properties of interest are preserved
over continuous uncertainty sets. This is a very challenging
verification problem for which the state-of-the-art does not
include a solution for general systems [15]. Instead, motivated
by recent work on sampling-based verification and falsifi-
cation [10], we use the numerical Monte Carlo simulation
method to construct robust motion primitives by checking
whether the properties of interest are preserved with respect
to a finite number of samples. This at least provides us with
a computational tool for complex manipulation systems.
The construction process is carried out in the following

steps:
1) Sample ũ from Ui and x0 from Xi.
2) Check whether Φ(x̃(x0, ũ, p̃, 0)) = 1.
This step check whethers Φ is satisfied at the starting
moment by solving the Mixed Complementarity Prob-
lem defined by Eqs. 2-7. Theoretically, there are no
results on the uniqueness and existence of the solution
for the quasi-static problem with multiple rigid bodies
under two pushing contact. So, when there is no solution
for a given manipulation, we simply say that Φ is not
satisfied. When multiple solutions are observed, we say
that Φ is preserved if it is satisfied in all solutions.

3) Check whether Φ(x̃(x0 + δx, ũ+ δu, p̃+ δp̃, 0)) = 1 for
uncertainties δx, δu, and δp̃.
This step checks whether the properties of interest are
satisfied at the starting moment with respect to uncer-
tainties in sensing, actuation, and system parameters. We
consider the uncertainties in the three support points,
robot velocity magnitude, and friction coefficients that
are chosen from three bounded continuous sets. We first
generate a finite set of three support point samples,
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Fig. 5. Robust translational ([1]-[4]) and rotational ([5], [6]) motion primitives

velocity samples, and friction coefficient samples, and
then use the procedure in (2) to check whether Φ is
satisfied for all these samples. If true, the manipulation
is identified as robust; otherwise, it is non robust.

4) Check whether Φ(x̃(x0 + δx, ũ+ δu, p̃+ δp̃, t)) = 1 for
uncertainties δx, δu, and δp̃ in at a finite set of discrete
times t ∈ [0, tf ].
This step checks whether Φ is preserved over the entire
duration of a robust motion primitive. The time interval
is a bounded continuous set.

Note that for a high dimensional input space, this search
process is very computationally expensive. However, we only
need such a computation once in the preprocessing. Alterna-
tively, in this paper, we use a set of candidates for robust
motion primitives from human intuition instead of random
samples.

C. Constructed robust motion primitives
Robust motion primitives for an L-shape part are shown

in Fig. 5 (see detailed parameters in Section V). We will
now analyze the reachable sets of these primitives under
uncertainties, which will help design of the tracking control
along a given path.
Abstraction reduces the uncertainties due to the friction

coefficient, intermittent contact, and unknown three support
points. Uncertainties in sensing still exist and cause the part
to vary from its nominal trajectory. However, the preserved
properties in the abstraction enable us to predict the motions of
the part under these uncertainties by estimating the bounds on
their reachable set. In the following, we will compute bounds
on these variations as a function of pushing distance d based
on kinematic analysis of the abstraction model. These bounds
will help to design planning and tracking control algorithms
on top of the abstraction model.

1) Bounding the reachable set for the motion in Fig. 5[1-4]:
The concept is illustrated with the example shown in Fig. 6.
When the intermittent frictional contact modes switch from the
left to the right, the maximal offset in y is generated by the
following situation. We will assume that two robots push with
the same nominal velocity v along the positive x direction with
nominal separation distance ds. Initially, the top and bottom
robots respectively have rolling (R) and sliding (S) contacts
(Fig. 6.1). When the coordination errors between two robots
results in an error of Ed (Fig. 6.2), the contact modes switch to
S (top) and R (bottom) (Fig. 6.3). Then, when the errors drive

S
ds

R

S R

S

R

S
y

ds+Ed

Ed

R

[1] [2] [3] [4]

Fig. 6. The position offset in y caused by intermittent contact modes from the
left to the right, in which R and S respectively stand for rolling and sliding.

ds

R

S

[1]

R

S

[2]

1c

2c

1

2

Fig. 7. Constant contact modes cause maximal changes of the configuration.

the robots back to their nominal separation, it can be observed
that an offset in y has been generated (Fig. 6.4). Furthermore,
when such switching pattern is executed multiple times, the
offset in y will be accumulated.
More generally, if both contacts are not on the same edge,

the top and bottom contact points are on edges respectively
with orientation γ1 and γ2. The vector from the top contact
point to the bottom has length l and angle χ. We have the
following upper bounds over the whole pushing distance d,

y ∈ [−max(Δd1 sin γ1,Δd2 sin γ2)% Evd
4Edv

& − Et,

max(Δd1 sin γ1,Δd2 sin γ2)% Evd
4Edv

&+ Et].
(12)

Similarly, the reachable sets of x and θ are respectively
bounded by

x ∈ [−Ed + d,Ed + d], (13)

θ ∈ [−Eθ − tan−1 Ed

ds − Ed
, Eθ + tan−1 Ed

ds − Ed
]. (14)

2) Bounding the reachable set for the motion in Fig. 5 [5-
6]: The reachable set under this pushing is also bounded by
analyzing the potential contact model switching patterns.
In Fig. 7, when the top and bottom contacts are respectively

always rolling and sliding, x reaches its maximal value, which
is less than d+Ed. Similarly, x is larger than −d−Ed when
the top and bottom contact modes are respectively sliding and
rolling. Therefore, we have

x ∈ [−d− Ed, d+ Ed], (15)

θ ∈ [−Eθ, tan−1 2d+ dh + Ed

ds − Ed
−tan−1 dh − Ed

ds + Ed
+Eθ = Δθ],

(16)
y ∈ [−c2(sin(α2 + Eθ)− sin(α2−Δθ − Eθ))− Et,

c1(sin(α1 + Eθ)− sin(α1−Δθ − Eθ)) + Et],
(17)

in which dh is the horizontal distance between two contact
points at the starting moment of the manipulation in Fig. 7.1.

D. Planning and tracking control algorithms

For the L shape part in this paper, the four robust translation
motion primitives and two robust rotational motion primitives
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in Section IV-C are sufficient to achieve small time local
controllability of the part.
For a general polygonal shape part, we need three trans-

lational robust motion primitives and two rotational motion
primitives to achieve the small time locally controllable prop-
erty. Any two of them should not be collinear and the dot
product of three direction vectors should be negative. Two
rotational motion primitives should be in opposite directions.
Given a path with a given tracking precision Ep, we are able

to iteratively track the path using these motion primitives. In
each iteration, we compute the pushing distance d for a given
robust motion primitive with respect to the required tracking
precision. The reachable set of the part after pushing distance d
should be bounded inside the Ep-neighborhood of the nominal
trajectory. After the pushing, if the part is off the nominal path,
robust motion primitives are used to push the part back to the
nominal trajectory. In this way, we are able to track any given
path with precision up to the sensing and actuation limit.
With this tracking control algorithm, we solve the challeng-

ing cooperative manipulation problem by first using a sampling
based path planning algorithm, e.g. PRM [16] or RRT [17],
to compute a collision-free path and then execute by path
tracking that relies on robust motion primitives.

V. EXPERIMENTAL RESULTS

We have collected experimental results to demonstrate both
the validity of robust motion primitives for mobile robot
manipulation as well as the effectiveness of these primitives
applied to manipulation/assembly tasks. First, we demonstrate
that robust motions (due to the definition in Section IV-B)
are feasible for our system then we go on to validate the
reachable sets for the primitives derived in Section IV-C.
Because we have a conservative estimate of the set of states
that can be reached by applying a motion primitive, we can
construct a tracking control system that can use robust motion
primitives to follow an arbitrary path. Finally, we demonstrate
that a simple planning algorithm in conjunction with these
techniques can be used to complete a cooperative manipulation
task.

A. System parameters for the experimental platform

All experiments are conducted on a multi-robot testbed [20]
utilizing a team of small differential drive robots (radius
0.15m) and an overhead tracking system for localization of
both the manipulated object and the robots. The position and
orientation sensing error due to the tracking system are respec-
tively Et = 2cm and Eθ = 5◦. Each robot is controlled using a
feedback linearization scheme to tow along a desired trajectory
but there is no feedback of relative state information. In other
words, while each robot is controlling its own state to execute
a straight line maintaining the abstraction in Section IV-A,
the cooperative manipulation primitive is executed in an open
loop fashion. This introduces additional error in their relative
position control bounded by Ed = 4cm. Each robot is able to
control its velocity within an error of Ev = 1 cm/s.
As mentioned earlier, the robots are manipulating an L-

shape with a characteristic length of 1m, mass of 2.5Kg, and an
approximate coefficient of friction with the floor of μs = 0.08.
Each robot has a mass of 8.6Kg and coefficient of friction with
the L-shape of μc = 0.6.

vert1 s1 v1 φ1 vert2 s2 v2 φ2
+ X 5 0.9 0.1 0.0 5 0.1 0.1 0.0
+ Y 4 0.7 0.1 0.0 4 0.1 0.1 0.0
- X 1 0.1 0.1 0.0 3 0.3 0.1 0.0
- Y 0 0.1 0.1 0.0 2 0.3 0.1 0.0
+ θ 0 0.1 0.1 −0.7 4 0.1 0.1 −0.7
- θ 5 0.9 0.1 0.7 3 0.3 0.1 0.7

TABLE I
DETAILS FOR OUR ROBUST MOTION PRIMITIVES, IN WHICH s1 AND s2

ARE MEASURED IN m, φ1 AND φ2 ARE IN rad, AND v1 AND v2 ARE IN m/s.

B. Non-robust motions
To highlight the advantage of using robust motion prim-

itives, Fig. 8 depicts non-robust manipulations. Two-point
contact is not maintained in these non-robust examples and
the motion is unpredictable under the uncertainty inherent to
the system. On the other hand, as we will now show, the result
of robust motion primitives can be analytically bounded based
on the assumptions of system uncertainty.
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Fig. 8. Non-robust motion primitives.

C. Validation of reachable sets
To compute the bounds on the reachable sets due to motion

primitives on the L-shape, we must evaluate the equations
presented in Section IV-C. For translation, there is a nonlinear
system of equations that must be solved numerically. Other
than this step, the rest of the calculations are straight forward
given the parameters of the primitive and the uncertainty of the
system. Each motion primitive is parameterized as specified in
Fig. 5 with the values in Table I. Additionally, the reachable
set is a function of the pushing distance d.
We conducted several trials with different configurations of

the two canonical manipulation primitives for translation and
rotation to show that the resulting trajectories of the manip-
ulated object always lie within the computed bounds. Fig. 9
depicts the part trajectories under different robust manipulation
primitives to demonstrate that the final part positions lie
within the analytically calculated bounds. Tables II and III
provide details on the reachability sets for two sample motion
primitives.
We have observed that in experiments, the motion primitives

nearly always overshoot the upper bound along the direction
of the desired motion. This is the result of assuming a kine-
matically controlled robot when there are, in fact, acceleration
limits. However, it is a simple task to account for this with
adequately enlarged reachability bounds or better low-level
position control.

D. Validation of the tracking control
Since, for a given motion primitive and pushing distance

d, we can calculate bounds the reachable set of the part, it
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Fig. 9. Part trajectories respectively due to four configurations of the transla-
tion primitive (±x,±y) and two configurations of the rotation primitive (±θ)
overlaid on a sampling of the reachable set.

Positive X
x(m) y(m) θ (◦)
Predicted

Max 1.02 0.13 8.40
Min 0.98 -0.13 -8.40

Measured
Avg 1.05 0.01 -0.11
Max 1.06 0.02 1.72
Min 1.04 -0.01 -1.32

Positive Y
x(m) y(m) θ (◦)
Predicted

Max 0.19 1.02 8.67
Min -0.19 0.98 -8.67

Measured
Avg 0.01 1.05 -0.11
Max 0.02 1.06 1.72
Min -0.01 1.04 -1.32

TABLE II
BOUNDS ON ROBUST TRANSLATION PRIMITIVE OVER FOUR TRIALS

is possible to design a tracking control algorithm that can
efficiently follow a path within an Ep-neighborhood. Such
a tracking controller can be thought of as a hybrid system
that switches between modes for (1) correcting orientation
to align the part tangent to path, (2) providing correction
perpendicular to the path, and (3) pushing the part along a
segment of the path. Each mode must ensure that d is chosen
such that the reachable set after pushing will lie within Ep

of the path while attempting to minimize tracking error or
maximize distance traveled along the path. Thus the tracking
controller will employ larger magnitude pushes along paths
with larger Ep-neighborhoods.
Transitions between robust primitives are currently handled

by a simple circular trajectory that each robot can follow to
reach the initial conditions necessary to begin the next desired
robust motion primitive. A less conservative but more general
approach for transitioning between primitives in a complex
environment is a challenging problem that we will address in

Positive θ
x(m) y(m) θ (◦)
Predicted

Max 0.56 0.21 42.47
Min -0.58 -0.19 -4.58

Measured
Avg -0.02 -0.07 40.11
Max -0.00 -0.06 43.14
Min -0.03 -0.08 37.87

Negative θ
x(m) y(m) θ (◦)

Predicted
Max 0.27 0.49 4.58
Min -0.31 -0.44 -47.50

Measured
Avg 0.01 -0.01 -37.07
Max 0.02 0.00 -34.38
Min -0.01 -0.03 -41.37

TABLE III
BOUNDS ON ROBUST ROTATION PRIMITIVE OVER SEVEN TRIALS
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Fig. 10. Example of tracking control with robust motion primitives along a
plan with small collision free zone. The bounding box for the reachability set
of each translational push is shown.
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Fig. 11. Trajectory of L-Shape while being pushed along planned obstacle
free path with robust motion primitives.

future work.
Fig. 10 depicts an example path with a relatively small Ep-

neighborhood to show how the tracking controller must use a
sequence of pushes and corrections to accurately follow the
path.

E. Validation with a manipulation task
Finally, we solve the multiple robot manipulation problem in

which two robots must cooperatively push a part from an initial
to goal configuration though an environment with obstacles
such as that shown in Fig. 1.
We use a sample-based algorithm, such as PRM or RRT,

to generate a collision-free path from the initial configuration
to the goal configuration which is then tracked with robust
motion primitives. Snapshots of the experimental results are
shown in Fig. 12, in which the solid piecewise-linear line
connecting the initial and goal configurations is the collision
free path from the path planning, the curves followed by
the robots are the nominal controls to achieve robust motion
primitives, and the wire-frame rectangular box represents a
virtual obstacle. Fig. 11 shows the resultant trajectory of the
L-shape during manipulation.

Fig. 12. Snapshots of cooperative manipulation of the L-shape part with two
robots

VI. CONCLUSION
In this paper, we proposed a framework to develop ab-

stractions for quasi-static manipulation tasks with uncertainty
arising primarily from friction and unknown support points
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and from errors in control and sensing. The abstractions
were used to design algorithms for planar manipulation with
cooperating mobile robots and the proposed approach was
successfully validated with extensive experimental results.
The manipulation system enables two autonomous robots to
cooperatively push a part to a given goal configuration with a
precision given by the errors in sensing and control.
There are several directions for ongoing work. First, our

planning algorithm is very simple and generates very con-
servative paths. Clearly a better planner will achieve paths
in more constrained environments. Because our focus was
mainly on abstractions and control, we used a relatively simple
planner. However, we are working on refining our planner for
more cluttered environments. We are studying robust motion
primitives with contact between the part and environment
which will lead to a better abstraction for planning in the
constrained space. We are also considering extension of the
manipulation planning algorithm in [27, 31] to incorporate
constraints from the movable part during the manipulation.
Second, we used communication-less motion primitives with
straight line robot trajectories in this work. Clearly, if robots
can communicate, more complex trajectories can be generated
and better performance can be obtained. However, this leads to
more complexity in the formulation. We are currently studying
if it is possible to derive more powerful abstractions that will
exploit these additional capabilities.
The main conclusion of this work is simple. If the right

abstractions can be derived for manipulation systems, powerful
algorithms can also be derived to solve manipulation problems
with uncertainties. Indeed, if we look at the examples in this
paper and those in [9], it should be clear that the same planning
algorithms can be used to solve manipulation problems across
multiple length scales.
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Abstract— This paper proposes a local collision avoidance
method for non-strictly convex polyhedra with continuous veloc-
ities. The main contribution of the method is that non-strictly
convex polyhedra can be used as geometric models of the robot
and the environment without any approximation. The problem
of the continuous interaction generation between polyhedra is re-
duced to the continuous constraints generation between polygonal
faces and the continuity of those constraints are managed by the
combinatorics based on Voronoi regions of a face. A collision-free
motion is obtained by solving an optimization problem defined by
an objective function which describes a task and linear inequality
constraints which do geometrical constraints to avoid collisions.
The proposed method is examined using example cases of simple
objects and also applied to a humanoid robot HRP-2.

I. INTRODUCTION

Detecting and avoiding collisions is fundamental for the
development of robots that can be safely operated in human
environments. This issue has given rise to contributions in
the 1980’s in the context of robotic manipulators. One of the
most famous and most used contribution in this domain is
certainly [1]. [1] proposes a method which plans a motion
by minimizing an error between a desired velocity and the
planned velocity under inequality constraints to avoid colli-
sion. The robot and the environment must consists of strictly
convex objects. [2] extends this method to avoid local minima
by modifying the task description in heavily cluttered environ-
ment. [3] proposes another approach for avoiding collision by
following the distance gradient. The robot is approximated by
a set of strictly convex objects (ellipsoids).

Recent developments of humanoid robots have made the
issue of collision detection and avoidance very critical again.
[4] proposes a path planning method which computes dy-
namically stable and collision-free trajectories. It prepares
a set of statically stable postures in advance and finds a
path by exploring it with RRT-connect[5]. And the path is
transformed into a dynamically stable trajectory by applying
a dynamics filter[6]. [7] proposes a fast method to ensure that
there is no self-collision in a trajectory. Shapes of the robot
are approximated by convex hulls and the minimum distances
between them are tracked using V-Clip[8]. [9] proposes a local
collision avoidance method using repulsion fields defined by

Fig. 1. “Pick up an object under the table” example

the minimum distance. [10] combines three methods to detect
self-collisions online, (1) table look-up to detect self-collisions
between adjacent joints and (2) reduction of pairs of links to
be checked using heuristics, and (3) collision check using ap-
proximated shapes by convex hulls. [11] approximates shapes
by spheres and swept sphere lines and used the minimum
distances between them to avoid self-collision. [12] computes
a strictly convex bounding volume called STP-BV by patching
spheres and toruses for each body of a humanoid robot and
builds collision-free postures.

Many works have focused on approximating the robot by
strictly convex objects but to our knowledge, very few has
been done to deal with non-strictly convex objects without
geometric approximation.

In this paper, we extend the method described in [1] to
non-necessarily convex polyhedral objects, in such a way that
the resulting velocity of the robot is continuous. The basic
framework is same as in [1]. The robot velocity is computed
by minimizing difference between the desired task veloc-
ity and the planned one under linear inequality constraints
implied by pairs of objects close to each other. The main
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difference is the way of generating constraints. In the case
of strictly convex objects, one constraint over the velocity
of the closest points between two objects is enough. The
minimum distance and the closest points between non-strictly
convex objects can be computed using efficient algorithms
and robust implementations[13, 14, 15, 16]. But performing
collision avoidance by applying a linear inequality constraint
over the velocity between the closest points might result in
discontinuous velocities for the objects. Because the closest
points between two strictly convex objects move continuously
whereas the closest points between non-strictly convex ob-
jects do not. If one object is a robot body, discontinuous
velocity cannot be applied. So in the case of polyhedra,
several constraints are generated for each pair of objects unlike
the method in [1]. Our method reduces the problem of the
continuous interaction generation between polyhedra to the
continuous constraints generation between faces and manages
the continuity of those constraints using the combinatorics
based on Voronoi regions of a face.

The paper is organized as follows. In section II, we recall
Faverjon and Tournassoud’s method for strictly convex objects.
In section III, we extend the method to make it possible
to accept polyhedra. In section IV, the extended method
is examined using example cases of simple objects and a
humanoid robot HRP-2[17]. In section V, we summarize and
conclude the paper.

II. A LOCAL METHOD FOR STRICTLY CONVEX OBJECTS

A. Strictly convex objects

First, let us recall the following definition.
Definition: Strictly convex object. Let O be a closed subset of
R3 and int(O) be the interior of (greater open subset of) O.
O is strictly convex if and only if

∀A ∈ O,∀B ∈ O,∀λ ∈ R, 0 < λ < 1, λA+(1−λ)B ∈ int(O)

For instance, a convex polyhedron is not strictly convex. If
two points on a facet are selected as A and B, the line segment
linking them is not inside the interior of the polyhedron but
on the facet.

B. Outline of the method

Let us recall the principle of Faverjon and Tournassoud’s
method [1]. Let O1 and O2 be two strictly convex objects.
For ease of explanation, let’s consider O1 as a movable object
and O2 as a static one. Let p1 and p2 denote the closest points
between O1 and O2 and d does the distance ‖p1−p2‖ between
them (Fig. 2). Since O1 and O2 are strictly convex objects,
p1 and p2 move continuously on O1 and O2 boundaries and
d is continuously differentiable.

If d is smaller than a threshold called influence distance and
denoted by di, the following constraint is defined for velocity
of d:

ḋ ≥ −ξ d− ds
di − ds

(1)

where ξ is a positive coefficient for adjusting convergence
speed, ds(< di) is a positive value called security distance.

Fig. 2. Faverjon and Tournassoud’s method

Inequality (1) is called velocity damper and it expresses that
d must not decrease too fast when it is smaller than di. As
the result, d never be smaller than ds. The region where d
is smaller than di is called influence zone. Note that ḋ must
satisfy Inequality (1) when p1 enters influence zone. If it
doesn’t, ḋ is constrained discontinuously. Therefore, the value
of ξ must be tuned according to applications.
ḋ is computed by the following equation.

ḋ = (ṗ1|n)

where n is the unit vector (p1 − p2)/d and notation (u|v)
refers to the inner product of vectors u and v.

Let q denote the configuration and q̇ the velocity of the
robot. The velocity of p1 can be expressed as:

ṗ1 = J(q,p1)q̇

where J(q,p1) is a Jacobian matrix of O1 at p1. Inequality (1)
thus becomes a linear inequality constraint over the robot
velocity q̇:

(q̇|J(q,p1)Tn) ≥ −ξ
d− ds
di − ds

A task is described by the control of a measure of the
problem, a vector τ (q) in a task space. The task is achieved by
finding q which satisfies τ (q) = 0. Given a desired task ve-
locity τ̇ , the robot velocity to achieve the task while avoiding
collision is computed by solving the following optimization
problem over q̇:

min
q̇

‖Jτ (q)q̇ − τ̇‖2

subject to (q̇|J(q,p1)Tn) ≥ −ξ
d− ds
di − ds

.
(2)

where Jτ (q) is a Jacobian matrix of τ (q) at q.
Of course, considering each body of the robot and several

obstacles yields several inequality constraints.
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C. Lower bound of the distance between O1 and O2

If we denote by d(t) the minimum distance between O1

and O2 along time, d(t) is continuously differentiable. If a
condition on the derivative ḋ of d:

∀t > 0, ḋ(t) ≥ −ξ d(t)− ds
di − ds

and the initial condition d(0) ≥ ds are satisfied, then the
following condition is derived.

∀t > 0, d(t) ≥ ds + (d(0)− ds)e
− ξ

di−ds
t
> ds (3)

This proves that the distance between objects constrained by
velocity damper never be smaller than ds.

III. A LOCAL METHOD FOR NON-STRICTLY CONVEX

POLYHEDRA

A. A discontinuous case of non-strictly convex polyhedra

If we apply Faverjon and Tournassoud’s method to non-
strictly convex polyhedra, the robot velocity changes discon-
tinuously since the closest points between two objects move
discontinuously. Fig. 3 and Fig. 4 show snapshots and results
of an example case. In this example, a rectangle(0.2×0.8[m])
moves above an horizontal floor. The task of the rectangle
is to move its center pc(q) from (0.0, 0.7)T [m] to pg =
(0.0,−1.0)T [m]. Parameters of velocity damper, di, ds and ξ
are set to 0.4[m], 0.2[m] and 0.5[m/s] respectively. τ̇ is given
by:

τ̇ = δτmax
pg − pc(q)
‖pg − pc(q)‖

where δτmax is set to 0.2.
Top left picture of Fig. 4 shows the minimum distance

between the rectangle and the floor. Top right picture displays
the vertical position of the rectangle. Bottom left and right
pictures show the linear velocity along Y axis and the angular
velocity respectively. One of vertices of the bottom edge of
the rectangle, C1 enters into influence zone at t = 0.25. But
the velocity of C1 is not affected since its velocity satisfies
Inequality (1). From t = 0.5, the object velocity is affected
by velocity damper. The center must move downward with the
constant speed to achieve the task but the admissible speed of
C1 is limited. As a result, the object rotates. Around t = 2.0,
the bottom edge of the rectangle becomes almost parallel
to the ground, the closest points start to oscillate between
C1 and C2. The object rotates clockwise to achieve the task
when C1 is constrained and does counterclockwise when C2

is constrained. As a result, the minimum distance becomes
smaller than ds and the rectangle eventually collides with the
floor at t = 3.0.

The collision-freeness is not assured anymore when the
robot bodies and obstacles are not strictly convex as shown.
The oscillation of the closest points causes discontinuous
changes of p1 and n in Problem (2) and it leads to disconti-
nuity in the solution of Problem (2) as we can see in Fig. 4.

Fig. 3. Example of a discontinuous constraint

Fig. 4. Results of the example

B. Decomposition of interaction between polyhedra

The goal of this section is to define the inequality constraints
in such a way that q̇ remains continuous. To cope with this
issue, we propose to keep track of several pairs of points that
move continuously on the facets of the polyhedra composing
the obstacles and robot.

Discontinuity of constraints happens in the following cases.

1) a new constraint appears suddenly
2) a constraint disappears suddenly

The closest points jump discontinuously if these two cases
happen at the same time.

In order to prevent these cases and generate a collision-
free motion with continuous velocities, pairs of points must
be selected by complying with the following rules.

1) the closest points between a robot body and an obstacle
must be constrained to guarantee that the robot never
collides.

2) the potential closest points must have been constrained
before they become the closest points.

3) the closest points must continue to be constrained even
if they are not closest anymore.

Let us decompose the interaction between polyhedra into a
set of interactions between faces. Polygonal faces are assumed
to be decomposed into triangles1.

1In the following, features of a triangle are the triangular (open)face, the
three edges and the three vertices.
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The continuous motion between polyhedra, O1 and O2

can be achieved if each triangle of O1 moves with continu-
ous velocity against each triangle of O2. Therefore we can
focus on an interaction between triangles, T1 and T2. The
continuous motion between Ti and Tj can be achieved if
each edge of T1 moves with continuous velocity against T2
and each edge of T2 moves with continuous velocity against
T1. Finally the interaction between polyhedra is decomposed
into interactions between an edge and a triangle as shown
in Fig. 5. It means that the continuous interaction between
polyhedra can be achieved if we can find a method to realize
a continuous interaction between an edge and a triangle. In the
same way, the continuous interaction between a robot and the
environment which consists of several polyhedra respectively
can be achieved if each polyhedron of the robot moves in
continuous way against each polyhedron of the environment.

Fig. 5. Decomposition of interaction

C. Constraint generation using Voronoi regions

Next, let us find pairs of points to be constrained to realize
the continuous interaction between an edge and a triangle.
The pairs of points to be constrained depend on the Voronoi
regions in which the edge lies. The Voronoi region is defined
as follows.
Definition: Voronoi region VR(X) for feature X . A Voronoi
region associated with a feature X of a triangle is a set of
points that are closer to X than any other feature.

The Voronoi plane is also defined as follows.
Definition: Voronoi plane VP(X,Y ) between neighboring
features X and Y . VP(X,Y ) is the plane containing
VR(X) ∩ VR(Y ).

Since a triangle consists of a face F , three edges Ei(i =
1, 2, 3) and three vertices Vi(i = 1, 2, 3), 3D space around the
triangle is separated into 7 Voronoi regions.
Case1 : The edge is in VR(F)
The closest point jumps from one of end points of the edge to
the other when the edge and the triangle are almost parallel.
Therefore, two pairs, (V1,V ′

1) and (V2,V ′
2) are constrained,

where V1 and V2 are end points of the edge. (a, b) denotes a
pair of points, a and b and V ′

i(i = 1, 2) denotes a projection

of Vi onto F along its normal vector. Any point on the edge
can be the closest point when the edge and the triangle are
parallel. But we don’t need any additional pair since both end
points are already constrained and they are also the closest
points.
Case2 : The edge is in VR(E)
The closest point jumps from one of end points of the edge
to the other when the edge and E are almost parallel. So two
pairs, (V1,V ′

1) and (V2,V ′
2) are constrained, where V ′

i(i =
1, 2) is a projected point of Vi onto E . The closest points
between the edge and E coincides with one of two pairs in
some cases, but doesn’t in other cases. Therefore, one more
pair for the closest points is added. Three pairs are created as
a consequence.
Case3 : The edge is in VR(V)
The closest point moves continuously on the edge. So the pair
of the closest points is constrained.

Fig. 6. Constraints generated between an edge and a triangle

So far, we considered cases the edge lies in one of the
Voronoi regions of the triangle. But in most cases, the edge
may move to another Voronoi region and lie in several Voronoi
regions at the same time. Therefore, the edge is decomposed
into several line segments again by clipping it with Voronoi
planes.

Before this decomposition, we need to confirm that conti-
nuity of constraints is kept when an edge goes into another
Voronoi region. When the edge moves between VR(F) and
VR(E), continuity of constraints are maintained since end
points of decomposed line segments are on VP(F , E) and
they produce the same constraints. However, in other cases,
constraints may appear or disappear suddenly. An example is
shown in Fig. 7. The edge is moving from VR(V) to VR(E).
When an end point of the edge touches VP(V, E) and a new
constraint appears suddenly. In the reverse case, the constraint
disappears suddenly.

This discontinuity can be solved by adding two more
constraints on both end points of the edge when it is in VR(V).

Finally, the algorithm to pick up pairs of points to be
constrained is described as in Algorithm 1-4.

Algorithm 1 decomposes interaction between polyhedra,
O1 and O2 into interactions between triangles. Function
DISTANCE BOUND(O1, O2, di) filters out such pairs of
triangles that distances between triangles are bigger than di.
This function is very important to improve efficiency and it can
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Fig. 7. Appearance/disappearance of a constraint

Algorithm 1 PAIRS POLYHEDRA(O1, O2)
pairs← ∅
triangle pairs←DISTANCE BOUND(O1, O2, di)
for all (T1, T2) ∈ triangle pairs do
pairs← pairs ∪ PAIRS TRIANGLES(T1, T2)

end for
return pairs

be implemented easily using techniques for collision detection
such as OBB-Tree.

Algorithm 2 PAIRS TRIANGLES(T1, T2)
pairs← ∅
for all E2 ∈EDGES(T2) do
pairs← pairs ∪ PAIRS EDGE TRIANGLE(E2, T1)

end for
for all E1 ∈EDGES(T1) do
pairs← pairs ∪ PAIRS EDGE TRIANGLE(E1, T2)

end for
return pairs

Algorithm 2 decomposes interaction between triangles, T1
and T2 into interactions between an edge and a triangle.
Function EDGE(T ) returns the set of edges that compose T .

Algorithm 3 decomposes interaction between an edge and a
triangle into interactions between a line segment and a triangle.
A function VORONOI CLIP(E , VR(f)) clips a part of E
which is in VR(f).

Algorithm 4 generates pairs of points to be constrained.
Function VERTICES(S) returns the set of end points of S, a
function PARALLEL(S1, S2) checks two segments are parallel
or not, and a function CLOSEST PAIR(A, B) computes the
closest points between geometric elements A and B.

After pairs are computed, velocity damper is inserted
between each pair of points if the distance between those
points is smaller than di.

In this procedure, constraints are generated on all end points
of line segments. Since end points are shared by several line
segments, duplicated pairs are generated. A duplicated pair
is also generated when the closet point coincides with one of
the end points. Therefore, we need to check duplication before
adding a new pair.

Algorithm 3 PAIRS EDGE TRIANGLE(E , T )
pairs← ∅
for all f ∈ {F , E1, E2, E3,V1,V2,V3} do
S ←VORONOI CLIP(E , VR(f))
if S then
pairs ← pairs ∪ PAIRS SEGMENT FEATURE(S,
f )

end if
end for
return pairs

Algorithm 4 PAIRS SEGMENT FEATURE(S, f )
pairs← ∅
for all V ∈VERTICES(S) do
pairs← pairs ∪ {CLOSEST PAIR(V , f )}

end for
if f ∈ {V1,V2,V3} then
pairs← pairs ∪ {CLOSEST PAIR(S, f )}

else if f ∈ {E1, E2, E3} then
if not PARALLEL(S, f ) then
pairs← pairs ∪ {CLOSEST PAIR(S, f )}

end if
end if
return pairs

D. Sources of discontinuous robot velocities

Solving Problem 2 is equivalent to finding the closest
point between the desired task velocity τ̇ and the space
of admissible task velocities Sτ̇ (light blue region in Fig.8).
The robot velocities which satisfy all the linear inequality
constraints(yellow regions in Fig.8) exist in the convex sub-
space(orange region in Fig.8). It is projected into Sτ̇ by Jτ .
And when the task is defined in the lower dimensional space
than the robot velocity space, a point in the task velocity space
corresponds to the subspace in the robot velocity space Sq̇(red
region in Fig.8).

There are three kinds of sources of discontinuous robot
velocities.

1) If a constraint changes discontinuously, the shape of Sτ̇
also does. As the result, the robot velocity might change
discontinuously. This source can be removed using the
constraint generation method described in this section.

2) Even all the constraints move continuously in the robot
velocity space, discontinuous robot velocities might be
generated when the task is defined in the lower di-
mensional space than the robot velocity space. This
situation is similar with solving inverse kinematics at
singular postures. SR-Inverse[18] is proposed to prevent
the robot velocity from going to infinity. The same thing
can be realized by modifying the objective function of
Problem 2 as follows:

‖Jτ (q)q̇ − τ̇‖2 + λ‖q̇‖2 (4)

where λ is a positive coefficient for adjusting strength
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of the penalty for big velocities. The added second term
put a damping effect to the robot velocity and remove
discontinuities.

3) Every point in Sq̇ is the optimal solution of Problem 2.
A point in Sq̇ might be chosen discontinuously by the
optimization algorithm. The modified objective function
changes Sq̇ into a point and this discontinuity is also
removed.

Fig. 8. Mappings between velocity spaces

IV. EXAMPLES

A. Collision Avoidance of a Single Object

The proposed method is applied to the example shown
in Section III-A to check that a collision avoidance motion
with continuous velocity can be generated. Fig. 9 shows
snapshots of the generated motion and Fig. 10 shows results
corresponding to Fig. 4. The minimum distance converges to
ds and there is no collision. And linear velocity along Y axis
and angular velocity changes in continuous way. In this case,
a constraint is generated when C1 enters into influence zone
and one more constraint is added when C2 does.

Fig. 9. Snapshots of interaction between a rectangle and the ground

Fig. 11 shows another example which includes a concave
shape and a shape with a hole. A “L” shape object which
consists of 12 triangles passes through a torus which consists
of 512 triangles. It is impossible for existing methods to plan
a collision free motion between these kinds of shapes without
approximations.

Top left of Fig. 12 shows the minimum distance. The
distance between non-strictly convex objects is continuous and
piecewise smooth. Since the closest points are constrained
at any time, the condition in Eq.(3) holds and the minimum
distance between objects never become smaller than ds. Top
right of Fig. 12 shows the number of pairs of triangles which
are found by DISTANCE BOUND(). The total number of

Fig. 10. Improved results of an example #1

Fig. 11. Snapshots of an interaction between a concave shape and a torus

pairs of triangles is 12 × 512 = 6144 whereas it is less than
100. Bottom left of Fig. 12 shows the number of constraints.
It changes along time since they are activated only if the
distance between points is smaller than di. In this example,
117 constraints are generated at a maximum. Bottom right of
Fig. 12 shows the computational time. It is measured on a
PC equipped with Intel Core 2 Duo 2.13[GHz]. It is almost
proportional to the number of pairs of triangles.

B. Collision Avoidance of a Humanoid Robot

The proposed method is also applied to a humanoid robot
HRP-2. The task of the robot is to move its left hand to
the specified position using its whole body. In addition to
constraints for collision avoidance, three kinds of constraints
are added. (1) A relative transformation of feet is kept while
reaching since the robot stands on both legs. (2) A horizontal
position of the center of mass is kept to keep static balance(We
assume the center of mass is above the support polygon at
the initial configuration.). (3) Joint angles are kept in their
movable ranges. As a result, this collision-free reaching task
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Fig. 12. Results of an example #2

can be achieved by solving the following QP problem:

minimize ‖Jhandq̇ − ṗ‖2 + λ‖q̇‖2 (5a)

subject to (q̇|JT
distjn) ≥ −ξ

dj − ds
di − ds

,

for j ∈ {1, · · · , nc}, (5b)

Jfeetq̇ = 0, (5c)

Jcomq̇ = 0, (5d)

vmaxj(qj) ≥ q̇j ≥ vminj(qj),
for j ∈ {1, ..., ndof}. (5e)

Jhand,Jcom,Jfeet and Jdistj are Jacobian matrices for
the hand position(3DOF), for the horizontal position of the
center of mass(2DOF), for the relative transformation be-
tween feet(6DOF) and for the distance between jth pair of
points(1DOF) respectively. Inequality (5b) defines geometric
constraints to avoid collision where nc is the number of pairs
of points to be constrained. In this example, di, ds and ξ are
set to 0.05[m], 0.03[m] and 0.5[m/s] respectively. Equality (5c)
defines a kinematic constraint to keep the relative transforma-
tion between feet and Equality (5d) does a dynamic one to
keep the center of mass on a vertical line. Inequality (5e)
defines kinematic constraints for joint limits, where ndof is
the number of joints. The joint velocity is limited when the
joint angle comes close to its limit. The limit is also computed
by velocity damper:

vmaxj(qj) =

⎧⎨
⎩ξ

(q+j − qj)− qs

qi − qs
if q+j − qj ≤ qi,

v+
j otherwise

(6)

vminj(qj) =

⎧⎨
⎩−ξ

(qj − q−j )− qs

qi − qs
if qj − q−j ≤ qi,

v−j otherwise
(7)

where q+j and q−j are physical upper bound and lower bound
of joint angle and v+

j and v−j are those of joint velocity of
jth joint respectively. In this example, qi, qs and ξ are set to
0.2[rad], 0.02[rad] and 0.3[rad/s] respectively.

Fig. 13 shows snapshots of the generated motion. The frame
1 shows an initial configuration. A trapezoid in front of the
robot is an obstacle and a small box close to the robot foot
indicates the target position of the hand. At the frame 2, the
left upper arm comes close to the obstacle, and constraints for
collision avoidance become active. The left shoulder avoids the
obstacle from the frame 2 to 4 and the head directs upward to
avoid collision in the frame 5. We can see that the whole
body is fully used to avoid collision and achieve the task
simultaneously. If we don’t include Inequality (5b), the left
shoulder collides with the table as shown in the frame 3’.

Fig. 13. Snapshots of “pick up an object under the table” motion

Fig. 14 shows the number of constraints(left) and the com-
putational time(right). The average computational time for one
step is about 100[ms] on the same PC with previous examples.
We can get this motion(the total duration is 14[s]) in 28[s]
when we select 50[ms] as the time step. The computational
time is not so long in this case since shape of the obstacle is
very simple. It is expected that it becomes longer drastically if
the number of obstacles and complexity of shapes increase. If
the number of pairs of triangles is too many to get a solution
within reasonable time, we can reduce the number of pairs
by using thin influence zone or simplified shapes. Even in the
latter case, simplified shapes can be non-strictly convex.

V. CONCLUSION

In this paper, we proposed a local method for collision
avoidance between non-strictly convex polyhedra with con-
tinuous velocities. The continuity is achieved by decomposing
the interaction between polyhedra into a set of interactions
between line segments clipped by Voronoi regions and tri-
angles and constraining several pairs of points on those
geometrical elements. These pairs of points can be used to
define constraints in other collision avoidance methods like
[9].
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Fig. 14. Results of a picking up motion example

In case of a humanoid robot, dynamic stability of the robot
is a very critical issue. But it is not guaranteed by our method
since ZMP [19] is not constrained directly. A generated motion
can be stable at least if it is executed with sufficiently small
speed since the center of mass is constrained above its support
polygon. In order to get a fast and dynamically stable motion,
we are trying to use the motion as an initial path of an
optimization method.
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Abstract—We present a planning algorithm called BiSpace that
produces fast plans to complex high-dimensional problems by
simultaneously exploring multiple spaces. We specifically focus
on finding robust solutions to manipulation and grasp planning
problems by using BiSpace’s special characteristics to explore
the work and configuration spaces of the environment and robot.
Furthermore, we present a number of techniques for constructing
informed heuristics to intelligently search through these high-
dimensional spaces. In general, the BiSpace planner is applicable
to any problem involving multiple search spaces.

I. INTRODUCTION

One of the long-term goals of robotics is to develop a
general purpose physical agent that can co-exist with, and
provide assistance to, human beings. Substantial progress has
been made toward creating the physical components of such an
agent, resulting in a wide variety of humanoid robots that pos-
sess amazing potential for dexterity and finesse. But progress
toward controlling such agents in real-time in unstructured,
inhabited environments has been slower.
Planning algorithms represent the state-of-the-art in control

strategies for these agents. However, in many real-world
scenarios the action possibilities for the agent can become very
high dimensional and contorted, rendering many algorithms
ineffective. Moreover, the environments in which these agents
need to operate are often not known a priori and are often
dynamic. A successful planning algorithm, therefore, must
perform quickly so that the resulting solution can be executed
before the environment changes substantially.
In response to these planning challenges, a number of

sampling-based search algorithms, such as the Rapidly-
exploring Random Trees (RRT) family of algorithms [1], have
been developed which demonstrate encouraging empirical
performance on high-dimensional planning problems. RRTs
in particular are easy to implement and have shown fast
convergence to feasible solutions on a wide variety of motion
planning scenarios [1, 2, 3, 4, 5].
In this work, we focus on the problem of mobile robotic

manipulation. Specifically, the robot must be able to maneuver
to an object and grasp it without a human specifying a priori
where and how the object should be picked up. In these
manipulation scenarios, the robot must find a feasible motion
trajectory from its initial configuration to a grasp-achieving

Fig. 1. Humanoid robot grasps an object by autonomously searching through
the space of possible grasps and torso movements.

configuration. While most sampling-based motion planning
algorithms assume the goal is a point within the configuration
space of the robot, the goal in manipulation problems can
consist of a continuous subset of the configuration space —
any configuration of the robot resulting in a feasible grasp can
be considered a goal configuration.
For example, consider a grasping problem where the robotic

manipulator has to pick up a cup from the sink to put
in a cupboard. The manipulator first has to move its end-
effector close to the cup and then it has to achieve the
correct contacts with the cup, constraints that are inherently
defined in the workspace. In general, there is a fundamental
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mismatch between the space used to describe the goals of the
manipulation planning problem and the configuration space
used to search for a solution.
Methods exist to overcome this mismatch, such as using

inverse kinematics (IK) to transform the workspace constraints
into configuration space goals [6, 7]. However, as the dimen-
sionality of the problem increases the effective dimensionality
of the goal set increases as well, often causing these methods
to become prohibitively slow. Further, it has been shown that
such approaches can fail to converge to a valid goal and
are usually limited to finding only one of the potentially
infinite number of goals [8]. When planning through obstacle-
laden environments, having only one goal configuration is
problematic, as this configuration is not guaranteed to be
reachable from the initial configuration of the robot.
Instead, Bertram et al. [8] developed a nice extension to

the RRT algorithm that removes the need for an IK solution
and instead accommodates a goal specified in the workspace
of the manipulator’s end effector. In their approach they use a
workspace goal metric to select the configuration in the search
tree that is closest to the workspace goal and then extend
out from this configuration in a random direction. This goal
extension occurs randomly throughout the growth of the tree.
A more recent approach by Vande Weghe et. al. [9] uses

the Jacobian Transpose to do an even more focused search
toward a workspace goal. Their approach operates similar to
Bertram et al.’s except during the extension stage they use
the Jacobian Transpose to move through configuration space
in the direction of the workspace goal, resulting in a more
efficient overall search. However, both of these algorithms are
restricted to growing a single, forwards-directed search tree,
and therefore do not capture the benefits of the more efficient
bi-directional RRT approaches [10].
Thus, current approaches are limited to either approxi-

mating the desired goal configurations and concentrating the
entire search in configuration space, or to using an accurate
workspace goal representation and growing a single goal-
biased search tree. Alternatively, in the following section we
present an approach that allows us to search in multiple spaces
simultaneously, with a forwards-directed search tree grown
through one space, known as the configuration space, and a
backwards-directed tree grown in another space, known as the
goal space. This algorithm, known as BiSpace, relaxes the
need for an explicit mapping from one space to another and
in our present application is able to significantly reduce the
amount of searching that occurs in the full configuration space.
After describing the algorithm in depth we provide com-

parative results involving a collection of complex robotic
mechanisms and present an experimental results involving a
physical 11 degree of freedom manipulator arm.

II. THE BI-SPACE ALGORITHM

The core idea of the BiSpace algorithm is to grow two
different search trees at the same time. One tree explores the
full configuration space starting from the initial configuration

Algorithm 1: BISPACE(qinit, bgoals)
/* ρ ∈ [0, 1] - uniform random variable */
forward ← false1

INIT(Tf , qinit); INIT(Tb, bgoals)2

for iter = 1 to maxIter do3

if forward then4

for fiter = 1 to J do5

q ← EXTEND(Tf )6

if ρ < FOLLOWPROBABILITY(q) then7

bfollow ← NEARESTNEIGHBOR(Tf , q)8

{success, q′} ← FOLLOWPATH(q, bfollow)9

if success then10

return success11

end12

else13

for biter = 1 to K do EXTEND(Tb)14

forward ← not forward15

end16

return failure17

and guarantees feasible, executable, and collision-free trajec-
tories, while the other tree explores the backspace starting
from the set of goal configurations and acts as an adaptive,
well informed heuristic. The BiSpace algorithm proceeds by
extending RRTs in both spaces. Once certain conditions are
met, the forward tree attempts to follow the goal space tree
path to the goal (Figure 2). The algorithm combines elements
of both bidirectional RRTs and the RRT-JT algorithm [9].
For clarity, we denote a configuration with q and a goal

space configuration with b. We assume that there exists a map-
ping F (·) from the configuration space to the goal space such
that F (q) maps to exactly one goal space configuration. Using
this notation, given a goal space distance metric δb(F (q), b),
the goal of planning is to find a path to a configuration q such
that δb(F (q), bgoals) < εgoal.
The flow of the BiSpace algorithm is summarized by Algo-

rithm 1. The forward variable is used to keep track of which
tree to grow. If forward is true, then the configuration space
tree is extended J times, using the standard RRT extension
algorithm EXTEND [1]. Alternatively, if forward is false, then
the goal space tree is extended K times. After each iteration,
the value of forward is flipped so that the opposite tree is
extended during the subsequent iteration. After a new node
q is added to the configuration space tree, a follow step is
performed from q with probability FOLLOWPROBABILITY(q).
An example of such a distribution is described in detail in
Section IV-C. If a follow step is performed, then q is extended
toward bfollow and its parents.
The differences between BiSpace and BiRRTs become clear

in the follow step. In the BiRRT case, following consists of
connecting the two trees along the straight line joining q and
bfollow; this is possible since bfollow is also in the config-
uration space. Because each branch of the both the forward
and backward trees in the BiRRT algorithm represent a valid
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(1) (2) (3) (4)
Fig. 2. BiSpace Planning: A full configuration space tree is grown out from the robot’s initial configuration (1). Simultaneously, a goal back tree is randomly
grown out from a set of goal space nodes (2). When a new node is created, the configuration tree can choose to follow a goal space path leading to the goal
(3). Following can directly lead to the goal (4); if it does not, then repeat starting at (1).

collision free path in the configuration space, connecting the
two trees immediately implies a path can be found from the
start configuration to the goal configuration. However, that is
not true with the BiSpace algorithm. Since the goal space
is different from the configuration space, the path suggested
by the goal space tree must be validated in the configuration
space.
Each unique path from a node in the goal space tree to a goal

can be used by the forward tree as a heuristic to informatively
bias extension toward the goal. Starting from bfollow, such a
path can be extracted by recursively following its parents. The
forward tree can use the goal space path generated by bfollow
as a bias to greedily follow it. If the forward tree succeeds in
reaching the goal, a solution is returned (Figure 2). Otherwise,
the search continues as before.

Algorithm 2: {success, q} ← FOLLOWPATH(q, b)

/* ρ ∈ [0, 1] - uniform random variable */
success ← false1

for iter = 1 to maxFollowIter do2

best← null3

bestdist← γinflation ∗ δb(F (q), b)4

for i = 1 to N do5

q′ ← SAMPLENEIGHBORHOOD(q)6

if δb(F (q′), b) < bestdist then7

bestdist← δb(F (q′), b)8

best← q′9

end10

if best is null then11

if b.parent is null then12

break13

b← b.parent14

else15

q ← Tf .add(q, best)16

end17

success← δb(F(q), b.root) < εgoal18

/* Optional IK test */
if not success and (q’ ← IKSOLUTION(q, Tb.goals))19

then
{success, q} ← BiRRT(Tf , q, q’)20

Path following is an integral part of the BiSpace algorithm.

It generates a very powerful bias as to where the configuration
tree should grow by using the nodes in the goal space tree.
Each goal space node has already validated a subset of the
conditions necessary for the configuration tree to follow it.
Although the FOLLOWPATH function is general, we present a
simple, but effective, implementation of a stochastic gradient
approach for it (Algorithm 2). The forward tree slowly makes
progress by randomly sampling configurations that get close
to the target goal space node b. Whenever the forward tree
stops making progress, it checks if b has any parents. If it
does, b is set to its parent and the loop repeats. If there are no
more parents, the goal space distance from q to the final parent
b.root is checked: if this distance is within the goal threshold,
the function returns success; otherwise it returns false.
FOLLOWPATH can require a lot of samples if SAM-

PLENEIGHBORHOOD uniformly samples the neighborhood of
q. This is especially a problem for the high-dimensional
configuration spaces used in manipulation planning. Instead,
we sample each of the dimensions one at a time while leaving
the rest fixed. This type of coordinate descent method has
been shown to perform better than regular uniform sampling
in optimization and machine learning algorithms [11]. Further-
more, SAMPLENEIGHBORHOOD can incorporate the Jacobian
transpose idea from [9] to further bias samples in the correct
direction. Because it is not always beneficial to be greedy due
to many local minima, we introduce γinflation to relax the
distance metric we are minimizing1.
As an optional addition to the FOLLOWPATH algorithm,

we propose using IK solutions, if they exist, to speed up
planning. After the forward tree terminates at a configuration
q, an IK solution can be checked for a subset of the DOFs
of the configuration space. If there exists a solution, we can
run a bidirectional RRT using the subset of DOFs used for
IK to find a path from q to the new goal configuration. For
example, if a 7 DOF arm is mounted on a mobile platform,
its full configuration space becomes 10 dimensional, however,
the arm’s IK equations will still remain 7 dimensional. In
this case, IKSOLUTION(q, goals) will use the arm’s position
from the last configuration q and check the standard arm IK.
Having such a check greatly reduces planning times and is

1This has a similar effect to inflating the goal heuristic in A*. We use
γinflation = 1.4 for all results.
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Fig. 3. The hand and arm area treated separately in the grasp planning
framework. Only the hand is allowed contact with the environment. The arm
is only used for planning.

not prohibitively expensive if the IK equations are in closed
form. While some algorithms ignore IK solutions, BiSpace can
naturally use inverse kinematics to its advantage. Empirical
results suggest that BiSpace can experience a 40% decrease
in planning time when exploiting available IK solutions.
However, it should be noted that having inverse kinematics
equations for a robot does not guarantee feasible solutions
can be efficiently found.

III. APPLICATIONS TO MANIPULATION AND GRASP
PLANNING

In grasp planning, the task is to plan for an arbitrarily
complex robot to move to pick up any object in the envi-
ronment. Ideally, the planner decides how to best grasp the
object and how to manipulate the robot to achieve the desired
grasp. Recently, [6] proposed a method to solve this problem
when the robot is stationary and there exist IK equations that
provide an efficient mapping from workspace to configuration
space. They use a two-tiered approach: they first find the
workspace positions of any feasible grasps by sampling from
a precomputed table and testing in the real environment, then
seed a BiRRT planner with the IK solution of each of those
workspace positions. Applying their method to a mobile robot
poses several challenges because it relies on producing fast
configuration space goals from workspace positions of the end-
effector of the robot. As we show, this two-tiered approach is
much slower than using BiSpace. Nevertheless, our systems
level approach to solving manipulation and grasp planning for
mobile robots is inspired from their method (Figure 4).
We divide each robot into two semantic pieces: the hand

and the arm (Figure 3). Only the hand can make contact
with the target object. Following [6], grasp tables can be
precomputed for every hand-object pair. These grasp tables are
computed with the detached hand approaching the object from
all possible directions with all possible preshapes; usually the
final tables are on the order of 300-800 good grasps per object
(Figure 1). In the real environment, each grasp in the table
is tested against the object and environment for collisions.
Note that collisions are only checked with the detached hand

Fig. 4. A framework for grasp planning. BiSpace allows exploration of the
space without locking down on a particular IK solution.

since the full configuration of the robot is unknown. Once a
collision-free grasp is found, we treat the final hand pose as
the goal. The goal of the BiSpace planner is now to move
the robot so that the hand attached to it achieves the desired
grasp. For simplicity we assume that the planner only moves
the arm and the mobile base it is mounted on.
Since BiSpace is a randomized algorithm, in general it

cannot detect in a finite amount of time that a given collision-
free grasp is impossible to reach. Therefore, seeding BiSpace
with only one grasp at a time is dangerous as the planner might
never find a solution. Instead, it is favorable to seed the BiS-
pace planner from the beginning with as many feasible grasps
as possible using the precomputed grasp tables, increasing the
likelihood that at least one of the grasps can be reached. Since
the EXTEND operation is not affected by the number of trees
being grown, incorporating multiple goals in the goal space
does not affect efficiency [12].

IV. MANIPULATION PLANNING HEURISTICS

We introduce several heuristics to the BiSpace planner in
order to improve planning efficiency. Each of these heuristics
assumes that every robot is composed of a mobile base and at
least one arm whose end-effector is used to make contact with
the target objects. Note that no assumptions are made about
the kinematics of any of the robot’s parts, and both humanoid

162



and wheeled robots are applicable in this framework (as we
demonstrate in Section V). Furthermore, each heuristic can
be automatically derived for any robot platform, making them
ideal for general use.

A. Base Reachability

Many researchers have shown that using some form of goal
biasing by modifying the configuration space sampling distri-
bution greatly reduces planning times. This section tackles the
problem of intelligently biasing configuration space samples
when the only goals given are the final grasps.
Given a target grasp g, we would like to quickly compute a

distribution Pg(p, θ) over the 2D placement (p, θ) of the base
of the robot for which g will be successful.
We first perform a kinematics workspace analysis for the

arm similar to [13]. Figure 5 shows the hand reachability
volume generated for the HRP2 humanoid robot. This was
computed by randomly sampling a 6D end-effector position
around the space of the humanoid’s shoulder and querying for
an IK solution. It can similarly be computed by randomly
sampling arm configurations and storing their resultant 6D
end-effector. We store all the valid 6D end-effector positions
in X = {(xq, xt)} where xq and xt are the rotation and
translation associated with the transformation of the end-
effector. Clearly, to succeed in the planning for a specific
grasp, the robot should move its body so that its reachability
volume coincides with the particular grasp.
Each grasp g represents an affine transformation where gt is

the translation and gq is the rotation. Our goal is to find similar
grasps to g in X and perform simple counting to extract a
probability of existence of an IK solution.
We begin by defining a rotation on the plane as Rn(θ) where

n is the normal vector to the plane the robot rotates on. The
group of all rotations on the plane is denoted by

Qn = {Rn(θ) | θ ∈ S1} (1)

We can now define an equivalence class of rotations that differ
only by a rotation about the plane as

gq Qn = {r ∗ gq | r ∈ Qn}. (2)

where ∗ denotes the action of applying one rotation after
another. We then define the equivalence class of all similar
grasps up to a rotation on the plane as

Xg = {(gq, (gq ∗ x−1
q )(xt)) | x ∈ X , xq ∈ gq Qn} (3)

where (gq∗x−1
q )(xt) transforms the position of the end effector

from the frame of the robot (in the reachability map) to the
frame of the grasp.
We compute equivalence classes for the entire set X by

sampling xi, storing its equivalence class Xi and continuing
sampling from X − X i. Doing this greatly reduces the number
of grasps from over 100, 000 in X to about 100 equivalence
classes. In practice, we accept grasps if they are within a
threshold of the rotation xq.
We now compute the inverse reachability volume Dg(p, θ)

for each equivalence class g. Note that each end-effector

Fig. 5. 6D hand reachability from a given base placement projected in 3D.
Shown are three different views of the reachability volume. Dark opaque areas
contain more reachable end-effector positions.

position xt where x ∈ Xg has been aligned to the frame of
the grasp g. p and θ are still in world coordinates and need
to be converted to the grasp coordinate system induced by g.
This is achieved by

Dg(p, θ) = { ‖xt − (Rn(θ) ∗ gq)−1(gt − p)‖ < ε | xt ∈ Xg}
(4)

Finally the inverse reachability map converts Dg(p, θ) into
a probability distribution as

Pg(p, θ) = exp

⎧⎨
⎩−ω

(∑
d∈Dg(p,θ)

d

|Dg(p, θ)|

)2
⎫⎬
⎭ (5)

Views of the map for various equivalence classes g in a
sample scene for the HRP2 humanoid are shown in Figure 6.
To test the effectiveness of the inverse reachability map, we

randomly sampled base positions using Pg(p, θ) to see if they
would contain feasible IK solutions. Empirical results showed
that Pg(p, θ) was able to generate a feasible base placement
2.5 times faster than uniform sampling around the grasp.

B. Workspace Exploration

As humans, we employ different navigation strategies based
on our distance to a goal object. When a person is far away
from an object of interest, they care primarily about moving
their body in a direction that will get them close to the object.
When they are close, they usually plant their feet and use
their arms to make contact with the object. We can achieve
the same behavior in BiSpace by modifying the configuration
space distance metric such that

δ(q) = |ω(q)qarm|+ |qbase| (6)

where qarm is the degrees of freedom associated with the
arm. When the robot base is far away from the goal, the weight
ω should be small so that the robot takes bigger steps on
average. This suggests a simple monotonic function for ω:

ω(q) ∝ exp
{
−mini |goali −BasePosition(q)|2

2σ2

}
(7)

where σ is proportional to the length of the arm. Figure 7
demonstrates the behavior of BiSpace when using the modified
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Fig. 6. Base placements derived from the goal space goals. As described in the text, these placements can be efficiently generated using the pre-computed
hand reachability volume.

Fig. 7. Comparison of how the distance metric can affect the exploration
of the arm. The top image shows the search trees (red/black) generated when
the distance metric and follow probability is weighted according to Equation
6. The bottom image shows the trees when the distance metric stays uniform
across the space; note how it repeatedly explores areas. The goal space trees
are colored in blue.

distance metric, and empirical results show that planning times
reduce by 20% when this metric is used.

C. Follow Probability

The farther the robot is away from the goal, the less chance
it will have of reaching it through FOLLOWPATH. The reason
is because FOLLOWPATH itself is not exploration-centric like
RRTs; it is meant for greedily approaching the goal when
the body and hand of the robot are relatively unobstructed by
complex environment obstacles. We propose two metrics to
compute the follow probability: the hand reachability volume
(Figure 5) or the distance falloff ω(q) (Equation 7). Both

metrics monotonically decrease as the robot gets farther from
the goal. The hand reachability is more informed since it is
a 6D table reflecting the real arm kinematics while ω(q) is
much easier to compute and often very effective (Figure 7).
The correct follow probability can have a dramatic effect on
planning times, sometimes reducing it by 60-70%.

V. RESULTS

For all planners, simulations, and real-robot experiments,
we used an open-source planning test-bed called OpenRAVE
[14]. There are few existing algorithms that work in high-
dimensional spaces and cope with goals that are not specified
explicitly in the configuration space, making direct comparison
of BiSpace a little challenging. We chose to compare BiSpace
with RRT-JT [9] and the two-tiered BiRRT approach described
in Section III. Whenever the robot is mobile in a test scene,
it adds 3 degrees of freedom to its configuration since its
base can translate and rotate freely on the floor. Because
randomized algorithms are known to have a long convergence
tail, we terminate the search after 10-20 seconds and restart.
This termination strategy produces much faster average times
for all algorithms. Note however that every termination counts
against the final planning time for that particular algorithm.
Termination times were uniquely set for each algorithm in or-
der to give it the fastest possible average time. Each algorithm
is run on each scene 16-30 times, and the average planning
time is recorded in Table I. Other parameters like RRT step
size and goal thresholds were kept the same for all algorithms.
To demonstrate the generality of the proposed algorithms, we
produced results using both the HRP2 humanoid and a WAM
arm loaded on a segway (Figure 8).
Since BiRRTs operate only in the full configuration space

it would be unfair if they were seeded with the final solutions
without any penalties. In order to make comparison fair, we
randomly sample full configuration solutions for a given target
grasp until a collision-free, feasible configuration is generated.
The recorded time is added to the final planning time. The
sampling takes somewhere from 2-9 seconds for HRP2 and
less than 1 second for the WAM on segway2.

2The large difference in sampling times is because the reachability area for
the WAM is much larger
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Fig. 8. Scenes used to compare BiSpace, RRT-JT, and BiRRTs.

Fig. 9. Hard scene for BiSpace. The forward space tree (red) does not explore
the space since it is falsely led over the table by the goal space tree (blue).

BiSpace RRT-JT BiRRTs

HRP2 table (11 DOF, easy) 33 53 68
HRP2 table (11 DOF, harder) 45 528 78
HRP2 random (11 DOF) 37 170 40
WAM/segway (10 DOF) 17.25 25.2 22.93
WAM (7 DOF) 0.44 11 0.37

TABLE I
AVERAGE PLANNING TIME IN SECONDS FOR EACH SCENE.

A. HRP2

When planning for the HRP2 robot, we make the assump-
tion that its base can freely travel on the floor and the legs
do not need to move. Once BiSpace has planned a global
trajectory, later footstep planners can add the necessary leg
movements and dynamics to make the HRP2 move. In order
to allow for leg space, an invisible cylinder is super-imposed
over the lower body. Thus the planning space for HRP2 is
reduced to 11 degrees-of-freedom: 3 for the base, 1 for the
waist, and 7 for the arm. As can be seen from Figure 5, most
of the hand reachability lies shoulder height to the side of the
robot. This makes it hard for the robot to manipulate objects
in front of it at waist height, which is why all the planners
require significant planning time.
One of the hardest scenes for BiSpace is when the target

object is on a table and HRP2 has to circle the table to get to
it (Figure 9). Here, the goal space tree produces many false
paths directly over the table, which the HRP2 cannot follow to
the end. This process goes on until the rest of the configuration
space tree finally explores the space on the other side of the
table. This limitation is characteristic of bi-directional RRTs
also and provides a good example of why exploration is always
a crucial ingredient in sampling-based planners.

B. WAM

We tested two main scenes for the WAM: a living room
scenario where the WAM is mobile, and a scenario where
the WAM has to put cups in a dishwasher. The WAM arm
has 7 degrees of freedom and very high reachability making
planning very fast. BiSpace compares relatively well with
BiRRTs, however it is a little slower due to the extra overhead
in the FOLLOWPATH function. We also tested the entire grasp
planning framework using the BiSpace planner on a real WAM
arm setup (Figure 8). The WAM arm runs in real-time and can
compensate immediately for changes in the environment.
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Fig. 10. Manipulation and Grasp Planning solutions for one of the test
scenes.

Fig. 11. The real WAM arm grasping mugs.

VI. CONCLUSIONS

We presented the BiSpace algorithm for efficiently produc-
ing solutions to complex path planning problems involving
a goal space that is different from the configuration space.
We used this algorithm to plan for several mobile robots to
perform manipulation tasks. One key feature of the grasp
framework we employed is that it makes very few assumptions
about how the robot should move to manipulate its target
object, which makes it ideal for autonomous robot scenarios.
Furthermore, we showed several heuristics that exploit various

information about the kinematic structure of the mechanism
to speed up planning. Finally we presented results for a real
WAM arm loading cups into a dishwasher rack.
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Abstract—Sampling based motion planning methods have
been highly successful in solving  many  high  degree of freedom
motion planning problems arising in diverse application domains
such as traditional robotics, computer-aided  design, and compu-
tational biology and chemistry. Recent work in metrics  for 
sampling based  planners provide tools to analyze the model
building process at three levels of detail: sample level,  region
level, and global level. These tools are useful for comparing
the evolution of sampling methods, and have shown promise to
improve the process altogether [15], [17], [24].

Here, we introduce a filtering strategy for the Probabilistic
Roadmap Methods (PRM) with the aim to improve roadmap
construction performance by selecting only the samples that are
likely to produce roadmap structure improvement. By measuring
a new sample’s maximum potential structural improvement
with respect to the current roadmap, we can choose to only
accept samples that have an adequate potential for improvement.
We show how this approach can improve the standard PRM
framework in a variety of motion planning situations using
popular sampling techniques.

I. INTRODUCTION

The general motion planning problem consists of finding
a valid path for an object from a start configuration to a
goal configuration. In the traditional application of robotics,
a valid path is defined as a collision-free path. Many of the
techniques originally designed for robotics have been extended
to other applications such as the study of protein folding in
Biology and Chemistry [3], [5], [21]–[23], virtual prototyping
in manufacturing and mechanical design [4], [8], and the
simulation of characters for animation and games [13], [14].

Unfortunately, exact or complete motion planners are in-
tractable for most practical problems because the complex-
ity grows exponentially with the problem’s dimensionality
[20]. This led researchers to explore sampling based methods
and create incomplete approximate solutions. One popular
sampling-based method is the Probabilistic Roadmap Method
(PRM) [11] which randomly builds a roadmap representation
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of the planning space. Many heuristics have been added to the
PRM framework [1], [6], [9], with the overall goal to increase
the distribution of samples in regions of the space that model
highly constrained robot motions. As a result, there are many
planners to choose from and it is not always clear how to
choose among them.

Dynamically adapting the planning strategy to features
discovered in each problem [7], [10], [16], [18], [24] has
been successful in addressing the shortcomings of a particular
sampling strategy. However these methods need metrics that
gather relevant information about the planning process in order
to make effective decisions to adapt the planning strategy.

Another area of research focuses on creating minimal
roadmaps. VISPRM [19] is a strategy that achieves minimal
roadmaps by accepting only the necessary samples; samples
are accepted only if they improve the structure of the roadmap,
and this criterion is tested in brute-force manner.

In our previous work, we have developed online metrics
[15], [17] to monitor the sampling process to estimate the
performance of the model building process at three levels
of detail: at the sample level, how “good” and efficient are
the samples created? At a small region level, how well are
the small locally-homogeneous regions in the large high-
dimensional space being explored? At a global level, how
well is the “global view” of the high-dimensional space being
modeled? Unfortunately, these questions cannot be directly
answered because there is not a perfect solution to compare
with. These questions are answered indirectly by measuring
the relative performance change over small time intervals for
each of the three levels of detail. The overall goal of this work
is to use the online performance metrics in creating adaptive
sampling algorithms to solve more complex problems.

In this paper we develop a metric and filtering strategy to
estimate the potential roadmap structural improvement of a
new sample. This estimate of improvement can be used with
a threshold to bias the sampling process towards new samples
that have a higher potential for structural improvement. We
show that this addition to the PRM framework can increase
the speed of roadmap convergence but may come at the price
of roadmap quality.

The remainder of this paper is organized as follows: Section
II introduces previous work in filtering strategies for PRM;
Section III covers how we define and calculate Roadmap
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Structure Improvement; Section IV describes the experimental
analysis of this method, and compares the speed of conver-
gence and roadmap quality of the different strategies; Section
V discusses our final conclusions.

II. PRM FILTERING STRATEGIES

The basic PRM framework [11] builds a C-Space roadmap
model in two main steps: node generation and node con-
nection. Node generation consists of randomly sampling
configurations, testing them, and keeping the valid ones as
roadmap vertices. For the valid samples kept in the roadmap,
a neighborhood of potential edge candidate samples in the
roadmap is gathered using some simple heuristic (e.g. k-closest
neighbors). Edges between the sample and its neighborhood
are tested with a local planner, and the valid transitions are
kept as roadmap edges. The resulting roadmap can be queried
as many times as needed.

To improve the performance of roadmap construction, many
filtering techniques have been proposed. The general aim of
this filtering is to reduce sampling and local planning in
areas that are easily mapped (oversampling) while biasing the
exploration to the difficult regions of C-Space. At the node
level, sometimes called node generation, filtering is done to
bias sampling to difficult regions of the C-Space; GAUSS-
PRM [6], BRIDGE-TEST [9], and OBPRM [1] are examples
of node-level filtering. Similarly, edge pairs can be filtered
in different ways from k-closest or neighborhood-radius to
more advanced methods like VISPRM [12]. Table I briefly
summarizes the PRM filtering techniques mentioned in this
work.

TABLE I

ROADMAP-BASED PLANNERS STUDIED

Method Node-level Filtering Edge-level Filtering

BASIC-PRM
[11]

only basic CD filter k-closest neighborhood

GAUSS-PRM
[6]

after CD check k-closest neighborhood

BRIDGE-
TEST [9]

after CD check k-closest neighborhood

OBPRM [1] only basic CD filter k-closest neighborhood
VISPRM [12] after all edge checks all nodes not in current

connected component
STRUCTURAL

IMPROVE-
MENT

FILTERING

based on roadmap
structure, before edge
checks

based on roadmap
structure, before edge
checks

Most of the filtering strategies shown in table I filter based
on information gathered during collision detection tests. For
example, in GAUSS-PRM and BRIDGE-TEST many samples
may be discarded based on the local region of C-Space
explored during collision detection tests (whether in open free-
space, or deep inside obstacle-space); the only samples that
remain are on the boundaries of C-Obstacles. In VISPRM
many samples (along with its fully computed edges) are
discarded if the sample and its edges fail to either merge two
connected components or to create a new one.

In this work we are proposing a new filtering strategy based
only on the current roadmap and an estimate of the structural
improvement. In this way filtering is done before expensive
edge local planning.

III. ROADMAP STRUCTURE IMPROVEMENT

In our previous work, we monitored the evolution of the
PRM process and classify each new sample. These classifica-
tions have been used to compare the quality of samples gen-
erated by different sampling strategies. As a quick summary,
each new sample X is classified as follows: (See [15], [17]
for more details.)

(a) no samples (b) visibility

new

(c) cc-create

new

(d) cc-merge

new

(e) cc-expand

new

(f) cc-oversample

Fig. 1. Classification of new nodes when modeling the C-Space of a point
robot moving in the plane shown in (a). (b) The first sample in the model with
its visibility region. (c) A new sample lying outside the visibility region of
any other sample creates another component with its own visibility region. (d)
A new sample lying in the overlap of the visibility region of two components
allows to merge them. (e) A new sample lying inside the visibility region of
one component expanding its visibility: cc-expand. (f) A new sample lying
inside the visibility region of one component without changing its visibility:
cc-oversample.

• cc-create — A new component CC with X as its only
node is created as seen in Figure 1(c). The coverage
of the roadmap increases by the coverage of X and
the connectivity and topology improve due to the new
component.

• cc-merge — X merges two or more existing components
in the roadmap as seen in Figure 1(d). The coverage, con-
nectivity, and topology improve due to the new pathways
found.

• cc-expand — X expands an existing component in the
roadmap as seen in Figure 1(e). The coverage and topol-
ogy improve due to the new pathways found.

• cc-oversample — X fails to expand the coverage of a
component in the roadmap as seen in Figure 1(f). The
coverage and connectivity remain constant.

VISPRM [19] is an aggressive strategy to eliminate cc-
expand and cc-oversample nodes. It bypasses the neighbor-
hood information for a brute-force all-pairs method to classify
the sample type. In this paper we will make comparisons to
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this work as a case where only cc-create or cc-merge nodes
are accepted.

The remainder of this section discusses how we define
structural improvement, estimate the potential structural im-
provement of a sample, and design acceptance polices for the
PRM framework.

A. Defining Structural Improvement

In this work we filter the sampling process and bias the sam-
ples towards areas that improve the structure of the roadmap.
We define structural improvement as:

• The addition of pathways previously nonexistent: cc-
merge

• Finding shorter pathways between existing nodes:
some cc-expand

(a)

Potential Improvement: 100%

Actual Improvement 100%

(b)

Potential Improvement: 100%

Actual Improvement: 0%

(d)

Potential Improvement: 0%

Actual Improvement: 0%

(e)

Potential Improvement: ∼70%

Actual Improvement: ∼70%

Fig. 2. Cases of Potential Structural Improvement vs. Actual Structural
Improvement. Solid edges represent existing roadmap pathways, dashed edges
represent potential neighbors of the new sample v.

When the addition of a new sample and its corresponding
neighbor edges reduces the distance between any two neigh-
bors there is structural improvement. For each new sample
we estimate its maximum potential to create such a structural
improvement before the edge pairs are actually checked to
improve the quality of roadmap nodes and reduce costs.

Estimating the potential before edge pairs are tested is
what differentiates this work from previous work [15], [17]
or VISPRM [12]. Previously, expensive local planners for the
edge pairs were needed to make reliable classifications or to
calculate the improvement of a new sample.

B. Estimating Sample Potential Improvement

Following the PRM framework of sample selection X and
neighborhood identification {N1, ..., Nk}, we use the existing
roadmap model to evaluate the potential structural improve-
ment of a sample X .

Figure 3 illustrates how the potential improvement of a new
sample X is computed. First, the existing pairwise pathways
between all neighbors {N1, ..., Nk} are evaluated. If it is
found that some neighbors belong to different connected
components (CC), then X is a potential cc-merge node and its
potential structural improvement is set to 100%. Each existing
graph pathway between Ni and Nj must be evaluated, and
a Single Source Shortest Path (SSSP) algorithm can be used
to obtain the pathway Pi,j . The weight of this pathway can
then be compared to the new potential pathway through X:
P ′
i,j = Ni → X → Nj . The potential improvement of X

is the maximum percentage improvement of all P ′
i,j over the

existing Pi,j . Algorithm 1 details how the maximum potential
improvement is calculated.

Algorithm 1 Calculation of potential structural improvement
Input: The new sample X , the existing roadmap R, and the

sample’s neighborhood {N1, ..., Nk}
Output: max imp – Maximum potential improvement, as a

percentage
1: max imp = 0
2: if {N1, ..., Nk} are not in the same CC of R then
3: max imp = 100%
4: RETURN
5: end if
6: for every Ni in {N1, ..., Nk} do
7: Find SSSP(R, Ni, {Ni+1, ..., Nk})
8: for every Nj in {Ni+1, ..., Nk} do
9: Pi,j = SSSP from Ni to Nj through R

10: P ′
i,j = distance from Ni → X → Nj

11: improvement = % improvement of P ′
i,j over Pi,j

12: max imp = max( max imp, improvement )
13: end for
14: end for

C. Sample Acceptance Policy

Based on a new sample’s potential improvement we can
make informed decisions about the fate of the sample. By
creating sample improvement thresholds we can effectively
filter the samples and accept the samples that yield a desired
potential improvement.

At one extreme, an improvement threshold of 0% will
accept any sample which offers any amount of improvement.
This does not accept all samples, because cases arise where
all pathways through the sample offer longer pathways than
currently exist in the roadmap.

On the other extreme, an improvement threshold of 100%
will only accept samples which are potential cc-merge nodes.
This aggressive threshold comes with quality considerations
discussed in Section IV-B.
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Fig. 3. Illustrates calculating the potential structural improvement of sample
X. N1, N2, N3 are neighbors of X . Pi,j represents existing roadmap paths
between Ni and Nj . P ′

i,j represents potential new pathways between Ni and
Nj through X .

It is important to note that delaying the sample acceptance
policy for an initial time period is necessary. During the initial
phase of roadmap building the model is in a “Quick Learn-
ing” stage [15], [17]. Here, estimations and classifications of
samples are not accurate due to the primitive knowledge in
the model. It is not until the majority of the planning space
is covered (but not necessarily connected) that the sample
estimations and classifications become accurate. In this work
the initial window is set to 20 samples; we plan to automate
this in future work.

IV. EXPERIMENTAL ANALYSIS

In this study we show the effect of both Structural Im-
provement Filtering in PRM and VISPRM as two different
sample acceptance policies. Our experimental setup, described
in detail below, shows the effect of aggressive policies that
accept few samples and how it leads to cheaper roadmap
construction at the cost of roadmap quality.

A. Experimental Setup

1) Motion Planning Environments: Throughout this paper
we study instances of the motion planning problem with
different valid and invalid densities, and with a mixture of
open spaces and narrow passages. The instances discussed are:

• The rigid-walls problem, Fig. 4 (left), has a 6-DOF

rigid-body box robot that should pass through the small
openings (slightly larger than the robot) in the walls that
divide the environment into five chambers from one side
to the other side. Three of the chambers are cluttered
with small cube-shaped obstacles. This problem has a C-
Space that is similar to its workspace, with four narrow
passages and open and cluttered spaces in between.

• The rigid-maze problem, Fig. 4 (center), has a 6-DOF

rigid-body robot that should pass through a series of
tunnels with some dead-ends from the top to the bottom.
This problem is interesting because its C-Space resembles
the workspace with two clear free areas, the tunnels
form a long and narrow passage with dead ends, and the
obstacle occupies the majority of the planning space.

• The rigid-hook problem, Fig. 4 (right), has a 6-DOF rigid-
body hook robot that should pass through the narrow
openings in the two walls that divide the environment
into three chambers from one side to the other side of
the environment. This is a difficult problem that requires
simultaneous translational and rotational motions.

2) Node Generation Strategies: We study the Node Gener-
ation strategies described in Table II.

TABLE II

ROADMAP-BASED PLANNERS STUDIED

Planner Sampling Strategy
BASIC-PRM
[11]

Uniform, keeping all valid configurations

OBPRM [1] Generate invalid samples and push them away to get
valid samples around obstacles

GAUSS-PRM
[6]

Uniform sampling, find valid samples within distance
d from invalid samples. Valid samples have a Gaussian
distribution around obstacles

BRIDGE-
TEST [9]

Uniform sampling, find pairs of invalid samples sepa-
rated a distance d and keep valid samples between pairs.

3) Neighborhood Selection and Local Planner Strategies:
We use simple heuristics for neighborhood selection and local
planning. We implemented these strategies as described in
[24]: every new sample in the roadmap attempts to connect
to the 10-closest nodes already in the roadmap by using the
straight-line and rotate-at-s local planners [2].

4) Sample Acceptance Policies: Throughout the experi-
ments in this paper, we will make comparisons between four
sample acceptance policies (Table III) in the PRM framework.

TABLE III

STYLES OF PRM STUDIED

PRM Style Description
Pure [11] The original PRM strategy, this will be our standard or

baseline comparison.
Imp=50% This will accept any sample with at least 50% potential

improvement.
Imp=100% This will accept any sample with 100% potential im-

provement.
VISPRM [12] Visibility PRM is another style of PRM which aims to

create a minimal roadmap.

5) Methods of Comparison: We compare the different
acceptance policies in two ways. In a table we average the
statistics gathered over 20 random iterations of each set of
parameters. Table IV describes the statistics we gathered and
averaged for comparison.

We also show the effects of filtering on a single run by
plotting the evolution of the diameter of the largest connected
component. For these plots we fix the random seed across the
different parameter tests to ensure that the different acceptance
policies are working with the same stream of random samples.

B. Quality Compromises

The decision to discard samples with low potential for
improvement comes at the cost of reduced roadmap quality. To
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(Walls) (Maze) (Hook)

Fig. 4. (Walls) 6-DOFcubic robot, four short passages; (Maze) solid view, 6-DOF robot, and wire view; (Hook) 6-DOFhook robot, two medium passages.

TABLE V

AVERAGE STATISTICS GATHERED WHILE SOLVING THE Maze ENVIRONMENT

Sample Acceptance Policy
Sampler Measure Pure Imp = 50% Imp = 100% VISPRM [12]

BASIC-PRM [11]

% Samples Accepted 100% † 2.92% 1.60% 0.28% †
CD-Calls 1,224,784 † 96,522 57,642 1,010,809 †

Largest CC Dia 328.2 † 327.2 338.5 434.3 †
Time Struct Imp (sec) none † 40.32 10.60 none †

Total Time (sec) 1,207.3 † 154.9 38.1 239.9 †

BRIDGE-TEST [9]

% Samples Accepted 100% † 54.79% 49.87% 19.30% †
CD-Calls 873,011 † 622,088 622,447 1,100,653

Largest CC Dia 280.4 † 287.8 245.7 509.2
Time Struct Imp (sec) none † 0.19 0.18 none

Time (sec) 256.3 † 180.2 179.8 317.2

GAUSS-PRM [6]

% Samples Accepted 100% † 12.50% 7.64% 1.66% †
CD-Calls 308,871 † 93,168 82,232 328,388

Largest CC Dia 321.7 † 325.5 326.5 436.7
Time Struct Imp (sec) none † 2.86 2.08 none

Time (sec) 99.1 † 46.5 40.1 103.9

OBPRM [1]

% Samples Accepted 100% † 82.9% 9.63% 4.41% †
CD-Calls 720,818 † 619,470 456,050 957,076

Largest CC Dia 332.9 † 346.8 409.6 917.3
Time Struct Imp (sec) none † 10.23 2.69 none

Time (sec) 219.6 † 214.7 138.5 265.8
† — represents implementations as defined in [1], [6], [9], [11], [12].

TABLE IV

STATISTICS AVERAGED FOR COMPARISON

Statistic Description
% Samples
Accepted

The ratio of samples accepted by the policy to the total
generated.

CD-Calls The total number of Collision Detections preformed.
Largest
CC Dia

The diameter of the largest connected component which
represents the vast majority of the connectable roadmap.
The distance is measured in the number of resolution ticks.

Time
Struct Imp
(sec)

The time spent calculating the estimated structural im-
provement described in this paper.

Time (sec) The total time spent in PRM: Sampling, Local Planning,
and Struct Imp. Additional time generating statistics (e.g.
Largest CC Dia) is not included.

compare the quality between the different sample acceptance
policies in PRM, we examine how the largest connected
component’s diameter evolves over the number of valid-
samples evaluated (as shown in figure 5). The Pure PRM

sample acceptance policy selects every attempt; this serves
as our quality baseline. Pure PRM provides the best roadmap
quality here because the filtering process inevitably removes
nodes and edges that would have refined existing paths in the
roadmap.

Measuring the largest component’s diameter is not an exact
measure of roadmap quality, but can be used as an approxi-
mation [24]. The diameter is the longest shortest-path in the
roadmap, and the quality we consider refers to how efficiently
the robot can move between the two extreme points in the
roadmap.

In Tables V, VI, and VII, we can evaluate the average
Largest CC Diameter. Here we see that the sample acceptance
policies Imp=50% and Imp=100% lead to roadmaps where the
diameter is only slightly larger than that of Pure, while VIS-
PRM’s more aggressive sample acceptance policy significantly
reduces the roadmap quality compared with other policies; this
can be seen in the significantly larger component diameters.
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TABLE VI

AVERAGE STATISTICS GATHERED WHILE SOLVING THE Hook ENVIRONMENT

Sample Acceptance Policy
Sampler Measure Pure Imp = 50% Imp = 100% VISPRM [12]

BASIC-PRM [11]

% Samples Accepted n/a* † n/a* 4.72% 0.47% †
CD-Calls n/a* † n/a* 200,635 4,552,916 †

Largest CC Dia n/a* † n/a* 189.0 301.6 †
Time Struct Imp (sec) none † n/a* 846.1 none †

Total Time (sec) n/a* † n/a* 1,937.4 333.4 †

BRIDGE-TEST [9]

% Samples Accepted 100% † 81.8% 71.6% 11.5% †
CD-Calls 2,438,478 † 2,406,267 1,859,074 2,633,966

Largest CC Dia 145.9 † 136.4 145.5 249.5
Time Struct Imp (sec) none † 1.15 0.84 none

Time (sec) 343.0 † 341.7 269.3 346.5

GAUSS-PRM [6]

% Samples Accepted 100% † 63.9% 43.6% 5.32% †
CD-Calls 341,562 † 130,773 121,713 1,018,312

Largest CC Dia 171.8 † 182.4 181.1 364.4
Time Struct Imp (sec) none † 14.27 11.43 none

Time (sec) 317.5 † 208.9 196.4 211.4

OBPRM [1]

% Samples Accepted 100% † 99.1% 83.5% 17.6% †
CD-Calls 122,466 † 109,750 107,483 330,648

Largest CC Dia 177.5 † 185.4 180.2 259.4
Time Struct Imp (sec) none † 0.65 0.92 none

Time (sec) 9.66 † 9.39 9.21 20.95
† — represents implementations as defined in [1], [6], [9], [11], [12].
n/a* — the planner was unable to consistently solve the problem.

TABLE VII

AVERAGE STATISTICS GATHERED WHILE SOLVING THE Walls ENVIRONMENT

Sample Acceptance Policy
Sampler Measure Pure Imp = 50% Imp = 100% VISPRM [12]

BASIC-PRM [11]

% Samples Accepted 100% † 34.4% 7.76% 4.03% †
CD-Calls 813,877 † 83,573 48,669 599,239 †

Largest CC Dia 476.3 † 527.7 518.2 936.3 †
Time Struct Imp (sec) none † 8.53 5.60 none †

Total Time (sec) 207.6 † 27.59 12.97 40.58 †

BRIDGE-TEST [9]

% Samples Accepted 100% † 89.6% 44.4% 13.7% †
CD-Calls 395,514 † 324,548 303,785 599,438

Largest CC Dia 535.7 † 582.2 610.7 1,002.7
Time Struct Imp (sec) none † 2.58 3.52 none

Time (sec) 33.19 † 29.74 27.39 42.23

GAUSS-PRM [6]

% Samples Accepted 100% † 88.5% 19.6% 10.8% †
CD-Calls 358,524 † 202,494 99,039 401,057

Largest CC Dia 486.4 † 516.5 578.7 1,034.9
Time Struct Imp (sec) none † 8.49 7.90 none

Time (sec) 51.12 † 44.56 21.01 28.27

OBPRM [1]

% Samples Accepted 100% † 95.2% 38.1% 11.4% †
CD-Calls 399,078 † 181,127 111,142 572,487

Largest CC Dia 540.2 † 590.0 649.4 1,121.7
Time Struct Imp (sec) none † 3.92 3.96 none

Time (sec) 69.83 † 25.05 14.79 40.07
† — represents implementations as defined in [1], [6], [9], [11], [12].

C. Speed of Improvement

To compare the speed of improvement between different
sample acceptance policies in PRM, we examine how the
largest connected component’s diameter evolves over the num-
ber of Collision Detections (shown in Figure 6). Both a rise
and a fall in the component’s diameter signify an improvement:
a rise corresponds to an addition of connected C-Space, and a
fall corresponds to improvements in shorter pathways. We also
show when the point at which the query for the environment
is solved, although this is a poor metric for comparisons [15],

[17], [24]. Additionally, tables of average statistics gathered
when solving the queries are shown for: Maze in Table V,
Hook in Table VI, and Walls in Table VII.

All sample acceptance policies for a given planner provide
some level of improvement over Pure; the amount of im-
provement depends on the type of planner. A combination of
node-level filtering and then structural improvement filtering
can also be advantageous. For the Maze environment, BASIC-
PRM with Imp=100% preformed best with GAUSS-PRM
and Imp=100% at a close second. In the Hook environment,
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Fig. 5. Maximum roadmap diameter over number of attempts in the Maze environment with BASIC-PRM.

OBPRM with Imp=100% outperformed the other samplers
by a large margin. In the Walls environment, BASIC-PRM
and OBPRM with Imp=100% preformed well.

All of the tests shown here show the power of intelligent
sample acceptance policies. In most cases, an intelligent
policy combined with node-level filtering can lead to signifi-
cant improvements. The trade-off in roadmap quality can be
significant for an aggressive acceptance policy. Fortunately
Structural Improvement Filtering allows the policy to be tuned.

V. CONCLUSIONS

In this paper we introduced an addition to the PRM
framework that effectively filters samples and edges thereby
increasing the percentage of samples which improve the
roadmap structure. We have created a metric that can estimate
the maximum potential roadmap structural improvement for
each new sample and we have used this metric to improve
PRM roadmap construction.

We have shown how varying the sample acceptance policy
can affect both the speed of roadmap improvement and the
overall quality of the roadmap. In particular, we have shown
that, for all samplers tested, good samples are effectively
identified without a drastic sacrifice in roadmap quality. The
largest benefit was observed when using uniform samples
produced by BASIC-PRM, making it very competitive with
the other strategies.

In the future, we plan to explore adaptive ways to control
the sample acceptance policy. In addition to filtering, we are
exploring strategies to search the roadmap and locate areas of
potential improvement to guide the sampling process. We also
plan to estimate improvement of other criteria, such as path
clearance, when filtering samples and edges.
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Abstract— Situational awareness is crucial for autonomous
driving in urban environments. This paper describes moving
vehicle tracking module that we developed for our autonomous
driving robot Junior. The robot won second place in the Urban
Grand Challenge, an autonomous driving race organized by the
U.S. Government in 2007. The tracking module provides reliable
tracking of moving vehicles from a high-speed moving platform
using laser range finders. Our approach models both dynamic
and geometric properties of the tracked vehicles and estimates
them using a single Bayes filter per vehicle. We also show how to
build efficient 2D representations out of 3D range data and how
to detect poorly visible black vehicles. Experimental validation
includes the most challenging conditions presented at the UGC
as well as other urban settings.

I. INTRODUCTION

Autonomously driving cars have been a long-lasting dream
of robotics researchers and enthusiasts. Self-driving cars
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort and
convenience. In recent years the Defense Advanced Research
Projects Agency (DARPA) has taken a lead on encouraging
research in this area. DARPA has organized a series of
competitions for autonomous vehicles. In 2005, autonomous
vehicles were able to complete a 131 mile course in the desert.
In 2007 competition, the Urban Grand Challenge, the robots
were presented with an even more difficult task: autonomous
safe navigation in urban environments. In this competition the
robots had to drive safely with respect to other robots, human-
driven vehicles and the environment. They also had to obey the
rules of the road as described in the California rulebook. One
of the most significant changes from the previous competition
is that for urban driving, robots need to have situational
awareness of both static and dynamic parts of the environment.
Our robot won the second prize at the 2007 competition. In
this paper we describe the approach we developed for tracking
of moving vehicles.

Vehicle tracking has been studied for several decades. A
number of approaches focused on the use of vision exclusively
[1, 2, 3]. Whereas others utilized laser range finders sometimes
in combination with vision [4, 5, 6, 7]. Typically these
approaches perform data segmentation and data association
prior to performing a filter update. Usually only position and
velocity of each vehicle are tracked. The vehicle tracking
literature almost universally relies on variants of Kalman
filters, although particle filters and hybrid approaches have
been widely used in other tracking applications [8, 9, 10].

For our application we are concerned with laser based
vehicle tracking from our autonomous robotic platform Junior,

Fig. 1. Junior, our entry in the DARPA Urban Challenge. Junior is
equipped with five different laser measurement systems, a multi-radar
assembly, and a multi-signal inertial navigation system, as shown in
this figure.

to which we will also refer as the ego-vehicle (Fig. 1). In
contrast to prior art we propose a model based approach which
encompasses both geometric and dynamic properties of the
tracked vehicle in a single Bayes filter. The approach naturally
handles data segmentation and association, so that these pre-
processing steps are not required. To properly model the de-
pendence between geometric and dynamic vehicle properties,
we introduce anchor point coordinates. Further, we introduce
an abstract sensor representation we call the virtual scan, that
allows for efficient computation and can be used for a wide
variety of laser sensors. We present techniques for building
virtual scans from 3D range data and show how to detect
poorly visible black vehicles in laser scans. Our approach runs
in real time with an average update rate of 40Hz, which is 4
times faster than the common sensor frame rate of 10Hz. The
results show that our approach is reliable and efficient even
in challenging traffic situations presented at the Urban Grand
Challenge.

II. REPRESENTATION

A. Probabilistic model and notation

Our goal for this work is to track multiple vehicles in an
urban environment. Our ego-vehicle has been outfitted with the
Applanix navigation system that can provide pose localization
with 1m error as well as produce a locally consistent pose
estimates based on an inertial measurement unit (IMU). Hence
we will leave ego-vehicle localization outside the scope of the
paper. Instead we will assume that a reasonably precise pose
of the ego-vehicle is always available.
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Fig. 2. Dynamic Bayesian network model of the tracked vehicle pose
Xt, forward velocity vt, geometry G, and measurements Zt.

From the theoretical standpoint, multiple vehicle track-
ing entails a single joint probability distribution over the
state parameters of all of the vehicles. Unfortunately, such
a representation is not practical because it quickly becomes
intractable as the number of vehicles grows. Also, since the
number of vehicles is unknown and variable, it is in fact
challenging to model the problem in this way. We note that
dependencies between vehicles are strong when vehicles are
close together, but become extremely weak as the distance
between vehicles increases. Hence it is wasteful to model
dependencies between vehicles that are far from each other.
Instead, following the common practice in vehicle tracking,
we will represent each vehicle with a separate Bayesian filter,
and represent dependencies between vehicles via a set of local
spatial constraints. Specifically we will assume that no two
vehicles overlap, that there is a free space of at least 1m around
each vehicle and that all vehicles of interest are located on
or near the road. This representation is efficient because its
complexity grows linearly with the number of vehicles. It also
easily accommodates a variable number of tracked vehicles.

For each vehicle we estimate its 2D position and orientation
Xt = (xt, yt, θt) at time t, its forward velocity vt and its
geometry G (further defined in Sect. II-B). Also at each
time step we obtain a new measurement Zt. See Fig. 2
for a dynamic Bayes network representation of the resulting
probabilistic model. The dependencies between the parameters
involved are modeled via probabilistic laws discussed in detail
in Sects. II-C and II-E. For now we briefly note that the
velocity evolves over time according to

p(vt|vt−1).

The vehicle moves based on the evolved velocity according to
a dynamics model:

p(Xt|Xt−1, vt).

The measurements are governed by a measurement model:

p(Zt|Xt, G).

For convenience we will write Xt = (X1, X2, ..., Xt) for the
vehicle’s trajectory up to time t. Similarly, vt and Zt will
denote all velocities and all measurements up to time t.

Fig. 3. As we move to observe a different side of a stationary car,
our belief of its shape changes and so does the position of the car’s
center point. To compensate for the effect, we introduce local anchor
point coordinates C = (Cx, Cy) so that we can keep the anchor point
Xt stationary in the world coordinates.

B. Vehicle geometry

The exact geometric shape of a vehicle can be complex and
difficult to model precisely. For simplicity we approximate it
by a rectangular shape of width W and length L. The 2D
representation is sufficient because the height of the vehicles
is not important for driving applications.

For vehicle tracking it is common to track the position
of a vehicle’s center within the state variable Xt. However,
there is an interesting dependence between our belief about
the vehicle’s shape and position (Fig. 3). As we observe the
object from a different vantage point, we change not only our
belief of its shape, but also our belief of the position of its
center point. Allowing Xt to denote the center point can lead
to the undesired effect of obtaining a non-zero velocity for a
stationary vehicle, simply because we refine our knowledge of
its shape.

To overcome this problem, we view Xt as the pose of an
anchor point who’s position with respect to the vehicle’s center
can change over time. Initially we set the anchor point to be
the center of what we believe to be the car shape and thus
its coordinates in the vehicle’s local coordinate system are
C = (0, 0). We assume that the vehicle’s local coordinate
system is tied to its center with the x-axis pointing directly
forward. As we revise our knowledge of the vehicle’s shape,
the local coordinates of the anchor point will also need to be
revised accordingly to C = (Cx, Cy). Thus the complete set
of geometric parameters is G = (W,L,Cx, Cy).

C. Vehicle dynamics model

Given a vehicle’s velocity vt−1 at time step t − 1, the
velocity evolves via addition of random bounded noise based
on maximum allowed acceleration amax and the time delay
Δt between time steps t − 1 and t. Specifically, we sample
Δv uniformly from [−amaxΔt, amaxΔt].

The pose evolves via linear motion - a motion law that is
often utilized when exact dynamics of the object are unknown.
The motion consists of perturbing orientation by Δθ1, then
moving forward according to the current velocity by vtΔt,
and making a final adjustment to orientation by Δθ2. Again we
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sample Δθ1 and Δθ2 uniformly from [−dθmaxΔt, dθmaxΔt]
for a maximum allowed orientation change dθmax.

D. Sensor data representation

In this paper we focus on laser range finders for sensing
the environment. Recently these sensors have evolved to be
more suitable for driving applications. For example IBEO
Alasca sensors allow for easy ground filtering by collecting
four parallel horizontal scan lines and marking which of the
readings are likely to come from the ground. Velodyne HDL-
64E sensors do not provide ground filtering, however they
take a 3D scan of the environment at high frame rates (10Hz)
thereby producing 1,000,000 readings per second. Given such
rich data, the challenge has become to process the readings
in real time. Vehicle tracking at 10 - 20Hz is desirable for
driving decision making.

A number of factors make the use of raw sensor data
inefficient. As the sensor rotates to collect the data, each new
reading is made from a new vantage point due to ego-motion.
Ignoring this effect leads to significant sensor noise. Taking
this effect into account makes it difficult to quickly access data
that pertains to a specific region of space. Much of the data
comes from surfaces uninteresting for the purpose of vehicle
tracking, e.g. ground readings, curbs and tree tops. Finally,
the raw 3D data wastes a lot of resources as vehicle tracking
is a 2D application where the cars are restricted to move on
the ground surface. Therefore it is desirable to pre-process the
data to produce a representation tailored for vehicle tracking.

To expedite computations, we construct a grid in polar
coordinates - a virtual scan - which subdivides 360◦ around a
chosen origin point into angular grids (Fig. 4). In each angular
grid we record the range to the closest obstacle. Hence each
angular grid contains information about free, occupied, and
occluded space. We will often refer to the cone of an angular
grid from the origin until the recorded range as a ray due to
its similarity to a laser ray.

Virtual scans simplify data access by providing a single
point of origin for the entire data set, which allows constant
time look-up for any given point in space. As we mentioned
earlier it is important to compute correct world coordinates for
the raw sensor readings. However, once the correct positions
of obstacle points have been computed, adjusting the origin
of each ray to be at the common origin for the virtual scan
produces an acceptable approximation. Constructed in this
manner a virtual scan provides a compact representation of
the space around the ego-vehicle classified into free, occupied
and occluded. The classification helps us properly reason about
what parts of an object should be visible as we describe in
Sect. II-E.

For the purpose of vehicle tracking it is crucial to determine
what changes take place in the environment over time. With
virtual scans these changes can be easily computed in spite
of the fact that ego-motion can cause two consecutive virtual
scans to have different origins. The changes are computed by
checking which obstacles in the old scan are cleared by rays
in the new scan and vice versa. This computation takes time
linear in the size of the virtual scan and only needs to be
carried out once per frame. Fig. 4(d) shows results of a virtual
scan differencing operation with red points denoting new
obstacles, green points denoting obstacles that disappeared,

(a) schematic of a virtual scan

(b) actual scene

(c) virtual scan

(d) scan differencing

(e) tracking results
Fig. 4. Virtual scan construction. In (c) green line segments represent virtual
rays. In (d) red points are new obstacles, green points are obstacles that
disappeared, and white points are obstacles that remained unchanged. In (e)
the purple boxes denote the tracked vehicles. (Best viewed in color.)
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(a)

(b)

Fig. 5. Measurement likelihood computations. (a) shows the geo-
metric regions involved in the likelihood computations. (b) shows
the costs assignment for a single ray.

and white points denoting obstacles that remained in place or
appeared in previously occluded areas.

E. Measurement model

Given a vehicle’s pose X , geometry G and a virtual scan
Z we compute the measurement likelihood p(Z|G,X) as
follows. We position a rectangular shape representing the
vehicle according to X and G. Then we build a bounding box
to include all points within a predefined distance λ1 around the
vehicle (see Fig. 5). Assuming that there is an actual vehicle
in this configuration, we would expect the points within the
rectangle to be occupied or occluded, and points in its vicinity
to be free or occluded, because vehicles are spatially separated
from other objects in the environment.

Following the common practice for modeling laser range
finders, we consider measurements obtained along each ray
independent of each other. Thus if we have a total of N rays
in the virtual scan Z, the measurement likelihood factors as
follows:

p(Z|G,X) =
N∏
i=1

p(zi|G,X).

We model each ray’s likelihood as a zero-mean Gaussian of
variance σi computed with respect to a cost ci selected based
on the relationship between the ray and the vehicle (ηi is a

1We used the setting of λ = 1m in our implementation.

normalization constant):

P (zi|G,X) = ηi exp{ − c2i
σ2
i

}.

The costs and variances are set to constants that depend on
the region in which the reading falls into (see Fig. 5 for
illustration). cocc, σocc are the settings for range readings that
fall short of the bounding box and thus represent situations
when another object is occluding the vehicle. cb and σb are
the settings for range readings that fall short of the vehicle
but inside of the bounding box. cs and σs are the settings for
readings on the vehicle’s visible surface (that we assume to
be of non-zero depth). cp, σp are used for rays that extend
beyond the vehicle’s surface.

The domain for each range reading is between minimum
range rmin and maximum range rmax of the sensor. Since the
costs we select are piece-wise constant, it is easy to integrate
the unnormalized likelihoods to obtain the normalization con-
stants ηi. Note that for the rays that do not target the vehicle
or the bounding box, the above logic automatically yields
uniform distributions as these rays never hit the bounding box.

Note that the above measurement model naturally handles
partially occluded objects including objects that are “split up”
by occlusion into several point clusters. In contrast these cases
are often challenging for approaches that utilize separate data
segmentation and correspondence methods.

III. INFERENCE

Most vehicle tracking methods described in the literature
apply separate methods for data segmentation and correspon-
dence matching before fitting model parameters via extended
Kalman filter (EKF). In contrast we use a single Bayesian filter
to fit model parameters from the start. This is possible because
our model includes both geometric and dynamic parameters
of the vehicles and because we rely on efficient methods
for parameter fitting. We chose the particle filter method for
Bayesian estimation because it is more suitable for multi-
modal distributions than EKF. Unlike the multiple hypothesis
tracking (MHT) method commonly used in the literature, the
computational complexity for our method grows linearly with
the number of vehicles in the environment, because vehicle
dynamics dictates that vehicles can only be matched to data
points in their immediate vicinity. The downside of course is
that in our case two targets can in principle merge into one.
In practice we have found that it happens rarely and only in
situations where one of the targets is lost due to complete
occlusion. In these situations target merging is acceptable for
our application.

We have a total of eight parameters to estimate for each
vehicle: X = (x, y, θ), v, G = (W,L,Cx, Cy). Computational
complexity grows exponentially with the number of parame-
ters for particle filters. Thus to keep computational complexity
low, we turn to Rao-Blackwellized particle filters (RBPFs) first
introduced in [11]. We estimate X and v by samples and keep
Gaussian estimates for G within each particle. Below we give
a brief derivation of the required update equations.

A. Derivation of update equations

At each time step t we produce an estimate of a Bayesian
belief about the tracked vehicle’s trajectory, velocity and
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geometry based on a set of measurements:

Belt = p(Xt, vt, G|Zt).

The derivation provided below is similar to the one used
in [12]. We split up the belief into two conditional factors:

Belt = p(Xt, vt|Zt) p(G|Xt, vt, Zt).

The first factor encodes the vehicle’s motion posterior:

Rt = p(Xt, vt|Zt).

The second factor encodes the vehicle’s geometry posterior,
conditioned on its motion:

St = p(G|Xt, vt, Zt).

The factor Rt is approximated using a set of particles;
the factor St is approximated using a Gaussian distribution
(one Gaussian per particle). We denote a particle by qtm =
(Xt,[m], vt,[m], S

[m]
t ) and a collection of particles at time t

by Qt = {qtm}m. We compute Qt recursively from Qt−1.
Suppose that at time step t, particles in Qt−1 are distributed
according to Rt−1. We compute an intermediate set of parti-
cles Q̄t by sampling a guess of the vehicle’s pose and velocity
at time t from the dynamics model (described in detail in
Sect. II-C). Thus, particles in Q̄t are distributed according to
the vehicle motion prediction distribution:

R̄t = p(Xt, vt|Zt−1).

To ensure that particles in Qt are distributed according to
Rt (asymptotically), we generate Qt by sampling from Q̄t

with replacement in proportion to importance weights given
by wt = Rt/R̄t. Before we can compute the weights, we need
to derive the update equations for the geometry posterior.

We use a Gaussian approximation for the geometry pos-
terior, St. Thus we keep track of the mean μt and the co-
variance matrix Σt of the approximating Gaussian in each
particle: qtm = (Xt,[m], vt,[m], μ

[m]
t ,Σ[m]

t ). We have:

St = p(G|Xt, vt, Zt)
∝ p(Zt|G,Xt, vt, Zt−1) p(G|Xt, vt, Zt−1)
= p(Zt|G,Xt) p(G|Xt−1, vt−1, Zt−1). (1)

The first step above follows from Bayes’ rule; the second
step follows from the conditional independence assumptions
of our model (Fig. 2). The expression (1) is a product of
the measurement likelihood and the geometry prior St−1. To
obtain a Gaussian approximation for St we linearize the mea-
surement likelihood as will be explained in Sect. III-C. Once
the linearization is performed, the mean and the co-variance
matrix for St can be computed in closed form, because St−1

is already approximated by a Gaussian (represented by a Rao-
Blackwellized particle from the previous time step).

Now we are ready to compute the importance weights.
Briefly, following the derivation in [12], it is straightforward
to show that the importance weights wt should be:

wt = Rt/R̄t =
p(Xt, vt|Zt)

p(Xt, vt|Zt−1)
= IESt−1 [ p(Zt|G,Xt) ].

In words, the importance weights are the expected value
(with respect to the vehicle geometry prior) of the measure-
ment likelihood. Using Gaussian approximations of St−1 and

p(Zt|G,Xt), this expectation can be expressed as an integral
over a product of two Gaussians, and can thus be carried out
in closed form.

B. Motion inference

As we mentioned in Sect. II-A, a vehicle’s motion
is governed by two probabilistic laws: p(vt|vt−1) and
p(Xt|Xt−1, vt). These laws are related to the motion predic-
tion distribution as follows:

R̄t = p(Xt, vt|Zt−1)
= p(Xt, vt|Xt−1, vt−1, Zt−1) p(Xt−1, vt−1|Zt−1)
= p(Xt|Xt−1, vt, Zt−1) p(vt|Xt−1, vt−1, Zt−1) Rt−1

= p(Xt|Xt−1, vt) p(vt|vt−1) Rt−1.

The first and second steps above are simple conditional
factorizations; the third step follows from the conditional
independence assumptions of our model (Fig. 2).

Note that since only the latest vehicle pose and velocity are
used in the update equations, we do not need to actually store
entire trajectories in each particle. Thus the memory storage
requirements per particle do not grow with t.

C. Shape inference

In order to maintain the vehicle’s geometry posterior in a
Gaussian form, we need to linearize the measurement likeli-
hood p(Zt|G,Xt) with respect to G. Clearly the measurement
likelihood does not lend itself to differentiation in closed form.
Thus we turn to Laplace’s method to obtain a suitable Gaussian
approximation. The method involves fitting a Gaussian at the
global maximum of a function. Since the global maximum is
not readily available, we search for it via local optimization
starting at the current best estimate of geometry parameters.
Due to construction of our measurement model (Sect. II-E)
the search is inexpensive as we only need to recompute the
costs for the rays directly affected by a local change in G.

The dependence between our belief of the vehicle’s shape
and position (discussed in Sect. II-B) manifests itself in a
dependence between the local anchor point coordinates C and
the vehicle’s width and length. The vehicle’s corner closest
to the vantage point is a very prominent feature that impacts
how the sides of the vehicle match the data. When revising the
belief of the vehicle’s width and length, we keep the closest
corner in place. Thus a change in the width or the length leads
to a change in the global coordinates of the vehicle’s center
point, for which we compensate with an adjustment in C to
keep the anchor point in place. This way a change in geometry
does not create phantom motion of the vehicle.

D. Initializing new tracks

Before vehicle tracking can begin, we need to initialize new
vehicle tracks. Detection of new vehicles is the most expensive
part of vehicle tracking. However a number of optimizations
can be made to achieve detection in real time, including spatial
constraints and sensor data analysis. Detailed description of
our vehicle detection algorithm is given in [13]. Here we
provide a brief summary.

To detect new vehicles, we search the area within sensor
range of our ego-vehicle to find good matches using the
measurement model described in Sect. II-E. A total of three
(3) frames are required to acquire a new tracking target. The
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Fig. 6. We determine ground readings by comparing angles between
consecutive readings.

first two frames are required to detect motion of an object. The
third frame is required to check that the motion is consistent
over time and follows vehicle dynamics laws described in
Sect. II-C.

E. Discontinuing tracks

Under certain conditions it is desirable to discontinue track-
ing of a target. We discontinue tracks if the target vehicle
gets out of sensor range or moves too far away from the
road (a digital street map was available for our application).
Additionally we implemented logic that merged hypothesis
of two particle filters if the tracked targets were too close
together. However, it turned out that this condition occurs only
very rarely.

We also discontinue tracks if the unnormalized weights have
been low for several turns. Low unnormalized weights signal
that the sensor data is insufficient to track the target, or that
our estimate is too far away from the actual vehicle. This
logic keeps the resource cost of tracking occluded objects
low, yet it still allows for a tracked vehicle to survive bad
data or complete occlusion for several turns. Since new track
acquisition only takes three frames, it does not make sense
to continue tracking objects that are occluded for significantly
longer periods of time.

IV. IMPLEMENTATION AND RESULTS

A. Building virtual scans from 3D range data

As we explained in Sect. II-D, vehicle tracking is a 2D
problem, for which efficient 2D virtual scans are sufficient.
These virtual scans are easy to build for 2D range sensors
with ground filtering, such as IBEO. However for 3D sensors,
such as Velodyne, it is a less trivial task. These sensors
provide immense 3D data sets of the surroundings, making
computational efficiency a high priority when processing the
data. However, in our experience, the hard work pays off and
the resulting virtual scans carry more information than for 2D
sensors.

Given a 3D data set, which of the data points should
be considered obstacles? From the perspective of driving
applications we are interested in the slice of space directly
above the ground and about 2m high, as this is the space that a
vehicle would actually have to drive through. Objects elevated
more than 2m above ground - e.g. tree tops or overpasses - are
not obstacles. The ground itself is not an obstacle (assuming
the terrain is drivable). Moreover, for tracking applications
low obstacles such as curbs should be excluded from virtual
scans, because otherwise they can prevent us from seeing more
important obstacles beyond them. The remaining objects in

(a) actual scene

(b) Velodyne data after classification

(c) generated virtual scan

Fig. 7. In (b) Velodyne data is colored by type: orange - ground,
yellow - low obstacle, red - medium obstacle, green - high obstacle.
Note the white van parked at a distance in (a) and (c).

the 2m slice of space are obstacles for a vehicle, even if these
objects are not directly touching the ground.

In order to classify the data into the different types of
objects described above we first build a 3D grid in spherical
coordinates. Similarly to a virtual scan, it has a single point
of origin and stores actual world coordinates of the sensor
readings. Just as in the 2D case, this grid is an approximation
of the sensor data set, because the actual laser readings in
a scan have varying points of origin. In order to downsample
and reject outliers, for each spherical grid cell we compute the
median range of the readings falling within it. This gives us a
single obstacle point per grid cell. For each spherical grid cell
we will refer to the cone from the grid origin to the obstacle
point as a virtual ray.

The first classification step is to determine ground points.
For this purpose we select a single slice of vertical angles
from the spherical grid (i.e. rays that all have the same bearing
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(a) actual appearance of the vehicle

(b) the vehicle gives very few laser returns

(c) generated virtual scan after black object
detection

(d) successful tracking of the black vehicle
Fig. 8. Detecting black vehicles in 3D range scans. White points represent
raw Velodyne data. In (c) green lines represent the generated virtual scan. In
(d) the purple box denotes the estimated pose of the tracked vehicle.

angle). We cycle through the rays in the slice from the lowest
vertical angle to the highest. For three consecutive readings A,
B, and C, the slope between AB and BC should be near zero
if all three points lie on the ground (see Fig. 6 for illustration).
If we normalize AB and BC, their dot product should be close
to 1. Hence a simple thresholding of the dot product allows
us to classify ground readings and to obtain estimates of local
ground elevation. Thus one useful piece of information we can
obtain from 3D sensors is an estimate of ground elevation.

Using the elevation estimates we can classify the remaining
non-ground readings into low, medium and high obstacles,
out of which we are only interested in the medium ones (see
Fig. 7). It turns out that there can be medium height obstacles
that are still worth filtering out: birds, insects and occasional
readings from cat-eye reflectors. These obstacles are easy to

filter, because the BC vector tends to be very long (greater
than 1m), which is not the case for normal vertical obstacles
such as buildings and cars. After identifying the interesting
obstacles we simply project them on the 2D horizontal plane
to obtain a virtual scan.

Laser range finders are widely known to have difficulty
seeing black objects. Since these objects absorb light, the
sensor never gets a return. Clearly it is desirable to “see”
black obstacles for driving applications. Other sensors could be
used, but they all have their own drawbacks. Here we present
a method for detecting black objects in 3D laser data. Figure 8
shows the returns obtained from a black car. The only readings
obtained are from the license plate and wheels of the vehicle,
all of which get filtered out as low obstacles. Instead of looking
at the little data that is present, we can detect the presence of
a black obstacle by looking at the data that is absent. If no
readings are obtained along a range of vertical angles in a
specific direction, we can conclude that the space must be
occupied by a black obstacle. Otherwise the rays would have
hit some obstacle or the ground. To provide a conservative
estimate of the range to the black obstacle we place it at
the last reading obtained in the vertical angles just before the
absent readings. We note that this method works well as long
as the sensor is good at seeing the ground. For the Velodyne
sensor the range within which the ground returns are reliable is
about 25 - 30m, beyond this range the black obstacle detection
logic does not work.

B. Tracking results

The most challenging traffic situation at the Urban Grand
Challenge was presented on course A during the qualifying
event (Fig. 9(a) and Fig. 9(b)) . The test consisted of dense
human driven traffic in both directions on a course with
an outline resembling the Greek letter θ. The robots had
to merge repeatedly into the dense traffic. The merge was
performed using a left turn, so that the robots had to cross
one lane of traffic each time. In these conditions accurate
estimates of positions and velocities of the cars are very
useful for determining a gap in traffic large enough to perform
the merge safely. Cars passed in close proximity to each
other and to stationary obstacles (e.g. signs and guard rails)
providing plenty of opportunity for false associations. Partial
and complete occlusions happened frequently due to the traffic
density. Moreover these occlusions often happened near merge
points which complicated decision making.

During extensive testing the performance of our vehicle
tracking module has been very reliable and efficient (see
Fig. 4 and Fig. 9). It proved capable of handling complex
traffic situations such as the one presented on course A. The
computation time of our approach averages out at 25ms per
frame, which is faster than real time for most modern laser
range finders.

We also gathered empirical results of the tracking module
performance on data sets from several urban environments:
course A of the UGC, Stanford campus and a port town in
Alameda, CA. For each frame of data we counted how many
vehicles a human is able to identify in the laser range data.
The vehicles had to be within 50m of the ego-vehicle, on or
near the road, and moving with a speed of at least 5mph.
We summarize the tracker’s performance in Fig. 10. Note that
the maximum theoretically possible true positive rate is lower

181



Datasets Total Frames Total Vehicles Correctly Detected Falsely Detected Max TP (%) TP (%) FP (%)
Area A 1,577 5,911 5,676 205 97.8 96.02 3.35
Stanford 2,140 3,581 3,530 150 99.22 98.58 4.02
Alameda 1,531 901 879 0 98.22 97.56 0
Overall 5,248 10,393 10,085 355 98.33 97.04 3.3

Fig. 10. Tracker performance on data sets from three urban environments. Max TP is the theoretically maximum possible true positive percent for each data
set. TP and FP are the actual true positive and false positive rates attained by the algorithm.

(a) test conditions on course A at the UGC

(b) Junior at intersection on course A

(c) vehicle size estimation on Stanford campus
Fig. 9. Test conditions and results of tracking. Purple boxes represent tracked
vehicles. In (c) yellow lines represent the virtual scan.

than 100% because three frames are required to detect a new
vehicle. On all three data sets the tracker performed very close
to the theoretical bound. Overall the true positive rate was 97%
compared to the theoretical maximum of 98%.

Several videos of vehicle detection and tracking using the
techniques presented in this paper are available at the website

http://cs.stanford.edu/∼anya/uc.html

V. CONCLUSIONS

We have presented the vehicle detection and tracking mod-
ule developed for Stanford’s autonomous driving robot Junior.
Tracking is performed from a high-speed moving platform and
relies on laser range finders for sensing. Our approach models
both dynamic and geometric properties of the tracked vehicles

and estimates them with a single Bayes filter per vehicle.
In contrast to prior art, the common data segmentation and
association steps are carried out as part of the filter itself. The
approach has proved reliable, efficient and capable of handling
challenging traffic situations, such as the ones presented at the
Urban Grand Challenge.

Clearly there is ample room for future work. The pre-
sented approach does not model pedestrians, bicyclists, or
motorcyclists, which is a prerequisite for driving in populated
areas. Another promising direction for future work is fusion
of different sensors, including laser, radar and vision.
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Abstract—In the robotics community localization and mapping
of an unknown environment is a well-studied problem. To
solve this problem in real-time using visual input, a standard
monocular Simultaneous Localization and Mapping (SLAM)
algorithm can be used. This algorithm is very stable when smooth
motion is expected, but in case of erratic or sudden movements,
the camera pose typically gets lost. To improve robustness in
Monocular SLAM (MonoSLAM) we propose to use a camera
with faster readout speed to obtain a frame rate of 200Hz. We
further present an extended MonoSLAM motion model, which
can handle movements with significant jitter. In this work the
improved localization and mapping have been evaluated against
ground truth, which is reconstructed from off-line vision. To
explain the benefits of using a high frame rate vision input in
MonoSLAM framework, we performed repeatable experiments
with a high-speed camera mounted onto a robotic arm. Due
to the dense visual information MonoSLAM can faster shrink
localization and mapping uncertainties and can operate under
fast, erratic, or sudden movements. The extended motion model
can provide additional robustness against significant handheld
jitter when throwing or shaking the camera.

I. INTRODUCTION

For mobile robotics it is essential to continuously localize
and estimate 3D positions of new landmarks in an unknown
environment. The localization and mapping can be addressed
with an incremental probabilistic approach, which is known
as SLAM (for an overview please refer to [1]).
As input for SLAM different kinds of sensors (e.g. laser

[2], sonars [3]) can be used. One of the most interesting (cost,
weight, etc.) and challenging sensors is a single perspective-
projective camera. When observing the environment with a
camera, the depth information of new landmarks can not be
directly acquired. To recover this depth information the camera
has to move, and observe these landmarks from different
viewpoints.
Davison et al. introduced the first real-time Monocular

SLAM (MonoSLAM) (recently summarized in [4]) algorithm.
The camera motion estimation and incremental map building
(from new landmarks) are computed within a standard Ex-
tended Kalman Filter (EKF) SLAM framework. An alterna-
tive SLAM framework is typically based on FastSLAM-type
particle filter algorithms.
One of the underlying assumptions in MonoSLAM is that

the camera is expected to move smoothly. This classical EKF
SLAM framework is prone to fail as soon as sudden or erratic

camera movements occur, and can not reliably recover when
the pose is lost. The smooth motion assumption attracted
recently attention, and several authors proposed solutions to
this problem.
Williams et al. presented in [5] an additional relocalization

algorithm, which can operate parallel to MonoSLAM, and
increases robustness against camera shakes and occlusions. A
recent improvement of this algorithm is using randomized lists
classifier and RANSAC to determine the pose robustly [6].
To handle erratic camera motion and occlusions, Pupilli and

Calway [7] presented a visual SLAM framework based on a
FastSLAM-type particle filter. This work tackles mainly the
problem of camera robust localization, and Chekhlov et al.
[8] extended this SLAM framework to operate over a large
range of views using a SIFT-like spatial gradient descriptor.
Another visual SLAM framework based on a FastSLAM-

type particle filter introduced by Eade and Drummond [9]
can incorporate hundreds of features in real-time. However,
the filter needs to be adapted for closing loops over large
trajectories.
The monocular SLAM algorithms discussed above [5, 6, 7,

8, 9] are using a standard 30Hz camera.
Interesting high-speed applications already enabled to e.g.

measure the motion of a waving flag or a flying ball [10].
Komuro and Ishikawa proposed in [11] a method for three-
dimensional object tracking from noisy images. The noise
typically produced by high-speed cameras can be tackled with
a proper noise models.
Another way to improve the robustness of tracking and esti-

mating features is to increase the sampling rate of the camera.
This has been beautifully demonstrated by Ishii et al. [12].
They introduced a 1ms visual feedback system using massively
parallel processing. Since image acquisition time is countered
with equally fast image processing (both operate at 1kHz),
very fast motion of a bouncing ball can be tracked. However,
objects need to be bright in front of dark background.
Our idea is to show that monocular SLAM can operate at a

frame rate of 200Hz and that this improves the robustness
of localization considerably. The intention is to show that
with a higher frame rate a performance similar to the recent
improvements discussed above [5, 6, 7, 8, 9] can be achieved,
while additionally all these measures could again be used to
even further improve performance.
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Fig. 1. The only sensor input in MonoSLAM are images from a single camera (a). As the camera moves, new distinctive features are detected (b). The
output of MonoSLAM is the camera pose and a sparse three-dimensional map of these distinctive features (c). An alternative to MonoSLAM sparse mapping
is a more dense structure reconstruction using nonlinear optimization techniques (d).

From the variety of state-of-the-art monocular SLAM
frameworks mentioned before [4, 7, 8, 9] we are using in
this work MonoSLAM algorithm, because we think that it is
the most advanced.
The contribution of this paper has three parts:

• using a high-speed camera for monocular SLAM for the
first time,

• more robust MonoSLAM localization using an extended
motion model and

• experiments exploiting the repeatable motion of a robotic
arm compared with accurate ground truth from off-line
vision and an experiment to throw the camera to indicate
robustness.

In this paper the standard MonoSLAM algorithm and the
ground truth calculations are briefly introduced in Section
II. Details and discussions related to the proposed more
robust motion model are introduced in Section III. Section
IV presents experimental results, performing well-controlled
motions with the camera mounted on the robotic arm and
handheld sequences. Section V closes with a discussion and
an outlook to the future work.

II. LOCALIZATION AND MAPPING ALGORITHMS

Before explaining the proposed more robust localization and
benefits of using a high-speed camera, a short outline of the
top-down Bayesian MonoSLAM system (see Fig. 1) is given in

two parts. Firstly, we summarize MonoSLAM from the system
perspective (input, initial assumptions and output). Secondly,
a short introduction to additional existing modules used in
this work is presented. This section concludes with a brief
description of offline computer vision algorithms used in this
work for the ground truth acquisition.

A. MonoSLAM and Additional Modules

The only sensor input in MonoSLAM used in this work
are images from a single perspective-projective camera as
displayed in Fig. 1-a. When the camera moves new distinctive
features can be detected (e.g. corners with numbers 5-10 in
Fig. 1-b and Fig. 1-c). The output of MonoSLAM is the
camera poses and a sparse map of recovered features, as
depicted in Fig. 1-c. Due to the real-time demand mapping in
MonoSLAM is not playing a crucial role, and should rather
support localization.
In MonoSLAM, the following conditions are assumed:
• a well-calibrated camera,
• rigid scene with textured objects (not moving),
• constant lighting conditions,
• one initial object with known geometry (e.g. features with
numbers 1-4 in Fig. 1-b and Fig. 1-c) and

• camera is expected to move smoothly.
Three additional modules have been used in this work to

improve the performance of MonoSLAM.
• To permit initialization of features of all depths, Montiel
et al. introduced an inverse-depth [13] parameterization.

184



Ät = 5ms

Ät = 33ms

Fig. 2. MonoSLAM can handle smooth camera movements using the
standard camera (difference of timestamps - Δt is equal 33ms), and the high-
speed camera (Δt is equal 5ms) is not needed.

This parameterization can cope with features, which are
very distant from the camera.

• Instead of detecting Shi and Tomasi [14] features, the Fast
feature detector [15] is applied. The best Fast features
are then found using the Shi and Tomasi [14] cornerness
measure.

• Joint Compatibility Branch and Bound (JCBB) [16] is
employed to search for the largest number of jointly
compatible pairings.

B. Ground-truth Computation

To precisely evaluate experiments with MonoSLAM mo-
tion models and the high-speed camera, we need accurate
localization and mapping ground truth. For the computation
of accurate ground truth we used two offline, iterative and
computationally intensive algorithms from the field of com-
puter vision. The first is a camera pose algorithm presented
by Schweighofer and Pinz [17]. This algorithm needs a object
with known geometry (black rectangle in Fig. 1-b), which is
visible in every frame. The second is a structure reconstruction
algorithm based on nonlinear optimization, summarized by
Triggs et al. in [18]. An example of the scene reconstruction
computed with the combination of these two algorithms is
depicted in Fig. 1-d. These computer vision techniques pro-
vide more dense and more accurate results then MonoSLAM
reconstruction (see Fig. 1-c). The detailed explanation of these
algorithms is out of scope of this paper, but in the experimental
section an accuracy example is provided.

III. IMPROVING LOCALIZATION ROBUSTNESS

To explain the details related to the more robust localization,
this section comprises four parts. Firstly, the benefits of the
localization using the high-speed camera are presented. Sec-
ondly, the proposed more robust MonoSLAM motion model
is explained. Thirdly, a discussion of motion parameters is
included. Fourthly, a problem of skipping vision information
when using an asynchronous high-speed camera is reviewed.

A. Dense Visual Information

The standard camera (difference of timestamps - Δt is
equal 33ms) provides rather sparse vision input, but when a
smooth movement is expected (see Fig. 2), it is sufficient for
MonoSLAM to robustly localize. If an erratic camera motion
is performed, EKF based MonoSLAM very likely lose the

Ät = 5ms

Ät = 33ms

Fig. 3. If erratic camera movements occur, MonoSLAM using the standard
camera (difference of timestamps - Δt is equal 33ms) loses the pose. An
example is displayed in the upper row, where the camera pose (solid line)
drifted away from the true pose (dashed line). A high-speed camera provides
more dense visual information, which helps to handle this erratic motion, as
depicted in the bottom row.

Ät = 5ms

1.

2.

Fig. 4. If erratic or jitter movements occur and dense vision information are
available, the second order motion model (2) is assumed to be more robust
than the first order model (1).

pose. Observing the scene features with faster readout speed
(e.g. Δt is equal 5ms) allows to update the camera state more
frequently, and this can prevent MonoSLAM to lose the pose
as depicted schematically in Fig. 3.

B. Higher Order Motion Model

In MonoSLAM, it is assumed that the camera linear and
angular velocities may change in every frame, but they are
expected to be constant in average. In other words, the camera
movements are approximated using the so-called constant lin-
ear and angular velocity motion model. This model assumes
that in each time step the unknown linear (�aW ) and the
unknown angular (�αR) accelerations cause impulses of linear

a.

b.
c.

Fig. 5. To update the camera pose in each time step, known scene
features’ descriptors (square) are matched with predicted features’ positions
(a). Localization using the camera with fast readout speed (e.g. Δt is equal
5ms) causes these predicted features’ positions to shrink obviously (b). To
handle more erratic movements the motion noise uncertainty Pn should
contain larger values, which cause the features’ searching regions to enlarge
(c).

185



a.

b.
b.

a.

Frame

Ä
t
[m

s
]

10

5

0 1500

Fig. 6. The asynchronous high-speed camera can not guarantee constant time
between consecutive frames. We expect that the readout speed unpredictably
decreases for some frames (left image). This Δt diminution causes the
features’ searching ellipses to grow (right image).

(�VW ) and angular (�ΩW ) velocities. The noise vector �n in
MonoSLAM equals:

�n =
(
�VW

�ΩR

)
=

(
�aWΔt
�αRΔt

)
, (1)

and the unknown accelerations are assumed to be zero mean
Gaussian processes.
However, the high-speed camera can readout images several

times faster (Δt is equal e.g. 5ms) than a standard camera
(Δt is 33ms). Due to this high frame rate we assume that
the velocities (�vW and �ωR) can change in average, and the
accelerations (�aW and �αR) are expected to be constant in
average.
The constant linear and angular velocity motion model can

be extended to a second order model. The second order model
includes linear (�aW ) and angular (�αR) accelerations in the
camera state vector �xv . We expect that this model can handle
more erratic and jitter motion as depicted schematically in Fig.
4.
The camera vector state using the constant linear and

angular velocity model has 13 states and comprises:

�xv =
(
�rW �qWR �vW �ωR

)
, (2)

where the metric 3D position vector �rW and linear velocity �vW

are estimated relative to a fixed world frame W . Quaternion
�qWR represents the orientation between the robot frame R
carried by the camera and the world frame. The angular
velocity �ωR is estimated in the robot frame R.
The extended camera state vector �xv in the constant linear

and angular acceleration model has 6 new states and includes:

�xv =
(
�rW �qWR �vW �ωR �aW �αR

)
, (3)

where the zero order (�rW and �qWR) and the first order (�vW

and �ωR) states are inherited from the first order motion model.
The new states comprises the linear (�aW ) and angular (�αR)
accelerations.
We assume that in each time step when using the constant

linear and angular acceleration model, an unknown linear
jitter �jW and unknown angular jitter �ηR cause an impulse of

Fig. 7. The setup for the well-controlled experiments consists of the gigabit
ethernet camera mounted onto a 7DOF robotic arm.

linear ( �AW ) and angular (�ΨR) accelerations. These accelera-
tions are again zero mean Gaussian processes, and the noise
vector is equal:

�n =
(
�AW

�ΨR

)
=

(
�jWΔt
�ηRΔt

)
. (4)

The camera state update is computed as follows:

�fv =
(
�rWnew �qWR

new �vWnew �ωR
new �aWnew �αR

new

)T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�rW + �vWΔt+ 1
2 (�a

W + �AW )Δt2

�qWR ⊗ �q(�ωRΔt+ 1
2 (�α

R + �ΨR)Δt2)
�vW + (�aW + �AW )Δt

�ωR + (�αR + �ΨR)Δt

�aW + �AW

�αR + �ΨR

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

where the quaternion product ⊗ is defined in [19]. The
notation:

�q(�ωRΔt+
1
2
(�αR + �ΨR)Δt2)

represents the quaternion trivially defined by the addition
of two angle-axis rotation vectors:

�ωRΔt and
1
2
(�αR + �ΨR)Δt2.

The EKF process noise covariance Qv is equal to:

Qv =
∂ �fv
∂�n

Pn
∂ �fv

T

∂�n
, (6)

where ∂ �fv
∂�n is computed as follows:

∂ �fv
∂�n

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�r

∂ �A

∂�r

∂�Ψ
∂�q

∂ �A

∂�q

∂�Ψ
∂�v

∂ �A

∂�v

∂�Ψ
∂�ω

∂ �A

∂�ω

∂�Ψ
∂�a

∂ �A

∂�a

∂�Ψ
∂�α

∂ �A

∂�α

∂�Ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2IΔt2 0

0 ∂�q

∂�Ψ
IΔt 0
0 IΔt
I 0
0 I

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7)

The implementation of the constant linear and angular
acceleration motion model requires nontrivial Jacobians. Sim-
ilarly as in [4], the complex differentiation of these Jacobians
is tractable, but is out of the scope of this paper.
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Fig. 8. The gigabit ethernet camera has been thrown and caught for a distance
approximately equal 0.1m.

C. Motion Model Parameters

Choosing EKF process noise Qv is an important part of
the filter deployment. The only part of Qv , which can be
parameterized is the covariance matrix Pn of the noise vector
�n. This matrix is diagonal, as required when the linear and
angular components are uncorrelated.
In MonoSLAM, using the constant linear and angular

velocity motion model, the covariance noise matrix Pn is
equal:

Pn =
(
SD2

a Δt2 0
0 SD2

α Δt2

)
, (8)

where the standard deviation parameters (SDa and SDα)
define the smoothness of motion we expect.
If the constant linear and angular acceleration motion

model is applied, the covariance noise matrix Pn is equal:

Pn =
(
SD2

j Δt2 0
0 SD2

η Δt2

)
, (9)

and standard deviation parameters (SDj and SDη) again
define the kind of motion we assume.
If the camera with fast readout speed (e.g. Δt is 5ms) is

used and the noise covariance matrix Pn contains the same
values as when using the standard camera (Δt is 33ms), the
motion model expects very smooth motion. To increase the
localization robustness using the high-speed camera, setting
Pn parameters to larger values in both motion models is
sufficient. An example is displayed in Fig. 5.

D. Skipping Vision Information

The standard camera (Δt is 33ms) is typically providing a
fairly stable vision input, and missing frames are unlikely to
occur. However, the asynchronous high-speed camera (e.g. Δt
is 5ms) is not so reliable. A skipped or missing frame causes
the Δt to increase, and this will effect on enlarged searching
regions, as depicted in Fig. 6.
To handle erratic motion using the high-speed camera, the

values in the noise covariance matrix Pn (for both motion
models) should be adjusted to large values. However, it is
suitable to keep a balance between the motion model robust-
ness and the real-time demand. The larger Pn values require
to search for feature matches in larger regions, and that is a
more time consuming operation.
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Fig. 10. The localization uncertainties using two different vision readout
speeds (Δt): 33ms and 5ms. The camera performed the same movements
repeatedly as depicted in Fig. 9, but only the camera world frame positions
of the first 15s are displayed here.

IV. EXPERIMENTAL RESULTS

To present the improved robustness in MonoSLAM in prac-
tice, the performed experiments are explained in three parts.
Firstly, the setup and the performed precise robotic arm and
high acceleration handheld movements are briefly introduced.
Secondly, the accuracy of ground truth is summarized. Thirdly,
the localization and mapping evaluations are compared with
the calculated ground truth.
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Fig. 11. The distance between the initial (1) and final (3) camera positions is equal 0.175m. The high-speed camera has been thrown (2) and caught (3)
over a distance of approximately 0.1m. In MonoSLAM, the constant linear and angular acceleration motion model has been used. The velocity (left) and
acceleration vectors (right) are scaled.

A. Experimental Setup

The setup for the well-controlled experiments consists of: a
commercial Amtec1 7DOF robotic arm (see Fig. 7), a robotics
software package2 and the high-speed camera. The arm has
been used to perform an accurate, pre-defined and smooth
movement, which was repeated with different camera readout
speeds.
For the two types of handheld experiments the high-speed

camera has been needed. Firstly, the camera has been shortly
thrown and caught (see Fig. 8). Secondly, a more erratic
movement has been performed to compare the motion models.
In this work, we have been using a very fast GE680C

Prosilica3 gigabit ethernet camera (see Fig. 7 and Fig. 8),
which - thanks to the 1/3” CCD sensor - offers a very good
image quality.
This gigabit ethernet camera can provide VGA resolution

vision output at 200Hz. In MonoSLAM, 320x240px images

1www.amtec-robotics.com
2www.amrose.dk
3www.prosilica.com

True Reconstructed
X[m] Y[m] Z[m] X[m] Y[m] Z[m]

1 0.105 0.07425 0.0 0.10497 0.07428 -0.00010
2 -0.105 0.07425 0.0 -0.10499 0.07429 -0.00013
3 0.105 -0.07425 0.0 0.10502 -0.07428 0.00008
4 -0.105 -0.07425 0.0 -0.10502 -0.07426 -0.00005

TABLE I
THREE-DIMENSIONAL FEATURES’ TRUE VS. RECONSTRUCTED
POSITIONS. THE ROOT MEAN SQUARE ERROR (RMSE) OF THE
RECONSTRUCTED POSITIONS IS SMALLER THAN 0.1MM.

are more suitable, because VGA resolution would require more
computationally intensive vision processing. This camera can
do the binning on the chip, and this allows to address smaller
images directly, faster, and at requested frame rates.

B. Ground Truth Accuracy

To present the ground truth accuracy, an example of a
comparison of four reconstructed features’ positions and their
known values is given in Tab. I. This shows that the estimation
using the procedure described in Section II-B is accurate to
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the bottom row a jitter movement in world y direction is displayed as camera
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are the computed ground truth.

Constant Velocity Motion Model
Δt[ms] Translation [m/s2] Rotation [rad/s2]
33 4 6
5 40 60

Constant Acceleration Motion Model
Δt[ms] Translation [m/s3] Rotation [rad/s3]
33 40 60
5 4000 6000

TABLE II
STANDARD DEVIATION PARAMETERS FOR BOTH MOTION MODELS.

within 0.1 percent of the true values, which refers to an
estimate of better than 0.1mm.

C. Localization Evaluations

Prior to the evaluation of MonoSLAM localization results
against the ground truth we explain the used criterions, and
present the motion models’ parameters.
To evaluate the improved robustness of MonoSLAM using

the high-speed camera, these experiments are introduced:
• repeated, well-controlled and precise robotic arm move-
ments have been executed,

• the camera has been thrown and caught and
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Fig. 13. In MonoSLAM, the uncertainty of a feature location is decreasing
as presented in [1]. If the fast readout speed is used, then the feature three-
dimensional position uncertainty is converging several times faster.

• handheld jitter motions in different world frame directions
have been performed.

The criterions to compare the true and estimated camera
poses are:

• the root mean square error (RMSE) to calculate the
deviations of positions and

• the RMSE to compute the discrepancies of rotations.
For the comparison purposes the camera rotation representa-
tion is transformed from quaternions to Roll-Pitch-Yaw (RPY)
radians.
An overview of both MonoSLAM motion models’ param-

eters is given in Tab. II. These parameters have been adjusted
according to the sections III-C and III-D.

1) Robotic Arm Movements: When performing smooth
robotic arm movements using 5ms camera readout speed (Δt),
both motion models were providing robust results as depicted
in Fig. 9. The positions’ RMSE was 0.227m and the rotations’
RMSE was 0.2922rad, when using the constant linear and
angular velocity motion model. However, the constant linear
and angular acceleration motion model provided less accurate
results: the positions’ RMSE was 1.461m and the rotations’
RMSE was 1.9595rad.
An important localization advantage when using the fast

vision readout speed is that the uncertainties of the camera
poses are obviously smaller as depicted in Fig. 10.

2) Thrown Camera: The setup for camera throwing and
catching is displayed in Fig. 8, where the distance between
two hands was approximately 0.1m. This experiment has been
performed repeatedly, and the result is that MonoSLAM can
operate in real-time capturing both the free as well as high
accelerations in the throwing and catching motions.
As an example, Fig. 11 displays the individual track points

and for each point the estimated motion using the constant
linear and angular acceleration model. The throwing of the
camera does not contain significant jitter, so the accuracy
differences between the two motion models are similar to the
robotic arm movements. Again the initialization used is a black
rectangular object (see 1-b) in the first field of view.
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3) High Acceleration Handheld Movements: Finally we
want to demonstrate the behavior for fast and shaky motion.
Fig. 12 depicts the motion following rapid up and down
movements of the camera in hand. Maximum frequency of
the up/down motion is about 5Hz. The graphs show the
MonoSLAM reconstruction using the two motion models.
As the Figure indicates, the constant linear and angular
acceleration model (Δt equals 5ms) successfully tracks such
a motion while the constant linear and angular velocity model
first shows considerably high inaccuracy and then looses track.

D. Mapping Evaluations

MonoSLAM using dense visual information can faster con-
verge features’ location uncertainties as depicted in Fig. 13.
The known MonoSLAM problem is that the processing time

associated with the EKF update is O(n2), where n is the
number of features in the map. Due to the real-time demand
all experiments in this paper have been performed in a small
scene with approximately 20 features. MonoSLAM has been
able to operate in such an environment in real-time using the
high frame rate vision input (Δt equals 5ms).

V. CONCLUSION

The main contribution of this paper is the introduction of
a high-speed camera to monocular SLAM. In addition we
proposed to use a combination of this fast readout speed
with a second order motion model to allow MonoSLAM to
operate under motions with significant jitter. Such a very
fast MonoSLAM algorithm running at a frame rate of 200Hz
was investigated. We performed repeated and well-controlled
experiments with a robot arm and various handheld move-
ments. The comparison of the camera poses is made against
accurate ground truth from off-line vision. As expected the
constant velocity model is better suited for rather smooth
motions. In handheld motions with an up and down motion at
a frequency of about 5Hz, the acceleration model is superior
and successfully tracks throughout the sequence. Additionally,
the high frame rate operation of MonoSLAM makes it possible
to throw the camera from one hand to the other.
By showing that high frame rate is able to considerably

improve the localization robustness of monocular SLAM,
new applications become possible. For example, in a future
project it will be evaluated to consumer robotics and wearable
computing applications.

A. Future Work

The goal of this work is the high-speed localization and
mapping in a larger indoor environment (e.g. office scene).
Recently Clemente et al. presented in [20] an interesting and
relevant approach, which can build local maps in near real-
time. The most exciting about this approach is that it can keep
the computational time of the filter bounded.
Our future work includes improving the mapping using an

approach based on local coordinate frames, as this can reduce
the current computational complexity O(n2) to O(n) [20].
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Abstract— Many practical multi-body systems involve loops.
Studying the kinematics of such systems has been challenging,
partly because of the requirement of maintaining loop closure
constraints, which have conventionally been formulated as highly
nonlinear equations in joint parameters. Recently, novel para-
meters defined by trees of triangles have been introduced for a
broad class of linkage systems involving loops (e.g., spatial loops
with spherical joints and planar loops with revolute joints); these
parameters greatly simplify kinematics related computations
and endow system configuration spaces with highly tractable
piecewise convex geometries. In this paper, we describe a more
general approach for multi-body systems, with loops, that allow
construction trees of simplices. We illustrate the applicability and
efficiency of our simplex-tree based approach to kinematics by a
study of foldable objects. We present two sets of new parameters
for single-vertex rigid fold kinematics; like the parameters in
the triangle-tree prototype, each has a geometrically meaningful
and computationally tractable constraint formulation, and each
endows the configuration space with a nice geometry.

I. INTRODUCTION

Many practical multi-body systems involve one or more
loops—physical (in parallel platforms, ring-type molecules,
. . . ) or virtual (in inverse kinematics of serial manipulators
or molecular chains,. . . ). The kinematics of loop systems is
complicated by the so-called loop closure constraint, i.e., the
need to maintain the closed chain structure (see e.g. books [1,
2, 3, 4] and references therein). There are many other practical
issues, like joint limits (and other system limits) and collision
avoidance, but here we focus on loop closure to the exclusion
of all other constraints. In general, progress in any subset of
system related issues contributes to progress in overall system
knowledge; and the loop closure constraint is a recognized
stumbling block in the study of multi-body loop systems.

The main difficulty with loop systems is the generally com-
plex constraint formulation with respect to system parameters.
To date, the most widely used linkage parameters are joint
parameters, such as joint angles for rotational joints and linear
displacements for prismatic joints. Conventionally, loop clo-
sure constraints have been formulated as equality constraints
(of highly non-linear functions) over joint parameters. This
formulation shows that for generic linkages the set of closure
configurations is a smooth submanifold of the ambient joint
parameter space, and in many cases its topology is partly
or completely known (see, e.g., [5, 6] and [7, 8], which
treat planar and spatial linkages with spherical-type joints).

Patent pending.

Smooth manifolds are characterized by the existence of local
coordinates, but although some manifolds are equipped with
global coordinates (like the joint angle parameters, in the
cases of a serial chain without closure constraints or [7, 8] a
planar loop satisfying the technical “3 long links” condition),
typically a manifold has neither global coordinates nor any
standard atlas of local coordinate charts. Thus, calculations
that depend on coordinates are often difficult to perform.

Some recent kinematic work uses new parameters that are
not conventional joint parameters. One series of papers [9,
10, 11, 12, 13] presented novel formulations and techniques,
including distance geometry, linear programming and flag
manifolds, to solve inverse kinematics, identify trilaterable 6-
DOF parallel and serial manipulators, and parametrize con-
figurations of flag manipulators. Loosely speaking, a system
is “trilaterable” as addressed there if it can be decomposed
into tetrahedra in such a way that all unknown edge-lengths
of the tetrahedra can be systematically computed from known
edge-lengths using distance constraints (triangle inequalities
and Cayley–Menger constraints; see below). In those papers,
the trilaterable systems to be solved are already given in
trilaterable form: the kinematic structure explicitly includes all
distance parameters needed to determine system configurations
(e.g., lengths of the legs between base and platform of a
parallel manipulator). We believe those papers were the first to
recognize and utilize trilaterability of the systems they discuss.

In papers [14, 15, 16], we presented a different set of
parameters for a class of linkages including planar loops
with revolute joints and spatial loops with spherical joints.
Our parameters are diagonal lengths (inter-joint distances) and
triangle orientation parameters (discrete signs in the plane,
dihedral angles in space). In essence, to define the parameters
one joint of each loop is used as an anchor; diagonals are
drawn from it to all non-adjacent joints, partitioning the loop
into an open chain of triangles. The diagonal lengths and
triangle orientation parameters are precisely enough to deter-
mine the shapes and relative configurations of these anchored
triangles, which in turn determine the loop configurations.
We proved that the defined parameters are indeed coordinates
on the set of closure configurations. Further, we observed
that the resulting atlas of local coordinate charts endows that
space with a nice geometric structure we called “practical
convexity”, and remarked that our approach generalizes to any
linkage system that can be decomposed into a tree of triangles.
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II. NOVEL IDEA: CONSTRUCTION TREES OF SIMPLICES

Here we will present a general simplex-tree based parame-
trization approach for multi-body systems allowing construc-
tion trees of simplices; it includes the triangle-based approach
of [14, 15] as a special case. Due to space limits, we write
this paper somewhat intuitively and informally.

Before describing our new parametrization, we make a
few comments. First, following the approach in [14, 15],
we will focus on multi-body systems’ deformations, that is,
configurations with rigid motions factored out. The set of all
deformations, called the deformation space, is mathematically
the quotient space of the configuration space modulo the group
of rigid motions that respect system constraints: DSpace =
CSpace/RM .

Second, we note that many multi-body systems can be
studied as multi-point systems, e.g., by reducing each rigid
member in the system to at most 4 general points in the
member. Further, there may exist distance constraints among
the points, which can be modeled as links between points: each
pair of points subject to distance constraints can be modeled
by a link that joins them, of fixed or variable length depending
on the nature of the constraints. By such means, we can use
linkage concepts, terms, and notations to study multi-object
and multi-point systems under distance constraints.

Last, we recall some basic definitions concerning simplices,
and facts about their geometry. In this paper we need only
simplices of dimension at most 3: a 0-simplex is a point; a
1-simplex is a line segment; a 2-simplex is a triangle; a 3-
simplex is a tetrahedron. A 0-dimensional face of a simplex
is called a vertex, and a 1-dimensional face is called an edge.
For k ≥ 2, the edge lengths (i.e., inter-vertex distances) of a k-
simplex are subject to non-trivial constraints; the most familiar
and simplest are the “triangle inequality” constraints for k =
2, and, in the Euclidean case, non-negativity of its Cayley–
Menger determinant [17] (see Eq. (2) below) for all k. If all
edge lengths of a simplex σ are fixed, then the shape of σ is
essentially fixed. In the language of deformations, all points of
DSpace(σ) are isolated; e.g., in Euclidean space, DSpace(σ)
contains just 1 or 2 points, the latter case happening only for
deformations of an n-simplex in Rn (its 2 deformations are
distinguished by their orientation).

Definition. Our new approach to kinematics of linkage
systems involving loops (and other multi-point systems under
distance constraints) is based on representing the system under
study by a construction tree of simplices. We say a tree of
simplices is a construction tree of a given linkage system if
the simplices satisfy the following three conditions. (1) Each
link in the linkage system is an edge of at least one simplex
in the tree. (2) The set of points of the multi-point linkage
system equals the set of all vertices of all simplices in the tree.
(3) The deformations of the linkage system can be constructed
from the shapes of the simplices and relative configurations of
simplices adjacent in the tree.

Simplex Placement Procedure and Deformation Con-
struction. We can use a tree traversal process to construct

any deformation of a multi-point system with a construction
tree T = (V (T ), E(T )) of simplices, given the following
necessary and sufficient data about the deformation: (i) for
each node σ ∈ V (T), the shape of the simplex σ, and (ii) for
each edge {σ, τ} ∈ E(T), the relative configuration of the
simplices σ and τ in the ambient space Rn. Indeed, placing
a simplex in an ambient space is equivalent to determining
the coordinates of its vertices. Now, given the data (i) and (ii),
we construct the corresponding deformation of the multi-point
system recursively as follows. (I) Place any simplex σ ∈ V (T)
anywhere in its ambient space (in case dim(σ) equals the
ambient dimension, an orientation parameter specifies one of
its two orientations). (II) If for some edge {ρ, τ} ∈ E(T), the
simplex ρ has already been placed in space but the simplex τ
has not yet been placed, then use the data (ii) to place τ . When
this simplex placement procedure terminates, the deformation
has been constructed.

New Parameters. Two types of parameters hold the defor-
mation data (i) and (ii): shape parameters (associated to nodes
of T) and orientation parameters (associated to edges of T).

The shape of a simplex is determined by its edge lengths. In
any given simplex in V (T), some edges may be links (some
with fixed lengths and others with variable lengths); we call
a construction tree simplex edge a diagonal of the linkage if
it is not a link. Our shape parameters for a linkage comprise
the lengths of all variable edges and diagonals from the tree.

Two adjacent simplices in a construction tree share a sub-
simplex (e.g., two triangles with a common edge). Thus there
is no relative translation between two adjacent simplices,
only at most a relative reorientation (about the common sub-
simplex)—in essence, an element of that subgroup of the
orthogonal group of the ambient Euclidean space which acts as
the identity on a linear subspace having the dimension of the
common sub-simplex. Our orientation parameters for a linkage
comprise relative reorientation data for adjacent simplices.

In summary, our simplex-based parameters for deformations
comprise (a) lengths of diagonals and links of variable length
(to give shapes of simplices), and (b) orientation parameters
(to give relative configurations of adjacent simplices).

Results. The aforementioned simplex placement procedure
for deformation determination indicates how to use simplex-
based parameters to completely determine system deforma-
tions.

If we define the forward kinematics (FK ) of a multi-point
system as the determination of system point positions from
given parameter values, the procedure is an algorithm that
solves the FK problem. Conversely, the inverse kinematics
(IK ) problem of determining valid simplex-based parameters
that satisfy loop closure constraints is equivalent to solving
the system deformation space in those parameters.

This approach is very general and applies in many ambient
geometries. In this paper, limited to simplices in Euclidean
space or the 2-sphere, our main results are as follows.

Theorem 1: Consider a multi-point (or multi-body) system
that allows a construction tree T of simplices. Then:
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(A) The deformations of the system are described by
simplex-based parameters.

(B) The FK problem for the system is solved by a simplex
placement procedure, with shapes and relative orientations of
simplices directly determined by simplex-based parameters.

(C) The IK problem for the system is solved by giving
an explicit description of its deformation space (DSpace) in
terms of simplex-based parameters. More precisely, DSpace
is essentially the product of DStretch and DFlip, where
(1) DStretch comprises shape parameters satisfying explicit,
simply evaluated constraints (triangle or Cayley–Menger de-
terminant inequalities, and range inequalities) required for
successful simplex formation, and is a convex body, while
(2) DFlip comprises relative orientation parameters, and is
independent of loop closure constraints.

Proof: If (a) the system under investigation is a planar or
spatial linkage with (respectively) revolute or spherical joints,
and no links of variable length, (b) T has no node of valence
≥ 3 (i.e., is a subdivided interval), and (c) each simplex in
V (T) is a triangle in R2 or R3, then we gave detailed proofs of
(A), (B), and (C2) (using the relevant versions of our simplex
placement procedure) in papers [14] and [15]; the proofs in
the general case are entirely analogous.

Essentially the same is true of (C1), with an important
technical difference. In our earlier papers, DStretch is a
convex polytope, because only triangle inequalities (involving
link lengths and shape parameters) are involved, and triangle
inequalities are linear. Here, in case V (T) includes one or
more tetrahedra, Cayley–Menger inequalities (in link lengths
and shape parameters) are involved, and these are non-linear—
in fact, for tetrahedra they are of total degree at most 3 in
the squares of the diagonal lengths (and at most quadratic in
the square of any one diagonal length). They are, however,
still convex; the proof is an exercise in low-dimensional real
algebraic geometry (relying heavily on elementary properties
of cubics and quadratics). Thus DStretch need not be a poly-
tope (though it will be as long as all nodes are triangles, even
if some are spherical triangles) but it is always a piecewise-
smooth semi-algebraic convex body.

As stated, in papers [14, 15] we made extensive use of the
relevant special cases of Theorem 1. Here, just as in those
papers, the general theorem shows that the solution of loop
closure constraints can be much more efficient in simplex-
based parameters than in conventional joint parameters. This
gain in efficiency is due to both the convexity of DStretch and
the independence of loop closure from orientation parameters.

In the remainder of this paper, we illustrate the applicability
and efficiency of simplex-based parameters by studying fold-
able objects, especially single-vertex rigid folds, for which we
present two sets of new parameters, each with geometrically-
meaningful constraint formulations.

III. FOLDABLE OBJECTS AND PRIOR WORK

In our daily life, we encounter such foldable objects as paper
bags, umbrellas, and space-station antennas. Normal use of
foldable objects involves folding and unfolding, but not cutting

2

h

w

(a) Standard paper bag.

O
P

ϕ(n−1)

ϕ(0)
ϕ(1)

ϕ(m)

(b) Single-vertex origami.

Fig. 1. Foldable objects.

up; thus many complex constraints are involved in maintaining
system structures and allowing system deformations.

Many foldable objects have crease patterns associated with
them; see Fig. 1(a) for the creases of a standard paper bag.
Each crease line allows relative rotations between two panels
sharing the line; it can be viewed as a revolute joint (hinge).
Assuming that the panels are rigid, the relative configuration of
adjacent panels can be parametrized by an angle that measures
their relative rotation about the shared crease line.

Vertices of the crease pattern occur at intersections of crease
lines with other crease lines or with the boundary of the object
(or both); e.g., the standard bag crease pattern (Fig. 1(a)) has
8 interior vertices and 6 boundary vertices. An interior vertex
O on which are incident n crease lines is adjacent to n panels,
which surround it in a circuit, or closed chain; if no tearing
is allowed this chain has to maintain the closure constraint.
In terms of the angle parameters, closure can be understood
intuitively as follows: pick any point on any one crease line,
and subject that point to a sequence of rotations about each of
the crease lines; then the point’s final position should coincide
with its original position. Mathematically, this becomes (as in
[18]) the equation R(v0, φ0) · · ·R(vn−1, φn−1)P = P , where
P denotes a point on a crease line, vi denotes the directional
vector for crease line i, and φ(i) denotes the rotation angle
about crease line i (see Fig. 1(b)). As this equation must be
satisfied for all P , it is equivalent to require that the ordered
product of the rotation matrices be the identity matrix,

R(v0, φ0) · · ·R(vn−1, φn−1) = I. (1)

Each such equation imposes 3 non-linear constraints on n
angular parameters. This means that, for a foldable object with
only one non-boundary vertex (i.e., a cycle of n panels sur-
rounding a single common vertex), the space of deformations
will generally be of dimension n−3. The angular formulation
above amounts to studying this deformation space as the subset
of the ambient angle space (an n-dimensional torus) defined by
the constraint (1). Just as for a loop of linear links, the highly
non-linear nature of this constraint on the angular parameters
makes it technically difficult to understand and compute the
structure of DSpace in these traditional coordinates. Foldable
objects with more than one non-boundary vertex have yet more
complicated descriptions in these parameters. Notwithstanding
these difficulties, progress has been made. One interesting re-
sult [19] is that DSpace of a paper bag, creased as in Fig. 1(a)
and with rigid panels, has isolated points corresponding to
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the folded and completely unfolded states: in this model, a
flattened shopping bag cannot be opened.

Kinematic related issues of foldable objects have been
studied in various communities. In robotics, in addition to
origami folding [18], sheet-metal and carton box folding
(e.g. [20, 21, 22, 23]) have also been studied, mainly from
the manipulation planning point of view, sometimes with
no loop closure constraints for the folded objects. Folding,
especially origami folding, has been studied in and outside
of scientific communities, and commands a rich literature.
The combinatorics and geometry communities have interesting
kinematic results on origami folding (see e.g. [24, 25, 26, 27]
and references therein), especially on rigid flat origamis, which
we use below to give a clear and representative example of our
approach. Rigid origamis are modeled to have rigid and planar
panels, and flat origami folds are those that can be pressed in
a book without (in theory) introducing new creases. Among
many interesting results on single-vertex rigid flat origamis,
we will use the following properties later (see, e.g., [24, 25]
for proofs). Assume the cone angles about the vertex add up
to 2π (as in [27], by cone angle we mean an angle between
adjacent crease lines.) Then (a) the number of crease lines,
and thus the number of cone angles, for a rigid flat origami
vertex is even, and (b) the sum of even-indexed cone angles
(thus also the sum of odd-indexed cone angles) is π.

We also refer readers to a very important and closely related
paper [27], where the authors model a single-vertex origami
as a spherical polygonal linkage and further prove that all
single-vertex origami shapes are reachable from one to another
via simple, non-crossing motions. They also consider general
conical paper, where the total sum of the cone angles centered
at the vertex is not 2π, and obtain similarly remarkable results
for conical paper with certain properties. Their approach relies
on natural extensions to the sphere of planar Euclidean rigidity
results regarding the existence and combinatorial characteriza-
tion of expansive motions, which have been used in the recent
breakthrough on collision-free convexifying (straightening)
Euclidean polygonal loops (open chains) [28, 29]. One of
our methods for single vertex origamis also models such a
system as a spherical loop. But we use spherical triangles and
corresponding parameters to study these loops, and explicitly
parametrize their DSpaces, a very different approach from that
in [27]. Further comparing results, paper [27] proves that the
valid subset of DSpace (i.e., DFree , to use a naming scheme
parallel to the well-known CFree for the valid subset of
CSpace) is connected, and provides an efficient collision-free
path planner; our approach can solve the complete DSpace
structure, but does not apply immediately to DFree.

IV. SIMPLEX-TREE BASED KINEMATICS FOR FOLDS

Most of this section is devoted to the kinematics of a single-
vertex fold, that is, a foldable object with multiple rigid and
planar panels incident on one vertex O, each panel having two
crease lines incident on it at that vertex (see Fig. 1(b)). The
rigid panels and crease lines incident on O define a generalized
cone with apex at O, so O is called the cone apex. Crease lines

correspond to edges of the cone, and panels can rotate about
crease lines without tearing, so cone deformations are subject
to the loop closure constraint if panels and crease lines are to
stay intact. Rather than describe DSpace of this cone in terms
of angles subject to a constraint of the form (1), we modify our
ideas from [14] and use a construction tree of simplices; we
present two approaches, one based on Euclidean tetrahedra,
the other on spherical triangles. Both approaches reveal close
structural similarities between the kinematics of single-vertex
folds and the kinematics of Euclidean planar loops.

A. Approach One: Trees of Euclidean Tetrahedra

System Modeling. Pick a non-apex point P (i) on the ith

crease line (in cyclic order, with i taken modulo n as needed).
The line segment P (i)P (i+ 1) is contained in the ith panel.
The panels are rigid and rotation around a crease line is a rigid
motion, so the length li of this segment is constant over all
deformations; thus taken together all these segments form a
(spatial) loop of n rigid links. Moreover, the length of OP (i)
(on the ith crease line) is also constant, for the same reason.
Thus each triangle Tri(O,P (i), P (i + 1)) maintains its con-
gruence class throughout all deformations of the generalized
cone, so from the point of view of deformation space the
original generalized cone may be replaced with a polyhedral
cone comprising the n triangular panels Tri(O,P (i), P (i +
1)), i = 0, . . . , n − 1. We now find a construction tree of
simplices for this cone, and use simplex-based parameters to
study its DSpace .

Tetrahedra Trees and Parameters. One method is
to use any construction tree of triangles for the loop
(P (0), P (1), . . . , P (n− 1)). For example, a 6-bar loop with
vertices P (0), . . . , P (5) is decomposed by the three diagonals
(P (1), P (3)), (P (3), P (5)), and (P (5), P (1)) into a construc-
tion tree of 4 triangles: Tri(1, 3, 5), Tri(1, 2, 3), Tri(3, 4, 5),
and Tri(5, 0, 1), with Tri(1, 3, 5) adjacent to all other three.
(We abbreviate Tri(P (1), P (2), P (3)) by Tri(1, 2, 3) and so
on.) Now, each of these triangles Tri(P (i), P (j), P (k)) de-
termines a tetrahedron Tet(O,P (i), P (j), P (k)), whose three
edges (additional to those of the triangle) have already been
noted to be of fixed length. These tetrahedra fit together, in a
tree combinatorially identical to that chosen to construct the
loop, so as to construct the polyhedral cone (see Fig. 2.) The
corresponding tetrahedra-based parameters for DSpace of the
cone are closely related, but not identical, to the triangle-based
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P(3)

O
O

O

O

P(0) P(1)

P(3)P(4)
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P(2)

Tet(O,1,2,3)

Tet(O,1,3,5)

Tet(O,0,1,5)

Tet(O,3,4,5)

|

/\

Fig. 2. Decomposition of a polyhedral cone into a tree of tetrahedra.
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parameters for DSpace of the loop. Namely, we use (a) the
squared diagonal lengths D[T] = [D[T](1), . . . , D[T](n−3)],
and (b) the tetrahedron orientation signs s[T] = [s[T](1), . . . ,
s[T](n− 2)]. Here T denotes a construction tree of tetrahedra
for the polyhedral cone, D[T](i) = d2[T](i) is the squared
length of the ith diagonal, and s[T](j) is the orientation sign
of the jth tetrahedron comprised in T. (The number n− 3 of
squared diagonal lengths for the tree of tetrahedra equals the
number n−3 of diagonal lengths for the tree of triangles, and
similarly for the number n− 2 of orientation signs.)

Constraints and DSpace Structures in Tetrahedral Para-
meters. In this formulation, the loop closure constraint on the
panels of our polyhedral cone becomes that set of constraints
on the diagonal lengths which is necessary and sufficient for
the tetrahedra comprised in T to exist. These constraints can
be phrased in terms of the Cayley–Menger determinant. As
is well known, given real numbers D(i, j) (0 ≤ i, j ≤ 3)
with D(i, j) = D(j, i) ≥ 0, D(i, i) = 0, points P (i) ∈ R3

(0 ≤ i ≤ 3) with D(i, j)=‖P (j)−P (i)‖2 exist if and only if

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1
1 0 D(0, 1) D(0, 2) D(0, 3)
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1 D(3, 0) D(3, 1) D(3, 2) 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≥ 0. (2)

Equality holds if and only if the points P (i) are coplanar. Each
of the n−2 tetrahedra σ ∈ V (T) gives us one such inequality
constraint. The set of all n− 2 inequalities defines the set of
feasible squared diagonal lengths for the n-sided polyhedral
cone, which we call DStretch .

The tetrahedron orientation signs are likewise defined along
the lines set out in [14] for triangle orientation signs for a loop
with a construction tree of triangles. If we use + and − for the
two orientations of non-degenerate tetrahedra, and label singu-
lar tetrahedra with both + and −, we obtain (roughly) an iden-
tification of DSpace[T] of the polyhedral cone parametrized
by the tree T of tetrahedra with DStretch[T]×DFlip, where
DFlip = {+,−}n−2. (As in [14], eliminating the “roughness”
requires analysis of “super-singular” deformations.) Such a
DSpace parametrization is very similar to that for a planar
loop with n links given in [14]. An important difference is
that, whereas [14] proves that DStretch of a planar loop with
n revolute joints and fixed link lengths is a convex polyhedron
of dimension n−3, in the present case DStretch is still convex
but (for n ≥ 5) it is no longer a polyhedron.

The geometry of its various curvilinear faces is revealed
by separate analyses of the constraint (2) in the cases where
the corresponding tetrahedron includes exactly 1, 2, or 3
diagonals: a single diagonal’s squared length is constrained
to lie in an interval; a pair of diagonals’ squared lengths are
constrained to lie inside or on a certain ellipse; and a triple of
diagonals’ squared lengths lie inside or on the boundary of a
certain semi-algebraic (cubic) convex body.

B. Approach Two: Trees of Spherical Triangles

For the tetrahedra above, the non-apex points P (i) on the
crease lines, and thus their distances to the cone apex O and
the link lengths, can be chosen quite arbitrarily, though astute
choices might afford extra convenience in computation.

System Modeling. For the second approach, we demand that
all P (i)’s be at the same distance from the cone apex O.
Thus the set of P (i)’s is the intersection of the crease lines
with a sphere centered at O. As noted earlier, the distance
between O and any point on a crease line is constant across
all deformations, so this sphere is also constant; further, since
the cone panels are assumed to be rigid and planar, each of
them intersects the sphere in a spherical line segment (i.e., an
arc of a great circle through the corresponding points P (i)
and P (i+1)), and the spherical length of that segment is also
constant. For simplicity, instead of spherical length we use
central angle to measure spherical line segments (the spherical
length is the radius of the sphere multiplied by the radian
measure of the central angle). Following standard usage from
spherical geometry, we also call a spherical line segment minor
if its central angle is in [0, π], and major if not.

In this language, what we have observed is that the intersec-
tion of each cone panel intersects the sphere in a spherical line
segment of constant central angle. Therefore the intersection
of the sphere with the entire system of rigid and planar panels
incident on the cone apex O is a spherical n-gon loop (n being
the number of panels) with links of fixed central angles; and
the kinematics of the single-vertex fold is equivalent, in the
sense of having identical DSpaces, to that of this spherical
loop. The converse, that every spherical loop corresponds in
this way to a single-vertex fold, is obvious.

There is a subtlety which we have no room to discuss
properly here, but which must be mentioned. It is entirely
standard to define the spherical distance between two points of
a sphere to be the length of a minor spherical line segment with
those endpoints, and with that definition the sphere becomes
a metric space in the usual way—in particular, the triangle
inequality holds; but there is no compelling reason to require
the edges of a spherical polygonal n-gon to be minor segments.
Nonetheless, in the remainder of this paper we restrict our
attention to spherical polygonal n-gon loops in which each
edge is minor; equivalently, in the language of foldable objects,
to single-vertex folds in which the angle of each panel at the
cone apex is at most π.

Spherical geometry shares many theorems with Euclidean
plane geometry, but not all; so our triangle approach to spher-
ical n-gon loop kinematics is very similar, but not identical,
to our triangle approach in [14] for Euclidean planar n-gon
loops. Below, we emphasize the points of difference.

Spherical Triangle Trees and Parameters.
The construction trees of triangles in [14] have no branching

because the triangles are anchored (share a common vertex);
however, as noted in the proof of Theorem 1, the results and
arguments in [14] extend to arbitrary construction trees of
triangles, Euclidean or spherical. In particular, for an n-gon
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loop each construction tree has n− 2 nodes and n− 3 edges
(loop diagonals); Fig. 3 shows this for a spherical 6-gon with
central angles (50, 97, 151, 82, 35, 59) (in degrees).

Following our general simplex-based approach, we define
spherical-triangle-based parameters for the deformations of a
spherical loop, and thus that of a polyhedral cone allowing
rotation about the edges. Namely, we use (a) the spherical
diagonal lengths β[T](1), . . . , β[T](n−3), and (b) the spherical
triangle orientation signs s[T](1), . . . , s[T](n − 2), where T

is a construction tree of spherical triangles for the spherical
loop, β[T](i) is the central angle of diagonal i, and s[T](i) is
the orientation sign (+, −, or 0) of the ith spherical triangle
in T. One way to define this sign is as the orientation sign
of the tetrahedron formed by the triangle vertices (in their
given order) preceded by the center of the sphere; as usual
0 means that the tetrahedron is degenerate (equivalently, that
the triangle is contained in a great circle). Reasoning like that
in [14] shows that the orientation sign values s[T](i) are es-
sentially uncoupled from the central angle parameters β[T](j);
reversing the sign of a non-degenerate triangle corresponds to
reversing its orientation (compare Figs. 3(a) and 4(c)).

Constraints and DSpace Structures in Spherical Triangle
Parameters. To generalize the method given in [14], we need
to find the necessary and sufficient conditions on three angles
less than or equal to π such that there exist a spherical triangle
with those central angles. This is easy to do in light of the
observation (true in both spherical and Euclidean geometry)
that the length of one edge of a triangle is at most the sum
of the lengths of the other two edges. One issue here is that
the spherical distance between any two points is restricted to
[0, π]. Given two distances β1, β2, each between 0 and π, their
usual sum β1+β2 will have a direct range of [0, 2π]. However,
if we define their spherical sum by

β1 ⊕ β2 = min(β1 + β2, 2π − β1 + β2) (3)

then we find that their spherical sum is again between 0 and π;
and we see that given a spherical triangle with vertices P (i),
P (j), P (k) at spherical distances β(i, j), β(j, k) and β(k, i)
in [0, π], the triangle inequalities become

β(i, j) ≤ β(j, k)⊕ β(k, i) (4)

β(j, k) ≤ β(k, i)⊕ β(i, j) (5)

β(k, i) ≤ β(i, j)⊕ β(j, k) (6)

Moreover, in the cube [0, π]3, these inequalities (which are all
linear in the coordinates) cut out a convex polyhedron.
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Fig. 3. One deformation of a spherical 6-gon loop with 3 sets of shape
parameters derived from 3 different trees of 2-simplices.

r(i)
r(i+1)

r(i-1)

l(i+2)

l(i+1)
+
+

(a) Like.

r(i)

r(i+1)

r(i-1)

l(i+2)

l(i+1)+
−

(b) Unlike.

82.0

35.5

59.3

49.8

97.3

151.0P0
P1

P2

P4 P3

P5 β2

β3 β1

(c) Cf. Fig. 3(a)

Fig. 4. (a), (b) Two embeddings, with different relative orientations, of one
pair of spherical triangles. (c) A deformation of a 6-gon loop, differing in the
orientation of exactly one triangle from that shown in Fig. 3(a).
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Fig. 5. (a)DStretch for a flat origami vertex with six creases and cone angles
(45; 30; 65; 50; 70; 100) degrees, and a linear path of shape parameter values
joining a gray interior point (60, 60, 80) to a black corner (95, 120, 145).
(b) DSpace for a flat origami vertex with four creases; it is not a manifold.

Now, returning to spherical loops, we note that the loop
closure constraint is the set of triangle inequality constraints
on the diagonal lengths required for successful formation of
all spherical triangles in the construction tree T. As in [14]
this implies that DStretch , the set of feasible diagonal central
angles, is a convex polytope with a natural stratification.
(Fig. 5(a) illustrates the situation for a spherical 6-gon loop
with central angles of (45, 30, 65, 50, 70, 100) degrees.)

Again as in [14], this construction endows DSpace with
a stratification: roughly, DSpace is constructed by gluing
together 2n−2 copies of DStretch (one for each assignment
of orientation signs to triangles in T) along boundary strata
corresponding to singular deformations (with one or more sin-
gular triangles). One essential fact used here is that reversing
the orientation of a non-singular triangle, if possible, requires
passing through a singular deformation of the triangle.

As a simple example of DSpace structures, consider a flat
origami vertex with 4 panels. Let its cone angles be β(0, 1),
β(1, 2), β(2, 3) = π − β(0, 1), and β(3, 0) = π − β(1, 2)
(here we use properties (a) and (b) of flat origami vertices as
quoted in section III). As the only shape parameter, we use the
central angle between P (0) and P (2). It is easy to verify that
DStretch is the interval with endpoints |β(0, 1)−β(1, 2)| and
β(0, 1)⊕β(1, 2). Further, at these endpoints the two triangles
of the tree, one with vertices P (0), P (1), P (2) and the other
with vertices P (2), P (3), P (0), are simultaneously singular.
(Trying some concrete values for β(0, 1) and β(1, 2) may help
understand this fact.) Thus when DSpace is constructed from
4 copies of the interval DStretch , at each end of the interval
all four copies are glued together; the resulting DSpace is
singular (i.e., not a manifold), and looks like the union of 2
circles intersecting at 2 points, as shown in Fig. 5(b). We see
that all flat origami vertices of 4 panels (with generic cone
angles) have topologically identical DSpaces.
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Fig. 6. Deformations and motion of the flat origami vertex with DStretch illustrated in Fig. 5(a); diagonal angles (in degrees) and orientation signs
are as indicated. (a) Query deformation 1 ((60, 60, 80), (−,−,−,+)); (b) query deformation 2 ((60, 60, 80), (+,+,+,+)); (c) a flat deformation
((95, 120, 145), (0, 0, 0,+)); (d) a linear path between query deformation 1 and the flat deformation (also shown in the copy in DSpace of Fig. 5(a)
that has orientation sign (−,−,−,+)); (e) singular deformation 1 ((95, 60, 80), (0,−,−,+)); (f) singular deformation 2 ((95, 120, 80), (0, 0,−,+)).

C. Results and Discussions

The tetrahedron and spherical-triangle approaches exhibit
similarity in DSpace structures for single-vertex fold kine-
matics, as summarized in the following theorem.

Theorem 2: For a single-vertex fold with n rigid panels,
DStretch is an (n−3)-dimensional convex body, DFlip is the
discrete set {+,−}n−2, and DSpace consists of 2n−2 copies
of DStretch properly identified along their boundaries. �

Both approaches have significant advantages over ap-
proaches that use joint angle parameters, thanks both to the
explicit constraints in our new parameters and the practical
convexity of DSpace in these parameters. As an illuminating
example for the efficiency of our simplex-based approach,
consider the generation of loop deformations. In our new
parameters, this can be done in two steps.

First, we solve the shape parameters. Both Cayley–Menger
determinant and spherical triangle inequality constraints can
be efficiently solved, e.g., with convex programming (or,
for triangle inequalities, linear programming). We have also
developed our own solving methods that take advantage of the
highly structured constraints; in our computation study using
Matlab, they beat the general methods by orders of magnitude.

Second, we pair the shape parameter values with the relative
orientation sign parameters. For a generic single-vertex fold
with n rigid panels, each set of diagonal length parameter
values of a non-singular deformation pairs with 2n−2 distinct
sets relative orientation signs, generating 2n−2 distinct (though
related) system deformations, all with the same simplex shapes
but differing simplex orientations. On a laptop computer, using
linear programming in Matlab, a set of valid shape parameters
for a generic single-vertex 1000-panel fold can be generated
in about 1 millisecond. Paired with the points of DFlip, this
yields 2998 different deformations.

Knowledge and nice geometry of system DSpaces have
significant impact on many kinematics related issues such as
system design and path planning. For example, it is foreseeable
for certain design tasks to favor systems in which having all (or
important) system configurations fall into a single connected
component of DSpace (or of DFree, when collision avoidance
is taken into consideration). Explicit and efficient parame-
trization of DSpaces provides invaluable tools to designers
for the evaluation and improvements of design schemes. As
another example of the broad implications of our approach and
results, the piecewise convexity of DSpace in simplex-based

parameters greatly simplifies path planning for single-vertex
folds. That is, two query deformations in the closure of one
DSpace stratum (roughly, the points of DSpace corresponding
to one copy of DStretch) can be joined by a straight-line path
because DStretch is convex. Two deformations merely in the
same component of DSpace can be joined by a piecewise-
linear path, once we determine critical singular deformations
through which to move successively between strata; again, the
simple nature of the constraints on our shape parameters leads
to efficient computation of singular deformations.

Figs. 6(a) and 6(b) show two query deformations of a flat
origami vertex with 6 panels, again having central angles of
(45, 30, 65, 50, 70, 100) degrees: both deformations have diag-
onal length values of (60, 60, 80) degrees, and have opposite
orientations for all triangles except the one with vertices P (1),
P (3), P (5). Each query deformation can be linearly connected
to a flat deformation, like that in Fig. 6(c) with diagonal
lengths of (95, 120, 145) degrees. Fig. 6(d) illustrates a linear
path from the deformation in Fig. 6(a) to the flat deformation.
While a linear path between two points in a convex set is
shortest in the convex metric and mathematically optimal, it
generally involves simultaneous motion (folding) of all crease
lines. Since in practice many folding motions are most easily
done by folding only one or a few creases at once, for folding
problems Manhattan paths are likely to be more practical than
linear paths. The query deformation in Fig. 6(a) can reach the
flat deformation by using a 3-segment Manhattan path through
two singular deformations as in Figs. 6(e) and 6(f).

For single-vertex fold systems, the spherical triangle ap-
proach will generally be more efficient than the tetrahedron
approach, since triangle constraints (inequalities (4)–(6)) are
generally simpler than determinant constraints (inequality (2)).
We introduced both approaches since each has its own ad-
vantages in various situations; e.g., the tetrahedron approach
generalizes directly to multi-vertex folds (like that in Fig. 7)
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Fig. 7. A multi-vertex fold with a construction tree of simplices.
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that allow construction trees of tetrahedra. Note that a multi-
vertex fold contains multiple loops of panels; Fig. 7 is just one
of the simplest examples of a multi-loop, multi-point system
allowing a construction tree of simplices. Our approach and
results, described in section II and illustrated in this section
for single-vertex folds, apply directly to all such systems.

V. SUMMARY

In this paper, we have described our novel simplex-tree
based approach for the kinematics of multi-body systems
involving loops, and illustrated it with an example system of
single-vertex folds. For systems allowing construction trees
of simplices, we efficiently use simplex-based shape and
orientation parameters for system deformations, formulate
loop constraints as constraints on shape parameters needed
for successful formation of the simplices (e.g., the triangle
inequality and Cayley–Menger determinant constraints for tri-
angles and tetrahedra), solve the set of valid length parameters,
and explicitly construct the DSpace structures essentially as
the product of the shape parameter set and the orientation
parameter set (which carries no loop constraints). For systems
involving loops, knowledge of DSpace and CSpace structures
with explicit parametrizations is invaluable for many kine-
matics related issues, e.g., motion planning, system design,
analysis, simulation, and control; until recently (cf. [7, 8, 14,
15]) these structures and parametrizations, and techniques for
working with them, have largely remained elusive. In this
paper we have greatly extended our work in [14, 15].

Part of our ongoing research is to identify and study
systems allowing simplicial construction trees. For a multi-
point linkage system (again, with links modeling distance
constraints), the conditions on the existence of a construction
tree can be intuitively understood as follows: its constraints as
reflected in the existing links shall allow the addition of virtual
links that decompose the system into a collection of simplices
(or more broadly, a collection of simplices with other rigid
system components, as dictated by existing system constraints,
attached to the simplices) with edges consisting of all existing
and virtual links, and with free relative configurations allowed
among adjacent simplices. Lengths of virtual links and existing
links with non-trivial ranges are captured by shape parameters,
relative configurations by orientation parameters. We are cur-
rently working on further properties and algorithms useful to
identify these systems and their parameters. We emphasize
that, while the representative systems solved in simplex-tree
based approaches so far (including Euclidean polygonal loops
in our earlier papers [14, 15] and the systems in this paper) use
construction trees with equidimensional simplices as nodes,
our simplex-based approach allows non-equidimensional sim-
plices as nodes of a single tree. In future papers we will
describe practical robotic systems that can be usefully studied
using construction trees of non-equidimensional simplices.
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Abstract  Actuation is a major challenge in the development of 

robotic systems intended to work in functional Magnetic 

Resonance Imaging (fMRI) procedures, due to the high magnetic 

fields and limited space in the scanner. Fluidic actuators can be 

made fMRI-compatible and are, thus, promising solutions. In this 

work we developed two robotic interface devices, one with 

hydraulic and another with pneumatic actuation, to control one 

degree-of-freedom translational movements of a user that 

performs fMRI tasks. Due to the fMRI-compatibility restrictions, 

special materials were used for the endeffector which works in the 

scanner bore, and active components such as the control valves 

and pressure sensors, had to be placed far away from the 

endeffector with long transmission lines in between. Therefore, 

the two fMRI-compatible setups differed from conventional 

fluidic actuation systems and brought control difficulties. Both 

systems have been proved to be fMRI-compatible and yield no 

image artifacts in a 3T scanner. Passive as well as active subject 

movements were realized by classical position and impedance 

controllers. With the hydraulic system we achieved smoother 

movements, higher position control accuracy and improved 

robustness against force disturbances than with the pneumatic 

system. In contrast, the pneumatic system was back-drivable, 

showed faster dynamics with relatively low pressure, and allowed 

force control. Furthermore, it is easier to maintain and does not 

cause hygienic problems after leakages. In general, pneumatic 

actuation is favorable for fast or force-controlled applications, 

whereas hydraulic actuation is recommended for applications that 

require high position accuracy, or slow and smooth movements. 

I. INTRODUCTION 

Robotic systems and devices that are compatible with 

magnetic resonance imaging (MRI) technique find wide range 

of applications in academic and industrial fields [1, 2]. 

Functional MRI (fMRI) is an advanced research and clinical 

tool in neuroscience. An fMRI-compatible robot could perform 

well controlled and reproducible sensorimotor tasks, while the 

subject's motor interactions with the robot are recorded by 

fMRI procedures and translated into brain images (Fig. 1). 

Therefore, fMRI-compatible robots can be applied with fMRI 

procedures to map brain functions [3, 4], investigate human 

motor control [5, 6], monitor rehabilitation induced cortical 

reorganization in neurological patients [7], etc. Such kind of 

fMRI-robotic systems could provide insights into the cortical 

reorganization mechanism after damage to the nervous system, 

offer a better understanding of therapy-induced recovery, and 

help to derive more efficient rehabilitation strategies.  

To construct fMRI-compatible devices is rather challenging. 

First, the device must not disturb the scanner magnetic fields  

 

and ensure image quality. Second, the device should function 

properly in the scanner room. Third, the device is compact to fit 

into the scanner bore with the diameter of 55~70 cm [1, 3]. 

 
Fig. 1 fMRI-compatible robot working with fMRI procedures 

 

The strong magnetic fields limit the choice of materials, 

sensors and actuators to be used in the MRI environment. Stiff 

polymer materials are a good alternative of magnetic metals for 

applications in the scanner environment. Sensors and actuators 

using strong electrical currents should also be avoided. 

Electrical components may be brought into the scanner 

environment if their electrical signals are of low frequency and 

low amplitude, and if the components are placed at a certain 

distance from the scanner and/or they are shielded [5, 6, 8]. 

Sensors with optical principles have been employed to measure 

position [6, 9], force / torque [6, 10, 11].  

Typical fMRI-compatible actuation technologies are based 

on hydraulic or pneumatic principles, special electromagnetic 

principles, shape memory alloys, contractile polymers, 

piezoelectric actuation, materials with magnetostriction 

properties, electro-rheological fluids (ERFs) , or bowden cables 

[1, 2, 12, 13]. Among these working principles, fluidic 

actuations are promising solutions for fMRI-compatible robots 

that are intended to perform defined functional movement 

tasks, because 1) the fluids are magnetically inert in nature and 

the moving endeffector can be made fMRI-compatible, 2) the 

power can be generated distantly from the endeffector and sent 

to the endeffector inside the scanner via transmission hoses, 3) 

the actuators can provide large movement ranges and large 

forces, 4) the force-to-mass ratio is high, and 5) the 

transmission can be made flexible so that they can be placed 

adaptively to the work environment [2, 12].  

In literature, many efforts have been made for the application 

of pneumatic actuation technologies to fMRI-compatible 

robotic systems [14] and devices [4, 15, 16]. Hydrostatic 
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actuation was applied in master-slave setups to interact with 

human[9] or to position a forceps for surgery [17]. Reported 

problems were leakages, resulting in pollution, performance 

degeneration, and entrance of air bubbles. Furthermore, image 

deterioration occurred due to the high magnetic susceptibility 

of materials used for the systems [17, 18]. 

Traditional hydraulic or pneumatic actuation techniques 

cannot be directly transferred to fMRI-compatible applications. 

The fluid power generators, i.e., hydraulic or pneumatic 

compressors, consist of ferromagnetic materials. They must be 

placed outside of the scanner room for safety reason. Control 

valves are normally actuated by magnetically driven solenoids. 

Furthermore, valves and pressure sensors also contain 

ferromagnetic materials. Thus, they must be positioned far 

away from the scanner and the endeffector to avoid 

electromagnetic interferences causing malfunction and/or 

image artifacts. Therefore, long hoses have to be used to 

transmit the fluid power from the compressor to the control 

valves and then to the endeffector.  

This arrangement results in several challenges for both 

construction and control. First, the endeffector must be made of 

fMRI-compatible materials so that it can work close to or inside 

the scanner bore. This can result in friction and stiffness 

problems at the fluidic cylinder, which is required to transfer 

fluidic pressure into force and motion. Second, valves and 

pressure sensors are distant from the endeffector, causing delay 

and measurement inaccuracies. Third, long hoses result in high 

inertia and compliance. Fourth, the system will interact with the 

user, so that the working pressure must be limited to ensure 

safety. Reduced pressure may also increase the compliance of 

the system. Finally, position and force sensors used inside the 

MRI scanner must be made MRI-compatible, which may 

reduce their signal quality. The mechatronic setup, including 

sensor, actuator and controller must be able to cope with these 

challenges and work in an, accurate, stable and robust way. 

In this work two comparable robotic interface devices with 

hydraulic and pneumatic actuation respectively, were 

developed and implemented to control a translational one 

degree of freedom movement for fMRI studies. The interface 

devices are equipped with fMRI-compatible position and force 

sensors. Position and impedance/admittance controllers were 

realized to achieve active as well as passive subject 

movements, which are both required to investigate different 

fMRI-relevant motion tasks. The two systems were evaluated 

and compared with respect to control performance. 

Furthermore, both manipulandum systems were examined for 

MRI-compatibility in a 3 Tesla MRI scanner. 

II. DESIGN AND REALIZATION OF THE FMRI-COMPATIBLE 

ROBOTIC SYSTEMS 

A. Design Considerations and System Structure 
According to the prospective clinical applications, the design 

considerations are defined as: 

 fMRI-compatible; 

 Haptic interaction force and position measurement; 

  cm; 

 Actuator velocity range: -15 5 cm/s; 

 Actuator force range: -  N; 

 

to follow a designed position curve; 

 Subject active movement: simulate a virtual spring so 

that the subject can push or pull against the system. 

The fluidic system structure was taken as in Fig. 2. 

 
Fig. 2 Concept of fluidic-actuated robots to work with fMRI 

B. Material Consideration and Measurement Principles 
The materials put inside or close to the MRI scanner must 

have low magnetic susceptibility and low electric conductivity. 

Therefore, PET and PVC plastic were taken as the main 

construction material for frames and mechanical adapters. 

Nevertheless, metals have to be used for some parts required to 

be stiff, such as cylinders that will work under high pressure 

and force. Both cylinders were specially manufactured, with 

aluminum being the housing material. The piston of the 

pneumatic cylinder is made of PET, while that of the hydraulic 

cylinder is made of bronze to sustain the higher forces due to 

the significantly higher pressures. Both aluminum and bronze 

have low magnetic susceptibilities. 
 

Table 1 Physical properties of several materials 
Material 

Magnetic 

susceptibility 

Electrical conductivity 

[m/ mm2, or 106s/m]  

Bronze (CuSn8*) -0.879×10-6    7.5 

Zinc -15.7×10-6 16.6 

Brass -8.63×10-6 17 

Aluminum 20.7×10-6 36 

Copper -9.63×10-6 57 

Drinking water -9.05×10-6 ×10-2 

Nickel         600 14.4 

Iron  200 000   9.9 

*: values provided by the supply company. 
 

Both manipulandum systems are equipped with one force 

and two position sensors. The force sensor consists of three 

optical fibers, one with emitting laser light and two with 

receiving laser light [19]. When a pull or push force is applied 

to the handbar, the emitting fiber is slightly displaced, thus, 

changing the light intensities in the two receiving fibers. The 

measured force is a function of the ratio of light intensities I1 

and I2. Laser signals I1 and I2 are sent out via glass fibers, 

converted to voltage signal by the processing circuit, and then 

read into the control computer. An optical encoder measures 

the handbar position, and a potentiometer works as a redundant 

position sensor for safety consideration. 

C. Fluidic Actuators 
The oil used in hydraulic actuation is Orcon Hyd 32, which is 
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accepted as a lubricant with incidental food contact. Hence, it is 

appropriate for biomedical applications. 

The supply oil pressure from the compressor is 25bar. A 

directional valve regulates oil flow and, thus, controls the 

movement of the actuation cylinder. Two pressure sensors were 

mounted on the valve manifold. Oil is nearly incompressible 

and the actuation system is not back-drivable, i.e., the piston 

cannot be easily moved when the directional valve is closed. 

For pneumatic actuation, the supply air pressure is 4bar. Both 

flow control and pressure control can be implemented. Pressure 

control is considered superior to flow control to overcome 

limitations of compressibility, friction and external 

disturbances [12]. In our application the manipulandum 

interacts with human subjects and the interaction force varies 

within a large range, so that we preferred pressure control. For 

each cylinder chamber, one valve regulates the pressure with 

the feedback from a pressure sensor. 

The hydraulic and pneumatic transmission hoses between the 

control valves and the cylinders are 6m and 5m long, 

respectively. The valves were located at the corner of the 

scanner room, far from the scanner isocenter. The scanner 

magnetic field decreases rather quickly with increasing 

distance from the scanner bore and comes to be only 0.2 mT at 

the valve location [20] (For comparison, the magnetic field of 

the earth is about 0.06 mT). This special setup, different from 

conventional fluidic actuators, was taken to fulfill the 

fMRI-compatibility requirements.  

 
Fig. 3 Composition of the fMRI-compatible haptic interface 

D. fMRI-Compatibility Test 
The fMRI-Compatibility of the two robotic systems must be 

examined by fMRI experiments. The working position of 

robots has already been shown by Fig. 1 and Fig. 3. The test 

consists of three parts: 

1. No force or torque is induced by the magnetic fields and 

the robotic system when it is placed at the working 

position. 

2. The robotic system functions properly as designed when 

it is placed at the working position. All components 

work properly, and the whole system can perform the 

desired movements. 

3. The robotic system does not deteriorate fMRI image 

quality. A mineral water phantom is to be scanned in 

each of the following experimental conditions: 1) No 

device, in which the robotic system is not placed into the 

MRI room; 2) silent device, in which the robotic 

interface is at the working position but not in operation; 

3) functioning device, in which the robotic system is at 

the working position and in operation.  

Two methods are taken to evaluate whether artifacts 

have been introduced into the fMRI images [19]. The 

signal-to-noise ratio (SNR) in dB [21] 
 

20 log10
0:66 mean signal

Average of noise region standard deviations

 quantitatively estimates whether additional noise has been 

introduced into fMRI procedures by the robot. We define 

the SNR variation threshold to be 5%. A second method is 

image subtraction, which qualitatively checks whether 

image shift or deformation has occurred. 

III. CONTROLLER DESIGN 

A. Hydraulic 
Hydraulic oil compressibility is characterized by the bulk 

modulus K. Changes of pressures P1  and P2  in the cylinder 

chambers can be written as 
 

 _Pk =
K

Vk
( _Vk + qk); k = 1; 2 (1) 

 

Here V1 = V10 + xA1 and V2 = V20+(L x)A2 are the total 

fluid volumes on two sides of the cylinder, L is the stroke of the 

cylinder, x is the position of the piston, V10 and V20 are the 

dead volumes, A1 and A2  are the cross sections of cylinder 

chambers, q1 and q2 are oil flows that are dependent on the 

chamber oil pressure, supply oil pressure or reservoir oil 

pressure, and also on the control signal u [22].  

From equations (1), the piston velocity can be derived as: 
 

 _x =
1

A1
q1 x

_P1

K

V10

A1

_P1

K

1

A1

_V10  

 

or 

 _x =
1

A2
q2 + (L x)

_P2

K
+

V20
A2

_P2

K
+

1

A2

_V20
 

 

First, we consider the steady situation. Pressure changes and 

dead volume variations are ignored. In this case, _P1, _P2 and 

_V10, _V20 are all equal to zero. Thus, the velocity of the piston is 

fully determined by the oil flows q1 and q2: 
 

 _x =
1

A1
q1 =

1

A2
q2 (2) 

 

When the piston moves at a constant speed, the pressures P1 

and P2 are both constants, too. Thus, the oil flows q1and q2 
only depend on the proportional valve. The control voltage to 

the proportional valve regulates the piston velocity, and this can 

be modeled as a lookup table. To deal with model uncertainties, 

external disturbances, and compliance from the hydraulic 

system, a velocity controller was designed which consists of a 

compliance compensation term and a proportional term. 
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In our hydraulic system, compliance comes from pressure 

variations _P1 , _P2 , long hose volumes V10 , V20  and their 

variations _V10 , _V20 . It can significantly affect the system 

performance. The long hoses are the main source of high 

compliance. Additionally, it can be observed by visual 

inspection that the hose volumes also change as the inside 

pressures change, but this change cannot be well detected. We 

design the compliance compensation component as: 
 

 _xc =
c

2

"
x

_P1

K

V10

A1

_P1

K
+ (L x)

_P2

K
+

V20

A2

_P2

K

#
 (3) 

 

Here, c 2 [0; 1] determines to which extent the velocity is 

compensated. The model errors, external disturbances as well 

as uncompensated compliance components, were handled by 

the proportional control term. The proportional term was 

determined by experiments. The user force Fh affects pressures 

P1 and P2, and causes a shift in the voltage-velocity lookup 

table, which gets corrected by the velocity controller. 

A PD position controller was designed to work in cascade 

the given position trajectory (Fig. 4). It is not possible to realize 

impedance control on the hydraulic system, because it is not 

backdrivable due to the incompressibility of oil. However, the 

virtual spring for user active movements can be simulated by 

the following admittance control law (Fig. 4): 
 

 _x =
1

Kv
[Fh Kx(x x0)] (4) 

 

Since the manipulandum moves in a low speed range, we can 

set Kv to be small such that the viscous term Kv _x is relatively 

insignificant in the admittance relationship: 
 

 Fh Kx(x x0) =Kv _x 0;  
 

and the hydraulic system behaves like a virtual spring with 

stiffness Kx. Here Kv was experimentally defined to be 2 

N/(cm/s), and Kx is 3 30 N/cm. If Kx was set to be very small 

to simulate a soft spring, the term Kx(x x0) goes close to 

Kv _x , and the viscous effect becomes obvious. With these 

parameters the system remained stable.  

 
Fig. 4 Hydraulic system Control: position control can be 
achieved by a PD position controller in cascade with a velocity 
controller, and the virtual spring can be achieved by setting the 
virtual admittance as Eq. (4) 
 

Table 2 Parameters for the hydraulic and pneumatic systems  
Properties Hydraulic Pneumatic 

Power generation 

Supply pressure Ps       15/25 bar*               4 bar* 

Exhaust pressure Pe           0.4 bar*                0* 

Fluid media 

Bulk modulus K 1.25×10
4 
bar Pressure P 

Density          856 kg/m
3
 P/Pe×1.2 kg/m

3
 

Kinetic viscosity   3.1×10
-5 

m
2
/s   1.5×10

-5 
m

2
/s 

Double acting cylinder 

Cross section A1        2.54
 
cm

2
          9.62

 
cm

2
 

Cross section A2        1.41
 
cm

2
          7.85

 
cm

2
 

Stroke L        0.24 m         0.25 m 

Work pressure limit           25 bar              6 bar 

Transmission Hose 

Length Lt            6 m             5 m 

Cross section At 
     

0.317 cm
2
      0.283 cm

2
 

Dynamics 

Force range -  -  

Velocity range -  -  

  *Pressure value relative to environmental pressure 1.013bar 

B. Pneumatic 
Since the pressure sensor measures the cylinder pressure 

relative to the environmental pressure, we also use relative 

pressure. The force by the pneumatic cylinder is 
 

 Fc = P1A1 P2A2:  
 

Here, we regulate the pressures P1 and P2 in two cylinder 

chambers by two independent valves, and thus regulate the 

force produced by the cylinder.  

Given the desired force Fd, the desired pressures P1d and P2d 

are calculated in the following way: 
 

 

8>><
>>:

P1d =
1

A1
(F0 +max(Fd; 0))

P2d =
1

A2
(F0 +max( Fd; 0))

 (5) 

 

Here, F0  is the minimum chamber force. A first order 

controller was designed for pressure control: 
 

 u1;2 =
2

1
2 f s + 1

eP  (6) 

 

And eP  is the pressure error. The pressure control loop is the 

inner-most loop of the pneumatic system for both position and 

impedance control. Then, we close the force control loop for 

force and impedance control, and close the position loop for 

position control. 

A PD position controller with friction compensation worked 

in cascade with the force-pressure regulator to obtain user 

passive movement.  
 

 Fd = kv( _x0 _x)+kx(x0 x) Fh Ff (7) 
 

Due to manufacture and material properties, the friction 

force Ff  depends not only on velocity, but also on position. The 

friction was modeled as the summation of velocity related and 

position related friction forces, and then compensated by 

force-pressure control. The user force was measured by the 

optical force sensor and got corrected afterwards.  

Both admittance control and impedance control can be 

implemented on the pneumatic system [23, 24] to simulate the 
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spring. Admittance control requires a good position/velocity 

controller that is robust against force disturbances, as the 

velocity controller in our hydraulic system. Here the position 

controller depends on the nested force-pressure regulator and 

suffers from the long distance between the valves, pressure 

sensors and the cylinder. Thus, admittance control is not the 

optimal option. Besides, pneumatic systems are natural 

impedances due to the compressibility of air, and impedance 

control can be realized directly by pressure regulation. 

 
Fig. 5 Pneumatic position control can be achieved by a PD 
position controller in cascade with a pressure controller, and 
the virtual spring can be achieved by setting the virtual 
impedance as Eq. (8) 

 

The impedance control law is quite straightforward 
 

 Fd = Kx(x x0): (8) 
 

It calculates the desired force from the measured position and 

the specified stiffness, and then feed this signal to 

force-pressure regulation to achieve the desired force. 

C. Control Software and Data Acquisition 
The controllers were implemented in MATLAB Simulink 

and then compiled to a computer that runs an xPC target and 

communicates with the system by a data acquisition card 

(AD614, HUMUSOFT). The sampling frequency was 1 kHz. 

IV. RESULTS AND DISCUSSION 

A. fMRI-Compatibility Evaluation 
Both robotic systems were tested in a 3.0 T MRI system 

(Philips Medical Systems, Eindhoven, The Netherlands), with a 

phantom imaging object [19]. Their working position is not in 

the imaging area.  

1. No force or torque was observed when the hydraulic or 

pneumatic system was placed at their working position. 

2. The force and positions sensors worked properly. Both 

robotic systems functioned properly when they were 

placed at the working position, as will be shown in the 

next subsections. 

3. In each of the three experimental conditions, the 

phantom body was imaged as 31 slices. 20 images were 

acquired for every slice of the phantom. Since slide 31 

was closest to the robotic systems, the worst image 

deterioration would happen to this slice. Therefore, we 

checked slice 31 for SNR and images subtraction. 

It has been shown that high SNR values were obtained in 

all fMRI experiments (Table 3). After introduction of 

the hydraulic or pneumatic devices into the scanner 

environment, variations of SNR were all below 5%. The 

decrease of SNR values were minor and could be 

attributed to statistical errors. 

At slice 31, images from the fMRI experiments on 

hydraulic as well as pneumatic robotic systems were 

shown in Fig. 6, together with the subtraction results by 

the corresponding control image. No significant 

differences were observed. 

The experimental results have verified that both robotic 

systems are fMRI-compatible. 

 

Table 3 SNR in (dB) for slice 31: Mean (Standard Deviation) 

Condition Hydraulic* Pneumatic* 

No Device 45.7(0.4) N/A 47.7(0.4) N/A 

Silent 

Device 
45.6(0.3) -0.22% 47.5(0.5) -0.42% 

Functioning 

Device 
45.5(0.5) -0.44% 47.4(0.4) -0.63% 

*: Two experiments were not done at the same day 

 
Fig. 6 Phantom images from the fMRI-compatibility test of the 
hydraulic (upper part) and pneumatic (lower part) robotic 
systems. For each part, t

columns of images were obtained 
, and their difference with the 

control image by direct subtraction. 

B. Control Performance: Hydraulic System 
To analyze the influence of working pressure on the dynamic 

performance, we tested the hydraulic system at two supply 

pressures of 15 bar and 25 bar, respectively. Here, 15 bar is the 

minimal working pressure for the hydraulic system to fulfill the 

defined velocity requirement, while 25 bar is the limit pressure 

for the hydraulic system to work safely.  

The position control performance was first examined for step 

responses (Fig. 7). The reference step curve jumped twice from 

5 cm to 15 cm and back, and then jumped twice from 5cm to 10 

cm and back. When the hydraulic system worked at 15 bar, the 

steady position error was smaller than 0.06 cm, overshoot was 

smaller than 0.02 cm, and rise time was about 3.14 s. When the 

hydraulic system worked at 25 bar, the steady position error 

was still smaller than 0.06 cm, but the overshoot went up to 

0.27 cm and the rise time decreased to 0.86 s. 
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Fig. 7 Position control: step responses of the robotic systems 
 

We then checked the position controlled hydraulic system 

for dynamic tracking performance. A so-

from MATLAB Simulink was taken as the reference trajectory 

(Fig. 8). The signal was of sinusoidal shape, fixed amplitude of 

10 cm, and offset 12 cm. The frequency of this signal linearly 

increased from 0 to 1 Hz as time went from 0 to 100 s. The 

actual position curve was recorded and compared with the 

reference  (Fig. 8). 

The position bandwidth for the given signal was 0.48 Hz when 

the hydraulic system worked at 15 bar, and went up 

dramatically to 0.65 Hz for the working pressure of 25 bar. 
 

 

 
Fig. 8 Position control bandwidth of the robotic systems 
 

User active movements were achieved by the simulated 

virtual spring. Fig. 9 shows an example spring of stiffness 5 

N/cm when the hydraulic system worked at 15 bar and 25 bar of 

supply pressure. In the ideal case, the computed virtual force 

should equal to the user force. That is,Fh =Fv =Kx(x x0). 
It can be seen from the plot that the virtual force curve 

coincided quite well with the user force curve at 25 bar working 

pressure, and was slightly postponed at 15 bar working 

pressure. When the spring constant is small to simulate a soft 

spring or the device moves fast, the neglected viscous term 

becomes significant and blurs the spring feeling. This resulted 

from the admittance control law we used. 

 
Fig. 9 Virtual spring simulation: an example 

C. Control Performance: Pneumatic System 
We used exactly the same procedures to analyze the 

controlled performance of the pneumatic system as we did with 

the hydraulic system. According to the step responses (Fig. 7), 

the steady position error was smaller than 0.25 cm, overshoot 

smaller than 0.01 cm, and the rise time was about 0.86 s. The 

position bandwidth for the given signal was around 0.9 

Hz, higher than the bandwidth of the hydraulic system working 

at 15 bar or 25 bar. 

The simulated spring was achieved by controlling the 

cylinder force Fc to closely follow the desired virtual force by 

the impedance control law Kx(x x0). The spring effect 

was more natural and obvious than that of the hydraulic system. 

D. Comparison of the Two  fMRI-Compatible Systems 
We summarize the characteristics of hydraulic and 

pneumatic actuation in Table 4. 
 

Table 4 Comparison of hydraulic and pneumatic actuation for 
fMRI-compatible applications 

Aspects Hydraulic Actuation Pneumatic Actuation 

fMRI-Compatibility and Related Challenges 

Fluid media Oil and air are both magnetically inert 

Cylinder 
MRI-compatible materials such as Bronze, 

aluminum, plastic, etc. 

Hose length 

 5m  

 Active components (e.g., valves) are far from 

the scanner for fMRI-compatibility 

 This increases compliance of the system 

 Pressure sensors are far away from actuator, 

causing inaccuracies and time delay 

Fluid Power 

Power generation Compressor  Compressor 

Flow Laminar Laminar & turbulent 

Working pressure 5bar* * 

Force Large Medium 

Working Mode 

Component Directional valve Pressure regulation valve 

Control target 
Flow control, regulate 

velocity and position 

Pressure control, regulate 

force 

Position control 
High accuracy 

Low bandwidth 

Medium accuracy 

Medium bandwidth 

Velocity range Small Big 

Friction or  

force disturbances 
Robust Sensitive 

Back drivability Not backdrivable backdrivable 

Others 

Leakage Rare Not a problem 

Complexity&Cost High Medium 

Maintenance Medium Simple 

*: Relative to environment air pressure. 
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The design requirements have been fulfilled by both the 

hydraulic system and the pneumatic system with different 

working pressures. With the hydraulic system, we were able to 

achieve smoother movements, higher position control accuracy 

and improved robustness against force disturbances than with 

the pneumatic system. In contrast, the pneumatic system is 

backdrivable and shows better and faster force control 

performance. Furthermore, it is easier to maintain and has no 

serious consequences by leakages. In general, pneumatic 

actuation is more favorable for fast or force-controlled 

fMRI-compatible applications, whereas hydraulic actuation can 

be recommended for applications that require higher position 

accuracy and slow and smooth movements. 

V. CONCLUSION 

We conclude that both hydraulic and pneumatic actuation 

systems can be developed for fMRI-compatible applications. 

The fMRI-compatibility requirements can be fulfilled by 

special selection of materials and a nonconventional fluidic 

setup. The resulted limiting factors, such as long distance 

between cylinders and valves/pressure sensors, long 

transmission hoses as well as the usage of second quality 

fMRI-compatible components, increased control difficulties. 

Nevertheless, satisfactory control performances have been 

achieved by classical control strategies. Performances of the 

hydraulic and pneumatic actuation systems differ from each 

other due to the different physical properties of oil and air. The 

user has to decide, which system better fits the requirements of 

a specific application.  

In future, stability and robustness of the system during 

robot-human interaction still need further study. 
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Abstract—In this paper, we examine the problem of locating
a non-adversarial target using multiple robotic searchers. This
problem is relevant to many applications in robotics including
emergency response and aerial surveillance. Assuming a known
environment, this problem becomes one of choosing searcher
paths that are most likely to intersect with the path taken
by the target. We refer to this as the Multi-robot Efficient
Search Path Planning (MESPP) problem. Such path planning
problems are NP-hard, and optimal solutions typically scale
exponentially in the number of searchers. We present a finite-
horizon path enumeration algorithm for solving the MESPP
problem that utilizes sequential allocation to achieve linear
scalability in the number of searchers. We show that solving the
MESPP problem requires the maximization of a nondecreasing,
submodular objective function, which directly leads to theoretical
guarantees on paths generated by sequential allocation. We also
demonstrate how our algorithm can run online to incorporate
noisy measurements of the target’s position during search. We
verify the performance of our algorithm both in simulation and
in experiments with a novel radio sensor capable of providing
range through walls. Our results show that our linearly scalable
MESPP algorithm generates searcher paths competitive with
those generated by exponential algorithms.

I. INTRODUCTION
The problem of gaining line-of-sight to a non-adversarial

target is one that is relevant to many applications in robotics.
Emergency response teams may need to locate a lost first
responder or survivor in a disaster scenario. Military opera-
tions in urban environments may seek to locate a friendly or
neutral target during rendezvous or evacuation. The growing
availability of emergency response robots and mechanized
infantry necessitates the development of algorithms that can
solve these problems autonomously. In such scenarios, noisy
information about the target’s position may be available.
In indoor environments, non-line-of-sight sensors like ultra-
wideband ranging radios can provide range to a target through
walls. A similar scenario arises during outdoor operations if an
air vehicle provides surveillance while ground vehicles search
for a target. The major application that has motivated our work
is that of using a team of autonomous searchers to locate a
lost first responder in a disaster scenario while receiving noisy
measurements to his or her location [1].
In the scenarios mentioned above, the target is non-

adversarial (i.e. not actively avoiding the searchers). In these
cases, we can model the target’s motion and plan searcher
paths that maximize the probability of finding the target over
a time interval. We refer to this problem as the Multi-robot

Efficient Search Path Planning (MESPP) problem because
robots must plan paths that efficiently find a non-adversarial
target. This is in contrast with methods that seek to guarantee
capture of an adversarial target. The MESPP problem is
related to the Multi-robot Informative Path Planning (MIPP)
problem in which robots must plan paths that best observe
the environment [2]. These path planning problems maximize
an objective (or reward) function that relates to how much
information is gained by the robots’ paths. Planning paths
for multiple robots is an NP-hard problem in general because
the number of searchable paths grows exponentially with the
number of robots [3]. This motivates the development of
approximation algorithms in these domains.
Solving the MESPP problem optimally requires planning in

the joint space of searcher paths, which grows exponentially
in the number of searchers. This is an example of explicit co-
ordination during which the searchers explicitly plan for their
teammates. Alternatively, if each searcher plans individually
and shares information about its path for other searchers to
consider, the search space no longer grows. We refer to this
scenario as implicit coordination. Our algorithm uses sequen-
tial allocation, which is an instance of implicit coordination.
During sequential allocation, searchers plan in an iterative
fashion sharing their paths after planning and modifying their
objective functions based on other searchers’ shared paths.
This algorithm scales linearly in the number of searchers.
We present an algorithm using finite-horizon planning and
sequential allocation that generates paths competitive with
those generated by explicit coordination while using far fewer
computational resources. Our algorithm also operates online
allowing for the incorporation of measurements.
In this paper, we provide both theoretical and empirical

results demonstrating the performance of finite-horizon plan-
ning with sequential allocation in the MESPP domain. We
prove that MESPP requires the optimization of a nondecreas-
ing, submodular objective function. An objective function is
submodular if it follows an intuitive property of diminishing
returns. The more areas (nodes) in the environment that the
searchers have visited, the less incremental reward is gained.
An objective function is nondecreasing if observing additional
nodes can only increase the expected reward. The nondecreas-
ing submodularity of the MESPP objective function directly
leads to bounds on the performance of sequential allocation.
We complement these theoretical results with empirical results
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both in simulation and using data from ultra-wideband ranging
radio sensors.
The rest of this paper is organized as follows. We first

put MESPP into context by discussing prior work in pursuit-
evasion and coordinated search (Section II). We then formally
define the MESPP problem and show that it requires the opti-
mization of a nondecreasing, submodular objective function
(Section III). We present a linearly scalable algorithm for
solving MESPP using sequential allocation and finite-horizon
path enumeration, and we derive theoretical bounds on the
performance of this algorithm (Section IV). We further demon-
strate the performance of our algorithm both in simulation and
using data from novel ranging sensors (Section V). Finally, we
summarize our results and discuss avenues for future work in
efficient search and other domains (Section VI).

II. RELATED WORK

Much research in coordinated search makes the adversarial
assumption on the target’s motion (i.e., assumes that the target
is actively avoiding capture). This strong assumption on the
target’s motion necessitates algorithms that guarantee capture
for worst-case target behavior. Algorithms for solving this
problem both on graphs [4] and in polygonal environments [5]
have been proposed. These methods do not directly estimate
the target’s position and consequently cannot properly handle
uncertainty. They provide no mechanism for incorporating
measurements or motion models during search. Thus, these
methods provide worst-case solutions even if there is a high
likelihood of a best-case scenario.
To better model uncertainty and target motion, an alternative

is to use a purely probabilistic formulation of coordinated
search problems. Partially Observable Markov Decision Pro-
cesses (POMDPs) can be used to model both non-adversarial
and adversarial coordinated search problems. Solving the
POMDP formulation requires planning in the joint space of
searcher paths. Roy et al. demonstrated how belief compres-
sion can be used to directly solve the POMDP formulation of
the adversarial coordinated search problem [6]. Smith devel-
oped Heuristic Search Value Iteration (HSVI), a near-optimal
POMDP solver capable of solving POMDPs with thousands
of states [7]. While these solvers are capable of near-optimally
solving small instances of MESPP, the exponential increase in
the size of the joint planning space yields several million states
for large instances of the MESPP problem. These instances are
well outside the scope of even state-of-the-art POMDP solvers.
The algorithms described above plan in the joint space

of searcher paths to provide explicit coordination between
the searchers. This space grows exponentially with increasing
searchers. One popular approach to mitigating the computa-
tional demands of joint planning is to hold synthetic auctions
between agents. Auction-based methods are designed to inject
joint planning into the problem where it is most needed. In
other words, robots hold auctions to explicitly coordinate when
it is most beneficial. Kalra proposed an auction-based method
for sharing plans in domains requiring tight coordination [8].
In her method, robots auction a limited number of joint-space

plans for consideration by other robots. Gerkey et al. also
developed a parallel stochastic hill-climbing technique that
dynamically forms teams, which is closely related to auction-
based methods [9]. These techniques reduce the complexity
of planning for problems such as MESPP. However, they
rely on the overhead of auctions and/or team formation,
which can consume considerable communication bandwidth
and computation.
The poor scalability of joint planning methods has spurred

research in heuristic methods for solving coordinated search
problems. Sarmiento et al. proposed a heuristic method for
finding stationary targets with multiple robots [10]. Their work
is purely heuristic and does not derive optimality bounds
on performance. Our proofs using submodularity complement
prior work in heuristic search by providing theoretical guar-
antees.
In this paper, we show that the MESPP problem requires the

optimization of a submodular objective function, and this key
insight provides optimality bounds on sequential allocation,
an algorithm linearly scalable in the number of searchers.
Submodularity has been utilized in related domains to provide
theoretical guarantees on sequential allocation. Guestrin et al.
used submodular set functions to develop algorithms for sensor
placement problems in Gaussian Processes [11] and in more
general domains [12]. They also extended their algorithms to
robust observation selection against sensor failure [13]. These
applications deal primarily with placing sensors to monitor
information in an environment (e.g. monitoring algae blooms
in lakes and temperature in a building). These algorithms
do not incorporate moving nodes (searchers) and thus are
not suitable for ESPP. Singh et al. developed algorithms for
solving the Multi-robot Informative Path Planning (MIPP)
problem, which does allow for moving nodes [2]. We extend
their theoretical bounds to the MESPP problem. To the best of
our knowledge, our work is the first approximation algorithm
with theoretical guarantees in the MESPP domain.

III. PROBLEM SETUP

This section formally defines the problem of locating a
mobile, non-adversarial target with multiple searchers (the
MESPP problem). It also shows that the MESPP problem
optimizes a submodular objective function.
To formulate the MESPP problem, we need to describe the

environment in which the searchers and target are located. We
first divide the environment into convex cells. The convexity
of the cells guarantee that a searcher in a given cell will have
line-of-sight to a target in the same cell. The searcher’s goal
is now to move into the same cell as the target. Gaining line-
of-sight is relevant to most sensors that a mobile robot would
carry including cameras and laser rangefinders. Our method for
discretization takes advantage of the inherent characteristics of
indoor environments. To discretize an indoor map by hand, la-
bel convex hallways and rooms as cells and arbitrarily collapse
overlapping sections. Alternatively, a suitable discretization
can be found automatically using a convex region finding
algorithm (such as Quine-McClusky [14]). Taking into account
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the cell adjacency in a discretized map yields an undirected
graph that the searchers can traverse. For the rest of this paper
we assume that the graph has N convex cells. Figure 1 shows
three example floorplans used our experiments. We use the two
large floorplans for simulated trials and the smaller floorplan
for experiments with ranging radios. The museum floorplan
is particularly challenging because it contains many cycles
by which the target can avoid line-of-sight contact with the
searchers.

Fig. 1. Example floorplans of environments used for efficient search trials.
The larger maps (top and middle) were used for simulated testing. The smaller
map (bottom) was used for “hybrid” trials in which simulated searchers found
a Pioneer robot with measurements from an experiment.

Let G(N,E) be the undirected environment graph with
vertices N and edges E. At any time t, a searcher exists on
vertex s(t) ∈ N . The searcher’s movement is deterministically
controlled, and it may travel to vertex s(t+ 1) if there exists
an edge between s(t) and s(t+1). A target also exists on this
graph on vertex e(t) ∈ N . The target moves probabilistically
between vertexes. The searcher receives reward by moving
onto the same vertex as the target, s(t) = e(t), and no reward
is gained after this occurs. The reward is discounted by γt so
that the searcher receives more reward for finding the target at
a lower t. This discount factor corresponds to the probability
that the search will end at a given time. For instance, the target
may leave the search area or expire. This necessitates locating
the target in a short time.
The target’s movement model is known to the searcher,

and it is independent of the searcher’s position on the graph.
In this paper, we assume that the target’s motion model is
Markovian (i.e., it depends solely on its current cell). This
assumption allows for a rich space of motion models including
those followed by randomly moving and stationary targets. The

searcher knows its own position and it has knowledge of the
target’s position at a time t in the form a belief distribution
over all vertices, bN (t). Since bN (t) can be an arbitrary dis-
tribution, this formulation allows multi-modal estimates of the
target’s position. Call the problem so far the Efficient Search
Path Planning (ESPP) problem. To extend to MESPP, place
more than one searcher on vertices sk(t) ∈ N . The searchers
now gain reward if any of them are on the same vertex as
the target. Incorporating additional searchers forces both the
state and action space to grow exponentially. Both ESPP and
MESPP can be formulated as a Partially Observable Markov
Decision Process (POMDP) with deterministic actions, but we
do not give the full formulation here due to space constraints.
This formulation shows that the MESPP requires the opti-

mization of the objective function in Equation 1. Searchers
choose a feasible set of paths that maximize the expected
probability of intersecting the target’s path at the earliest
possible time (before reward is heavily discounted). To see
why, expand the graph G into a time augmented graph G′.
Each node N ′ now represents a cell in the environment at a
discrete time point. The reward function can now be seen as
the expected intersection between the searchers’ paths and the
target’s path. Let A ⊂ N ′ be a feasible set of searcher paths
in G′, Ψ be the space of all possible target paths, P (Y ) be
the probability of the target taking path Y , and FY (A) be the
discounted reward received by path A if the target chooses
path Y . Theorem 1 shows that the resulting objective function
is nondecreasing and submodular.
Theorem 1: Equation 1 is a nondecreasing, submodular set

function. This is the objective function optimized by the
MESPP.

F (A) =
∑
Y ∈Ψ

P (Y )FY (A) (1)

The proof of Theorem 1 along with a formal definition of
submodularity is given in the Appendix. This result is used
in the next section to prove optimality bounds on sequential
allocation in this domain. Since the Markov assumption is
made on the target’s motion model, calculating the expectation
in Equation 1 can be done using diffusion matrices rather than
enumerating paths. This greatly simplifies the computation of
F (A) over the space of searcher paths. This is explained in
more detail below.

IV. ALGORITHM DESCRIPTION
In this section, we describe our algorithm for non-

adversarial coordinated search with multiple robots utilizing
sequential allocation and finite-horizon planning. We show
theoretical bounds by taking advantage of the nondecreas-
ing submodularity of the MESPP objective function. This
somewhat surprising result shows that sequential allocation,
an algorithm linearly scalable in the number of searchers,
generates near-optimal paths in the MESPP domain.

A. Sequential Allocation

As noted above, the joint space of searcher paths grows ex-
ponentially in the number of searchers. Explicitly coordinating
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by planning in this space quickly leads to intractably large
planning spaces with multiple searchers. As an alternative,
we propose that searchers choose their paths sequentially.
Algorithm 1 gives pseudocode for our sequential allocation
algorithm in the MESPP domain. The algorithm maintains a
list of nodes V ⊂ N ′ that have been visited by the searchers.
Note that N ′ is the time-augmented version of the nodes N
in the environment, which allows for revisiting areas in the
environment more than once. The searchers choose paths Ak

that maximize the objective function F (V ∪ Ak) and then
add the nodes they have visited to V . Effectively, subsequent
searchers treat the paths of previous searchers as “given”, and
they are not allowed to change them. Sharing nodes to update
V is an instance of implicit coordination as described above.
Since the search space does not grow with the number of
searchers, the complexity of sequential allocation is linear in
the number of searchers. It is important to note that while
path planning occurs sequentially, the execution of paths is
simultaneous.

Algorithm 1 Sequential allocation MESPP algorithm
Input: Multi-agent efficient search problem
% V ⊂ N ′ is the set of nodes visited by searchers
V ← ∅
for all searchers k do
% Ak ⊂ N ′ is a feasible path for searcher k
% Finding this argmax solves the ESPP for searcher k
Ak ← argmaxAk

F (V ∪Ak)
V ← V ∪Ak

end for
Return Ak for all searchers k

Algorithm 1 requires maximizing the objective function for
the ESPP problem as a subroutine. Any algorithm for solving
the ESPP problem can be inserted here. However, if the ESPP
solver is bounded, the nondecreasing submodularity of the
objective function leads to bounds on the performance of
sequential allocation. Theorem 2 from previous work shows
that sequential allocation leads to theoretical guarantees in the
informative path planning domain.
Theorem 2: From Singh et al. [2]: Let κ be the approxima-

tion guarantee for the single path instance of the informative
path planning problem for any nondecreasing, submodular
function. Then sequential allocation achieves an approximation
guarantee of (1 + κ) for the multi-robot informative path
planning problem.
The findings in Theorem 1 can be leveraged to extend these

results to MESPP. Corollary 1 states that if an ESPP solver has
an approximation guarantee of κ, then sequential allocation on
the MESPP will yield an approximation guarantee of (1+κ).
Corollary 1: If a solver achieves an approximation guaran-

tee of κ for the ESPP problem, sequential allocation yields an
approximation guarantee of (1 + κ) for the Multi-robot ESPP
(MESPP) problem.

Proof: The proof of Corollary 1 is immediate from
Theorem 2 and Theorem 1. Theorem 2 states that sequen-

tial allocation achieves this bound for any single-agent path
planning problem optimizing a nondecreasing, submodular
function. Theorem 1 shows that the ESPP problem requires
the optimization of such an objective function.
Here an approximation guarantee κ states that if the ESPP

solver returns a path A ⊂ N ′, then F (A) ≥ 1
κF (AOPT ),

where AOPT is the set of nodes visited by an optimal path.
Clearly, κ ≥ 1 since F (A) cannot be greater than the optimal
reward. The case where κ = 1 corresponds to solving the
ESPP problem optimally. In this case, sequential allocation
can achieve no worse than half (κ = 2) the optimal reward.
This theoretical result allows single-agent performance bounds
to be extended to the multi-agent case using a linearly scalable
algorithm, albeit with a loss in approximation quality. The next
section presents a bounded algorithm for solving the ESPP
problem using finite-horizon path enumeration.

B. Finite-Horizon Planning

In large environments, even the single-agent ESPP may be
intractable to solve optimally (or even near-optimally) due
to the computational overhead of considering many infinite-
horizon paths. In these cases, one option is for the searchers
to plan a finite number of cells ahead and choose the best
path to that horizon. Any time while traversing this path,
the searcher can plan again utilizing new information on a
new horizon. This leads to an online solution to MESPP,
and it allows for the incorporation of measurements of the
target’s position as they become available. Algorithm 2 gives
pseudocode for solving the ESPP problem using finite-horizon
path enumeration. Because the finite-horizon method relies on
path enumeration to solve ESPP, it scales exponentially with
the search depth: O(bd), where b is the maximum branching
factor of the search graph, and d is the search depth in cells.

Algorithm 2 Finite-horizon path enumeration for ESPP
Input: Single-agent efficient search problem
for All paths A to horizon d do
Calculate F (A)

end for
Return A← argmaxA F (A)

Lemma 1 derives optimality bounds for finite-horizon path
enumeration, and the result extends to the multi-robot case
with sequential allocation as in Theorem 3.
Lemma 1: Finite-horizon path enumeration on the ESPP

problem achieves a lower bound of:

F (AFH) ≥ F (AOPT )− ε, (2)

where AFH is the path returned by finite-horizon path enu-
meration, AOPT is the optimal feasible path, and ε = Rγd+1.

Proof: Finite-horizon path enumeration achieves the op-
timal reward inside the horizon depth for ESPP because it
checks all paths. The maximum reward that could be gained
outside the horizon depth is given by ε = Rγd+1, where R is
the reward received for locating the target, γ is the discount
factor, and d is the search depth. The bound is immediate.
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Theorem 3: Finite-horizon path enumeration with sequen-
tial allocation on the K-robot MESPP problem achieves a
lower bound of:

F (AFH
1 , . . . , AFH

K ) ≥ F (AOPT
1 , . . . , AOPT

K )− ε

2
(3)

Proof:
The maximum reward outside the horizon remains the same

as in Lemma 1 (i.e., ε is unchanged). Since the single robot
case achieves the optimal reward within the finite-horizon
(i.e., κ = 1), sequential allocation yields an approximation
guarantee as in Corollary 1 as κ+ 1 = 2.
Intuitively, as search depth increases, the bound tightens.

Additionally, decreasing the discount factor tightens the bound.
This is because lesser discount factors more heavily weight
reward gained earlier, which is more likely to be within the
finite-horizon. It is important to note that the quality of the
bound is independent of the number of searchers. This is
a worst-case bound for arbitrary starting distributions and
motion models. In practice, searchers can run finite-horizon
path enumeration repeatedly on a receding horizon, which
leads to performance that far exceeds this lower bound.

C. Measurement Incorporation

If non-line-of-sight measurements of the target’s location
are available during ESPP, searchers can utilize them to assist
in search. The online capabilities of finite-horizon search allow
for measurements to be easily incorporated. We use a Bayesian
update method to calculate a new belief of the target’s position
given a measurement.
Denote the probability that the target is in cell i at time t

as pit. To incorporate measurements, we recursively estimate
the posterior distribution pit = P (et = i|z1 . . . zt) for all
i, where z1 . . . zt are the measurements received thus far.1

We are also given a known motion model, which provides
P (et = i|et−1 = j) for all cells i and j. Once we calculate
the posterior, we can renormalize and define a new belief dis-
tribution on the target’s state. We use a method for modifying
the target’s belief distribution that calculates the likelihood of
a measurement using a finely discretized grid. Using standard
Bayesian recursion [15], the posterior can be rewritten as in
Equation 4.

pit = ηP (zt|et = i)
∑
j

P (et = i|et−1 = j)pjt−1, (4)

where η is a normalizing constant.
Assuming a known motion model, this reduces the problem

of calculating the posterior to that of calculating a likelihood
term P (zt|et = i). Since each cell is represented as a continu-
ous set of points in the map plane, this calculation is difficult.
To reduce the complexity of the problem, further discretize
each cell into small subcells and calculate a likelihood at the
center of each subcell. We denote the M i subcells of cell i as
mij for all j ∈ {1, . . . ,M i}. The calculation of P (zt|ct = i)

1Note: we denote the target’s location e(t) as et for this section to simplify
notation.

is now one of calculating a likelihood at many points and then
taking the sum of these likelihoods.
For range measurements, we calculate P (zt|et = i) by

determining the expected range value for the center of each
subcell. Let qij be the Euclidean distance from the ranging
sensor to subcell mij , and let rt be the received range
measurement with assumed Gaussian noise variance σ2. The
likelihood is then calculated as in Equation 5.

P (zt|et = i) =
Mi∑
j=1

N(rt; qij , σ2) (5)

After receiving a new measurement, searchers can use
sequential allocation and finite-horizon path enumeration to
replan using the new belief distribution on the target’s lo-
cation. Combining sequential allocation, finite-horizon path
enumeration, and Bayesian measurement updating yields a
scalable and online algorithm for solving the MESPP problem.
Since searchers replan after receiving measurments, online
measurement incorporation heuristically improves path quality
but does not affect theoretical guarantees.

V. EXPERIMENTAL RESULTS

A. Simulated Results

To test our MESPP algorithm, we ran simulated trials on
a multi-agent coordinated search simulation in C++ on a 3.2
GHz Pentium 4 processor. Our simulation allows for multiple
searchers and both stationary and moving targets. We assumed
that the average speed of the target is 1 m/s, and that it
moves holonomically between cell boundaries. The searchers
also move with a maximum speed of 1 m/s, which would be
a reasonable speed for state-of-the-art autonomous vehicles.
The searchers start in the same location for all trials, and the
location of the target is initialized at random on the map. We
ran simulated experiments in the museum (150 m × 100 m)
and office (100 m×50 m) environments shown in Figure 1. In
all tests, the performance metric is the average reward received
over many trials. For a given trial, reward received is calculated
as R(tc) = Rγtc , where R is the reward for locating the target,
γ is the discount factor, and tc is the time at which the target
was found. We arbitrarily set R = 1 and γ = 0.95 for all
experimental trials.
Our results in Figure 2 compare finite-horizon path enu-

meration (horizon depth five) to the infinite horizon POMDP
solution for a single searcher. With a single searcher, the
POMDP formulation of ESPP is still solvable using Heuristic
Search Value Iteration (HSVI2) [7]. Our results show that,
for the single searcher case, finite-horizon path enumeration
yields average rewards competitive with those generated by
the HSVI POMDP solution. We attempted running HSVI with
two searchers, but these trials were unsuccessful because the
exponentially increased state-action space would not fit in
memory. This demonstrates the poor scalability of the POMDP
formulation of the MESPP problem.
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Since solving the POMDP formulation is intractable for
multiple searchers, we introduce for comparison a finite-
horizon explicit coordination algorithm that is identical to
Algorithm 2 except that it enumerates paths for all searchers in
the joint space. This scales O(bdK), where b is the branching
factor, d is the search depth, and K is the number of searchers.
Figure 3 gives a comparison of reward received by sequen-
tial allocation and this explicit coordination algorithm. Since
explicit coordination grows intractable at large lookahead
depths, a depth of two was used for comparison. Figure 3
also shows a lower bound for sequential allocation calculated
from Corollary 1 using the explicit coordination results. This
bound is the lowest reward that sequential allocation could
achieve if explicit coordination yielded the optimal reward.
On both maps, sequential allocation greatly outperforms its
lower bound.
These simulated experiments demonstrate that implicit coor-

dination with sequential allocation yields results nearly equiv-
alent to those achieved through explicit coordination. In sharp
contrast with explicit coordination’s exponential scalability,
sequential allocation is linearly scalable in the number of
searchers. Figure 4 demonstrates the scalability of sequen-
tial allocation by showing reward received with up to five
searchers in the museum and office.
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Fig. 2. Comparison of finite-horizon path enumeration (lookahead depth five)
versus the POMDP solution for a single searcher in two complex simulated
environments. Error bars are one standard error of the mean (SEM), and
averages are over 200 trials. Target and searchers move at a maximum speed
of 1 m/s.
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Fig. 3. Comparison of sequential allocation versus explicit coordination
in two complex simulated environments. Finite-horizon path enumeration
with lookahead depth two was used for both methods. Error bars are one
standard error of the mean (SEM), and averages are over 200 trials. Target
and searchers move at a maximum speed of 1 m/s. Sequential allocation
greatly outperforms its lower bound.
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Fig. 4. Multiple searcher scalability trials for finite-horizon path enumeration
(lookahead five) and sequential allocation in simulated environments. Error
bars are one standard error of the mean (SEM), and averages are over 200
trials. Target and searchers move at a maximum speed of 1 m/s.

B. Ranging Radio Measurements

One major application of MESPP is that of finding lost first
responders in disaster scenarios. To better model this scenario,
we set up an urban response test environment using a Pioneer
robot and five Multispectral ranging radio nodes [16]. These
sensors use time-of-flight of ultra-wideband signals to provide
inter-node ranging measurements through walls. They have an
effective range of approximately 30 m indoors and provide
accuracy approximately within 1 − 2 m. In our experiments,
the Pioneer robot acted as a lost first responder and was
teleoperated around the environment carrying a ranging radio
node. Four stationary nodes were placed in surveyed locations
around the environment to provide range to the Pioneer. The
Pioneer also carried a SICK laser rangefinder, and its location
was found using laser AMCL-SLAM methods from the Car-
men software package [15]. The Pioneer’s laser localization
was used for ground truth but was not used to assist in
search. The Pioneer’s maximum speed was set to 0.3 m/s, the
maximum that provided consistent laser localization. Figure 5
shows a photograph of the Pioneer robot as well as the office
environment used for testing.

Fig. 5. Photograph of Multispectral ultra-wideband ranging radio mounted
on Pioneer robot (left) and floorplan of testing environment (right). The robot
was teleoperated around the environment to act as the moving target.

After gathering data from the ultra-wideband ranging sen-
sors, simulated searchers were added to the environment.
These searchers have access to the ranging measurements
from the stationary nodes in the environment, which allows
them to utilize real range data from the experiment to find
the target in the simulated world. The searchers were given
a maximum speed of 0.3 m/s to match that of the Pioneer
target. Figure 6 shows the results for a single searcher in these
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“hybrid” trials. As in the purely simulated trials, the finite-
horizon path enumeration method provides nearly equivalent
reward as the POMDP solution. Figure 7 shows results with
two searchers using sequential allocation. As above, sequential
allocation is competitive with explicit coordination.
Since the experiments are run in playback, we can vary

the number of sensors used by turning off some sensors’
data streams. Figure 8 shows average rewards using an in-
creasing number of ranging radio nodes. The zero node case
corresponds to search without measurements. The results show
that adding more searchers leads to decreasing capture times.
Increasing the number of measurement beacons also leads to
decreasing capture times. These results suggest that if a small
number of searchers are available, this can be compensated
with more measurement beacons, and vice versa.
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Fig. 6. Comparison of finite-horizon path enumeration (lookahead depth five)
versus the POMDP solution for a single searcher using ultra-wideband ranging
radio measurements from experimental trials. Error bars are one standard error
of the mean (SEM), and the searcher moves at a maximum speed of 0.3 m/s.
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Fig. 7. Comparison of sequential allocation versus explicit coordination
with two searchers using ranging radio measurements. Finite-horizon path
enumeration with lookahead depth four was used for both methods. Error
bars are one standard error of the mean (SEM). Target and searchers move at
a maximum speed of 0.3 m/s. As in simulated trials, sequential allocation
greatly outperforms its lower bound

VI. CONCLUSION AND FUTURE WORK
This paper has presented a scalable algorithm for solving the

Multi-robot Efficient Search Path Planning (MESPP) problem
of locating a non-adversarial target using multiple robotics
searchers. We have defined the MESPP problem and shown
how it can be modeled using a Partially Observable Markov
Decision Process (POMDP). We have also shown that current
POMDP solvers are incapable of handling large instances of
MESPP. Our proposed algorithm uses sequential allocation
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Fig. 8. Multiple searcher scalability trials for finite-horizon path enumeration
(lookahead five) and sequential allocation with ranging radio measurements.
Error bars are one standard error of the mean (SEM). Target and searchers
move at a maximum speed of 0.3 m/s. The zero node case corresponds to
the absence of measurements.

and finite-horizon path enumeration to remain computationally
tractable for multiple searchers in large environments. We
have given a rigorous theoretical analysis that shows the near-
optimality of sequential allocation in this domain by exploiting
the nondecreasing submodularity of the MESPP objective
function. Sequential allocation is an instance of implicit coor-
dination during which multiple robots share information rather
than planning in the joint path space. Implicit coordination is
linearly scalable, and it remains tractable in large problem
instances when exponential methods using explicit coordina-
tion are far beyond computational limits. Our simulated and
experimental results using ultra-wideband ranging radios show
the performance of our algorithm in complex environments.
One extension is to apply our algorithm to the case where

actions of searchers are no longer fully deterministic. For
instance, a searcher may have a fifty percent chance of failing
to move because of rubble blocking the way. The POMDP
formulation of MESPP can easily express this scenario. The
solution to this POMDP would no longer be a deterministic
searcher path, but it would instead be a distribution over paths.
Even though submodular set analysis does not directly apply,
the resulting objective function on distributions over paths
may still show qualities related to submodularity leading to
theoretical guarantees for sequential allocation.
Throughout this paper, we have made the assumption that

the target’s motion model is known to the searchers. If instead
a set of candidate motion models are known, an algorithm like
SATURATE [13] can be used to generate a multi-searcher
policy that performs well against any of the models. This
extension would allow for both stationary and moving target
models to be considered simultaneously.
Finally, we have assumed that the target’s motion is

non-adversarial. If the target may be actively avoiding the
searchers, the properties of submodularity no longer hold.
In such scenarios, an algorithm with both average-case and
worst-case guarantees would be desired. To the best of our
knowledge, the development of such a search algorithm is
still an open problem. However, methods utilizing implicit
coordination show great promise in providing near-optimal
solutions even in such challenging multi-robot domains.
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APPENDIX: PROOF OF THEOREM 1
Proof: Consider a time-augmented version of graph G,

G′(N ′, E′). Level 1 of G′ represents the vertexes of G at
time 1, and directed edges from level 1 connect to reachable
vertexes at time 2. Extend this graph down to a max time
τ . The graph now contains vertices N ′ = N × T where T =
{1, . . . , τ}. This result extends to the infinite case by making τ
arbitrarily large. P(N ′) denotes the powerset of N ′, i.e. the set
of (time stamped) node subsets. A function F : P(N ′)→ �+

0

is called nondecreasing iff

A ⊆ B ⇒ F (A) ≤ F (B).

It is called submodular iff

A ⊆ B ⇒ F (A ∪ C)− F (A) ≥ F (B ∪ C)− F (B).

(In the above A,B ∈ P(N ′) and C = {(m, t)} ⊆ N ′ – i.e.
C is a singleton.)
In the following, for a given Y ⊆ N ′ and any A ⊆ N ′ we

define tA = min {t : (m, t) ∈ A ∩ Y }, FY (A) = γtA , with
the understanding that γ ∈ (0, 1), min ∅ =∞, and γ∞ = 0.

We now show that for every Y ⊆ N ′ the function FY (A) is
nondecreasing and submodular. Take an arbitrary Y and fix it
for the proof. Take any A,B ⊆ N ′ and any C = {(m0, t0)} ⊆
N ′. We have:
tA = min{t : (m, t) ∈ A ∩ Y },
tB = min{t : (m, t) ∈ B ∩ Y },
tC = min{t : (m, t) ∈ C ∩ Y }.
A ⊆ B ⇒ {t : (m, t) ∈ A ∩ Y } ⊆ {t : (m, t) ∈ B ∩ Y } ⇒
tA ≥ tB ⇒ FY (A) = γtA ≤ γtB = FY (B).
Hence FY (·) is nondecreasing.
Now, regarding submodularity, note that, since C is a

singleton, we have two cases: either C ∩ Y �= ∅ and so tc =
t0 <∞; or C ∩ Y = ∅ and so tc = ∞. We examine the two
cases separately.
Case I, tC <∞. In this case we have three subcases.
1) tB ≤ tA ≤ tC . Then FY (B ∪ C) = γtB , FY (B) =

γtB , FY (A ∪ C) = γtA , FY (A) = γtA and
FY (A ∪ C)−FY (A) = γtA −γtA = 0 = γtB −γtB =
FY (B ∪ C)− FY (B) .

2) tB ≤ tC ≤ tA. Then FY (B ∪ C) = γtB , FY (B) =
γtB , FY (A ∪ C) = γtC , FY (A) = γtA and
FY (A ∪ C)−FY (A) = γtC −γtA > 0 = γtB −γtB =
FY (B ∪ C)− FY (B) .

3) tC ≤ tB ≤ tA. Then FY (B ∪ C) = γtC , FY (B) =
γtB , FY (A ∪ C) = γtC , FY (A) = γtA and
FY (A ∪ C) − FY (A) = γtC − γtA ≥ γtC − γtB =
FY (B ∪ C)−FY (B) , since tA ≥ tB ⇒ γtA ≤ γtB ⇒
−γtA ≥ −γtB .

Case II, tC = ∞. Then we have a single subcase: tB ≤
tA ≤ tC from which follows FY (A ∪ C) − FY (A) = 0 =
FY (B ∪ C)− FY (B) as already seen.
In every case the submodularity inequality holds.
The one searcher reward function F (A) (where A is the

searcher’s path) is defined by

F (A) =
∑
Y ∈Ψ

P (Y )FY (A),

where the summation is over all possible target paths Ψ, and
P (Y ) is the probability of the target taking path Y . The K-
searcher reward function F (A1, ..., AK) (where Ak is the path
of the k-th searcher) is defined by

F (A1 ∪ . . . ∪AK) =
∑
Y ∈Ψ

P (Y )FY (A1 ∪ . . . ∪AK).

We now show that for any K = 1, 2, ... and every Y ⊆
N ′ the function F (A1 ∪ . . . ∪ AK) is nondecreasing and
submodular. Nondecreasing submodularity is closed under
nonnegative linear combinations (and hence expectations).
Here F (A1∪ . . .∪AK) is the expected value of FY (A) where
A = A1 ∪ . . . ∪ AK , FY (·) is a nondecreasing, submodular
function, and the expectation is taken over all possible target
paths.
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Abstract—In this paper, we present an algorithm for generat-
ing complex dynamically-feasible maneuvers for autonomous ve-
hicles traveling at high speeds over large distances. Our approach
is based on performing anytime incremental search on a multi-
resolution, dynamically-feasible lattice state space. The resulting
planner provides real-time performance and guarantees on and
control of the suboptimality of its solution. We provide theoretical
properties and experimental results from an implementation on
an autonomous passenger vehicle that competed in, and won, the
Urban Challenge competition.

I. INTRODUCTION

Autonomous vehicles navigating through cluttered, unstruc-
tured environments or parking in parking lots often need to
perform complex maneuvers and reason over large distances.
Furthermore, this reasoning usually needs to be performed
very quickly so that the resulting maneuvers can be executed in
a timely manner, particularly if the environment is inhabited,
dynamic, or dangerous. In particular, our current focus is
planning for autonomous urban driving including both off-road
scenarios and large unstructured parking lots such as the ones
in front of malls and large stores (on the order of 200× 200
meters). Maneuvering at human driving speeds (� 15 mph)
through such areas requires very efficient planning, especially
if they contain static obstacles or other moving vehicles.
Roboticists have concentrated on the problem of mobile

robot navigation for several decades, providing a large body
of research. Early approaches concentrated on local planning,
where very short term reasoning is performed to generate
the next action for the vehicle. These include potential field-
based techniques, where obstacles exert repulsive forces on the
vehicle while the goal exerts an attractive force [1], and the
curvature velocity [2] and dynamic window [3] approaches,
where planning is performed in control space to generate
dynamically-feasible actions. One major limitation of these
purely local approaches was their capacity to get the vehicle
stuck in local minima en route to the goal (for instance, cul-de-
sacs). Further, these approaches are unable to perform complex
multi-stage maneuvers, such as three-point turns, as these
maneuvers are not within the set of local actions considered
by the planner.
To reduce the susceptibility to local minima of these ap-

proaches, algorithms were developed that incorporated global

as well as local information [4, 5, 6, 7]. Typically, these
approaches generate a set of candidate simple local actions
and evaluate each based on both their local traversability
cost and the desirability of their endpoints based on a global
value function (e.g. the expected distance to the goal based
on known obstacle information). Although these approaches
perform better with respect to local minima, their simple
local planning can still cause the vehicle to get stuck or take
highly suboptimal paths. Subsequent approaches have focused
on improving this local planning by using more sophisticated
local action sets that better follow the global value function [8,
9], and by generating sequences of actions to perform more
complex local maneuvers [10, 11, 12]. The most complex
of these approaches are able to perform very precise local
maneuvering but are limited by the mismatch between their
powerful local planning and their approximate global planning,
resulting once more in a susceptibility to local minima.

Recognizing this mismatch, other researchers have concen-
trated on improving the quality of global planning, so that a
global path can be easily tracked by the vehicle [13, 14, 15,
16, 17]. However, the computational expense of generating
complex global plans over large distances has remained very
challenging, and these approaches are restricted to either small
distances, fairly simple environments, or highly suboptimal
solutions.

In this paper, we present an efficient, global planning
approach that attempts to overcome these challenges. First,
we employ a multi-resolution lattice search space to reduce the
complexity of the global search while still providing extremely
high-quality solutions. Second, we use an efficient anytime,
incremental search to quickly generate bounded suboptimal
solutions, then improve these solutions while deliberation time
allows and repair them when new information is received.
The resulting approach is able to plan complex, dynamically-
feasible maneuvers over hundreds of meters and improve and
repair them in real-time for vehicles traveling at high (� 15
mph) speeds.

We first describe the key ideas and components of our
approach, then provide key theoretical properties and results
from both simulation and the Urban Challenge competition.
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(a) high-resolution (b) low-resolution

Fig. 1. High- and low-resolution action spaces.

II. MULTI-RESOLUTION LATTICE STATE-SPACE

A state lattice [18] is a discretization of the configuration
space into a set of states, representing configurations, and
connections between these states, where every connection
represents a feasible path. As such, lattices provide a method
for motion planning problems to be formulated as graph
searches. However, in contrast to many graph-based repre-
sentations (such as 4-connected or 8-connected grids), the
feasibility requirement of lattice connections guarantees that
any solutions found using a lattice will also be feasible. This
makes them very well suited to planning for non-holonomic
and highly-constrained robotic systems, such as passenger
vehicles.
State-space. The two key considerations in constructing a

lattice are the discretization (or sampling) strategy used for
representing the states in the lattice, and the action space
(or control set) used for the inter-state connections. For our
application we employ a four dimensional (x, y, θ, v) state
representation, where (x, y) represent the position of the center
of the vehicle in the world, θ represents the orientation of
the vehicle, and v represents its translational velocity. The
(x, y, θ) coordinates are important for computing the validity
of the poses of the vehicle in the world and making sure
that no path in the lattice requires an instantaneous change in
the orientation of the vehicle. For the velocity v we use two
possible values: maximum forwards velocity and maximum
reverse velocity. We take velocity into account because the
time involved in switching between forward and backward di-
rections is substantial so reasoning about this cost is important
for generating fast, smooth paths1.
Action Space. The action space for each state in the lattice

is intended to be dense enough that every possible feasible path
through the lattice can be constructed by combining sequences
of these actions. However, because this action space represents
the branching factor of the subsequent graph search, in practice
it must be carefully constructed to provide flexibility in path
selection while maintaining computational tractability.
The offline construction of our action space is based on

work by Pivtoraiko and Kelly [18] that attempts to create near-
minimal spanning action spaces. Given a state s, we compute
the action space by first calculating a subset of states within
a distance d of s that are reachable via some feasible action.

1We do not reason about curvature (the orientation of wheels) because we
found this to be less critical for the speeds we are interested in traveling at,
as discussed in the results section.

To generate the feasible actions we use a trajectory generation
algorithm originally developed by Howard and Kelly [9]. This
algorithm employs an accurate vehicle model to produce feasi-
ble, directly-executable actions and an optimization technique
to minimize the endpoint error of these actions with respect
to a desired endpoint state. We use this approach to ‘snap’
the actions to the lattice so that the endpoint of each action
lands on a lattice state. Next, we look at this set of actions
and calculate whether any single action can be approximately
recomposed out of a combination of other, shorter actions.
If so, these longer actions are discarded from our set. This
provides us with a compact set of actions that approximate
the full reachable space. However, in contrast to the approach
in [18], we maintain multiple straight segments of varying
lengths to improve the speed of the subsequent search, as we
will discuss in Section III-A. Figure 1(a) illustrates the action
space for a single state (oriented to the right) in our lattice.
Multi-resolution Lattice. Even with a compact action

space, planning long complex maneuvers over lattices can
be expensive in terms of both computation and memory. An
important observation, however, is that usually, there exists a
wide spectrum of smooth, dynamically-feasible paths between
the vehicle and goal configurations and it is waste of time and
memory to explore all of them. On the other hand, all of these
paths start and end at the exact same configurations, and the
challenge is in finding a path that satisfies the current vehicle
configuration and the specific goal configuration precisely.
This motivated us to take a novel, multi-resolution approach,

where we use a high-resolution action space in the vicinity
of the robot and the goal, and a low-resolution action space
elsewhere. We call the resulting combination a multi-resolution
lattice. With this approach, we can harness most of the benefit
of the high-resolution representation without paying anything
near the full computational cost. The trick is making sure that
the high-resolution and low-resolution lattices connect together
smoothly.
Our multi-resolution approach maintains the same dimen-

sionality (x, y, θ, v) for both resolutions, but the action space
for the low-resolution lattice is a strict subset of the action
space for the high-resolution lattice. Figure 1(a) shows the
action space used in the high-resolution lattice and Figure
1(b) shows the action space used in the low-resolution lattice2.
Using this method ensures that the low-resolution lattice is
utilized fully and that paths in the multi-resolution lattice are
guaranteed to be feasible, which is a strong advantage over
existing combined local and global approaches for navigation.
Theorem 1: Every path in a lattice that uses only a low-

resolution action space is also a valid path in our multi-
resolution lattice. Further, every path in the multi-resolution
lattice is a valid path in a lattice that uses only the high-
resolution action space.
Proof. The proof of the first claim follows trivially from

the fact that any action in the low-resolution lattice is a valid

2In practice, choosing the appropriate set can be achieved with a basic
check: if the (x, y) location of a state is not within some distance d of the
vehicle or goal, its action set is the low-resolution set.
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action in both the low-resolution and high-resolution lattices,
and therefore is a valid action in the multi-resolution lattice.
A similar argument applies for the second claim.

Enforcing the low-resolution action space to be a subset of
the high-resolution action space decreases the branching factor
of the graph constructed by the search, which is certainly
important, but it does not necessarily decrease the size of the
graph. However, it is also possible to decrease the size of the
graph as follows. Suppose Ah is an action space used in the
high-resolution space, and Al is an action space used in the
low-resolution space. Thus, Al ⊂ Ah. Then, we can construct
Al by picking only the actions from Ah that end at states with
a coarser discretization than the end states of actions in Ah. For
example, we can choose for Al only those actions whose end
states have θ equal to one of 16 possible angles, while actions
in Ah can connect states with 32 possible values of θ. (This
is precisely what we used in our system.) Mathematically,
the construction of the action space Al can be expressed as
follows in terms of a high-resolution discretization Qh and
a lower-resolution discretization Ql of variables x, y, θ, v: an
action a connecting states s1 = (x1, y1, θ1, v1) and s2 =
(x2, y2, θ2, v2) belongs to Al if and only if a ∈ Ah and
(x2, y2, θ2, v2) ∈ Ql.
Restricting Ql to a coarser discretization for (x, y) or θ

corresponds to using a discretization that adapts based on the
vehicle and goal configurations. This technique can also be
used to explicitly constrain the behavior of the vehicle in the
different areas. For instance, restricting Ql to contain only
positive v-values prevents the vehicle from moving backward
when far from the initial and goal configurations. This general
approach allows for an arbitrarily-reduced state and action
space in the low-resolution portion of the lattice, and can also
be trivially extended to more than two levels of resolution if
desired.

III. ANYTIME, INCREMENTAL SEARCH

Given a search space (in our case, in the form of a multi-
resolution lattice) and a cost function associated with each
action, we need an efficient method for searching through
this space for a solution path. A* search is perhaps one
of the most popular methods for doing this [19]. It utilises
a heuristic to focus the search towards the most promising
areas of the search space. While highly efficient, A* aims to
find an optimal path which may not be feasible given time
constraints and the size of environments autonomous vehicles
need to operate in. To cope with very limited deliberation
time, anytime variants of A* search have been developed [20,
15]. These algorithms generate an initial, possibly highly-
suboptimal solution very quickly and then concentrate on
improving this solution while deliberation time allows. Fur-
thermore, these anytime algorithms are able to provide bounds
on the suboptimality of the solution at any point of time during
the search.
A* and its anytime variants work best when the search

space, and thus environment, is mostly known a priori. In

Fig. 2. Pre-planning a path into a parking spot and improving this path in
an anytime fashion.

robotic path planning this is rarely the case, and the robot
typically receives updated environmental information through
onboard and/or offboard sensors during execution. To cope
with imperfect initial information and dynamic environments,
efficient incremental variants of A* search have been devel-
oped that update previous solutions based on new information
(e.g. from sensors) [21, 22, 23]. These algorithms repair
existing solutions for a fraction of the computation required
to generate such solutions from scratch.
When faced with limited deliberation time and imperfectly-

known or dynamic environments, it is extremely useful to have
a search algorithm that is both anytime and incremental. The
Anytime Dynamic A* algorithm developed by Likhachev et al.
is a version of A* search that combines these two properties
into a single approach and has been shown to be very effective
for a range of robotic planning tasks [16]. We employ this
algorithm for planning and re-planning paths in our multi-
resolution lattice.

A. Anytime Dynamic A*

Anytime Dynamic A* (AD*) exploits a property of A* that
can result in much faster generation of solutions, namely that
if consistent heuristics are used and multiplied by an inflation
factor ε > 1, then A* can often generate a solution much
faster than if no inflation factor is used [24], and the cost of
the solution generated by A* will be at most ε times the cost
of an optimal solution [25]. AD* operates by performing a
series of these inflated A* searches with decreasing inflation
factors, where each search reuses information from previous
searches. By doing so, it is able to provide suboptimality
bounds on all solutions generated and allows for control of
these bounds, since the user can decide how much the inflation
factor is decreased between searches. To cope with updated
information, AD* also borrows ideas from the D* and D* Lite
algorithms [21, 22] and only propagates updated information
through the affected and relevant (given the current search)
portions of the search space.
To enable efficient anytime planning and replanning as the

vehicle moves, we use AD* to search backwards from the goal
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configuration towards the current configuration of the vehicle.
The heuristic used thus needs to estimate the cost of a shortest
path from the vehicle configuration (rather than goal) to each
state in question.
The effectiveness of Anytime Dynamic A* is highly depen-

dent on its use of an informed heuristic to focus its search. An
accurate heuristic can reduce the time and memory required
to generate a solution by orders of magnitude, while a poor
heuristic can diminish the benefits of the algorithm. It is thus
important to devote careful consideration to the heuristic used
for a given search space. Further, because we are inflating
heuristic values, it is useful to have long actions that can
skip over several nodes and reduce the number of states in
the search. It is for this reason we add several straight line
actions of varying length in both the forwards and backwards
directions to our action set (see Section II).

B. Informative Heuristics

The purpose of a heuristic is to improve the efficiency of
the search by guiding it in promising directions. A common
approach for constructing a heuristic is to use the results from
a simplified search problem (e.g. from a lower-dimensional
search problem where some of the original constraints have
been relaxed). In selecting appropriate heuristics, it is im-
portant to analyze the original search problem and determine
the key factors contributing to its complexity. In robotic path
planning these are typically the complexity inherited from the
constraints of the mechanism and the complexity inherited
from the nature of the environment.
To cope with the complexity inherited from the mechanism

constraints, a very useful general heuristic is the cost of
an optimal solution through the search space assuming a
completely empty environment. This can be computed offline
and stored as a heuristic lookup table, and several efficiencies
can be used to reduce the required memory for this table
[17]. This is a very well informed heuristic for operating in
sparse environments and is guaranteed to be an optimistic (or
admissible) approximation of the actual path cost.
To cope with the complexity inherited from the nature of the

environment, it is not practical to pre-compute heuristic values
for all possible environment configurations, as there are an
effectively infinite number of possibilities for any reasonably-
sized environment. However, in this case it is beneficial to
solve online a simplified search problem given the actual
environment and use the result of this search as a heuristic to
guide the original, complex search. In particular, we solve a 2D
((x, y)) version of the problem by running a single Dijkstra’s
search starting at the cell that corresponds to the center of
the current vehicle position. The search computes the costs of
shortest paths to all other cells in the environment3.
AD* requires the heuristics to be admissible and consistent.

This holds if h(sstart) = 0 and for every pair of states s, s′

such that s′ is an end state of a single action executed at state

3However, even though it is very fast, we still restrict this search to only
compute the states that are no more than twice as far (in terms of path cost)
from the vehicle cell as the goal cell.

(a) (b)
Fig. 3. Mechanism-constrained (solid) and environment-constrained (dashed)
heuristic paths. In each case, the initial and desired vehicle poses are shown
as blue and red rectangles, respectively (with the interior triangles specifying
the headings). (a) The mechanism-constrained heuristic is perfectly informed
when no obstacles are present in the environment. (b) The environment-
constrained 2D heuristic can provide significant benefit when obstacles exist.
Here, an obstacle (shown in black) resides over the direct path to the desired
pose.

s, h(s)+ c(s, s′) ≥ h(s′), where h(s) is a heuristic of state s,
sstart is a state that corresponds to the vehicle configuration
and c(s, s′) is the cost of the action that connects s to s′. The
cost c(s, s′) of the action is typically computed as the length of
the action times the average of the costs of the cells covered by
the vehicle when moving from state s to state s′. The heuristic
based on the 2D search, however, may overestimate these costs
since it estimates the cost of moving the center of the vehicle
only. To resolve this, the cost of each cell in the 2D grid used
for computing the 2D heuristic is set to the average of cells
covered by the largest circle than can be inscribed into the
vehicle perimeter. The cost of each transition c(s, s′) is then
computed as the length of the transition times the maximum
of two quantities: (a) the average value of the costs of the cells
covered by the vehicle when moving from state s to state s′

(as before), and (b) the maximum of the 2D grid cell costs,
used to compute heuristics, traversed through by the center of
the vehicle when moving from s to s′. Intuitively, this cost
function penalizes slightly more when vehicle traverses high-
cost areas (e.g., obstacles) residing right under the center of
the vehicle. In addition, the heuristics are scaled down by a
factor of 1.08 to compensate for the suboptimality of optimal
paths in 8-connected grids. It can be then shown that our 2D
heuristic function is admissible and consistent with respect to
this cost function.
Each of these heuristic generation approaches, mechanism-

relative and environment-relative, have strong and complemen-
tary benefits (see Figure 3). Rather than selecting one, it is
possible to combine the two. We do this by constructing a
new heuristic that, for each state s, returns the value h(s) =
max(hfsh(s), h2D(s)), where hfsh(s) is the heuristic value
of state s according to the mechanism-constrained heuristic
(freespace heuristic), and h2D(s) is the value according to the
environment-constrained heuristic (2D heuristic). As shown
in the experimental results, this combined heuristic function
can be an order of magnitude more effective than either of
the component heuristic functions. Since both hfsh(s) and
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h2D(s) are admissible and consistent, the combined heuristic
is also admissible and consistent [26]. This property implies
the bounds on the suboptimality of the paths returned by
AD* [16]:
Theorem 2: The cost of a path returned by Anytime Dy-

namic A* is no more than ε times the cost of a least-cost path
from the vehicle configuration to the goal configuration using
actions in the multi-resolution lattice, where ε is the current
value by which Anytime Dynamic A* inflates heuristics.

IV. OPTIMIZATIONS

Typically, one of the most computationally expensive parts
of planning for vehicles is computing the cost of actions, as
this involves convolving the geometric footprint of the vehicle
for a given action with a map from perception. In our applica-
tion, we used a 0.25m resolution 2D perception map and the
(x, y) dimensions of our vehicle were 5.5m × 2.25m. Thus,
even a short 1m action requires collision checking roughly 300
cells. Further, the specific cells need to be calculated based on
the action and the initial pose of the vehicle.
To reduce the processing required for this convolution, we

performed two optimization steps. First, for each action a we
pre-computed the cells covered by the vehicle when executing
this action. During online planning, these cells are quickly
extracted and translated to the appropriate position when
needed. Second, we generated two configuration space maps
to be used by the planner to avoid performing convolutions.
The first of these maps expanded all obstacles in the perception
map by the inner radius of the robot; this map corresponded to
an optimistic approximation of the actual configuration space.
Given a specific action a, if any of the cells through which the
center of the robot executing action a passes are obstacles in
this inner map, then a is guaranteed to collide with an obstacle.
The second map expanded all obstacles in the perception map
by the outer radius of the robot and therefore corresponded
to a pessimistic approximation of the configuration space. If
all of the cells through which the center of the vehicle passes
when executing action a are obstacle-free in this map, then a is
guaranteed to be collision-free. Only those actions that do not
produce a conclusive result from these simple tests need to be
convolved with the perception map. Typically, this is a severely
reduced percentage, thus saving considerable computation. To
create these auxiliary maps efficiently, we performed a single
distance transform on the perception map and then thresholded
the distances using the corresponding radii of the robot for
each map.

V. EXPERIMENTAL RESULTS

We have implemented our approach on an autonomous pas-
senger vehicle (lower-left image in Figure 5) where it has been
used to drive over 3000 kilometers in urban environments,
including competing in the DARPA Urban Challenge. The
multi-resolution lattice planner was used for planning through
parking lots and into parking spots, as well as for geometric
road following in off-road areas, and in error recovery sce-
narios. During these scenarios, the vehicle traveled speeds of

(a) anytime behavior

lattice states time
expanded (secs)

high-res 2,933 0.19
multi-res 1,228 0.06

heuristic states time
expanded (secs)

h 2,019 0.06
h2D 26,108 1.30
hfsh 124,794 3.49

(b) effect of multi-res lattice (c) effect of heuristic

Fig. 4. An example highlighting our approach’s anytime behavior and the
benefits of the multi-resolution lattice and the combined heuristic function.

up to 15 miles per hour while performing complex maneuvers
and avoiding static and dynamic obstacles.
In all cases, the multi-resolution lattice planner searches

backwards out from the goal pose (or set of goal poses) and
generates a path consisting of a sequence of feasible high-
fidelity maneuvers that are collision-free with respect to the
static obstacles observed in the environment. This path is also
biased away using cost function from undesirable areas such
as curbs and locations in the vicinity of dynamic obstacles.
When new information concerning the environment is re-

ceived (for instance, a new static or dynamic obstacle is
observed), the planner is able to incrementally repair its
existing solution to account for the new information. This
repair process is expedited by performing the search in a
backwards direction, as in such a scenario updated information
in the vicinity of the vehicle affects a smaller portion of the
search space and so less repair is required. The lattice plan is
typically updated once per second, however in trivial or very
difficult scenarios this time may vary.
As mentioned earlier, the lattice used in this application does

not explicitly represent curvature. Theoretically, this means
that the paths produced over this lattice are guaranteed feasible
only if we allow the vehicle to stop at each lattice state
and re-orient its steering wheel. However, in practice we
reduce (by a small fraction) the maximum curvature used
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Fig. 5. Replanning when new information is received

in generating connections between states and we reduce the
maximum speed at which we execute higher-curvature sections
of lattice paths (from 5 m/s down to 2 m/s) so that this
curvature discontinuity is not a critical issue. We also use
a lookahead during execution to slow down and stop when
switching velocity directions4. As a result, we don’t need to
stop during execution unless the path contains velocity sign
changes.
The lattice path is tracked using a local planner that employs

the same trajectory generation algorithm used to provide
the action space for the lattice. Although a simple, single-
trajectory tracker would suffice given the feasibility of the
lattice plan, multiple trajectories are produced to account for
dynamic obstacles and new observations that could require
immediate reaction (the local planner runs at 10 Hz).
To ensure that a high-quality path is available for the

vehicle as soon as it enters a parking lot, the lattice planner
begins planning for the desired goal pose while the vehicle
is still approaching the lot. By planning a path from the
entry point of the parking lot in advance, the vehicle can
seamlessly transition into the lot without needing to stop,
even for very large and complex lots. Further, the anytime
property of the search enables the solution to be improved
during the pre-planning stage and, depending on how much
time is available for pre-planning, the resulting path for the
vehicle can converge to a (provably) optimal solution.
As well as providing smooth navigation amongst partially-

known static objects, the efficiency of the multi-resolution
lattice planner makes it possible to intelligently interact with
several dynamic obstacles in the environment. In our appli-
cation, we were able to not only avoid such obstacles but
through updating regions of high cost as the obstacles moved,
we could stay well clear of them unless necessary and also
exhibit intelligent yielding behavior in unstructured areas (e.g.
keeping to the right when approaching oncoming vehicles).

4A maximum lookahead of 2m is required given our vehicle’s maximum
deceleration and the top speed used for following lattice paths, but we use a
slightly higher lookahead for smooth deceleration.

The multi-resolution lattice planner was also used for per-
forming complex maneuvers in error recovery scenarios during
on-road driving, such as when a lane or intersection is partially
blocked with vehicles or obstacles, or a road is fully blocked
and a u-turn is required. It was also used when there was some
uncertainty as to where the road was; in these scenarios it
uses the geometric perceptual information to bias the vehicle
towards the center of the road (when there are perceivable
curbs or berms).
We have included here a number of examples from the Ur-

ban Challenge and our testing to illustrate key characteristics
of the approach.

a) Pre-planning: Figure 2 illustrates the pre-planning
used by the lattice planner, as well as its anytime performance.
The left image shows our vehicle approaching a parking lot
(parking lot boundary shown in green, road lanes shown in
blue), with its intended parking spot indicated by the white
triangle. While the vehicle is still outside the parking lot it
begins planning a path from one of the parking lot entries
to the desired spot (path shown in red). Although the initial
path shown in this left image is feasible, it is not ideal as it
involves more turning than necessary. The right image shows
how this path is improved over time as the vehicle approaches.
This path is optimal with respect to our cost function and is
generated well before the vehicle enters the parking lot.

b) Anytime Planning: Figure 4 is intended to provide
insights into the benefits provided by each of the main com-
ponents of our approach. Figure 4(a) illustrates the anytime
behavior of the approach when planning between two parking
spots. We have included a plot of the cost of the solution
produced by Anytime D* as a function of computation time.
Here, the initial suboptimality bound ε was set to 3. The
upper image shows the first path Anytime D* finds. This
path was found in less than 100 msecs (and after 1, 715
state expansions). The cost of the path was 133, 736. Given
additional deliberation time, Anytime D* improves upon this
solution, and after 650 msecs, the search converges to an
optimal solution. This solution is significantly shorter than the
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initial path (as seen in the bottom image) and has a cost of
77, 345.

c) Multi-resolution Planning: Figure 4(b) shows the ben-
efits of using our multi-resolution lattice approach on the
same simple example. The top row in the table represents
a uniformly high-resolution lattice, while the bottom row
represents our multi-resolution lattice (in both cases, ε = 2).
Planning with the multi-resolution lattice is more than three
times faster. Note that the improvement in states expanded is
less than a factor of three. This is because using a multi-
resolution lattice decreases not only the number of states
expanded but also the time spent expanding each state, since
the number of possible actions from each state is decreased.

d) Combining Mechanism-relative and Environment-
relative Heuristics: Figure 4(c) demonstrates the benefits of
using our combined heuristic function on a simple example.
The first row in the table represents our combined heuristic
function. It combines the 2D environment-constrained heuris-
tic (2nd row) and freespace mechanism-constrained heuristic
(3rd row). Using this combination is over 21 times faster than
using the 2D heuristic alone and over 58 times faster than
using the freespace heuristic alone.

e) Replanning: Figure 5 illustrates the replanning capa-
bility of the lattice planner. These images were taken from
a parking task performed during the National Qualification
Event. The top-left image shows the initial path planned for
the vehicle to enter the parking spot indicated by the white
triangle. Several of the other spots were occupied by other
vehicles (shown as rectangles of varying colors), with detected
obstacles shown as red areas. The trajectories generated to
follow the path are shown emanating from our vehicle (the
selected trajectory is shown in blue). As the vehicle gets closer
to its intended spot, it observes more of the vehicle parked
in the right-most parking spot (top, second image from left).
At this point, it realizes its current path is infeasible and
replans a new path that has the vehicle perform a loop and
pull in smoothly. This path was favored in terms of time over
stopping and backing up to re-position. The three right-most
photographs on the bottom row were taken by an onboard
camera during the run.

f) Long-range Planning: As with other teams participat-
ing in the Urban Challenge, our vehicle underwent extensive
testing before and during the competition. During the com-
petition, the planner was able to continuously plan and re-
plan without having the vehicle ever stop to wait for a plan.
The scenarios we used for testing before the competition were
numerous and included expansive obstacle-laden parking lots
as well as narrow, highly-constrained parking lots. An example
of the former is shown in Figure 6(a-b). This parking lot is
200m by 200m. Initially, it is unknown and as the robot
traverses the lot, it discovers a series of obstacles (shown
as white dots in the image on the right). The robot has to
replan in real-time to account for these obstacles. The time for
replanning in this scenario varied from a few milliseconds for
small re-planning adjustments to the path to a few seconds for
finding drastically different trajectories, such as the one shown

(a) initial planning (b) replanning

(c) initial planning (d) replanning
Fig. 6. Planning and replanning in large (a,b) and highly-constrained (c,d)
environments

in Figure 6(b).
g) Complex Maneuvering: An example of a testing sce-

nario involving a highly-constrained parking lot is shown
in Figure 6(c-d). The trajectory planned involves the robot
making an initial narrow U-turn and then making another
one immediately before pulling into the final parking spot.
While executing the trajectory, the robot discovers a series
of obstacles and has to re-plan as shown in Figure 6(d). The
new trajectory now requires the robot to backup a number of
times. Moreover, it requires the robot to enter the desired spot
in reverse since the discovered obstacles prohibit the robot
from pulling in.

h) Coping with Dynamic Obstacles: Figure 7 shows
the lattice planner being used to plan amongst several other
moving vehicles in simulation. In these images, the current
goal is shown as the white triangle and the inferred short-
term trajectories of the other vehicles are included as fading
polygons.

i) Coping with Static Obstacles: Figure 8 provides an
example testing scenario for our physical vehicle. The left
image shows the layout of the parking lot, the static obstacles
(initially unknown to the vehicle), and the parking spots to
be visited in order (1 through 5). The vehicle entered the lot
through the left entrance between spots 3 and 4. The other
images show snapshots from an onboard camera during the
vehicle’s traverse through this difficult environment.

VI. CONCLUSIONS

We have presented a general approach for complex plan-
ning involving large, high-dimensional search spaces. Our
approach employs a novel multi-resolution action and state
space that significantly reduces complexity while providing
a seamless interface between the resolutions, as well as
guarantees of solution feasibility. The approach also relies
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Fig. 7. Planning amongst moving obstacles

Fig. 8. Planning in complex obstacle environments

on an anytime, incremental search algorithm for generating
solutions in partially-known or dynamic environments when
deliberation time is limited. This search exploits a low-
dimensional environment-dependent heuristic coupled with a
full-dimensional freespace heuristic for efficient focusing, a
powerful technique applicable to any high-dimensional plan-
ning problem. The resulting approach provides global, feasible
solutions to challenging navigation tasks, and all the core
techniques presented are applicable to a wide range of complex
planning problems.
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Friction-Induced Velocity Fields for Point Parts
Sliding on a Rigid Oscillated Plate

Thomas H. Vose, Paul Umbanhowar, and Kevin M. Lynch

Abstract—We show that small-amplitude periodic motion of
a rigid plate causes point parts on the plate to move as if they
are in a position-dependent velocity field. Further, we prove that
every periodic plate motion maps to a unique velocity field. By
allowing a plate to oscillate with six-degrees-of-freedom, we can
create a large family of programmable velocity fields. We examine
in detail sinusoidal plate motions that generate fields with either
isolated sinks or squeeze lines. These fields can be exploited to
perform tasks such as sensorless part orientation.

I. INTRODUCTION

When parts are in contact with a rigid oscillating surface,
frictional forces induce the parts to move in a predictable
manner. A single rigid plate is therefore a simple and appealing
platform on which to perform a variety of parts manipulation
tasks such as transporting, orienting, positioning, sorting,
mating, etc. Because the motion of the plate is programmable,
it is possible to perform these tasks on parts of various shapes
and sizes without the need to reconfigure hardware for each
new task or part geometry.
In this paper we propose a general model of part motion

for point parts on a six-degree-of-freedom (DoF) oscillating
plate. The key discovery is that small-amplitude periodic plate
motions map to position-dependent velocity fields on the plate
surface, which we refer to as asymptotic velocity fields. For
many plate motions and coefficients of friction, part motion is
well described by the asymptotic velocity field. Although we
do not yet know how to characterize the set of all asymptotic
velocity fields obtainable with a six-DoF oscillating plate, we
do know that it includes fields with nonzero divergence (i.e.,
fields with sinks and sources). The video accompanying this
paper shows parts on our six-DoF prototype device undergoing
motion in such fields.
The rest of the paper is laid out as follows: in Section II

we discuss related work that focuses on programmable force
fields and vibratory surfaces; in Section III we present a full
dynamic model of the part-plate system; in Section IV we
present a simplified dynamic model which is the basis for our
theorem asserting the existence of asymptotic velocity fields;
in Sections V and VI we explain how to estimate asymptotic
velocity fields and offer examples for sinusoidal plate motions;
and in Section VII we conclude with remarks on future work.

T. H. Vose, P. Umbanhowar, and K. M. Lynch are with the Department of
Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
(e-mail: {t-vose, umbanhowar, kmlynch}@northwestern.edu)
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and Thomas Vose’s NSF fellowship.

II. BACKGROUND

For some tasks, such as positioning and orienting parts,
planar force fields with nonzero divergence (e.g., squeeze
fields and sink fields) can be designed to interact with the
part so that the task can be completed without the use of
sensors. Significant theoretical work has gone into developing
algorithms that exploit programmable force fields for sensor-
less positioning and orienting of planar parts (e.g., [1], [2],
[3], [4]). Most devices designed to generate programmable
force fields do so using a planar array of actuators, such as
MEMS elements [5], [6], [7], rolling wheels [8], air jets [9], or
vibrating plates [10]. Although these systems can create a wide
range of fields, the fields are necessarily discrete, whereas most
of the theoretical work assumes continuity. To approximate a
continuous field, the array must contain a large number of
actuators, often making fabrication and control difficult. Our
current prototype vibratory device, which consists of just a
single rigid plate and six voice coil actuators that allow for six-
DoF motion of the plate, is comparatively simple yet powerful
enough to create continuous fields with nonzero divergence.
Our work is a natural extension of the Universal Planar

Manipulator (UPM) designed by Canny and Reznik [11].
The UPM consists of a single rigid horizontal plate that
moves with three degrees-of-freedom (two translational and
one rotational). Systems that restrict the plate motion to the
horizontal plane, such as the UPM, can only generate frictional
force fields with zero divergence [12]. Therefore, position
sensing is required to orient and position parts. What allows
our system to create fields with nonzero divergence is the
plate’s ability to move with all six degrees of freedom. In
particular, the plate’s ability to rotate out of the horizontal
plane while simultaneously translating in the horizontal plane
allows us to generate fields with sinks and sources.
The relationship between a periodic plate motion and the

resultant frictional force acting on a planar part is generally
quite complicated. However, when the plate motion is purely
translational, point parts at all locations experience the same
forces. This results in a single feed rate that is independent of
position. In the simplest one-DoF case, the plate is horizontal
and translates longitudinally. Reznik and Canny examined a
particular type of bang-bang motion for this case in [13]
and [14]. Okabe et al. looked at one-DoF plate motion in which
the plate is also angled with respect to the horizontal [15].
Two-DoF systems, allowing translation both longitudinally
and normal to the surface, are examined in [16] and [10].
In [17], Lynch and Umbanhowar derived optimal plate motions
that maximize part speed on one- and two-DoF translating
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rigid plates. The three-DoF UPM is capable of generating
certain position-dependent force fields [12] including localized
ones [18].
In [19] we first demonstrated that fields with nonzero

divergence can be created with a six-DoF rigid plate that
oscillates periodically. This paper extends that work in three
ways: it formally defines asymptotic velocity, it proves that
every periodic plate motion maps to a unique asymptotic
velocity field, and it introduces new plate motions that simplify
the way some of the fields in [19] can be generated.

III. SYSTEM MODEL

A. Plate Kinematics

Consider a rigid plate undergoing small-amplitude vibration.
We define three coordinate systems: a fixed inertial frame W ,
a local frame S attached to the origin of the plate, and an
inertial frame S ′ instantaneously aligned with S (Figure 1).
The z-axis ofW is in the direction opposite the gravity vector,
which is represented as g = [0, 0,−g]T in the W frame. The
zS -axis of S is perpendicular to the plate surface.
We choose to describe the kinematics of the plate in the W

frame. The configuration of the plate is given by[
R p
0 1

]
∈ SE(3),

where R ∈ SO(3). Both R and p are periodic C1 functions
of time with period T . In the home position, p = 0 and
R = I, where I is the identity matrix. The linear velocity
of the origin of the plate is ṗ and the angular velocity of the
plate is ω. The linear acceleration of the origin of the plate
is p̈ = [p̈x, p̈y, p̈z]T and the angular acceleration of the plate
is α = [αx, αy, αz]T . In general, we choose to specify the
plate’s motion in terms of p̈ and α.

B. Part Kinematics

Let P be a point part with mass m in contact with the plate.
As illustrated in Figure 1, let q = [xS , yS , 0]T be a vector in
S to P, and r = [x, y, z]T be a vector in W to P such that

r = p+Rq. (1)

Let P∗ be the point on the plate directly underneath P. The
position of P∗ is given by the vector r∗ in the W frame. The
velocity and acceleration of P∗ in the W frame are given by

ṙ∗ = ṗ+ ω ×Rq (2)
r̈∗ = p̈+ ω × ω ×Rq+α×Rq. (3)

The velocity and acceleration of P in theW frame are given
by

ṙ = ṗ+ ω ×Rq+Rq̇

= ṙ∗ +Rq̇ (4)
r̈ = p̈+ ω × ω ×Rq+α×Rq+ 2ω ×Rq̇+Rq̈

= r̈∗ + 2ω ×Rq̇+Rq̈. (5)

r
p

q

g

S

W

z

zS

P

Fig. 1. An extremely exaggerated picture of the plate displaced from the
fixed W frame by the vector p. The position of the part P is given by r in
the W frame and by q in S frame.

C. Part Dynamics

Three forces act on the part: gravity, friction, and the normal
force from the plate (Figure 2). Applying Newton’s second law
in the S ′ frame gives

fNS′ + fFS′ + fGS′ = mRT r̈ (6)

= mRT
(
r̈∗ + 2ω ×Rq̇

)
+mq̈, (7)

where fNS′ = [0, 0, N ]T , fFS′ = [FxS , FyS , 0]
T , and fGS′ =

mRTg are the normal, frictional, and gravitational forces on
the part in the S ′ frame. Solving (6) for r̈ yields an expression
for the part’s acceleration in the W frame:

r̈ =
1
m
R

(
fNS′ + fFS′

)
+ g. (8)

Explicit expressions for fNS′ and fFS′ are derived in the
following two sections.
The state vector xW = [r, ṙ]T can be computed by integrat-

ing (8). The state vector xS = [q, q̇]T can be computed from
xW noting that (1) and (4) imply

q = RT (r− p) (9)

q̇ = RT (ṙ− ṙ∗) . (10)

Our analysis is restricted to situations in which the part
always remains in contact with the plate. Contact is maintained
as long as the magnitude of the normal force is positive.
Additionally, contact implies the acceleration of the part
perpendicular to the plate surface is zero at all times in the S
frame. Mathematically, we express this as

zT q̈ = 0, (11)

where z � [0, 0, 1]T .

D. Normal Force

As noted previously, the normal force has the form fNS′ =
[0, 0, N ]T in the S ′ frame. Pre-multiplying (7) by zT and
noting (11) yields the following expression for the magnitude
of the normal force, N :

N = mzT
[
RT (r̈∗ + 2ω ×Rq̇− g)

]
. (12)

We define the effective gravity as

geff = zT
[
RT (r̈∗ + 2ω ×Rq̇− g)

]
, (13)

so that N = mgeff.
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fN

fG

fF
g

Fig. 2. The three forces that act on the part are due to gravity, friction, and
the normal force from the plate. The gravitational force fG always acts in
the negative z-direction of the W frame, the frictional force fF always acts
tangent to the plate surface, and the normal force fN always acts perpendicular
to the plate surface.

E. Frictional Force

We assume Coulomb friction in our model. Since frictional
forces can only act in the x-y plane of the S ′ frame we define
the matrix Sxy that projects vectors in R3 onto the x-y plane.
The frictional force acting on a part located at r depends

on the state of the system. There are three cases, which we
summarize mathematically as:

fFS′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μkN
q̇
‖q̇‖ , ‖q̇‖ > 0;

μsN
SxyRT r̈∗

‖SxyRT r̈∗‖ , ‖q̇‖ = 0

‖SxyRT r̈∗‖ > μsgeff;

mSxyRT r̈∗, ‖q̇‖ = 0
‖SxyRT r̈∗‖ ≤ μsgeff;

(14)

where μk and μs are the respective kinetic and static coeffi-
cients of friction between the part and the plate.

IV. MAPPING PERIODIC PLATE MOTIONS TO
POSITION-DEPENDENT PART VELOCITIES

It is usually difficult to gain conceptual insight into the
relationship between plate motion and part motion using
the full dynamic model presented in the previous section.
However, by running numerical simulations of the system, we
observed that there is a unique average velocity va(r) such that
a point part at r, moving with any other average velocity (when
averaged over one cycle), tends toward va(r). We call va(r)
the asymptotic velocity at r. Thus, a part’s motion on the plate
is given approximately by the position-dependent asymptotic
velocity field, where the quality of the approximation depends
on the rate of convergence to the asymptotic velocity at each
location.
The simplified system model presented in this section allows

us to justify the position-dependent asymptotic velocity ob-
served in the simulations and leads to further insight about part
motion induced by small-amplitude periodic plate motions.

A. Simplified System Model

To simplify the system model, let us assume that the part
is sliding at all times. Let us also operate in a regime where
the period, linear displacement, and angular displacement of

the plate are small enough so that we may assume p ≈ 0
and R ≈ I. It follows that the part’s position vector in the W
frame can be approximated as r ≈ q = [x, y, 0]T , and that the
gravitational, frictional, and normal forces acting on the part
can be considered aligned with the W axes. In other words,
the configuration of the plate is assumed to correspond to the
home position at all times.
With the assumptions above, the approximate acceleration

of the part in the horizontal plane, denoted by a, is obtained
by simplifying the x and y components of (8):

a =

⎡
⎣ ẍ

ÿ
0

⎤
⎦ = Sxy r̈ ≈ −μkgeff

q̇
‖q̇‖ . (15)

The effective gravity geff and the relative velocity vector
q̇ that respectively dictate the magnitude and direction of
a can be approximated by simplifying (13) and (10) and
further assuming that Coriolis and centripetal accelerations are
insignificant:

geff ≈ zT (p̈+α× r− g) (16)
q̇ ≈ Sxy (ṙ− ṙ∗) . (17)

In summary, the simplified system model assumes the
part is always sliding, the configuration of the plate always
corresponds to the home position, and Coriolis and centripetal
accelerations are negligible.

B. Asymptotic Velocity of Sliding Parts

Let v and v∗ be the respective velocities of the part and
the plate at a location r projected onto the x-y velocity plane
in the W frame. We refer to this plane of velocities as Vxy.
Let rxy = [x, y]T . At a given rxy, v∗ sweeps out a closed

trajectory in Vxy for all periodic plate motions. Let CH∗

denote the convex hull of this trajectory in the Vxy plane.
Even if the part has a nonzero velocity, we assume its

displacement is negligible during a cycle of plate motion. Let
us therefore denote by Σ a system consisting of
1) a plate undergoing periodic motion;
2) a part with a fixed value of rxy , but with a velocity that
may be nonzero, and an acceleration given by (15) of
the simplified dynamic model.

The following theorem asserts the existence of a unique
asymptotic velocity for this type of system.
Theorem 1: For a system Σ, the part asymptotically con-

verges from any initial velocity to a unique stable limit cycle
of period T on or inside CH∗.

Sketch of Proof : We first show that the part’s velocity
converges asymptotically to CH∗ in the Vxy plane. From (15)
and (17), the part accelerates such that v moves in the direction
of v∗ at each instant in the Vxy plane. Recalling that v∗ sweeps
out a closed trajectory, it follows that if v is outside of CH∗

it must always move closer to CH∗, and if v is contained in
CH∗ it can never escape.
Now we show that the part’s velocity converges to a unique

stable limit cycle in CH∗. Let P1 and P2 be two point parts
located at rxy with identical coefficients of kinetic friction,
μk. Let the velocities of P1 and P2 in the Vxy plane be v1
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and v2. Let Δv = ‖v1−v2‖ be the distance between v1 and
v2 in the Vxy plane (Figure 3).
From (16) the value of geff is the same for both P1 and

P2. Thus, (15) implies that at all times P1 and P2 accelerate
with equal magnitude in the direction of v∗ in the Vxy plane.
It immediately follows that d

dt (Δv) ≤ 0. The nondecreasing
case

(
d
dt (Δv) = 0

)
corresponds to when v1, v2, and v∗ are

collinear such that v∗ is not between v1 and v2. However, the
periodic motion of the plate ensures that there will always be
a duration of time τ > 0 during the cycle when v1, v2, and
v∗ are not collinear, or v1, v2, and v∗ are collinear such that
v∗ is between v1 and v2. In either case, d

dt (Δv) < 0 during
this time, ensuring a contractive mapping over the course of
a cycle. Thus, all parts located at rxy must converge to a
unique stable limit cycle on or inside CH∗ that we call the
asymptotic trajectory at rxy. The time-averaged velocity of
the points on the asymptotic trajectory at rxy is the unique
asymptotic velocity va(rxy).
Finally, we show that the period of the asymptotic trajectory

must be the same as that of the plate. Consider an arbitrary pe-
riodic plate motion with period T . Assume that an asymptotic
trajectory at r on or inside CH∗ exists for this plate motion
with period T ′ such that T �= T ′.
For the case in which T > T ′ there must exist at least one

point on the part’s asymptotic trajectory that corresponds to
at least two different points on the plate’s trajectory in the
Vxy plane. From (15) and (17), this implies that the part must
accelerate in two different directions simultaneously, which is
not physically possible.
For the case in which T < T ′ there must exist at least

two points on the part’s asymptotic trajectory that correspond
to a single point on the plate’s trajectory. Suppose that two
parts, P1 and P2, have initial velocities in the Vxy plane
corresponding to v1 and v2 at the instant when the plate has
velocity v∗. By definition, the velocities of P1 and P2 are once
again v1 and v2 every nT ′ seconds, where n = 1, 2, 3, . . ..
However, because n can be chosen such that nT ′ > T , this
is a contradiction since the distance between v1 and v2 on or
inside CH∗ must decrease during any cycle of plate motion
(i.e., any duration of T seconds). �
Figure 4 shows simulation results that illustrate the ideas

presented in Theorem 1. The plots are for the location rxy =
(0.06, 0)T m on a plate undergoing the motion described in
Figure 5(k). In Figure 4(a), two parts with different initial
velocities are shown converging to the same asymptotic tra-
jectory in CH∗. This is also highlighted in Figure 4(b), which
shows Δv decreasing over time, and in Figure 4(c), which
shows the individual x and y velocities of the two parts
converging in time. The markers in Figure 4(a) and (c) are
plotted every half cycle to show that the asymptotic trajectory
and the plate’s trajectory have the same period.

C. Computing Asymptotic Velocity

Theorem 1 allows us to formally define the asymptotic
velocity at rxy as

va(rxy) =
1
T

∫ t+T

t

v′(t)dt, (18)

v∗

v1

v2

Δv

x�velocity

y�
ve

lo
ci

ty

Fig. 3. The Vxy plane at an arbitrary location r, in which the velocity of
the plate v∗ sweeps out a closed trajectory. From (15), the tangent to the
trajectory of any point part (e.g., v1) passes through v∗ at each instant.

where v′(t) is the unique limit cycle from Theorem 1. For
some simple plate motions, the asymptotic velocity field as
a function of rxy can be determined analytically from (18)
(see e.g., [19], [17], [20]). Otherwise, it can be determined
numerically by computing the asymptotic velocity at a discrete
set of points on the plate as follows:
1) Set the part’s initial velocity to zero.
2) Simulate the part dynamics (without updating the posi-
tion) for one cycle of plate motion.

3) Subtract the part’s velocity at the end of the cycle
from its velocity at the beginning of the cycle. If the
magnitude of the difference is not within a predefined
tolerance ε, repeat step 2, but use the part’s velocity at
the end of the current cycle as its initial velocity for the
next cycle.

4) Average the part’s velocity over the cycle.

V. ESTIMATING ASYMPTOTIC VELOCITY

Although the asymptotic velocity can always be computed
numerically, in this section we explain how to estimate it
using the notion of transient acceleration. The advantage of
this is that the transient acceleration is defined such that it
is independent of the part’s velocity and therefore does not
require simulation to compute.
For some plate motions a qualitative estimate of the transient

acceleration can be obtained by simple inspection. This is
useful for gaining intuition about the properties of the fields
generated by certain classes of plate motions, as discussed in
Section VI. It also leads to insight about the inverse problem:
finding a plate motion that approximately generates a desired
field.

A. Transient Acceleration

Let a point part located at rxy have an initial velocity v = 0
in the Vxy plane. Unless the part happens to begin exactly on
the asymptotic trajectory, there is a transient period during the
first few cycles of plate motion in which the part converges to
the asymptotic trajectory at rxy. During the transient period the
average acceleration of the part is nonzero in order to bring the
average cycle velocity closer to the asymptotic velocity. Thus,
to a good approximation, the asymptotic velocity at rxy is
proportional to the average transient acceleration over a small
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Fig. 4. A detailed look at two parts located at (0.06, 0) m with different
initial velocities on a plate undergoing the motion specified in Figure 5(k).
The period of the plate’s motion is T = 0.03 s, and the markers in (a)
and (c) are plotted every half cycle (0.015 s). In (a), the trajectory of the
two parts in the Vxy plane is shown for four cycles of plate motion. Both
parts rapidly approach a nearly circular asymptotic trajectory centered around
(−0.01,−0.025) m/s that is fully contained the convex hull of the plate’s
trajectory. The asymptotic trajectory and the plate’s trajectory each have two
markers per cycle indicating that they have the same period. The distance
between the parts’ velocities in the Vxy plane rapidly approaches zero without
ever increasing, as shown in (b). The x and y-components of the velocity are
plotted individually vs. time in the top two graphs of (c); the effective gravity
is plotted in the bottom graph of (c). The dashed vertical line in (c) denotes
the time at which geff is a maximum.

number of cycles at rxy arising from the initial condition v =
0.
We use (15) to estimate the part’s acceleration a during

the transient. To estimate geff we use (16), rewritten below
explicitly in terms of acceleration components:

geff ≈ zT (p̈+α× r− g) = p̈z + αxy − αyx+ g. (19)

To estimate q̇ we assume that during the transient period the
magnitude of the plate’s velocity v is much greater than the
part’s velocity v∗. Thus, (17) reduces to

q̇ ≈ Sxy (−ṙ∗) = Sxy (−ṗ− ω × r) =

⎡
⎣ −ṗx + ωzy
−ṗy − ωzx

0

⎤
⎦ .

(20)

We make the important observation that in our model of the
transient acceleration neither geff nor q̇ depends on the motion
of the part: from (19) the magnitude of a during the transient
is a function of p̈z , αx, and αy; from (20) the direction of a
during the transient is a function of ṗx, ṗy , and ωz . We refer to
p̈z , αx, and αy as the out-of-plane acceleration components of
the plate’s motion. We refer to ṗx, ṗy , and ωz as the in-plane
velocity components. In-plane velocity components can be
obtained by integrating the in-plane acceleration components
p̈x, p̈y , and αz of the plate’s motion.
Intuition about the qualitative properties of the field can

often be gained by assuming that the part’s dynamics are
dominated by the portion of the cycle when geff (and thus the
transient acceleration of the part) is largest. This is discussed
below for sinusoidal plate motions.

B. Sinusoidal Motion Primitives

We now focus on the class of plate motions whose linear
and angular acceleration components are sinusoidal with the
same frequency, f :

p̈x = Ax sin(2πft+ φx) αx = Aθ sin(2πft+ φθ)
p̈y = Ay sin(2πft+ φy) αy = Aϕ sin(2πft+ φϕ)
p̈z = Az sin(2πft+ φz) αz = Aψ sin(2πft+ φψ).

This 11-dimensional space of plate motions is parameterized
by the six amplitudes and five phases (one phase is chosen to
be zero without loss of generality). We refer to plate motions
of this form as sinusoidal motion primitives.
To qualitatively estimate the transient accelerations asso-

ciated with sinusoidal motion primitives we assume that the
frictional force during the instant in the cycle when geff is
a maximum dominates the overall part dynamics. Thus, the
average magnitude of a during the transient period is roughly
proportional to the maximum value of geff. Similarly, the
average direction of a during the transient period roughly
corresponds to the direction of q̇ at the instant when geff is a
maximum.
As an example, consider the point rxy = (0.06, 0)T m on a

plate undergoing the motion given in Figure 5(k) with period
T = 0.03 s. The circular trajectory of the plate’s velocity v∗

is depicted in Figure 4(a). In Figure 4(c) we see that geff is
a maximum at t = 3

4T . By examining the x and y velocities
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of the plate at this time we expect the asymptotic velocity
to have a negative y-component and no x-component. This is
very nearly true—the asymptotic trajectory to which the parts
are converging in Figure 4(a) has an average y-velocity that is
negative and an average x-velocity that is very close to zero,
although slightly negative.

VI. ASYMPTOTIC VELOCITY FIELDS ARISING FROM
SINUSOIDAL MOTION PRIMITIVES

In this section we look at two classes of sinusoidal motion
primitives. For these classes, we use estimates of transient ac-
celerations to predict the qualitative behavior of the asymptotic
velocity fields. Numerically calculated versions of these fields,
as well as several other fields, are shown in Figure 5. Below
each field is the sinusoidal motion primitive from which the
field is generated and the approximate form of the asymptotic
velocity. Six seconds of simulated motion of a point part
starting from rest is overlaid on each field. The simulation and
the fields are based on the full dynamic system model given in
Section III (using the simplified system model in Section IV
to generate the fields gives visually indistinguishable results).
After a brief transient period, agreement between the simulated
motion and the asymptotic velocity field is very good in all
cases.

A. Combining In-Plane Translation with Out-of-Plane Rota-
tion: Nodal Line Fields

The class of nodal line sinusoidal motion primitives com-
bine the in-plane acceleration components p̈x and p̈y with the
out-of-plane acceleration components αx and αy as follows:

p̈x = Ax sin(2πft) αx = Aθ sin(2πft+ φ)
p̈y = Ay sin(2πft) αy = Aϕ sin(2πft+ φ).

From (19) and (20), the effective gravity and relative veloc-
ity vector can be written as

geff ≈ Aθ sin(2πft+ φ)y −Aϕ sin(2πft+ φ)x+ g

q̇ ≈

⎡
⎣ −ṗx
−ṗy
0

⎤
⎦ =

⎡
⎢⎢⎢⎣

Ax

2πf
cos(2πft)

Ay

2πf
cos(2πft)

0

⎤
⎥⎥⎥⎦ .

We note that geff is position-dependent; its maximum value
increases with distance from the line through the origin in
the direction of (Aθ, Aϕ). We refer to this line as a nodal
line. We also note that q̇ is position-independent and points in
the direction of the vector (Ax, Ay). It follows that during
the transient period a part will accelerate in a direction
corresponding to ±(Ax, Ay) with a magnitude that scales with
its distance from the nodal line.
Let us examine the special case where Ay = Aθ = 0,

implying that q̇ is always aligned with the x-axis and that the
maximum value of geff increases with distance from the y-axis.
Thus, we expect the magnitude of the transient acceleration to
increase with distance from the y-axis. Further, whenever geff
is a maximum on one side of the y-axis it is a minimum
on the other side. This introduces an asymmetry that causes

the direction of the part’s transient acceleration to differ on
opposite sides of the y-axis. Depending on the phase φ the
part will accelerate toward or away from the nodal line.
For example, if φ = 3

2π, geff and q̇ are out of phase
with each other for positions satisfying x < 0 (i.e., for parts
with negative x-positions, the plate moves in the positive
x-direction during the instant in the cycle when geff is a
maximum). On the other hand, the plate moves in the negative
x-direction during the instant in the cycle when geff is a
maximum for parts satisfying x > 0. It follows that during
the transient period parts with x < 0 tend to get accelerated
in the positive x-direction whereas parts with x > 0 tend
to get accelerated in the negative x-direction. As illustrated
in Figure 5(c), the asymptotic velocity field for this case
corresponds to a squeeze field converging on the y-axis. We
refer to this as a LineSink field.
In general, the class of nodal line sinusoidal motion prim-

itives create a nodal line of zero velocity in the direction of
the rotation axis

(
i.e., the direction of the vector (Aθ, Aϕ)

)
.

The value of φ determines whether the nodal line is attractive
or repulsive. As illustrated in Figure 5(e)-(g), Ax, Ay , Aθ,
Aϕ, and φ can be chosen to create fields such as SkewSink,
SkewSource, and Shear.

B. Combining In-Plane Translation with Out-of-Plane Rota-
tion: Nodal Fields

The class of nodal sinusoidal motion primitives combine
the in-plane acceleration components p̈x and p̈y with the out-
of-plane acceleration components αx and αy as follows:

p̈x = Ax sin(2πft) αx = Aθ sin(2πft+ φ)
p̈y = Ay sin(2πft+ π/2) αy = Aϕ sin(2πft+ π/2 + φ).

From (19) and (20), the effective gravity and relative veloc-
ity vector can be written as

geff ≈ Aθ sin(2πft+ φ)y −Aϕ sin(2πft+ π/2 + φ)x+ g

q̇ ≈

⎡
⎣ −ṗx
−ṗy
0

⎤
⎦ =

⎡
⎢⎢⎢⎣

Ax

2πf
cos(2πft)

− Ay

2πf
sin(2πft)

0

⎤
⎥⎥⎥⎦ .

The relative velocity q̇ is position-independent and rotates
at a constant rate with a constant magnitude. This implies
that the part can potentially accelerate in any direction at any
location during the transient period. However, we can rule out
many possibilities by examining geff. In particular, we expect
the transient acceleration to be an odd function of position
because when geff(x, y, t) is a maximum geff(−x,−y, t) is a
minimum. Further, the magnitude of the transient acceleration
should increase with distance from the origin because the
maximum value of geff increases in this manner.
In general, nodal sinusoidal motion primitives create fields

with a node of zero velocity at the origin of the plate.
The value of φ determines whether the node is attractive or
repulsive as well as whether the field is oriented clockwise
or counterclockwise. The values of Ax, Ay , Aθ, and Aϕ

determine the strength, orientation, and eccentricity of the
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(a) Trans (b) Circle (c) LineSink (d) LineSource

p̈x = 10 sin(66πt) αz = 100 sin(66πt) p̈x = 10 sin(66πt) p̈x = 10 sin(66πt)

p̈z = 5 sin(66πt+ 3
2
π) p̈z = 8 sin(66πt+ 3

2
π) αy = 100 sin(66πt+ 3

2
π) αy = 100 sin(66πt+ 1

2
π)

va(x, y) ≈ (0.015, 0) va(x, y) ≈ (−0.15y, 0.15x) va(x, y) ≈ (−0.25x, 0) va(x, y) ≈ (0.25x, 0)

(e) SkewSink (f) SkewSource (g) Shear (h) DivCircle

p̈x = 10 sin(66πt) p̈x = 10 sin(66πt) p̈y = 10 sin(66πt) αz = 100 sin(66πt)

p̈y = 10 sin(66πt) p̈y = 10 sin(66πt) αy = 100 sin(66πt+ 3
2
π) αy = 10 sin(66πt+ 1

2
π)

αy = 100 sin(66πt+ 3
2
π) αy = 100 sin(66πt+ 1

2
π)

va(x, y) ≈ (−0.3x,−0.3x) va(x, y) ≈ (0.3x, 0.3x) va(x, y) ≈ (0, 0.25x) va(x, y) ≈ (−2xy, 2x2)

(i) Sink (j) Source (k) Whirlpool (l) Centrifuge

p̈x = 10 sin(66πt) p̈x = 10 sin(66πt) p̈x = 10 sin(66πt) p̈x = 10 sin(66πt)

p̈y = 10 sin(66πt+ 1
2
π) p̈y = 10 sin(66πt+ 1

2
π) p̈y = 10 sin(66πt+ 1

2
π) p̈y = 10 sin(66πt+ 1

2
π)

αx = 100 sin(66πt+ 75
64

π) αx = 100 sin(66πt+ 11
64

π) αx = 100 sin(66πt+ 3
2
π) αx = 100 sin(66πt+ 1

2
π)

αy = 100 sin(66πt+ 1
2
π + 75

64
π) αy = 100 sin(66πt+ 1

2
π + 11

64
π) αy = 100 sin(66πt+ 1

2
π + 3

2
π) αy = 100 sin(66πt+ 1

2
π + 1

2
π)

va(x, y) ≈ (−0.35x,−0.35y) va(x, y) ≈ (0.35x, 0.35y) va(x, y) ≈ va(x, y) ≈
(−0.15x+ 0.3y,−0.3x− 0.15y) (0.15x− 0.3y, 0.3x+ 0.15y)

Fig. 5. Numerically calculated asymptotic velocity fields based on the full dynamic model corresponding to sinusoidal motion primitives (when the fields
are calculated with the simplified dynamic model the results are visually indistinguishable). The fields are calculated for a point part with μk = μs = 0.3.
Arrows are drawn in 2 cm increments. The arrows are missing in the corners of (i)–(l) because the part lost contact with the plate at those locations before
reaching an asymptotic velocity. The sinusoidal motion primitive for each field is listed below it; linear and angular accelerations are in m/s2 and rad/s2
respectively. All acceleration components have a frequency of 33 Hz (T = 0.03 s). Below each sinusoidal motion primitive is an approximate form of the
asymptotic velocity field given in units of m/s. Overlaid on each asymptotic velocity field is a six second (200 cycle) simulation of a point part starting from
rest incorporating the full system dynamics. The position of the part is plotted every 0.3 seconds (every 10 cycles).
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p̈x = 10 sin(66πt) p̈x = 10 sin(66πt)

p̈y = 10 sin(66πt+ 1
2
π) p̈y = 10 sin(66πt+ 1

2
π)

αx = 100 sin(66πt+ 75
64

π) p̈z = 2 sin(66πt)

αy = 100 sin(66πt+ 27
64

π) αx = 100 sin(66πt+ 75
64

π)

αy = 50 sin(66πt+ 107
64

π)

va(x, y) ≈ (0.25x,−0.3x− 45y) va(x, y) ≈
(−0.2x+ 0.005,−0.4y + 0.01)

Fig. 6. Two asymptotic velocity fields with broken symmetries generated
from sinusoidal motion primitives. The saddle on the left has nonorthogonal
axes. The sink on the right biases motion in the y-direction and its node is
shifted to the right and above the origin of the plate. Details about how the
fields and simulated part motions were generated are given in the caption of
Figure 5.

field. As illustrated in Figure 5(i)–(l), nodal fields include
Sink, Source, Whirlpool, and Centrifuge.

C. The Set of Obtainable Fields for Sinusoidal Plate Motion

Based on the expressions for va given in Figure 5, we
hypothesize that the class of sinusoidal motion primitives
generate quadratic asymptotic velocity fields of the form

va(rxy) = rTxyArxy +Brxy + c, (21)

where A ∈ R2×2×2, B ∈ R2×2, and c ∈ R2. The six com-
bined elements of B and c can all be chosen independently,
but there are constraints onA that are not yet fully understood.
This set of fields is a small subset of all possible asymptotic

velocity fields obtainable with a six-DoF oscillating plate.
Nonetheless, it is an interesting subset because it includes
common fields with nonzero divergence. Figure 6 shows two
asymptotic velocity fields that can be described by (21) that
exhibit less symmetry than those in Figure 5.

VII. CONCLUSIONS

We have presented a model that predicts a relationship
between small-amplitude periodic motions of a rigid plate and
position-dependent velocity fields for point parts in contact
with the plate. The model predicts the existence of velocity
fields with nonzero divergence; the accompanying videos of
our six-DoF prototype device qualitatively verify that these
fields can indeed be generated in practice. Numerical simula-
tions in this paper support the theoretical validity of the model.
There are four broad areas that we see as fruitful for future

work. The first is to gain more insight about the scope of
obtainable fields for more general periodic plate motions. The
second is to develop a comprehensive understanding of how to
map a desired field to its associated periodic plate motion(s).

The third is to better understand how the coefficient of friction
and the motion of the plate affect the rate of convergence to the
asymptotic velocity. The fourth is to extend the work presented
in this paper to handle parts with planar extent. These results
will allow us to address a variety of applications including
planar parts sorting, feeding, and assembly.
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Metastable Walking on Stochastically Rough Terrain
Katie Byl and Russ Tedrake

Abstract— Simplified models of limit-cycle walking on flat
terrain have provided important insights into the nature of
legged locomotion. Real walking robots (and humans), however,
do not exhibit true limit cycle dynamics because terrain, even
in a carefully designed laboratory setting, is inevitably non-flat.
Walking systems on stochastically rough terrain may not satisfy
strict conditions for limit-cycle stability but can still demonstrate
impressively long-living periods of continuous walking. Here, we
examine the dynamics of rimless-wheel and compass-gait walking
on randomly generated rough terrain and employ tools from
stochastic processes to describe the ‘stochastic stability’ of these
gaits. This analysis generalizes our understanding of walking
stability and may provide statistical tools for experimental limit
cycle analysis on real walking systems.

I. INTRODUCTION

The science of legged locomotion is plagued with com-
plexity. Many of the fundamental results for legged robots
have come from detailed analytical and computational inves-
tigations of simplified models (e.g., [3, 5, 7, 10, 11]). These
analyses reveal the limit cycle nature of ideal walking systems
and employ Poincaré map analysis to assess the stability of
these limit cycles. However, the very simplifications which
have made these models tractable for analysis can limit their
utility.

Experimental analyses of real machines based on these
simple models [4] have revealed that real machines differ
from these idealized dynamics in a number of important ways.
Certainly the dynamics of impact and contact with the ground
are more subtle than what is captured by the idealized models.
But perhaps more fundamental is the inevitable stochasticity
in the real system. More than just measurement noise, robots
that walk are inherently prone to the stochastic influences of
their environment by interacting with terrain which varies at
each footstep. Even in a carefully designed laboratory setting,
and especially for passive and minimally-actuated walking
machines, the effects of this stochasticity can have a major
effect on the long-term system dynamics. In practice, it is very
difficult (and technically incorrect) to apply deterministic limit
cycle stability analyses to our experimental walking machines
- the real machines do not have true limit cycle dynamics.

In this paper, we extend the analysis of simplified walking
models toward real machines by adding stochasticity into
the our model. Although we have considered a number of
sources of uncertainty, we will focus here on a compact and
demonstrative model - where the geometry of the ground is
drawn from a random distribution. Even with mild deviations
in terrain from a nominal slope angle, the resulting trajectories
of the machine are different on every step and for many noise
distributions (e.g., Gaussian) the robot is guaranteed to eventu-
ally fall down (with probability one as t→∞). However, one

can still meaningfully quantify stochastic stability, in terms of
expected time to failure, and maximization of this metric in
turn provides a parameter for optimization in the design of
control for a walking robot on moderately rough, unmodeled
terrain.

II. BACKGROUND

Many stochastic dynamic systems exhibit behaviors which
are impressively long-living, but which are also guaranteed
to exit these behaviors (“fail”) with probability one given
enough time. Such systems cannot be classified as “stable”,
but it is also misleading and incomplete to classify them as
“unstable”. Physicists have long used the term metastable
to capture this interesting phenomenon and have developed
a number of tools for quantifying this behavior [8, 9, 12,
15]. Many other branches of science and engineering have
also borrowed the terminology to describe dynamic systems
in a wide variety of fields. Familiar metastable systems in-
clude crystalline structures (e.g. diamonds), flip-flop circuits,
radioactive elements, oscillatory wave patterns in the brain,
and ferromagnetic materials, such as spin glass or magnetic
tape film (which explains why a taped recording sitting in
storage still inevitably fades over time).

U(x)

xA B

escape attempts

Fig. 1. Cartoon of a particle subject to Brownian motion in a potential U(x)
with two metastable states, A and B.

The canonical example of metastability is a particle in a
potential well subject to Brownian motion, as cartooned in
Figure 1. These systems have local attractors which tend to
keep the dynamics within a particular neighborhood in state
space. In the limit as such systems become deterministic
(no noise), these local attractors are fixed points, and the
system is truly stable whenever the dynamics begin with an
initial condition somewhere inside the basin of attraction of
the fixed point. In contrast, stochasticity constantly pushes
the dynamics about within this neighborhood, and for some
systems and noise types, this turns a stable system into a
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metastable one. Occasionally but repeatedly, such systems will
deviate particularly far from a metastable attractor in state
space (making “escape attempts”), and eventually, they will
successfully exit (by which we mean entering a region where
a different attractor is now a far more dominating influence).

III. METASTABLE LIMIT CYCLE ANALYSIS

The dynamics of walking systems are continuous, but they
are punctuated by discrete impact events when a foot comes
into contact with the ground. These impacts provide a natural
time-discretization of a gait onto a Poincaré map. Therefore,
we will consider walking systems governed by the discrete,
closed-loop return-map dynamics:

x[n+ 1] = f(x[n], γ[n]), (1)

where x[n] denotes the state of the robot at step n and γ[n]
represents the slope of the ground, which is a random variable
drawn independently from a distribution Pγ at each n. This
model for stochastically rough terrain dramatically simplifies
our presentation in this paper, but it also restricts our analysis
to strictly forward walking1. These state evolution equations
represent a discrete-time, continuous-state Markov process (or
infinite Markov chain). For computational purposes, we will
also discretize the state space into a finite set of states, xi.
Defining the state distribution vector, p[n], as

pi[n] = Pr(X[n] = xi), (2)

we can describe the state distribution (master) equation in the
matrix form:

p[n+ 1] = p[n]T, Tij = Pr(X[n+ 1] = xj | X[n] = xi).
(3)

T is the (stochastic) state-transition matrix; each row must sum
to one. The n-step dynamics are revealed by the Chapman-
Kolmogorov equation,

p[n] = p[0]Tn.

We obtain the transition matrix numerically by integrating the
governing differential equation forward from each mesh point,
using barycentric interpolation [13] to represent the transition
probabilities.

For walking, we will designate one special state, x1, as an
absorbing state representing all configurations in which the
robot has fallen down. Transitions to this state can come from
many regions of the state space, but there are no transitions
away from this state. Assuming that it is possible to get to
this absorbing state (possibly in multiple steps) from any state,
then this absorbing Markov chain will have a unique stationary
distribution, with the entire probability mass in the absorbing
state.

The dynamics of convergence to the absorbing state can
be investigated using an eigenmode analysis [1]. Without
loss of generality, let us order the eigenvalues, λi, in order
of decreasing magnitude, and label the corresponding (left)

1Including backward steps is straightforward, but requires the model to
include spatio-temporal correlations in the slope angle

eigenvectors, vi, and characteristic times, τi = −1
log(λi)

. The
transition matrix from an absorbing Markov chain will have
λ1 = 1, with v1 representing the stationary distribution on the
absorbing state. The magnitude of the remaining eigenvalues
(0 ≤ |λi| < 1,∀i > 1) describe the transient dynamics and
convergence rate (or mixing time) to this stationary distribu-
tion. Transient analysis on the walking models we investigate
here will reveal a general phenomenon: λ2 is very close to
1, and τ2 ! τ3. This is characteristic of metastability: initial
conditions (in eigenmodes 3 and higher) are forgotten quickly,
and v2 describes the long-living (metastable) neighborhood
of the dynamics. In metastable systems, it is useful to define
the metastable distribution, φ, as the stationary distribution
conditioned on having not entered the absorbing state:

φi = lim
n→∞

Pr(X[n] = xi | X[n] �= x1).

This is easily computed by zeroing the first element of v2 and
normalizing the vector to sum to one.

Individual trajectories in the metastable basin are character-
ized by random fluctuations around the attractor, with occa-
sional “exits”, in which the system enters a region dominated
by a different attractor. For walking systems this is equivalent
to noisy, random fluctuations around the nominal limit cycle,
with occasional transitions to the absorbing (fallen) state. The
existence of successful escape attempts suggests a natural
quantification of the relative stability of metastable attractors
in terms of first-passage times. The mean first-passage time
(MFPT) to the fallen absorbing state describes the time we
should expect our robot to walk before falling down.

Let us define the mean first-passage time vector, m, where
mi is the expected time to transition from the state xi into
the absorbing state. Fortunately, the mean first-passage time is
particularly easy to compute, as it obeys the relation:

mi =

{
0 i = 1
1 +

∑
j>1 Tijmj otherwise

(the expected first-passage time must be one more than the
expected first-passage time after a single transition into a
non-absorbing state). In matrix form, this yields the one-shot
calculation:

m =
[

0
(I− T̂)−11

]
, (4)

where T̂ is T with the first row and first column removed. m
quantifies the relative stability of each point in state space.
One interesting characteristic of metastable systems is that
the mean first-passage time around an attractor tends be very
flat; most system trajectories rapidly converge to the same
metastable distribution (forgetting initial conditions) before
escaping to the absorbing state. Therefore, it is also meaningful
to define a system mean first-passage time, M , by computing
the expected first-passage time over the entire metastable
distribution,

M =
∑
i

miφi. (5)
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When τ2 ! τ3, we have M ≈ τ2, and when λ2 ≈ 1, we have

M ≈ τ2 =
−1

log(λ2)
≈ 1

1− λ2
.

IV. NUMERICAL MODELING RESULTS

This section uses two simple, classic walking models to
demonstrate use of the methodology presented in Section III
and to illustrate some of the important characteristics typical
for metastable walking systems more generally. The two
systems presented here are the rimless wheel and the passive
compass gait walker, each of which is illustrated in Figure 2.
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Fig. 2. The Rimless Wheel (left) and Compass Gait Walker (right) models.

A. Rimless Wheel

The rimless wheel (RW) model consists of a set of N
massless, equally-spaced spokes about a point mass. Kinetic
energy is added as it rolls downhill and is lost at each
impulsive impact with the ground. For the right combination
of constant slope and initial conditions, a particular RW will
converge to a steady limit cycle behavior, rolling forever and
approaching a particular velocity at any (Poincaré) “snapshot”
in its motion (e.g., when the mass is vertically above a leg
at θ = 0 in Fig. 2). The motions of the rimless wheel on a
constant slope have been studied in depth [3, 16].

In this section, we will examine the dynamics of the RW
when the slope varies stochastically at each new impact. To do
this, we discretize the continuous set of velocities, using a set
of 250 values of ω, from 0.01 to 2.5 (rad/s). We also include
an additional absorbing failure state, which is defined here
to include all cases where the wheel did not have sufficient
velocity roll past its apex on a particular step. Our wheel model
has N = 8 spokes (α = π

4 ). At each ground collision, we
assume that the slope between ground contact points of the
previous and new stance leg is drawn from an approximately2

Gaussian distribution with a mean of γ̄ = 8◦. For clarity, we
will study only wheels which begin at θ = 0 with some initial,
downhill velocity, ωo, and we consider a wheel to have failed
on a particular step if it does to reach an apex in travel: θ = 0
with ω > 0. (Clockwise rotations go downhill, as depicted
Fig. 2, and have positive values of ω.) Note that the dynamic
evolution of angular velocity over time does not depend on
the choice of a particular magnitude of the point mass, and
we will use spokes of unit length, l = 1 meter, throughout.

2To avoid simulating pathological cases, the distribution is always truncated
to remain within ±10◦, or roughly 6σ, of the mean.

On a constant slope of γ = 8◦, any wheel which starts
with ωo > 0 has a deterministic evolution over time and is
guaranteed to converge to a fixed point of ω = 1.2097 (rad/s).
The return map defining the step-to-step transitions from ωn
to ωn+1 is given as:

ωn+1 =

√
cos2 α

(
ω2
n +

2g
L

(1− cosβ1)
)
− 2g

L
(1− cosβ2)

where β1 = α
2 +γ and β2 = α

2 −γ, with γ > 0 as the downhill
slope. A plot of this return function is shown in Figure 3.
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Fig. 3. Return map and fixed point for an 8-spoke rimless wheel on constant,
downhill slope of 8◦. Here, ωn, is defined as angular velocity when the
support spoke is exactly vertical.

Fig. 4. Return distribution and metastable “neighborhood” for an 8-spoke
rimless wheel on downhill terrain with a mean step-to-step slope of 8 degrees
and σ = 1.5◦. There is now a probability density function describing the
transition from ωn to ωn+1.

When the slope between successive ground contacts is
drawn from a stochastic distribution, the function given in
Figure 3 is now replaced by a probabilistic description of the
transitions, as illustrated in Figure 4. Given the current state
is some particular ωn, there is a corresponding probability
density function (PDF) to describe what the next state, ωn+1,
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will be. Figure 5 shows this set of PDF’s clearly; it is a 3D
plot of the same probabilistic return map shown from overhead
in Figure 4. For our discretized model, each height value
in Figure 5 is proportional to element Tij of the transition
matrix, where i is the state we are coming from (ωn, on the
x-axis) and j is the state we are going to (ωn+1, on the y-
axis); Figures 4 and 5 provide a graphical representation of the
transition matrix describing this metastable dynamic system.

Fig. 5. 3D view of the return distribution for the stochastic rimless wheel
system. This is a smoothed rendering of the step-to-step transition matrix, T ,
with the probability density functions for some particular states (ωn) overlaid
as lines for greater clarity.

To generate the discrete transition matrix, we calculate
ωn+1 = f(ωn, γ) for each of a discrete set of 601 possible
γ values, in the range of ±10 degrees from the mean. Each
new state is then represented in the mesh using barycentric
weighting interpolation [13], which (we note) inherently adds
a small level of additional (unintended) noise to the modeled
dynamic. In Figures 4 and 5, the noise has a standard deviation
of σ = 1.5◦. Using MATLAB to take the 3 largest eigenvalues
of the transpose of the transition matrix for this case, we find
that the largest eigenvalue, λ1, is within 10−14 of being exactly
unity, which is within the mathematical accuracy expected.
This eigenvalue corresponds to the absorbing failure state,
and the corresponding eigenvector sums to 1, with all values
except the failure state having essentially zero weight3 in this
vector (since all wheels will eventually be at this state, as
t→∞). All other eigenvectors sum to zero (within numerical
limits), since they must die away as t → ∞. The second-
largest eigenvalue is λ2 = 0.999998446. Using the methods
presented in Section III, this corresponds to a system-wide
MFPT of about 1/0.000001554 = 643, 600 steps. Each initial
condition has a particular MFPT, m(ω), which is obtained
from Eq. 4 and plotted in Figure 6. Note that the value of
the mean first-passage time is nearly flat throughout a large
portion of state space. This is characteristic for metastable
systems, which justifies the notion of a “system-wide” MFPT,
M ≈ 1/(1 − λ2), quantifying the overall stochastic stability

3All states except the failure state had a magnitude less than 10−10,
numerically.

of a particular dynamic system. For this particular case, there
are no regions in state space (except the failure state) with
MFPT significantly lower than the system-wide value, which
is not typical more generally; the passive compass gait walker
in Section IV-B is highly sensitive to initial conditions, for
instance, although it too has regions of state space which share
a nearly uniform MFPT value.
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Fig. 6. Mean first-passage time as a function of the initial condition, ωo. Data
are for a rimless wheel on stochastic terrain with mean slope of 8 deg and
σ = 1.5◦. Points show the approximation obtained through eigen-analysis of
the discretized system, and a smoothed line is overlaid. Note that MFPT is
largely constant over a large portion of state space.

The eigenvector associated with λ2 yields the PDF of the
metastable dynamic process – the relative probability of being
in any particular location in state space, given initial conditions
have been forgotten and the walker has not yet failed. Figure 7
shows the resulting probability distribution functions for the
rimless wheel for each of several levels of noise. Pictorially,
each system-wide PDF for a metastable system is analogous
to the fixed point for a stable, deterministic system. In the
deterministic case, the probability of being exactly at the fixed
point approaches unity as t→∞.
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Fig. 7. Quasi-stationary probability density functions for the stochastic
rimless wheel for each of several values of terrain noise, σ. Each distribution
is estimated by renormalizing the eigenvector associated with the second-
largest eigenvalue of the transpose of the transition matrix. Note that meshing
inherently adds noise to the dynamic system; smoothed lines are drawn on
top of the raw data (shown as points) from the scaled eigenvectors.

The third-largest eigenvalue of transition matrix, λ3, quan-
tifies the characteristic time scale in which initial conditions
are forgotten, as the dynamics evolve toward the metastable
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distribution (or toward failure). For the case presented here
(σ = 1.5◦), λ3 ≈ 0.50009, which means almost half of the
PDF of the initial condition composed of this eigenvector is
lost (“forgotten”) with each, successive step; an even larger
fraction-per-step is lost for all remaining eigenvectors (with
even smaller values of λ). Within a few steps, initial conditions
for any wheel beginning in our range of analysis 0 < ωo ≤
2.5 have therefore predominantly evolved into the metastable
PDF (or have failed). If we multiply the metastable PDF,
φ(ω), by the transition matrix, we obtain a joint probability,
Pr(ωn, ωn+1), of having just transitioned from ωn to ωn+1,
given the wheel has not failed by step n + 1. This is shown
both as a 3D plot in Figure 8 and as a set of overlaid contour
lines in Figure 4.

Fig. 8. 3D view of the metastable “neighborhood” of state-to-state transitions,
(ωn, ωn+1). If a rimless wheel starts from some arbitrary initial condition
and has not fallen after several steps, this contour map represents the joint
probability density function of being in state ωn now and transitioning to
ωn+1. The contour lines drawn are identical to those overlaid in Figure 4.
They correspond to the neighborhood of likely (ωn, ωn+1) pairings, analo-
gous to the unique fixed point of the deterministic case.

This particular system has a beautiful simplicity which al-
lows us to extract some additional insight from the conditional
probability in Figure 8. Because of the definition of ωn as
being the velocity when the mass is at its apex in a given
step, the value of ωn+1 = 0 represents the boundary to the
absorbing failure state in this example. If we visualize the
contours of the conditional probability as they extend toward
ωn+1 = 0 in Figure 4, we see that most failures do not occur
because we transition from a very slow state (ωn close to zero)
to failure but are more typically due to sudden transitions from
more dominant states in the metastable distribution to failure.

Finally, when this methodology is used to analyze the
rimless wheel for each of a variety of noise levels (σ), the
dependence of system-wide MFPT on σ goes as shown in
Figure 9. For very low levels of noise, MATLAB does not
find a meaningful solution (due to numerical limits). As the
level of noise increases, the MFPT decreases smoothly but
precipitously. (Note that the y-axis is plotted on a logarhithmic
scale.) The stochastic stability of each particular system can be
quantified and compared by calculating this estimate of MFPT
which comes from λ2 of the transition matrix.
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Fig. 9. Mean first-passage time (MFPT) for the rimless wheel, as a function
of terrain variation, σ. Estimates above 1014 correspond to eigenvalues on the
order of 1− 10−14 and are beyond the calculation capabilities of MATLAB.

B. Passive Compass Gait Walker

The second metastable dynamic system we analyze in this
paper is a passive compass gait (CG) walker. This system
consists of two, massless legs with concentrated masses at
the intersection of the legs (“the hip”) and partway along each
leg, and it has been studied in detail by several authors, e.g.,
[5, 7, 14]. Referring to Figure 2, the parameters used for our
metastable passive walker are m = 5, mh = 1.5, a = .7, and
b = .3. Given an appropriate combination of initial conditions,
physical parameters and constant terrain slope, this ideal model
will walk downhill forever.

When each step-to-step terrain slope is instead selected from
a stochastic distribution (near-Gaussian, as in Section IV-A),
evolution of the dynamics becomes stochastic, too, and we
can analyze the stochastic stability by creating a step-to-step
transition matrix, as described in detail for the rimless wheel.
The resulting system-wide MFPT as a function of terrain
noise, M(σ), is shown in Figure 10. Note that it is similar
in shape to the dependence shown in Figure 9.

To analyze this system, our discretized mesh is defined using
the state immediately after each leg-ground collision. The state
of the walker is defined completely by the two leg angles
and their velocities. On a constant slope, these four states
are reduced to three states, since a particular combination of
slope and inter-leg angle will exactly define the orientation of
both the stance and swing leg during impact. Although the
slope is varying (rather than constant) on stochastic terrain,
we still use only three states to define our mesh. To do so,
we simulate the deterministic dynamics (including impacts)
a short distance forward or backward in time to find the
robot state at the Poincaré section where the slope of the line
connecting the “feet” of the legs is equivalent to our desired,
nominal slope. Because the dynamics between collisions are
entirely deterministic, these two states are mathematically
equivalent for the stochastic analysis. If such a state does not
exist for a particular collision (which occurs only very rarely),
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Fig. 10. Mean first-passage time as a function of terrain variation. Results for
analysis of a compass gait walker using a discretized (meshed) approximation
of the transitions. Average slope is 4 degrees, with the standard deviation in
slope shown on the x-axis. Noise is a truncated Gaussian distribution, limited
to between 0 and 8 degrees for all cases.

we treat this as a member of the absorbing failure state. This
approximation allows us to reduce the dimensionality from 4
states to 3, which improves numerical accuracy significantly.
Specifically, it has allowed us to mesh finely enough to
capture near-infinite MFPT for low-noise systems, while using
four states did not. The three states we use in meshing are:
(1) absolute angular velocity of the stance leg, X3, (2) relative
velocity of the swing leg, X4, and (3) the inter-leg angle, α.

Figure 11 shows a slice of the basin of attraction for this
compass gait on a constant slope (top), along with regions in
state space with nearly-constant MFPT (bottom two) for two
different magnitude of noise (σ) in terrain. Each slice is taken
at the same inter-leg angle, α ≈ 25.2◦. In the deterministic
case, the basin of attraction defines the set of all states with
infinite first-passage time: all walkers beginning with an initial
condition in this set will converge toward the fixed point with
probability 1. For stochastic systems which result in metastable
dynamics, there is an analogous region which defines initial
conditions having MFPT very close to the system-wide value,
M . Interestingly, the deterministic and stochastic basin shapes
are quite similar here; we expect this may often be the case
for systems such as this with discrete jumps in state space.

The image at the top of Figure 12 shows the deterministic
basin of attraction for this CG walker more clearly. This plot
was generated by sampling carefully over the state space and
simulating the dynamics. The plot at the top of Figure 11
intentionally uses the same mesh discretization used for the
stochastic system, to provide a better head-to-head comparison
of the change in shape due to the addition of terrain noise (as
opposed to the noise of the discretization itself). The second
image in Figure 12 shows the deterministic basin of attraction
for a different set of physical parameters (m = mh; a =
b = .5) on the same, constant slope of 4◦. This basin looks
qualitatively more delicate and the resulting performance of
this walker on stochastic terrain is in fact much worse (e.g.,

Fig. 11. Basin of attraction (top) for deterministic CG walker and map of
MFPT for low-noise (σ = 0.5◦, lower left) and high-noise (σ = 1.0◦, lower
right) examples. To aide in visual comparison, all 3 plots use the same mesh.
The “near-constant MFPT basin” for each stochastic system is essentially a
low-pass filtered version of the deterministic basin of attraction, and its shape
does not change significantly, even when the magnitude of the MFPT itself
varies greatly (e.g., 180,000 steps [left] vs 390 [right]). This region represents
a boundary on the volume in state space from which a walker is likely to pulled
into the metastable distribution.

MFPT of about 20 steps when σ = 0.5◦, where we find M =
180, 000 for the other walker).

Just as in the case of the rimless wheel, the fixed point (for
our deterministic compass gait system) is now replaced (in
the stochastic case) by a probability density function, defining
the likelihood of being in any particular state (conditioned on
not having fallen) as t → ∞. Figure 13 shows 2D contour
plot sections of the PDF obtained from the eigen-analysis of
the stochastic compass gait. The outermost contour defines a
boundary containing 0.999 of the probability distribution in
state space. The distribution spreads over more of state space
as the level of noise increases, in a manner analogous to the
widening of the distribution with noise seen in Figure 7.

Finally, we note that the relationship in state space between
the PDF of the metastable dynamics, shown in Figure 13,
and the region of nearly-uniform mean first-passage time, M ,
shown at the bottom of Figure 11, hints at where successful
“escape attempts” are most likely to occur over time. Figure 14
overlays these two regions across a different dimensional slice
of the 3D space for the σ = .5◦ and σ = 1.0◦ cases. As the
tails of the metastable PDF (shown in yellow) approach the
boundary of the uniform-MFPT basin (shown in blue), there
is a higher probability of failing on any given step during the
metastable process, resulting in turn in a less stochastically
stable system (i.e., with a lower system-wide value of M ).

V. DISCUSSION

This section briefly discusses the use of the stochastic
methods presented toward designing controllers for walking
systems and also provides a few further observations on the
properties of metastable systems which result in multiple
attractors (e.g., period-n gaits).
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Fig. 12. Basins of attraction (blue region) and fixed point for two compass
gait walkers, each on a constant slope of 4◦. Walker with basin at top is more
stable and uses the parameters defined for the stochastic system described
throughout Section IV-B; for the other walker, m = mh and a = b = .5.
MFPT is infinite inside the shaded region and is small (1-4 steps) outside
of it. This image shows only a slice of the 3D basin, taken at the inter-leg
angle of the fixed point for each respective walker. The fixed point is at
X3 = −.89 (rad/s), X4 = 2.89 (rad/s), α = 25.2◦ for the first walker, and
it is at X3 = −1.14 (rad/s), X4 = 1.26 (rad/s), α = 33.4◦ for the lower
one. The deterministic basin of attraction for the second walker is narrower
in shape, and this walker is significantly less stable on stochastic terrain.

A. Impacts on Control Design

One of the primary goals of a controller is to enhance
the dynamic stability of a system. For walking systems, we
propose throughout this paper that this should be defined
as increasing the stochastic stability. We would like time-to-
failure to be long, and we would like a system to converge
toward the metastable distribution from a large set of initial
conditions. The tools provided here can be used in optimizing
controllers with either or both of these two aims in mind.

As an example, consider an active compass gait walker, with
a torque source at the hip but with the ankles still unactuated at
the ground contact. Putting this walker on a repeating terrain,
as depicted in Figure 15, allows us to mesh across the entire
state space of possible post-collision poses. By designing a
low-level PD controller to regulate inter-leg angle, we can
discretize the action space on a single once-per-step policy
decision. The optimal high-level policy (to select desired inter-
leg angle) for the system can now be solved via value iteration.
Preliminary results for such a control methodology allow this
underactuated compass gait model to walk continuously over
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Fig. 13. On stochastic terrain, there is no fixed point for the compass gait
walker. Instead, there are metastable “neighborhoods” of state space which
are visited most often. As time goes to infinity, if a walker has not fallen, it
will most likely be in a this region. The contours shown here are analogous
to the PDF magnitude contours in Figure 7; they are drawn to enclose regions
capturing 90%, 99%, and 99.9% of walkers at any snapshot during metastable
walking. Top picture corresponds to σ = 0.5◦. Larger noise (σ = 1.0◦,
bottom) results in larger excursions in state space, as expected.

impressively rough terrain [2].

B. Multiple stable limit cycles

Metastable dynamic systems sometimes have an inherent
periodicity. We expect this may be the case on a slightly
steeper slope, for instance, where compass gait models expe-
rience period-doubling bifurcations [7]. Another case where
periodicity arises is for wrapping terrain, such as the terrain
for the controlled walker in Figure 15. Wrapping is a realistic
model for many in-laboratory walking robots, as they are often
confined to walk on a boom – repeatedly covering the same
terrain again and again. In our simulation of a hip-actuated CG
walker on wrapping terrain, we observe that a repeating, n-step
cycle results in multiple eigenvalues, λ2 through λn+1, all with
magnitude just under unity. They are complex eigenvalues,
as are the corresponding eigenvectors. The top left image in
Figure 15 shows such a set of eigenvalues, all lying just within
the unit circle. The next-smallest set of eigenvalues are all
significantly smaller in this example. The complex eigenvalues
and eigenvectors mathematically capture an inherent period-
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Fig. 14. Metastable system: Contours of the stochastic “basin of attraction”
are shown where MFPT is 0.5M , 0.9M and 0.99M (blue) versus contours
where the integral of the PDF accounts for .9, .99, and .999 of the total
metastable distribution (yellow). The metastable dynamics tend to keep the
system well inside the “yellow” neighborhood. As the tails of this region
extend out of the blue region, the system dynamics become less stochastically
stable (lower M ). The axis into the page represents the angle of the swing
leg relative velocity, X4, and a slice is taken at X4 = 2.33rad/s. Terrain
variation for the top plot is σ = 0.5 degrees (with M ≈ 180, 000 steps). For
the noisier system at bottom (σ = 1.0 degrees), M is only 20 steps or so.
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Fig. 15. Controlled compass gait walker, with torque at the hip. To solve for
an optimal policy using value iteration, the terrain wraps every 7 meters. The
optimization maximizes the MFPT from any given state. An eigenanalysis
reveals a complex set of eigenvalues (top), spaced evenly about (but strictly
inside of) the unit circle. Corresponding eigenvectors are also complex.

icity, in which the probability density function changes over
time in a cyclical manner.

VI. CONCLUSIONS

The goal of this paper has been to motivate the use of
stochastic analysis in studying and (ultimately) enhancing the
stability of walking systems. Robots that walk are inherently
more prone to the stochastic influences of their environment
than traditional (e.g., factory) robots. Locomotory systems
capable of interacting with the real world must deal with
significant uncertainty and must perform well with limited
energy budgets and despite limited control authority.

The stochastic dynamics of walking on rough terrain fit
nicely into the well-developed study of metastability. The
simplified models studied here elucidate the essential picture
of a metastable limit cycle dynamics which makes occasional
escape attempts to the fallen-down state. Metrics for stochastic
stability, such as the mean first-passage time, may be potent
metrics for quantifying both the relative stability across state-
space and the overall system stability for real walking systems.
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Abstract— We solve the problem of counting the total number
of observable targets (e.g., persons, vehicles, etc.) in a region
based on local counts performed by sensors which measure only
the number of targets nearby and neither their identities nor any
positional information. This theory is robust and accommodates
ad hoc sensor networks and mobile robot sensors alike.

I. INTRODUCTION: TARGET COUNTING

The prospect of small-scale sensor devices comes with the
promise of sensor networks which can survey a region with
dense coverage [5]. With this promise, however, comes many
challenges, including power consumption, heat dissipation,
and communication complexity. One strategy for remedying
the situation is to focus on minimal sensing, engineering the
individual sensors to be as simple as possible to accomplish
the task and yet consume a minimum of resources.

We consider how to solve a simple data aggregation problem
— counting unidentified targets — with a network of local
minimal sensors. Specifically, we show that one can solve
enumeration problems with sensors that can count nearby
targets but cannot determine target identities, cannot estimate
target range or bearing, and cannot record a time when a
(moving) target came into view. Because the local sensors we
envisage cannot discriminate targets, it is not obvious how to
merge redundant counting by neighboring nodes.

It may seem surprising that a redundant array of simplistic
sensors can solve the global enumeration problem. More
surprising still is the fact that there are very few requirements
on the sensors’ detection specifications. We do not require that
target visibility is purely a function of distance (cf. the typical
use of the unit disc assumption in coverage problems). There
are no hidden assumptions about convexity of the targets’
detection zones, nor that the sensors or targets are uniform:
some targets may have more ‘impact’ than others.

The reason for this combination of extreme robustness
and simplicity of the sensor capabilities is the nature of our
solution methods. We use a topological invariant — the Euler
characteristic — molded into an integration theory.

A. Related work

There are few similar approaches to problems in target
estimation or tracking, the literature on which almost al-
ways assumes the ability to identify different targets (along
with other high-level functions, including distance estimation,

bearing estimation, and sensor localization). For example,
the large-scale wireless system implemented in [10] assumes
an aggregation phase based on strict spatial separation of
targets. Jung and Sukhatme [11] implement a multi-target
robotic tracking system where the targets are labeled with
colored lights. The survey paper of Guibas [8] pointing to
the broader literature on geometric range-searching assumes
the ability to aggregate target identities and concerns itself
with computational complexity issues. The paper by Li et al.
[13] on multi-target tracking via sensor networks notes that,
“target classification is arguably the most challenging signal
processing task in the context of sensor networks.”

We are aware of two notable exceptions. One significant
solution to a target enumeration problem is found in the work
of Fang, Zhao, and Guibas [6], which gives a distributed algo-
rithm for target enumeration without any target-identification
capabilities on the part of the sensors. Their work assumes
that all target supports are round balls in R2; that each sensor
reads a R-valued signal proportional to the inverse square of
distance-to-target; and that target impacts are additive. Their
algorithm counts the number of local maxima in the sensor
signal field and therefore gives an accurate count so long as
the target supports overlap minimally or not at all. Our work
is complementary to this in that the theory we introduce is
designed to handle very complex target support overlaps.

The other example of target counting without identification
or localization arises in work of Singh et al., who consider a
network of sensors which return a value in {0, 1} depending
on target proximity [18]. Their technique involves using time-
series data in the case of moving targets/sensors, since a target
count in the stationary case is too difficult, even if all target
supports are convex, round, fixed, etc.

We have ignored for the moment many of the important
technical issues associated with network implementation of
our methods. Much of the work in aggregation of data by
a network concerns network protocols for signal processing
[13], managing constraints on bandwidth and energy [4], and
dealing with errors or node failures [20]. This introductory
paper does not treat these important issues. We also assume
noise-free sensor readings. This paper assumes an idealized
setting to develop and highlight the formal tools.
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B. Outline

The main results of this note consist of: (1) a theorem on
target enumeration for continuum ‘sensor fields’ based on a
topological integration theory; (2) bounds on the integrals for
planar domains with holes; (3) a refinement theorem applicable
to network discretizations; (4) a duality theorem for planar
networks which provides a fast, distributed algorithm for ad
hoc networks; (5) methods for computing expected target
counts in the case of incomplete information; and (6) an
outline of applications to time-dependent systems such as
mobile robot sensing modalities. This note tersely summarizes
ideas from [1], [2] in the restricted context of a planar network.

Our results follow from the classical and elegant theory
of integration with respect to Euler characteristic [19], [16].
After surveying a simplified version of these methods in §II,
we prove the fundamental enumeration theorem in §III. To
solve the problem of sparse network discretization, we provide
bounds in §V on integrals over planar domains with a hole.
This yields a simple refinement theorem in §VI, and extensions
in §VII. We prove a duality result for planar networks in §VIII
that leads to fast numerical implementation, outlined in §XI.

II. TOPOLOGICAL INTEGRATION

We present a simple, self-contained introduction to a topo-
logical integration theory. For simplicity, we work in the
simplicial category. Let X denote a simplicial complex: a topo-
logical space built from a collection of closed simplices glued
together along faces (see, e.g., [9] for elementary definitions).

Definition 1: The EULER CHARACTERISTIC of a compact
simplicial complex X has two equivalent definitions:

1) combinatorial:

χ(X) =
∞∑
k=0

(−1)k#{k-simplices in X}. (1)

2) homological:

χ(X) =
∞∑
k=0

(−1)k dim(Hk(X)). (2)

Here, Hk(X) denotes the kth (simplicial) homology of X
(in R coefficients), a vector space that measures the number
of ‘holes’ in X that a k-dimensional subcomplex can detect
[9]. As homology depends only on the homotopy type of X ,
the Euler characteristic χ is a topological invariant of a space,
independent of how it is triangulated into a simplicial complex.

Example 2: The following examples are illustrative:

1) Euler characteristic is a generalization of cardinality:
for a discrete set X , χ(X) = |X |.

2) If X is a compact contractible set — if it can be
deformed continuously within itself to a single point —
then χ(X) = 1.

3) For a finite graph Γ, the Euler characteristic is χ(Γ) =
#V (Γ)−#E(Γ).

4) For X ⊂ R2 a connected set with N holes, χ(X) =
1−N .

The Euler characteristic satisfies an inclusion-exclusion
principle (a consequence of the Mayer-Vietoris sequence on
homology [9]): for A and B compact subcomplexes of X ,

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B). (3)

This equation evokes the definition of a measure and allows
one to interpret χ as a generalized signed measure (general-
ized, as it is only finitely additive). As many authors have
observed [15], [16], [19], this measure behaves as any con-
ventional measure when restricted to the appropriate classes
of integrands and domains. In the setting of Z-valued functions
over simplicial complexes, this measure theory is completely
tame.

Definition 3: Let X denote a simplicial complex and
CF (X) the abelian group of functions from X to Z with
generators 1σ , where σ is a closed simplex of X . Given such
a φ =

∑
α cα1σα in CF (X), the INTEGRAL of φ with respect

to Euler characteristic is defined to be∫
X

φdχ :=
∑
α

cα. (4)

This integral is well-defined.
Lemma 4 ([19], [16]): The integral

∫
X
φdχ depends only

on the function φ and not on its decomposition. Specifically,
if φ =

∑
α cα1Uα , where Uα is a subcomplex of X , then∫

X

φdχ =
∑
α

cαχ(Uα). (5)

Proof: Given two subcomplexes A and B, the relation
1A∪B = 1A + 1B − 1A∩B is mirrored by Equation (3). It
follows that

∫
X 1Uα dχ = χ(Uα). By definition,

∫
X ·dχ is a

homomorphism from CF (X) to Z; the lemma follows.
Remark 5: It is by no means necessary to restrict to simpli-

cial complexes. For a large class of topological spaces without
an explicit cell structure, χ is well-defined using Eqn. (2) with
singular (or, better still, Borel-Moore) homology. Likewise, the
class of integrable functions CF (X) above generalizes to the
sheaf of CONSTRUCTIBLE functions on X [16]. This level of
generality is not required for this paper.

III. ENUMERATION VIA INTEGRATION

We turn now to target-counting problems. The following
mathematical formulation leads naturally to the integration
theory of the previous section.

Consider a setting where the sensors are parameterized by
a (reasonably nice) topological space X . One imagines a
‘continuum field’ setting in which a counting sensor resides at
every point of X . It is helpful to keep in mind two cases: (1)
X = R2 and is ‘filled’ with sensors; (2) X is a simplicial
complex, where the counting sensors at the vertices of X
‘pass’ counting data to all other simplices of X . Assume a
finite set of stationary targets are present and detectable by
the sensor field. We do not specify detection ranges, etc., in
terms of geometric constraints, but rather in terms of sets. For
each target α, define its TARGET SUPPORT, Uα ⊂ X , to be the
subset of those sensors to which the target is ‘visible’ (rather,
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sensed: the actual sensor modality is irrelevant). The sensor
field on X returns a counting function h : X → N, where

h(x) = #{α : x ∈ Uα}.

Assuming knowledge of the target supports’ topology, one has
a simple means of enumerating the targets without localization
or identification.

Theorem 6: If each target has a compact contractible sup-
port Uα ⊂ X , then the integral of the impact function h(x) =
#{α : x ∈ Uα} with respect to dχ is the target count:

#α =
∫
X

h dχ. (6)

Proof: By definition, h =
∑

α 1Uα . As Uα is compact
and contractible, χ(Uα) = 1 and

∫
X
h dχ =

∑
α 1 = #α.

The remarkable aspect of this result is that there are no
constraints on the target supports other than the topological:
each target has support with χ = 1. In particular, targets can
have different ‘impact’ on the sensor field, and there is no
need for convexity or fixed-radius assumptions.

Theorem 6 does, however, assume that there is a well-
defined counting function h over all of X — e.g., given by
a sensor at every point in the space X . In a less idealized
setting, one has a finite number of nodes which, under the
best circumstances, triangulates a region of the plane. The
integrand ‘counting function’ h is known only on the vertex
set of this triangulation T . The target supports Uα ⊂ R2 need
not be well-placed with respect to T at all.

We resolve this discretization problem by extending the
integration theory to R-valued integrands. By taking the usual
step-function upper semi-continuous approximation to a limit,
one can define

∫
h dχ for real-valued functions h : X →

[0,∞) which are reasonably behaved (e.g., which have a finite
number of critical points). This extension of the theory is
not without complications (e.g., the integration operator is
no longer linear), but it allows one to import perspectives
from numerical analysis. In particular, given a sampling of an
integrand h over a discrete set, the integral of the piecewise-
linear (PL) interpolation of h, denoted hPL, should be a good
approximation if the sampling is of sufficient fidelity. This
holds for integration with respect to dχ.

Theorem 7: Fix a collection {Uα} of compact target sup-
ports in Rn in general position. For a triangulation T of Rn,
let hPL denote the piecewise-linear extension of the restriction
of h =

∑
α 1Uα to the vertices of T . Then, for T sufficiently

fine and regular,∫
T
hPL dχ =

∫
Rn

h dχ = #α. (7)

Proof: See §VI.

IV. COMPUTATION

Theorems 6 and 7 are useless without effective means of
computing integrals with respect to dχ. Fortunately, there are
several means of doing so.

Theorem 8: Given a compactly supported impact function
h : X → N, the integral of h with respect to dχ may be

computed as:∫
X

h dχ =
∞∑
s=0

χ ({h > s}) (8)

=
∫ ∞

s=0

χ ({h ≥ s}) ds (9)

=
∑

p∈C(h)
(−1)n−μ(p)h(p) (10)

Eqns. (8) and (9) apply to N-valued and [0,∞)-valued impact
functions respectively, and the notation {h > s} represents the
set h−1((s,∞)). Eqn. (10) applies to a [0,∞)-valued Morse
function on an n-dimensional manifold, where C(h) is the set
of critical points of h, and μ(p) is its Morse index of p ∈ C(h)
[14].

Proof: Eqns. (8) and (9) are elementary and follow
directly from the definitions. For Eqn. (10), one has h Morse.
Thus, the Euler characteristic of upper excursion sets is
piecewise-constant, changing only at critical values. For p ∈
C(h), s = h(p), and ε � 1, elementary Morse theory [14]
says that {h ≥ s + ε} differs from {h ≥ s − ε} by the
addition of a product of discs Dμ(p) ×Dn−μ(p) glued along
Dμ(p)×∂Dn−μ(p). The change in Euler characteristic resulting
from this handle addition is (−1)n−μ(p). This, applied to Eqn.
(8) yields Eqn. (10).

This theorem means, roughly speaking, that one can trade
between Euler characteristic counts, integrals with respect to
Lebesgue measure, and Morse theory at will.

Fig. 1(a) gives an example of a collection of target supports
{Uα} with height function, which is sampled on a uniform
hexagonal grid in (b). The upper excursion sets of h are easily
computed and the integral with respect to Euler characteristic
is thus:

#α =
∫

h dχ =

s=2︷︸︸︷
1 +

s=1︷︸︸︷
3 +

s=0︷︸︸︷
0 = 4. (11)

Smoothing h to a function h̃ with nondegenerate critical
points yields three maxima and three saddles, with minima (at
height zero), see Fig. 1(c). Formula (10) implies

∫
h dχ =

μ=2︷ ︸︸ ︷
(3 + 2 + 2) −

μ=1︷ ︸︸ ︷
(1 + 1 + 1) +

μ=0︷︸︸︷
0 = 4. (12)

Taking the PL extension hPL yields upper excursion sets as
illustrated in Fig. 1(d): Eqn. (9) yields a computation similar
to that of (11).

V. HOLES IN THE NETWORK

It is common in sensor networks to encounter ‘holes’ within
the network, through incomplete coverage or node failures. In
this case, one wants to estimate the number of targets relative
to the missing information. This translates to the following
relative problem: if one knows h : X → N only on some
subset A ⊂ X , how well can one estimate

∫
X h dχ from the

restriction h|A? We give bounds for the planar case.

240



(a) (b)

(c) (d)

1

1

1

1

1

1

1

1

1

2

2

2

22

3

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 1. The height function of a collection of target supports (a) is sampled
on a regular triangulation (b). This can be smoothed to a Morse function
with maxima/saddles/minima (c) or extended over the triangulation via PL
interpolation (d).

Theorem 9: Assume h : R2 → N is the sum of indicator
functions over a collection of compact contractible sets in R2,
none of which is contained entirely within D, a fixed open
contractible disc. Then∫

R2
ĥ dχ ≤

∫
R2

h dχ ≤
∫
R2

ȟ dχ, (13)

where

ĥ(y) =
{

max∂D h : y ∈ D
h : else

ȟ(y) =
{

min∂D h : y ∈ D
h : else

Proof: Via additivity of χ over domains, Eqn. (13)
follows from the corresponding inequalities over the compact
domain D. Explicitly, if h = h on R2 −D, then∫

R2
h dχ =

∫
R2−D

h dχ−
∫
∂D

h dχ+
∫
D

h dχ.

Denote by V = {Vβ} the collection of nonempty connected
components of intersections of all target supports Uα with
D. Since we work in R2, each Vβ is a compact contractible
set which intersects ∂D. By Theorem 6,

∫
D h dχ equals the

number of components |V|. There are at least max∂D h such
pieces; hence ∫

D

ĥ dχ ≤
∫
D

h dχ.

Consider min∂D h and remove from the collection V this
number of elements, including all such Vβ equal to D (which
is possible since we remove min∂D h such elements). Each
remaining Vβ ∈ V is not equal to D and thus intersects ∂D
in a set with strictly positive Euler characteristic. Thus,∫

D

h dχ ≤
∫
D

ȟ dχ.
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Fig. 2. An example for which the upper and lower bounds of Eqn. (13) are
sharp.

Example 10: Consider the example illustrated in Fig. 2. The
upper and lower estimates for the number of targets are 2 and
4 respectively. For this example, the estimates are sharp in
that one can have collections of target supports over compact
contractible sets which agree with h outside of D and realize
the bounds.

Remark 11: The lower bound ĥ can fail in several ways.
For example, a target support can intersect D in multiple
components, causing ĥ to not have a decomposition as a sum
of characteristic functions over contractible sets (but rather
with annuli). One can even find examples for which each
target support intersects D in a contractible set but for which∫
ĥ dχ is negative. The fact that the lower bound

∫
ĥ can be

so defective follows from the difficulty associated with annuli
in the plane — these are ‘large sets of measure zero’ in dχ.

VI. THE REFINEMENT THEOREM

The bounds of §V allow one to conclude when a hole is
‘inessential’ and no ambiguity about the integral exists.

Corollary 12: Under the hypotheses of Theorem 9, the
upper and lower bounds are equal when there is a unique
connected local maximum of h on ∂D.

Proof: In the case where h is constant on ∂D, ȟ = ĥ and
the result is trivial. Otherwise, both ȟ and ĥ have connected
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(and thus contractible) upper excursion sets. Applying Eqn.
(8) yields∫

R2
ȟ dχ−

∫
R2

ĥ dχ =
∑
s

χ({ȟ ≥ s})− χ({ĥ ≥ s})

=
∑
s

1− 1 = 0.

This permits an easy proof of Theorem 7 that, in accor-
dance with one’s intuition about integration, refinement of the
network leads to convergence of the integrals.

Proof: (of Theorem 7) Since integration is local, we
may compare

∫
h dχ and

∫
hPL dχ over a single closed 2-

simplex of the triangulation T : if these are always equal, then
the theorem follows. One observes that for the Uα in general
position and T sufficiently fine and regular, the unique local
maxima of h and hPL on the boundary of any 2-simplex of
T are equal and both level sets are connected. Corollary 12
completes the proof.

It is easy to extend this proof to Rn by proving the
appropriate extension of Corollary 12.

VII. HARMONIC EXTENSION AND EXPECTED TARGET

COUNTS

We continue the results of the previous section, considering
the case of a planar domain with a contractible hole on which
the integrand is unknown. As shown, upper and lower bounds
are realized by extending the integrand across the hole via
minimal and maximal values on the boundary of the hole.
Inspired by the result that the PL-extension of a discretely
sampled integrand yields correct integrals with respect to
Euler characteristic, we consider extensions over holes via
continuous functions.

The following result says that there is a principled in-
terpolant between the upper and lower extensions. Roughly
speaking, an extension to a harmonic function (discrete or
continuous, solved over the hole with Dirichlet boundary
conditions) provides an approximate integrand whose integral
lies between the bounds given by upper and lower convex
extensions. There is nothing magical about harmonic func-
tions: any form of weighted averaging will lead to an extension
which respects the bounds. A specific criterion follows.

Theorem 13: Given h : R2 − D → N satisfying the
assumptions of Theorem 9, let h be any extension of h which
has no strict local maxima or minima on D. Then∫

R2
ĥ dχ ≤

∫
R2

h dχ ≤
∫
R2

ȟ dχ, (14)

Proof: Consider an open neighborhood of D in R2 and
modify h so that it preserves critical values, is Morse, and
falls off to zero quickly outside of D. This perturbed function,
denoted h̃, has isolated maxima on ∂D, isolated saddles in
the interior of D (since there are no local extrema in D by
hypothesis) and no other critical points outside of D. Since
h̃ is a small perturbation of h, the integral of h̃ with respect

to dχ is equal to
∫
D hdχ. Via the Morse-theoretic formula of

Eqn. (10), ∫
h̃ dχ =

∑
p∈C(h̃)

(−1)2−μ(p)h̃(p).

The integral thus equals the sum of h over the maxima on ∂D
minus the sum of h over the saddle points in the interior of
D, since saddles have Morse index μ = 1.

Denote by {pi}M1 the maxima of h̃, ordered by their
(increasing) h̃ values. Denote by {qi}N1 the saddles of h̃,
ordered by their (increasing) h̃ values. By the Poincaré index
theorem,

1 = χ(D) = #maxima(h̃)−#saddles(h̃),

hence, N = M−1. Note that, since there are no local minima,
h̃(qi) < h̃(pi) for all i = 1 . . .M − 1. Thus,∫

D

h dχ =
∫
D

h̃ dχ

= h̃(pM ) +
M−1∑
i=1

h̃(pi)− h̃(qi)

≥ h̃(pM ) = max
∂D

h =
∫
D

ĥ dχ.

For the other bound,∫
D

h dχ = h̃(pM ) +
M−1∑
i=1

h̃(pi)− h̃(qi)

≤
M∑
i=1

h̃(pi) =
∫
D

ȟ dχ.

A harmonic or harmonic-like function h̃ will often lead to
an integral with non-integer value. Such an integral is best
interpreted as an expected target count.

Example 14: Consider a hole D and a function h which is
known only on ∂D and which has two maxima with value 1
and two minima with value 0. Without knowing more about the
possible size and shape of the target supports which make up
h, it is not clear whether this is more likely to come from one
target support (which crosses the hole) or from two separate
target supports. Computing a harmonic extension of this h
over the interior of D yields a function h̃ with one saddle-type
critical point in D. The value of the saddle is c and satisfies
0 < c < 1, depending on the geometry of h on ∂D. This
yields

∫
h̄ dχ = 2− c, reflecting the uncertainty of either one

or two targets. In the perfectly symmetric case of Fig. 3[left],
c = 1

2 and the expected target count is, naturally, 3
2 . In Fig.

3[right], the harmonic extension has c < 1
2 , meaning that it is

more likely that there are two target supports.
In the network setting, holes often arise due to node failure

or lack of sufficient node density. In these scenarios, one
may reasonably employ any weighted local averaging scheme
across dead nodes to recover a function which will respect
the bounds of Theorem 9. Different weighting schemes may
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Fig. 3. An integrand with a hole has two minima at height 0 and two maxima
at height +1. Filling in by a harmonic function h̃ has an interior saddle at
height 0 < c < 1, depending on the geometry of h on ∂D: [left] c = 1

2
;

[right] c < 1
2

.

be more appropriate for different systems. For example, node
readings can be assigned a “confidence” measure, which, when
used as a weighting for the averaging over the dead zone,
returns an expected value of the integral which reflects the
fidelity of the data.

VIII. HOLES VIA DUALITY

We augment Theorem 8 with a specialized formula for the
plane which aids greatly with implementation. The strategy
of this formula is to exploit the duality between holes and
connected components of the complement. This duality has a
formal expression in terms of algebraic topology.

Theorem 15: For h : R2 → N∫
R2

h dχ =
∞∑
s=0

(β0{h > s} − β0{h ≤ s}+ 1) , (15)

where β0 is the number of connected components of the set.
Proof: Let A be a compact nonempty subset of R2. Since

A ⊂ R2, Hs(A) = 0 for all s ≥ 2. Thus, via Eqn. 2, it suffices
to compute

χ(A) = dimH0(A)− dimH1(A).

Note: dimH0 equals the number of connected components
of A. The quantity dimH1(A), the number of holes in A,
is, by Alexander duality [9], equal to dimH0(R2 − A) −
1, the number of (bounded) connected components of the
complement. The proof is completed by Eqn. (8), substituting
in A = {h > s} and R2 −A = {h ≤ s}.

Example 16: The duality formula (15) applied to the inte-
grand of Fig. 1 yields

∫
R2

h dχ =

s=0︷ ︸︸ ︷
1− 2 + 1 +

s=1︷ ︸︸ ︷
3− 1 + 1 +

s=2︷ ︸︸ ︷
1− 1 + 1= 4.

The formula in Theorem 15 is extremely applicable. We
note that the determination of the number of connected com-
ponents of the upper and lower excursion sets is a simple
clustering problem, computable in logspace with respect to
the number of network nodes.

IX. AD HOC NETWORKS

We note that the strategy of converting the sampling of the
true impact function h over N to a PL interpolation h does
not necessarily require knowing the coordinates of the nodes.
Indeed, the evaluation of

∫
Y · dχ is conspicuous in its freedom

from coordinate geometry: it is a topological integral. If one
is given a triangulation, the extension of the counting function
h on vertices over the domain is automatic. However, if no
geometry associated to N is known, it may not be possible to
determine a canonical extension hPL over the domain. Such a
situation is not uncommon in sensor networks based on ad hoc
wireless communications, an increasingly common protocol
for distributed sensor networks and robotics.

Assume that one is given a network in the form of an
abstract graph G = (N , E). By “abstract” we mean that the
projection of the 1-d cell complex G to the workspace is
unknown. Edges should possess some proximity data. For
example, one could assume that G is a UNIT DISC GRAPH,
in which edges exist between nodes if and only if they are
within unit distance in the workspace. A more realistic model
is the QUASI unit disc graph, in which edges definitely exist
below a certain distance, definitely do not exist above a certain
distance, and may exist (say, according to some probability
distribution) for nodes within a critical interval of distance.
At any rate, the duality results of §VIII allow us to compute
integrals based on ad hoc networks.

Corollary 17: Assume an integrand h : R2 → N, and
let G be a network graph with nodes N ⊂ R2, where the
only thing known is the restriction of h to N (in particular,
the coordinates of N in R2 are unknown). If the network
G correctly samples the connectivity of the upper and lower
excursion sets of h, then Eqn. (15) returns the exact number
of targets.

An example appears in Fig. 4. Note that in this example, the
topology of the excursion sets of h are not sampled correctly:
sparsity leads to holes in the network. Nevertheless, since the
connectivity of the upper and lower excursion sets is sampled
faithfully, the integral is correct. Although the example drawn
is a unit disc graph, this is by no means necessary for the
result.

X. MOBILE AGENTS

The setting of this work has assumed stationary targets
with fixed target supports, being sensed by a fixed network
of stationary counting sensors. It is desirable to violate both
assumptions, especially in the robotics context. We indicate
how the results of this note are applicable to both settings in
a sequence of remarks.

Remark 18: Consider the following scenario: a collection
of fixed target supports {Uα} lie in the plane. One or more
mobile robots Ri can maneuver in the plane along chosen
paths xi(t), returning sensed counting functions hi(t) =
#{α : xi(t) ∈ Uα}. How should the paths xi be chosen so
as to effectively determine the correct target count? If target
supports are extremely convoluted, no guarantees are possible:
therefore, assume that some additional structure is known (e.g.,
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Fig. 4. A sparse sampling over an ad hoc network retains enough connectivity
data to evaluate the integral exactly.

an injectivity radius) giving a lower bound on how “thin” the
target supports may be.

Assume that the robots initially explore the planar domain
along a rectilinear graph Γ that tiles the domain into rectangles.
If desired, one can make these rectangles have either width
or height in order to guarantee that all the Uα intersect Γ.
Consider the sensor function h : Γ→ N. The integral

∫
Γ
h dχ

is likely to give the wrong answer, even (especially!) for a
dense Γ. Two means of getting a decent approximation are
(1) use the duality formula of Eqn. (15); or (2) perform a
harmonic extension over the holes of Γ as per §VII.

However, neither is guaranteed to give a good a priori
approximation to the target count. How can one tell if Γ
should be filled in more? The simplest criterion follows from
Corollary 12. Consider a basic cycle Γ′ ⊂ Γ in the tiling
induced by Γ. If there is a single connected local maximum
on Γ′, then (assuming that no small Uα lies entirely within
the hole) the harmonic extension over Γ′ gives an accurate
contribution to the integral.

If, on the other hand, there are multiple maximal sets on
Γ′, then one must refine Γ into smaller cycles for which the
criterion holds. The obvious approach is to guide the mobile
sensors so as to try and connect disjoint maxima and/or disjoint
minima. Fig. 5 gives the sense of the technique. We leave for
future work detailing a complete algorithm and its analysis:
the crucial observation is that Corollary 12 provides a stopping
criterion.

Remark 19: One can imagine a much more complicated
scenario. Consider the case where the target supports also vary
(continuously) as a function of time: Uα(t) ⊂ R2. However,
the supports are unknown to the robots Ri, which can measure
only a sampled count hi(t).

The problem is clearly unsolvable if there is a single, slow
robot: such a sensor may never detect any (evasive) targets
at all. On the other hand, if one assumes a dense network
of sensors, the problem is trivial: at any fixed time, take a
triangulation of the domain based on the robot positions, and
compute the integral of the sensor function as per Theorem 7.

Where the problem is critically difficult is when the swarm

Fig. 5. Mobile agents determine target counts over a graph Γ. Holes with
multiple maxima require further refinement (dashed lines).

of sensors is not dense enough to cover the plane, but does
form a connected network with holes. These holes will change
temporally, emerging, bifurcating, disappearing: all the while,
mobile targets can slip in and out.

In this dynamic setting, the work in §V-VII suggests a
natural strategy of computing an expected value of the integral
as a function of time and keeping a running average of these
approximants. More sophisticated tracking of targets within
holes can be accomplished by examining localized temporal
discontinuities of these integrals. This is the subject of a
separate report.

Our discussion of mobile agents is necessarily brief: there
are many more results possible about counting mobile targets
without the need of clocks at all [1]. We leave these and
implementation issues for a more detailed future treatment.

XI. NUMERICAL ISSUES

Space constraints forbid a comprehensive treatment of the
topic of numerical integration with respect to Euler character-
istic, a topic which seems to have been explored only in [12],
and here from an integral-geometry perspective: there is much
to be done. We present a few significant remarks, and leave
the details for an archival work.

Remark 20: Implementation. We have implemented the in-
tegration formula of §VIII, Eqn. (15), for ad hoc planar
networks based on a random unit disc graph: see Fig. 6. The
code (written in Java and publicly available at [hidden for
review]) allows the user to specify target support by drawing
with the mouse. By using the obvious clustering algorithm, the
code returns the quantity specified in Eqn. (15) in negligible
time (∼ 1s for a network of ∼ 100, 000 nodes).

Remark 21: Numerical errors. Of course, the guarantee that
Eqn. (15) computes the correct value of the integral depends
on having sampled the connectivity of the upper and lower
excursion sets correctly. No a priori knowledge of this can
be assured without knowing more about the network or the
target support. Unfortunately, the duality formula computes
a Z-valued sum, any error in the computation is quantized.
From the point of view of numerical errors, it is preferable to
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work with the ‘expected’ R-valued integrals as in Eqn. (10)
and §VII.

Fig. 6. Screenshot of a Java applet implementation [written by D. Lipsky],
cf. Remark 20.

Remark 22: Distributed computation. Since our methods
are based on an integration theory, the enumeration of targets
detailed in this paper is a local computation. For A, B
compact,∫

A∪B
h dχ =

∫
A

h dχ+
∫
B

h dχ−
∫
A∩B

h dχ.

Thus, enumeration can be performed in a distributed manner
easily. This is particularly easy when the network is a lattice, as
one can employ standard distributed protocols for localization
and merging of target counts.

XII. CONCLUDING REMARKS

The core message of this paper is that thinking of target
enumeration in terms of a topological integration theory is
much better than a raw combinatorial approach. One can
import intuition, techniques, and perspectives from numerical
analysis, algebraic topology, differential topology, and combi-
natorics at will.

This short paper has left many natural questions unan-
swered. We give a brief list of questions and remarks, to be
expanded on in future papers.

Remark 23: Do these results extend to higher dimensions?
Yes, and to reasonable topological spaces as well. The results
on bounds for holes and the duality formula, unfortunately, do
not generalize, being dependent on planar topology.

Remark 24: What about noise? This integration theory is
robust to dead sensors: an empty node creates a ‘hole’ which
the techniques of this paper resolve. However, as this integra-
tion theory counts the number and heights of critical points, it
is very sensitive to integer-valued noise. A smoothing filter is
required to preprocess noisy data in order to obtain accurate
results.

Remark 25: How do you know if you’ve sampled the do-
main finely enough? As in the case of trying to approximate
the Riemann integral of an unknown function from a finite
point sample, one does not know without more data.

Remark 26: What about sensors which do not count but
rather measure [0,∞)-valued intensity? This integration the-
ory is not immediately applicable, since the operator

∫
· dχ is

not linear on continuous integrands. However, one can obtain
lower bounds using methods akin to Lusternik-Schnirelmann
category [3].

We hope the reader finds that the increase in formalism for
this integration theory more than pays for itself in terms of
potential applications.
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Abstract— In the transition from industrial to service robotics,
robots will have to deal with increasingly unpredictable and
variable environments. We present a system that is able to
recognize objects of a certain class in an image and to identify
their parts for potential interactions. This is demonstrated for
object instances that have never been observed during training,
and under partial occlusion and against cluttered backgrounds.
Our approach builds on the Implicit Shape Model of Leibe and
Schiele, and extends it to couple recognition to the provision of
meta-data useful for a task. Meta-data can for example consist of
part labels or depth estimates. We present experimental results
on wheelchairs and cars.

I. INTRODUCTION

People are very strong at scene understanding. They quickly
create a holistic interpretation of their environment. In com-
parison, a robot’s interpretation comes piecemeal. A major
difference lies in the human ability to recognize objects as
instances of specific classes, and to feed such information back
into lower layers of perception, thereby closing a cognitive
loop (see Fig. 1). Such loops seem vital to ‘make sense’
of the world in the aforementioned, holistic way [14]. The
brain brings all levels, from basic perception up to cognition,
into unison. A similar endeavour in robotics would imply less
emphasis on strictly quantitative – often 3D – modeling of the
environment, and more on a qualitative analysis.

Indeed, it seems fair to say that nowadays robotics still has
a certain preoccupation with gathering explicit 3D information
(typically in the form of range maps) about the environment.
Not only is this often a rather tedious affair, but many surface
types defy 3D scanning altogether (e.g. dark, specular, or
transparent surfaces may pose problems, depending on the
scanner). Taking navigation as a case in point, it is known
from human strategies that the image-based recognition of
landmarks plays a far more important role than distance-based
localisation with respect to some world coordinate system. The
first such implementations for robot navigation have already
been published [4, 3, 19]. This paper argues that modern visual
object class recognition can provide useful cognitive feedback
for many tasks in robotics1.

The first examples of cognitive feedback in vision have
already been implemented [9, 7]. However, so far they only
coupled recognition and crude 3D scene information (the
position of the groundplane). Here we set out to demonstrate

1See also interview with Rodney Brooks in Charlie Rose 2004/12/21:
http://www.youtube.com/watch?v=oEstOd8xyeQ, starting from 35:00

Fig. 1. Humans can very quickly analyze a scene from a single image.
Recognizing subparts of an object helps to recognize the object as a whole,
but recognizing the object in turn helps to gather more detailed information
about its subparts. Knowledge about these parts can then be used to guide
actions. For instance, in the context of a car wash, a decomposition of the
car in its subparts can be used to apply optimized washing methods to the
different parts.

the wider applicability of cognitive feedback, by inferring
‘meta-data’ such as material characteristics, the location and
extent of object parts, or even 3D object shape, based on object
class recognition. Given a set of annotated training images of
a particular object class, we transfer these annotations to new
images containing previously unseen object instances of the
same class.

There are a couple of recent approaches partially offering
such inference for 3D shape from single images. Hoiem et
al. [8] estimate the coarse geometric properties of a scene by
learning appearance-based models of surfaces at various ori-
entations. The method focuses purely on geometry estimation,
without incorporating an object recognition process. It relies
solely on the statistics of small image patches. In [20], Sud-
derth et al. combine recognition with coarse 3D reconstruction
in a single image, by learning depth distributions for a specific
type of scene from a set of stereo training images. In the same
vein, Saxena et al. [18] are able to reconstruct coarse depth
maps from a single image of an entire scene by means of a
Markov Random Field. Han and Zhu [5] obtain quite detailed
3D models from a single image through graph representations,
but their method is limited to specific classes. Hassner and
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Basri [6] infer 3D shape of an object in a single image from
known 3D shapes of other members of the object’s class. Their
method is specific to 3D meta-data though, and their analysis
is not integrated with the detection and recognition of the
objects, as is ours. The object is assumed to be recognized
and segmented beforehand. Rothganger et al. [15] are able to
both recognize 3D objects and infer pose and detailed 3D data
from a single image, but the method only works for specific
object instances, not classes.

In this work, object related parameters and meta-data are
inferred from a single image, given prior knowledge about
these data for other members of the same object class.
This annotation is intensely linked to the process of object
recognition and segmentation. The variations within the class
are taken account of, and the observed object can be quite
different from any individual training example for its class.
We collect pieces of annotation from different training images
and merge them into a novel annotation mask that matches
the underlying image data. Take the car wash scenario of
Fig. 1 as an example. Our technique allows to identify the
positions of the windshields, car body, wheels, license plate,
headlights etc. This allows the parameters of the car wash line
to better adapt to the specific car. Similarly, for the wheelchairs
in Fig. 5, knowing where the handles are to be expected yields
strong indications for a service robot how to get hold of the
wheelchair.

The paper is organized as follows. First, we recapitulate
the Implicit Shape Model of Leibe and Schiele [10] for
simultaneous object recognition and segmentation (section II).
Then follows the main contribution of this paper, as we
explain how we transfer meta-data from training images to
a previously unseen image (section III). We demonstrate the
viability of our approach by transferring both object parts for
wheelchairs and cars, as well as depth information for cars
(section IV). Section V concludes the paper.

II. OBJECT CLASS DETECTION WITH AN IMPLICIT SHAPE

MODEL

In this section we briefly summarize the Implicit Shape
Model (ISM) approach proposed by Leibe & Schiele [10],
which we use as the object class detection technique underly-
ing our approach (see also Fig. 2).

Given a training set containing images of several instances
of a certain category (e.g. sideviews of cars) as well as their
segmentations, the ISM approach builds a model that gener-
alizes over within-class variability and scale. The modeling
stage constructs a codebook of local appearances, i.e. of local
structures that appear repeatedly on the training instances.
Codebook entries are obtained by clustering image features
sampled at interest point locations. Instead of searching for
exact correspondences between a novel test image and model
views, the ISM approach maps sampled image features onto
this codebook representation. We refer to the features in an
image that are mapped onto a codebook entry as occurrences
of that entry. The spatial intra-class variability is captured by
modeling spatial occurrence distributions for each codebook

Segmentation

Refined Hypothesis

(optional) Hypothesis

Backprojected Backprojection

of Maximum

(continuous)

Voting Space

Voting

Probabilistic 

Entries

Matched Codebook 
Interest Points

Original Image

Fig. 2. The recognition procedure of the ISM system.

entry. Those distributions are estimated by recording all loca-
tions where a codebook entry matches to the training images,
relative to the annotated object centers. Together with each
occurrence, the approach stores a local segmentation mask,
which is later used to infer top-down segmentations.

A. ISM Recognition.

The ISM recognition procedure is formulated as a prob-
abilistic extension of the Hough transform [10]. Let e be a
sampled image patch observed at location �. The probability
that it matches to codebook entry ci can be expressed as
p(ci|e). Each matched codebook entry then casts votes for
instances of the object category on at different locations and
scales λ = (λx, λy, λs) according to its spatial occurrence
distribution P (on, λ|ci, �). Thus, the votes are weighted by
P (on, λ|ci, �)p(ci|e), and the total contribution of a patch to
an object hypothesis (on, λ) is expressed by the following
marginalization:

p(on, λ|e, �) =
∑
i

P (on, λ|ci, �)p(ci|e) (1)

The votes are collected in a continuous 3D voting space
(translation and scale). Maxima are found using Mean Shift
Mode Estimation with a scale-adaptive uniform kernel [11].
Each local maximum in this voting space yields an hypothesis
that an object instance appears in the image at a certain
location and scale.

B. Top-Down Segmentation.

For each hypothesis, the ISM approach then computes a
probabilistic top-down segmentation in order to determine
the hypothesis’ support in the image. This is achieved by
backprojecting the contributing votes and using the stored local
segmentation masks to infer the per-pixel probabilities that the
pixel p is figure or ground given the hypothesis at location
λ [10]. More precisely, the probability for a pixel p to be figure
is computed as a weighted average over the segmentation
masks of the occurrences of the codebook entries to which all
features containing p are matched. The weights correspond
to the patches’ respective contributions to the hypothesis at
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location x.

p(p = figure|on, λ)
=

∑
p∈e

∑
i p(p = figure|e, ci, on, λ)p(e, ci|on, λ)

=
∑

p∈e
∑

i p(p = figure|ci, on, λ)p(on,λ|ci)p(ci|e)p(e)p(on,λ)

(2)

We underline here that a separate local segmentation mask is
kept for every occurrence of each codebook entry. Different
occurrences of the same codebook entry in a test image will
thus contribute different segmentations, based on their relative
location with respect to the hypothesized object center.

In early versions of their work [10], Leibe and Schiele
included an optional processing step, which refines the hy-
pothesis by a guided search for additional matches (Fig. 2).
This improves the quality of the segmentations, but at a high
computational cost. Uniform sampling was used, which be-
came untractable once scale-invariance was introduced into the
system. We therefore implemented a more efficient refinement
algorithm as explained in Section III-C.

C. MDL Verification.

In a last processing stage, the computed segmentations are
exploited to refine the object detection scores, by taking only
figure pixels into account. Besides, this last stage also disam-
biguates overlapping hypotheses. This is done by a hypothesis
verification stage based on Minimum Description Length
(MDL), which searches for the combination of hypotheses
that together best explain the image. This step precludes,
for instance, that the same local structure, e.g. a wheel-like
structure, is assigned to multiple detections, e.g. multiple cars.
For details, we again refer to [10, 11].

III. TRANSFERRING META-DATA

The power of the ISM approach lies in its ability to recog-
nize novel object instances as approximate jigsaw puzzles built
out of pieces from different training instances. In this paper,
we follow the same spirit to achieve the new functionality of
transferring meta-data to new test images.

Example meta-data is provided as annotations to the training
images. Notice how segmentation masks can be considered as
a special case of meta-data. Hence, we transfer meta-data with
a mechanism inspired by that used above to segment objects
in test images. The training meta-data annotations are attached
to the occurrences of codebook entries, and transferred to a
test image along with each matched feature that contributed
to the final hypothesis (Fig. 3). This strategy allows us to
generate novel annotations tailored to the new test image,
while explicitly accommodating for the intra-class variability.

Unlike segmentations, which are always binary, meta-data
annotations can be either binary (e.g. for delineating a partic-
ular object part or material type), discrete (e.g. for identifying
all object parts), real-valued (e.g. depth values), or even vector-
valued (e.g. surface orientations). We first explain how to
transfer discrete meta-data (Section III-A), and then extend
the method to the real- or vector-valued case (Section III-B).

Fig. 3. Transferring (discrete) meta-data. Left: two training images and a
test image. Right: the annotations for the training images, and the partial
output annotation. The corner of the license plate matches with a codebook
entry which has occurrences on similar locations in the training images. The
annotation patches for those locations are combined and instantiated in the
output annotation.

A. Transferring Discrete Meta-data

In case of discrete meta-data, the goal is to assign to each
pixel of the detected object a label a ∈ {aj}j=1:N . We first
compute the probability p(p = aj) for each label aj separately.
This is achieved in a way analogous to what is done in eq. (2)
for p(p = figure), but with some extensions necessary to
adapt to the more general case of meta-data:

p(p = aj |on, λ) =∑
p∈N(e)

∑
i

p(p = aj |ci, on, λ)p
(
â(p) = ae(p)|e

)
p(e, ci|on, λ)

(3)

The components of this equation will be explained in detail
next. The first and last factors are generalizations of their
counterparts in eq. (2). They represent the annotations stored
in the codebook, and the voting procedure respectively. One
extension consists in transferring annotations also from image
patches near the pixel p, and not only from those containing
it. With the original version, it is often difficult to obtain
full coverage of the object, especially when the number
of training images is limited. This is an important feature,
because producing the training annotations can be labour-
intensive (e.g. for the depth estimates of the cars in Section IV-
B). Our notion of proximity is defined relative to the size of
the image patch e, and parameterized by a scalefactor sN .
More precisely, let an image patch e be defined by the three-
dimensional coordinates of its center and scale eλ obtained
from the interest point detector, i.e. e = (ex, ey, eλ). The
neighbourhood N(e) of e is defined as

N(e) = {p|p ∈ (ex, ey, sN · eλ)} (4)

A potential disadvantage of the above procedure is that
for a pixel p outside the actual image patch, the transferred
annotation gets less reliable. Indeed, the pixel may lie on
an occluded image area, or small misalignment errors may
get magnified. Moreover, some differences between the object
instances shown in the training and test images that were not
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noticeable at the local scale can now affect the results. To
compensate for this, we add the second factor to eq. (3), which
indicates how probable it is that the transferred annotation
ae(p) still corresponds to the ‘true’ annotation â(p). This
probability is modeled by a Gaussian, decaying smoothly with
the distance from the center of the image patch e, and with
variance related to the size of e by a scalefactor sG:

p
(
â(p) = ae(p) | e

)
=

1
σ
√
2π

exp
(
−(dx2 + dy

2)/(2σ2)
)

with σ = sG · eλ
(dx, dy) = (px − ex, py − ey) (5)

Once we have computed the probabilities p(p = aj) for all
possible labels {aj}j=1:N , we come to the actual assignment:
we select the most likely label for each pixel. Note how
for some applications, it might be better to keep the whole
probability distribution {p(p = aj)}j=1:N rather than a hard
assignment, e.g. when feeding back the information as prior
probabilities to low-level image processing.

An interesting possible extension is to enforce spatial conti-
nuity between labels of neighboring pixels, e.g. by relaxation
or by representing the image pixels as a Markov Random
Field. In our experiments (Section IV), we achieved good
results already without enforcing spatial continuity.

B. Transferring Real- or Vector-valued Meta-data

In many cases, the meta-data is not discrete, but rather real-
valued (e.g. 3D depth) or vector-valued (e.g. surface orienta-
tion). We can approximate these cases by using a large number
of quantization steps and interpolating the final estimate. This
allows to re-use most of the discrete-case system.

First, we discretize the annotations into a fixed set of ‘value
labels’ (e.g. ‘depth 1’, ‘depth 2’, etc.). Then we proceed in a
way analogous to eq. (3) to infer for each pixel a probability
for each discrete value. In the second step, we select for each
pixel the discrete value label with the highest probability, as
before. Next, we refine the estimated value by fitting a parabola
(a (D+1)-dimensional paraboloid in the case of vector valued
meta-data) to the probability scores for the maximum value
label and the two immediate neighbouring value labels. We
then select the value corresponding to the maximum of the
parabola. This is a similar method as used in interest point
detectors (e.g. [12, 1]) to determine continuous scale coor-
dinates and orientations from discrete values. Thanks to this
interpolation procedure, we obtain real-valued annotations. In
our 3D depth estimation experiments this makes a significant
difference in the quality of the results (Section IV-B).

C. Refining Hypotheses

When large areas of the object are insufficiently covered
by interest points, no meta-data can be assigned to these
areas. Using a large value for sN will only partially solve this
problem, because there is a limit as to how far information
from neighboring points can be reliably extrapolated. A better
solution is to actively search for additional codebook matches
in these areas. The refinement procedure in early versions

Grab area        Wheels         Armrests           Seat              Frame       Background

Test image Ground truth Result

Fig. 4. Results for the annotation verification experiment on wheelchair
images. From left to right: test image, ground-truth, and output of our system.
White areas are unlabeled and can be considered background.

of the ISM system [10] achieved this by means of uniform
sampling, which is untractable in the scale-invariant case.
Therefore we implemented a more efficient refinement algo-
rithm which only searches for matches in promising locations.

For each hypothesis, new candidate points are generated
by backprojecting all occurrences in the codebook, excluding
points nearby existing interest points. When the feature de-
scriptor for a new point matches with the codebook cluster(s)
that backprojected it, an additional hypothesis vote is cast. The
confidence for this new vote is reduced by a penalty factor to
reflect the fact that it was not generated by an actual interest
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point. The additional votes enable the meta-data transfer to
cover those areas that were initially missed by the interest
point detector.

This refinement step can either be performed on the final
hypotheses that result from the MDL verification, or on all
hypotheses that result from the initial voting. In the latter case,
it will improve MDL verification by enabling it to obtain better
figure area estimates of each hypothesis [10, 11]. Therefore,
we perform refinement on the initial hypotheses in all our
experiments.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach on two different object classes,
wheelchairs and cars. For both classes, we demonstrate by
means of a discrete labeling experiment, how our system
simultaneously recognizes object instances and infers areas of
interest. For the cars, we additionally perform an experiment
where a 3D depth map is recovered from a single image of a
previously unseen car, which is a real-valued labeling problem.

A. Wheelchairs: Indicating Areas of Interest for an Assistive
Robot

In our first experiment, the goal is to indicate certain areas of
interest on images of various types of wheelchairs. A possible
application is an assistive robot, for retrieving a wheelchair,
for instance in a hospital or to help a disabled person at home.
In order to retrieve the wheelchair, the robot must be able to
both detect it, and determine where to grab it. Our method will
help the robot to get close to the grabbing position, after which
a detailed analysis of scene geometry in a small region of
interest can establish the grasp [17]. We divide our experiment
in two parts. First, we quantitatively evaluate the resulting
annotations with a large set of controlled images. Next, we
evaluate the recognition ability with a set of challenging real-
world images.

We collected 141 images of wheelchairs from Google Image
Search. We chose semi-profile views because they were the
most widely available. Note that while the ISM system can
only handle a single pose, it can be extended to handle multiple
viewpoints [21]. All images were annotated with ground truth
part segmentations for grab area, wheels, armrests, seat, and
frame. The grab area is the most important for this experiment.
A few representative images and their ground truth annotations
can be seen in the left and middle columns of Fig. 4.

The images are randomly split into a training and test set.
We train an ISM system using 80 images, using a Hessian-
Laplace interest point detector [13] and Shape Context descrip-
tors [2]. Next, we test the system on the remaining 61 images,
using the method from Section III-A. Because each image only
contains one object, we select the detection with highest score
for meta-data transfer. Some of the resulting annotations can
be seen in the third column of Fig. 4. The grab area is found
quite precisely.

To evaluate this experiment quantitatively, we use the
ground truth annotations to calculate the following error
measures. We define leakage as the percentage of background

Fig. 5. Wheelchair detection and annotation results on challenging real-world
test images (best viewed in color). Yellow and red rectangles indicate correct
and false detections respectively. Note how one wheelchair in the middle right
image was missed because it is not in the pose used for training.
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backgrnd frame seat armrest wheels grab-area unlabeled
backgrnd 32.58 1.90 0.24 0.14 1.10 0.37 63.67

frame 15.29 66.68 6.47 0.46 6.90 0.10 4.10
seat 2.17 15.95 74.28 0.97 0.33 1.55 4.75

armrest 11.22 5.62 29.64 49.32 1.25 0.63 2.32
wheels 13.06 9.45 0.36 0.07 71.39 0.00 5.67

grab-area 6.48 1.28 9.77 0.11 0.00 76.75 5.62

TABLE I

CONFUSION MATRIX FOR THE WHEELCHAIR PART ANNOTATION

EXPERIMENT. THE ROWS REPRESENT THE ANNOTATION PARTS IN THE

GROUND-TRUTH MAPS, THE COLUMNS THE OUTPUT OF OUR SYSTEM. THE

LAST COLUMN SHOWS HOW MUCH OF EACH CLASS WAS LEFT

UNLABELED. FOR MOST EVALUATIONS, THOSE AREAS CAN BE

CONSIDERED ‘BACKGROUND’.

pixels in the ground-truth annotation that were labeled as non-
background by the system. The leakage for this experiment,
averaged over all test images, is 3.75%. We also define a
coverage measure, as the percentage of non-background pixels
in the ground-truth images labeled non-background by the
system. The coverage obtained by our algorithm is 95.1%.
This means our method is able to reliably segment the chair
from the background.

We evaluate the annotation quality of the separate parts
with a confusion matrix. For each image, we count how
many pixels of each part aj in the ground-truth image are
labeled by our system as each of the possible parts (grab,
wheels, etc.), or remain unlabeled (which can be considered
background in most cases). This score is normalized by the
total number of pixels in the ground-truth âj . We average the
confusion table entries over all images, resulting in Table I.
The diagonal elements show how well each part was recovered
in the test images. Not considering the armrests, the system
performs well as it labels correctly between 67% and 77% of
the pixels, with the latter score being for the part we are the
most interested in, i.e. the grab area. The lower performance
for the armrests is due to the fact that it is the smallest part
in most of the images. Small parts have higher risk of being
confused with the larger parts in their neighborhood.

To test the detection ability of our system, we collected
a set of 34 challenging real-world images with considerable
clutter and/or occlusion. We used the same ISM system as in
the annotation experiment, to detect and annotate the chairs in
these images. Some results are shown in Fig. 5. We consider
a detection to be correct when its bounding box covers the
chair. Out of the 39 wheelchairs present in the images, 30 were
detected, and there were 7 false positives. This corresponds to
a recall of 77% and a precision of 81%.

B. Cars: Optimizing an Automated Car Wash

In further experiments, we infer different types of meta-
data for the object class ‘car’. In the first experiment, we
decompose recognized cars in their most important parts,
similarly to the wheelchairs. In the second experiment, approx-
imate 3D information is inferred. A possible application is an
automated car wash. As illustrated in Fig. 1, the decomposition
in parts can be used to apply different washing methods to the

Body     Windows    Wheels     Bumper      Lights      License    Backgnd

Test image Ground truth Result

Fig. 6. Results for the car annotation experiment. From left to right: test
image, ground-truth, and output of our system. White areas are unlabeled and
can be considered background.

different parts. Moreover, even though such systems mostly
have sensors to measure distances to the car, they are only
used locally while the machine is already running. It could be
useful to optimize the washing process beforehand, based on
the car’s global shape inferred by our system.

Our dataset is a subset of that used in [9]. It was obtained
from the LabelMe website [16], by extracting images labeled
as ‘car’ and sorting them according to their pose. For our
experiments, we only use the ‘az300deg’ pose, which is a
semi-profile view. In this pose both the front (windscreen,
headlights, license plate) and side (wheels, windows) are
visible. This allows for more interesting depth maps and part
annotations compared to pure frontal or side views. The dataset
contains a total of 139 images. We randomly picked 79 for
training, and 60 for testing.

For parts annotation, the training and testing phase is anal-
ogous to the wheelchair experiment (section IV-A). Results
are shown in Fig. 6. The leakage is 6.83% and coverage is
95.2%. The confusion matrix is shown in Table II. It again
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Test image Ground truth Result

Fig. 7. Results for the car depthmap experiment. From left to right: test
image, ground-truth, and output of our system. White areas are unlabeled and
can be considered background.
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Fig. 8. Horizontal slices through the ground truth and output depthmaps of
the second car (top row) and fourth car (bottom row) in Fig. 7.

bkgnd body bumper headlt window wheels license unlabeled
bkgnd 23.56 2.49 1.03 0.14 1.25 1.88 0.04 69.61
body 4.47 72.15 4.64 1.81 8.78 1.86 0.24 6.05

bumper 7.20 4.54 73.76 1.57 0.00 7.85 2.43 2.64
headlt 1.51 36.90 23.54 34.75 0.01 0.65 0.23 2.41

window 3.15 13.55 0.00 0.00 80.47 0.00 0.00 2.82
wheels 11.38 6.85 8.51 0.00 0.00 63.59 0.01 9.65
license 2.57 1.07 39.07 0.00 0.00 1.04 56.25 0.00

TABLE II

CONFUSION MATRIX FOR THE CAR PARTS ANNOTATION EXPERIMENT

(CFR. TABLE I).

shows good labeling performance, except for the headlights.
Similarly to the armrests in the wheelchair experiments, this
is as expected. The headlights are mostly very small, hence
easily confused with the larger parts (body, bumper) in which
they are embedded.

For the depth map experiment, we obtained ground-truth
data by manually aligning the best matching 3D model from
a freely available collection2 to each image, and extracting
the OpenGL Z-buffer. In general, any 3D scanner or active
lighting setup could be used to automatically obtain depth
maps. We normalize the depths based on the dimensions
of the 3D models, by assuming that the width of a car is
approximately constant. The depth maps are quantized to 20
discrete values. Using these maps as annotations, we use our
method of section III-B to infer depths for the test images.

Results are shown in the rightmost column of Fig. 7.
The leakage is 4.79% and the coverage 94.6%, hence the
segmentation performance is again very good. It is possible
to calculate a real-world depth error estimate, by scaling the
normalized depth maps by a factor based on the average width
of a real car, which we found to be approximately 1.8m.
All depth maps are scaled to the interval [0, 1] such that
their depth range is 3.5 times the width of the car, and the
average depth error is 0.042. This is only measured inside
areas which are labeled non-background in both the ground-
truth and result images, to eliminate bias from the background.
A plausible real-world depth error can therefore be calculated
by multiplying this figure by 3.5·1.8m, which yields a distance
of 27cm. To better visualize how the output compares to the
ground truth, Fig. 8 shows a few horizontal slices through two
depth maps of Fig. 7.

To illustrate the combined recognition and annotation ability
of our system for this object class, we again tested it on real-
world images. We used the same system as in the annotation
experiment on a few challenging images containing cars in a
similar pose, including the car wash image from Fig. 1. Results
are shown in Fig. 9.

V. CONCLUSIONS

We have developed a method to transfer meta-data annota-
tions from training images to test images containing previously
unseen objects, based on object class recognition. Instead
of using extra processing for the inference of meta-data, it

2http://dmi.chez-alice.fr/models1.html
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Fig. 9. Car detection and annotation results on real-world test images. Even
though the car from Fig. 1 is in a near-frontal pose, it was still correctly
detected and annotated by the system trained on semi-profile views.

is deeply intertwined with the actual recognition process.
Low-level cues in an image can lead to the detection of an
object, and the detection of the object itself causes a better
understanding of the low-level cues from which it originated.
The resulting meta-data inferred from the recognition can be
used to initiate or refine robot actions.

Future research includes using the output from our system
in a real-world application to guide a robot’s actions, possibly
in combination with other systems. We will extend the system

to handle fully continuous and vector-valued meta-data. We
will also investigate methods to improve the quality of the
annotations by means of relaxation or Markov Random Fields,
and ways to greatly reduce the amount of manual annotation
work required for training.

ACKNOWLEDGMENT

The authors gratefully acknowledge support by IWT-
Flanders, Fund for Scientific Research Flanders and European
Project CLASS (3E060206).

REFERENCES

[1] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust
features. Proceedings ECCV, Springer LNCS, 3951(1):404–417, 2006.

[2] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape context: A new
descriptor for shape matching and object recognition. In NIPS, pages
831–837, 2000.

[3] F. Fraundorfer, C. Engels, and D. Nister. Topological mapping, local-
ization and navigation using image collections. IROS, 2007.
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Learning to Manipulate Articulated Objects in Unstructured
Environments Using a Grounded Relational Representation

Dov Katz Yuri Pyuro Oliver Brock
Robotics and Biology Laboratory
University of Massachusetts Amherst

Abstract—We introduce a learning-based approach to manip-
ulation in unstructured environments. This approach permits au-
tonomous acquisition of manipulation expertise from interactions
with the environment. The resulting expertise enables a robot to
perform effective manipulation based on partial state informa-
tion. The manipulation expertise is represented in a relational
state representation and learned using relational reinforcement
learning. The relational representation renders learning tractable
by collapsing a large number of states onto a single, relational
state. The relational state representation is carefully grounded in
the perceptual and interaction skills of the robot. This ensures
that symbolically learned knowledge remains meaningful in the
physical world. We experimentally validate the proposed learning
approach on the task of manipulating an articulated object to
obtain a model of its kinematic structure. Our experiments
demonstrate that the manipulation expertise acquired by the
robot leads to substantial performance improvements. These
improvements are maintained when experience is applied to
previously unseen objects.

I. INTRODUCTION

Autonomous manipulation remains one of the great chal-
lenges in robotics. The successful endowment of autonomous
robots with robust manipulation skills will have substantial
impact in many important application areas, ranging from
personal and professional service robotics to flexible manu-
facturing and planetary exploration.
We view autonomous manipulation as the purposeful and

deliberate change of the configuration of an object. The
object’s configuration uniquely describes the object’s pose
by specifying every degree of freedom of the object. An
object can have extrinsic and intrinsic degrees of freedom.
Extrinsic degrees of freedom describe the spatial relationship
between the object and its environment. Intrinsic degrees of
freedom describe the relationship among the rigid bodies of
an articulated object and are often relevant to the object’s
intended function. Examples of objects with intrinsic degrees
of freedom include tools (scissors, pliers, etc.), doors, door
handles, books, or drawers. Successful manipulation must be
informed by knowledge of the extrinsic and intrinsic degrees
of freedom of an object.
In unstructured environments, a robot cannot rely on a

detailed and accurate a priori model of the environment. It
must therefore be able to acquire task-relevant information
to inform its interactions with the objects in the environ-
ment. Based on this information, the robot must adapt its
manipulation behavior to ensure successful task execution.
Manipulation becomes a continuous and interactive process of

Fig. 1. UMan (UMass Mobile Manipulator) interacts with an articulated
object to acquire information about the object’s kinematic structure. The right
image shows the scene as seen by the robot through an overhead camera; dots
mark tracked visual features.

acquiring information about the environment and subsequently
adapting the interaction with the environment in response to
this information.
The contribution of this paper is a learning-based approach

to manipulation in unstructured environments. This approach
permits the robot to autonomously acquire manipulation exper-
tise from its interactions with the environment. The resulting
expertise enables the robot to select the most effective manip-
ulation action based on partial state information. The manip-
ulation expertise is learned in a relational state representation.
This representation is essential, as it renders learning tractable
by collapsing a large regions of the state space onto a single,
task-relevant, relational state. The symbolic representation is
carefully grounded in the perceptual and interaction skills of
the robot to ensure that relationally learned knowledge remains
applicable in the physical world.
Using this learning-based manipulation approach, we show

how a robot can autonomously learn manipulation strategies
to obtain a kinematic model of unknown articulated objects.
The robot physically interacts with the object by pushing
or pulling it and observes the object’s motion (see Fig. 1).
As these interactions create a change in the configuration
of the object, the robot incrementally discovers the object’s
intrinsic and extrinsic degrees of freedom. The robot learns
to select interactions that are most likely to reveal the maxi-
mum information about the kinematic structure. The acquired
manipulation knowledge substantially reduces the number of
interactions required to obtain an accurate kinematic model.
Furthermore, the manipulation knowledge acquired with one
object transfers to other objects, even if they have different
kinematic structures.
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In the following section we introduce the relational repre-
sentations of kinematic structures that forms the basis of our
learning-based approach to manipulation. We then describe
how this representation can be grounded using the percep-
tual and interaction capabilities of the robot. We proceed
to discuss the relational learning framework and how it can
be grounded with respect to the relational representation.
Finally, we demonstrate the effectiveness of our approach in
manipulation experiments with articulated objects.

II. RELATED WORK

We distinguish between three categories of approaches to
manipulation [2, 15, 17]. The first category pertains to manip-
ulation planning. Approaches in this category assume that an
accurate geometric model of the manipulated object is avail-
able and devise manipulation plans based on this model. These
manipulation planners address various flavors of manipulation,
including grasping and in-hand manipulation [24], manipula-
tion with sliding contacts [26], non-prehensile manipulation [1,
14], and gross motion planning for manipulation [21]. In
contrast to these approaches, we focus on problems for which
accurate models are not available.
The second category uses feedback control to achieve

manipulation. Particularly relevant are approaches that use
learning to design controllers [28]. These methods alleviate
the difficulties that analytical methods for controller design
encounter in the presence of modeling errors for systems
with complex kinematics and dynamics. A different approach
to learning-based controller design relies on memory-based
learning [16]. Controllers can also be designed by searching
in configuration space [22]. All methods in this category
determine specific controllers that can serve to ground a
relational state representation such as the one we use.
Whereas approaches in the previous category are concerned

with individual controllers, approaches in the third category
sequence [3, 18] or compose [20] multiple controllers to
generate more complex manipulation behaviors. Composite
controllers can be arranged into state transition diagrams to
further increase robustness and versatility [19]. Most often,
the necessary state transition diagrams are designed by the
programmer, but they can also be learned using reinforcement
learning [9]. Again, we view the resulting controllers as
candidates to ground a relational state representation.
There are many other approaches that address aspects of ma-

nipulation but cannot easily be assigned to one of these three
categories. We will discuss several with particular relevance to
the work presented here. Christiansen et al. [4] learn manip-
ulation strategies for a tray-tilting task in conjunction with a
dynamic model of the domain. Edsinger and Kemp emphasize
the importance of task-specific perceptual features that exploit
common structural features of functionally related objects to
facilitate manipulation in human environments [8]. Stoytchev
presents an approach to learn tool affordances for robotic
tool use [23]. He emphasizes the importance of grounding
this representation in the robot’s behavioral repertoire. This
enables the immediate application of the robot’s accumulated

experience. In our work, we combine task-specificity for
perception and grounding for action by requiring that an
adequate grounding of our relational state representation has
to rely on task-specific perception and task-specific behaviors.

III. RELATIONAL REPRESENTATION
The relational representation is critical to the success of

our learning-based approach to manipulation. Using a finite
set of relations, we are able to describe an infinite number
of states and actions. It thus becomes possible to represent
and reason about situations that a propositional represen-
tation cannot handle. For example, a robot may encounter
many types of scissors, varying in color, shape, and size.
All scissors, however, have the same kinematic structure. A
single relational formula can capture the kinematic structure
of all scissors, irrespective of their other properties. Therefore,
a single relational action can be applied to all objects. In
contrast, a propositional representation would have to include
a proposition for every encountered object and one for every
action applicable to this object. The relational representation
avoids this combinatorial explosion of actions and states, thus
greatly reducing the state space and making learning possible.

Fig. 2. Two examples of kinematic structures: scissors with a single revolute
joint and a wooden toy with a prismatic joint and two revolute joints.

Our relational representation for kinematic models of ar-
ticulated objects captures joint types, link properties, and
kinematic relationships between links. Figure 2 shows two
examples of planar kinematic structures. The scissors have a
single revolute degree of freedom and the wooden toy is a
serial kinematic chain with a prismatic joint (on the left of the
figure) and two revolute joints. Our relational representation
uses predicates R(·), P (·), and D(·) to describe that rigid
bodies are connected by a revolute joint, a prismatic joint, or
are disconnected, respectively. The predicates are n-ary, with
n ≥ 2, to capture branching kinematic structures. The rigid
body passed as the first argument to the relation is the one in
relationship with all other arguments. For example, R(x, y, z)
is equivalent to R(x, y) ∧R(x, z).
Using these relations, we can represent the kinematic struc-

ture of the scissors as

D(lb, R(l1, l2)),

where l1 and l2 represent the two links of the scissors and lb
is a disconnected background link. The kinematic structure of
the wooden toy can be represented as

D(lb, R(l4, R(l3, P (l1, l2)))).
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Note that this representation is not unique. The wooden toy
could also be represented as

D(P (l4, R(R(l1, l2), l3)), lb).

Which of these representations is used by the robot depends
on the order of discovery of the links. The most deeply nested
relation is discovered first.
Kinematic loops are represented by using the same link

twice. A 5R kinematic loop is described by:

D(lb, R(l1, R(l5, R(l4, R(l3, R(l2, l1)))))).

By extending our atomic representation of links to m-ary
relations L(·), m ≥ 1, we can include link properties in our
description of kinematic chains. In this paper we will limit
ourselves to a single property, namely the size of the link.
The wooden toy can now be represented as

D(lb, R(L(s, f4), R(L(s, f3), P (L(s, f1), L(s, f2))))),

where s stands for the property small and the fi spatially iden-
tify links in the physical world (see section IV). The extension
to an arbitrary number of link properties is straightforward.
With this relational representation of kinematic structures,

it becomes possible to reason and learn about objects based
on their kinematic structure. All experience acquired by ma-
nipulating scissors can be applied to all other scissors, as
long as they have an identical kinematic structure. If specific
properties of the links of an object affect the desired manipu-
lation behavior, we can add these properties to the relational
description of the links. Our representation is then able to
differentiate between identical kinematic structures based on
link properties. All properties irrelevant to manipulation are
ignored during learning. This reduction in state space makes
the learning problem considerably easier.
We also use a relational representation for the actions

performed by the robot. Actions apply pushing or pulling
forces to one of the links. The forces can be applied along the
major axes of the link or along a forty-five degree angle to
the major axes. An action is represented as A(L(·), α), where
L(·) represents a link and alpha is an atom describing one of
the possible six pushing/pulling directions relative to the link.

IV. GROUNDING THE RELATIONAL REPRESENTATION

The relational representation described in the previous sec-
tion can only support the learning of manipulation knowledge
if it is grounded in the physical capabilities of the robot.
Grounding bridges between the symbols of our representation
and the physical, continuous world [10]. Grounding ensures
that we can symbolically interpret the observations made by
the robot in regards to its interactions with the world. At
the same time, grounding ensures that the resulting symbolic
manipulation knowledge maintains its relevance and predictive
power for the robot’s real-world interactions.
To ground our relational representation, we bind the rela-

tions R(·, ·), P (·, ·), and D(·, ·) as well as the link properties
to real-world perceptual capabilities of the robot.

In prior work we developed a skill for the robust perception
of kinematic degrees of freedom and link properties of planar
articulated objects [12]. Figure 1 shows a real-world interactive
experiment with garden shears. The robot interacts with the
shears to determine the location of the revolute joint and the
spatial extent of the links. The image on the right shows
the robot’s view of its own interaction with the shears. Dots
indicate tracked visual features.
This skill provides adequate grounding for our relational

representation of links and their kinematic relationship. It
extracts the degrees of freedom of an object by tracking the
motion of the visual features in the scene. Tracked features
are clustered into links using a graph representation in which
the features correspond to vertices. Two vertices are connected
by an edge if the relative distance of the corresponding visual
features does not change throughout the interaction with the
object. By clustering the features, it is possible to identify
the spatial location and extent of the links. The features
associated with a single link are grouped into the sets fi (see
previous section). The relationship between different clusters
(links) in the graph can be analyzed to reveal their kinematic
relationship.
The robustness of this skill has been proven in dozens

of real-world experiments. The skill does not require prior
knowledge of the object, is insensitive to lighting conditions
and specularities, succeeds irrespective of the texture and color
of the object’s parts, works reliably even with low-quality
cameras, and at the same time is computationally efficient. As
a consequence, it is ideally suited for the grounding of our rela-
tional representations of kinematic structures for unstructured
environments. For a detailed description of this interactive
perception skill the reader is referred to reference [12].

V. LEARNING MANIPULATION WITH GROUNDED
RELATIONAL REINFORCEMENT LEARNING

The grounded relational description of states is the basis
for our learning framework. To learn manipulation knowledge
from interactions with the environment, we cast the incremen-
tal acquisition of kinematic representations of objects as a
relational reinforcement learning [7, 25, 27] problem.
In reinforcement learning, an agent learns an optimal policy

for solving a task. This policy tells the robot which action
to perform in a particular state. The robot acquires the pol-
icy incrementally, by performing experiments. In our case,
an experiment consists of the robot pushing an object. For
every action, the robot receives a reward. In our experiments,
the robot receives a reward for every degree of freedom it
discovers. Over the course of multiple experiments, the robot
incorporates new experiences into its policy. As a result, our
robot learns an effective policy for acquiring kinematic models
of articulated objects.
We formalize this problem as a Relational Markov Decision

Process (RMDP) [27] and then apply Q-learning [29] to find
an optimal policy. A Markov Decision Process (MDP) is
a tuple M = (S,A, T,R), where S designates the set of
possible states, A is the set of actions available to the robot,
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T : S × A → Π(S) specifies a state transition function to
determine a probability distribution Π(S) over S, indicating
the probability of attaining a successor state when an action is
performed in an initial state, and R : S×A→ R is a function
to determine the reward obtained by taking a particular action
in a particular state. In our case, the description of states and
actions is relational and therefore we have a relational MPD.
The relational description of states and actions of the RMDP

was presented in Section III. We now describe the remaining
components of the RMDP and how Q-learning is employed
to determine an optimal policy π for manipulating articulated
objects in unstructured environments.

A. Transition Function

The transition function captures the state transitions that
occur in the physical world when an action is applied. We
never explicitly represent this function. Instead, we rely on the
real world and on our perceptual capabilities to determine the
new state after the application of an action has been completed.

B. Reward Function

The reward function R : S ×A→ Z returns the number of
links and joints that were discovered by performing an action
in a particular state.

C. Q-Learning

Q-learning [29] determines a policy π : S → A for selecting
actions based on the current state. To determine this policy,
our goal is to learn the Q-value function Q : S × A → R
by performing a series of experiments, each of which reveals
how much reward a particular action can obtain in a particular
state. The Q-value function accumulates information about the
total expected reward for an entire trial. The policy defined by
the Q-value function is given by π(s) = argmaxaQ(s, a).
As the robot performs actions in its environment and

receives the resulting rewards, the Q function is updated
according to the following rule:

Q(st, at) = (1−α) Q(st, at)+α
(
rr+1 + γmax

a
Q(st+1, a)

)
,

where α is the learning rate, γ is the discount factor, and rt
is the reward received at time t.

D. Representation of Q-Value Function

Q-learning requires an adequate representation for the Q-
value function. In our case, this representation is instance-
based [6]. The robot stores each of its experiences as a tuple
of state, action, and the Q-value obtained when performing the
action in that state. Because states and actions are relational
and stored uninstantiated, every stored experience is applicable
to a possibly infinite number of situations.
Given the current state, the robot has to retrieve estimates of

Q-values for actions from its experience. This is particularly
important when the robot has not previously visited the current
state. By doing so, the robot is able to leverage relevant prior
experience in a new situation, thereby improving its learning
performance.

To identify the experience most relevant to a state, we need
a similarity measure for states. Similarity is affected by the
state’s kinematic structure and by the properties of the links in
that structure. Neither of these aspects have to match perfectly
for the robot to retrieve relevant experience. We first describe
how unification is used to match properties of individual links
between the kinematic structure of the current state and the
state stored in the Q-value function. We then explain how
similarity between kinematic structures can be identified.
Let us assume the robot at time t has uncovered the

existence of three links (large, small, large), connected into
a serial chain by revolute joints; the corresponding relational
state description is

st = R(R(L(l, f1), L(s, f2)), L(l, f3)),

ignoring the background for simplicity. Further assume that the
Q-value function representation contains a single experience
with a structure/action/reward tuple

(s, a, r) = (R(R(L(s, v1), L(s, v2)), L(s, v3)), A(v3, 45◦), 1.6) .

The state s represents a serial chain with two revolute joints
and three small links. Note that the Q-value function does not
store the sets of features fi for each link but instead includes a
variable vi. This variable can now be instantiated by unifying
the memorized state s with the current state representation
st. Due to the different instantiation of link size, however,
unification fails in this case. We can still retrieve somewhat
less relevant experience by ignoring the link size. The resulting
unification leads to a binding of v3 ← f3. This instantiates
the action to A(f3, 45◦), telling the robot to push on the link
described by the visual features in f3 from 45◦ angle relative
to the principal axes of the feature set.
This example illustrated how the unification process pro-

gressively ignores the least discriminative property of links
until unification succeeds. We now explain how similar kine-
matic structures can be mapped onto each other to retrieve
relevant experience.
We saw in Section III that the relational representation of

kinematic structures is not unique. State st, for example, is
equivalent to R(L(l, f3), R(L(s, f2), L(l, f3))). We would like
to retrieve relevant experience in the presence of this ambi-
guity. Furthermore, for a state st = R(L(l, f1), L(l, f2)) we
would like to be able to leverage our experience by realizing
that L(l, f1) in st could represent R(L(l, f1), L(s, f2)) in s
before the additional degree of freedom was discovered.
To identify closely related kinematic structures, we repre-

sent a relational state as an undirected, labeled graph G =
(V,E). A vertex v ∈ V corresponds to a link. An edge e ∈ E
is labeled as either prismatic or revolute, corresponding to the
kinematic relationship between two links.
This graph representation naturally supports the desired

ability to retrieve relevant experience from the Q-value func-
tion, even for structure-preserving re-orderings of the rela-
tional representation as well as for super or sub-structures of
the current state. Given two graphs Gt and G corresponding
to st and s, we check for graph isomorphism to find exact
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structural matches and sub-matches, even when the relational
descriptions of the underlying structure vary. To determine par-
tial matches, we check for subgraph monomorphism between
Gt and G. In contrast to subgraph isomorphism, which is a
bijection, subgraph monomorphism is an injection, thus the
match is one-to-one but not onto.
When one or multiple graph matches exist, the robot re-

trieves the experience associated with the closest match. When
no graph match can be established or the action stored with
the matching state cannot be instantiated based on the match,
the robot is unable to retrieve relevant experience from the
Q-value function.
Each time the robot performs an action and receives a

reward, we store this experience in the instance-based Q-value
function. If an exact graph match exists between the current
state and a previously encountered state (graph isomorphism),
we update the existing memory entry with the new experience.
Otherwise, we add this experience as a new instance to the
representation of the Q-value function.
Subgraph monomorphism is an NP-complete problem.

However, efficient algorithms for small graphs exist [5]. Since
most real-world articulated objects posses a small number
of links, the theoretical computational complexity does not
impose any practical limitations on our approach.
Similar to other memory-based approaches to learning, our

approach may require large amounts of memory. Several meth-
ods to remedy this problem have been proposed, specifically
in the context of relational reinforcement learning [6]. We
believe that the consolidation of experiences based on domain-
specific generalization is an important issue for future research.
Ultimately, we expect to apply unification and graph matching
to the obtained experience in order to generate general manip-
ulation rules, greatly reducing the memory requirement of our
instance-based representation for the Q-value function.

E. Action Selection: Balancing Exploration and Exploitation

To learn an optimal policy, the robot has to balance explo-
ration and exploitation. Exploration refers to the execution of
an action to improve the Q-value function’s estimate of the
associated reward. Exploitation, in contrast, refers to action
selection based on maximizing reward. If the robot explores
too much, it will learn slowly. If it exploits too early, it will
perform poorly because it has not gathered enough experience.
We complete the description of our approach by explaining
how action selection during learning balances exploration and
exploitation.
When selecting an action for the current state, the robot can

either perform exploration by selecting a new action, or it can
use its experience with previously performed actions. In the
latter case, the robot again chooses between exploration and
exploitation. It can either perform exploitation by choosing
the most promising action based on its current estimates of
Q-values, or perform exploration in an attempt to improve the
current estimates of Q-values.
To decide if a new action should be executed (the first

trade-off), we compute the fraction φ of actions for which

the robot already has gathered experience. If a number drawn
uniformly at random from the interval [0, 1] is smaller than
e−βφ, the robot performs exploration (β = 2 in our exper-
iments). Otherwise it selects one of the actions associated
with state s. The selection among those actions represents
the second trade-off. We perform it using Interval Estimation
(IE) [11]. Intuitively, IE picks the action that still has the
highest potential to perform well. More advanced alternatives
to IE guarantee polynomial bounds on the resources required
to achieve near-optimal return [13].

VI. GROUNDING RELATIONAL REINFORCEMENT
LEARNING

The learning framework described in this paper is entirely
symbolic. To ground this framework, we have to link updates
to relational state descriptions to the perceptual capabilities of
the robot and actions performed by the robot to the relational
description of actions in the learning framework.
The state description is grounded using the perceptual skill

described in Section IV. When the perceptual discovers a new
link, observes internal motion of a link, or observes a different
kinematic relationship than the one represented in the state, the
relational state representation is updated. The state description
is also updated when new properties of links are perceived.
An action is grounded using the set of visual features fi

in the robot’s perceptual space. The relational action can be
translated into a force-controlled physical action that estab-
lishes contact with the table on the appropriate side of the point
cloud and then performs a compliant motion until contact with
the object is made and the desired motion is observed.
The task-specific grounding of state updates and the action

executions closes the loop between the physical world and the
learning framework. It ensures that the learned manipulation
experience is physically meaningful and can be translated back
into a useful physical action.

VII. EXPERIMENTAL VALIDATION

To demonstrate the effectiveness of our learning-based
approach to manipulation in unstructured environments, we
perform two types of experiments. First, we show that our
approach permits the learning of manipulation knowledge from
experience. Second, we show that the acquired experiences
transfer to previously unseen objects.

A. Experimental Setup

Our experimental evaluation requires a large number of
experiments. For practical reasons, we performed these ex-
periments in a simulated environment. Due to the robustness
of the perceptual skill described in Section IV and due
to the simplicity of force guided pushing required for our
experiments, we argue that our results remain valid in real-
world experiments. Our simulation environment is based on
the Open Dynamics Engine (ODE), a dynamics simulator. The
simulation includes gravity, friction, and non-determinacy.
In each experiment, the robot interacts with an articulated

object to extract its kinematic structure. Example objects are

258



given in Figures 3 and 4. Revolute joints are shown as red
cylinders, prismatic joints are represented by green boxes, and
links are shown in blue. Currently, our approach is limited
to planar objects. We also restrict our experimentation to
serial chains, even though our implementation handles branch-
ing mechanisms and loops. Perceptual information about the
manipulated objects is obtained from a simulation of the
perceptual skill described in Section IV [12]. We do not use the
simulator’s internal object representation to obtain information
of the object.
Each experiment consists of a sequence trials. For each trial

we report the average over 10 independent experiments. A
trial consists of a number of steps; in each step, the robot
applies a pushing action to the the articulated object. The trial
ends when an external observer signals that the obtained model
accurately reflects the kinematic structure of the articulated
object. The number of steps required to uncover the correct
kinematic structure measures the effectiveness with which the
robot accomplishes the task.
Each step of a trial can be divided into three phases. In

the first phase, the robot selects an action and a link with
which it wants to interact. The action is instantiated using the
current state and the experience stored in the representation of
the Q-value function. In the second phase, the selected action
is applied to the link, and the ODE simulator generates the
resulting object motion. The trajectories of the visual features
tracked by the perception skill are reported to the robot. In the
last phase, the robot analyzes the motion of visual features
and determines the kinematic properties of the rigid bodies
observed so far. These properties are then incorporated into
the robot’s current state representation. With each step, the
robot accumulates manipulation experiences that improves its
performance over time.
A trial ends when the kinematic model obtained by the robot

corresponds to the structure of the articulated object. In our
simulation experiments, an external supervisor issues a special
reward signal to end the particular trial. Note that such a super-
visor is not required for real-world experiments. The robot can
decide to perform manipulation based on incomplete available
information. If new kinematic information is discovered during
manipulation, the robot simply updates its kinematic model
and revises its manipulation strategy accordingly.

B. Learning Manipulation Knowledge

To demonstrate the ability of the proposed learning frame-
work to acquire relevant manipulation knowledge, we observe
the number of actions required to discover a kinematic struc-
ture. We compare the performance of the proposed grounded
relational reinforcement learning approach to a random action
selection strategy, using an object with seven degrees of
freedom and eight links (Fig. 3(a)). The resulting learning
curve is shown in Figure 3(b). Random action selection,
as to be expected, does not improve its performance with
additional trials. In contrast, action selection based on the
proposed relational reinforcement learning approach results in
a substantial reduction of the number of actions required to

correctly identify the kinematic structure. This improvement
already becomes apparent after about 20 trials. Using the
learning-based strategy, an average of 8 pushing actions is
required to extract the complete kinematic model, compared
to the approximately 20 pushing actions required with random
action selection. This corresponds to an improvement of 60%.
This first experiment demonstrates that our approach to

manipulation enables robots to acquire manipulation knowl-
edge and to apply this knowledge to improve manipulation
performance.

(a) Articulated object
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Fig. 3. Experiments with a planar kinematic structure with seven degrees of
freedom (RPRPRPR, R = revolute, P = prismatic). The learning curve for our
learning-based approach to manipulation (green solid line) converges to eight
required actions with a decreasing variance, representing an improvement of
60% over the random strategy (blue dashed line).

C. Transferring Manipulation Knowledge

To demonstrate that the manipulation experience acquired
with one object transfers to other objects, we observe the
number of actions required to discover a kinematic structure
with and without prior experience.
In the first transfer experiment, the robot gathers experience

with an articulated object with 5 degrees of freedom (see
Fig. 4(a)). After 50 trials, the robot is given a more complex
object with two additional degrees of freedom. The simple
structure is a sub-structure of the more complex one. We
compare the robot’s performance with that of a robot without
prior experience (see Fig. 4(a)). The robot with prior experi-
ence consistently outperforms the robot without experience.
Over the first ten trials, this performance improvement is
approximately 20%. In trials 10 to 40, the performance im-
provement is much smaller. Interestingly, as variance decreases
(the robot decreases its exploration rate), the performance of
the robot with experience again achieves a 20% performance

259



0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

22

Trials

# 
A

ct
io

ns

no experience
experience

(a) Learning curves for a robot with experience manipulating the PRPRP object on the left (solid green line) compared to an inexperienced robot (dashed
blue line). Both robots learn to acquire the kinematic structure of a more complex object (PRPRPRP, middle). Experience improves performance by 20%.
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(b) Learning curves for a robot with experience manipulating the RRRRR object on the left (solid green line) compared to an inexperienced robot (dashed
blue line). Both robots learn to acquire the kinematic structure of a simpler object (RRRR, middle). Experience leads to nearly immediate convergence.
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(c) Learning curves for a robot with experience manipulating the PRRRRP object on the left (solid green line) compared to an inexperienced robot (dashed
blue line). Both robots learn to acquire the kinematic structure of a simpler object (PRRP, middle). The simpler object is not a sub-structure of the complex
object. With experience, convergence is achieved in about five trials.

Fig. 4. Experimental validation of transfer of manipulation experience between different articulated objects.

improvement. We attribute this to the fact that some useful
manipulation strategies can more easily be discovered in the
smaller state space of the simpler structure.

In the second experiment, the robot learns to manipulate
a complex articulated object with 5 revolute joints. After 50
trials, the robot is given a slightly simpler structure that only
possesses four revolute joints. Again, the simpler structure is
a sub-structure of the more complex one. We compare the
robot’s performance after these initial 50 trials to another
robot’s performance without prior experience (see Fig. 4(b)).

Given prior experience, the robot achieves convergence almost
immediately. This corresponds to a performance improvement
of about 50% in the first trial, relative to the robot without
experience. After about ten trials, both robots converge to
approximately the same performance, which is to be expected
for simple structures that exclusively consist of revolute joints.

In the third experiment, the robot learns to manipulate an
articulated object with 6 degrees of freedom (see Fig. 4(c)).
After 50 trials, the robot is given a different structure that
is not a substructure of the other. We compare the robot’s
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performance after these initial 50 trials to another robot’s
performance without prior experience (see Fig. 4(c)). Again,
experience results in a much faster convergence (after only five
trials) towards about five required interactions. In addition, the
variance of successive trials is reduced. After about 15 trials,
both robots converge towards the same number of interactions.
Our experimental results provide strong evidence that learn-

ing from past experience can significantly improve manip-
ulation performance. We attribute the effectiveness of our
approach leverages to the proper, task-specific grounding of
our relational representation.

VIII. CONCLUSION

We proposed a learning-based approach for manipulation in
unstructured environments. We provide experimental evidence
that this approach enables robots to autonomously acquire
manipulation expertise by interacting with the environment.
This expertise transfers across different instances of the ma-
nipulation task and substantially improves manipulation per-
formance.
Learning and generalization of manipulation knowledge

becomes possible due to a relational representation of states
and actions. This representation reduces the state space and
renders relational reinforcement learning tractable, even in
complex manipulation domains. The power of this symbolic
representation is leveraged in the real world through careful
grounding of the symbols in the robot’s perceptual and inter-
active capabilities.
We validate the proposed approach in the context of

extracting kinematic models of articulated objects. This is
an important enabling skill for general manipulation in un-
structured environments, as all manipulation tasks require a
deliberate and purposeful change in the configuration of an
object and therefore knowledge of the kinematic model of an
object. We demonstrate that grounded relational reinforcement
learning substantially improves the robot’s performance in
this task. Our experiments show that appropriately grounded
relational reinforcement learning is a promising approach
towards endowing robots with manipulation skills adequate
for unstructured environments.
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Abstract—High performance, long-distance autonomous navi-
gation is a central problem for field robotics. Efficient navigation
relies not only upon intelligent onboard systems for perception
and planning, but also the effective use of prior maps and
knowledge. While the availability and quality of low cost, high
resolution satellite and aerial terrain data continues to rapidly im-
prove, automated interpretation appropriate for robot planning
and navigation remains difficult. Recently, a class of machine
learning techniques have been developed that rely upon expert
human demonstration to develop a function mapping overhead
data to traversal cost. These algorithms choose the cost function
so that planner behavior mimics an expert’s demonstration
as closely as possible. In this work, we extend these methods
to automate interpretation of overhead data. We address key
challenges, including interpolation-based planners, non-linear
approximation techniques, and imperfect expert demonstration,
necessary to apply these methods for learning to search for
effective terrain interpretations. We validate our approach on
a large scale outdoor robot during over 300 kilometers of
autonomous traversal through complex natural environments.

I. INTRODUCTION

Recent competitions have served to demonstrate both the
growing popularity and promise of mobile robotics. Although
autonomous navigation has been successfully demonstrated
over long distances through on-road environments, long dis-
tance off-road navigation remains a challenge. The varying
and complex nature of off-road terrain, along with different
forms of natural and man made obstacles, contribute to the
difficulty of this problem.
Although autonomous off-road navigation can be achieved

solely through a vehicle’s onboard perception system, both the
safety and efficiency of a robotic system are greatly enhanced
by prior knowledge of its environment. Such knowledge allows
high risk sections of terrain to be avoided, and low risk
sections to be more heavily utilized.
Overhead terrain data are a popular source of prior environ-

mental knowledge, especially if the vehicle has not previously
encountered a specific site. Overhead sources include aerial or
satellite imagery, digital elevation maps, and even 3-D LiDAR
scans. Much of this data is freely available at lower resolutions,
and is commercially available at increasing resolution.
Techniques for processing such data have focused primarily

on processing for human consumption. The challenge in using
overhead data for autonomous navigation is to interpret the
data in such a way as to be useful for a vehicle’s planning and
navigation system. This paper proposes the use of imitation
learning to train a system to automatically interpret overhead

data for use within an autonomous vehicle planning system.
The proposed approach is based on the Maximum Margin
Planning (MMP) [1] framework, and makes use of expert
provided examples of how to navigate using the provided data.
The next section presents previous work in off-road naviga-

tion from prior data. Section III presents the MMP framework,
and Section IV develops its application to this context. Results
are presented in Section V, and conclusions in Section VI.

II. OUTDOOR NAVIGATION FROM OVERHEAD DATA

At its most abstract level, the outdoor navigation problem
in mobile robotics involves a robot driving itself from a
start waypoint to a goal waypoint. The robot may or may
not have prior knowledge of the environment, and may or
may not be able to gather more environmental knowledge
during its traverse. In either case, there exists some form of
terrain model. For outdoor navigation, this is often a grid
representation of the environment, with a set of environmental
features at each grid cell.
The systems we consider in this work rely upon a planning

system to make navigation decisions. This system is respon-
sible for finding an optimal path that will lead the robot to
its goal. The naturally raises the question of how “optimal”
will be defined: is it the safest path, the fastest path, the
minimum energy path, or the most stealthy path? Depending
on the context, these are all valid answers; combinations of the
above are even more likely to be desired. In practice, planners
typically function by choosing the path with the minimum
score according to some scalar function of the environment
that approximates those metrics. Therefore, for a chosen met-
ric, the robot’s terrain model must be transformed into a single
number for every planner state: that state’s traversal cost. A
planner can then determine the optimal path by minimizing the
cumulative cost the robot expects to experience. Whether or
not this path achieves the designer’s desired behavior depends
on how faithfully the cost function, mapping features of the
environment to scalar traversal costs, reflects the designer’s
internal performance metric.
Previous work [2] [3] has demonstrated the effectiveness of

overhead data for use in route planning. Overhead imagery,
elevation maps, and point clouds are processed into features
stored in 2-D grids. These feature maps can then be converted
to traversal costs. Figure 1 demonstrates how this approach
can lead to more efficient navigation by autonomous vehicles.
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Fig. 1. The path traveled during two runs of an autonomous robot moving
from top-right to bottom left. The green run had no prior map, and made
several poor decisions that required backtracking. The red run had the prior
costmap shown at right, and took a more efficient route. Brighter pixels
indicate higher cost.

Despite good results, previous work has depended on hand
tuned cost functions. That is, an engineer manually determined
both the form and parameters of a function to map overhead
features to a single cost value, in an attempt to express a
desired planning metric. By far, human engineering is the
most common approach to generating cost functions. This
is somewhat of a black art, requiring a deep understanding
of the features being used, the metric to be optimized, and
the behavior of the planner. Making the situation worse,
determining a cost function is not necessarily a one time
operation. Each environment could have drastically different
overhead input data available. One environment may have
satellite imagery, another aerial imagery and an elevation map,
another may have multispectral imagery, etc. Therefore, an
entire family of cost functions is needed, and parameters must
be continually retuned.
One approach to simplifying this problem is to transform

the original “raw” feature space into a “cost” feature space,
where the contribution of each feature to cost is more intuitive.
Classifiers are a common example of this approach, where
imagery and other features are transformed into classifications
such as road, grass, trees, bushes, etc. However, the tradeoff
that is faced is a loss of information. Also, while the cost
functions themselves may be simpler, the mapping into this
new feature space now must be recomputed or retrained when
the raw features change, and the total complexity of the
mapping to cost may have increased.
Regardless of any simplifications, human engineering of

cost functions inevitably involves parameter tuning, usually
until the results are correct by visual inspection. Unfortunately,
this does not ensure the costs will actually reflect the chosen
metric for planning. This can be validated by planning some
sample start/goal waypoints to see if the resulting paths are
reasonable. Unreasonable plans result in changes to the cost
parameters. This process repeats, expert in the loop, until the
expert is satisfied. Often times, continual modifications take
the form of very specific rules or thresholds, for very specific

shortcomings of the current cost function. This can result in a
function with poor generalization.
Hidden in this process is a key insight. While experts have

difficulty expressing a specific cost function, they are good at
evaluating results. That is, an expert can look at the raw data
in its human presentable form, and determine which paths are
and are not reasonable. It is this ability of experts that will be
exploited for learning better cost functions.

III. MAXIMUM MARGIN PLANNING FOR LEARNING COST
FUNCTIONS

Imitation Learning has been demonstrated as an effective
technique for deriving suitable autonomous behavior from
expert examples. Previous work specific to autonomous nav-
igation [4, 5] has demonstrated how to learn mappings from
features of a state to actions. However, these techniques
do not generalize well to long range decisions, due to the
dimensionality of the feature space that would be required to
fully encode the such a problem.
A powerful recent idea for how to approach such long

range problems is to structure the space of learned policies to
be optimal solutions of search, planning or general Markov
Decision Problems [1, 6, 7] . The goal of the learning
procedure is then to identify a mapping from features of a state
to costs such that the resulting minimum cost plans capture
well the demonstrated behavior. We build on the approach of
Maximum Margin Planning (MMP) [1, 7], which searches for
a cost function that makes the human expert choices appear
optimal.
In this method, an expert provided optimal example serves

as a constraint on cost functions. If an example path is
provided as the best path between two waypoints, then any
acceptable cost function should cost the example as less then
or equal to all other paths between those two waypoints. By
providing multiple example paths, the space of possible cost
functions can be further constrained.
Our interest in this work is in applying learning techniques

to ease the development of cost functions appropriate for out-
door navigation. The approach to imitation learning described
above directly connects the notion of learning a cost function
to recovering demonstrated behavior. As we introduce new
techniques that improve performance in our application, we
sketch the derivation of the functional gradient version [8, 9]
of MMP below. This approach allows us to adapt existing,
off-the-shelf regression techniques to learn the potentially
complicated cost function, leading to a modular and simple
to implement technique.

A. Single Example
Consider a state space S, and a feature space F defined

over S. That is, for every x ∈ S, there exists a corresponding
feature vector Fx ∈ F . C is defined as a cost function over
the feature space, C : F → R+. Therefore, the cost of a state
x is C(Fx).
A path P is defined as a sequence of states in S that lead

from a start state s to a goal state g. The cost of P is simply
the sum of the costs of all states along the path.
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Fig. 2. Left: Example paths that imply different metrics (From top to bottom:
minimize distance traveled, stay on roads, stay near trees) Right: Learned
costmaps from the corresponding examples (brighter pixels indicate higher
cost). Quickbird imagery courtesy of Digital Globe, Inc.

If an example path Pe is provided, then a constraint on cost
functions can be defined such that the cost of Pe must be
lower cost than any other path from se to ge. The structured
maximum margin approach [1] encourages good generaliza-
tion and prevents trivial solutions (e.g. the everywhere 0 cost
function) by augmenting the constraint to includes a margin:
i.e. the demonstrated path must be BETTER than another path
by some amount. The size of the margin is dependent on the
similarity between the two paths. In this context, similarity is
defined by how many states the two paths share, encoded in a
function Le. Finding the optimal cost function then involves
constrained optimization of an objective functional over C

minO[C] = REG(C) (1)

subject to the constraints∑
x∈P̂

(C(Fx)− Le(x)) −
∑
x∈Pe

(C(Fx)) ≥ 0

∀P̂ s.t. P̂ �= Pe, ŝ = se, ĝ = ge

Le(x) =
{

1 if x ∈ Pe

0 otherwise

where REG is a regularization operator that encourages gen-
eralization in the the cost function C.
There are typically an exponentially large (or even infinite)

number of constraints, each corresponding to an alternate path.
However, it is not necessarily to enumerate these constraints.

For every candidate cost function, there is a minimum cost
path between two waypoints and at each step it is only
necessary to enforce the constraint on this path.
It may not always be possible to achieve all constraints

and thus a “slack” penalty is added to account for this. Since
the slack variable is tight, we may write an “unconstrained”
problem that captures the constraints as penalties:

minO[C] = REG(C)+
∑
x∈Pe

(C(Fx)) − min
P̂

∑
x∈P̂

(C(Fx)−Le(x))

(2)
For linear cost functions (and convex regularization) O[C] is
convex, and can be minimized using gradient descent. 1

Linear cost functions may be insufficient, and using the
argument in [8], it can be shown that the (sub-)gradient in
the space of cost functions of the objective is given by 2

(OF [C] =
∑
x∈Pe

δF (Fx) −
∑
x∈P∗

δF (Fx) (3)

Simply speaking, the functional gradient is positive at values of
F that the example path pass through, and negative at values
of F that the planned path pass through. The magnitude of
the gradient is determined by the frequency of visits. If the
example and planned paths agree in their visitation counts
at F , the functional gradient is zero at that state. Applying
gradient descent in this space of cost functions directly would
involve an extreme form of overfitting: defining a (potentially
unique) cost at every value of F encountered and involving
no generalization. Instead, as in gradient boosting [9] we take
a small step in a limited set of “directions” using a hypothesis
space of functions mapping features to a real number. The
result is that the cost function is of the form:

C(F ) =
∑

ηiRi(F ) (4)

where R belongs to a chosen family of functions (linear,
decision trees, neural networks, etc.) The choice of hypothesis
space in turn controls the complexity of the resulting cost
function. We must then find at each step the element R∗ that
maximizes the inner product 〈− ( OF [C], R∗〉 between the
functional gradient and elements of the space of functions we
are considering. As in [8], we note that maximizing the inner
product between the functional gradient and the hypothesis
space can be understand as a learning problem:

R∗ = argmax
R

∑
x∈Pe∩P∗

αxyxR(Fx) (5)

αx = | ( OFx
[C]| yx = −sgn((OFx

[C])

In this form, it can be seen that finding the projection of
the functional gradient essentially involves solving a weighted
classification problem. Performing regression instead of clas-
sification adds regularization to each projection [8].
Intuitively, the regression targets are positive in places the

planned path visits more than the example path, and negative

1Technically, sub-gradient descent as the function is non-differentiable
2Using δ to signify the dirac delta at the point of evaluation
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C0 = 1;
for i = 1...T do
D = ∅;
foreach Pe do
M =
buildCostmapWithMargin(Ci−1, se, ge,F);
P∗ = planPath(se, ge,M);
D = D

⋃
{Pe,−1};

D = D
⋃
{P∗, 1};

end
Ri = trainRegressor(F ,D);
Ci = Ci−1 ∗ eηiRi ;

end
Algorithm 1: The proposed imitation learning algorithm

in places the example path visits more than the planned path.
The weights on each regression target are the difference in
visitation counts. In places where the visitation counts agree,
both the target value and weight are 0. Pseudocode for the
final algorithm is presented in Algorithm 1.
Gradient descent can be understood as encouraging func-

tions that are “small” in the l2 norm. If instead, we consider
applying an exponentiated functional gradient descent update
as described in [7, 10] we encourage functions that are
“sparse” in the sense of having many small values and a few
potentially large values. Instead of cost functions of the form
in (4) this produces functions of the form

C(F ) = e
P

ηiRi(F ) (6)

This naturally results in cost functions which map to R+,
without any need for projecting the result of gradient descent
into the space of valid cost functions. We believe, and our
experimental work demonstrates, that this implicit prior is
more natural and effective for problems of outdoor navigation.

B. Multiple Examples

Each example path defines a constraint on the cost function.
However, it is rarely the case that a single constraint will
sufficiently inform the learner to generalize and produce
reasonable planner behavior for multiple situations. For this
reason, it is often desireable to have multiple example paths.
Every example path will produce its own functional gradient

as in (3). When learning with multiple paths, these individual
gradients can either be approximated and followed one at a
time, or summed up and approximated as a batch. To minimize
training time, we have chosen the later approach.
One remaining issue is that of relative weighting between

the individual gradients. If they are simply combined as
is, then longer paths will have a greater contribution, and
therefore a greater importance when balancing all constraints.
Alternatively, each individual gradient can be normalized, giv-
ing every path equal weight. Again, we have chosen the latter
approach. The intuition behind this is that every path is a single
constraint, and all constraints should be equally important.
However, this issue has not been thoroughly explored.

IV. APPLIED IMITATION LEARNING ON OVERHEAD DATA

At a high level, the application of this approach to overhead
data is straightforward. S is SE(2), with features extracted
from overhead data at each 2-D cell. Example paths are drawn
over this space by a domain expert. Paths can also be provided
by driving over the actual terrain, when access to the terrain
is possible before the learned map is required. However, there
are several practical problems encountered during application
of this algorithm that require solutions.

A. Adaptation to Different Planners

The algorithm suggested in the previous section requires
determining the visitation counts for each cell along both the
example and the current planned path. For some planners this
is straightforward; a simple A* planner visits each cell on the
path once. For other planners, it is not so simple. Since the
goal of this work is to learn the proper cost function for a
specific planner, planner details must be taken into account.
Many planners apply a configuration space expansion to an

input cost map before planning, to account for the dimensions
of the vehicle. When such an expansion does take place, it
must also be taken into account by the learner. For example, if
the planner takes the average cost of all cells within a window
around the current cell, then the visitation count of all the
cells within the same window must be incremented, not just
the current cell. If the expansion applies different weightings
to different cells within a window, then this weighting must
also be applied when incrementing the visitation counts.
More complicated planners may also require non-unit

changes to the visitation counts, regardless of an expansion.
For example the interpolated A* algorithm [11] used in
this work generates paths that are interpolated across cell
boundaries. Therefore, the distance traveled through a cell may
be anywhere in the interval (0,

√
2] (in cells) As the cost of

traveling through a cell under this scheme is proportional to
the distance traveled through the cell, the visitation counts
must also be incremented proportional to the distance traveled
through the cell.

B. Regressor Choice

The choice of regressor for approximating the functional
gradient can have a large impact on performance. Simple
regressors may generalize better, and complex regressors may
learn more complicated cost functions. This tradeoff must be
effectively balanced. As in a classification task, one way to
accomplish this is to observe performance on an independent
validation set of example paths.
Linear regressors offer multiple advantages in this context.

Aside from simplicity and good generalization, a weighted
combination of linear functions simply produces another linear
function. This provides a significant decrease in processing
time for repeated cost evaluations.
The MMPBoost [8] algorithm can also be applied. This

algorithm suggests using linear regressors, and then occasion-
ally performing a nonlinear regression. However, instead of
adding this nonlinear regressor directly to the cost function,
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Fig. 3. Top Left:The red path is an unachievable example path, as it will be
less expensive under any cost function to cut more directly accross the grass.
Bottom Left:With standard weighting, the unachievable example forces down
the cost of grass, and prevents the blue example from being achieved. Bottom
Right: Balanced weighting prevents this bias, and the blue path is achieved
Top Right: The ratio of the balanced to the standard costmap. The cost of
grass is higher in the balanced map.

it is added as a new feature for future linear regressors. In
this way, future iterations can tune the contribution of these
occasional nonlinear steps, and the ammount of nonlinearity
in the final cost function is tightly controlled.

C. Unachievable Example Paths

The derivations in Section III operate under the assumption
that the example paths are either optimal or are just slightly
sub-optimal, with the error being taken into the slack variables
in the optimization problem. In practice, it is often possible to
generate an example path such that no consistent cost metric
will make the example optimal.
Figure 3 provides a simple example of such a case. The

red example path takes a very wide berth around some trees.
All the terrain the path travels over is essentially the same,
and so will have the same cost. If the spacing the path gives
the trees is greater than the expansion of the planner, then
no cost function will ever consider that example optimal; it
will always be better to cut more directly across the grass.
In practice, such a case occurs in a small way on almost all
human provided examples. People rarely draw or drive perfect
straight lines or curves, and therefore generate examples that
are a few percent longer than necessary. Further, a limited set
of features and planner limitations mean that the path a human
truly considers to be optimal may not be achievable using the
planning system and features available to learn with.
It is interesting to note what happens to the functional

gradient with an unachievable example. Imagine an example
path that only travels through terrain with an identical feature
vector F ′. Under any cost function, the planned path will be
the shortest path from start to goal. But what if the example
path takes a longer route? The functional gradient will then be
positive at F ′, as the example visitation count is higher than
the planned. Therfore, the optimization will try to lower the

cost of F ′. At the next epoch, neither path will have changed.
So unachievable paths result in components of the functional
gradient that continually try to lower costs. These components
can counteract the desires of other, achievable paths, resulting
in worse cost functions (see Figure 3).
This effect can be counteracted with a small modification to

the learning procedure of the functional gradient. Simplifying
notation, define the negative gradient vector as

−(OF [C] = U∗ − Ue

Where U∗ and Ue are the visitation counts of the planned and
example paths, respectively.
Now consider a new gradient vector that looks at the feature

counts normalized by the length of the corresponding path

Gavg =
U∗
|P∗|

− Ue

|Pe|
(7)

In the unachievable case described above, this new gradient
would be zero instead of negative. That is, it would be satisfied
with the function as is. It can be shown that this new gradient
still correlates with the original gradient in other cases:

〈− (OF [C], Gavg〉 > 0

〈U∗ − Ue,
U∗
|P∗|

− Ue

|Pe|
〉 > 0

〈U∗, U∗〉 − 〈U∗, Ue〉
|P∗|

+
〈Ue, Ue〉 − 〈U∗, Ue〉

|Pe|
> 0

The term 〈U∗, Ue〉 can be understood as related to the
similarity in visitation counts between the two paths. If the
two paths visit terrain with different features, this term will
be small, and the inequality will hold. If the paths visit the
exact same features (U∗ = Ue) then the inequality does not
hold. This is the situation discussed above, where the gradient
is zero instead of negative.
In terms of the approximation to the gradient, this modifica-

tion suggest performing a balanced classification or regression
on the visitation counts as opposed to the standard, weighted
one. As long as the classifier can still separate between the
positive and negative classes, the balanced result will point in
the same direction as the standard one. When the classifier
can no longer distinguish between the classes, the gradient
will tend more to towards zero, as opposed to moving in the
direction of the more populous class (see Figure 3). This bal-
ancing also accomplishes the functional gradient normalization
between paths described in section III-B.

D. Alternate Examples

When example paths are unachievable or inconsistent, it
is often by a small amount, due to the inherent noise in
a human provided example. One way to address this is to
slightly redefine the constraints on cost functions. Instead of
considering an example path as indicative of the exact optimal
path, it can be considered instead as the approximately optimal
path. That is, instead of trying to enforce the constraint that no
path is cheaper than the example path, enforce the constraint
that no path is cheaper than the cheapest path that exists

266



completely within a corridor around the example path. With
this constraint, the new objective functional becomes

O[C] = min
P̂e

∑
x∈P̂e

C(Fx) − min
P̂

∑
x∈P̂

C(Fx)− Le(x) (8)

Where P̂e is the set of all paths within the example corridor.
The result of this new set of constraints is that the gradient
is not affected by details smaller than the size of the corridor.
In effect, this acts as a smoother that can reduce noise in the
examples. However, if the chosen corridor size is too large,
informative training information can be lost.
One downside of this new formulation is that the objective

functional is no longer convex (due to the first min term).
It is certainly possible to construct cases with a single path
where this new formulation would converge to a very poor
cost function. However, empirical observation has indicated
that as long as more than a few example corridors are used,
all the local minima achieved are quite satisfactory.
More complicated versions of this alternative formulation

are also possible. For instance, instead of a fixed width
corridor along the example path, a specified variable width
corridor could be used. This would allow example paths with
high importance at some sections (at pinch points) and low
importance elsewhere. Another version of this formulation
would involve multiple disjoint corridors. This could be used
if an expert believed there were two different but equally
desirable “best” paths from start to goal.

V. EXPERIMENTAL RESULTS

A. Algorithm Verification

In order to understand the performance of this approach, a
series of offline experiments was performed on real overhead
data. The dataset consisted of Quickbird satellite imagery and
a 3-D LiDAR scan with approximately 3 points per m2. The
metric used to evaluate the results of these experiments is
the average cost ratio over all paths. The cost ratio is the
cost of the example path over the cost of the planned path,
and is proportional to the normalized value of the objective
functional. As the cost function comes closer to meeting all
constraints, this ratio approaches 1. All experiments were
performed using linear regressors, unless otherwise stated.
1) Simulated Examples: In order to first verify the algo-

rithm under ideal conditions, tests were run on simulated
examples. A known cost function was used to generate a
cost map, from which paths between random waypoints were
planned. Different numbers of these paths were then used as
input for imitation learning, and the performance measured on
an independent test set of paths generated in the same manner.
Figure 4 shows the results using both the balanced and

standard weighting schemes. As the number of training paths
is increased, the test set performance continues to improve.
Each input path further constrains the space of possible cost
functions, bringing the learned function closer to the desired
one. However, there are diminishing returns as additional

Fig. 4. Learning with simulated example paths. Test set performance is
shown as a function of number of input paths.

Fig. 5. Learning with expert drawn example paths. Test set performance is
shown as a function of number of input paths.

paths overlap to some degree in their constraints. Finally, the
performance of the balanced and standard weighting schemes
is similar. Since all paths for this experiment were generated
by a planner, they are by definition optimal under some metric.
2) Expert Drawn Examples: Next, experiments were per-

formed with expert drawn examples. Figure 5 shows the results
of an experiment of the same form as that performed with
simulated examples. Again, the test set cost ratio decreases
as the number of training examples increases. However, with
real examples there is a significant difference between the two
weighting schemes. The balanced weighting scheme achieved
significantly better performance than the standard one. This
difference in performance is further shown in Figure 6. Both
the training and test performance are better with the bal-
anced weighting scheme. Further, with the standard weighting
scheme, the distribution of costs is shifted lower, due to the
negative contribution to the gradient of unachievable paths.
To demonstrate the differences in performance when using

different regressors, cost functions were trained using linear
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Fig. 6. Left: The training and test cost ratio, under both weighting schemes, as a function of the number of epochs of training. This test was run with 20
training and 20 test paths. Right: histogram of the costs produced by both weighting schemes. The standard weighting scheme produces lower costs.

Fig. 7. Improvement in final cost ratio as a function of the corridor size

regressors, and simple regression trees (maximum 4 leaf
nodes). The training/test cost ratio with linear regression was
1.23/1.35, and 1.13/1.61 with regression trees. This demon-
strates the lack of generalization that can occur with even
simple nonlinear regressors.
3) Corridor Constraints: A seres of experiments were

performed to determine the effect of using corridor constraints.
Figure 7 shows the results as a function of the corridor size
in cells. Small corridors provide an improvement over no
corridor. However, as the corridor gets too large, this improve-
ment disappears; large corridors essentially over-smooth the
examples. The improvement due to using corridor constraints
is larger when using the standard weighting scheme, as the
balanced scheme is more robust to noise in the examples.

B. Offline Validation

Next, experiments were performed in order to compare the
performance of learned costmaps with engineered ones. A cost
map was trained off of satellite imagery for an approximately

60 km2 size area. An engineered costmap had been previ-
ously produced for this same area to support the DARPA
UPI program (see section V-C). This map was produced by
performing a supervised classification of the imagery, and then
determining a cost for each class [3]. A subset of both maps
is shown in Figure 8.
The two maps were compared using a validation set of paths

generated by a UPI team member not directly involved in the
development of overhead costing. The validation cost ratio was
2.23 with the engineered map, and 1.63 with the learned map.

C. Online Validation

The learning system’s applicability to actual autonomous
navigation was validated through the DARPA UPI program.
These tests involved a six wheeled, skid steer autonomous
vehicle. The vehicle is equipped with laser range finders
and cameras for on-board perception. The perception system
produces costs that are merged with prior costs into a single
map. Due to the dynamic nature of this fused cost map, the
Field D* [11] algorithm is used for real-time global planning.
The full UPI Autonomy system is described in [12].
The entire UPI system was demonstrated during three large

field tests during the past year. Each of these tests consisted of
the vehicle autonomously traversing a series of courses, with
each course defined as a set of widely spaced waypoints. The
tests took place at different locations, each with highly varying
local terrain characteristics.
Previous to these latest tests, prior maps for the vehicle

were generated as described in [3]. Satellite Imagery and aerial
fixed wing LiDAR scans were used as input to multiple feature
extractors and classifiers. These features were then fed into a
hand tuned cost function. During these most recent three tests,
example paths were used to train prior cost maps from the
available overhead features. The largest map covered an area
of over 200 km2. Overall, learned prior maps were used during
over 300 km of sponsor monitored autonomous traverse.
In addition, two direct online comparisons were performed.
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Fig. 8. A 10 km2 section of a UPI test site. From left to right: Quickbird imagery, MMP Cost, and Engineered Cost

Experiment Total Net Avg. Total Cost Max Cost
Distance(km) Speed(m/s) Incurred Incurred

Experiment 1 6.63 2.59 11108 23.6
Learned
Experiment 1 6.49 2.38 14385 264.5
Engineered
Experiment 2 6.01 2.32 17942 100.2
Learned
Experiment 2 5.81 2.23 21220 517.9
Engineered
Experiment 2 6.19 1.65 26693 224.9
No Prior

TABLE I

These two tests were performed several months apart, at
different test sites. During these experiments, the same course
was run multiple times, varying only the prior cost map given
to the vehicle. Each run was then scored according to the
total cost incurred by the vehicle according to its onboard
perception system.
The results of these experiments are shown in Table I.

In both experiments, the vehicle traveled farther to complete
the same course using MMP trained prior data, and yet
incurred less total cost. Over both experiments, with each
waypoint to waypoint section considered an independent trial,
the improvement in average cost and average speed is statisti-
cally significant at the 5% and 10% levels, respectively. This
indicates that the terrain the vehicle traversed was on average
safer when using the learned prior, according to its own
onboard perception system. This normalization by distance
traveled is necessary because the learned prior and perception
cost functions do not necessarily agree in their unit cost.
The course for Experiment 2 was also run without any prior

data; the results are presented for comparison.

VI. CONCLUSION

This paper addresses the problem of interpreting overhead
data for use in long range outdoor navigation. Once provided
with examples of how a domain expert would navigate based
on the data, the proposed imitation learning approach can learn
mappings from raw data to cost that reproduce similar behav-
ior. This approach produces cost functions with less human
interaction than hand tuning, and with better performance in
both offline and online settings.

Future research will focus more on interactive techniques
for imitation learning. By specifically prompting an expert
with candidate waypoint locations, it is hoped that more
information can be derived from each path, thereby requiring
fewer examples. The adaptation of these techniques to an
onboard perception system will also be explored.
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Abstract—For robots operating in real-world envi-
ronments, the ability to deal with dynamic entities
such as humans, animals, vehicles, or other robots is
of fundamental importance. The variability of dynamic
objects, however, is large in general, which makes
it hard to manually design suitable models for their
appearance and dynamics. In this paper, we present an
unsupervised learning approach to this model-building
problem. We describe an exemplar-based model for
representing the time-varying appearance of objects
in planar laser scans as well as a clustering procedure
that builds a set of object classes from given training
sequences. Extensive experiments in real environments
demonstrate that our system is able to autonomously
learn useful models for, e.g., pedestrians, skaters, or
cyclists without being provided with external class
information.

I. Introduction

The problem of tracking dynamic objects and model-
ing their time-varying appearance has been studied ex-
tensively in robotics, engineering, the computer vision
community, and other areas. The problem is hard as
the appearance of objects is ambiguous, partly occluded,
may vary quickly over time, and is perceived via a high-
dimensional measurement space. On the other hand, the
problem is highly relevant in practice, especially in future
applications for mobile robots and intelligent cars. Con-
sider, for example, a service robot deployed in a populated
environment, e.g., a pedestrian precinct. A number of tasks
such as collision-free navigation or interaction require the
ability to recognize, distinguish, and track moving objects
including reliable estimates of object classes like ’adult’,
’infant’, ’car’, ’dog’, etc.

In this paper, we consider the problem of detecting,
tracking, and classifying moving objects in sequences
of planar range scans acquired by a laser sensor. We
present an exemplar-based model for representing the
time-varying appearance of moving objects as well as a
clustering procedure that builds a set of object classes
from given training sequences in conjunction with a Bayes
filtering scheme for classification. The proposed system,
which has been implemented and tested on a real robot,
does not require labeled object trajectories, but rather
uses an unsupervised clustering scheme to automatically
build appropriate class assignments. By pre-processing the
sensor stream using state-of-the-art feature detection and
tracking algorithms, we achieve a system that is able to

Fig. 1. Five examples of relevant object classes considered in this
paper. Our proposed system learns probabilistic models of their ap-
pearance in planar range scans and the corresponding dynamics. The
classes are denominated Pedestrian (PED), Buggy (BUG), Skater
(SKA), Cyclist (CYC), and Kangaroo-shoes (KAN).

learn and re-use object models on-the-fly without human
intervention. The resulting set of object models can then
be used to (1) recognize previously seen object classes
and (2) improve data segmentation and association in am-
biguous multi-target tracking situations. We furthermore
believe that the object models may be used in various
applications to associate semantics with recognized objects
depending on their classes.

II. Related Work

Exemplar-based models are frequently applied in com-
puter vision systems for dealing with the high dimension-
ality of visual input. Toyama and Blake [1], for instance,
used probabilistic exemplar models for representing and
tracking human motion. Their approach is similar to ours
in that they also learn probabilistic transition models. As
the major differences, the range-bearing observations used
in this work are substantially more sparse than visual
input and we also address the problem of learning different
object classes in an unsupervised way. Plagemann et al. [2]
used exemplars to represent the visual appearance of 3D
objects in the context of an object localization framework.
Krüger et al. [3] learned exemplar models to realize a
face recognition system for video streams. Exemplar-based
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approaches have also been used in other areas such as
action recognition [4] or word sense disambiguation [5].

There exists a large body of work on laser-based object
and people tracking in the robotics literature [6, 7, 8,
9, 10]. People tracking typically requires carefully engi-
neered or learned features for track identification and data
association and often a-priori information about motion
models. This has been shown to be the case also for
geometrically simpler and rigid object such as vehicles in
traffic scenarios [11]. Cui et al. [12] describe a system for
tracking single persons within a larger set of persons, given
the relevant motion models are known.

The work most closely related to ours has recently been
presented by Schulz [13], who combined vision- and laser-
based exemplar models to realize a people tracking system.
In contrast to his work, our main contribution is the
unsupervised learning of multiple object classes that can be
used for tracking as well as for classifying dynamic objects.

Periodicity and self-similarity have been studied by Cut-
ler and Davis [14], who developed a classification system
based on the autocorrelation of appearances, which is able
to distinguish, for example, walking humans from dogs.

A central component of our approach detailed in the
following section is an unsupervised clustering algorithm
to produce a suitable set of exemplars. Most approaches to
cluster analysis [15] assume that all data is available from
the beginning and that the number of clusters is given.
Recent work in this area also deals with sequential data
and incremental model updates [16, 17]. Ghahramani [18]
gives an easily accessible overview of the state-of-the-art
in unsupervised learning.

As an alternative to the exemplar-based approach, re-
searchers have applied generic dimensionality reduction
techniques in order to deal with high-dimensional and/or
dynamic appearance distributions. PCA and ICA have,
for example, been used to recognize people from iris
images [19] or their faces [20]. Recent advances in this area
include Isomap [21] and latent variable models, such as
GP-LVM [22]. For more details on dimensionality reduc-
tion, we refer to standard text books like [23].

III. Modeling Object Appearance and

Dynamics Using Exemplars

Exemplar models are non-parametric representations for
both, appearance and appearance dynamics. They are a
choice consistent with the motivation for an unsupervised
learning approach avoiding manual feature selection, pa-
rameterized physical models (e.g., human gait models) and
hand-tuned classifier creation.

This section describes how the exemplar-based models
of dynamic objects are learned. Based on a segmentation
and tracking system presented in Section VI, we assume to
have a discrete track for each dynamic object in the current
scene. Over time, these tracks describe trajectories that we
analyze regarding the object’s appearance and dynamics.

A. Problem Description
The problem we address in this work can be formally

stated as follows. Let T = 〈Z1, . . . , Zm〉 be a track, i.e., a
time-indexed observation sequence of appearances Zt, t =
1, . . . ,m, of an object belonging to an object class C. Then
we face the following two problems:
1) Unsupervised learning: Given a set of observed

tracks T = {T1, T2, . . . }, learn object classes
{C1, . . . , Cn} in an unsupervised manner. This
amounts to setting an appropriate number n of classes
and to learn for each class Cj a probabilistic model
p(T | Cj) that characterizes the time-varying appear-
ance of tracks T associated with that class.

2) Classification: Given a newly observed track T and
a set of known object classes C = {C1, . . . , Cn},
estimate the class probabilities p(Cj | T ) for all
classes.

Note that ’unsupervised’ in this context shall not mean
that all model parameters are learned from scratch, but
rather that just the important class information (e.g.
’pedestrian’) is not supplied to the system. The underlying
segmentation, tracking, and feature extraction subsystems
are designed to capture a wide variety of possible object
appearances and the unsupervised learning task is to
build a compact representation of object appearance that
generalizes well across instances.

B. The Exemplar Model
Exemplar models [1] aim at approximating the typically

high-dimensional and dynamic appearance distribution
of objects using a sparse set E = {E1, . . . , Er} of sig-
nificant observations Ei, termed exemplars. Similarities
between concrete observations and exemplars as well as
between two exemplars are specified by a distance function
ρ(Ei, Ej) in exemplar space. Furthermore, each exemplar
is given a prior probability πi = p(Ei), which reflects
the prior probability of a new observation being asso-
ciated with this exemplar. Changes in appearance over
time are dealt with by introducing transition probabilities
p(Ei | Ej) between exemplars w.r.t. a predefined iteration
frequency. Formally, this renders the exemplar model a
first-order Markov chain, specified by the four elements
M = (E , B, π, ρ), which are the exemplar set E , the transi-
tion probability matrix B with elements bi,j = p(Ei | Ej),
the priors π, and the distance function ρ. All these com-
ponents can be learned from data, which is a central topic
of this paper.

C. Exemplars for Range-Bearing Observations
In a laser-based object tracking scenario, the raw laser

measurements associated with each track constitute the
objects’ appearance Z = {(αi, ri)}li=1, where αi is the
bearing, ri is the range measurement, and l is the number
of laser end points in the respective laser segment.

To cluster the laser segments into exemplars, the indi-
vidual laser segments need to be normalized with respect
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Fig. 2. Pre-processing steps illustrated with a pedestrian observed
via a laser range finder. First, the segmentation and tracking system
yields estimates of the objects’ location, orientation and velocity
(top). Second, the raw range readings are normalized such that the
estimated direction of motion is zeroed (bottom left). Third, a grid-
based representation is generated from the set of normalized laser
end points (bottom right).

to rotation and translation. This is achieved using the
object’s state information estimated by the underlying
tracker. Here, the state of a track x = (x, y, vx, vy)T is
composed of the position (x, y) and the velocities (vx, vy).
The velocity vector can then be used to obtain the object’s
heading. Translational invariance is achieved by shifting
the segment’s center of gravity to (0, 0), rotational invari-
ance is gained from zeroing the orientation in the same
way. After normalization, all segments appear in a fixed
position and orientation.

Rather than using the raw laser end points of the
normalized segments as exemplars (see Schulz [13]), we
integrate the points into a regular metric grid. This is
done by adding l Gaussian density functions centered at
the beam end points to the grid. The main advantage of
this approach is that the distance function for exemplars
can be defined independently of the number of laser end
points in the segment and that likelihood estimation for
new observations can be performed easily and efficiently.
We will henceforth denote the grid representation of an
appearance Zi as Gi. Figure 2 shows an example of a track,
a laser segment corresponding to a walking pedestrian, the
normalized segment, and the corresponding grid.

D. Validation of the Exemplar Approach
Obviously, the exemplar representation has a strong

impact on both the creation of the exemplar set from a
sequence of appearances and the unsupervised creation
of new object classes. This motivates a careful analysis
of the choices made. To identify the general usefulness of
the exemplar model described above, we analyzed the self-
similarity of exemplars for tracks of objects from relevant
object classes. For this purpose, we define the similarity
St1,t2 of two observations obtained at times t1 and t2 as
the absolute correlation

St1,t2 :=
∑

(x,y)∈B
| Gt1(x, y)−Gt2(x, y) | , (1)

where B is the bounding box of the grid-based represen-
tations of the observations Zt1 and Zt2 .

Fig. 3. Trajectory (left) and self-similarity matrix (right) of a
pedestrian walking in a large hallway. The track consist of 387
observations.

Figure 3 visualizes the self-similarity of a pedestrian
over a sequence of 387 observations. Both axes of the
self-similarity matrix (Fig. 3, right) show time with t1
horizontally and t2 along the vertical axis. The colors
that encode self-similarity range from green to black where
green stands for maximal, black for minimal correlation.
The diagonal is maximal by definition as the distance of
an observation to itself is zero.

We clearly recognize a periodicity across the entire
matrix that is caused by the strong self-similarity of the
pedestrian’s appearance along the trajectory. This is not
self-evident as the appearance of the walking person in
laser data changes with the heading of the person relative
to the sensor. Poor normalization (e.g., by inaccurate
heading estimates of the underlying tracker) or a poor ex-
emplar representation (e.g., too sensitive to measurement
noise) could have failed to produce a good self-similarity.
We conclude from this analysis that the normalization
and the grid-based exemplar representation have good
invariance properties, such that a compact representation
of trajectories can be achieved.

E. Learning the Exemplar Model

This section describes how the exemplar model is
learned from observation sequences. This involves the
exemplar set E , the prior probabilities πi and the transition
probabilities p(Ei | Ej).

1) Exemplar Set: Exemplars are representations that
generalize typical object appearances. To this aim, similar
appearances are associated and merged into clusters. We
used k-means clustering [15] to partition the full data set
into r clusters P1,P2, . . . ,Pr.

Strong outliers in the training set—which cannot be
merged with other observations—are retained by the clus-
tering process as additional, non-representative exemplars.
Such observations may occur for several reasons, e.g., when
a tracked object performs atypical movements, when the
underlying segmentation method fails to produce a proper
foreground segment, or due to sensor noise. To achieve
robustness with respect to such outliers, we accept an
exemplar only if it was created from a minimum number
of observations. This assures that the resulting exemplars
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Fig. 4. Example clusters of a pedestrian. The diagram shows the
centroids of two clusters (exemplars) each created from a set of 5
observations.

characterize only states of the appearance dynamics that
occur often and are representative.

2) Transition Probabilities: Once the clustered exem-
plar set has been generated from the training set, the
transition probabilities between exemplars can be learned.
As defined in Sec. III-B, we model the dynamics of
an object’s appearance using a Hidden Markov model
(HMM). The transition probabilities are obtained by pair-
wise counting. A transition between two exemplars Ei and
Ej is counted each time when an observation that has
minimal distance to Ei is followed by an observation with
minimal distance to Ej . As there is a non-zero probability
that some transitions are never observed although they
exist, the transition probabilities are initialized with a
small value to moderately smooth the resulting model.

3) Distance Function: We assess the similarity of two
observations Zi and Zj based on a distance function
applied to the corresponding grid-based representations Gi

andGj . Interpreting the grids as histograms we employ the
Euclidean distance for this purpose:

ρe(Gi, Gj) =
√∑

(x,y)

(Gi(x, y)−Gj(x, y))
2 (2)

IV. Classification

Having learned the exemplar set and transition proba-
bilities as described in the previous section, they can be
used to classify tracks of different objects in a Baysian
filtering framework. More formally, given the grid repre-
sentations 〈G1, . . . , Gm〉 of the observations of a track T
and a set of learned classes C = {C1, . . . Cn}, we want to
estimate the class probabilities pt(Ck | T )nk=1 for every
time step t. The estimates for the last time step m then
reflect the consistency of the whole track with the different
exemplar models. These quantities can thus be used to
make classification decisions.

A. Estimating Class Probabilities over Time
Each exemplar model Mi represents the distribution

of track appearances for its corresponding object class
Ci. Thus, a combination of all known exemplar models
Mcomb = {M1, . . .Mn} covers the whole space of possible
appearances – or, more precisely, of all appearances that
the robot has seen in the training phase. We construct

Fig. 5. Laser-based exemplar model of a pedestrian. The transition
matrix is shown in the center with the exemplars sorted counterclock-
wise according to their prior probability.

the exemplar set Ecomb of Mcomb by simply building the
union set of the individual exemplar sets Ek of all models
Mk. The transition probability matrix Bcomb as well as
the exemplar priors πcomb can be obtained from the Bk

matrices and the πk in a straight forward way since the
corresponding exemplar sets do not intersect.

Given this combined exemplar model, a belief function
Belt for the class probabilities pt(Ck | T )nk=1 can be
updated recursively over time using the well-known Bayes
filtering scheme. For better readability, we introduce the
notation Ek

i to refer to the ith exemplar of model Mk.
According to the Bayes filter, the belief about object
classes is initialized as,

Bel0(Ek
i ) = p(Mk) · πki , (3)

where πki denotes the prior probability of Ek
i and p(Mk)

stands for the model prior, which can be estimated from
the training set. Starting with G1, we now perform the
following recursive update of the belief function for every
Gt:

Belt(Ek
i ) = ηt · p(Gt | Ek

i ) (4)

·
∑
k

∑
j

p(Ek
i | El

j) · Belt−1(El
j)

Here, the normalizing factor ηt is calculated such that∑
i,k

Belt(Ek
i ) = 1. (5)

The estimates Belt(Ek
i ) of exemplar probabilities at

time t can be summed up to yield the individual class
probabilities

pt(Mk | T ) =
∑
i

Belt(Ek
i ) . (6)

At time t = m, that is, when the whole observation
sequence has been processed, pm(Mk | T ) constitute
the resulting estimates of the class probabilities of our
proposed model. In particular, we define

Mbest(T ) := argmaxk pm(Mk | T ) (7)

273



Fig. 6. The figure shows a typical probability evolution of a
successfully classified pedestrian. The x-axis refers to the time t. The
graphs show the probabilities of different classes. The red one belongs
to the pedestrian class.

as the most likely class assignment for track T . To visualize
the filtering process described above, we give an example
run for a pedestrian track T in Fig. 6 and plot the class
probabilities for five alternative object classes over time.

V. Unsupervised Learning Of Object Classes

As the variety of dynamic objects in the world is hard
to predict a-priori, we seek to learn such objects without
external class information. In this section we explain how
the creation of new classes is handled in the unsupervised
case.

Objects of a previously unknown type will always be
assigned to some class by the Bayes filter. The class with
the highest resulting probability estimate provides the
current best, yet suboptimal description of the object at
the time. A better fit would always be achieved by cre-
ating a new, specifically trained model for this particular
object instance. Thus, we are faced with the classic model
selection problem, i.e., choosing between a more compact
vs. a more precise model for explaining the observed data.
As a selection criterion, we employ the Bayes factor [24]
which considers the amount of evidence in favor of a model
relative to an alternative one.

More formally, given a set of known classes C =
{C1, . . . , Cn} and their respective models {M1, . . . ,Mn},
let T be the track of an object to be classified. We
determine the best matching model Mbest(T ) and learn a
new, fitted model Mnew(T ). To decide whether T should
be added to Mbest(T ) or rather to Mnew(T ) by adding
a new object class Cnew to the existing set of classes,
we calculate the model probabilities p(Mbest(T ) | T ) and
p(Mnew(T ) | T ) using the Bayes filter. The ratio of these
probabilities yields the factor

K =
p(Mnew(T ) | T )
p(Mbest(T ) | T )

, (8)

that quantifies how much better the fitted model describes
this object instance relative to the existing, best matching
model. While large values for a threshold on K favor more
compact models (less classes and lower data-fit), lower
values lead to more precise models (more classes, in the

K ≥ 1 K ≥ 2 K ≥ 4 K ≥ 8 K ≥ 20

PED/PED 41% 2% 0% 0% 0%

SKA/SKA 58% 7% 0% 0% 0%

CYC/CYC 79% 32% 14% 10% 8%

BUG/BUG 78% 47% 21% 9% 1%

KAN/KAN 60% 40% 21% 11% 3%

PED/KAN 46% 3% 0% 0% 0%

PED/SKA 100% 83% 40% 10% 0%

CYC/BUG 100% 100% 100% 99% 50%

BUG/KAN 100% 100% 100% 100% 82%

CYC/KAN 100% 100% 100% 98% 92%

TABLE I

Percentages of incorrectly (top five rows) and correctly

(bottom five rows) separated track pairs. A Bayes-Factor is

sought that trades off separation of tracks from different

classes and association of tracks from the same class.

extreme case overfitting the training set). As alternative
model selection criteria, one could use, e.g., the Bayesian
Information Criterion (BIC), or Akaike Information Cri-
terion (AIC), or various others. The comparison of these
criteria to K [see Eq. (8)], which worked well in our
experiments, is not part of this work.

We now describe how the threshold for K can be
learned, such that the system achieves similar classification
results as a human. Interestingly, our learned thresh-
old for K coincides with the interpretation of “substan-
tial evidence against the alternative model” of Kass and
Raftery [24]. Note that fitting the threshold K to a labeled
data-set does not render our approach a supervised one,
since no specific class labels are supplied to the system.
This step can rather be compared to learning regulariza-
tion parameters in alternative models to balance data-fit
against model complexity.

Concretely, for determining a suitable threshold on K,
we collected a training set of pedestrian, skater, cyclist,
buggy, and kangaroo instances. We first compared the best
models and the fitted models of objects of the same class
and calculated the factors K according to Eq. (8). Then
we made the same comparison with objects of different
classes with randomly selected tracks. Table I gives the
relative amount of compared pairs for which different
values of K—ranging from 1 to 20—were exceeded. It can
be seen that, e.g., for K ≥ 4, all pedestrians are merged
to the same class (PED/PED), but also that there is a
poor separation (40%) between pedestrians and skaters
(PED/SKA). Given this set of tested thresholds K, the
best trade-off between precision and recall is achieved
between K ≥ 2 and K ≥ 4. We therefore chose K ≥ 3.

VI. Segmentation and Tracking

The segmentation and tracking system takes the raw
laser scans as input and produces the tracks with asso-
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Fig. 7. Top left to bottom right: Typical exemplars of the classes
pedestrian, skater, cyclist, buggy and kangaroo. Direction of motion
is from left to right. Pedestrians and skaters have very similar
appearance but differ in their dynamics. Pedestrians and subjects on
kangaroo-shoes have a similar dynamics but different appearances
(mainly due to metal springs attached at the backside of the shoes).
We use both information to classify these objects.

ciated laser segments for the exemplar generation step.
To this end, we employ a Kalman filter-based multi-
target tracker with a constant velocity motion model. The
observation step in the filter amounts to the problem
of partitioning the laser range image into segments that
consist in measurements on the same dynamic objects
and to estimate their center. This is done by subtracting
successive laser scans to extract beams that belong to
dynamic objects. If the beam-wise difference is above the
sensor noise level, the measurement is marked and grouped
into a segment with other moving points in a pre-defined
radius.

We compared four different techniques to calculate the
segment center: mean, median, average of extrema, and
the center of a circle fitted through the segments points
(for the latter the closed-form solutions from [10] were
taken). The last approach leads to very good results when
tracking pedestrians, skaters, and people on kangaroo
shoes but fails to produce good estimates with person
pushing a buggy and cyclists. The mean turned out to
be the smoothest estimator of the segment center.

Data association is realized with a modified Nearest
Neighbor filter. It was adapted so as to associate multiple
observations to a single track. This is necessary to cor-
rectly associate the two legs of pedestrians, skaters, and
kangaroo shoes that appear as nearby blobs in the laser
range image. Although more advanced data association
strategies, motion models or segmentation techniques have
been described in the related literature, the system was
useful enough for the purposes of this paper.

VII. Experiments

We experimentally evaluated our approach with five
object classes: pedestrian (PED), skater (SKA), cyclist
(CYC), person pushing a buggy (BUG), and people on
kangaroo-shoes (KAN), see Fig. I. We recorded a total
of 436 tracks of subjects belonging to one of the five
classes. The sensor was a SICK LMS291 laser range finder
mounted at a height of 15 cm above ground. The tracks
include walking and running pedestrians, skaters with
small, wide, or no pace (just rolling), cyclists at slow and
medium speeds, people pushing a buggy, and subjects

Classes PED SKA CYC BUG KAN

Pedestrian 92.8% 7.2% 0% 0% 0%

Skater 5.4% 94.6% 0% 0% 0%

Cyclist 0% 0% 90.8% 1.5% 7.7%

Buggy 0% 0% 0% 97.9% 2.1%

Kangaroo 12.5% 0% 0% 0% 87.5%

TABLE II

Classification rates in the supervised case. Rows denote

ground truth and columns the classification results.

on kangaroo shoes that walk slowly and fast. Note that
pedestrians, skaters, and partly also kangaroo shoes have
very similar appearance in the laser data but differ in their
dynamics. See Fig. 7 for typical exemplars of each class.

A. Supervised Learning Experiments

In the first group of experiments, we test the classifi-
cation performance in the supervised case. The training
set was composed of a single, typical track for each class
including their labels PED, SKA, CYC, BUG, or KAN.
The exemplar models were then learned from these tracks.
Based on the resulting prototype models, we classified the
remaining 431 tracks. The results are shown in Tab. II.

Pedestrians are classified correctly in 92.8% of the cases
whereas 7.2% are found to be skaters. A manual analysis
of these 7.2% revealed that the misclassification occurred
typically with running pedestrians whose appearance and
dynamics resemble those of skaters. We obtain a rate of
94.6% for skaters with 5.4% falsely classified as pedestri-
ans. The latter group was found to skate slower than usual
with a small pace, thereby resembling pedestrians. Cyclists
are classified correctly in 90.8% of the cases. None of
them was wrongly recognized as pedestrians or skaters. It
appeared that the bicycle wheels produced measurements
that resemble subjects on kangaroo shoes taking big steps.
This lead to a rate of 7.7% of cyclists falsely classified as
kangaroo shoes. There was one cyclist (1.5%), that was
classified to belong to the buggy class. A percentage of
97.9% of the buggy tracks were classified correctly. Only
one (2.1%) was found to be a subject on kangaroo-shoes.
In this particular case, the track contained measurements
with the buggy’s front partially outside the sensor’s field
of view with two legs of the person still visible. Subjects on
kangaroo shoes were correctly recognized at a rate of 87.5%
with 12.5% of the tracks wrongly classified as pedestrians.
A manual analysis revealed that the latter group consisted
mainly of kangaroo shoe novices taking small steps thereby
appearing like pedestrians.

Given the limited information in the laser data and
the high level of self-occlusion of the objects, the results
demonstrate that our exemplar models are expressive
enough to yield high classification rates. Misclassifications
typically occur at boundaries where objects of different
classes appear or move similarly.
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Classes PED SKA CYC BUG KAN

class 1 (209) 187 5 0 0 17 “PED”

class 2 (114) 7 107 0 0 0 “SKA”

class 3 ( 41 ) 0 0 41 0 0 “CYC”

class 4 ( 23 ) 0 0 23 0 0 “CYC”

class 5 ( 26 ) 0 0 1 25 0 “BUG”

class 6 ( 23 ) 0 0 0 23 0 “BUG”

total (436) 194 112 65 48 17

TABLE III

Unsupervised learning results. Rows contain the learned

classes, columns show the number of classified objects. The

last column shows the manually added labels, the last row

holds the total number of tracks of each class.

B. Unsupervised Learning Experiments

In the second experiment the classes were learned in an
unsupervised manner. The entire set of 436 tracks from all
five classes was presented to the system in random order.

Each track was either assigned to an existing class or
was taken as basis for a new class according to the learning
procedure described above. As can be seen in Tab. III, six
classes have been generated for our data set: one class for
pedestrians (PED), one for skaters (SKA), two for cyclists
(CYC), two for buggies (BUG), and none for kangaroo
shoes (KAN).

Class number one (labeled PED) contains 187 pedes-
trian tracks (out of 194), 5 skater tracks and 17 kangaroo
tracks resulting in a true positive rate of 89.5%. Class
number two (labeled SKA) holds 107 skater tracks (out
of 112) and 7 pedestrian tracks yielding a true positive
rate of 93.9%. Given the resemblance of pedestrians and
skaters, the total number of tracks and the extent of intra-
class variety, this is an encouraging result that shows the
ability of the system to discriminate objects that vary
predominantly in their dynamics.

Classes number three and four (labeled CYC) contain
41 and 23 cyclist tracks respectively. No misclassifications
occurred. The last two classes, number five and six (labeled
BUG), hold 25 and 23 buggy tracks with a bicycle track
as the single false negative in class number five. The
representation of cyclists and buggies by two classes is
due to the larger variability in their appearance and more
complex dynamics. The discrimination from the other
three classes is exact—no pedestrians, skaters, or subjects
on kangaroo shoes were classified to be a cyclist or a buggy.

The system failed to produce a class for subjects on
kangaroo shoes as all instances of the latter class were
summarized in the pedestrian class. The best known model
for all 17 kangaroo tracks was always class number one
which has previously been created from a pedestrian track.
This results in a false negative rate of 8.1% from the
view point of the pedestrian class. The result confirms the
outcome in the supervised experiment where the highest

Fig. 8. Analysis of the track velocities as alternative features for
classification. While high and low velocities are strong indicators for
certain classes, there is a high level of confusion in the medium range.

misclassification rate (12.5%) was found to be between
pedestrians and subjects on kangaroo shoes (see Tab. II).

C. Analysis of Track Velocities
The data set of test trajectories that was used in our

experiments contains a high level of intra-class variation,
like for example skaters moving significantly slower than
average pedestrians or even pedestrians running at double
their typical velocity. To visualize this diversity and to
show that simple velocity-based classification would fail,
we calculated a velocity histogram for the classes PED,
SKA, and CYC. For every velocity bin, we calculated the
entropyH(vi) =

∑3
j=1(p(cj |vi)·log p(cj |vi)) and visualized

the result in Fig. 8. Note that the uniform distribution
over three classes, which corresponds to random guessing,
has an entropy of 3 · (1/3 · log(1/3)) ≈ −0.477, which is
visualized by a straight, dashed line. As can be seen from
the diagram, high and low velocities are strong indicators
for certain classes while there is a high level of confusion
in the medium range.

D. Classification with a Mobile Robot
An additional supervised and an unsupervised exper-

iment was carried out with a moving platform. A total
of 12 tracks has been collected: 3 pedestrian tracks, 5
skater tracks and 4 cyclist tracks (kangaroo shoes and
buggies were unavailable for this experiment). The robot
moved with a maximal velocity of 0.75 m/s and an average
velocity of 0.35 m/s. A typical robot trajectory is depicted
in Fig. 9.

For the supervised experiment, the trained models from
the supervised experiment in Sec. VII-A have been reused
to classify the tracks collected from the moving platform.

TABLE IV

Averaged classification probabilities for the supervised

experiment with the moving platform. All objects have been

classified correctly.

Classes PED SKA CYC BUG KAN

Pedestrian 0.99 0 0 0 0.01

Skater 0.12 0,87 0 0 0.01

Cyclist 0.01 0 0.90 0.07 0.02
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Fig. 9. Trajectory of the robot (an ActivMedia PowerBot) and a
pedestrian over a sequence of 450 observations.

All objects were classified correctly by the moving robot.
Table IV contains the classification probabilities of Eq. (6)
(t being the track length), averaged over all tracks in
the respective class. The last two columns contain the
probabilities for the classes BUG and KAN, all being close
to zero. The lowest classification probability in this exper-
iment was a skater track which still had the probability
0.76 of being a skater.

In the unsupervised experiment, the tracks have been
presented to the system in random order without prior
class information. The result was exact: three classes have
been created that each contain the tracks of the same
object category.

VIII. Conclusions and Outlook

We have presented an unsupervised learning approach
to the problem of tracking and classifying dynamic objects.
In our framework, the appearance of objects in planar
range scans is represented using a probabilistic exemplar
model in conjunction with a hidden Markov model for
dealing with the dynamically changing appearance over
time. Extensive real-world experiments including more
than 400 recorded trajectories show that (a) the model
is expressive enough to yield high classification rates in
the supervised learning case and that (b) the unsupervised
learning algorithm produces meaningful object classes
consistent with the true underlying class assignments.
Additionally, our system does not require any manual class
labeling and runs in real-time.

In future research, we first plan to strengthen the
interconnection between the tracking process and the
classification module, i.e., to improve segmentation and
data association given the estimated posterior over future
object appearances.
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Abstract— Robot manipulators generally rely on complete
knowledge of object geometry in order to plan motions and
compute successful grasps. However, manipulating real-world
objects poses a substantial modelling challenge. New instances
of known object classes may vary from learned models. Objects
that are not perfectly rigid may appear in new configurations
that do not match any of the known geometries.

In this paper we describe an algorithm for learning generative
probabilistic models of object geometry for the purposes of
manipulation; these models capture both non-rigid deformations
of known objects and variability of objects within a known class.
Given a single image of partially occluded objects, the model can
be used to recognize objects based on the visible portion of each
object contour, and then estimate the complete geometry of the
object to allow grasp planning.

We provide two main contributions: a probabilistic model of
shape geometry and a graphical model for performing correspon-
dence between shape descriptions. We show examples of learned
models from image data and demonstrate how the learned models
can be used by a manipulation planner to grasp objects in
cluttered visual scenes.

I. INTRODUCTION

Robot manipulators largely rely on complete knowledge of
object geometry in order to plan their motion and compute
successful grasps. If an object is fully in view, the object
geometry can be inferred from sensor data and a grasp
computed directly. If the object is occluded by other entities in
the scene, manipulations based on the visible part of the object
may fail; to compensate, object recognition is often used to
identify the location of the object and compute the grasp from
a prior model. However, new instances of a known class of
objects may vary from the prior model, and known objects may
appear in novel configurations if they are not perfectly rigid.
As a result, manipulation can pose a substantial modelling
challenge when objects are not fully in view.

Consider the camera image1 of four toys in a box in
figure 1(a). Having a prior model of the objects is extremely
useful in that visible segments (such as the three visible parts
of the stuffed bear) can be aggregated into a single object,
and a grasp can be planned appropriately as in figure 1(b).
However, having a prior model of the geometry of every
object in the world is not only infeasible but unnecessary.
Although an object such as the stuffed bear may change shape
as it is handled and placed in different configurations, the

1Note that for the purposes of reproduction, the images have been cropped
and modified from the original in brightness and contrast. They are otherwise
unchanged.

(a) Original Image (b) Recovered Geometries

Figure 1. (a) A collection of toys in a box. The toys partially occlude each
other, making object identification and grasp planning difficult. (b) By using
learned models of the bear, we can identify the bear from the three visible
segments and predict its complete geometry (shown by the red line; the dashed
lines are the predicted outline of the hidden shape). This prediction of the
complete shape can then be used in planning a grasp of the bear (planned
grasp points shown by the blue circles).

general shape in terms of a head, limbs, etc. are roughly
constant. Regardless of configuration, a single robust model
which accounts for deformations in shape should be sufficient
for recognition and grasp planning for most object types.

In this paper we describe an algorithm for learning a
probabilistic model of visual object geometry. Although sta-
tistical models of shape geometry have received attention in
a number of domains including computer vision [9, 7] and
robotics, existing techniques have largely been coupled to tasks
such as shape localization [7], recognition and retrieval [18,
1]. Many effective recognition and retrieval algorithms are
discriminative in nature and create representations of the shape
that make it difficult to perform additional inference such as
recovering hidden object geometry. Our primary contribution
is an algorithm for learning generative models of object shapes
as dense 2-D contours, as we are specifically interested in
object geometry for manipulation planning. We use a model
of object shape, known as Procrustean shape [6, 13], that
provides model invariance to translation, scale and rotation;
we generalize this technique to learn object models that are
robust to object variation and deformations.

One of the challenges in inferring dense models of shape
is that in order to compute the likelihood of a particular
shape given a model, we must a priori know which points
in the measured shape correspond to which points in the
model. Thus, our second contribution is to provide a graphical
model for computing correspondences between shapes as a
pre-processing step to the model learning. We conclude with
experimental demonstrations of object detection in cluttered
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Algorithm 1 The Manipulation Process.
Require: An image of a scene, and learned models of objects

1: Segment the image into object components
2: Extract contours of components
3: Determine maximum-likelihood correspondence between

observed contours and known models
4: Infer complete geometry of each object from matched

contours
5: Return planned grasp strategy based on inferred geome-

tries

scenes, geometry prediction and grasp planning.

II. THE MANIPULATION PROCESS

Our goal is to manipulate an object in a cluttered scene–
for example to grasp the bear in figure 1(a). Our proposed
manipulation process is given in algorithm 1. The input to
the algorithm is a single image which is first segmented into
perceptually similar regions. (Although image segmentation is
a challenging research problem, it is outside the scope of this
paper and we rely on existing segmentation algorithms such as
[23].) The boundaries or contours of the image segments are
extracted, and it is these representations of object geometry
that we use throughout this paper.

We first describe how to learn a generative probabilistic
model of a class of objects, given a set of object contours of
the same class. Using the learned models of class geometry,
we next describe how different instances of an object class
can be recognized and localized in a single image of partially
occluded objects. We use the generative model to infer the
hidden parts of each object in order to complete the model of
each object. Finally, we describe how the inferred complete
geometry can be used to compute a grasp.

III. PROBABILISTIC MODELS OF 2-D SHAPE

Formally, we represent an object Z in an image as a set of
n ordered points on the contour of the shape, {z1, z2, . . . zn},
in a two-dimensional Euclidean space, so that zi = (xi, yi)).
Our goal is to learn a probabilistic, generative model of Z.
We begin by making the contour invariant with respect to
position and scale, normalizing Z so as to have unit length
with centroid at the origin, that is,

Z′ = {z′i = (xi − x̄, yi − ȳ)} (1)

τ =
Z′

|Z′| , (2)

where τ is the pre-shape of the contour Z. Since τ is a unit
vector, the space of all possible pre-shapes of n points is the
unit hyper-sphere, S2n−3

∗ , called pre-shape space. Since we
can rotate any pre-shape through a great circle orbit O(τ)
of maximal length of the hypersphere without changing the
geometry of z, we define the “shape” of Z as an equivalence
class of pre-shapes over rotations.

If we can define a distance metric between shapes, then we
can infer a parametric distribution over the shape space. The
spherical geometry of the pre-shape space requires a geodesic
distance rather than Euclidean distance. The distance between

(a) Example Object (b) Class Distribution

Figure 2. (a) An example image of a chalk compass. The compass
can deform by opening and closing. (b) Sample shapes from the learned
distribution along different eigenvalues of the distribution.

τ1 and τ2 is defined as the smallest distance between their
orbits,

dp[τ1, τ2] = inf[d(ϕ,ψ) : ϕ ∈ O(τ1), ψ ∈ O(τ2)] (3)

d(ϕ,ψ) = cos−1(ϕ · ψ). (4)

Kendall [13] defined dp as the Procrustean metric where
d(ϕ,ψ) is the geodesic distance between ϕ and ψ. We can
solve for the minimization of equation (3) in closed form by
representing the points of τ1 and τ2 in complex coordinates,
which naturally encode rotation in the plane by scalar complex
multiplication. This gives dp as

dp[τ1, τ2] = cos−1 |τH2 τ1| (5)

where τH2 is the Hermetian, or complex conjugate transpose
of the complex vector τ2.

A. Learning Shape Models

In order to complete our probabilistic model of object
geometry, we compute a distribution for each object class from
training images. We choose a Gaussian approximation to the
distribution over shapes, which only requires us to compute
the mean and covariance of the training data. This Gaussian
lies in the tangent space to the hypersphere at the mean shape
vector. For each object class i, we compute a mean shape μi,
from a set of pre-shapes {τ1, . . . , τn} by minimizing the sum
of Procrustean distances from each pre-shape to the mean,

μi = arginf
μ

∑
j

[dp(τj , μ)]2, (6)

subject to the constraint that ‖μi‖ = 1. In two dimensions, this
minimization can be done in closed form; iterative algorithms
exist for computing μi in higher dimensions [2, 10].

In order to estimate the covariance of the shape distribution
from the sample pre-shapes {τ1, . . . , τn}, we rotate each τj to
fit the mean shape μi (i.e. to minimize Procrustean distance),
and then project the rotated pre-shapes into the tangent space
of the pre-shape hypersphere at the mean shape. We then
use Principle Components Analysis (PCA) in tangent space to
model the principle axes of the Gaussian shape distribution of
{τ1, . . . , τn}. Figure 2(a) shows one example out of a training
set of images of a deformable object. Figure 2(b) shows sample
objects drawn from the learned distribution. The red contour
is the mean, and the green and blue samples are taken along
the first two principal components of the distribution.

279



Figure 3. Order-preserving matching (left) vs. Non-order-preserving match-
ing (right). The thin black lines depict the correspondences between points in
the red and blue contour. Notice the violation of the cyclic-ordering constraint
between the right arms of the two contours in the right image.

B. Shape Classification

Given k previously learned shape classes C1, . . . , Ck with
shape means μ1, . . . , μk and covariance matrices Σ1, . . . ,Σk,
and given a measurement m of an unknown object shape,
we can now compute the likelihood of a shape class given
a measured object: {P (Ci|m) : i = 1 . . . k}. The shape
classification problem is to find the maximum likelihood class,
Ĉ, which we can compute as

Ĉ = argmax
Ci

P (Ci|m) (7)

= argmax
Ci

P (m|Ci)P (Ci). (8)

Given the mean and covariance of a shape class, we can
compute the likelihood of a measured object given a class
as p(m|Ci) = N (m;μi,Σi). Assuming a uniform prior on
Ci, we can compute the maximum likelihood class as

Ĉ = argmax
Ci

N (m;μi,Σi). (9)

IV. DATA ASSOCIATION AND SHAPE CORRESPONDENCES

Evaluating the likelihood given by equation 9 requires
calculating the Procrustes distance dp between the observed
contour m and the mean μi. The distance between any two
contours τ1 and τ2 implicitly assumes that there is a known
correspondence between a point xi in τ1 and some point yj
in τ2. (There is also an assumption that the lengths of τ1
and τ2 are the same.) Before we can compute the probability
of a contour, or even learn the mean and covariance of a
set of pre-shapes, we must therefore be able to compute the
correspondences between contours, matching each point in τ1
to a corresponding point on τ2.

Solving for the most likely correspondences between sets
of data is an open problem in a number of fields, including
computer vision and robot mapping. As object geometries
vary due to projection distortions, sensor error, or even natural
object dynamics, determining which part of an object image
corresponds to which part of a previous image is non-trivial.

Furthermore, by the nature of object contours, our spe-
cific shape correspondence problem contains a cyclic order-
preserving constraint, that is, correspondences between the
two contours cannot “cross” each other. Scott and Nowak [22]
define the Cyclic Order-Preserving Assignment Problem (CO-
PAP) as the problem of finding an optimal one-to-one match-
ing such that the assignment of corresponding points preserves

the cyclic ordering inherited from the contours. Figure 3
shows an example set of correspondences (the thin black
lines) that preserve the cyclic order-preserving constraint on
the left, whereas the correspondences on the right of figure 3
violate the constraint at the right of the shape (notice that
the association lines cross.) In the following sections, we
show how the original COPAP algorithm can be written as
a linear graphical model with the introduction of additional
book-keeping variables.

Our goal is to match the points of one contour, x1, . . . ,xn
to the points on another, y1, . . . ,ym. Let Φ denote a corre-
spondence vector, where φi is the index of y to which xi
corresponds; that is: xi → yφi

. We wish to find the most
likely Φ given x and y, that is, Φ∗ = argmaxΦ p(Φ|x,y). If
we assume that the likelihood of individual points {xi} and
{yj} are conditionally independent given Φ, then

Φ∗ = argmax
Φ

1
Z
p(x,y|Φ)p(Φ) (10)

= argmax
Φ

1
Z

n∏
i=1

p(xi, yφi
)p(Φ) (11)

where Z is a normalizing constant.

A. Priors over Correspondences

There are two main terms to equation (10), the prior over
correspondences, p(Φ), and the likelihood of object points
given the correspondences, p(xi,yφi

). We model the prior
over correspondences, p(Φ), as an exponential distribution
subject to the cyclic-ordering constraint. We encode this
constraint in the prior by allowing p(Φ) > 0 if and only if

∃ω s.t. φω < φω+1 < · · · < φn < φ1 < · · · < φω−1. (12)

We call ω the wrapping point of the assignment vector Φ.
Each assignment vector, Φ, which obeys the cyclic-ordering
constraint must have a unique wrapping point, ω.

Due to variations in object geometry, the model must
allow for the possibility that some sequence of points of
{xi, . . . ,xj} do not correspond to any points in y, for ex-
ample, if sensor noise has introduced spurious points along
an object edge or if the shapes vary in some significant way,
such as an animal contour with three legs where another has
four. We “skip” individual correspondences in x by allowing
φi = 0. (Points yj are skipped when �i s.t. φi = j). We would
like to minimize the number of such skipped assignments, so
we give diminishing likelihood to φ as the number of skipped
points increases. Therefore, for Φ with k skipped assignments
(in x and y),

p(Φ) =

{
1
ZΦ

exp{−k(Φ) · λ} if Φ is cyclic ordered

0 otherwise,
(13)

where ZΦ is a normalizing constant and λ is a likelihood
penalty for skipped assignments.

B. Correspondence Likelihoods

Given an expression for the correspondence prior, we also
need an expression for the likelihood that two points xi and
yφi

correspond to each other, p(xi,yφi
), which we model as
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the likelihood that the local geometry of the contours match.
Section III described a probabilistic model for global geomet-
ric similarity using the Procrustes metric, and we specialize
this model to computing the likelihood of local geometries,
which we call the Procrustean Local Shape Distance (PLSD).

We first need a description of the local shape about xi.
In order to be robust to the local spacing of x’s points, we
sample points evenly spaced about xi. We define the local
neighborhood of size k about xi as:

ηk(xi) = 〈δix(−2kΔ), ..., δix(0), ..., δ
i
x(2

kΔ)〉 (14)

where δix(d) returns the point from x’s contour interpolated a
distance of d starting from xi and continuing clockwise for d
positive or counter-clockwise for d negative. (Also, δix(0) =
xi.) The parameter Δ determines the step-size between in-
terpolated neighborhood points, and thus the resolution of
the local neighborhood shape. We have found that setting Δ
such that the largest neighborhood is 20% of the total shape
circumference yields good results on most datasets.

The Procrustean Local Shape Distance, dPLS , between two
points, xi and yj is the mean Procrustean shape distance over
neighborhood sizes k:

dPLS(xi, yj) =
∫
k

ξk · dP [ηk(xi), ηk(yj)] (15)

with neighborhood size prior ξ. No closed form exists for this
integral so we approximate it using a sum over a discrete set
of neighborhood sizes.

C. A Graphical Model for Shape Correspondences

Although we assume independence between local features
xi and yj , the cyclic-ordering constraint leads to dependencies
between the assignment variables φi in a non-trivial way—in
fact, the sub-graph of Φ is fully connected since each φi must
know the values of all the other assignments, φj , in order to
determine whether the matching is order-preserving or not.
Computing the maximum likelihood Φ is therefore a non-
trivial loopy graphical inference problem.

We can avoid this problem and break most of these de-
pendencies by introducing variables αi and ω, where αi

corresponds to the last non-zero assignment before φi and
ω corresponds to the wrapping point from section IV-A.
With these additional variables, each φi depends only on the
wrapping point, which is stored in ω as well as the last non-
zero assignment, αi; the cyclic ordering-constraint is thus
encoded by pco(φi), such that

pco(φi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Zco

: if φi > αi or

φi < αi and ωi = i or
φi = 0

0 : otherwise,

(16)

which gives (17)

p(Φ) =
1
ZΦ

(exp{−k(Φ) · λ)
∏
i

pco(φi). (18)

If we initially assign the wrapping point ω, the state vector
{αi, φi} then yields a cyclic Markov chain. The standard ap-
proach to solving this cyclic Markov chain is to try setting the

wrapping point, ω, to each possible value from 1 to n. Given
ω = k, the cycle is broken into a linear chain (according to
equation 12), which can be solved by dynamic programming.
It is this introduction of the αi and ω variables that is the key
to the efficient inference procedure by converting the loopy
graphical model into a linear chain.

In this approach, the point-assignment likelihoods are con-
verted into a cost function C(i, φi) by taking a log likelihood,
and φ is optimized using

Φ∗ = argmax
Φ

log
∏
i

p(xi,yφi
)p(Φ)

∏
i

pco(φi) (19)

= argmin
Φ

(∑
i

C(i, φi)

)
+ λ · k(φ) (20)

s.t. ∀φi pco(φi) > 0

where k(Φ) is the number of points skipped in the assignment
Φ. Solving for Φ using equation (20) takes O(n2m) running
time; however a bisection strategy exists in the dynamic
programming search graph which reduces the complexity to
O(nm log n) [22].

V. SHAPE COMPLETION

We now turn to the problem of estimating the complete
geometry of an object from an observation of part of its
contour. We phrase this as a maximum likelihood estimation
problem, estimating the missing points of a shape with respect
to the Gaussian tangent space shape distribution.

Let us represent a shape as:

z = [z1 z2]T (21)

where z1 = m contains the p points of our partial observation
of the shape, and z2 contains the n − p unknown points that
complete the shape. Given a shape distribution D on n points
with mean μ and covariance matrix Σ, and given z1 containing
p measurements (p < n) of our shape, our task is to compute
the last n − p points which maximize the joint likelihood,
P

D
(z). (We implicitly assume that correspondences from the

partial shape z to the model D are known–we later show how
to compute partial shape correspondences in order to relax this
assumption.)

In order for us to transform our completed vector, z =
(z1, z2)T , into a pre-shape, we must first normalize translation
and scale. However, this cannot be done without knowing
the last n− p points. Furthermore, the Procrustes minimizing
rotation from z’s pre-shape to μ depends on the missing points,
so any projection into the tangent space (and corresponding
likelihood) will depend in a highly non-linear way on the
location of the missing points. We can, however, compute the
missing points z2 given an orientation and scale. This leads to
an iterative algorithm that holds the orientation and scale fixed,
computes z2 and then computes a new orientation and scale
given the new z2. The translation term can then be computed
from the completed contour z.

We derive z2 given a fixed orientation θ and scale α in the
following manner. For a complete contour z, we normalize for
orientation and scale using

z′ =
1
α
Rθz (22)
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Figure 4. An example of occluded objects, where the bear occludes the
compass. (a) The original image and (b) the image segmented into (unknown)
objects. The contour of each segment must be matched against a known model.

where Rθ is the rotation matrix of θ. To center z′, we then
subtract off the centroid:

w = z′ − 1
n
Cz′ (23)

where C is the 2n× 2n checkerboard matrix,

C =

⎡
⎢⎢⎢⎢⎣
1 0 · · · 1 0
0 1 · · · 0 1
...

...
. . .

...
...

1 0 · · · 1 0
0 1 · · · 0 1

⎤
⎥⎥⎥⎥⎦ . (24)

Thus w is the centered pre-shape. Now let M be the matrix
that projects into the tangent space defined by the Gaussian
distribution (μ,Σ):

M = I − μμT (25)

The Mahalanobis distance with respect to D from Mw to the
origin in the tangent space is:

dΣ = (Mw)TΣ−1Mw (26)

Minimizing dΣ is equivalent to maximizing P
D
(·), so we

continue by setting
∂dΣ
∂z2

equal to zero, and letting

W1 = M1(I1 −
1
n
C1)

1
α
R1
θ (27)

W2 = M2(I2 −
1
n
C2)

1
α
R2
θ (28)

where the subscripts “1” and “2” indicate the left and right
sub-matrices of M , I , and C that match the dimensions of z1
and z2. This yields the following system of linear equations
which can be solved for the missing data, z2:

(W1z1 +W2z2)TΣ−1W2 = 0 (29)

As described above, equation (29) holds for a specific
orientation and scale. We can then use the estimate of z2
to re-optimize θ and α and iterate. Alternatively, we can
simply sample a number of candidate orientations and scales,
complete the shape of each sample, and take the completion
with highest likelihood (lowest dΣ ).

To design such a sampling algorithm, we must choose a
distribution from which to sample orientations and scales. One
idea is to match the partial shape, z1, to the partial mean shape,
μ1, by computing the pre-shapes of z1 and μ1 and finding the
Procrustes fitting rotation, θ∗, from the pre-shape of z1 onto
the pre-shape of μ1. This angle can then be used as a mean for
a von Mises distribution (the circular analog of a Gaussian)

from which to sample orientations. Similarly, we can sample
scales from a Gaussian with mean α0–the ratio of scales of
the partial shapes z1 and μ1 as in

α0 =
‖z1 − 1

pC1z1‖
‖μ1 − 1

pC1μ1‖
. (30)

Any sampling method for shape completion will have a
scale bias–completed shapes with smaller scales project to
a point closer to the origin in tangent space, and thus have
higher likelihood. One way to fix this problem is to solve for
z2 by performing a constrained optimization on dΣ where the
scale of the centered, completed shape vector is constrained
to have unit length:

‖x′ − 1
n
Cx′‖ = 1. (31)

This constrained optimization problem can be attacked
with the method of Lagrange multipliers, and reduces to the
problem of finding the zeros of a (n−p)th order polynomial in
one variable, for which numerical techniques are well-known.

(a) Partial contour to be completed (b) Completed as compass

(c) Completed as stuffed animal (d) Completed as jump rope

Figure 5. Shape completion of the partial contour of the compass in figure 4.
Note that the correct completion (b) captures the knob in the top of the
compass. The hypothesized completions in (c) and (d) lead to very unlikely
shapes.

A. Partial Shape Class Likelihood

Let z = {z1, z2} be the completed shape, where z1 is
the partial shape corresponding to measurement m, and z2
is unknown. The probability of the class given the observed
part of the contour z1 is then

P (Ci|z1) =
P (Ci, z1)
P (z1)

∝
∫

P (Ci, z1, z2)dz2 (32)

Rather than marginalize over the hidden data, z2, we can
approximate this marginal with an estimate ẑ2, the output of
our shape completion algorithm, yielding:

P (Ci|z1) ≈ η · P (z1, ẑ2|Ci) (33)

where η is a normalizing constant (and can be ignored during
classification), and P (z1, ẑ2|Ci) is the complete shape class
likelihood of the completed shape.
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B. Partial Shape Correspondences

In order to calculate the maximum likelihood shape comple-
tion ẑ2 with respect to a shape model D, we must know which
points in D the observed points z1 correspond to. In practice,
z1 may contain multiple disconnected contour segments which
must be associated with hidden contour segments to form a
complete contour–take for example, the two compass handles
in figure 5. Before the hidden contours can be inferred between
the handles, observable contours must be ordered. We can
constrain the connection ordering by noting that the interiors
of all the observed object segments must remain on the interior
of any completed shape. For most real-world cases, this topo-
logical constraint is enough to identify a unique connection
ordering; in cases where the ordering of components is still
ambiguous, a search process through the orderings can be used
to identify the most likely correspondences.

Given a specific ordering of observed contour segments, we
can adapt our graphical model from section IV to compute
the correspondence between an ordered set of partial contour
segments and a model mean shape, μ. First, we add a set of
hidden, or “wildcard” points connecting the partial contour
segments. This forms a complete contour, zc, where some of
the points are hidden and some are observed. We then run a
modified COPAP algorithm, where the only modification is
that all “wildcard” points on zc may be assigned to any of
μ’s points with no cost. (We must still pay a penalty of λ for
skipping hidden points, however.)

In order to identify how large the hidden contour is (and
therefore, how many hidden points should be added to connect
the observed contour segments), we use the insight that objects
of the same type generally have a similar scale. We can
therefore use the ratio of the observed object segment areas
to the expected full shape area to (inversely) determine the
ratio of hidden points to observed points. If no size priors are
available, one may also perform multiple completions with
varying hidden points ratios, and select the best completion
using a generic prior such as the minimum description length
(MDL) criterion.

Using this partial shape correspondence algorithm, we em-
ploy an iterative procedure to complete the hidden parts of an
object contour–(1) compute the partial shape correspondences,
(2) complete the shape given the partial correspondences, (3)
compute the full shape correspondences from the completed
shape to the model, (4) re-complete the shape using the new
correspondences, and repeat (3) and (4) until convergence.

VI. GRASP PLANNING

Recall from Section II that our manipulation strategy is a
pipelined process–first, we estimate the complete geometric
structure of the scene; then, we plan a grasp. But before we can
get into the details about how an individual object is grasped,
we must first decide which object to grasp. The problem
domains which we are primarily interested in–such as the
“box-of-toys” world of Figure 1–are domains in which there is
a single “desired” object or object type; for example, a teddy
bear. Thus, our ultimate goal is to retrieve a specific object or
class of object from the scene. Sometimes, the desired object
will be at the top of the pile, fully in view. In this case, after

analyzing the image and recognizing the object, we will be
able to plan a grasp to retrieve the object, irrespective of the
placement of other objects in the scene. However, if the desired
object is occluded, before attempting to pick it up, we must
determine the probability that the sensed object is actually the
desired object, and the probability that a planned grasp on the
accessible part of the object will be successful. If either of
these probabilities are below a pre-determined threshold, we
first remove one or more occluding objects and then re-analyze
the scene before planning a grasp of the desired object. We
implement the first test as a threshold on the class likelihood of
the sensed object, p(Ci|m) > 0.7; the second test is a function
of our strategy for grasping a single object, described below.

A. Grasping a Single Object

We have developed a grasp planning system for our mobile
manipulator (shown in figure 6), a two-link arm on a mobile
base with an in-house-designed gripper with two opposable
fingers. Each finger is a structure capable of edge and surface
contact with the object to be grasped.

Figure 6. Our mobile manipulator with a two link arm and gripper.

The input to the grasp planning system is the object ge-
ometry with the partial contours completed as described in
Section V. The output of the system is two regions, one for
each finger of the gripper, that can provide an equilibrium
grasp for the object following the algorithms for stable grasp-
ing described in [19]. Intuitively, the fingers are placed on
opposing edges so that the forces exerted by the fingers can
cancel each other out. Friction is modeled as Coulomb friction
with empirically estimated parameters.

The grasp planner is implemented as search for a pair
of grasping edges that yield maximal regions for the two
grasping fingers using the geometric conditions derived by
Nguyen [19]. Two edges can be paired if their friction cones
are overlapping. Given two edges that can be paired we
identify maximal regions for placing the fingers so that we
can tolerate maximal uncertainty in the finger placement using
Nguyen’s criterion [19].

If the desired object is fully observed, we can use the
above grasping algorithm unchanged. If it is partially occluded,
we must filter out finger placements which lie on hidden
(inferred) portions of the object’s boundary. If, after filtering
out infeasible grasps, there is still an accessible grasp of
sufficient quality according to Nguyen’s criterion, we can
attempt a grasp of the object.
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VII. RESULTS

(a) Original image (b) Segmentation (c) Contours

(d) Bat Completion (e) Rat Completion (f) Grasp

Figure 7. An example of a very simple planning problem involving three
objects. The chalk compass is fully observed, but the stuffed rat and green
bat are partially occluded by the compass. After segmentation (b), the image
decomposes into five separate segments shown in (c). The learned models of
the bat and the rat can be completed (d) and (e), and the complete contour of
the stuffed rat is correctly positioned in the image (f). The two blue circles
correspond to the planned grasp that results from the computed geometry.

(a) Original image (b) Segmentation (c) Contours

(d) Bear Completion (e) Dolphin Completion (f) Grasp

Figure 8. A more complex example involving four objects. The blue bat
and the yellow banana are fully observed, but the stuffed bear and dolphin
are significantly occluded. After segmentation (b), the image decomposes into
five separate segments shown in (c). The learned models of the bear and the
dolphin can be completed (d) and (e), and the complete contour of the stuffed
bear is is correctly positioned in the image (f). The two blue circles correspond
to the planned grasp given the geometry.

We built a shape dataset containing 11 shape classes (6
of which are seen in figures 7 and 8). We collected 10
images of each object type, segmented the object contours
from the background, and used the correspondence and shape
distribution learning algorithms of sections III and IV to
build probabilistic shape models for each class, using con-
tours of 100 points each. We reduced the dimensionality of
the covariance using Principal Components Analysis (PCA).
Reducing the covariance to three principal components led to
100% prediction accuracy of the training set, and 98% cross-
validated (k = 5) prediction accuracy.

Object Partial Complete
ring 3/8 15/15
bat 7/10 8/10
rat 9/13 4/4
bear 7/7 7/7
fish 9/9 6/6
banana - 1/2
dolphin 1/2 -
compass 1/3 5/5
totals 37/52 46/49

71.15% 93.88%
detect > 5% 42/52 48/49

80.77% 97.96%

Table I
CLASSIFICATION RATES ON TEST SET.

In figures 7 and 8 we show the results of two manipulation
experiments, where in each case we seek to retrieve a single
type of object from a box of toys, and we must locate and
grasp this object while using the minimum number of object
grasps possible. In both cases, the object we wish to retrieve is
occluded by other objects in the scene, and so a naive grasping
strategy would first remove the objects on top of the desired
object until the full object geometry is observed, and only
then would it attempt to retrieve the object. Using the inferred
geometry of the occluded object boundaries to classify and
plan a grasp for the desired object, we find in both cases
that we are able to grasp the object immediately, reducing the
number of grasps required from 3 to 1. In addition, we were
able to successfully complete and classify the other objects in
each scene, even when a substantial portion of their boundaries
was occluded. The classification of this test set of 7 object
contours (from 6 objects classes) was 100% (note the correct
completions in figures 7 and 8 of the occluded objects).

For a more thorough evaluation, we repeated the same type
of experiment on 20 different piles of toys. In each test, we
again sought to retrieve a single type of object from the box of
toys, and in some cases, the manipulation algorithm required
several grasps in order to successfully retrieve an object, due to
either not being able to find the object right away, or because
the occluding objects were blocking access to a stable grasp
of the desired object.

In total, 52 partial and 49 complete contours were classified,
33/35 grasps were successfully executed (with 3 failures
due to a hardware malfunction which were discounted). In
table I, we show classification rates for each class of object
present in the images. Partially-observed shapes were correctly
classified 71.15% of the time, while fully-observed shapes
were correctly classified 93.88% of the time. Several of the
errors were simply a result of ambiguity–when we examine
the > 5% detection rates (i.e. the percentage of objects for
which the algorithm gave at least 5% likelihood to the correct
class), we see an improvement to 80.77% for partial shapes,
and 97.96% for full shapes. While a few of the detection errors
were from poor or noisy image segmentations, most were
from failed correspondences from the observed contour to the
correct shape model. The most common reason for these failed
correspondences was a lack of local features for the COPAP
algorithm to latch onto with the PLSD point assignment cost.
These failures would seem to argue for a combination of local
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and global match likelihoods in the correspondence algorithm,
which is a direction we hope to explore in future work.

VIII. RELATED WORK

Statistical shape modeling began with the work on landmark
data by Kendall [13] and Bookstein [4] in the 1980s. In recent
years, more complex statistical shape models have arisen, for
example, in the active contours literature [3]. We believe ours
is one of the first works to perform probabilistic inference of
deformable objects from partially occluded views. In terms of
shape classification, shape contexts [1] and spin images [12]
provide robust frameworks for estimating correspondences
between shape features for recognition and modelling prob-
lems; our work is very related but our initial experiments
with these descriptors motivated our work for a better shape
model for partial views of objects. Classical statistical shape
models require a large amount of human intervention (e.g.
hand-labelled landmarks) in order to learn accurate models of
shape [6]; only recently have algorithms emerged that require
little human intervention [9, 7].

We also build on classical and recent results on motion
planning and grasping, manipulation, uncertainty for modeling
in robot manipulation, POMDPs applied to mobile robots,
kinematics, and control. The initial formulation of the problem
of planning robot motions under uncertainty was the preimage
backchaining paper [16]. It was followed up with further
analysis and implementation [5, 8], analysis of the mechanics
and geometry of grasping [17], and grasping algorithm that
guarantees geometrically closure properties [19]. Lavalle and
Hutchinson [15] formulated both probabilistic and nondeter-
ministic versions of the planning problem through information
space. Our manipulation planner currently does not take ad-
vantage of the probabilistic representation of the object, but
we plan to extend our work to this domain.

More recently, Grupen and Coelho [11] have constructed a
system that learns optimal control policies in an information
space that is derived from the changes in the observable modes
of interaction between the robot and the object it is manipulat-
ing. Ng et al. [21] have used statistical inference techniques to
learn manipulation strategies directly from monocular images;
while these techniques show promise, the focus has been
generalizing as much as possible from as simple a data source
as possible. It is likely that the most robust manipulation
strategies will result from including geometric information
such as used by Pollard and Zordan [20].

IX. CONCLUSIONS

In future work, we hope to demonstrate improved perfor-
mance on recognition tasks by incorporating additional priors
into the correspondence and completion models, in order to
bias the inference procedure towards smoother, more natural
correspondences and completions. The shape classes that we
have found to cause the most problems for our model con-
tain multiple articulations and self-occlusions, which suggests
that it may be useful to combine a skeleton or parts-based
models with our global parametric models in order to achieve
robustness to these highly variable shapes.
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Dynamic Modeling of Stick Slip Motion in an Untethered Magnetic
Micro-Robot

Chytra Pawashe*, Steven Floyd*, and Metin Sitti

Abstract—This work presents the dynamic modeling of an
untethered electromagnetically actuated magnetic micro-robot,
and compares computer simulations to experimental results.
The micro-robot, which is composed of neodymium-iron-boron
with dimensions 250 μm x 130 μm x 100 μm, is actuated by
a system of 5 macro-scale electromagnets. Periodic magnetic
fields are created using two different control methods, which
induce stick-slip motion in the micro-robot. The effects of model
parameter variations on micro-robot velocity are explored and
discussed. Micro-robot stick-slip motion is accurately captured
in simulation. Velocity trends of the micro-robot on a silicon
surface as a function of magnetic field oscillation frequency and
magnetic field strength are also captured. Mismatch between
simulation and reality is discussed.

I. INTRODUCTION

The fundamental challenge with decreasing robot size
below the centimeter scale is providing power and actuation
to the robot. Most current micro-robots rely on external
actuation and/or power to function, and usually have further
limitations as well. These limitations include restrictions
such as requiring tethers [1]–[3], a fluid environment [4]–[7],
or a specialized operating surface [8]–[11]. Further, though
many miniature robots exist on the centimeter or millimeter
scale, true micron-scale robots, with all characteristic lengths
on the order of tens to hundreds of microns, are still quite
rare [4], [5], [9], [11], [12].
The micro-robot presented in this and in earlier work

[13] utilizes magnetic torque provided by large-scale elec-
tromagnets to achieve its motion and does not require any
physical tethers or an on-board power source. Controlled by
dynamically adjusting magnetic fields, it does not need a
patterned work surface or electrostatic coupling to a sub-
surface. Additionally, while the robot does not require a fluid
medium to operate, it can move and perform tasks in a fluid
environment. Some limitations of this design are that the
working surface cannot be composed of a ferromagnetic or
strongly diamagnetic material, nor can the surface itself be
magnetized, and the robot must remain within the working
volume of the electromagnets.
In this paper, we present a comprehensive dynamic model

of the magnetic micro-robot and its interactions with the
magnetic field and the silicon surface on which it operates.
Such a model is necessary to understand the nature of the

* Equally contributing co-first authors
C. Pawashe and S. Floyd are with the Department of Mechanical

Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
[csp, srfloyd]@andrew.cmu.edu
M. Sitti is with the Department of Mechanical Engineering and
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sitti@cmu.edu

robot’s motion, and can be used as a tool for future opti-
mization and control. With an accurate model, the number
of necessary experiments can be greatly reduced, and time
consuming or difficult tests can be performed in computer
simulation, allowing for quick parameter optimization.
Micro-robots that do not rely on specialized surfaces for

power delivery and control are a vital step toward advanc-
ing the field of micro-robotics, which is filled with many
potential applications. Examples include micro-manipulation
of micro-components, and micro-assembly and fabrication
of hybrid micro-systems [8], [10]. Tetherless micro-robots
with appropriate tools can be used for micro-scale mea-
surement and surface inspection [1]. More advanced micro-
robots could even be used for undetectable surveillance as
micro-unmanned vehicles, or as micro-surgeons in medical
applications inside living bodies [2].

II. EXPERIMENTAL SETUP

Five independent electromagnetic coils were constructed
large enough to enclose a cube 10 cm on a side, which
contains the working volume. Of these coils, four were
placed upright to control the direction and gradient of the
horizontal magnetic field, and one is placed below the
work plane to control electromagnetic clamping, as seen in
Fig. 1. Within the tolerances of machining, the coils were
constructed to be identical, with the same dimensions, wire
gauge, and number of turns of the wire. Imaging of the the
magnetic micro-robot is accomplished with a CCD camera
connected to a variable magnification microscope lens. For
high-framerate video, a high speed camera (Phantom V7.0)
and an additional microscope lens was placed horizontally
inside one of the four upright magnets to achieve a side
view of the micro-robot during actuation. Parameters for
each of the electromagnets are provided in Table I. Control
of the electromagnetic coils is performed by a PC with a
data acquisition system at a control bandwidth of 1 kHz.
The coils are powered by custom-made electronic amplifiers,
controlled by the PC.

III. ROBOT FABRICATION

The micro-robot used in these experiments was made of
neodymium-iron-boron (NdFeB), a hard magnetic material.
To create the robot, a magnetized piece of NdFeB was cut
using a laser machining system (NewWave LaserMill). First,
the NdFeB was cut parallel to the direction of magnetization,
making planar slices approximately 100 μm thick. These
slices were then laid flat so that the magnetization of the
slice was in a horizontal plane. Robots were then cut from
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Fig. 1. Photograph of the electromagnetic coil setup, where (A) is the
camera, (B) is the microscope lens, (C) is one of four horizontal coils that
move the micro-robot within the plane, (D) is the wafer where the micro-
robot resides, and (E) is the clamping coil beneath the wafer that holds the
micro-robot to the surface.

these slices such that the magnetization vector was pointing
towards the front of the robot. High translational speeds,
small laser spot size, and low cutting depths per pass were
employed to minimize local demagnetization due to heating
by the laser.

IV. MODELING

A computer simulation was created to model the behavior
of the micro-robot as it interacts with the silicon surface it
moves upon, and how it is affected by the magnetic fields
created by the five macro-scale electromagnets over time. Be-
ing made of hard magnetic material, the magnetic field does
not affect the robot’s internal magnetization. Furthermore,
the small size of the robot implies that the magnetic field it
creates does not significantly affect the electromagnets.

A. Magnetic Field

The magnetic field produced is determined by the current,
I , through the electromagnetic coil. It is a function of the
voltage across the coil, V , which is a control input in the

Description Value Units
Coil Resistance (R) 10.0 Ω

Inductance (Li) 70 mH

Inner length 0.120 m

Outer length 0.157 m

Number of Turns (Nt) 510 −
Effective Length 0.1385 m

Distance From Center .099 m

Maximum Field at Center 6.5 mT

Maximum Gradient at Center 149 mT/m

TABLE I
ELECTROMAGNET PROPERTIES

simulation, and the resistance and inductance of the coil.
Resistance and inductance were measured experimentally,
and their values are presented in Table I. Using these values,
the differential equation for the current through an inductor
is incorporated in the dynamic simulation:

dI

dt
=
−R
Li

I +
1
Li

V (1)

This current is used to determine the magnetic field
produced by each of the coils.
Inside of the control volume, the principle of superposition

is valid for determining the magnetic field at a point in space.
Hence, the contributions from all five electromagnets can be
determined separately and then added together. To determine
the contribution of each electromagnet, one must apply the
Biot-Savart law for each square turn coil:

�B( �X) =
μ0NtI

4π

∮
S

�dl′ × �aR
R2

(2)

where �B( �X) is the magnetic field at the robot’s position
�X = x�ex + y�ey + z�ez , μ0 is the permeability of free space
(4π × 10−7), �dl′ is an infinitesimal line segment along the
direction of integration, �aR is the unit vector from the line
segment to the point in space of interest, and R is the distance
from the line segment to the space of interest.
For a square turn coil, this contour integral simplifies into

four line integrals, the definite integral of which exists and
can be evaluated at the end points [14]. For the x-directed
coils, the primary field in x and the fringe fields in y and
z can be determined at any point in space by evaluating the
following [15]:

R =
√

(x− c)2 + (y − yj)2 + (z − zi)2 (3)

Bx = μ0NtI
4π

∑2
i=1

∑2
j=1(−1)i+j ∗ (z−zi)(y−yj)

R

∗
[

1
(x−c)2+(y−yj)2

+ 1
(x−c)2+(z−zi)2

] (4)

By = μ0NtI
4π

∑2
i=1

∑2
j=1(−1)i+j+1

∗
(

(z−zi)(x−c)
R ∗

[
1

(x−c)2+(y−yj)2

]) (5)

Bz = μ0NtI
4π

∑2
i=1

∑2
j=1(−1)i+j+1

∗
(

(x−c)(y−yj)
R ∗

[
1

(x−c)2+(z−zi)2

]) (6)

z = [a,−a], y = [a,−a] (7)

where Bi is the magnetic field in the i direction, a is half
the effective length of the electromagnet, and c is ± the
distance from the center, where the ± is evaluated based
upon the location of the coil of interest (i.e. plus for the coil
in the positive x or positive y-directions). Similar equations
are used for the y-directed and clamping coils.
This derivation is for a concentrated electromagnet, i.e.

all the current carrying wires can be described by a single
line with zero thickness. This assumption is found to be
accurate to within 2.2% because the travel distances are small
in comparison to the magnetic coils, and the distribution of
wires within each electromagnet is small compared to the
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size of the magnet. As a result, an effective length must be
used instead of the actual inner or outer length; these values
are listed in Table I.

B. Magnetic Forces

Within a magnetic field any magnetized object, in this
case the micro-robot, will experience both a torque and a
force. This magnetic torque is proportional to the magnetic
field strength, and acts in a direction to bring the internal
magnetization of the object into alignment with the field. The
magnetic force is proportional to the gradient of the magnetic
field, and acts to move the object to a local maximum. The
equations that govern these interactions are:

�Tm = Vm �M × �B( �X) (8)

�Fm = Vm( �M • ∇) �B( �X) (9)

where �Tm is the torque the robot experiences, Vm is the
volume of the robot, �M is the magnetization of the robot
(assumed to be uniform) [7], [16].
The gradient is determined analytically by taking the

derivatives of (4-6) in each direction, yielding nine terms.
Torque is determined by finding the magnetic field at the
center of the robot’s body. It was found that for a cube 2.5
cm on a side in the center of the working volume, fringing
fields were less than 2.5% of the primary field for each coil
individually, and the maximum force and torque that can be
exerted on the micro-robot are 240 nN and 10.5 μN ·mm,
respectively.

C. Magnetic Micro-Robot

In modeling the micro-robot, we assume it is an isotropic
rectilinear solid with the properties tabulated in Table II.

Description Value Units
Length (L) 250 μm

Width (W ) 130 μm

Height (H) 100 μm

Density (ρ) 7400 kg/m3

Mass (m) 25.6 ng

Weight (mg) 251 nN

Magnetization (M ) 5× 105 A/m

TABLE II
MAGNETIC ROBOT PROPERTIES

From experimental high-speed video of the micro-robot,
it appears to exhibit a stick-slip motion when actuated by a
pulsed magnetic field. During motion, the robot moves by
rocking forward and backward around a steady state angle.
Motion occurs when the contact point between the robot and
the silicon surface slips. This occurs either when the robot
“falls” while rocking down, or “jumps” while rocking up.
Several images from a high speed video at 200 frames per
second (fps) are presented in Fig. 2(a-d) to illustrate this
motion. A video can be found online at [17]. We attempt to
model this behavior in a computer simulation.

Fig. 2. Stick-slip motion of the micro-robot observed with a high speed
camera, compared to simulated results. (a) The robot is initially at its steady
state angle, and the point of contact is highlighted by a solid white line. (b)
When the magnetic field changes, the robot rocks downward, changing its
angle relative to the silicon wafer. (c) During the next upswing, the robot
slides forward. The former contact point is highlighted with a solid white
line. (d) After slipping forward, the robot assumes its steady state angle
again at a new position, shown by a dashed white line. Analogous steps are
performed in simulation in images (e) through (h).

To simulate the dynamics of the magnetic micro-robot, we
restrict modeling to a side-view of the robot in the x-z plane,
shown in Fig. 3. The robot has a center of mass (COM) at �X ,
an orientation angle θ from the ground, a distance r from its
COM to a corner, and an angle φ determined from geometry.
The robot experiences external forces, including its weight,
mg, a normal force from the surface, N , an adhesive force to
the surface, Fadh, an x-directed externally applied magnetic
force, Fx, a z-directed externally applied magnetic force,
Fz , a linear damping force in the x-direction, Lx, a linear
damping force in the z-direction, Lz , an externally applied
magnetic torque, Ty , a rotational damping torque, Dy , and
a Coulomb sliding friction force Ff . Ff depends on N , the
sliding friction coefficient μ, and the velocity of the contact
point, dPx

dt , where (Px, Pz) is the bottom-most point on the
micro-robot (nominally in contact with the surface). Using
these forces, we develop the dynamic relations:

mẍ = Fx − Ff − Lx (10)
mz̈ = Fz −mg +N − Fadh − Lz (11)
Jθ̈ = Ty + (Ff )rsin(θ + φ)

−(N − Fadh)rcos(θ + φ)−Dy (12)

where J is the polar moment of inertia of the robot, calcu-
lated as J = m(H2 + L2)/12.
The robot is first assumed pinned to the surface at

(Px, Py), where 0 < θ < π
2 . This gives the following

additional equations:

x = Px − rcos(θ + φ)
ẍ = P̈x + rθ̈sin(θ + φ)− rθ̇2cos(θ + φ) (13)

z = Pz + rsin(θ + φ)
z̈ = P̈z + rθ̈cos(θ + φ)− rθ̇2sin(θ + φ) (14)

To solve equations (10-14), we realize that there are 7
unknown quantities (N ,θ̈, ẍ, z̈, P̈x, P̈z , Ff ) for 5 equations,
indicating an under-defined system. As the stick-slip motion
in this system is similar to the case outlined by Painlevé’s
paradox, we resolve the paradox by taking the friction force,
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Ff , as an unknown value (as opposed to setting Ff = μN )
[18]. Using the pinned assumption, we can set P̈x = P̈z = 0;
then, equations (10-14) are solved directly. There are three
possible types of solution that can occur during each time
step:
1. The solution results in N < 0 (an impossible case).

This implies that the pinned assumption was false, and the
micro-robot has broken contact with the surface. Equations
(10-12) are resolved using N = 0 and Ff = 0.
2. The solution results in Ff > Ffmax, where Ffmax =

μ · N . This also implies that the pinned assumption was
false, and the point of contact is slipping; thus the robot
is translating in addition to rocking. Equations (10-14) are
resolved using Ff = Ffmax and P̈x left as an unknown.
3. All of the variables being solved for are within phys-

ically reasonable bounds. The robot is in contact with the
surface at the pinned location and is rocking in place.
When a satisfactory solution is reached for each time step,

the solutions for orientation and location are used as initial
conditions in the next solution step.

V. SIMULATION RESULTS

To simulate the micro-robot, a 5th ordered Runge-Kutta
solver is used to solve the time-dependent system. A mag-
netic pulsing signal is given as a voltage waveform, and
equation (1) is solved for the currents. With given initial con-
ditions, equations (1-9) are used to determine the magnetic
field forces, and equations (10-14) are solved for the three
position states of the micro-robot: x, z, and θ. The results
of the simulation are displayed in Figure 2(e-h), where the
simulated micro-robot exhibits stick-slip motion, agreeing
with experiment.
From previous work [13], two different types of magnetic

actuation can be used to move the magnetic micro-robot in
a reliable fashion. The first is In Plane Pulsing (IPP), where
the magnetic field within the plane of motion is varied, while
the clamping magnetic field is held constant. The second
method is Out of Plane Pulsing (OPP), where the magnetic
field within the plane of motion is held constant, but the

clamping magnetic field is varied. Since a DC magnetic field
will not translate a micro-robot due to high static friction,
these periodic excitation methods are necessary to induce
stick-slip translation.

A. In Plane Pulsing

For IPP control, the voltages across the clamping electro-
magnet and one in-plane electromagnet (in the direction of
robot motion) are slowly ramped up. This causes the robot
to orient in the desired direction while remaining locked
down on the silicon surface. Next, the in-plane electromagnet
is pulsed using a sawtooth waveform at a higher voltage,
varying the horizontal, or x-directed magnetic field. The
magnetic fields generated in the simulation from IPP control
are shown in Fig. 4.
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Fig. 4. Simulation of the x and z-directed magnetic fields generated by
IPP control at a maximum pulsing magnetic field strength of 2.5 mT with
a pulsing frequency of 30 Hz in simulation.

This alternating in-plane magnetic field causes the robot
to rock downward (θ decreases) as the field is increased, and
rock upward when the field is decreased. The robot translates
by slipping each time it rocks downward, which agrees with
experimentally observed behavior. After reaching its target
destination, the voltage across the in-plane electromagnet
is ramped down, leaving only the clamping electromagnet
active. A simulation of this motion is presented in Fig. 5.

B. Out of Plane Pulsing

In OPP control, the voltages across the clamping electro-
magnet and one in-plane electromagnet (in the direction of
robot motion) are slowly ramped up, like in IPP control.
After orienting the robot, however, the voltage across the
clamping electromagnet is varied using a sawtooth wave-
form, while the horizontal magnetic field is held constant.
The magnetic fields generated in the simulation from OPP
control are shown in Fig. 6.
By alternating the out-of-plane magnetic field, the robot

tends to rock upward (θ increases) as the clamping field is
increased, and rock downward when the field is decreased;
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velocity of the contact point, dPx

dt
(dotted line) in a simulation of IPP

control. The robot slides over the surface during the downstroke, when θ is
decreasing.
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Fig. 6. Simulation of the x and z-directed magnetic fields generated by
OPP control at a maximum pulsing magnetic field strength of 2.5 mT with
a pulsing frequency of 30 Hz in simulation.

this is an opposite effect when compared to IPP control. In
this case, the robot translates by slipping each time it rocks
upward, which agrees with experimentally observed behav-
ior, and is explicitly shown in Fig. 2. After reaching its target
destination, the voltage across the in-plane electromagnet
is ramped down, leaving only the clamping electromagnet
active. A simulation of this motion is presented in Fig. 7.

VI. MATCHING MODEL PARAMETERS

In order to accurately model the physical system, several
parameters had to be determined empirically. As with any
empirical determination, there exists the possibility of error.

A. Friction

The Coulomb sliding friction coefficient between the robot
and the surface, μ, was determined by using a load-cell to
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Fig. 7. Simulation of the robot’s angle θ (solid line) and the x-direction
velocity of the contact point, dPx

dt
(dotted line) in a simulation of OPP

control. The robot slides over the surface during the upstroke, when θ is
increasing.

measure the force required to slide a bulk NdFeB micro-
magnet with a known downward load across a Si surface.
From this, the friction coefficients between NdFeB and Si
were found to be μk = 0.145 for kinetic, and μs = 0.2 for
static. If |dPx

dt | > 0, μ = μk, otherwise μ = μs.
Noting that the kinetic friction coefficient is approximately

70% the static friction coefficient, the effect of varying μ
was explored in simulation while maintaining this ratio, as
shown in Fig. 8. At low friction coefficients, the micro-robot
dominantly slides; motion due to stick-slip behavior is less
dominant as stick-slip motion requires friction. Speeds are
higher for OPP control, because the in-plane coil is always
on. As the friction coefficient increases, stick-slip behavior
becomes more dominant and results in very similar velocity
profiles for the two control methods between μs = 0.2 and
μs = 1.0. At friction coefficients μs > 1.0, IPP results in
higher velocities. This is due to the reduced normal force
which arises during IPP downstroke motion, shown in Fig.
5, as opposed to the increased normal force which arises in
upstroke motion for OPP, shown in Fig. 7.

B. Adhesion
Adhesive forces between the surface and the micro-robot

are present due to stiction effects that become significant at
the micro-scale, such as capillary and van der Waals forces
[19]; these are lumped together into one force Fadh. We
estimate this force to be Fadh = 0.22 μN , or about 90% of
the micro-robot’s weight. To determine this, a micro-robot
was placed on a silicon wafer, and the wafer was slowly
rotated. Using the previously determined friction coefficient,
μ, a measured angle at which the robot begins to slide on
the wafer, α, and a simple free body diagram, the magnitude
of the adhesion force can be derived:

Fadh = mg

(
sin(α)

μ
− cos(α)

)
(15)

From Fig. 9, OPP velocities are higher at low adhesion
because the in-plane coil is always on, allowing sliding
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Fig. 8. Simulated effect of changing the static and kinetic friction
coefficients on the steady state velocity of the robot. The kinetic friction
coefficient is taken to be 70% of the static. Pulsing frequency is 100 Hz,
with a 2.5 mT maximum pulsing magnetic field.

motion. As adhesion increases, OPP motion is influenced
more than IPP for reasons similar to increasing friction:
OPP translates the robot during upswing, when normal
forces (which increase with adhesion) and friction forces
are at their highest, whereas IPP translates the robot during
the downswing, when the importance of these forces is
minimized.
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Fig. 9. Simulated effect of changing the adhesive force, Fadh, on the
steady state velocity of the robot. Pulsing frequency is 100 Hz, with a 2.5
mT maximum pulsing magnetic field.

C. Damping

Linear damping forces, Lx, Lz , and rotational damping
torque Dy , are a result of fluid drag effects through a liquid
layer that is assumed to form between the robot and the
silicon surface. For modeling, linear damping forces are first
estimated using a Couette flow fluid drag model:

Lx,z ≈
Abμd
g0

× {ẋ, ż} [N ] (16)

where Ab is the area of the bottom of the robot, μd is the
dynamic viscosity of the liquid layer, and g0 is the separation

from the surface, assumed to be 1.5 μm from measurements
of the surface roughness. This results in a linear drag Lx,z ≈
2.4×10−5×{ẋ, ż} [N ]. In a similar fashion, torque damping
forces are estimated using the integral of a viscous drag force
equation:

Dy = CD
1
2
ρw

∫ L/2

0

Ws3ds× θ̇2 [N ·m] (17)

where CD ≈ 19
Re is the constant drag coefficient at Re ≈

Lẋ
ν = 0.22 [20], ν is the kinematic viscosity of water, ρw is
the density of water, and s is a variable of integration. This
results in a rotational damping torque Dy ≈ 6.7× 10−16 ×
θ̇2 [N ·m].
Both damping coefficients are later adjusted to match the

simulation to experimental results. In reality, the damping
forces will depend on the micro-robot’s orientation angle,
θ. For purposes of simulation, estimated average damping
coefficients are used to capture the overall behavior trends;
in the future, angular-dependent drag coefficients may be
used in simulation. The estimated constant damping forces
used are:

Lx,z = 1.0× 10−5 × {ẋ, ż} [N ] (18)

Dy = 9.0× 10−17 × θ̇2 [N ·m] (19)

These damping terms are necessary to keep the simulated
robot stable in both rotational and translational motion.
With increasing linear damping, average micro-robot velocity
decreases for both IPP and OPP control. Changes in the
linear damping coefficient cause different behavior regimes
to emerge. At very low values of linear damping, the velocity
is controlled almost exclusives by friction forces. At higher
values of linear damping, all motion is suppressed. Only in a
very small range is micro-robot velocity controlled by linear
damping. For lower values of rotational damping, there is
little effect on micro-robot velocity. This is likely the case
when rotational drag is much smaller than magnetic torque.
As rotational damping increases, both OPP and IPP velocities
decrease at about the same rate, supporting this theory.

VII. RESULTS AND DISCUSSION

All testing was performed on the back side of a silicon
wafer in open air. No special polishing or preparation was
performed on the wafer. For both control methods, two dif-
ferent parameters were examined: (1) Maintaining a constant
waveform pulsing frequency while varying the maximum
voltage across the coils (as a result, varying the maximum
magnetic field), and (2) maintaining a maximum voltage
across the coils while varying the frequency of waveform
pulsing.
For each experiment at each pulsing frequency, three trials

were performed to attain an error estimate of the velocity.
During the experiment, a video of the robot motion was
recorded and post-processed. Two frames of the video, one
near the beginning and one near the end of the robot’s
journey, were taken. In each position, the robot’s central
position was determined, and the total travel distance was
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Fig. 11. Simulated effect of changing the rotational damping coefficient
on the steady state velocity of the robot. Pulsing frequency is 100 Hz, with
a 2.5 mT maximum pulsing magnetic field.

measured in pixels. A conversion ratio from the image
to real-world distances in microns/pixel was empirically
determined by counting the pixels across a known length.
The total time for travel was also recorded to determine
the velocity. Across a travel distance of about 5 mm with
a positioning error of 1-2 pixels (about 50 μm), results in a
1% error in measured distance.
For simulations, the average velocity was determined in a

similar manner. The x-position and time was reported shortly
after steady state motion was reached (after the third cyclic
pulse), and also at a determined time signifying the end of
the simulation. These two values were used to determine the
average velocity of the simulated micro-robot.
Micro-robot velocity as a function of frequency for both

IPP and OPP control appears to be linear for low frequencies
in both experiment and simulation, as seen in Figs. 12 and
13. At higher frequencies, velocities appear to exhibit a slight
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Fig. 12. Simulated and experimental robot velocity at varying frequencies,
at a maximum pulsing magnetic field strength of 2.5 mT under IPP control.
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Fig. 13. Simulated and experimental robot velocity at varying frequencies,
at a maximum pulsing magnetic field strength of 2.5 mT under OPP control.

roll-off in experiment. This roll-off may be due to the linear
and rotational damping effects experienced by the micro-
robot.
Simulated results seem to underestimate micro-robot ve-

locity for both IPP and OPP translation modes as a function
of maximum field strength, shown in Figs. 14 and 15.
For both IPP and OPP, the simulation suggests a linearly
increasing dependence of velocity on field strength with
some roll off for higher fields in IPP. This dependence is
apparent in the IPP case, but is not as clear for OPP, which
may be linearly increasing or may be relatively constant.

VIII. CONCLUSION

A detailed computer simulation that modeled the dynamics
of a magnetically controlled micro-robot on a flat surface is
proposed in this study. The parameters of the simulations
were adjusted until an approximate match with reality was
achieved. Both in simulation and in experiment, the magnetic
micro-robot was subjected to alternating magnetic fields,
which induced a stick-slip motion over the surface. The
velocity of this motion as a function of both excitation
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Fig. 14. Experimental robot velocity at varying maximum coil voltages
(displayed as maximum field strength) at a constant pulse frequency of 30
Hz for IPP control.
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Fig. 15. Experimental robot velocity at varying maximum coil voltages
(displayed as maximum field strength) at a constant pulse frequency of 30
Hz for OPP control.

frequency and maximum magnetic field for two different
control methods were recorded and analyzed.
It was found that in both control methods, IPP and OPP

control, the robot first attains a steady state angle with respect
to the surface. This angle is much larger for IPP than for
OPP. When one of the magnetic fields begins to oscillate, the
robot will rock upward and downward. For IPP control, the
robot will slide over the surface each time it rocks downward.
Alternatively, in OPP control, the robot will slide each time it
rocks upward. These behaviors were observed experimentally
and accurately reproduced in simulation.
The dependence of robot velocity on friction, adhesion,

linear damping, and rotational damping was explored in
simulation. In addition, both frequency and peak voltage
of OPP and IPP control were varied in simulation and
experiment to determine their effects on robot velocity. The
results obtained in simulation show general agreement with
experiments.
Future work will include adapting the system for both

coarse and fine motion control by using the simulation to
refine the control signals and determine appropriate control

laws in each case. In addition, vision algorithms are being
developed for closed-loop computer control of the micro-
robot. Possible applications in micro-object manipulation,
underwater control, and cooperative robotics are currently
being explored.
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Abstract—As robots become more ubiquitous in our daily lives,
humans and robots are working in ever-closer physical proximity
to each other. These close physical distances change the nature
of human robot interaction considerably. First, it becomes more
important to consider safety, in case robots accidentally touch
(or hit) the humans. Second, touch (or haptic) feedback from
humans can be a useful additional channel for communication,
and is a particularly natural one for humans to utilize. Covering
the whole robot body with malleable tactile sensors can help to
address the safety issues while providing a new communication
interface. First, soft, compliant surfaces are less dangerous in
the event of accidental human contact. Second, flexible sensors
are capable of distinguishing many different types of touch (e.g.,
hard v.s. gentle stroking). Since soft skin on a robot tends to
invite humans to engage in even more touch interactions, it is
doubly important that the robot can process haptic feedback
from humans. In this paper, we discuss attempts to solve some of
the difficult new technical and information processing challenges
presented by flexible touch sensitive skin. Our approach is based
on a method for sensors to self-organize into sensor banks for
classification of touch interactions. This is useful for distributed
processing and helps to reduce the maintenance problems of
manually configuring large numbers of sensors. We found that
using sparse sensor banks containing as little as 15% of the
full sensor set it is possible to classify interaction scenarios with
accuracy up to 80% in a 15-way forced choice task. Visualization
of the learned subspaces shows that, for many categories of touch
interactions, the learned sensor banks are composed mainly of
physically local sensor groups. These results are promising and
suggest that our proposed method can be effectively used for
automatic analysis of touch behaviors in more complex tasks.

I. INTRODUCTION

Robots are becoming more ubiquitous in our daily lives
[1][2][3][4], and humans and robots are working in ever-closer
physical proximity to each other. Due to this proximity, there
is increased potential for robots to inadvertently harm users.
Physical nearness also increases the need for robots to be able
to interpret the meaning of touch (or haptic) feedback from
humans. Covering the whole robot body with malleable tactile
sensors allows us to address both of these concerns. First, soft,
compliant surfaces are less dangerous in the event of accidental
human contact[5]. Second, flexible sensors are capable of
distinguishing many different types of touch (e.g., hard v.s.
gentle stroking). This is important, as soft skin actually invites

more natural types of touch interaction from humans, so it is
critical that the soft surfaces of robots be touch sensitive.
To extract information about humans’ physical contact with

robots, the distribution density of tactile sensor elements,
sampling rate, and resolution of kinesthetic sense all must be
high [3], resulting in a high volume of tactile information that
must be processed. To do so, the following three problems
must be solved. First, there is the problem of reduced system
robustness due to an increased number of possible failing
components. The second is the high cost of data processing.
The third is the administration of the sensors’ configuration.
The previous study of [6] proposed highly dense dis-

tributed skin sensor processing based on interconnecting a
self-organized sensor network. Spatiotemporal calculation in
each node with spatially seamless tactile information gathered
from adjacent nodes enabled haptic interaction features to be
extracted, solving the first and second challenges. For instance,
an edge detection method is applied to extract features of
haptic interaction within the local sensor, yielding an efficient
data compression. This type of distributed processing requires
that the configuration of tactile sensor position is described
in the distributed programs of network nodes, which is the
remaining third challenge. Manually describing 3-dimensional
tactile sensor positions, changing with robot’s postures, is
very labor intensive and error prone. Moreover, distributed
processing typically requires predefined sensor banks, defining
which tactile sensors are used in distributed processing for
each network node, also a labor intensive task.
In [7], we found that interaction scenarios could be suc-

cessfully classified simple k-nearest neighbors (KNN) using a
novel feature space based on cross-correlation between tactile
sensors, achieving performance of 60% in a 13-way forced
choice task. We also found that many categories of touch
interactions can be easily visualized by arranging sensors
into a “Somatosensory Map” using MultiDimensional Scaling
(MDS)[8] applied to this feature space as a similarity measure.
These promising results suggest that this feature space can be
effectively used for automatic analysis of touch behaviors in
more complex tasks.
In this paper, we propose a method for learning “self-
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organizing tactile sensors” using the feature space from [7] to
solve the remaining third challenge. In the proposed method,
a classifier is constructed using CLAss-Featuring Information
Compression (CLAFIC) [9], a type of a subspace method,
applied to a data set consisting of the full cross-correlation
based feature space of [7]. Instead of directly using a learned
subspace as the input for a classifier, we select the sensor pairs
that are most “useful”, i.e., have the highest relevance for the
classifier output, to form a more compact sensor bank to be
used as input to the classifier. Since now different sensor nodes
are involved in different classifiers, it is possible to distribute
processing around the body, which can be implemented as in-
network processing on the self-organizing sensor network [6].
We call each learned sensor bank a “self-organizing tactile sen-
sor”. We found that classifiers based on self-organizing tactile
sensors could classify interaction scenarios with an accuracy
of up to 80% in a 15-way forced choice task, a significant
improvement over prior work. The learned subspaces can also
be visualized in a “Somatosensory Map”, showing sensor point
distribution in a 2D plane.
The rest of this paper is organized as follows. In Section

we II describe related work, and contrast our study with
others. Section III describes the basic idea, and then details the
proposed method for self-organizing tactile sensors. Section
IV describes experiments dealing with human-robot haptic
interaction used to construct a haptic interaction database. In
section V, using the database, the performance of the proposed
method is shown. Also, the learned subspaces are visualized in
the Somatosensory 2D Map. Section VI discusses the results,
and Section VII concludes.

II. BACKGROUND AND COMPARISONS

Prior work on studies of robots with tactile sensors has
tended to focus on the development of the physical sensors and
transmitting sensor data. For instance, [10] proposes a Large-
Scale Integration (LSI) technique for processing data from tac-
tile sensors. Iwata et al.[4] demonstrated physical interaction
with users via a skin equipped with 6-axis-kinesthetic sensors.
Pan et al. [11] and Inaba et al.[2] described tactile sensors
using electrically conductive fabric and strings as a whole-
body distributed tactile sensor for humanoid robots. And
Shinoda et al.[12] proposed a wireless system for transmitting
tactile information by burying wireless sensors under the robot
“skin.” Thus so far, this research is mainly limited to the
problems of collecting tactile information, and solving the
necessary wiring and physical implementation problems.
Compared to other sensory modalities such as vision and

audio, relatively little prior work has been done on process-
ing haptic interaction from incoming tactile sensor signals.
Miyashita et al. [1] estimated user position and posture in
interaction using whole-body distributed tactile sensors. Naya
et al. [3] classified haptic user interaction based on output
from tactile sensors covering a robot pet. Francois et al. [13]
also classify different two touch styles, namely “strong” and
“gentle”. Though the above research classifies human-robot
interaction using tactile sensors, these and other prior studies

have not to our knowledge been successful in classifying
several haptic interactions while robots are interacting with
users.
Pierce and Kuipers [14] proposed self-organizing techniques

for building a “cognitive map”, which represents knowledge
of the body corresponding to physical position of sensors.
This map shows the position of each sensor installed on the
surface of a robot. However, this method will not work out
for a robot having high degree of freedom and soft skin
because the positions of the tactile sensors in 3-d “world”
coordinates dynamically change during an interaction. Rather
than construct spatial maps to acquire physical sensor positions
our objective is to use, interpret and visualize underlying
haptic interaction features.
Kuniyoshi et al. [15] proposed a method for learning a

“Somatosensory Map,” showing the topographic relationship
of correlations between incoming signals from tactile sensors
distributed on the whole body surface of a simulated baby. In
their somatosensory map highly correlated sensor points are
plotted on a 2D plane close to each other. As the result, the
map showed the structure of robot body parts rather than the
physical sensor positions as in Pierce and Kuipers[14].
In this paper, our goal is similar to that of [15], so that highly

correlated sensor points will be located close to each other, and
thus we keep the name “Somatosensory Map[15].” However,
we use a different technique to acquire the map, and use real-
world human-robot interaction rather than a simulated baby.
Moreover, we attempt to classify haptic interactions using
correlations between incoming signals from tactile sensors
distributed on the whole body surface.

III. SELF-ORGANIZING TACTILE SENSOR METHOD TO
DECIDE SENSOR BOUNDARIES

A. Basic idea

Suppose that N tactile sensors are implemented on a robot,
and that i-th tactile sensor stream during one human-robot
interaction is called Si (i = 1, . . . , N ) where Si is a vector of
the n time-step sampling result of the sensor outputs (Si =
{(Si)1, · · · , (Si)n}, (Si)t ∈ R). Features need to be extracted
from this time series of the data stream. However, less work
has been done on processing tactile features than on audio or
vision. In conventional works[3][13], since the data are high
dimensional, summary statistics, such as mean, standard error,
minimum, max, and coefficients of fast Fourier transformation,
are computed from one sensor or all of the sensors to be used
as features. A feature space defined from one sensor will not
be enough when several sensor are activated by touches, e.g.,
distinguishing a finger tap from a hand tap or a tickle. On the
other hand, the feature space computed from combining all the
sensors is less robust, since the features could be drastically
changed if e.g. one sensor is broken. Feature space defined
from several sensors, at least from two sensors, could be an
effective happy medium.
We proposed a feature space using cross-correlations com-

puted from sensor pairs, satisfying the above condition, in
[7]. The cross-correlation is one important statistics in human
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tactile system – Dince et al.[16] reported that discrimination
ability of the two point stimulus is improved when correlated
stimulus is added continually to two close separated point of
a human finger. In fact, the visualization results of our feature
space, i.e., the Somatosensory Map, show characteristics of
many categories of touch interactions[7] by arranging sensor
point. Fig. 7 is the Somatosensory Map made from a 2 minute
interaction between human and a robot. This presentation
simplifies the haptic interaction; e.g., distinctive sensor point
cluster of both arms’ sensors are to the result of subject
touching the robot’s arms at the same time.
The cross-correlation based feature space has another advan-

tage that the choice of sensors to be included in a sensor bank
for a certain computation can be decided via the elements used
in the classifier’s selected subspace. Often the useful subspace
is composed of combination of sensors located in close spatial
proximity, since distant sensors usually have low correlated
signals and thus have less mutual information than adjacent
sensors.

B. Feature space

A feature vector a is computed from the cross-correlation
matrix defined by equation (2) as follows:

a = (R(1,2), · · · , R(1,N)
| {z }

N−1,

,R(2,3), · · · , R(2,N)
| {z }

N−2,

, · · · ,R(N−1,N)
| {z }

1

)t

(1)
where R(i,j) is cross-correlation matrix element at (i, j) be-
tween N sensors, i.e.,

Rij (Si, Sj) =
Cij√
CiiCjj

(−1 ≤ Rij ≤ 1) (2)

where

Cij =
n∑

t=1

(
(Si)t − S̄i

) (
(Sj)t − S̄j

)
(3)

is cross variation of (i, j), and S̄i is average of time series data
Si.

C. Overview

We construct a classifier for detecting haptic interaction
between robot and human uses the CLAFIC method[9], a type
of subspace method. This method represents each class as
eigenpairs computed from a training data set. The subspace
method starts from an idea of Watanabe et al.[9] that, as
the feature space grows, the data set will converge to a
limited small subspace. The CLAFIC method approximates
this subspace with eigenpairs. Since the feature space defined
in III-B is also a high dimensional space of O(N2), feature
vectors of a data set should also be restricted mostly to a
limited feature subspace.
In our proposed method, a dimension reduction of the

extracted subspace is additionally applied by selecting base
vectors having large inner product values. The classifier output
is then calculated from a selected subspace consisting of only
a few base vectors chosen from cross-correlation elements of
the coefficient Rij computed from all sensor pairs. Hence,

this subspace and feature selection results in useful subsets of
sensors that can be used to distribute processing. Since these
subsets are found automatically, we call this method finding
“self-organizing tactile sensors”.

D. CLAFIC method

Fig. 1 shows the overview of classification. At first, a data
setXk is prepared from pk feature vectors (ak) computed from

a time series of sensor streams labeled as a class k (
def≡ ωk),

where pk is the number of training data set. Thus

Xk = {ak1, . . . ,akpk} (4)

The approximated subspace of CLAFIC method begins by
performing singular value decomposition (SVD):

Xk = UDλVt (5)

where the columns of U is left singular vectors; Dλ has
singular values and is diagonal; and Vt has rows that are
the right singular vectors. We perform a forward feature
selection of singular vectors to perform classification using
a low dimensional subspace. First, we arrange the vectors
obtained from the SVD performed only on data from class
k in decreasing order of the ((dk)1, (dk)2, · · · , (dk)smallest)
singular values, and compute a discrimination function DF k

of class k, which takes input an unknown vector x, and
computes

DF k (x) =
m∑
j=1

(
xtukj

)2 (6)

using only the first m vectors, where ukj is a left singular
vector derived only from data in class k. We choose m by
starting at m = 1 and increasing m until the cumulative
contribution ratio in eq. 6 exceeds a threshold value C1. The
output of the discrimination function corresponds to the square
of the length of an unknown vector orthographically projected
onto the low dimensional subspace. The classifier outputs the
class name which has maximum DF output.

max
k=1,··· ,c

{DFk (x)} = DFl (x) ⇒ x ∈ ωl (7)

Using the fidelity value τ as Watanabe et al. proposes[9],
the unknown is vector classified as “unknown” class if the
maximum DF is not significantly difference from the second
maximum DF , i.e., if

DF l (x)
max
k �=l

(DF k (x))
> 1/τ (8)

evaluates to “false”, the classification is “unknown”.

E. Learning Sensor Banks

A sensor bank for a classification task is decided by
selecting a useful subspace that has high relevance for the
classifier. As equation (6) shows, the output of the classifier is
composed of inner products. Considering the uij elements are
weights for the unknown vector elements, if a p-th element
{uij}p is close to 0, the element {x}p could be ignored. In
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computer vision, Ishiguro et al.[17] has proposed this type of
idea, describing it as a form of “attention control”.
Let ũij be an approximated subspace ignoring the all ele-

ments close to 0, where all {uij}p smaller than C2 are simply
replaced by 0. Now we construct approximated discrimination
function DF ∗

k (x) as follows.

DF ∗
k (x) =

m∑
j=1

(
xtu∗

kj

)2
(9)

where u∗
kj are assumed to be nearly orthogonal, and are

normalized (u∗
kj = ũkj/ ‖ũkj‖).

The approximated discrimination function DF ∗
k (x) is also

composed of inner products of u∗
kj and x, however now we

need to know only the q-th elements ({x}q), where{
q :

{
u∗
kj

}
q
�= 0

}
(10)

From the definition of feature space in equation (1), only
elements R(rq,sq) need to be computed, where (rq, sq) is a
sensor pair needed to compute q-th element {x}q = R(rq,sq).
These sensor pairs define whether the sensor is used or not
used in the sensor bank, facilitating distributed processing,
since each classifier only needs a subset of sensors.

REJECT?MAX
or 

REJECT

Fig. 1. Overview of the classification

F. Somatosensory Map

To visualize feature vectors and sensor banks, we define
dissimilarity as dij converted from the coefficient of the cross-
correlation matrix Rij with the following equation (11),

dij(Rij) = − log (|Rij |) . (0 ≤ dij ≤ ∞) (11)

This dissimilarity definition defines a “distance” between
(i, j) sensors, i.e., higher correlated (or negatively correlated)
sensor pairs have smaller dissimilarity. (Note that it does not
satisfy all properties of a true distance notion.) Since the self-
correlation coefficient is always 1, the dissimilarity with itself
is always 0, i.e.,

dii = 0. (Si �= constant) (12)

In the Somatosensory Map, theN sensor points are arranged
into a 2D map using MDS[8] based on the dissimilarity
definition of the equation (11). This 2D map can be used to
visualize a vector of the cross-correlation feature space, e.g.,
fig. 7 is the Somatosensory Map plotted using a feature vector
during a human-robot interaction[7]. In section V we apply
this method to uij to interpret experimental results.

TABLE I
SCENARIO BASED DEFENITION OF THE INTERACTION CLASSES

Class name Approaching a person m
(step) (C1 = 0.15)
class1 “Hello.” 4
class2 “Let’s shake hands.” 4
class3 “Nice to meet you.” 5
class4 “What’s your name?” 5
class5 “Where are you from?” 5
class6 “let’s play!” 5
class7 “Do you think I’m cute?” 4
class8 “I wish you’d pat me 3

on the head”
class9 “Whee!” 6
class10 “I want to play more.” 5
class11 “Tickle me.” 7
class12 “That tickles!” 3
class13 “Thanks” 4
class14 “Give me a hug.” 7
class15 “Bye-bye!” 4

(a) Robovie-IIF (ATR) (b) Tactile sensor network consist-
ing of an RS422 bus network via
which nodes are connected to a
host PC

Fig. 2. Overview of our tactile sensor system

IV. EXPERIMENTS

A. Hardware

The hardware on which we are testing our proposed tech-
nique is detailed below. Fig. 2 shows an outline of the
hardware for the experiments described in this section. Fig. 2
(a) shows the communication robot Robovie-IIF[20], provided
with high-density soft tactile sensors and a sensor network
consisting of a RS422 bus network via which nodes connected
to a host PC (Fig. 2(b)). Fig. 3 shows the structure and
materials of the skin sensors installed on the Robovie-IIF
surface, and Fig. 4 is the location of embedded piezofilms.

Fig. 3. Architecture of skin sensor devices
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Fig. 4. Position of the skin sensors (PVDF films) on the deployed surface
of the Robovie-IIF

(a) pat the head (b) Hug (c) Touch the robot

Fig. 5. Observed haptic interactions between the robot and the visitors at
Osaka Science Museum May. 2005

274 Piezofilms (3 cm × 3 cm, or 5 cm × 5 cm) are embedded
in soft silicone rubber. Sampling time for the 16 bit A/D
converter is set to 100 Hz, and tactile sensor outputs are read
to the host PC of Robovie-IIF at every sampling. Using this
hardware, we conducted two experiments detailed below and
shown in Fig. 5 and Fig. 6.

B. Field experiment

Our research group conducted several events in the Osaka
Science Museum with socially interactive robots[19]. The first
experiment is a field experiment during the event named
“Let’s play with Robovie”. In the event, the Robovie-IIF was
displayed in the Osaka Science Museum during May 2005. We
asked visitors to play with the Robovie-IIF and with the goal
of investigating what kind of haptic interaction can be realized
between humans and the Robovie-IIF. Figs. 5 (a) to (c) show
the three haptic interactions such as (a) Patting on the head, (b)
Hug and (c) Touch the robot body, observed in this experiment.
From these observations we designed a “haptic interaction
scenario” for a second experiment to encourage human-robot
interaction in which we expected subjects to touch Robovie-
IIF, detailed below. Table I shows the interaction scenario
stages. Each stage in the scenario consists of the control rule

(a) “I wish you’d pat
me on the head.”

(b)“Tickle me.” (c) “Give me a hug.”

Fig. 6. Observed subject’s behaviors in each step of the scenario during the
experiment for database construction

that the Robovie-IIF tries to sustain interest of a subject to keep
interaction going and proceeds to the next stage after finishing
each interaction. (See “approaching a person” of Table I.)

C. Construction of the haptic interaction database

In a second experiment, using a “Wizard of OZ” method
[18] based on the scenario-based rules described in Section IV-
B, Robovie-IIF is controlled by an experimenter with several
monitoring displays. We expect the robot to be touched by
subjects during these interactions. We constructed a scenario
based interaction database which includes the monitoring
videos, all of the tactile sensor signals, the command signals
sent to control the robot, with all data time stamped using a
common clock.
Each subject was asked to interact with Robovie-IIF in 3

trials separated by 10 minutes each. There were a total of
48 subjects, 24 males and 24 females, all of them college
students. Each trial took around 5 minutes and was set up
with the same condition except for the subject’s position at
the start of the scenario. These positions were each 2m away
from Robovie-IIF, at 45 degrees to the right, 45 degrees to the
left, and 0 degrees (where 0 degree is defined as in front of the
robot). We asked the subjects to simply play with Robovie-IIF
(which has a child-like voice and uses other cues to encourage
humans to treat it as a child), and explained to them before
each trial the following rules: (1) The subjects can touch the
whole body of Robovie-IIF, (2) The subjects are required to
listen carefully to what Robovie-IIF is saying, and (3) The
subjects are required to be close to the robot in order to turn
on the robot by touching it at the start of each trial.
Fig. 6(a) to (c) show the observed haptic interactions in the

experiment, such as (a) “I wish you’d pat me on the head.”
of class8, (b) “Tickle me.” of class11 and (c) “Give me a
hug.” of class14. Excluding approximately 24 cases in which
there were technical difficulties, approximately 120 cases of
data were acquired to form a “haptic interaction database” of
data collected from real interaction scenarios. Segments of the
tactile sensor data are automatically clipped and labeled using
the time stamps for when each scenario stage (as defined in
Table I) begins and ends. Thus, unlike previous work in which
interaction segments were hand-labeled by an experimenter,
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we do not perform any manual coding of the data.

V. RESULTS

To emphasize the tactile sensor data when subjects touch
the robot, we prepared Ŝi from the output of tactile sensors
as shown in the equation (13) since our database includes lots
of information caused by the robot movements.

Ŝi =
{

Si,
(∣∣Si − S̄i

∣∣ > σi
)

S̄i,
(∣∣Si − S̄i

∣∣ ≤ σi
) }

(13)

where Si is the i-th sensor output, average of time series data
of Si is S̄i, and standard deviation of Si is σi. If the absolute
difference between Si and S̄i is smaller than standard variation
σi, Si is replaced by the average S̄i. In this section, all of the
results are from Ŝi.
Fig. 7 shows the 2D Somatosensory Map obtained from

a cross-correlation matrix of each tactile sensor during an
interaction in a field experiment between the Robovie-IIF and
a subject (Fig. 5 (c)). Figs. 8 and 9 show the results of Leave-
One-Out cross validation tests for evaluation of the classifier
using the K-nearest neighbor (KNN) method (k = 3) and
the currently proposed method, respectively, on the whole
dataset. Figs. 9 through 12 show the results of choosing
different values of C1 and C2 using the proposed method.
In these figures, class k (k = 1, . . . , 15) corresponds to the
classes defined in Table I. For example, the data set labeled
class2 consists of tactile sensor data collected between the
time when the start command of class2 (“Let’s shake hands”)
was sent to the Robovie-IIF and the time when the start
command of class3 (“Nice to meet you”) was sent. (The
data sets include some cases in which subjects did not deliver
expected interaction.) As can be seen in Fig 8, the KNN
method achieved classification of over 60% for many haptic
interactions such as class2, class6, class7, class8, class11,
and class15, using only the correlation patterns of all tactile
sensors.
Fig. 9 shows the correct recognition rates for the proposed

method, while figure Fig. 10 shows the “false alarm” rate,
computed for each class as the number of times an example
was incorrectly classified as belonging to that class, divided by
the number of examples that actually belong to that class (thus
these numbers can be greater than 1). For these experiments,
the fidelity value τ was experimentally fixed to be 0.95,
which did not change the recognition rate but improved the
false alarm rate. Each figure has 6 conditions that are in
the set {(C1, C2) : C1 = 1, 0.15 C2 = 0, 1, 2}. The number of
orthogonal base vectors (that are left singular vectors, uij ,) is
decided by the parameter C1, shown in Table. I. The parameter
C2 determines the reduction of size of the feature space, e.g.,
the reduced feature space in case C2 = 0, 1, 2 were 0%, around
80− 85%, and around 94− 96%, respectively.
The proposed method improved classification to 80% for

most haptic interactions, including class1, class2, class6,
class7, class9, class11, class14, and class15 when using
(C1, C2) = (0.15, 0). This performance was almost the same
as for (C1, C2) = (0.15, 1), which used only 15% of the

feature space. When the feature space size is reduced to 5%
in the condition (C1, C2) = (0.15, 2), performance is still as
high as 60% for haptic interactions of class1, class8, class11,
and class15 (note that random, “by chance” performance is
less than 7%).
Fig. 11 shows the result of the feature space reduction.

Elements of vector u81 are arrayed onto a matrix of the
same size as a cross-correlation matrix, and large weighted
cross-correlation elements are visualized with darker (more
black) colors. Adjacent tactile sensors usually have closer
numbers, and are displayed as square line boxes corresponding
to their part names. As expected, the useful feature spaces are
composed mostly of adjacent sensor pairs. The boxes shown,
which include several highly weighted elements, are the result
of self-organizing results corresponding to the boundaries of
tactile sensors. These self-organizing results are also shown
in Fig. 12 (a) and (b), which shows the arrangement of
sensors in a 2D Somatosensory Map using u(8)1 and u(11)1.
Closer sensor pairs have larger weight in their cross-correlation
element. Fig. 12 (a) shows that head sensors, probably touched
in the “pat me” interaction, are clustered apart from other
sensors. Fig. 12 (b) also clustering of the front side of the body
(F-body) and of the left and right side of the body (LSide-
body and RSide-body), which are often touched together in
the “tickle” interaction. Note that these results do not make
use of any knowledge about the spatial position of sensors but
only using sensor streams from the whole robot body.

VI. DISCUSSION

Comparing our Somatosensory Map with previous work
[14][15], we found that haptic interactions form clusters in
the map that often can be grouped by body part. Using
this representation for human-robot interaction we achieved
good classification results for those interaction categories in
which there was some human touching. In previous work for
classification of haptic interaction [3][13], the data sets for
learning classifiers were hand labeled by the experimenter. In
our case, the database is self-labeled during scenario based
interactions. The label of each data point is based on what the
current designed scenario is, rather than given post-hoc by the
experimenter asking subjects to touch the robot. We assume
this is a more natural and practical database construction.
The Somatosensory Map shows large weighted elements

mainly between spatially-localized sensors. This is consistent
with the idea of Watanabe et al. that, as the feature space
grows, data sets converge to limited subspaces. Additionally,
the learned subspace was composed mainly of adjacent sen-
sor pairs in the tactile system, as seen in Fig. 11. Thus,
the CLAFIC method is able to achieve higher classification
performance even when using smaller subspaces of 15%
size. In fact, performance of 80% classification was achieved,
improving over the KNN method of 60%, despite a much more
challenging evaluation than in previous work. Instead of using
static objects consisting of tactile sensors, we constructed
the database from real human robot interactions. Since the
robot has malleable tactile sensors embedded under soft skin,
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and the robot is moving during the experiment, it is possible
that the results come from the classification of self-sensations
provided by self-movements. However, it seems like more
classification is provided from subject’s touches, because the
recognition rate of the classes that we don’t expect to see
subject’s touches had low recognition rates. Nevertheless, this
problem is unavoidable while the robot moving during the
touch from other, so in the future we probably will also need
to use proprioception in the tactile system.

VII. CONCLUSIONS

In conclusion, the proposed method was found to be effi-
cient with the classification of real human-robot interactions,
and was able to be implemented as distributed in-network
processing.
In this paper, we describe a haptic interaction classification

method using cross-correlation matrix features, and propose a
self-organizing technique to define a bank of sensors to be used
in distributed processing of each class. The cross validation
rests results in recognition of 80% for those interactions in
which we expect subjects to touch the robot, using only 15%
of the feature subspace. The Somatosensory Map visualization
shows that the selected feature space was composed mainly
of spatially-adjacent sensor pairs. These promising results
suggest that our proposed method may be useful for automatic
analysis of touch behaviors in more complex future tasks.
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Abstract— Cellular force sensing and control techniques are
capable of enhancing the dexterity and reliability of microrobotic
cell manipulation systems. This paper presents a vision-based
cellular force sensing technique using a microfabricated elastic
cell holding device and a sub-pixel visual tracking algorithm
for resolving forces down to 3.7nN during microrobotic mouse
embryo injection. The technique also experimentally proves
useful for in situ differentiation of healthy mouse embryos
from those with compromised developmental competence without
the requirement of a separate mechanical characterization pro-
cess. Concerning force-controlled microrobotic cell manipulation
(pick-transport-place), this paper presents the first demonstra-
tion of nanoNewton force-controlled cell micrograsping using
a MEMS-based microgripper with integrated two-axis force
feedback. On-chip force sensors are used for detecting contact
between the microgripper and cells to be manipulated (resolution:
38.5nN) and sensing gripping forces (resolution: 19.9nN) during
force-controlled grasping. The experimental results demonstrate
that the microgripper and the control system are capable of rapid
contact detection and reliable force-controlled micrograsping to
accommodate variations in size and stiffness of cells with a high
reproducibility.

I. INTRODUCTION

Manipulation of single living cells represents an enabling
technology that is important for a range of biological dis-
ciplines (e.g., genetics [1][2], in vitro fertilization [3], cell
mechanical characterization [4], and single cell-based sens-
ing [5]). The past decade has witnessed significant progress in
the development of robotic systems and tools for conducting
complex cell manipulation tasks, such as probing, character-
izing, grasping, and injecting single cells.

Robotic cell manipulation is universally conducted under
an optical microscope; thus, visual feedback is the main
sensing modality in all existing microrobotic cell manipulation
systems. Meanwhile, due to the fact that biological cells are
delicate and highly deformable, quantification of interaction
forces between the end-effector and cells can enhance the
capability of a robotic cell manipulation system. For example,
cellular force feedback was demonstrated to be useful for the
alignment between a probe and a cell [4]. The measurement
of cellular forces also enables the prediction of cell membrane
penetration in the injection of zebrafish embryos [6][7][8].

In order to obtain cellular force feedback during micro-
robotic cell manipulation, the development of force sens-
ing devices has been a focus, resulting in capacitive force
sensors [4] and piezoelectric force sensors [6][9], to name

just a few. Inherent limitations prevent their use in practical
cell manipulation tasks: (1) these force sensors are typically
limited to resolving forces at the microNewton level while
the manipulation of most cell lines requires a resolution of
nanoNewton or sub-nanoNewton; (2) the integration of an end-
effector (e.g., glass micropipette) and the force sensors is via
epoxy glue, complicating the task of end-effector exchange.

Overcoming limitations of existing cellular force sensing
approaches, this paper presents a vision-based cellular force
measurement technique with a nanoNewton force resolution
employing a microfabricated elastic cell holding device and a
sub-pixel visual tracking algorithm. The technique allows for
accurately resolving cellular forces during microrobotic cell
manipulation without disturbing the manipulation process or
imposing difficulties in end-effector exchange. The effective-
ness of the technique is demonstrated in microrobotic mouse
embryo injection. Furthermore, the force sensing technique
proves useful for in situ distinguishing normal embryos from
those with compromised developmental competence, without
requiring a separate cell characterization process.

On the front of cellular force sensing and control, the
paper also presents the first demonstration of force-controlled
micrograsping of biological cells at the nanoNewton force
level. As mechanical end-effectors, microgrippers enable pick-
transport-place of biological cells in an aqueous environment.
The microrobotic system employs a novel microgripper that
integrates two-axis force sensors for resolving both gripping
forces and contact forces between the gripping arm tips and
a sample/substrate. The force-controlled microrobotic system
experimentally demonstrated the capability of rapid contact
detection and reliable force-controlled micrograsping of inter-
stitial cells to accommodate variations in sizes and mechanical
properties of cells with a high reproducibility.

II. VISION-BASED CELLULAR FORCE MEASUREMENT

DURING CELL INJECTION

Vision-based force measurement techniques are capable of
retrieving both vision and force information from a single
vision sensor (CCD/CMOS camera) under microscopic envi-
ronments [10][11]. For cellular force sensing during micro-
robotic cell manipulation, this concept is realized by visually
tracking flexible structural deformations, and subsequently,
transforming material deformations into forces.
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Fig. 1. Cellular force measurement using low-stiffness elastic posts during
microrobotic cell injection.

Fig. 2. Microrobotic mouse embryo injection system.

Fig. 1 schematically illustrates the principle of vision-based
cellular force measurement using an elastic cell holding device
during microrobotic cell injection. While the micropipette
injects individual cells inside cavities on a cell holding device,
applied forces are transmitted to low-stiffness, supporting
posts. In real time, a sub-pixel visual tracking algorithm
measures post deflections that are fitted into an analytical
mechanics model to calculate the force exerted on the cell.

This technique was previously demonstrated on zebrafish
embryos [12]. The study presented in this paper focuses on
investigating the feasibility of further miniaturizing the cell
holding devices to accommodate mouse embryos (100μm
in diameter vs. 1.3mm zebrafish embryos) for measuring
nanoNewton cellular forces during microinjection; and the
possibility of using cellular force information to distinguish
normal mouse embryos from those with compromised devel-
opmental competence for better selecting healthy embryos in
genetics and reproductive research.

A. Microrobotic Mouse Embryo Injection System

The microrobotic mouse embryo injection system (Fig. 2)
consists of a polydimethylsiloxane (PDMS) cell holding de-
vice, an inverted microscope (TE2000, Nikon) with a CMOS
digital camera (A601f, Basler), a 3-DOF microrobot (MP-285,
Sutter) for controlling the micropipette motion, a motorized X-
Y stage (ProScan II, Prior Scientific) for positioning cell sam-
ples, and a temperature-controlled chamber (Solent Scientific)
to maintain cells at 37◦C.

Fig. 3. SEM image of a PDMS cell holding device.

Fig. 4. Young’s modulus calibration on a bulkier PDMS beam.

B. Fabrication and Characterization of Cell Holding Devices

The cell holding device shown in Fig. 3 was constructed
with PDMS via soft lithography [12]. Briefly, PDMS prepoly-
mer prepared by mixing Sylgard 184 (Dow Corning) and its
curing agent with a weight ratio of 15:1, was poured over a
SU-8 mold (SU-8 50, MicroChem) made on a silicon wafter
using standard photolithography. After curing at 80◦C for 8hr,
the PDMS devices were peeled off the SU-8 mold. The depth
of the cavity and protruding posts is 45μm, and the diameter
of the posts is 12μm (Fig. 3). In order to make the PDMS
surface hydrophilic, the devices were oxygen plasma treated
for 10sec before use.

To determine the Young’s modulus of the cell holding
device, a bulkier PDMS beam produced under exactly the
same processing conditions was calibrated with a piezoresis-
tive force sensor (AE801, SensorOne) as described in [12].
It has been demonstrated that the Young’s modulus values
characterized from bulk PDMS and a micro PDMS structure,
both constructed with the same microfabrication parameters,
differ within 5% [13]. Fig. 4 shows the calibration data of
applied force vs. beam deflection. The determined Young’s
modulus value is 422.4kPa.
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Fig. 5. Indentation forces deform the mouse embryo and deflect two
supporting posts.

Fig. 6. Injection force analysis. (a) Force balance on the cell under
indentation. (b) Post deflection model.

C. Mouse Embryo Preparation

As a model organism, mouse is a primary animal for
genetics and reproductive research. Besides the importance
in in vitro fertilization, microinjection of mouse oocytes and
embryos is important for screening molecular targets linked
to the study of basic biology of embryo development, such
as mitochondrial-associated recombinant proteins, neutralizing
antibody, morpholinos, and expression vectors for siRNA.

The mouse embryos used in this research were collected
according to standard protocols approved by the Mount Sinai
Hospital Animal Care Committee in Toronto. Young (8-12
weeks old) and older (40 weeks old) ICR female mice were
used for obtaining normal embryos and those with blastomere
fragmentation. ICR females with different ages were superovu-
lated by injecting equine pregnant mare’s serum gonadotropin
(PMSG) and human chorionic gonadotropin (hCG) 48hr later.
The mice were subsequently mated with ICR males of proven
fertility, and plugs were verified the next morning. In vivo
fertilized embryos were collected from the mated female mice
at 24hr post-hCG and cultured in human tubal fluid (HTF) to
two-cell stage (at 48hr post-hCG). The average diameter of
the mouse embryos is 98μm.

D. Force Analysis

Fig. 5 shows a snapshot captured in the cell injection
process. The microrobot controls an injection micropipette to
exert an indentation force to a mouse embryo, deflecting the
two supporting posts on the opposite side. Post deflections,
measured by a visual tracking algorithm that will be discussed
in Section II-E, are fitted to an analytical mechanics model
to obtain contact forces between the cell and posts. Based
on the contact forces, the indentation force applied by the

micropipette on the cell is determined through the following
force analysis.

The cell is treated as elastic due to the fact that quick
indentation by the micropipette does not leave sufficient time
for cellular creep or relaxation to occur. Consequently, the
injection force, F is balanced by the horizontal components,
fhi of contact forces between the cell and supporting posts
(Fig. 6(a)),

F =
2∑

i=1

fhi (1)

Much higher deformability of mouse embryos than that of
zebrafish embryos results in different contact behavior between
a cell and supporting posts, necessitating different treatments
of forces in analysis. In the device configuration, the radius
of the cell (∼49μm) is larger than the depth of the cavity
and posts (45μm), resulting in an initial point contact between
the cell and supporting posts before post deflections occur.
However, the high deformability of mouse embryos makes cell
membrane conform to the posts when an injection force is
applied to the cell. It is assumed that the contact forces are
evenly distributed over the contact areas. Thus, the horizontal
components, fhi are expressed by a constant force intensity,
phi and a contact length, ai (Fig. 6(b))

fhi = phiai (2)

Slope θ of the posts’ free ends shown in Fig. 6(b) was
measured to verify the validity of linear elasticity that requires
small structural deflections. The maximum slope was deter-
mined to be 11.1◦, which satisfies sinθ ≈ θ; thus, the small
deflection assumption of linear elasticity holds [14]. Therefore,
the relationship of the horizontal force intensity, phi and post
deflections can be established [14].

phi =
δi

40ai(1+γ)(2H−ai)
9πED2 + 8(a4i+8H3ai−6H2a2i )

3πED4

(3)

where i = 1, 2; δi is the horizontal deflection; H and D are
post height and diameter; E and γ are Young’s modulus and
Poisson’s ratio (γ = 0.5 for PDMS [12]).

Combining (1)-(3) yields the injection force applied by the
micropipette to the cell.

F =
2∑

i=1

δiai
40ai(1+γ)(2H−ai)

9πED2 + 8(a4i+8H3ai−6H2a2i )

3πED4

(4)

In (4), the unknown parameters are post horizontal deflections,
δi and the contact length, ai. Experimentally, imaging with a
side-view microscope confirmed that the contact length, ai
increases at a constant speed, v for a given indentation speed.
Hence, ai = vt, where t denotes time.

Note that for a constant indentation speed of the mi-
cropipette, the variation speed of ai, v varies for different cells.
At 20μm/sec used throughout the experiments, v of the six
tested mouse embryos were measured to be 0.8-1.2μm/sec.
Interestingly, the sensitivity of the mechanics model (4) to
variations in v is low. The injection force varies only by
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Fig. 7. Image patches tracked by template matching and LSCD detected
post top circles.

Fig. 8. Mouse embryos for cellular force measurement. (a) Normal embryo.
(b) Embryo with blastomere fragmentation (arrow labeled).

1% when v changes from 0.8μm/sec to 1.2μm/sec. Thus, the
average value of the measured speeds, 1μm/sec was used to
calculate injection forces for all the embryos.

E. Visual Tracking of Post Deflections

In order to accurately track post deflections, a visual track-
ing algorithm with a resolution of 0.5 pixel was developed
and described in detail in [12]. A template matching algorithm
with constant template updates first tracks the motion of the
supporting posts, providing processing areas for a least squares
circle detection (LSCD) algorithm to determine posts’ center
positions. The LSCD algorithm utilizes Canny edge detector
to obtain an edge image and then extracts a portion of the post
top surface for circle fitting. Fig. 7 shows the tracked image
patches and LSCD detected post top circles.

F. Experimental Results and Discussion

As mouse embryos are exquisitely sensitive to slight temper-
ature variations, experiments were conducted at 37◦C inside
the temperature-controlled chamber. With a 40× objective (NA
0.55), the pixel size of the imaging system was calibrated to be
0.36μm×0.36μm. Micropipette tips used for indenting mouse
embryos was 1.8μm in diameter.

Three normal ICR embryos and three ICR embryos with
blastomere fragmentation at the two-cell stage were used
for cellular force measurements. Blastomere fragmentation
is often indicative of future programmed cell death [15].
Although the blastomere fragmented embryo shown in Fig. 8
can be distinguished morphologically from normal embryos,
using morphological differences alone is not always effective
to distinguish diseased embryos from normal embryos due
to the fact that one fourth of the fragmented embryos are

Fig. 9. Force-deformation curves of normal embryos (blue) and fragmented
embryos (red). They separate themselves into two distinct regions.

able to develop normally [15]. We hypothesized that subtle
changes in the cytoskeleton structure could lead to stiffness
changes between abnormal and normal embryos. Thus, cellular
force-deformation measurements were expected to provide
additional information for detecting embryonic dysfunctions
that require assisted hatching and for helping better select
healthy embryos for implantation after microinjection.

The six embryos were manually delivered onto the cell
holding device using a transfer pipette and then indented via
microrobotic teleoperation. The micropipette was controlled
to indent each embryo by 30μm at the speed of 20μm/sec.
During the indentation process, force data were collected in
real time (30 data points per sec).

Fig. 9 shows force-deformation curves of both normal
and fragmented embryos. The horizontal axis represents cell
deformation, d = d1 + d2cos30◦, where d1 and d2 were
defined in Fig. 6. The vertical axis shows vision-based cellular
force data. With the current cell holding devices and imaging
system, the force measurement resolution was determined to
be 3.7nN.

From Fig. 9, it can be seen that the force-deformation curves
of normal and fragmented embryos separate themselves into
two distinct regions. Table I summarizes the curve slopes
calculated by linear regression. The slopes for normal embryos
range from 2.52nN/μm to 3.35nN/μm while the slopes for
fragmented embryos are between 1.45nN/μm and 1.84nN/μm,
quantitatively demonstrating that the normal embryos and
fragmented embryos are mechanically different.

All the indented embryos were subsequently cultured in an
incubator at 37◦C with 5% CO2. The three normal embryos
successfully developed into the four-cell stage; however, the
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Fig. 10. Abrupt force change indicates cell membrane penetration during
microrobotic cell injection.

three fragmented embryos were arrested at the two-cell stage,
proving that the cellular force measurement results could be
useful for distinguishing normal embryos from those with
embryonic defects during microrobotic cell injection without
a separate cell characterization process.

In addition, the cellular force sensing technique can also
be used for detecting the penetration of cell membrane in
microrobotic cell injection. An abrupt change of cellular forces
(Fig. 10) indicates cell membrane penetration for subsequent
material deposition. The cellular force does not return to the
zero level immediately after penetration since the indented cell
does not have sufficient time for recovery during injection.
The force required to penetrate the outside membrane (zona
pellucida) of a healthy ICR embryo was 137.3nN.

III. NANONEWTON FORCE-CONTROLLED

MICROGRASPING OF BIOLOGICAL CELLS

Compared with end-effectors with a single tip such as a
probe or a micropipette for microrobotic cell manipulation,
a microgripper with two gripping arms is a more powerful
tool for reliable pick-transport-place tasks. Concerning force
sensing and control in microgripper-based microrobotic cell
manipulation, this section presents the first demonstration
of force-controlled micrograsping of biological cells at the
nanoNewton force level, which was conducted with a novel,
monolithic MEMS-based microgripper with integrated two-
axis force sensors.

A. Microrobotic System for Force-Controlled Micrograsping

1) System Setup: The microrobotic system shown in Fig. 11
includes a 3-DOF microrobot (MP-285, Sutter) for positioning
the microgripper, a motorized X-Y stage (ProScan II, Prior
Scientific) for positioning cell samples, an inverted microscope
(TE2000, Nikon) with a CMOS camera (A601f, Basler), a
microgripper wire bonded on a circuit board, and a motion
control board (6259, National Instruments) mounted on a
host computer. The microgripper was tilted at an angle of
40◦ to enable the gripping arm tips to reach samples on the
substrate without immersing the actuator or force sensors into
the culture medium.

Fig. 11. Microrobotic system setup for Force-controlled micrograsping. Inlet
picture shows the wire-bonded microgripper.

Fig. 12. MEMS-based microgripper with integrated two-axis capacitive force
sensors.

2) MEMS Microgripper: Over the past two decades, many
MEMS microgrippers were developed using different me-
chanical structures and actuation principles. For example,
electrothermal microgrippers without force feedback were de-
veloped for cell manipulation [16] and carbon nanotube grasp-
ing [17]. Electrostatic microgrippers with a single-axis force
sensor was reported for open-loop micrograsping [18] and
for investigating charge transport through DNA [19]. Force-
controlled micro and nanomanipulation requires microgrippers
ideally capable of providing multi-axis force feedback: to
protect the fragile microgripper by detecting contact between
the microgripper and object to be manipulated; and to pro-
vide gripping force feedback for achieving secured grasping
without applying excessive forces.

The MEMS microgripper with integrated two-axis force
sensors, shown in Fig. 12 was constructed through a modified
DRIE-SOI process. The device employs a V-beam electrother-
mal actuator that is connected to the lower part of a long
gripping arm to generate large gripping displacements at
gripping arm tips with low driving voltages. As shown in
Fig. 13, the gripping arm tip moves by 32μm at 6V; and
due to the many heat sink beams, the measured temperature
at the gripping arm tip is 29◦C in air, demonstrating a low
temperature suitable for biomaterial manipulation.

Integrated two-axis capacitive force sensors are imple-
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Fig. 13. Measured gripping arm tip displacement and temperature at actuation
voltages of 1-10V.

Fig. 14. Force sensor calibration results. Forces applied only (a) along the x
direction; (b) only along the y direction. Also shown are coupled responses.

mented with transverse differential comb drives and are
orthogonally configured. The contact force feedback (y-
directional) enables contact detection and protection of the
microgripper from breakage. The gripping force feedback
(x-directional) permits force-controlled micrograsping with a
force controller to accommodate size and stiffness variations of
objects to achieve secured grasping with no excessive forces
applied. Fig. 14 shows the force sensor calibration results,
demonstrating a high input-output linearity and minimized
cross-axis coupling. The integrated force sensors are capable
of resolving gripping forces up to 30μN (resolution: 19.9nN)

and contact forces up to 58μN (resolution: 38.5nN).

B. Interstitial Cell Preparation

Porcine aortic valve interstitial cells (PAVICs) were manipu-
lated to demonstrate force-controlled micrograsping. Manipu-
lation of single PAVICs with cellular force feedback is required
for cell transfer and mechanical characterization in pharmaco-
logical studies, such as heart aortic valve calcification.

Aortic valve leaflets were harvested from healthy pig hearts
obtained at a local abattoir. After rinsing with antibiotics,
each leaflet was treated with collagenase (150U/mL, 37◦C,
20min) and the leaflet surfaces were scraped to remove en-
dothelial cells. The leaflets were then minced, and digested
with collagenase (150U/mL, 37◦C, 2hr). The interstitial cells
were enzymatically isolated, grown on tissue culture flasks,
and kept in an incubator in standard tissue culture medium
(DMEM supplemented with 10% FBS and 1% antibiotics).
The medium was changed every 2 days, and the cells were
passaged when confluent. P2 cells were trypsinized and re-
suspended in standard tissue culture medium at 105cells/mL
for use in experiments.

C. Experimental Results and Discussion

The experiments were conducted at room temperature
(23◦C). In order to reduce adhesion of cells to the gripping arm
tips and thus, facilitate cell release, the microgripper tips were
dip coated with 10% SurfaSil siliconizing fluid (Pierce Chem-
icals) and 90% histological-grade xylenes (Sigma-Aldrich) for
10sec before use.

1) Contact Detection: A droplet of cell culture medium
containing suspended PAVICs (10-20μm in diameter) was
dispensed through pipetting on a polystyrene petri dish. After
PAVICs settle down on the substrate, a microrobot controls
the microgripper to immerse gripping arm tips into the liquid
droplet and conducts contact detection.

Contact detection is important to protect the microgripper
from damage. After the tips of gripping arms are immersed
into the medium, the microrobot controls the microgripper at
a constant speed of 20μm/sec to approach the substrate while
force data along the y direction are sampled. The contact de-
tection process completes within 5sec. Without the integrated
contact force sensor, this process would be extremely time
consuming and operator skill dependent.

When the monitored contact force level reaches a pre-set
threshold value, it indicates that contact between the gripping
arm tips and the substrate is established. Subsequently, the
microrobot stops lowering the microgripper further and moves
the microgripper upwards until the contact force returns to
zero (Fig. 15). After the initial contact position is detected,
the microgripper is positioned a few micrometers above the
detected contact position. The pre-set threshold force value
used in the experiments was 150nN, which was effective for
reliably determining the initial contact between the gripping
arm tips and the substrate.
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Fig. 17. Block diagram of force-controlled micrograsping.

Fig. 15. Contact force monitoring for reliable contact detection.

Fig. 16. Gripping force profile during micrograsping and releasing of a cell.

2) Force-Controlled Grasping of Biological Cells: Be-
fore the system performed force-controlled micrograsping of
PAVICs, experiments were conducted to evaluate the effective-
ness of open-loop micrograsping. The system applies a voltage
to the V-beam electrothermal actuator to produce an opening
larger than the size of a PAVIC between the two gripping arms.
When grasping a target PAVIC, the system reduces the applied
voltage level, which decreases the arm opening and realizes
grasping.

Fig. 16 shows the force profile during cell grasping and
releasing, where a sequence of actuation voltages was ap-
plied (5V opening voltage, 1.5V grasping voltage, and 5V
releasing voltage) to grasp and release a 15μm PAVIC. At
1.5V grasping voltage, the PAVIC was experiencing a gripping
force of 100nN that produced 15% cell deformation of its
diameter. Due to different sizes of PAVICs and their stiffness
variations, a single fixed grasping voltage can often cause

Fig. 18. Step response of force-controlled micrograsping.

Fig. 19. Tracking force steps with an increment of 60nN.

either unsecured grasping or cell rupturing from excessively
applied forces, necessitating closed-loop force-controlled mi-
crograsping.

To achieve reliable micrograsping, a closed-loop control
system was implemented by using gripping force signals as
feedback to form a closed loop. Fig. 17 shows the block
diagram of the force control system that accepts a pre-set force
level as reference input and employs proportional-integral-
derivative (PID) control for force-controlled micrograsping.
Fig. 18 shows the step response of the force-controlled mi-
crograsping system to track a reference input of 100nN.
The settling time is approximately 200ms. Corresponding
to reference input force steps with an increment of 60nN,
tracking results are shown in Fig. 19.

Enabled by the monolithic microgripper with two-axis force
feedback, the microrobotic system demonstrates the capability
of rapidly detecting contact, accurately tracking nanoNew-
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Fig. 20. Cell manipulation and alignment with force-controlled micrograsp-
ing. (a) After contact detection, the microgripper grasps a first cell. (b) The
microgripper transfers the cell to a new position and releases the cell. (c)
The microgripper grasps a second cell. (d) Transferring and releasing the
second cell. (e) The microgripper approaches a third cell. (f) Transferring and
releasing the third cell. Three cells of different sizes are transferred to desired
positions and aligned.

ton gripping forces, and performing reliable force-controlled
micrograsping to accommodate size and mechanical property
variations of objects. Fig. 20 shows three PAVICs of different
sizes that were picked, placed, and aligned. Force-controlled
micrograsping of the aligned PAVICs was conducted at a force
level of 65nN.

IV. CONCLUSION

This paper presented nanoNewton cellular force sensing and
control in microrobotic cell manipulation. A vision-based cel-
lular force sensing technique was demonstrated for resolving
forces with a resolution of 3.7nN during microrobotic mouse
embryo injection, based on a microfabricated PDMS cell
holding device and a sub-pixel computer vision algorithm with
a 0.5 pixel resolution. The acquired cellular force-deformation
curves provided important information for differentiating nor-
mally developed mouse embryos from those with compro-
mised developmental competence. Additionally, nanoNewton
force-controlled micrograsping of cells was demonstrated. The
microrobotic system used a close-loop force controller to
control a MEMS-based microgripper with integrated two-axis
force sensors. The contact force sensor enables rapid detection
of the contact between the substrate and gripping arm tips. A
PID force controller was used to regulate gripping forces for
force-controlled micrograsping. Experimental results on force-
controlled grasping of interstitial cells demonstrated that the
microrobotic system is capable of performing reliable force-
controlled manipulation at a force level of 20nN.
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Abstract—In this paper, we consider the problem of learning a
two dimensional spatial model of a gas distribution with a mobile
robot. Building maps that can be used to accurately predict the
gas concentration at query locations is a challenging task due
to the chaotic nature of gas dispersal. We present an approach
that formulates this task as a regression problem. To deal with
the specific properties of typical gas distributions, we propose
a sparse Gaussian process mixture model. This allows us to
accurately represent the smooth background signal as well as
areas of high concentration. We integrate the sparsification of
the training data into an EM procedure used for learning the
mixture components and the gating function. Our approach has
been implemented and tested using datasets recorded with a real
mobile robot equipped with an electronic nose. We demonstrate
that our models are well suited for predicting gas concentrations
at new query locations and that they outperform alternative
methods used in robotics to carry out in this task.

Index Terms—Gas distribution modeling, gas sensing, Gaus-
sian processes, mixture models

I. INTRODUCTION

Gas distribution modeling has important applications in
industry, science, and every-day life. Mobile robots equipped
with gas sensors are deployed, for example, for pollution mon-
itoring in public areas [1], surveillance of industrial facilities
producing harmful gases, or inspection of contaminated areas
within rescue missions.
Although humans have a natural odor sensor, it is hard for

us to build a spatial representation of a sensed gas distribution.
Building gas distribution maps is actually a challenging task
due to the chaotic nature of gas dispersal. The complex interac-
tion of gas with its surroundings is dominated by two physical
effects. First, on a comparably large timescale, diffusion mixes
the gas with the surrounding atmosphere to achieve a homo-
geneous mixture of both in the long run. Second, turbulent
air flow fragments the gas emanating from a source into
intermittent patches of high concentration with steep gradients
at their edges [16]. Especially this chaotic system of localized
patches of gas makes the modeling problem a hard one. In
addition to that, gas sensors provide information about a small
spatial region only since gas sensor measurements require
direct interaction between the sensor surface and the analyze
molecules. This makes gas sensing different to perceiving the
environment with laser range finders or other popular robotic
sensors.
Fig. 1 illustrates actual gas concentration measurements

recorded with a mobile robot along a corridor containing a
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Fig. 1. Gas concentration measurements acquired by a mobile robot in a
corridor. The distribution consists of a rather smooth “background” signal and
several peaks indicating high gas concentrations.

single gas source. The distribution consists of a rather smooth
“background” signal and several peaks indicating high gas
concentrations. The challenge in gas distribution mapping is
to model this background signal while being able to cover
also the areas of high concentration and their sharp bound-
aries. Since performing measurements is a comparably costly
operation, one is also interested in reducing the number of
samples needed to build a representation. It is important to
note that the noise is dominated by the large fluctuations of
the instantaneous gas distribution and not by the electronic
noise of the gas sensors. From a probabilistic point of view,
the task of modeling a gas distribution can be described as
finding a model that best explains the observations and that is
able to accurately predict new ones. Thus, the data likelihood
in combination with cross validation is the standard criterion
to evaluate such a model.
Simple spatial averaging, which represents a straight-

forward approach to the modeling problem, disregards the
different nature of the background noise and the peaks result-
ing from areas of high gas concentrations and, thus, achieves
only limited prediction accuracy. On the other hand, precise
physical simulation of the gas dynamics in the environment
would require immense computational resources as well as
precise knowledge about the physical conditions, which is not
known in most practical scenarios.
To achieve a balance between model accuracy and tractabil-

ity, we treat gas distribution mapping as a two-dimensional
regression problem. We derive a solution by means of a
sparse mixture model of Gaussian process experts [21] that
is able to handle both physical phenomena highlighted above.
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Formally, we interpret gas sensor measurements obtained from
static sensors or from a mobile robot at locations as noisy
samples from a time-constant distribution. This implies that the
gas distribution in fact exhibits a time-constant structure, an
assumption that is often made in unventilated and un-populated
indoor environments [22].
While existing approaches to gas distribution mapping such

as local averaging [6, 11], kernel extrapolation techniques [7],
or standard GP models represent the average concentration
per location only, our mixture model explicitly distinguishes
different components of the distribution, i.e., concentration
layers varying smoothly due to dispersion processes versus
those containing localized patches of gas. This leads to a
more accurate prediction of the gas concentration. Our model
actually allows us to do both, computing the average gas
concentration per location (as existing models supply) as well
as the multi-modal predictive densities.
The contribution of this paper is a novel approach that learns

gas distribution models from sensor data using a sparse Gaus-
sian process mixture model. As a by-product, we present an
algorithm that learns a GP mixture model and simultaneously
reduces the model complexity in order to achieve an efficient
representation even for large data sets. Our technique provides
gas concentration estimates for each location in space and also
the corresponding predictive uncertainties. The mixture model
allows us to improve the gas concentration estimate close
to the boundaries and in areas with high gas concentration
compared to standard models. As we will demonstrate in
experiments carried out with a real robot, our model has a
lower mean squared error and a higher data likelihood than
other methods and thus allows to more accurately predict gas
concentration at query locations.
This paper is organized as follows. After a discussion of

related work, we introduce in Sec. III Gaussian processes for
regression. Then, Sec. IV explains our approach to learn a
sparse GP mixture to model gas distributions from observa-
tions. Finally, we present the experimental evaluation of our
work with a real mobile robot.

II. RELATED WORK

A straightforward method to create a representation of the
time-averaged concentration field is to perform measurements
over a prolonged time with a grid of gas sensors. Equidistant
gas sensor locations can be used to represent the average
concentration values directly on a grid map. This method,
though with partially simultaneous measurements, was applied
by Ishida et al. [6]. A similar method was used in [11] but
instead of the average concentration, the peak concentration
observed during a sampling period of 20 s was considered to
create the map.
Consecutive measurements with a single sensor and time-

averaging over 2 minutes for each sensor location were used
by Pyk et al. [12] to create a map of the distribution of ethanol.
Methods, which aim at determining a map of the instantaneous
gas distribution from successive concentration measurements,
rely on the assumption of a time-constant distribution profile,
i.e., uniform delivery and removal of the analyze gas and stable

environmental conditions. Thus, the experiments of Pyk et al.
were performed in a wind tunnel with a constant airflow and a
uniform gas source. To make predictions at locations different
from the measurement points, they apply bi-cubic interpolation
in the case of equidistant measurements and triangle-based
cubic filtering in the case where the measurement points are
not equally distributed [12]. A problem with these interpo-
lation methods is that there is no means of “averaging out”
instantaneous response fluctuations at measurement locations.
Even if response values were measured very close to each
other, they will appear independently in the gas distribution
map with interpolated values in-between. Consequently, inter-
polation maps tend to get more and more jagged while new
measurements are added [8].
Histogram methods take the spatial correlation of concen-

tration measurements into account because of the implicit
extrapolation on the measurements by the quantization into
histogram bins. Hayes et al. [5] suggest a two-dimensional
histogram where the bins contain the accumulated number of
“odor hits” received in the corresponding area. Odor hits are
counted whenever the response level of a gas sensor exceeds
a defined threshold. In addition to the dependency of the
gas distribution map on the selected threshold, a problem
with using only binary information from the gas sensors is
that much useful information about fine gradations in the
average concentration is discarded. A further disadvantage
of histogram methods for gas distribution modeling is their
dependency on the bin size and that they require perfectly
even coverage of the inspected area.
Kernel extrapolation gas distribution mapping, which can

be seen as an extension of histogram methods, was introduced
by Lilienthal and Duckett [7]. Spatial integration is carried out
by convolving sensor readings and modeling the information
content of the point measurements with a Gaussian kernel.
As discussed in [8], this method has also an analogy with
non-parametric estimation of density functions using a Parzen
window method.
Model-based approaches as in Ishida et al. [6] infer the

parameters of an analytical gas distribution model from
the measurements. They depend crucially on the underlying
model. Complex numerical models based on fluid dynamics
simulations are computationally expensive and depend sensi-
tively on accurate knowledge of the state of the environment
(boundary conditions) which is not available in practical
situations. Simpler analytical models, on the other hand, often
rest on rather unrealistic assumptions and are of course only
applicable for situations in which the model assumptions
hold. Model-based approaches also rely on well-calibrated
gas sensors and an established understanding of the sensor-
environment interaction.
The majority of approaches proposed in the literature create

a two-dimensional representation and represent time-constant
structures in the gas distribution. Also the effort (either in
terms of time consumption or the number of sensors) of the
model-free approaches to converge to a stable representation,
scales quadratically with the size of the environment. None of
the approaches suggested so far models the variance together
with the time-average of the concentration field.
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In contrast to those approaches, we apply Gaussian pro-
cesses in a mixture model setting to learn probabilistic gas
distribution maps. GPs allow us to model the dependency
between nearby locations by means of a covariance function.
They enable us to make predictions at locations not observed
so far and do not only provide the mean gas distribution but
also a predictive variance. Our mixture model can furthermore
model sharp boundaries of areas with high gas concentration.
Gaussian processes (GPs) are a non-parametric method

frequently used to solve regression and classification prob-
lems [13]. A drawback of the standard GP approach is its com-
putational complexity. However, several methods for learning
sparse GP models [18, 19] have been presented that overcome
this limitation and lead to a near-linear complexity [19].
Tresp [21] introduced a mixture model of GP experts to better
deal with spatially varying properties in the data. Extensions of
this technique using infinite mixtures have been proposed by
Rasmussen and Ghahramani [15] and Meeds and Osindero [9].
GPs have already received considerable attention within the

robotics community. Schwaighofer et al. [17] introduced a
positioning system for cellular networks based on Gaussian
processes. Brooks et al. [2] proposed a Gaussian process
model in the context of appearance-based localization with
an omni-directional camera. Ferris et al. [3] applied Gaus-
sian processes to locate a mobile robot from wireless signal
strength. Related Bayesian regression approaches have been
also followed for example by Ting et al. [20] to identify rigid
body dynamics and Grimes et al. [4] to learn imitative whole-
body motions.

III. GAUSSIAN PROCESSES FOR REGRESSION

The general gas distribution mapping problem, given a set
of gas concentration measurements y1:n acquired at locations
x1:n, is to learn a predictive model p(y∗ | x∗,x1:n, y1:n) for
gas concentrations y∗ at a query location x∗. We address
this estimation problem as a regression problem. Gaussian
processes (GPs) offer a flexible way of solving such regression
problems [13]. GPs are a “non-parametric” method, since no
parametric form of the underlying function x �→ y is assumed.
The model is represented directly using the given training data.
GPs can be seen as a generalization of the Gaussian probability
distribution to a distribution over functions. A GP for real-
valued functions f is defined by a mean function m(·) and a
covariance function k(·, ·)

m(x) = E[f(x)] (1)

k(xp,xq) = E[(f(xp)−m(xp))(f(xq)−m(xq))]. (2)

In the following, we set m(x) = 0 for simplicity of notation
and apply the squared exponential covariance function

k(xp,xq) = σ2
f · exp

(
−1

2
|xp − xq|2

l2

)
. (3)

Observations y obtained from the process are assumed to be
affected by Gaussian noise, y ∼ N (m(x), σ2

n). The variables
Φ = {σf , l, σn} are the so-called hyperparameters of the
process which have to be learned from data.
Given a set D = {(xi, yi)}ni=1 of training data where xi ∈

Rd are the inputs and yi ∈ R the targets, the goal in regression

is to predict target values y∗ ∈ R at a new input point x∗. Let
X = [x1; . . . ;xn] be the n × d matrix of the inputs and X∗
be defined analogously for multiple test data points. In the GP
model, any finite set of samples is jointly Gaussian distributed[

y
f(X∗)

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (4)

where K(·, ·) refers to the matrix with the entries given by the
covariance function k(·, ·) and y the vector of the (observed)
targets yi. To actually make predictions at X∗, we obtain for
the predictive mean

f̄(X∗) := E[f(X∗)] = K(X∗, X)[K(X,X) + σ2
nI]

−1y (5)

and for the (noise-free) predictive variance

V[f(X∗)] = K(X∗, X∗)
−K(X∗, X)[K(X,X) + σ2

nI]
−1K(X,X∗), (6)

where I is the identity matrix. The corresponding (noisy)
predictive variance for an observation y∗ can be obtained by
adding the noise term σ2

n to the individual components of
V[f(X∗)].
GPs are a sound mathematical framework with many prac-

tical applications. The standard GP model as described above,
however, has two major limitations in our problem domain.
First, the computational complexity is high, since to compute
the predictive variance given in Eq. (6), one needs to invert
the matrix K(X,X) + σ2

nI , which introduces a complexity
of O(n3) where n is the number of training examples. As a
result, an important issue for GP-based solutions to practical
problems is the reduction of this complexity. This can, as we
will show in Sec. IV, be achieved by artificially limiting the
training data set in a way that introduces small loss in the data
likelihood of the whole training set while at the same time
minimizing the runtime. As a second limitation, the standard
GP model generates a uni-modal distribution per input location
x. This assumption hardly fits our application domain in which
a relatively smooth “background” signal is typically mixed
with high-concentration “packets” of gas. In the following,
we address this issue by deriving a mixture model of Gaussian
processes.

A. Mixtures of Gaussian Process Models

The GP mixture model [21] constitutes a locally weighted
sum of several Gaussian process models. For simplicity of no-
tation, we consider without loss of generality the case of single
predictions only (x∗ instead of X∗). Let {GP1, . . . ,GPm}
be a set of m Gaussian processes representing the individual
mixture components. Let P (z(x∗) = i) be the probability that
x∗ is associated with the i-th component of the mixture. Let
f̄i(x∗) be the mean prediction of the GPi at x∗. The likelihood
of observing y∗ in such as model is thus given by

h(x∗) := p(y∗ | x∗) =
m∑
i=1

P (z(x∗) = i) · Ni(y∗;x∗) , (7)

where we define Ni(y;x) as the Gaussian density function
with mean f̄i(x) and variance V[fi(x)] + σ2

n evaluated at
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y. One can sample from such a mixture by first sampling
the mixture component according to P (z(x∗) = i) and
then sampling from the corresponding Gaussian. For some
applications such as information-driven exploration missions,
it is practical to estimate the mean and variance for this multi-
modal model. The mean E[h(x∗)] of the mixture model is
given by

h̄(x∗) := E[h(x∗)] =
m∑
i=1

P (z(x∗) = i) · f̄i(x∗) (8)

and the corresponding variance is computed as

V[h(x∗)] =
m∑
i=1

(V[fi(x∗)] + (f̄i(x∗)− h̄(x∗))2)

· P (z(x∗) = i). (9)

IV. LEARNING THE MIXTURE MODEL FROM DATA

Given a training set D = {(xj , yj)}nj=1 of gas concentration
measurements yj and the corresponding sensing locations xj ,
the task is to jointly learn the assignment z(xj) of data
points to mixture components and, given this assignment,
the individual regression models GPi. Tresp [21] describes
an approach based on Expectation Maximization (EM) for
solving this task. We take his approach, but also seek to
minimize the model complexity to achieve a computationally
tractable model even for large training data sets D. This
is of major importance in our application, since typical gas
concentration data sets easily exceed n = 1000 data points and
the standard GP model (see Sec. III) is of cubic complexity
O(n3). Different solutions have been proposed for lowering
this upper bound, such as dividing the input space into
different regions and solving these problems individually or
the usage of the so called sparse GPs. Sparse GPs [18, 19]
use a reduced set of inputs to approximate the full space.
This new set can be either a subset of the original inputs [18]
or a set of new pseudo-inputs [19] which are obtained using
an optimization procedure. This reduces the complexity from
O(n3) to O(nm2) with m� n, which in practice results in a
nearly linear complexity. In this section, we describe a greedy
forward-selection algorithm integrated into the EM-learning
procedure which achieves a sparse mixture model while also
maximizing the data likelihood of the whole training set D.

A. Initializing the Mixture Components

In a first step, we subsample n1 data points and learn a
standard GP for this set. This model GP1 constitutes the
first mixture component. To cover areas of gas concentrations
that are poorly modeled by this initial model, we learn an
“error GP” which models the absolute differences between
a set of target values and the predictions of GP1. We then
sample points according to the error GP and use them as the
initialization for the next mixture component. In this way, the
new mixture is initialized with the data points that are poorly
approximated by the first one. This process is continued until
the desired number m of model components is reached. For
typical gas modeling scenarios, we found that two mixture
components are often sufficient to achieve good results. In

our experiments, the converged mixture models nicely reflect
the bi-modal nature of gas distributions, having one smooth
“background” component and a layer of locally concentrated
structures as outlined in the introduction of this paper.

B. Iterative Learning via Expectation-Maximization

The Expectation Maximization (EM) algorithm can be used
to obtain a maximum likelihood estimate when hidden and
observable variables need to be estimated. It consists of two
steps, the so-called estimation (E) step and the maximiza-
tion (M) step which are executed alternately.
In the E-step, we estimate the probability P (z(xj) = i) that

the data point j corresponds to the model i. This is done by
computing the marginal likelihood of each data point for all
models individually. Thus, the new P (z(xj) = i) is computed
given the previous one as

P (z(xj) = i) ← P (z(xj) = i) · Ni(yj ;xj)∑m
k=1 P (z(xj) = k) · Nk(yj ;xj)

.(10)

In the M-step, we update the components of our mixture
model. This is achieved by integrating the probability that a
data point belongs to a model component into the individual
GP learning steps (see also [21]). This is achieved by modi-
fying Eq. (5) to

f̄i(X∗) = K(X∗, X)[K(X,X) + Ψi]−1y, (11)

where Ψi is a matrix with

Ψi
jj =

σ2
n

P (z(xj) = i)
(12)

and zeros in the off-diagonal elements. Eq. (6) is updated
respectively. The matrix Ψi allows us to consider the prob-
abilities that the individual inputs belong to the corresponding
components. The contribution of an unlikely data point to a
model is reduced by increasing the data point specific noise
term. If the probability, however, is one, only σ2

n remains as
in the standard GP model.
Learning a GP model also involves the estimation of its

hyperparameters Φ = {σf , l, σn}. To estimate them for GPi,
we first apply a variant of the hyperparameter heuristic used
by Snelson and Ghahramani [19] in their open-source imple-
mentation. We extended it to incorporate the correspondence
probability P (z(xk) = i) into this initial guess

l ← max
xj

P (z(xj) = i) ||xj − x̄|| (13)

σ2
f ←

∑n
j=1 P (z(xj) = i) (yj − E[y])2∑n

j=1 P (z(xj) = i)
(14)

σ2
n ← 0.25 · σ2

f , (15)

where x̄ refers to the weighted mean of the inputs—each xj
having a weight of P (z(xj) = i).
To optimize the hyperparameters further given this initial es-

timate, one could apply, for example, Rasmussen’s conjugate-
gradient–based optimization technique [14] to minimize the
negative log marginal likelihood. In our experiments, however,
this approach lead to serious overfitting and we therefore
resorted to cross validation-based optimization. Concretely, we
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randomly sample the hyperparameters and evaluate the model
accuracy according to Sec. IV-B on a separate validation set.
As a sampling strategy, we draw in each even iteration new
parameters from an uninformed prior and in each odd iteration,
we improve the current best parameters Θ′ by sampling from
a Gaussian with mean Θ′. The standard deviation of that
Gaussian decreases with the iteration. In our experiments,
this strategy found appropriate hyperparameters quickly while
significantly reducing the risk of overfitting.

C. Learning the Gating Function

In our mixture model, the gating function defines for each
data point the likelihood that it belongs to the individual mix-
ture components. The EM algorithm learns these assignment
probabilities for all inputs xj , maximizing the overall data
likelihood. These learned hidden variables are then used to
estimate the assignment at an unknown location x∗ by means
of regression. Concretely, we learn a gating GP for each
component i that uses the xj as inputs and the z(xj) obtained
from the EM algorithm as targets. Let f̄zi (x) be the prediction
of z for GPi. Given this set of m GPs, we can compute the
correspondence probability for a new test point x∗ as

P (z(x∗) = i) =
exp(f̄zi (x∗))∑m
j=1 exp(f̄

z
j (x∗))

. (16)

D. Illustrating Example

We have specified all quantities that are needed to model gas
distributions with sparse Gaussian process mixture models. To
summarize the approach, we use a a simple, simulated, one-
dimensional example.
The first part of the data points where uniformly distributed

around a y value of 2 while the second part was generated
with higher noise at two distinct locations. The left image of
Fig. 2 depicts the standard GP learned from the input data and
the right one the resulting error GP. Based on the error GP, a
second mixture component is initialized and used as the input
to the EM algorithm.
The individual images in Fig. 3 illustrate the iterations

of the EM algorithm. They depict the two components of
the mixture model. After convergence, the gating function
is learned using the hidden variables reported by the EM
algorithm. The learned gating function is depicted in the left
image of Fig. 4 and the final GP mixture model is shown
in the right image. It is obvious that this model is a better
representation of the distribution than the standard GP model
shown in the left image of Fig. 2 (averaged negative log
likelihood of -1.70 vs. -0.24).

V. EXPERIMENTS

We carried out pollution monitoring experiments in which
the robot followed a predefined sweeping trajectory covering
the area of interest. Along its path, the robot was stopped at a
pre-defined set of grid points to carry out measurements on the
spot between 10 s (outdoors) and 30 s (indoors). The spacing
between the grid points was set to values between 0.5m to
2.0m depending on the topology of the available space. The
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Fig. 2. Left: The standard GP used to initialize the first mixture component.
Right: The error GP used to initialize the next mixture component.
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Fig. 3. Components during different iterations of the EM algorithm.
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Fig. 4. Left: The learned gating function. Right: Resulting distribution of
the GP mixture model.

sweeping motion was performed twice in opposite directions
and the robot was driven at a maximum speed of 5 cm/s in
between the stops (to reduce the risk of turbulent air flow due
to the motion of the robot). The gas source was a small cup
filled with ethanol.
Apart from a SICK laser range scanner used for pose

correction, the robot was equipped with an electronic nose
and an anemometer. The electronic nose comprises six Figaro
gas sensors (2 × TGS 2600, TGS 2602, TGS 2611, TGS
2620, TGS 4161) enclosed in an aluminum tube. This tube
is horizontally mounted at the front side of the robot (see also
Fig. 5). The electronic nose is actively ventilated through a fan
that creates a constant airflow towards the gas sensors. This
lowers the effect of external airflow and the movement of the
robot on the sensor response.
Note that in this work, we concentrate only on the gas

concentration measurements and do not consider the pose
uncertainty of the vehicle. One can apply one of the various
SLAM systems available to account for the uncertainty in the
robot’s pose.
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Fig. 5. Pictures of the robot inspecting three different environments as well
as the corresponding sweeping trajectories.

TABLE I

AVERAGED NEGATIVE LOG LIKELIHOODS OF TEST DATA POINTS GIVEN

THE DIFFERENT MODELS

Dataset GP GPM GPM avg

3-rooms -1.22 -1.54 -1.50
corridor -0.98 -1.60 -1.58
outdoor -1.01 -1.77 -1.69

Three environments with different properties have been
selected for the pollution monitoring experiments. The first
experiment (3-rooms) was carried out in an enclosed indoor
area that consists of three rooms which are separated by
slightly protruding walls in between them. The area covered
by the path of the robot is approximately 14×6m2. There
is very little exchange of air with the “outer world” in this
environment. The gas source was placed in the central room
and all three rooms were monitored by the robot. The second
location was a part of a corridor with open ends and a high
ceiling. The area covered by the trajectory of the robot is ap-
proximately 14×2m2. The gas source was placed on the floor
in the middle of the investigated corridor segment. Finally, an
outdoor scenario was considered. Here, the experiments were
carried out in an 8×8m2 region that is part of a much bigger
open area.
We used the raw sensor readings in all three environments

and applied our approach to learn gas distribution models.
In the experiments shown here, the robot moved through
the environment twice. Therefore, we used the first run for
learning the model and the second one for evaluating it. For a
comparison with our technique, we also computed a gas distri-
bution model using a standard GP. We furthermore compared
our mean estimates to the one of the grid-based method with
interpolation and the kernel extrapolation technique.
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Fig. 6. The 3-rooms dataset with one ethanol gas source in the central room.
The room structure itself is not visualized here. In all plots, blue represents
low, yellow reflect medium, and red refers to high values.

Fig. 6 depicts the learned models for the 3-room dataset.
The left plot in the first row illustrates the mean prediction
for the standard GP on the sub-sampled training set which
serves as the first mixture component. The right image depicts
the error GP representing the differences between the initial
prediction and a set of observations. Based on the error GP, a
new mixture component is initialized and the EM algorithm is
carried out. After convergence, the gating function is learned
based on the hidden variables reported by the EM (right image,
second row). The left image in the third row shows the final
mean prediction of our mixture model. As can be seen, the
“background” distribution is smoothly modeled while at the
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Fig. 7. Models learned from concentration data recorded in the corridor
environment (see Fig. 1 for the raw data). The gas source was placed at the
location 10, 3. The standard GP and our GPM model provide similar mean
estimates. Our approach, however, provides a better predictive uncertainty and
thus a higher likelihood given the test data (see Tab. I).

same time the gas concentration peak close to the gas source
has a sharp boundary. In contrast to this, the standard GP
learned using the same data is unable to provide an appropriate
estimate since the area around the peak is to smoothed too
much.
Tab. I summarizes the negative log likelihoods of the test

data (second part of the dataset) given our mixture model as
well as the standard GP model. We provide two likelihoods
for our model, the one given in Eq. (7) (called ’GPM’ in the
table) and the one computed based on the averaged prediction
specified in Eq. (8) and Eq. (9) (called ’GPM avg’). As can be
seen, our GPM method outperforms the standard GP model in
all our experiments since it provides the best data likelihood.
Note that we repeated the experiment 10 times and the t-test
shows that the results are significant.
By considering the 2d plots in the last two rows of Fig. 6,

two reasons for this fact can be observed easily. First, as
already mentioned before, the standard GP smoothes too much
in the area close to the gas source while this smoothing is
fine for the rest of the scene. Second, the variance around the
source is too small (standard GPs assumes constant noise for
all inputs).
In the corridor experiment, the area of high gas concentra-

tion was mapped appropriately also by the standard GP, but
again the variance was too small close to the area of high gas
concentration. This can be observed by considering Fig. 7.
In contrast to this, our GPM model provides a high variance
in this area – which actually models the observations in a
more precise way. Similar results are obtained in the outdoor
dataset. Mean and variance predictions of the standard GP and
our model are provided in Fig. 9.
In all our experiments, we limited the number of data points

in the reduced input set to n1 = 100 (taken from the first
part of the datasets). The datasets itself contained between
2,500 and 3,500 measurements so our model was able to make
accurate predictions with less than 5% of the data. Matrices
of that size can be easily inverted and as a result the overall
computation time to learn our model including cross validation
using unoptimized Matlab code on a notebook computer takes
around 1minute for all datasets shown above.
Finally, we compared the mean estimates of our mixture

model to the results obtained with the method of Lilienthal
and Duckett [7] as well as with the standard approach of using
a grid in combination with interpolation. The results of this
comparison is shown in Fig. 8. As can be seen, our method
outperforms both alternative methods.

VI. CONCLUSIONS

In this paper, we considered the problem of modeling gas
distributions from sensor measurements by means of sparse
Gaussian process mixture models. Gaussian processes are an
attractive modeling technique in this context since they do not
only provide a gas concentration estimate for each point in the
space but also the predictive uncertainty. Our approach learns
a GP mixture model and simultaneously decreases the model
complexity by reducing the training set in order to achieve an
efficient representation even for a large number of observa-
tions. This overcomes the major drawback of GPs, their high
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Fig. 8. Mean squared error of the GP mixture model mean and the kernel
extrapolation technique and the grid approximation with interpolation.

computational complexity. The mixture model allows us to
explicitly distinguish the different components of the spatial
gas distribution, namely areas of high gas concentration from
the smoothly varying background signal. This improves the
accuracy of the gas concentration prediction.
Our method has been implemented and tested using gas

sensors mounted on a real robot. With our method, we obtain
gas distribution models that better explain the sensor data
compared to techniques such as the standard GP regression
for gas distribution mapping. Our approach and the one of
Lilienthal and Duckett [7] provide similar mean gas concen-
tration estimates, their approach as well as the majority of
techniques in the field, however, lack the ability of estimating
their predictive uncertainties.
Despite this encouraging results, there is space for further

optimizations. Considering non-stationary kernels [10] might
further improve the estimates or might serve as an alternative
to explictly modeling mixtures. In addition, we are currently
exploring the possibility to model the diffusion in high con-
centration areas by smoothing the gating function over time.
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