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Preface 

The traditional computed torque design is only adequate for the control           

of robot manipulators with precisely known dynamics. In the industrial 

environment, however, an accurate robot model is not generally available, and 

most robots are limited to be operated under slow motion conditions so that 

some system dynamics can be ignored.  When performing the tasks with precise 

tracking of fast trajectories under time-varying payloads, several considerations 

such as the joint flexibility and actuator dynamics are unavoidable. This will 

generally lead to some extremely complex robot model which greatly increases 

the difficulty in the controller design. What is worse is that estimation of the 

system parameters in this complex model becomes more challenging. It is 

reasonable to regard some system dynamics as uncertainties to simplify the 

modeling tasks. The robust controls and adaptive designs are then utilized to 

deal with these uncertainties. However, the former needs the knowledge of the 

variation bounds for the uncertainties, while the later requires the linear 

parameterization of the uncertainties into a known regressor multiplied by an 

unknown constant parameter vector. When the system contains time-varying 

uncertainties whose variation bounds are not given (defined later as general 

uncertainties), both the robust control and adaptive design are not feasible in 

general.  

In the conventional adaptive control of robot manipulators, the robot           

model is assumed to be linearly parameterizable into the regressor form. But the 

derivation of the regressor matrix is tedious in most cases, and computation of 

the regressor matrix during each sampling period in the real-time realization is 

too time-consuming. This suggests the need for some regressor-free adaptive 

designs.   

The aim of this book is to address recent developments of the unified 

regressor-free adaptive controller designs for robot manipulators with consideration 

of joint flexibility and actuator dynamics. The unified approach is still valid for 
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the robot control in the compliant motion environment. The main tool used in 

this new design is the function approximation technique which represents the 

general uncertainties in the robot model as finite combinations of basis functions 

weighted with unknown constant coefficients.  

The book has been written as a text suitable for postgraduate students in the 

advanced course for the control of robot manipulators. In addition, it is also 

intended to provide valuable tools for researches and practicing engineers who 

currently employ the regressor-based algorithms but would benefit significantly 

from the use of the regressor-free strategies.  

We would like to thank all of our colleagues and students with whom we 

have discussed the basic problems in the control of robot manipulators over the 

last few years. Without them, many issues would never have been clarified. This 

work was partially supported by the National Science Council of the Republic of 

China government and by the National Taiwan University of Science and 

Technology. The authors are grateful for their support.  
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Ming-Chih Chien 

 

Mechanical Engineering Department 
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Chapter 1 

Introduction 

Robot manipulators have been widely used in the industrial applications in 

the past decades. Most of these applications are restricted to slow-motion 

operations without interactions with the environment. This is mainly due to 

limited performance of the available controllers in the market that are based on 

simplified system models. To increase the operation speed with more servo 

accuracy, advanced control strategies are needed. Consideration of the actuator 

dynamics in the controller design is one of the possible ways to improve system 

performance. Although some of the industrial robots are driven by hydraulic or 

pneumatic actuators, most of them are still activated by motors. Therefore, 

similar to majority of the related literature, we are only going to consider 

electrically driven (ED) robot manipulators in this book. On the other hand, 

explicit inclusion of the joint flexibility into the system dynamics can also 

improve the control performance. Since the robot dynamics is highly nonlinear, 

consideration of these effects will largely increase the difficulty in the controller 

design. Besides, the robot model inevitably contains uncertainties and 

disturbances; this makes the control problem extremely difficult.  

In this book, we would like to consider the control problem of robot 

manipulators with consideration of actuator dynamics, joint flexibility and 

various system uncertainties. These uncertainties are assumed to be time-varying 

but their variation bounds are not available. Due to their time-varying nature, 

most traditional adaptive designs are not feasible. Because their variation 

bounds are not known, most conventional robust schemes are not applicable. 

The main strategy we employed in this book to deal with the uncertainties is 

based on the function approximation techniques (FAT). The basic idea of FAT 

is to represent the uncertain term as a finite combination of known basis 

functions so that proper update laws can be derived based on the Lyapunov-like 

design to give good performance. Since the FAT-based adaptive design does not 

need to represent the system dynamics into a regressor form, it is free from 
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computation of the regressor matrix. Derivation of the regressor matrix is well-

known to be very tedious for a robot manipulator with more than four joints. 

The regressor-free strategy greatly simplified the controller design process. 

Because, for the traditional robot adaptive control, the complex regressor matrix 

has to be updated in every control cycle in the real-time implementation,                

the regressor-free algorithm also effectively simplified the programming 

complexity.  

When the robot end-effector contacts with the environment, the controllers 

designed for performing the free space tracking tasks cannot provide appropriate 

control performance. In this book, the renowned impedance control strategy will 

be incorporated into the FAT-based design so that some regressor-free adaptive 

controllers with consideration of the actuator dynamics for the robot manipulators 

can be obtained.  

To have a better understanding of the problems we are going to deal with, 

Table 1.1 presents the systems considered in this book. The abbreviations listed 

will be used throughout this book to simplify the presentation. 

Table 1.1 Systems considered in this book 

Systems Abbreviation 

1 Rigid robot in the free space RR 

2 Rigid robot interacting with the environment RRE 

3 Electrically-driven rigid robot in the free space EDRR 

4 Electrically-driven rigid robot interacting with the environment EDRRE 

5 Flexible-joint robot in the free space FJR 

6 Flexible-joint robot interacting with the environment FJRE 

7 Electrically-driven flexible-joint robot in the free space EDFJR 

8 Electrically-driven flexible-joint robot interacting with environment EDFJRE 

Free space tracking of a rigid robot 

It can be seen that systems from 1 to 7 are all special cases of 8. However, 

it is not appropriate to derive a controller for the system in 8 directly, because 

starting from the simple ones can give us more insight into the unified approach 

to be introduced. Let us consider the tracking problem of a rigid robot in the free 

space first. It is the simplest case in this book and several control strategies can 

also be found in robotics textbooks under various conditions. We will start with 

the case when all system parameters are precisely known, and a feedback 

linearization based controller is constructed to give proper performance. 

Afterwards, we assume that most parameters in the robot model are not known 
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but a regressor can be derived such that all uncertain parameters are collected 

into an unknown vector. Conventional adaptive strategies can thus be applied to 

give update laws to this unknown parameter vector, and closed loop stability can 

also be proved easily. However, implementation of this scheme requires the 

information of joint accelerations which is impractical in most industrial 

applications. What is worse is that the estimation in the inertia matrix might 

suffer the singularity problem. A well-known design proposed by Slotine and Li 

is then reviewed to get rid of the need for joint acceleration feedback and avoid 

the singularity problem. In the above designs, the robot dynamics should be 

linearly parameterized into a known regressor matrix multiplied by an unknown 

parameter vector. The regressor matrix is known to be tedious in its derivation 

for a robot with degree of freedom more than 4. The regressor matrix is not 

unique for a given robot, but depending on the selection of the parameter vector. 

The entries of this vector should be constants that are combinations of unknown 

system parameters. However, these parameters are mostly easier to be found 

than the derivation of the regressor matrix. For example, the weight, length, 

moment of inertia and gravity center of a link are frequently seen in the 

parameter vector and their values are very easy to measure in practice. It is not 

reasonable to construct a controller whose design needs to know an extremely 

complex regressor matrix but to update an easy-to-obtain parameter vector. 

Motivated by this reasoning, the regressor-free adaptive control approach is 

developed. The uncertain matrices and vectors in the robot model will be 

represented as finite combinations of basis functions. Update laws for the 

weighting matrices can be obtained by the Lyapunov-like design. The effect           

of the approximation error is investigated with rigorous mathematical 

justifications. The output error can thus be proved to be uniformly ultimately 

bounded. Finally, the trajectory of the output error is bounded by a weighted 

exponential function plus some constant. With proper adjustment of controller 

parameters, both the transient performance and the steady state error can be 

modified.  

Compliant motion control of a rigid robot 

Item 2, 4, 6 and 8 in Table 1.1 relate to the compliant motion control of 

robot manipulators whose dynamic model include the effect of the external force 

vector exerted by the environment. Many control strategies are available for 

rigid robots to give closed loop stability in the compliant motion applications. 

Among them, the impedance control employed in this book is the most widely 

used one which is a unified approach for controlling robot manipulators in both 
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free space tracking and compliant motion phases. The impedance controller 

makes the robot system behave like a target impedance in the Cartesian space, 

and the target impedance is specified as a mass-spring-damper system. For rigid 

robots, we start with the case when the robot system and the environment are 

known and the impedance controller is designed. The regressor-based adaptive 

impedance controller is then derived for robot systems containing uncertainties. 

To avoid derivation of the regressor matrix, the regressor-free adaptive 

impedance controller using function approximation techniques is introduced. 

For the impedance controller of EDRRE, FJRE and EDFJRE, much more 

complex derivations will be involved due to the complexity in the system model. 

Unlike the rigid robots, the regressor-based designs of these robots need 

additional information such as the derivative of the regressor matrix, the joint 

accelerations and derivative of the external force. All of these are not generally 

available, and hence regressor-free designs are introduced to get rid of their 

necessity. The unified approach in the FAT-based regressor-free adaptive 

impedance controller designs for RRE, EDRRE, FJRE and EDFJRE can all give 

uniformly ultimately bounded performance to the output error and the transient 

performance can also be evaluated by using the bound for the output error 

signal. 

Consideration of the actuator dynamics 

The control problem of rigid robot manipulators has been well developed 

under the assumption that all actuator dynamics are neglected. However, it had 

been reported that the robot control problem should carefully consider the 

actuator dynamics to have good tracking performance, especially in the cases of 

high-velocity movement and highly varying loads. Therefore, in item 3, 4, 7 and 

8 of Table 1.1, we include considerations of actuator dynamics in the system 

equations to investigate their effects in performance improvement. The input 

vector to a robot without consideration of the actuator dynamics contains 

torques to the joints, while the input vector to electrically-driven robots is with 

signals in voltages. This special cascade structure connecting the actuator and 

the robot dynamics enables us to employ backstepping-like designs to eliminate 

uncertainties entering the system in a mismatched fashion. The regressor-based 

adaptive designs are introduced first for items 3, 4, 7 and 8 followed by their 

regressor-free counterparts. Implementations of most regressor-based methods 

introduced here need the information of the derivative of the regressor matrix 

and joint accelerations, but the regressor-free designs do not. Besides, the 

uniformly ultimately bounded performance can be proved to be maintained 
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when considering the actuator dynamics by using the regressor-free approach. 

Simulation cases for justifying performance improvements are designed with 

high speed tracking problems. All of these regressor-free schemes give good 

performance regardless of various system uncertainties.  

Consideration of the joint flexibility 

Many industrial robots use harmonic drives to reduce speed and amplify 

output torque. A cup-shape component in the harmonic drive provides elastic 

deformation to enable large speed reduction. Therefore, it is known that 

harmonic drives introduce significant torsional flexibility into the robot joints. 

To have a high performance robot control system, elastic coupling between 

actuators and links cannot be neglected. Modeling of these effects, however, 

produces an enormously complicated model. For simplicity, most researches 

regard the flexibility as an effect of the linear torsional spring connecting the 

shaft of the motor and the end about which the link is rotating. Two second-

order differential equations should be used to describe the dynamic of a flexible 

joint: one for the motor shaft and one for the link. This implies that the number 

of degree-of-freedom is twice the number for a rigid robot, since the motion of 

the motor shaft is no longer simply related to the link angle by the gear ratio. 

The high system order and highly nonlinear coupling in the dynamics equation 

result in difficulties in the controller design. If the system model contains 

inaccuracies and uncertainties, the controller design problem becomes extremely 

difficult. In this book, we are going to design conventional regressor-based 

adaptive controllers for this system first and followed by a regressor-free control 

strategy. In addition, adaptive controllers for impedance control of flexible joint 

robot will also be derived. Furthermore, the actuator dynamics are to be 

considered so that in the most complex case a regressor-free adaptive impedance 

controller will be designed for an EDFJRE. When considering the joint 

flexibility, the realization of the regressor-based adaptive controller requires the 

knowledge of joint accelerations, the regressor matrix, and their derivatives. The 

regressor-free designs, however, do not need these additional information. 

The regressor-free adaptive controller design 

Calculation of the regressor matrix is a must in the traditional adaptive 

control of robot manipulators which is because the update laws are able to be 

designed only when the parameter vectors are unknown constants. Parameterization 

of the uncertainties into multiplications of the regressor matrix with the 
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unknown parameter vector need to be done based on the system model. With 

proper definitions of the entries in the parameter vector, the regressor matrix can 

then be determined. Since these definitions are not unique, the regressor matrix 

for a given robot is not unique either. Some definitions will give relatively 

simple forms for the regressor matrix, while some will become very complex. 

When the degree of freedom of the robot is more than four, the derivation of the 

regressor matrix becomes very tedious. In general, the entries in the parameter 

vector are combinations of the quantities such as the link masses, dimensions of 

the links, and moments of inertia. These quantities are relatively easier to 

measure compared with the derivation of the regressor matrix. However, the 

traditional adaptive designs are only capable of updating these easy-to-measure 

parameters, but require the complex regressor matrix to be known. In addition, 

in every control cycle of the real-time implementation, the calculation of the 

regressor matrix is also time consuming which largely limits the computation 

hardware selections, especially in the embedded applications. In this book, a 

unified approach for the design of regressor-free adaptive controllers for robot 

manipulators is introduced which is feasible for robots with considerations of 

the actuator dynamics, joint flexibilities as well as the interaction with the 

environment. All of these designs will end up with the uniformly ultimately 

bounded closed loop performance via the proofs using the Lyapunov-like 

techniques. 

The FAT-based design 

Two main approaches are available for dealing with uncertainties in control 

systems. The robust strategies need to know the worst case of the system so that 

a fixed controller is able to be constructed to cover the uncertainties. In most 

cases, the worst case of the system is evaluated by proper modeling of the 

uncertainties either in the time domain or frequency domain. The variation 

bounds estimated from the uncertainty model are then used to design the robust 

terms in the controller. In some practical cases, however, these variation bounds 

are not available, and hence most robust strategies are infeasible. The other 

approach for dealing with system uncertainties is the adaptive method. Although 

intuitively we think that an adaptive controller should be able to give good 

performance to a system with time-varying uncertainties, conventional adaptive 

designs can actually be useful to systems with constant uncertainties. Therefore, 

to be feasible for the adaptive designs all time-varying parts in the system 

dynamics should be collected into a known regressor matrix, while the unknown 

constant parameters are put into a parameter vector. This process is called the 
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linear parameterization of the uncertainties which is almost a must for adaptive 

designs. After the parameterization, proper update laws can then be derived to 

provide sufficient information to the certainty equivalence based adaptive 

controller such that the closed loop system can give good performance. 

However, there are some practical cases whose uncertainties are not able to be 

linearly parameterized (e.g., various friction effects), and some others are 

linearly parameterizable but the regressor matrices are too complex to derive 

(e.g., robot manipulators).  

Now let us consider a case when the uncertainties are time-varying and 

their variation bounds are not available. Since they are time-varying, most 

traditional robust designs fail. Because their variation bounds are unknown, 

most conventional adaptive strategies are infeasible. In this book, we are going 

to call this kind of uncertainties the general uncertainties. For a system with 

general uncertainties, few control schemes are available to stabilize the closed 

loop system. Because the regressor-free adaptive controller design for robot 

manipulators should avoid the use of the regressor matrix, a new representation 

for the system uncertainties is needed.  In this case, it is more practical to regard 

the uncertainties in the robot model to be general uncertainties, and the 

controller design problem is a challenge. Here, in this book, we employ the 

function approximation technique to represent the uncertainties into finite 

combinations of basis functions. This effectively transforms a general 

uncertainty into a known basis vector multiplied by a vector of unknown 

coefficients. Since these coefficients are constants, update laws can be derived 

by using the Lyapunov-like methods. Due to the fact that the mathematical 

background for the function approximation has well been established and the 

controller design portion follows the traditional adaptive strategies, the FAT-

based adaptive method provides an effective tool in dealing with controller 

design problems involving the general uncertainties. 

Organization of the book 

Robot systems considered in this book are all listed in Tables 1.1 according 

to the complexity in their dynamics. For better presentation, however, they will 

be arranged into the chapters different from the order as shown in the table. In 

Chapter 2, the backgrounds for mathematics and control theories useful in this 

book are reviewed.  Readers familiar to these fundamentals are suggested to go 

directly to the next chapter. Various concepts from the linear algebra and real 

analysis are briefly presented in this chapter. Some emphasis will be placed on 

the spaces where the function approximation techniques are valid. Various 
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orthonormal functions are also listed with their effective ranges for the 

convenience in the selection of basis functions for the FAT-based designs. Then 

the Lyapunov stability theory and the Lyapunov-like methods are reviewed in 

detail followed by the introduction of the control theories such as the sliding 

control and model reference adaptive control. After these conventional robust 

and adaptive designs, the concept of general uncertainties is presented. 

Limitations in the sliding controller designs when the variation bounds for the 

uncertainties are not available are investigated. Likewise, the problem for the 

model reference adaptive control when the system contains time-varying 

parameters is illustrated. Finally, the FAT-based adaptive controller is designed 

for these systems with general uncertainties in detail.  

Chapter 3 collects all dynamic equations for systems listed in Table 1.1. 

These equations will be used in later chapters for controller designs. Examples 

for these systems will also be presented, and they will also be used in the 

simulation studies later. Adaptive control strategies for the rigid robots are 

introduced in Chapter 4. Traditional regressor-based adaptive rules will be 

derived first followed by some investigation into the detail of the regressor 

matrix and the parameter vector. This justifies the necessity for the regressor-

free adaptive designs. A FAT-based regressor-free adaptive controller is then 

derived for the rigid robot with consideration of the approximation errors. The 

rigorous proof for the closed loop stability is presented to give uniformly 

ultimately bounded performance. Next, the actuator dynamics is included into 

the system model and adaptive controllers are derived using regressor-based 

designs and regressor-free designs. Significant amount of simulation results are 

provided to justify the efficacy of the controllers when actuator dynamics are 

considered.  

Chapter 5 considers the compliant motion control of rigid robot 

manipulators. The impedance controller is employed to enable the robot to 

interact with the environment compliantly while maintaining good performance 

in the free space tracking. The traditional impedance controller is reviewed first 

for the system with known dynamics. A regressor-based and a regressor-free 

adaptive controller are then derived. Finally, the actuator dynamics is considered 

to improve the control performance. 

Chapter 6 includes joint flexibility into consideration such that the order of 

the system model is doubled compared with its rigid joint counterpart. Control 

of a known FJR is firstly reviewed. The regressor-based adaptive controller is 

then introduced followed by the derivation of the regressor-free controller. The 

actuator dynamics will be considered in the last section of this chapter. A 5
th
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order differential equation should be used to describe a single link in this case 

which makes the controller design problem become extremely challenging.  

The last chapter deals with the problem of the adaptive impedance control 

for FJR. We review the control of a known robot first to have some basic 

understanding of this problem. The regressor-based adaptive controller is then 

designed, but it requires some impractical knowledge in the real-time 

implementation. The regressor-free adaptive controller is derived without any 

requirements on additional information. Consideration of the actuator dynamics 

further complicated the problem, and the regressor-free adaptive design is still 

able to give good performance to the closed loop system.  
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Chapter 2 

Preliminaries  

2.1 Introduction 

Some mathematical backgrounds are reviewed in this chapter. They can be 

found in most elementary mathematics books; therefore, most results are 

provided without proof. On the other hand, some preliminaries in control 

theories will also be presented in this chapter as the background for the 

theoretical development introduced in the later chapters. In Section 2.2, some 

notions of vector spaces are introduced. Some best approximation problems in 

the Hilbert space will be mentioned in Section 2.3. Various orthogonal functions 

are collected in Section 2.4 to facilitate the selection of basis functions in FAT 

applications. The vector and matrix analysis is reviewed in Section 2.5 which 

includes their differential calculus operations. Norms for functions, vectors and 

matrices are summarized in Section 2.6, and some normed spaces are also 

introduced. Section 2.7 illustrates the approximation representations of 

functions, vectors and matrices. The Lyapunov stability theory is reviewed in 

Section 2.8. The concept of sliding control is provided in Section 2.9 as an 

introduction to the robust design for a system containing uncertainties defined in 

compact sets. Section 2.10 gives the basics of the model reference adaptive 

control to linear time-invariant systems. To robustify the adaptive control loop, 

some modifications of the adaptive designs are also presented in Section 2.10. 

The concept of general uncertainties is clarified in Section 2.11. The limitations 

for traditional MRAC and robust designs will also be discussed. Finally, the 

FAT-based adaptive controller is introduced in Section 2.12 to cover the general 

uncertainties. 

2.2 Vector Spaces 

Vector spaces provide an appropriate framework for the study of 

approximation techniques. In this section we review some concepts and results 

useful in this book.  
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A nonempty set X is a (real) vector space if the following axioms are 

satisfied: 

 X+ ∈x y , , X∀ ∈x y  

 + = +x y y x , , X∀ ∈x y  

 ( ) ( )+ + = + +x y z x y z , , , X∀ ∈x y z  

 There is a unique vector X∈0  such that + =x 0 x , X∀ ∈x  

 X∀ ∈x , there exists a unique vector X− ∈x  such that ( )+ − =x x 0  

 Xα ∈x , X∀ ∈x , α∀ ∈ℜ  

 ( ) ( )α β αβ=x x , X∀ ∈x , ,α β∀ ∈ℜ  

 1 =x x , X∀ ∈x  

 ( )α β α β+ = +x x x , X∀ ∈x , ,α β∀ ∈ℜ  

 ( )α α α+ = +x y x y , , X∀ ∈x y , α∀ ∈ℜ   

For example, the set of all n-tuples of real numbers is a real vector space and is 

known as 
nℜ . The set of all real-valued functions defined over an interval 

[ , ]a b ∈ℜ  is also a vector space. The set of all functions maps the interval 

[ , ]a b ∈ℜ into 
nℜ  can also be proved to be a vector space. In some literature, 

the real vector space is also known as the real linear space. 

If 1,...,
n

k ∈ℜx x  and 1,..., kc c ∈ℜ , a vector of the form 1 1 ... k kc c+ +x x  

is said to be a linear combination of the vectors 1,..., kx x . The set of vectors 

1,...,
n

k ∈ℜx x  is said to be independent if the relation 1 1 ... 0k kc c+ + =x x  

implies 0, 1,...,ic i k= = ; otherwise, the set of vectors is dependent. If 
n

S ⊂ ℜ  

and if R is the set of all linear combinations of elements of S, then S spans R, or 

we may say that R is the span of S. An independent subset of a vector space 
n

X ⊂ ℜ  which spans X is called a basis of X. A vector space is n-dimensional 

if it contains an independent set of n vectors, but every set of n+1 vectors is a 

dependent set. 
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2.2.1 Metric space 

A set X of elements p, q, r,… is said to be a metric space if with any two 

points p and q there is associated a real number ( , )d p q , the distance between p 

and q, such that  

 ( , ) 0d p q >  if p q≠ ; 

 ( , ) 0d p p = ; 

 ( , ) ( , )d p q d q p= ; 

 ( , ) ( , ) ( , )d p q d p r d r q≤ +  for any r X∈ . 

The distance function on a metric space can be thought of as the length of a 

vector; therefore, many useful concepts can be defined. A set E X⊂  is said           

to be open if for every x E∈ , there is a ball ( , ) { ( , ) }B x r y X d y x r= ∈ <  

such that ( , )B x r E⊂  for some positive r. A set is closed if and only if its 

complement in X is open. A set E is bounded if 0r∃ >  such that 

( , ) ,d x y r x y E< ∀ ∈ . Let S T⊂  be two subsets of X. S is said to be dense in 

T if for each element t in T and each 0ε > , there exists an element s in S such 

that ( , )d s t ε< . Thus every element of T can be approximated to arbitrary 

precision by elements of S. 

Let X and Y be metric spaces with distance functions Xd  and Yd , 

respectively. A function :f X Y→  is said to be continuous at a point x X∈  if 

( ) ( )f x x f xδ+ →  whenever 0xδ → . Or, we may say,  f  is continuous at x if 

given 0ε > , there exist 0δ >  such that ( , ) ( ( ), ( ))X Yd x y d f x f yδ ε< ⇒ < . 

A function f is continuous on E X⊂  if it is continuous at every points of E, 

and it is uniformly continuous on E if given 0ε > , there exist ( ) 0δ ε >  such 

that ( , ) ( ( ), ( ))X Yd x y d f x f yδ ε< ⇒ <  for all ,x y E∈ .  

The distance function generates the notion of convergence: A sequence 

{xi} in a metric space X is said to be convergent to an element x if for each 

0ε >  there exists an integer n such that ( , )id x x ε≤  whenever i n> . A set 

E X⊂  is compact if each sequence of points in E contains a subsequence 

which converges to a point in E. In particular, a compact subset of 
nℜ  is 

necessarily closed and bounded. The sequence {xi} is a Cauchy sequence if for 

each 0ε >  there exists an integer n such that ,p q n> ⇒ ( , )p qd x x ε≤ . 

Clearly, every convergent sequence is a Cauchy sequence, but the converse is 
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not true in general. A complete metric space X is a space where every Cauchy 

sequence converges to a point in X.  

2.2.2 Normed vector space 

Let X be a vector space, a real-valued function ⋅  defined on X is said to 

be a norm on X if it satisfies the following properties 

 0, ,X> ∀ ∈ ≠x x x 0  

 0=0  

 α α=x x  for any scalar α  

 + ≤ +x y x y , , X∀ ∈x y  

A normed vector space ( , )X ⋅  is a metric space with the metric defined by 

( , )d = −x y x y , , X∀ ∈x y . The concept of sequence convergence can be 

defined using the norm as the distance function. Hence, we are now ready to 

define convergence of series. The series 

1

i

i

∞

=
∑x  is said to converge to X∈x  if 

the sequence of partial sums converges to x, i.e., if 0, 0nε∀ > ∃ >  such that 

1

m

i

i

ε
=

− <∑x x  whenever m n> .  

A complete normed vector space is called a Banach space. In a normed 

vector space, the length of any vector is defined by its norm. To define the angle 

between any two vectors, in particular the concept of orthogonality between 

vectors, we need the notion of the inner product space. 

An inner product ,x y  on a real vector space X is a real-valued mapping 

of the pair , X∈x y  with the properties 

 , ,=x y y x  

 , ,α α=x y x y  

 , , ,+ = +x y z x z y z , X∀ ∈z  

 , 0> ∀ ≠x x x 0
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A real vector space with an inner product defined is called a real inner product 

space. An inner product space is a normed vector space and hence a metric 

space with 

 ( , ) ,d = − = − −x y x y x y x y  

For any two vectors x and y in an inner product space, we have the Schwarz 

inequality in the form , ≤x y x y . The equality holds if and only if x and 

y are dependent. Two vectors ,x y  are orthogonal if , 0=x y . Let {xi} be a 

set of elements in an inner product space X. {xi} is an orthogonal set if 

, 0,i j i j= ∀ ≠x x . If in addition every vector in the set has unit norm, the set 

is orthonormal. 

A Hilbert space is a complete inner product space with the norm induced 

by its inner product. For example, 
nℜ  is a Hilbert space with inner product 

 

1

,

n

i i

i

x y

=

=∑x y  

Suppose functions ( )x t  and ( )y t  are defined in a domain D, then L2 is a 

Hilbert space with the inner product , ( ) ( )
D

x y x t y t dt= ∫ . 

2.3 Best Approximation Problem in Hilbert Space 

Let U be a set of vectors in a Hilbert space H. The algebraic span S(U) is 

defined as the set of all finite linear combinations of vectors i U∈x  (Stakgold 

1979). The set ( )S U  is the closure of S(U) and is called the closed span of U. 

For example, if 
2

2{1, , ,...}U x x L= ⊂ , then S(U) is the set of all polynomials, 

whereas 2( )S U L= . The set U is a spanning set of H if ( )S U  is dense in H. 

The Hilbert space H is separable if it contains a countable spanning set U. The 

space L2 is separable since the countable set 
2{1, , ,...}x x  is a spanning set. Any 

finite-dimensional Hilbert space is separable because its basis is a countable 

spanning set. Since an infinite-dimensional space cannot have a finite spanning 

set, a separable infinite-dimensional Hilbert space must contain a countably 

infinite set U={xi} so that each vector H∈x  can be approximated to any 

desired accuracy by a linear combination of a finite number of elements of U. 

This can be rewritten as: given 0ε >  and H∈x , there exist an integer n such 
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that 

1

n

i i

i

c ε
=

− <∑x x  where , 1,...,ic i n∈ℜ = . It can be proved that a 

separable Hilbert space H contains an orthonormal spanning set, and the 

spanning set is necessarily an orthonormal basis of H. An orthonormal basis is 

also known as a complete orthonormal set.  

The best approximation problem in a separable Hilbert space is to 

approximate an arbitrary vector H∈x  by a linear combination of the given 

independent set 1{ ,..., }nU = x x . Since the set of linear combination of 1,..., nx x  

is an n-dimensional linear manifold Mn, an orthonormal basis 1{ ,..., }ne e  for 

Mn can be constructed from U by using the Gram-Schmidt procedure. 

Therefore, the approximation error can be calculated as 

 

2

2 22

1 1 1

, ,

n n n

i i i i i

i i i

c c

= = =

− = + − −∑ ∑ ∑x e x x e x e  (1) 

Hence, the minimum error can be obtained when ,i ic = x e . These ci are 

known as the Fourier coefficients of x with respect to the orthonormal basis 

1{ ,..., }ne e . With these coefficients, the vector H∈x  is approximated as 

1

,

n

i i

i=

∑ x e e , and the approximation error becomes 

 

2

22

1 1

, ,

n n

i i i

i i= =

− = −∑ ∑x x e e x x e  (2) 

If an additional vector 1n+e  is included into the orthonormal set, the vector 

H∈x  is thus approximated by the series 

1

1

,

n

i i

i

+

=

∑ x e e , which is the same as 

the previous one except that one extra term 1 1, i i+ +x e e  is added. This implies 

that previously calculated Fourier coefficients do not need to be recalculated. It 

can also be observed that the right hand side of (2) gets smaller when the 

orthonormal set is taken larger. Hence, the best approximation to x improves as 

we use more terms in the orthonormal set. As the number of terms used goes to 

infinity, the approximating series becomes the Fourier series 

1

, i i

i

∞

=

∑ x e e . 

Hence, (2) implies
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22

1

, i

i

∞

=

=∑x x e  (3) 

which is known as the Parseval’s identity. Convergence of the Fourier series can 

be proved by using the Riesz-Fischer theorem with the fact that the partial sum 

of the series 
2

1

, i

i

∞

=
∑ x e  is monotonically increasing and is bounded above by 

2
x . Consequently, it is easy to prove that lim , 0i

i→∞
=x e , i.e., the coefficients 

of the Fourier series vanish as i →∞ . 

2.4 Orthogonal Functions 

In the previous section we have reviewed the general framework for the 

best approximation problem in the Hilbert space. In this section, we would like 

to restrict the scope to the function approximation problem using orthogonal 

functions. 

The set of real-valued functions { ( )}i xφ  defined over some interval [ , ]a b  

is said to form an orthogonal set on that interval if 

 
0

( ) ( )
0

b

i j

a

i j
x x dx

i j
φ φ

⌠


⌡

= ≠

≠ =

 (1) 

An orthogonal set { ( )}i xφ  on [ , ]a b  having the property 
2 ( ) 1

b

i
a

x dxφ =∫  for 

all i is called an orthonormal set on [ , ]a b . The set of real-valued functions 

{ ( )}i xφ  defined over some interval [ , ]a b  is orthogonal with respect to the 

weight function ( )p x  on that interval if  

 
0

( ) ( ) ( )
0

b

i j

a

i j
p x x x dx

i j
φ φ

⌠


⌡

= ≠

≠ =

 (2) 

Any set of functions orthogonal with respect to a weight function ( )p x  can be 

converted into a set of functions orthogonal to 1 simply by multiplying each 

member of the set by ( )p x  if ( ) 0p x >  on that interval. For any set of 

orthonormal functions { ( )}i xφ  on [ , ]a b , an arbitrary function ( )f x  can be 

represented in terms of ( )i xφ  by a series 
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 1 1 2 2( ) ( ) ( ) ( )n nf x c x c x c xφ φ φ= + + + +⋯ ⋯  (3) 

This series is called a generalized Fourier series of ( )f x  and its coefficients 

are Fourier coefficients of ( )f x  with respect to { ( )}i xφ . Multiplying by ( )n xφ  

and integrating over the interval [ , ]a b  and using the orthogonality property, the 

series becomes 

 
2( ) ( ) ( )

b b

n n n
a a

f x x dx c x dxφ φ=∫ ∫  (4) 

Hence, the coefficient nc  can be obtained from the quotient 

 
2

( ) ( )

( )

b

n
a

n b

n
a

f x x dx

c

x dx

φ

φ
=
∫
∫

 (5) 

It should be noted that although the orthogonality property can be used to 

determine all coefficients in (3), it is not sufficient to conclude convergence of 

the series. To guarantee convergence of the approximating series, the orthogonal 

set should be complete. An orthogonal set { ( )}i xφ  on [ , ]a b  is said to be 

complete if the relation ( ) ( ) 0
b

i
a

g x x dxφ =∫  can hold for all values of i only if 

( )g x  can have non-zero values in a measure zero set in [ , ]a b . Here, ( )g x  is 

called a null function on [ , ]a b  satisfying 
2 ( ) 0

b

a

g x dx =∫ . It is easy to prove 

that if { ( )}i xφ  is a complete orthonormal set on [ , ]a b  and the expansion 

1 1 2 2( ) ( ) ( )n nc x c x c xφ φ φ+ + + +⋯ ⋯  of ( )f x  converges and can be 

integrated term by term, then the sum of the series differs from ( )f x  by at most 

a null function. 

Examples of orthonormal functions 

Since there are many areas of applications of orthonormal functions, a 

sizable body of literature can be easily found. In this section, we consider some 

of the orthonormal functions that are frequently encountered in engineering 

problems and useful in our applications.  
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1. Taylor polynomials 

In the calculus courses, it is well known that given a function ( )f x  and a 

point c in the domain of f, suppose the function is n-times differentiable at c, 

then we can construct a polynomial  

 

2

( )

( )
( ) ( ) '( )( ) ( )

2!

( )
( )

!

n

n
n

f c
P x f c f c x c x c

f c
x c

n

′′
= + − + −

+ + −⋯  (6) 

where ( )nP x  is called the nth-degree Taylor polynomial approximation of f at 

c. The Taylor polynomial is not well suited to approximate a function ( )f x  

over an interval [ , ]a b  if the approximation is to be uniformly accurate over the 

entire domain. Taylor polynomial approximation is known to yield very small 

error near a given point, but the error increases in a considerable amount as we 

move away from that point. The following orthogonal polynomials, however, 

can give a more uniform approximation error over the specified interval. 

2. Chebyshev polynomials 

The set of Chebyshev polynomials is orthogonal with respect to the weight 

function 
1
22(1 )x

−−  on the interval [-1,1]. The first two polynomials are 

0 ( ) 1T x =  and 1( )T x x= , and the remaining polynomials can be determined by 

the recurrence relation 

 1 1( ) 2 ( ) ( )n n nT x xT x T x+ −= −  (7) 

for all 1,2,...n =  For convenience, we list the first 7 polynomials below 

 0 ( ) 1T x =  

 1( )T x x=  

 
2

2 ( ) 2 1T x x= −  

 
3

3( ) 4 3T x x x= −  

 
4 2

4 ( ) 8 8 1T x x x= − +  

 
5 3

5 ( ) 16 20 5T x x x x= − +  
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6 4 2

6 ( ) 32 48 18 1T x x x x= − + −  

 
7 5 3

7 ( ) 64 112 56 7T x x x x x= − + −  

3. Legendre polynomials 

The set of Legendre polynomials is orthogonal with respect to the weight 

function ( ) 1p x =  on the interval [-1,1]. The first two polynomials are 

0 ( ) 1L x =  and 1( )L x x= , and the remaining polynomials can be determined by 

the recurrence relation  

 1 1( 1) ( ) (2 1) ( ) ( )n n nn L x n xL x nL x+ −+ = + −  (8) 

for all 1,2,...n =  Here, we list the first 7 polynomials for convenience 

 0 ( ) 1L x =  

 1( )L x x=  

 
2

2

1
( ) (3 1)

2
L x x= −  

 
3

3

1
( ) (5 3 )

2
L x x x= −  

 
4 2

4

1
( ) (35 30 3)

8
L x x x= − +  

 
5 3

5

1
( ) (63 70 15 )

8
L x x x x= − +  

 
6 4 2

6

1
( ) (231 315 105 5)

16
L x x x x= − + −  

 
7 5 3

7

1
( ) (429 693 315 35 )

16
L x x x x x= − + −  

4. Hermite polynomials 

The set of Hermite polynomials is orthogonal with respect to the weight 

function 
2

( ) x
p x e

−=  on the interval ( , )−∞ ∞ . The first two polynomials are 
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0 ( ) 1H x =  and 1( ) 2H x x= , and the remaining polynomials can be determined 

by the recurrence relation  

 1 1( ) 2 ( ) 2 ( )n n nH x xH x nH x+ −= −  (9) 

for all 1,2,...n =  Here, we list the first 7 polynomials as 

 0 ( ) 1H x =  

 1( ) 2H x x=  

 
2

2 ( ) 4 2H x x= −  

 
3

3( ) 8 12H x x x= −  

 
4 2

4 ( ) 16 48 12H x x x= − +  

 
5 3

5( ) 32 160 120H x x x x= − +  

 
6 4 2

6 ( ) 64 480 720 120H x x x x= − + −  

 
7 5 3

7 ( ) 128 1344 3360 1680H x x x x x= − + −  

5. Laguerre polynomials 

The set of Laguerre polynomials is orthogonal with respect to the weight 

function ( ) x
p x e

−=  on the interval [0, )∞ . The first two polynomials are 

0 ( ) 1L x =  and 1( ) 1L x x= − + , and the remaining polynomials can be determined 

by the recurrence relation  

 
2

1 1( ) (2 1 ) ( ) ( )n n nL x n x L x n L x+ −= + − −  (10) 

for all 1,2,...n =  The following are the first 7 polynomials 

 0 ( ) 1L x =  

 1( ) 1L x x= − +  

 
2

2 ( ) 4 2L x x x= − +  
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3 2

3( ) 9 18 6L x x x x= − + − +  

 
4 3 2

4 ( ) 16 72 96 24L x x x x x= − + − +  

 
5 4 3 2

5 ( ) 25 200 600 600 120L x x x x x x= − + − + − +  

 
6 5 4 3 2

6 ( ) 36 450 2400 5400 4320 720L x x x x x x x= − + − + − +  

 

7 6 5 4 3
7

2

( ) 49 882 7350 29400

52920 35280 5040

L x x x x x x

x x

= − + − + −

+ − +
 

6. Bessel polynomials 

The set of Bessel polynomials is orthogonal with respect to the weight 

function ( )p x x=  on the interval [0,b] in the form 

 
0

( ) ( ) 0
b

n i n jxJ k x J k x dx =∫  (11) 

for all i j≠ . The Bessel polynomials can be calculated with  

 

2

2

0

( 1)
( )

2 !( )!

m m
n

n m n

m

x
J x x

m n m

∞

+
=

−
=

+∑  (12) 

In particular, for n=0, 1, the Bessel polynomials are 

 

2 4 6

0 2 2 2 2 2 2
( ) 1

2 2 4 2 4 6

x x x
J x = − + − +

⋅ ⋅ ⋅
⋯  

 

3 5 7

1 2 2 2 2 2 2
( )

2 2 4 2 4 6 2 4 6 8

x x x x
J x = − + − +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋯  

These two series converge very rapidly, so that they are useful in computations. 

The recurrence relation below can also be used to find other Bessel polynomials 

based on 0 ( )J x  and 1( )J x  given above. 
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 1 1

2
( ) ( ) ( )n n n

n
J x J x J x

x
+ −= − +  (13) 

It should be noted that ik , i=1,2,… in (11) are real numbers so that 

( ) 0n iJ k b = , i.e., they are distinct roots of 0nJ = . These roots for n=0, 1 are 

listed here for reference 

0 ( ) 0J x =  for x=2.405, 5.520, 8.654, 11.792, 14.931, … 

1( ) 0J x =  for x=0, 3.832, 7.016, 10.173, 13.324, … 

Having the orthogonality property in (11), we can represent a given function 

( )f x  in a series of the form in [0, ]b  with a given n 

 

1

( ) ( )i n i

i

f x c J k x

∞

=

=∑  (14) 

This series is called a Fourier-Bessel series or simply a Bessel series. 

7. Fourier series 

A bounded period function ( )f x  can be expanded in the form 

 
0

1

( ) cos sin
2

n n

n

a n x n x
f x a b

T T

π π∞

=

 = + +  ∑  (15) 

if in any one period it has at most a finite number of local extreme values and a 

finite number of discontinuities. (15) is called the Fourier series of function 

( )f x . The constants 0 , na a  and nb , n=1,2,3,… are called Fourier coefficients, 

and the value 2T is the period of ( )f x . It can be proved that the Fourier series 

converges to ( )f x  at all points where ( )f x  is continuous and converges to the 

average of the right- and left-hand limits of ( )f x  at each point where it is 

discontinuous.  

Table 2.1 summarizes the orthonormal functions introduced in this section. 

When using these functions in approximation applications, it is very important 

that the valid range for the functions to be orthonormal is ensured.  
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Table 2.1 Some useful orthonormal functions 

Polynomial 

Valid 

Interval Forms 

Taylor [a,b] 2

( )

( )
( ) ( ) '( )( ) ( )

2!

( )
( )

!

n

n
n

f c
P x f c f c x c x c

f c
x c

n

′′
= + − + −

+ + −⋯

 

Chebyshev [-1,1] 0

1

1 1

( ) 1

( )

( ) 2 ( ) ( )n n n

T x

T x x

T x xT x T x+ −

=
=

= −

 

Legendre [-1,1] 0

1

1 1

( ) 1

( )

( 1) ( ) (2 1) ( ) ( )n n n

L x

L x x

n L x n xL x nL x+ −

=
=

+ = + −

 

Hermite ( , )−∞ ∞  0

1

1 1

( ) 1

( ) 2

( ) 2 ( ) 2 ( )n n n

H x

H x x

H x xH x nH x+ −

=
=

= −

 

Laguerre [0, )∞  0

1

2
1 1

( ) 1

( ) 1

( ) (2 1 ) ( ) ( )n n n

L x

L x x

L x n x L x n L x+ −

=
= − +

= + − −

 

Bessel [0,b] 2 4 6

0 2 2 2 2 2 2

3 5

1 2 2 2

1 1

( ) 1
2 2 4 2 4 6

( )
2 2 4 2 4 6

2
( ) ( ) ( )n n n

x x x
J x

x x x
J x

n
J x J x J x

x
+ −

= − + − +
⋅ ⋅ ⋅

= − + −
⋅ ⋅ ⋅

= − +

⋯

⋯
 

Fourier 

series 

One 

period 
0

1

( ) cos sin
2

n n

n

a n x n x
f x a b

T T

π π∞

=

 = + +  ∑  

2.5 Vector and Matrix Analysis 

2.5.1 Properties of matrices 

Let 
n m×∈ℜA  be a matrix with n rows and m columns, and ija ∈ℜ  be 

the ( , )thi j  element of A. Matrix A can also be represented as [ ]ija . If the rows 

and columns are interchanged, then the resulting m n×  matrix is called the 
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transpose of A, and is denoted by A
T
. The transpose operation has the following 

properties: 

 ( )T T =A A  (1a) 

 
TTT

BABA +=+ )(   
n m×∀ ∈ℜB  (1b) 

 ( )T T T=AB B A  
m n×∀ ∈ℜB  (1c) 

A matrix 
n n×∈ℜA  is symmetric if 

T=A A , and is skew-symmetric if 
T= −A A . For any matrix 

n n×∈ℜA , 
T+A A  is symmetric and 

T−A A  is 

skew-symmetric. If A is a m n×  matrix, then 
TA A  is symmetric. A matrix 

n n×∈ℜA  is diagonal if 0ija = , i j∀ ≠ . A diagonal matrix A can be 

written as 11( ,..., )nndiag a a . An identity matrix is a diagonal matrix with 

11 1nna a= = =⋯ .  

A matrix 
n n×∈ℜA  is nonsingular if 

n n×∃ ∈ℜB  such that 

= =AB BA I  where I is an n n×  identity matrix. If B exists, then it is known 

as the inverse of A and is denoted by 
1−A . The inverse operation has the 

following properties: 

 
1 1( )− − =A A  (2a) 

 
1 1( ) ( )T T− −=A A  (2b) 

 
1 11

( )α
α

− −=A A   , 0α α∀ ∈ℜ ≠  (2c) 

 
1 1 1( )− − −=AB B A  

n n×∀ ∈ℜB with valid inverse (2d) 

A matrix 
n n×∈ℜA  is said to be positive semi-definite (denoted by ≥A 0) 

if 0T ≥x Ax  
n∀ ∈ℜx . It is positive definite (denoted by >A 0) if 0T >x Ax  

,
n∀ ∈ℜ ≠x x 0. It is negative (semi-)definite if −A  is positive (semi-)definite. 

A time-varying matrix ( )tA  is uniformly positive definite if 0α∃ >  such that 

( )t α≥A I . 

Let 
n n×∈ℜA , then the trace of A is defined as  

 

1

( )

n

ii

i

Tr a

=

=∑A  (3) 
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where aii is the ith diagonal element of A. The trace operation has the following 

properties: 

 ( ) ( )T
Tr Tr=A A  (4a) 

 ( ) ( )Tr Trα α α= ∀ ∈ℜA A  (4b) 

 ( ) ( ) ( ) n n
Tr Tr Tr

×+ = + ∀ ∈ℜA B A B B  (4c) 

 ( ) ( ) ( ) ,T T n m m n
Tr Tr Tr

× ×= = ∀ ∈ℜ ∈ℜAB BA A B A B  (4d) 

 ( ) ( ) ,T T T T n
Tr Tr= = = ∀ ∈ℜx y xy yx y x x y  (4e) 

2.5.2 Differential calculus of vectors and matrices 

Suppose ( ) : n
f ℜ → ℜx  is a differentiable function, then the gradient 

vector is defined as 

 
1

( )

T

n

f f
f

x x

∂ ∂ ∂ 
=  ∂ ∂ ∂ 

x
x

⋯  (5) 

and if f is twice differentiable, then the Hessian matrix can be defined as 

 

2 2

2
112

2

2 2

2
1

( )

n

n n

f f

x xx

f

f f

x x x

 ∂ ∂
 ∂∂ ∂  =

∂  
∂ ∂ 

 ∂ ∂ 

x
x

⋯

⋮ ⋱ ⋮

⋯

 (6) 

Let aij(x) be the (i,j)th element of matrix ( ) n m
x

×∈ℜA  with x ∈ℜ , then the 

derivative of A with respect to x is computed as  

 

11 1

1

( ) ( )

( )

( ) ( )

m

n nm

da x da x

dx dx
d

x
dx

da x da x

dx dx

 
 
 

=  
 
 
 

A

⋯

⋮ ⋱ ⋮

⋯

 (7) 
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Let (.) : n m
f

×ℜ → ℜ  be a real-valued mapping, then 

 

11 1

1

( )

m

n nm

f f

a a

f

f f

a a

∂ ∂ 
 ∂ ∂ ∂

=  
∂  ∂ ∂ 

 ∂ ∂ 

A
A

⋯

⋮ ⋱ ⋮

⋯

 (8) 

The following basic properties of matrix calculus are useful in this book. 

 ( ) , n md d d

dx dx dx

×+ = + ∀ ∈ℜ
A B

A B A B  (9a) 

 ( ) ,n m m nd d d

dx dx dx

× ×= + ∀ ∈ℜ ∈ℜ
A B

AB B A A B  (9b) 

 
1 1 1 n nd d

dx dx

− − − ×= − ∀ ∈ℜ
A

A A A A  (9c) 

 ( ) ,T n∂
= ∀ ∈ℜ

∂
x y y x y

x
 (9d) 

 ( ) ,T n∂
= ∀ ∈ℜ

∂
x y x x y

y
 (9e) 

 ( ) ,T n m m×∂
= ∀ ∈ℜ ∈ℜ

∂
Ax A A x

x
 (9f) 

 ( ) ,T T n n n×∂
= ∀ ∈ℜ ∈ℜ

∂
x Ax xx A x

A
 (9g) 

 ( ) 2 ,T T T n n n×∂
= ∀ ∈ℜ ∈ℜ

∂
x A Ax Axx A x

A
 (9h) 

 ( ) 2 ,T T n n n×∂
= + = ∀ ∈ℜ ∈ℜ

∂
x Ax Ax A x Ax A x

x
 (9i) 

 ( ) , ,T n m m n×∂
= ∀ ∈ℜ ∈ℜ ∈ℜ

∂
y Ax Ax A x y

y
 (9j) 
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 ( ) , ,T T n m m n×∂
= ∀ ∈ℜ ∈ℜ ∈ℜ

∂
y Ax A y A x y

x
 (9k) 

 

( ) ( ) ( )

( ) ,

T T T T

T n m m n

Tr Tr Tr

Tr
× ×

∂ ∂ ∂
= =

∂ ∂ ∂
∂

= = ∀ ∈ℜ ∈ℜ
∂

AB A B B A
A A A

BA B A B
A

 (9l) 

 

( ) ( ) ( )

( ) ( )

( )   

T T T T T T

T T T T T n n

Tr Tr Tr

Tr Tr

Tr , ,
×

∂ ∂ ∂
= =

∂ ∂ ∂
∂ ∂

= =
∂ ∂
∂

= = ∀ ∈ℜ
∂

BAC B A C C A B
A A A

ACB CBA
A A

A B C B C A B C
A

 (9m) 

2.6 Various Norms 

2.6.1 Vector norms 

Let 
n∈ℜx , then the p-norm of x can be defined as  

 

1

1

n p
p

ip

i

x

=

 
=  

 ∑x  (1) 

for 1 p≤ ≤ ∞ . Three most commonly used vector norms are  

 1 1

1

 norm on :   

n

n
i

i

l x

=

ℜ =∑x  (2a) 

 
2

2 2

1

 norm on :   

n

n
i

i

l x

=

ℜ = ∑x  (2b) 

 
1

 norm on :   max
n

i
i n

l x∞ ∞ ≤ ≤
ℜ =x  (2c) 

The 2l  norm on 
nℜ  is known as the Euclidean norm on 

nℜ , which is also 

an inner product norm. All p-norms are equivalent in the sense that if 
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1 2
 and 

p p
⋅ ⋅  are two different norms, then there exist 1 2,α α +∈ℜ  such       

that 
1 2 1

1 2p p p
α α≤ ≤x x x  for all 

n∈ℜx . For 
n n×∈ℜA , any nonzero 

vector ix  satisfying i i iλ=Ax x  is called an eigenvcetor associated with an 

eigenvalue iλ  of A. Let min ( )λ A  and max ( )λ A  be the maximum and 

minimum eigenvalues of 
n n×∈ℜA , respectively, then we have the useful 

inequality  

 
2 2

min max( ) ( )Tλ λ≤ ≤A x x Ax A x . (3) 

2.6.2 Matrix norms 

Let 
n n×∈ℜA , then the matrix norm induced by the p-norm of vector 

n∈ℜx  is defined as  

 
1

sup sup
p

p

p p

p
≠ =

= =
x 0 x

Ax
A Ax

x
 (4) 

for 1 p≤ ≤ ∞ . In particular, when 1,2,p = ∞ , we have 

 
1 1

1

max

n

ij
j n

i

a
≤ ≤

=

= ∑A  (5a) 

 max2
( )Tλ=A A A  (5b) 

 
1

1

max

n

ij
i n

i

a∞ ≤ ≤
=

= ∑A  (5c) 

The following relations are useful in this book. 

 ≤AB A B  (6a) 

 + ≤ +A B A B  (6b) 

 − ≥ −A B A B  (6c) 
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2.6.3 Function norms and normed function spaces 

A real-valued function defined on 
+ℜ  is measurable if and only if it is the 

limit of a sequence of piecewise constant functions over 
+ℜ  except for some 

measure zero sets. Let ( ) :f t +ℜ → ℜ  be a measurable function, then its           

p-norm is defined as  

 

1

0
( )

p p

p
f f t dt

∞⌠
⌡

 =     for [1, )p ∈ ∞  (7a) 

 
[0, )

sup ( )
t

f f t∞
∈ ∞

=   for p = ∞  (7b) 

The normed function spaces with 1,2,p = ∞  are defined as 

 { }1 01
( ) : ( )L f t f f t dt

∞
+= ℜ → ℜ = < ∞∫  (8a) 

 
2

2 2 0
( ) : ( )L f t f f t dt

∞
+

⌠
⌡

 = ℜ → ℜ = < ∞ 
 

 (8b) 

 
[0, )

( ) : sup ( )
t

L f t f f t∞ + ∞
∈ ∞

 
= ℜ → ℜ = < ∞ 
 

 (8c) 

 

Let :
n

+ℜ → ℜf  with 1( ) [ ( ) ( )]T
nt f t f t=f ⋯  be a measurable vector 

function, then the corresponding p-norm spaces are defined as 

 1 1

10

( ) : ( )

n

n n
i

i

L t f t dt

∞

+
=

⌠


⌡

  = ℜ → ℜ = < ∞ 
  

∑f f  (9a) 

 
2

2 2

10

( ) : ( ) ( )

n

n n
i

i

L t t f t dt

∞

+
=

⌠


⌡

 
 = ℜ → ℜ = < ∞ 
  

∑f f  (9b) 

 { }
1

( ) : ( ) max ( )n n
i

i n
L t t f t∞ + ∞ ≤ ≤

= ℜ → ℜ = < ∞f f  (9c) 
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2.7 Representations for Approximation 

In this section some representations for approximation of scalar functions, 

vectors and matrices using finite-term orthonormal functions are reviews. Let us 

consider a set of real-valued functions {zi(t)} that are orthonormal in [t1, t2] 

such that  

 
2

1

0,
( ) ( )

1,

t

i j
t

i j
z t z t dt

i j

≠
= 

=∫  (1) 

With the definition of the inner product 
2

1

, ( ) ( )
t

t

f g f t g t dt< >= ∫  and its 

corresponding norm ,f f f= < > , the space of functions for which f  

exists and is finite is a Hilbert space. If {zi(t)} is an orthonormal basis in the 

sense of (1) then every f(t) with f  finite can be expanded in the form 

 

1

( ) ( )i i

i

f t w z t

∞

=

=∑  (2) 

where ,i iw f z=< >  is the Fourier coefficient, and the series converges in the 

sense of mean square as 

 

2

1

2

1

lim ( ) ( ) 0

t
k

i i
n

it

f t w z t dt
→∞

=

⌠



⌡

− =∑ . (3) 

This implies that any function f(t) in the current Hilbert space can be 

approximated to arbitrarily prescribed accuracy by finite linear combinations of 

the orthonormal basis {zi(t)} as 

 

1

( ) ( )

k

i i

i

f t w z t

=

≈∑ . (4a) 

An excellent property of (4a) is its linear parameterization of the time-varying 

function f(t) into a basis function vector 1( ) [ ( ) ( )]T
kt z t z t=z ⋯  and a time-

invariant coefficient vector 1[ ]T
kw w=w ⋯ , i.e., 

 ( ) ( )T
f t t≈ w z  (4b) 
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We would like to abuse the notation by writing the approximation as  

 ( ) ( )T
f t t= w z  (4c) 

provided a sufficient number of the basis functions are used. In this book, 

equation (4) is used to represent time-varying parameters in the system dynamic 

equation. The time-varying vector z(t) is known while w is an unknown 

constant vector. With this approximation, the estimation of the unknown time-

varying function f(t) is reduced to the estimation of a vector of unknown 

constants w.  

In the following, three representations are introduced for approximating a 

matrix ( ) p q
t

×∈ℜM . By letting q=1, the same technique can be used to 

approximate vectors. 

Representation 1: We may use the technique in (4) to represent individual 

matrix elements. Let , k
ij ij ∈ℜw z  for all i, j, then matrix M is represented           

to be 

 

11 11 12 12 1 111 12 1

21 22 2 21 21 22 22 2 2

1 2 1 1 2 2

T T T
q qq

T T T
q q q

T T T
p p pq p p p p pq pq

m m m

m m m

m m m

  
  
  = =   
  
    

w z w z w z

w z w z w z
M

w z w z w z

⋯⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 (5) 

An operation ⊗ can be defined to separate the above representation into two 

parts as 

 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

11 12 1 11 12 1

21 22 221 22 2

1 21 2

T T T
q q

T T T
q q

T T T
p p p p pq pq

T T T
q q

T T T
qq

T T T
p p pqp p pq

 
 
 
 
 
  

   
   
   = ⊗   
   
    

w z w z w z

w z w z w z

w z w z w z

w w w z z z

z z zw w w

z z zw w w

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋯ ⋯

⋯⋯

⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮

⋯⋯
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Or, we may write the above relation in the following form 

 
T= ⊗M W Z  (6) 

where W is a matrix containing all wij and Z is a matrix of all zij. Since this is 

not a conventional operation of matrices, dimensions of all involved matrices do 

not follow the rule for matrix multiplication. Here, W
T
 is a p kq×  matrix and 

Z is a kp q×  matrix, but the dimension of M after the operation is still p q× . 

This notation can be used to facilitate the derivation of update laws.  

Representation 2: Let us assume that all matrix elements are approximated 

using the same number, say β, of orthonormal functions, and then the matrix 

( ) p q
t

×∈ℜM  can be represented in the conventional form for matrix 

multiplications 

 
T=M W Z  (7) 

where ,
pq pβ ×∈ℜM Z  are in the form 

11 12 1

21 22 2

1 2

| | |

| | |

| | |

| | |

T T T
q

T T T
qT

T T T
p p pq

 
 
 =  
 
  

w 0 0 w 0 0 w 0 0

0 w 0 0 w 0 0 w 0
W

0 0 w 0 0 w 0 0 w

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮

⋯ ⋯ ⋯ ⋯

 

11 21 1

12 22 2

1 2

| | |

| | |

| | |

| | |

T T T
p

T T T
pT

T T T
q q pq

 
 
 =  
 
  

z z z 0 0 0 0 0 0

0 0 0 z z z 0 0 0
Z

0 0 0 0 0 0 z z z

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮

⋯ ⋯ ⋯ ⋯

 

The matrix elements wij and zij are 1β ×  vectors. It can be easily check that  

 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

T T T
q q

T T T
q qT

T T T
p p p p pq pq

 
 
 = =  
 
  

w z w z w z

w z w z w z
M W Z

w z w z w z

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (8) 

In this representation, we use the usual matrix operation to represent M, but the 

sizes of W and Z are apparently much larger than those in the representation 1. 
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Since this representation is compatible to all conventional matrix operations, it 

is used in this book for representing functions, vectors and matrices. 

Representation 3: In the above representations, all matrix elements are 

approximated by the same number of orthonormal functions. In many 

applications, however, it may be desirable to use different number of 

orthonormal functions for different matrix elements. Suppose the component 

form of a vector field f(x) is written as 

 1 2( ) [ ( ) ( ) ( )]T
mf f f=f x x x x⋯  (9) 

and we may approximate the real-valued function ( )if x , i=1,...,m as 

 ( )
i i

T
i f ff =x w z  (10) 

where 
1, i

i i

p
f f

×∈ℜw z  and pi is the number of terms of the basis functions 

selected to approximate fi. Hence, (9) can be written as 

 

1 1 2 2

1 1

2 2

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

( ) [ ]
m m

m m

T T T T
f f f f f f

p p

p p

m m m m mp mp

w z w z w z

w z w z w z

w z w z w z

=

+ + + 
 + + + =
 
 + + + 

f x w z w z w z⋯

⋯

⋯

⋮

⋯

 (11) 

Define max
1, ,

max i
i m

p p
=

=
⋯

 and let 0ijw =  for all i=1,...,m and ij p> , then 

(11) can be further written in the following form 

max max

max max

max max

1 111 11

2 221 21

1 1

0 00 0

0 00 0
( )

0 00 0

p p

p p

mp mpm m

w zw z

w zw z

w zw z

      
      
      = + +
      
      

       

f x

⋯⋯

⋯⋯
⋯

⋮ ⋮ ⋱ ⋮ ⋮⋮ ⋮ ⋱ ⋮ ⋮

⋯⋯

 (12) 

Define

 

1

2

1 2

0 0

0 0
, [ ] ,

0 0

i

i T
i i i i mi

mi

w

w
z z z

w

 
 
 = =
 
 
 

W z

⋯

⋯
⋯

⋮ ⋮ ⋱ ⋮

⋯

 (13) 
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where i=1,...,pmax, and then (8) can be expressed in the form 

 

max

1

( )

p

i i

i=

=∑f x W z  (14) 

For approximating the matrix ( ) p q
t

×∈ℜM , we may rewrite it into a row 

vector as 1[ ]q=M m m⋯  where 
p

i ∈ℜm . Therefore, we may approximate 

im  using the technique above as 

 

max1max

1 1

1 1

qpp

i i qi qi

i i= =

 
 =
  
∑ ∑M W z W z⋯  (15) 

2.8 Lyapunov Stability Theory 

The Lyapunov stability theory is widely used in the analysis and design of 

control systems. To ensure closed loop stability and boundedness of internal 

signals, all controllers derived in this book will be based on the rigorous 

mathematical proof via the Lyapunov or Lyapunov-like theories. The concept of 

stability in the sense of Lyapunov will be introduced first in this section 

followed by Lyapunov stability theorems for autonomous and non-autonomous 

systems. The invariant set theorem will be reviewed to facilitate the proof for 

asymptotically stability of autonomous systems when only negative semi-

definite of the time derivative of the Lyapunov function can be concluded. On 

the other hand, a Lypunov-like technique summarized in Barbalat’s lemma will 

also be reviewed. It is going to be used for almost every controller designed in 

this book.  

2.8.1 Concepts of stability 

Let us consider a nonlinear dynamic system described by the differential 

equation 

 ( , )t=x f xɺ  (1) 

where 
n∈ℜx  and :

n n
+ℜ ×ℜ → ℜf . If the function f dose not explicitly 

depend on time t, i.e., the system is in the form  
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 ( )=x f xɺ  (2) 

then the system is called an autonomous system; otherwise, a non-autonomous 

system. The state trajectory of an autonomous system is independent of the 

initial time, but that of a non-autonomous system is generally not. Therefore, in 

studying the behavior of a non-autonomous system, we have to consider the 

initial time explicitly. The system (1) is linear if ( , ) ( )t t=f x A x  for some 

mapping ( ) : n n×
+⋅ ℜ → ℜA . If the matrix A is a function of time, the system is 

linear time-varying; otherwise, linear time-invariant.  

Stability is the most important property of a control system. The concept of 

stability of a dynamic system is usually related to the ability to remain in a state 

regardless of small perturbations. This leads to the definition of the concept of 

the equilibrium state or equilibrium point. A state ex  is said to be an 

equilibrium point of (1), if ( , )e t =f x 0  for all 0t > . For simplicity, we often 

transform the system equations in such a way that the equilibrium point is the 

origin of the state space. 

The equilibrium point e =x 0  of the autonomous system (2) is said to be 

(i) stable, if 0, 0R r∀ > ∃ >  such that (0) ( )r t R< ⇒ <x x , 0t∀ ≥ ; (ii) 

asymptotically stable, if it is stable and if 1 0r∃ >  such that 1(0) r<x  implies 

that ( ) 0t →x  as t → ∞ ; (iii) exponentially stable, if , 0α λ∃ > , such that 

( ) (0) t
t e

λα −≤x x  for all 0t >  in some neighborhood N of the origin; (iv) 

globally asymptotically (or exponentially) stable, if the property holds for any 

initial condition.  

The equilibrium point e =x 0  of the non-autonomous system (1) is                

said to be (i) stable at t0, if 00 , ( , ) 0R r R t∀ > ∃ >  such that 

0 0( ) ( , ) ( )t r R t t R< ⇒ <x x , 0t t∀ ≥ ; otherwise the equilibrium point is 

unstable (ii) asymptotically stable at t0 if it is stable and 1 0( ) 0r t∃ >  such that 

0 1 0( ) ( )t r t<x  implies that ( ) 0t →x  as t → ∞ ;  (iii) uniformly stable if 

0 , ( ) 0R r R∀ > ∃ >  such that 0( ) ( ) ( )t r R t R< ⇒ <x x , 0t t∀ ≥ ; (iv) 

uniformly asymptotically stable if it is uniformly stable and 1 0r∃ >  such that 

0 1( )t r<x  implies that ( ) 0t →x  as t → ∞; (v) exponentially stable at t0, if 

, 0α λ∃ > , such that 0( )
0( ) ( ) t t

t t e
λα − −≤x x  for all 0t t>  in some ball 

around the origin; (vi) globally (uniformly) asymptotically (or exponentially) 

stable, if the property holds for any initial conditions. It is noted that exponential 

stability always implies uniform asymptotic stability. Likewise, uniform 

asymptotic stability always implies asymptotic stability, but the converse is not 

generally true. 
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2.8.2  Lyapunov stability theorem 

A continuous function ( ) :rα ℜ → ℜ  is said to belong to class K if  

 (0) 0α =  

 ( ) 0 0r rα > ∀ >  

 1 2 1 2( ) ( )r r r rα α≥ ∀ > . 

A continuous function ( , ) : n
V t +ℜ ×ℜ → ℜx  is locally positive definite if 

there exists a class K function ( )α ⋅  such that ( , ) ( )V t α≥x x  for all 0t ≥  in 

the neighborhood N of the origin of 
nℜ . It is positive definite if 

n
N = ℜ . A 

continuous function ( , ) : n
V t +ℜ ×ℜ → ℜx  is locally decrescent if there exists 

a class K function ( )β ⋅  such that ( , ) ( )V t β≤x x  for all 0t ≥  in the 

neighborhood N of the origin of 
nℜ . It is decrescent if 

n
N = ℜ . A continuous 

function ( , ) : n
V t +ℜ ×ℜ → ℜx  is radially unbounded if ( , )V t → ∞x  

uniformly in time as → ∞x . If function ( , )V tx  is locally positive definite 

and has continuous partial derivatives, and if its time derivative along the 

trajectory of (1) is negative semi-definite then it is called a Lyapunov function 

for system (1). 

Lyapunov stability theorem for autonomous systems 

Given the autonomous system (2) with an equilibrium point at the origin, 

and let N be a neighborhood of the origin, then the origin is (i) stable if there 

exists a scalar function ( ) 0V >x  N∀ ∈x  such that ( ) 0V ≤xɺ ; (ii) asymptotic 

stable if ( ) 0V >x  and ( ) 0V <xɺ ; (iii) globally asymptotically stable if 

( ) 0V >x , ( ) 0V <xɺ  and ( )V x  is radially unbounded. 

LaSalle’s theorem (Invariant set theorem) 

Given the autonomous system (2) suppose ( ) 0V >x  and ( ) 0V ≤xɺ  along 

the system trajectory. Then (2) is asymptotically stable if Vɺ  does not vanish 

identically along any trajectory of (2) other than the trivial solution =x 0 . The 

result is global if the properties hold for the entire state space and ( )V x  is 

radially unbounded. 

Lyapunov stability theorem for non-autonomous systems 

Given the non-autonomous system (1) with an equilibrium point at the 

origin, and let N be a neighborhood of the origin, then the origin is (i) stable if 
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,N∀ ∈x  there exists a scalar function ( , )V tx  such that ( , ) 0V t >x  and 

( , ) 0V t ≤xɺ ; (ii) uniformly stable if ( , ) 0V t >x  and decrescent and ( , ) 0V t ≤xɺ ; 

(iii) asymptotically stable if ( , ) 0V t >x  and ( , ) 0V t <xɺ ; (iv) globally 

asymptotically stable if ,
n∀ ∈ℜx  there exists a scalar function ( , )V tx  such 

that ( , ) 0V t >x  and ( , ) 0V t <xɺ  and ( , )V tx  is radially unbounded; (v) 

uniformly asymptotically stable if ,N∀ ∈x  there exists a scalar function 

( , )V tx  such that ( , ) 0V t >x  and decrescent and ( , ) 0V t <xɺ ; (vi) globally 

uniformly asymptotically stable if ,
n∀ ∈ℜx  there exists a scalar function 

( , )V tx  such that ( , ) 0V t >x  and decrescent and is radially unbounded and 

( , ) 0V t <xɺ ; (vii) exponentially stable if there exits , , 0α β γ >  such that 

,N∀ ∈x  
2 2

( , )V tα β≤ ≤x x x  and 
2

( , )V t γ≤ −x xɺ ; (viii) globally 

exponentially stable if  it is exponentially stable and ( , )V tx  is radially 

unbounded. 

Barbalat’s lemma  

La Salle’s theorem is very useful in the stability analysis of autonomous 

systems when asymptotic stability is desired but only with negative semi-

definite result for the time derivative of the Lyapunov function. Unfortunately, 

La Salle’s theorem does not apply to non-autonomous systems. Therefore, to 

conclude asymptotic stability of a non-autonomous system with 0V ≤ɺ , we need 

to find a new approach. A simple and powerful tool called Barbalat’s lemma can 

be used to partially remedy this situation. Let ( )f t  be a differentiable function, 

then Barbalat’s lemma states that if lim ( )
t

f t k
→∞

= < ∞  and ( )f tɺ  is uniformly 

continuous, then lim ( ) 0
t

f t
→∞

=ɺ . It can be proved that a differentiable function is 

uniformly continuous if its derivative is bounded. Hence, the lemma can be 

rewritten as: if lim ( )
t

f t k
→∞

= < ∞  and ( )f tɺɺ  exists and is bounded, then 

0f →ɺ  as t → ∞ . In the Lyapunov stability analysis, Barbalat’s lemma can be 

applied in the fashion similar to La Salle’s theorem: If ( , )V tx  is lower 

bounded, 0V ≤ɺ , and Vɺɺ  is bounded, then 0V →ɺ  as t → ∞ . It should be noted 

that the Lyapunov function is only required to be lower bounded in stead of 

positive definite. In addition, we can only conclude convergence of ,Vɺ  not the 

states. In this book, we would like to use the other form of Barbalat’s lemma to 

prove closed loop stability. If we can prove that a time function e is bounded 

and square integrable, and its time derivative is also bounded, then e is going to 

converge to zero asymptotically. It can be restated as: if 2e L L∞∈ ∩  and 

e L∞∈ɺ , then 0e →  as t → ∞ .
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2.9 Sliding Control 

A practical control system should be designed to ensure system stability 

and performance to be invariant under perturbations from internal parameter 

variation, unmodeled dynamics excitation and external disturbances. For 

nonlinear systems, the sliding control is perhaps the most popular approach to 

achieve the robust performance requirement. In the sliding control, a sliding 

surface is designed so that the system trajectory is force to converge to the 

surface by some worst-case control efforts. Once on the surface, the system 

dynamics is reduced to a stable linear time invariant system which is irrelevant 

to the perturbations no matter from internal or external sources. Convergence of 

the output error is then easily achieved. In this section, we are going to review 

the sliding controller design including two smoothing techniques to eliminate 

the chattering activity in the control effort. 

Let us consider a non-autonomous system 

 
( ) ( , ) ( , ) ( )n

x f t g t u d t= + +x x  (1) 

where x= ( 1)[ ]n
x x x

−ɺ⋯ T∈ℜn
 is the state vector, x∈ℜ the output of interest, 

and u(t)∈ℜ the control input. The function f(x,t)∈ℜ and the disturbance 

d(t)∈ℜ are both unknown functions of time, but bounds of their variations 

should be available. The control gain function g(x,t)∈ℜ is assumed to be non-

singular for all admissible x and for all time t. In the following derivation, we 

would like to design a sliding controller with the knowledge of g(x,t) first, and 

then a controller is constructed with unknown g(x,t). Let us assume that f(x,t) 

and d(t) can be modeled as 

 mf f f= + ∆  (2a) 

 md d d= + ∆  (2b) 

where fm and dm are known nominal values of f and d, respectively. The 

uncertain terms f∆  and d∆ are assumed to be bounded by some known 

functions ( , ) 0tα >x  and ( , ) 0tβ >x , respectively, as 

 ( , )f tα∆ ≤ x  (3a) 

 ( , )d tβ∆ ≤ x  (3b) 
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Since the system contains uncertainties, the inversion-based controller  

 
1

[ ( , ) ( ) ]
( , )

u f t d t v
g t

= − − +x
x

 (4) 

is not realizable. We would like to design a tracking controller so that the output 

x tracks the desired trajectory xd asymptotically regardless of the presence of 

uncertainties. Let us define a sliding surface ( , ) 0s t =x  as a desired error 

dynamics, where ( , )s tx  is a linear stable differential operator acting on the 

tracking error e=x-xd as 

 
1( )nd

s e
dt

λ −= +  (5) 

where 0λ >  determines the behavior of the error dynamics. Selection of the 

sliding surface is not unique, but the one in (5) is preferable simply because it is 

linear and it will result in a relative degree one dynamics, i.e. u appears when we 

differentiate s once. One way to achieve output error convergence is to find a 

control u such that the state trajectory converges to the sliding surface. Once on 

the surface, the system behaves like a stable linear system 
1( ) 0nd
e

dt
λ −+ = ; 

therefore, asymptotic convergence of the tracking error can be obtained. Now, 

the problem is how to drive the system trajectory to the sliding surface. With 

( , ) 0s t =x  as the boundary, the state space can be decomposed into two parts: 

the one with 0s >  and the other with 0s < . Intuitively, to make the sliding 

surface attractive, we can design a control u so that s will decrease in the 0s >  

region, and it will increase in the 0s <  region. This condition is called the 

sliding condition which can be written in a compact form 

 0ss <ɺ  (6) 

Using (5), the sliding surface for system (1) is of the form 

 

1

( 2) ( 1)
1 2 1

( )n

n n
n n

d
s e

dt

c e c e c e c e

λ −

− −
−

= +

= + + + +ɺ ⋯  (7) 
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where 
( 1)!

( )!( 1)!

n k

k

n
c

n k k

λ −−
=

− −
, k=1,...,n-1, and cn=1. Let us differentiate s with 

respect to time once to make u appear 

 

( 1) ( )
1 1

( 1) ( ) ( )
1 1

( 1) ( )
1 1

n n
n n

n n n
n d

n n
n d

s c e c e c e

c e c e x x

c e c e f gu d x

−
−

−
−

−
−

= + + +

= + + + −

= + + + + + −

ɺ ɺ ⋯

ɺ ⋯

ɺ ⋯  (8) 

Let us select the control u as 

 
( 1) ( )

1 1 1

1
[ sgn( )]n n

n m m du c e c e f d x s
g

η−
−= − − − − − + −ɺ ⋯  (9) 

where 1 0η >  is a design parameter to be determined, so that (8) becomes 

 1 sgn( )s f d sη= ∆ + ∆ −ɺ  (10) 

To satisfy the sliding condition (6), let us multiply both sides of (10) with s as 

 

1

1

( )

( )

ss f d s s

s s

η
α β η

= ∆ + ∆ −

≤ + −

ɺ

 (11) 

By picking 1η α β η= + +  with 0η > , the above inequality becomes 

 ss sη≤ −ɺ  (12) 

Therefore, with the controller (9), the sliding surface (7) is attractive, and the 

tracking error converges asymptotically regardless of the uncertainties in f and 

d, once the sliding surface is reached. Now, let us consider the case when 

( , )g tx  is not available, but we do know that it is non-singular for all admissible 

state and time t, and its variation bound is known with min max0 g g g< ≤ ≤ . In 

stead of the additive uncertainty model we used for f and d, a multiplicative 

model is chosen for g as 

 mg g g= ∆  (13) 
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where g∆  satisfies the relation  

 
min max

min max0
m m

g g
g

g g
γ γ≤ ≡ ≤ ∆ ≤ ≡ . (14) 

In this case, the controller is chosen as 

 
( 1) ( )

1 1 1

1
[ sgn( )]n n

n m m d

m

u c e c e f d x s
g

η−
−= − − − − − + −ɺ ⋯  (15) 

Substituting (15) into (8), we have 

 

( 1) ( )
1 1

1

(1 )[ ]

sgn( )

n n
n m m ds g c e c e f d x

f d g sη

−
−= − ∆ + + + + −

+∆ + ∆ − ∆
ɺ ɺ ⋯

 (16) 

Multiplying both sides with s, equation (16) becomes 

 

( 1) ( )
1 1

1

( 1) ( )
min 1 1

min 1

(1 )[ ]

( )

(1 )

( )

n n
n m m d

n n
n m m d

ss g c e c e f d x s

f d s g s

c e c e f d x s

s s

η

γ

α β γ η

−
−

−
−

= − ∆ + + + + −

+ ∆ + ∆ − ∆

≤ − + + + + −

+ + −

ɺ ɺ ⋯

ɺ ⋯

 (17) 

The parameter 1η  can thus be selected as 

 

( 1) ( )
1 min 1 1

min

1
[(1 )

( ) ]

n n
n m m dc e c e f d xη γ

γ
α β η

−
−= − + + + + −

+ + +

ɺ ⋯

 (18) 

where η  is a positive number. Therefore, we can also have the result in (12).  

Smoothed sliding control law  

Both controllers (9) and (15) contain the switching function sgn(s). In 

practical implementation, the switching induced from this function will 

sometimes result in control chattering. Consequently, the tracking performance 

degrades, and the high-frequency unmodeled dynamics may be excited. In some 

cases, the switching controller has to be modified with a continuous 
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approximation. One approach is to use the saturation function sat( )σ  defined 

below instead of the signum function sgn( )s . 

 
   if 

sat( )
sgn( ) if  

σ σ φ
σ

σ σ φ
 ≤

=  >
 (19) 

where 0φ >  is called the boundary layer of the sliding surface. When s is 

outside the boundary layer, i.e., s φ> , the sliding controller with sgn(s) is 

exactly the same as the one with sat( )
s

φ
. Hence, the boundary layer is also 

attractive. When s is inside the boundary layer, equation (10) becomes 

 1

s
s f dη

φ
+ = ∆ + ∆ɺ  (20) 

This implies that the signal s is the output of a stable first-order filter whose 

input is the bounded model error f d∆ + ∆ . Thus, the chattering behavior can 

indeed be eliminated with proper selection of the filer bandwidth and as long as 

the high-frequency unmodeled dynamics is not excited. One drawback of this 

smoothed sliding controller is the degradation of the tracking accuracy. At best 

we can say that once the signal s converges to the boundary layer, the output 

tracking error is bounded by the value φ . 

Instead of the saturation function, we may also use 
s

φ
 to have a smoothed 

version of the sliding controller. This selection is very easy in implementation, 

because the robust term is linear in the signal s. For example, controller (9) can 

be smoothed in the form 

 
( 1) ( )

1 1 1

1
[ ]n n

n m m d

s
u c e c e f d x

g
η

φ
−

−= − − − − − + −ɺ ⋯  (21) 

To justify its effectiveness, the following analysis is performed. When s is 

outside the boundary layer, (10) can be rewritten in the form 

 1

s
s f d η

φ
= ∆ + ∆ −ɺ  (22) 
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With the selection of 1η α β η= + + , the sliding condition can be checked as 

 

2

1

2

2

( )

( ) ( )

( ) 1

s
ss f d s

s
s

s s
s

η
φ

α β α β η
φ

α β η
φ φ

= ∆ + ∆ −

≤ + − + +

 
= + − − 

 

ɺ

 (23) 

Since s φ> , i.e., when outside the boundary layer, we may have the result 

2
s

ss η
φ

≤ −ɺ . Hence, the boundary layer is still attractive. When s is inside the 

boundary layer, equation (20) can be obtained; therefore, effective chattering 

elimination can be achieved. Let us now consider the case when ( , )g tx  is 

unknown and the sliding controller is smoothed with 
s

φ
 as 

 
( )

1

1
[ ]n

d

m

s
u u x

g
η

φ
= + −  (24) 

where 
( 1)

1 1
n

n m mu c e c e f d
−

−= − − − − −ɺ ⋯ . By selecting 1η  according to (18), 

the sliding condition is checked with 

 

2

min[(1 ) ] 1
s s

ss u sβ α β η
φ φ

 
≤ − + + − − 

 
ɺ  (25) 

If s is outside the boundary layer, (25) implies 

2
s

ss η
φ

≤ −ɺ , i.e., all trajectories 

will eventually converge to the boundary layer even though the system contains 

uncertainties. Since inside the boundary layer there is also an equivalent first 

order filter dynamics, the chattering activity can be effectively eliminated. The 

output tracking error, however, can only be concluded to be uniformly bounded. 

There is one more drawback for the smoothing using 
s

φ
, i.e., the initial control 
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effort may become enormously large if there is a significant difference between 

the desired trajectory and the initial state. To overcome this problem, desired 

trajectory and initial conditions should be carefully selected. 

2.10 Model Reference Adaptive Control (MRAC) 

Adaptive control and robust control are two main approaches for 

controlling systems containing uncertainties and disturbances. The sliding 

control introduced in the previous section is one of the robust designs widely 

used in the literature. In this section, the well-known MRAC is reviewed as an 

example in the traditional adaptive approach. For an adaptive controller to be 

feasible the system structure is assumed to be known and a set of unknown 

constant system parameters (or equivalently the corresponding controller 

parameters) are to be estimated so that the closed loop stability is ensured via a 

certainty equivalence based controller. In this section, the MRAC for a linear 

time-invariant scalar system is introduced first, followed by the design for the 

vector case. The persistent excitation condition is investigated for the 

convergence of estimated parameters. Two modifications to the update law are 

introduced to robustify the adaptive loop when the system contains unmodeled 

dynamics or external disturbances.  

2.10.1  MRAC of LTI scalar systems 

Consider a linear time-invariant system described by the differential 

equation 

 p p p px a x b u= +ɺ  (1) 

where px ∈ℜ  is the state of the plant and u ∈ℜ  the control input. The 

parameters ap and bp are unknown constants, but sgn(bp) is available. The pair 

(ap, bp) is controllable. The problem is to design a control u and an update law 

so that all signals in the closed loop plant are bounded and the system output xp 

tracks the output xm of the reference model 

 m m m mx a x b r= +ɺ  (2) 

asymptotically, where am and bm are known constants with 0ma < , and r is a 

bounded reference signal. If plant parameters ap and bp are available, the model 

reference control (MRC) rule can be designed as 
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 pu ax br= +  (3) 

where 
m p

p

a a
a

b

−
=  and 

m

p

b
b

b
=  are perfect gains for transforming dynamics in 

(1) into (2). Since the values of ap and bp are not given, we may not select these 

perfect gains to complete the MRC design in (3) and the model reference 

adaptive control (MRAC) rule is constructed instead 

 ˆˆ( ) ( )pu a t x b t r= +  (4) 

where â  and b̂  are estimates of a and b, respectively, and proper update laws 

are to be selected to give â a→  and b̂ b→ . Define the output tracking error as  

 p me x x= −  (5) 

then the error dynamics can be computed as following 

 ˆˆ( ) ( )m p p pe a e b a a x b b b r= + − + −ɺ  (6) 

Define the parameter errors ˆa a a= −ɶ  and ˆb b b= −ɶ , then equation (6) is further 

written as 

 m p p pe a e b ax b br= + + ɶɺ ɶ  (7) 

This is the dynamics of the output error e, which is a stable linear system driven 

by the parameter errors. Therefore, if update laws are found to have convergence 

of these parameter errors, convergence of the output error is then ensured. To 

find these update laws for â  and b̂ , let us define a Lyapunov function 

candidate 

 
2 2 21 1

( , , ) ( )
2 2

pV e a b e b a b= + +ɶ ɶɶ ɶ  (8) 

Taking the time derivative of V along the trajectory of (7), we have 

 
2

ˆˆ( )

ˆˆ( ) ( )

ˆˆ[sgn( ) ] [sgn( ) ]

p

m p p p p

m p p p p p

V ee b aa bb

e a e b ax b br b aa bb

a e a b b ex a b b b er b

= + +

= + + + +

= + + + +

ɺɺ ɶɺ ɺ ɶ

ɺɺɶ ɶɶ ɶ

ɺɺ ɶɶ  (9) 



2.10  Model Reference Adaptive Control (MRAC)    47 

If the update laws are selected as 

 ˆ sgn( )p pa b ex= −ɺ  (10a) 

 ˆ sgn( )pb b er= −ɺ  (10b) 

then (9) becomes 

 
2

0mV a e= ≤ɺ  (11) 

This implies that , ,e a b L∞∈ɶɶ . From the simple derivation 

 
2 1 1

0
0 0

( )m me dt a Vdt a V V
∞ ∞

− −
∞= − = − < ∞∫ ∫ ɺ  

we know that 2e L∈ . The result e L∞∈ɺ  can easily be concluded from (7). 

Therefore, if follows from Barbalat’s lemma that the output error e(t) converges 

to zero asymptotically as t → ∞ . In summary, the controller (4) together with 

update laws in (10) make the system (1) track the reference model (2) 

asymptotically with boundedness of all internal signals. It can be observed in 

(10) that the update laws are driven by the tracking error e. Once e gets close to 

zero, the estimated parameters converges to some values. We cannot predict the 

exact values these parameters will converge to from the above derivation. Let us 

consider the situation when the system gets into the steady state, i.e., when 

t → ∞ . The error dynamics (7) becomes 

 0pax br+ =ɶɶ  (12) 

If r is a constant, then xp in (12) can be found as p mx x kr= = , where 
m

m

b
k

a
= −  

is the d.c. gain of the reference model (2). Equation (12) further implies  

 0ka b+ =ɶɶ  (13) 

which is exactly a straight line in the parameter error space. Therefore, for a 

constant reference input r, both the estimated parameters do not necessarily 

converge to zero. To investigate the problem of parameter convergence, we need 

the concept of persistent excitation. A signal 
n∈ℜv  is said to satisfy the 

persistent excitation (PE) condition if , 0Tα∃ >  such that  
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t T

T

t

dt α
+

≥∫ vv I  (14) 

Define [ ]T
px r=v  and [ ]T

a bθ = ɶɶ ɶ , and equation (12) is able to be 

represented into the vector form 

 [ ] 0T
p

a
x r

b
θ

 
= = 

 
v

ɶ
ɶ

ɶ
 (15) 

Since 0Tθ =vv ɶ , its integration in [ , ]t t T+  is 

 0
t T

T

t

dtθ
+

=∫ vv ɶ  (16) 

When t → ∞ , update laws in (10) imply 0θ →ɺɶ ; therefore, (16) becomes 

 0
t T

T

t

dtθ
+

=∫ vv ɶ  (17) 

Hence, if v is PE, equation (17) implies 0θ =ɶ , i.e., parameter convergence 

when t → ∞ . A more general treatment of the PE condition will be presented in 

Section 2.10.3. 

2.10.2 MRAC of LTI systems: vector case 

Consider a linear time-invariant system 

 p p p p= +x A x B uɺ  (18) 

where 
n

p ∈ℜx  is the state vector, 
m∈ℜu  is the control vector, and 

n n
p

×∈ℜA  and 
n m

p
×∈ℜB  are unknown constant matrices. The pair (Ap, Bp) 

is controllable. The problem is to find a control u so that all signals in the closed 

loop system are bounded and the system states asymptotically track the states of 

the reference model 

 m m m m= +x A x B rɺ  (19) 
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where 
n n

m
×∈ℜA  and 

n m
m

×∈ℜB  are known and 
m∈ℜr  is a bounded 

reference input vector. All eigenvalues of Am are assumed to be with strictly 

negative real parts. A control law for this problem can be designed in the form 

 p= +u BAx Br  (20) 

where A and B are feedback gain matrices. Substituting (20) into (18), the 

closed loop system is derived as 

 ( )p p p p p= + +x A B BA x B Brɺ  (21) 

Hence, if A and B are chosen so that  

 p p m+ =A B BA A  (22a) 

 p m=B B B  (22b) 

then the behavior of system (18) is identical to that of the reference model. The 

control in (20) is called the MRC rule if A and B satisfy (22). Since the values 

of Ap and Bp are not given, the MRC rule is not realizable. Now, let us replace 

the values A and B in (20) with their estimates ˆ ( )tA  and ˆ ( )tB , respectively, to 

have the MRAC rule 

 ˆˆ ˆ( ) ( ) ( )pt t t= +u B A x B r  (23) 

We would like to design proper update laws to have ˆ →A A  and ˆ →B B . 

Define the tracking error  

 p m= −e x x  (24) 

then the error dynamics can be computed as following 

 

ˆ( ) ( )

ˆˆ ˆ( ) ( )

ˆˆ( )( )

m p m m p

p m p p m

m m p p m p

= − + −

+ − + −

= + + − +

e A x x B A A x

B B B Ax B B B r

A e B Ax B B B Ax r

ɺ

ɶ  (25) 
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where ˆ= −A A Aɶ . Using the relations in (22), the above equation is reduced to 

 

1 1

1 1

ˆˆ ˆ ˆ ˆ( ) ( )

ˆ( )

m m p m p

m m p m

− −

− −

= + + − +

= + + −

e A e B Ax B B B I B BAx Br

A e B Ax B B B u

ɶɺ

ɶ  (26) 

Define 
1 1

1
ˆ− −= −B B Bɶ , then equation (26) becomes 

 1m m p m= + +e A e B Ax B B uɶ ɶɺ  (27) 

To find update laws for Â  and B̂, let us define a Lyapunov function candidate 

 1 1 1( , , ) ( )T T T
V Tr= + +e A B e Pe A A B Bɶ ɶ ɶɶ ɶ ɶ  (28) 

where 
n n×∈ℜP  is a positive definite matrix satisfying 

T
m m+ = −A P PA Q  for 

some positive definite matrix 
n n×∈ℜQ . Taking time derivative of V along the 

trajectory of (27) and selecting the update laws 

 ˆ T T
m p= −A B Pex

ɺ
 (29a) 

 1
ˆ T T

m= −B B Peu
ɺ

 (29b) 

we have the result 0
T

V = − ≤e Qeɺ . By using the identity (2.5-9c), update law 

(29b) can be transformed to 

 ˆ ˆ ˆT T
m= −B BB Peu B

ɺ
 (29c) 

Therefore, we have proved that the origin 1( , , ) =e A B 0ɶ ɶ  is uniformly stable 

using controller (23) with update laws in (29). It should be noted that the control 

scheme can only guarantee uniform stability of the origin in the { , , }e A Bɶ ɶ  

space. Since the Lyapunov function in (28) is not radially unbounded, the global 

behavior cannot be concluded. If the reference input is PE, convergence of the 

estimated parameters can further be proved. 

2.10.3 Persistent excitation 

We have introduced MRAC laws for linear time-invariant systems to have 

asymptotic tracking error convergence performance. However, we can only 
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obtain uniformly boundedness of parameter errors in those systems. In this 

section, we are going to investigate the problem of persistency of excitation of 

signals in the closed loop system, which relates to the convergence of the 

parameter vector. Consider a special linear system (Marino and Tomei 1996) 

 ( )T
t= +Ωx Ax zɺ  (30a) 

 ( )t= −Ωz Pxɺ  (30b) 

where 
n∈ℜx  and 

p∈ℜz . 
n n×∈ℜA  is a Hurwitz matrix, and 

n n×∈ℜP  is a 

positive definite matrix satisfying 
T + = −A P PA Q  for some positive definite 

n n×  matrix Q. The p n×  real matrix Ω has the property that ( )tΩ  and 

( )tΩɺ  are uniformly bounded. System (30) is frequently encountered in the 

parameter convergence analysis of adaptive systems. Equation (30a) usually 

corresponds to the tracking error dynamics and (30b) is the update law. These 

can be confirmed with MRAC systems introduced in the previous section. To 

have parameter convergence in those systems, it is equivalent to require 

convergence of vector z in (30b). Here, we would like to prove that as long as 

the persistent excitation condition is satisfied by the signal matrix Ω, the 

equilibrium point ( , ) =x z 0  is globally exponentially stable.  

We first show that the tracking error vector x converges to zero 

asymptotically as ∞→t . Define a Lyapunov function candidate 

 ( , ) T T
V = +x z x Px z z  (31) 

Along the trajectory of (30), the time derivative of V can be computed to have 

 ( ) 0T T T
V = + = − ≤x A P PA x x Qxɺ  (32) 

Hence, the origin of (30) is uniformly stable, and 
n

L∞∈x , 
p

L∞∈z . From the 

computation 

 0
0 0

T
dt Vdt V V

∞ ∞

∞= − = − < ∞∫ ∫x Qx ɺ  

we have 2
n

L∈x . Boundedness of xɺ  can be obtained by observing (30a). 

Therefore, by Barbalat’s lemma, we have proved →x 0  as t → ∞ .  
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To prove asymptotic convergence of z, we need to prove that 0ε∀ > , 

0Tε∃ >  such that ( )t ε<z , t Tε∀ ≥ . Since when t Tε≥ , V in (31) satisfies 

( ) ( )V T V tε ≥ , or equivalently 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T T T T

T

T T T T t t t t

t t

ε ε ε ε+ ≥ +

≥

x Px z z x Px z z

z z  (33) 

Using relation (2.6-3), inequality (33) becomes 

 
2 2 2

max ( ) ( ) ( ) ( )T T tε ελ + ≥P x z z  

This further implies 

 
2 2

max( ) ( ) ( ) ( )t T Tε ελ≤ +z P x z  (34) 

Since we have proved →x 0  as t → ∞ , this implies that 0ε∀ > , 0tε∃ >  

such that t tε∀ ≥ ,  

 

max

( )
2 ( )

t
ε

λ
≤x

P
. (35) 

Plug (35) into (34), yields 

 

2
2

( ) ( )
2

t Tε
ε

≤ +z z  (36) 

If we may claim that 0ε∀ > , 0T >  and for any initial conditions of x and z, 

t T∃ >  such that ( )t ε<z , then we may use this property to say that 0ε∀ > , 

T tε ε∃ >  such that ( )
2

Tε
ε

<z .  Under this condition, (36) can be further 

written as 

2 2

( )
2 2

t
ε ε ε≤ + =z  for all t Tε≥ . This completes the proof of 

→z 0  as t → ∞ , if the claim is justified. Since all properties hold for all x and 

z, and are uniform respect to the initial time, the equilibrium point ( , ) =x z 0  is 

globally uniformly stable. Since the system is linear, it is also globally 

exponentially stable. 
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Now let us prove the above claim by contradiction, i.e., to prove that 

0ε∀ > , we cannot find t1>0 such that ( )t ε>z  for all 1t t≥ . Suppose there 

exists a 1 0t >  such that ( )t ε>z  for all 1t t≥ . The PE condition says that 

there exist T, k>0, such that  

 ( ) ( ) 0
t T

T

t

d kτ τ τ
+

Ω Ω ≥ >∫ I  0t t∀ ≥ . (37) 

For all 
p∈ℜw , 1=w , inequality (37) implies 

 min( ) ( ) ( )
t T

T T

t

d kτ τ τ λ
+

Ω Ω ≥∫ w P w P   0t t∀ ≥  (38) 

Let =
z

w
z

, then (38) becomes 

 

2

min 0

2
min 1

( ) ( ) ( )

( )

t T
T T

t

d k t t

k t t

τ τ τ λ

λ ε

+
Ω Ω ≥ ∀ ≥

≥ ∀ ≥

∫ z P z P z

P  (39) 

Consider the bounded function for some T>0 

 
1

( ( ), ) [ ( ) ( ) ( ) ( )]
2

T T
T t t t T t T t tφ = + + −z z z z z  (40) 

Its time derivative is computed as following 

 

( ) ( ) ( ) ( )

[ ( ) ( )]

T T
T

t T
T

t

t T t T t t

d
d

d

φ

τ τ τ
τ

+

= + + −

= ∫
z z z z

z z

ɺ ɺ ɺ

ɺ  (41) 

Using (30) and (39), equation (41) can be derived as 

 
2

min 1

[ ]

[ ]

( )

t T
T T T T

T
t

t T
T T

t

t T
T T T T

t

d

d

d

k t t

φ τ

τ

τ

λ ε

+

+

+

= Ω Ω − Ω − Ω

− Ω Ω

≤ Ω Ω − Ω − Ω

− ∀ ≥

∫
∫

∫

x P Px z Px z PAx

z P z

x P Px z Px z PAx

P

ɺɺ

ɺ

 (42) 



54    Chapter 2  Preliminaries 

Since x, z, Ω and Ωɺ  are all uniformly bounded, there exist ,Ω x  and z  such 

that max{sup ( ) ,sup ( ) }
t t

t tΩ = Ω Ωɺ , sup ( )
t

t=x x  and sup ( )
t

t=z z . Then 

the integration term in (42) can be represented in the form 

 
2 2
max max max

[ ]

[ ( ) ( ) ( ) ] ( )

t T
T T T T

t

t T

t

d

d

τ

λ λ λ τ τ

+

+

Ω Ω − Ω − Ω

≤ Ω + Ω + Ω

∫
∫

x P Px z Px z PAx

P x P z P z A x

ɺ

 (43) 

Since we have proved that 0→x  as t → ∞ , then 2 0t∃ >  such that 2t t∀ ≥   

 
2

min

1
[ ] ( )

2

t T
T T T T

t

d kτ λ ε
+

Ω Ω − Ω − Ω ≤∫ x P Px z Px z PAx Pɺ  (44) 

Plug (44) into (42) for all 1 2max{ , }t t t≥ , we have 

 
2 2 2

min min min

1 1
( ) ( ) ( ) 0

2 2
T k k kφ λ ε λ ε λ ε≤ − = − <P P Pɺ  

Hence, Tφ  is an unbounded function, which is a contradiction to the assumption 

in (40). Therefore, we have proved the claim.   

2.10.4  Robust adaptive control 

The adaptive controllers presented in Section 2.10.1 and 2.10.2 are 

developed for LTI systems without external disturbances or unmodeled 

dynamics. For practical control systems, uncertain parameters may vary with 

time and the system may contain some non-parametric uncertainties. Rohrs           

et. al. (1985) showed that in the presence of a small amount of measurement 

noise and high-frequency unmodeled dynamics, an adaptive control system 

presents slow parameter drift behavior and the system output suddenly diverges 

sharply after a finite interval of time. For practical implementation, an adaptive 

control system should be designed to withstand all kinds of non-parametric 

uncertainties. Some modifications of the adaptive laws have been developed to 

deal with these problems. In the following, a technique called dead-zone is 

introduced followed by the review of the well-known σ-modification. 
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Dead-Zone 

Consider the uncertain linear time-invariant system 

 ( )p p p px a x b u d t= + +ɺ  (45) 

where ap is unknown but 0pb ≠  is available. The disturbance d(t) is assumed 

to be bounded by some 0δ > . A reference model is designed as 

 m m m mx a x b r= +ɺ  (46) 

where 0ma <  and m pb b= . Let 
m p

p

a a
a

b

−
=  and 1b =  be ideal feedback 

gains for the MRAC law (4). Since ap is not given, a practical feedback law is 

designed to be 

 ˆ( ) pu a t x br= +  (47) 

where ˆ( )a t  is the estimate of a. Let p me x x= −  and aaa −= ˆ~ , then the error 

dynamics is computed as 

 ( )m p pe a e b ax d t= + +ɺ ɶ  (48) 

The time derivative of the Lyapunov function  

 
2 21

( , ) ( )
2

V e a e a= +ɶ ɶ  

along the trajectory of (48) is  

 
2 ˆ( )m p pV a e a b ex a ed= + + +ɺɺ ɶ  (49) 

With the selection of the update law  

 ˆ p pa b ex= −ɺ  (50) 

(49) becomes 

 

2

( )

( )

m

m

m

V a e ed

d a e e

a e eδ

= +

= −

≤ −

ɺ

 (51) 
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If 0ma eδ − < , i.e., 
m

e
a

δ
> , then (51) implies that V is non-increasing. 

Let D be the set where V will grow unbounded, i.e. ( , )
m

D e a e
a

δ  = ≤ 
  
ɶ ; 

therefore, the modified update law 

 
if ( , )

ˆ
0 if ( , )

c
pex e a D

a
e a D

− ∈
= 

∈

ɶɺ
ɶ

 (52) 

assures boundedness of all signals in the system. The notation 
c

D  denotes the 

complement of D. The modified update law (52) implies that when the error e is 

within the dead-zone D, the update law is inactive to avoid possible parameter 

drift. It should be noted that, however, the asymptotic convergence of the error 

signal e is no longer valid after the dead-zone modification even when the 

disturbance is removed.  

σ-modification 

In applying the dead-zone modification, the upper bound of the disturbance 

signal is required to be given. Here, a technique called σ-modification is 

introduced which does not need the information of disturbance bounds.  

Instead of (52), the update law (50) is modified as 

 ˆ ˆp pa b ex aσ= − −ɺ  (53) 

where σ  is a small positive constant. Then (51) becomes 

 

2

2 2

ˆm

m

V a e aa ed

a e a aa e

σ
σ σ δ

= − +

≤ − − − +

ɺ ɶ

ɶ ɶ  (54) 

for some unknown 0δ > . Rewrite the two terms in (54) involving e as

 

2
2

2 2

2
2

1 1 1

2 2 2

1 1

2 2

m m m

mm

m

m

a e e a e a e
aa

a e
a

δ δδ

δ

 
 − + = − − − +
  

≤ − +  (55) 
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Likewise, the rest two terms in (54) are derived as 

 

2 2

221 1

2 2

a aa a a a

a a

σ σ σ σ

σ σ

− − ≤ − +

≤ − +

ɶ ɶ ɶ ɶ

ɶ  (56) 

Substituting (55) and (56) into (54), we have 

 

2
22 21 1 1 1

2 2 2 2
m

m

V a e a a
a

δ σ σ≤ − + − +ɺ ɶ  (57) 

Adding and subtracting Vα  for some 0α > , (57) becomes 

 

2
2 2 21 1 1 1

[ ] [ ]
2 2 2 2

m

m

V V a a e a
a

δα σ α α σ≤ − + + + − + −ɺ ɶ  (58) 

Picking min{ , }maα σ< , we obtain 

 

2
21 1

2 2m

V V a
a

δα σ≤ − + +ɺ  (59) 

Therefore, 0V ≤ɺ , if  

 

2
21 1

2 2m

V a
a

δ σ
α α

≥ + . (60) 

This implies that signals in the closed loop system are uniformly bounded. 

Hence, the additional term âσ  in the update law makes the adaptive control 

system robust to bounded external disturbances, although bounds of these 

disturbances are not given. One drawback of this method is that the origin of the 

system (48) and (53) is no longer an equilibrium point, i.e., the error signal e 

will not converge to zero even when the disturbance is removed.  

2.11 General Uncertainties 

We have seen in Section 2.9 that, to derive a sliding controller, the 

variation bounds of the parametric uncertainties should be give. Availability for 
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the knowledge of the uncertainty variation bounds is a must for almost all robust 

control strategies. This is because the robust controllers need to cover system 

uncertainties even for the worst case. One the other hand, we know from 

Section 2.10 that for the adaptive controller to be feasible the unknown 

parameters should be time-invariant. This is also almost true for most adaptive 

control schemes. Let us now consider the case when a system contains time-

varying uncertainties whose variation bounds are not known. Since it is time-

varying, traditional adaptive design is not feasible. Because the variation bounds 

are not given, the robust strategies fail. We would like to call this kind of 

uncertainties the general uncertainties. It is challenging to design controllers for 

systems containing general uncertainties. 

In Section 2.11.1, we are going to have some investigation on the 

difficulties for the design of adaptive controllers when the system has time-

varying parameters. In Section 2.11.2, we will look at the problem in designing 

robust controllers for systems containing uncertain parameters without knowing 

their bounds.  

2.11.1 MRAC of LTV systems 

In the conventional design of adaptive control systems such as the one 

introduced in Section 2.10, there is a common assumption that the unknown 

parameters to be updated should be time-invariant. This can be understood by 

considering the scalar linear time-varying system 

 ( )p p p px a t x b u= +ɺ  (1) 

where ap is a time-varying unknown parameter and 0pb >  is known. A 

controller is to be constructed such that the system behaves like the dynamics of 

the reference model 

 m m m mx a x b r= +ɺ  (2) 

where 0ma <  and m pb b= . Let 
( )

( )
m p

p

a a t
a t

b

−
=  and 1b =  be ideal feedback 

gains for the MRC law ( ) pu a t x br= + . Since ap(t) is not given, a practical 

feedback law based on the MRAC is designed 

 ˆ( ) pu a t x br= +  (3) 
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where ˆ( )a t  is an adjustable parameter of the controller. Let p me x x= −  and 

ˆ( ) ( ) ( )a t a t a t= −ɶ , then the error dynamics is computed to be 

 m p pe a e b ax= +ɺ ɶ  (4) 

Take the time derivative of the Lyapunov function candidate 

 
2 21 1

( , )
2 2

pV e a e b a= +ɶ ɶ  (5) 

along the trajectory of (4), we have 

 
2 ˆ( )m p pV a e b a ex a a= + + −ɺɺ ɶ ɺ  (6) 

If we choose the update law similar to the one in (2.10-10a) 

 ˆ pa ex= −ɺ  (7) 

then (6) becomes 

 
2

m pV a e b aa= −ɺ ɶ ɺ  (8) 

Since aɶ  and aɺ  are not available, the definiteness of Vɺ  can not be determined. 

Therefore, we are not able to conclude anything about the properties of the 

signals in the closed loop system. From here, we know that the assumption for 

the unknown parameters to be time-invariant is very important for the feasibility 

of the design of adaptive controllers. It is equivalent to say that the traditional 

MRAC fails in controlling systems with time-varying uncertainties. 

2.11.2  Sliding control for systems with unknown variation bounds 

Consider a first order uncertain nonlinear system  

 ( , ) ( , )x f x t g x t u= +ɺ  (9) 

where f(x,t) is a bounded uncertainty and g(x,t) is a known nonsingular 

function. The uncertainty f(x,t) is modeled as the summation of the known 

nominal value fm and the unknown variation f∆ .  
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 ( , ) mf x t f f= + ∆  (10) 

Since f∆  is a bounded function with unknown bounds, there is a positive 

constant α  satisfying 

 f α∆ ≤  (11) 

Let us select the sliding variable ds x x= − , where xd is the desired trajectory. 

The dynamics of the sliding variable is computed as 

 ds f gu x= + −ɺ  (12) 

By selecting the sliding control law as 

 1

1
[ sgn( )]m du f x s

g
η= − + −  (13) 

equation (12) becomes 

 1 sgn( )s f sη= ∆ −ɺ  (14) 

Multiplying s to the both sides to have 

 

1

1( )

ss fs s

s

η
α η

= ∆ −

≤ −

ɺ

 (15) 

Since α  is not given, we may not select η1 similar to the one we have in (2.9-

11). Therefore, the sliding condition can not be satisfied and the sliding control 

fails in this case.   

Bound estimation for uncertain parameter 

An intuitive attempt in circumvent the difficulty here is to estimate α  by 

using conventional adaptive strategies. Since α  itself is a constant, it might be 

possible to design a proper update law α̂ɺ  for its estimate α̂ .  

Let η  be a positive number, then we may pick 1 ˆη α η= +  so that 

equation (15) becomes

 ss s sα η≤ −ɶɺ  (16) 
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where ˆα α α= −ɶ . Consider a Lyapunov function candidate 

 
2 21 1

2 2
V s α= + ɶ  (17) 

Its time derivative can be found as 

 

ˆ

ˆ( )

V ss

s s

αα

η α α

= −

≤ − + −

ɺɺ ɶɺ

ɺɶ  (18) 

By selecting the update law as 

 ˆ sα =ɺ  (19) 

equation (18) becomes 

 V sη≤ −ɺ  (20) 

It seems that the estimation of the uncertainty bound can result in closed loop 

stability. However, in practical applications, the error signal s will never be zero, 

and the update law (19) implies an unbounded α̂ . Therefore, the concept in 

estimation of the uncertainty bound is not realizable. 

2.12 FAT-Based Adaptive Controller Design 

In practical realization of control systems, the mathematical model 

inevitably contains uncertainties. If the variation bounds of these uncertainties 

are available, traditional robust control strategies such as the Lyapunov redesign 

and sliding control are applicable. If their bounds are not given, but we know 

that these uncertainties are time-invariant, various adaptive control schemes are 

useful. It is possible that system uncertainties are time-varying without knowing 

their bounds (general uncertainties); therefore, the above tools are not feasible. 

In this book, we would like to use the FAT-based designs to overcome the given 

problem. The basic idea of the FAT is to represent the general uncertainties by 

using a set of known basis functions weighted by a set of unknown coefficients 

(Huang and Kuo 2001, Huang and Chen 2004b, Chen and Huang 2004). Since 

these coefficients are constants, the Lyapunov designs can thus be applied to 

derive proper update laws to ensure closed loop stability. This approach has 
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been successfully applied to the control of many systems, such as robot 

manipulators (Chien and Huang 2004, 2006a, 2006b, 2007a, 2007b, Huang and 

Chen 2004a, Huang et. al. 2006, Huang and Liao 2006), active suspensions 

(Chen and Huang 2005a, 2005b, 2006), pneumatic servo (Tsai and Huang 

2008a, 2008b), vibration control (Chang and Shaw 2007), DC motors (Liang 

et. al. 2008) and jet engine control (Tyan and Lee 2005). 

In Section 2.11.1, we know that the traditional MRAC is unable to give 

proper performance to LTV systems. In the first part of this section, we would 

like to present the FAT-based MRAC to the same LTV system as in 

Section 2.11.1 without considering the approximation error. The asymptotical 

convergence can be obtained if a sufficient number of basis functions are used. 

In the second part of this section, we will investigate the effect of the 

approximation error in detail. By considering the approximation error in the 

adaptive loop, the output error can be proved to be uniformly ultimately 

bounded. The bound for the transient response of the output error can also be 

estimated as a weighted exponential function plus some constant offset.  

FAT-based MRAC for LTV systems 

Let us consider the linear time-varying system (2.11-1) again 

 ( )p p p px a t x b u= +ɺ  (1) 

We have proved in Section 2.11.1 that traditional MRAC is infeasible to give 

stable closed loop system due to the fact that ap is time-varying. Let us apply the 

MRAC rule in (2.11-3) once again so that the error dynamics becomes 

 ˆ( )m p pe a e b a a x= + −ɺ  (2) 

where 
( )

( )
m p

p

a a t
a t

b

−
=  is the perfect gain in the MRAC rule. Since it is  

time-varying, traditional MRAC design will end up with (2.11-8), and no 

conclusions for closed loop system stability can be obtained. Here, let us 

represent a and â  using function approximation techniques shown in (2.7-4) as 

 
ˆ ˆ

T

T

a

a

ε= +

=

w z

w z
 (3) 
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where an∈ℜw  is a vector of weightings, ˆ an∈ℜw  is its estimate and 
an∈ℜz  is a vector of basis functions. The positive integer na is the number of 

terms we selected to perform the function approximation. In this case, we would 

like to assume that sufficient terms are employed so that the approximation error 

ε is ignorable. Later in this section, we are going to investigate the effect of the 

approximation error in detail. Define ˆ= −w w wɶ , and then equation (2) can be 

represented into the form 

 
T

m p pe a e b x= + w zɺ ɶ  (4) 

A new Lyapunov-like function candidate is given as 

 
21 1

( , )
2 2

T
pV e e b= +w w wɶ ɶ ɶ  (5) 

Its time derivative along the trajectory of (4) is computed to be 

 
2

ˆ

ˆ( )

T
p

T
m p p

V ee b

a e b x e

= −

= + −

w w

w z w

ɺɺ ɺ ɶ

ɺɶ  (6) 

By selecting the update law 

 ˆ px e=w zɺ  (7) 

we may have  

 
2

0mV a e= ≤ɺ  (8) 

This implies that both e and wɶ  are uniformly bounded. The output error e can 

also be concluded to be square integrable from (8). In addition, the boundedness 

of eɺ  can easily be observed from (4). Hence, it follows from Barbalat’s lemma 

that e will converge to zero asymptotically.  

Consideration of approximation error 

Let us consider a more general non-autonomous system in the standard 

form 
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1 2

2 3

1

( , ) ( , )

n n

n

x x

x x

x x

x f t g t u

−

=
=

=
= +x x

ɺ

ɺ

⋮

ɺ

ɺ

 (9) 

where 1 2[ ]T
nx x x= ∈Ωx ⋯ , and Ω is a compact subset of .nℜ  f(x,t) 

is an unknown function with unknown variation bound. The uncertain function 

g(x,t) is assumed to be bounded by min max0 ( , ) ( , ) ( , )g t g t g t< ≤ ≤x x x  for 

some known functions gmin and gmax for all ∈Ωx  and 0[ , ).t t∈ ∞  Let 

min maxmg g g=  be the nominal function, and then we may represent g in the 

form ( , ) ( , )mg g t g t= ∆x x  where g∆  is the multiplicative uncertainty 

satisfying  

 
min max

min max0
m m

g g
g

g g
δ δ< ≡ ≤ ∆ ≤ ≡  

We would like to design a controller such that the system state x tracks the 

desired trajectory d d∈Ωx , where dΩ  is a compact subset of Ω. Define the 

tracking error vector as 1 1 2 2[ ]T
d d d n ndx x x x x x= − = − − −e x x ⋯ . 

The control law can be selected as 

 
1 ˆ( )r

m

u f ν u
g

= − + −  (10) 

where f̂  is an estimate of f, ur is a robust term to cover the uncertainties in g, 

and 

1

1

0

n

nd i i

i

ν x k e

−

+
=

= −∑ɺ  is to complete the desired dynamics. The coefficients 

ki are selected so that the matrix 

 

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

n n

nk k k k

×

−

 
 
 
 = ∈ℜ
 
 
 − − − − 

A

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

⋯
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is Hurwitz. With the controller (10), the last line of (9) becomes 

 

ˆ( )

ˆ ˆ( ) (1 )( )

n r

m

r

g
x f f ν u

g

f f g f ν ν gu

= + − + −

= − + − ∆ − + − ∆

ɺ
 

This can further be written into the form 

 

1

1

0

ˆ ˆ( ) (1 )( )

n

n i i r

i

e k e f f g f ν gu

−

+
=

+ = − + − ∆ − − ∆∑ɺ  

Its state space representation is thus 

 ˆ ˆ[( ) (1 )( ) ]rf f g f ν gu= + − + − ∆ − − ∆e Ae bɺ  (11) 

where [0 0 1]T n= ∈ℜb ⋯ . Since f is a general uncertainty, we may not 

use traditional adaptive strategies to have stable closed loop system. Let us 

apply the function approximation techniques to represent f and its estimate as 

 
ˆ ˆ

T

T

f

f

ε= +

=

w z

w z
 

Then (11) becomes 

 ˆ[ (1 )( ) ]T
rg f ν guε= + + + − ∆ − − ∆e Ae b w zɺ ɶ  (12) 

where ˆ .= −w w wɶ  To find the update law, let us consider the Lyapunov-like 

function candidate 

 
T T

V = +e Pe w Γwɶ ɶ  (13) 

where P and Γ are positive definite matrices. In addition, P satisfies the 

Lyapunov equation 
T + = −A P PA Q  where Q is some positive definite 

matrix. Taking the time derivative of (13) along the trajectory of (12), we have 



66    Chapter 2  Preliminaries 

 

max min

ˆ( ) 2[(1 )( ) ]

ˆ2 2 ( )

ˆ2(1 ) 2

ˆ2 2 ( )

T T T
r

T T T

T T T
r

T T T

V g f ν gu

f ν u

ε

δ δ

ε

= + + − ∆ − − ∆

+ + −

≤ − + + − −

+ + −

e A P PA e b Pe

b Pe w zb Pe Γw

e Qe b Pe b Pe

b Pe w zb Pe Γw

ɺ

ɺɶ

ɺɶ

 

We may thus select 

 
max

min

1 ˆ sgn( )T
ru f ν

δ
δ
+

= − b Pe  (14a) 

 
1ˆ ˆ( ), 0T σ σ−= − >w Γ zb Pe wɺ  (14b) 

The signum function in (14a) might induce chattering control activity which 

would excite un-modeled system dynamics. Some modifications can be used to 

smooth out the control law. The most intuitive way is to replace the signum 

function with the saturation function as  

 
max

min

1 ˆ sat( )T
ru f ν

δ
δ
+

= − b Pe  (14c) 

One drawback for this modification is the reduction in the output tracking 

accuracy. It is also noted that the σ-modification term in (14b) is to robustify the 

adaptive loop. With (14), the time derivative of V becomes 

 
2 2

min max

( ) ( )

ˆ2 2

2 2 ( )

( ) 2 ( ) 2 [ ]

T T T

T T T

T

a b

V ε σ

ε σ

λ λ ε σ

≤ − + +

= − + + −

≤ − + + −

e Qe b Pe w w

e Qe b Pe w w w

Q e P e w w w

ɺ ɶ

ɶ ɶ

ɶ ɶ
������������	 ������	

 (15) 

Let us derive part (a) in (15) using straightforward manipulations as 
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Likewise, part (b) can also be written as 

 

2 2

2 22

2 2

1 1
( ) ( )

2 2

1
( )

2

T − ≤ −

= − − − −

≤ − −

w w w w w w

w w w w

w w

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ

 

Therefore (15) becomes 

 

2
2 2 2max 2

min

min

2
2 2 2 max 2

min

min

( )

1 2 ( )
( )

2 ( )

1 2 ( )
( )

2 ( )
c

V
λλ ε σ σ
λ

λλ σ σ ε
λ

≤ − + − +

= − − + +

P
Q e w w

Q

P
Q e w w

Q

ɺ ɶ

ɶ
����������	

 (16) 

We would like to relate (c) to V by considering  

 
2 2

max max( ) ( )T T
V λ λ= + ≤ +e Pe w Γw P e Γ wɶ ɶ ɶ  (17) 

Now (16) can be further derived as 
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2
2 2 max 2
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2

2 ( )
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λαλ σ σ ε
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Pick 
min

max max

( )
min ,

2 ( ) ( )

λ σα
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≤  

 

Q

P Γ
, then we have 

 

2
2 max 2

min

2 ( )

( )
V V

λα σ ε
λ

≤ − + +
P

w
Q

ɺ  (18) 

Hence, 0V <ɺ  whenever  

 
0

2
2 max 2

min

1 2 ( )
( , ) ( , ) sup ( )

( ) t

E V
τ

λσ ε τ
α λ ≥

   ∈ ≡ > +  
   

P
e w e w w

Q
ɶ ɶ .  

This implies that ( , )e wɶ  is uniformly ultimately bounded. Note that the size of 

the set E is adjustable by proper selection of α, σ, P, and Q. Smaller size of E 

implies more accurate in output tracking. However, this parameter adjustment is 

not always unlimited, because it might induce controller saturation in 

implementation. 

The above derivation only demonstrates the boundedness of the closed loop 

system, but in practical applications the transient performance is also of great 

importance. For further development, we may solve the differential inequality in 

(18) to have the upper bound for V 

 0

0

2
2 max( ) 2

0

min

2 ( )
( ) sup ( )

( )

t t

t t

V e V t
α

τ

σ λ ε τ
α αλ

− −

≤ ≤
≤ + +

P
w

Q
 (19) 

By using the definition in (13), we may also find an upper bound of V as 

 
2 2

min min( ) ( )T T
V λ λ= + ≥ +e Pe w Γw P e Γ wɶ ɶ ɶ  

This gives the upper bound for the tracking error 

 
2 2

min

min min

1 1
[ ( ) ]

( ) ( )
V Vλ

λ λ
≤ − ≤e Γ w

P P
ɶ  
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Taking the square root and using (19), we have 

 

0

0

( )
0 2

min min

2
max

min min

( )

( ) ( )

2 ( )
sup ( )

( ) ( )

t t

t t

V t
e

α

τ

σ
λ αλ

λ ε τ
αλ λ

−
−

≤ ≤

≤ +

+

e w
P P

P

P Q
 (20) 

Hence, we have proved that the tracking error is bounded by a weighted 

exponential function plus a constant. This also implies that by adjusting 

controller parameters, we may improve output error convergence rate. However, 

it might also induce controller saturation problem in practice. 

The case when the bound for the approximation error is known 

If the bound for ε is known, i.e. there exists some 0β >  such that ε β≤  

for all 0 ,t t≥  then ur in (14a) can be modified as 

 
max

min min

1 ˆ sgn( ) sgn( )T T
ru f ν

δ β
δ δ
+

= − +b Pe b Pe  

If the control law and the update law are still selected as (10) and (14b) with 

0,σ =  then we may have 

 
2 2

0

T T T

T

V ε β≤ − + −

≤ − ≤

e Qe b Pe b Pe

e Qe

ɺ
 

Therefore, we may also have asymptotical convergence of the output error by 

using Barbalat’s lemma. 
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Chapter 3 

Dynamic Equations for Robot Manipulators 

3.1 Introduction 

In this chapter, we review the mathematical models for the robot 

manipulators considered in this book. For their detailed derivation, please refer 

to any robotics textbooks. In Section 3.2, a set of 2n coupled nonlinear ordinary 

differential equations are used to describe the dynamics of an n-link rigid robot. 

When interacting with the environment, the external force is included into the 

dynamics equation which is presented in Section 3.3. The actuator dynamics is 

considered in Section 3.4, and a motor model is coupled to each joint dynamics, 

resulting in a set of 3n differential equations in its dynamics. In Section 3.5, the 

dynamics for an electrically driven rigid robot interacting with the environment 

is presented. It is composed of 3n differential equations with the inclusion of the 

external force. Section 3.6 takes the joint flexibility into account where a set of 

4n differential equations are used to represent the dynamics of an n-link flexible-

joint robot. To investigate the effect when interacting with the environment, the 

external force is added into the dynamics equation in Section 3.7. With 

consideration of the motor dynamics in each joint of the flexible joint robot, its 

model becomes a set of 5n differential equations in Section 3.8. Finally, we 

include the external force in Section 3.9 to have the most complex dynamics 

considered in this book, i.e., the dynamics for an electrically driven flexible joint 

robot interacting with the environment.  

3.2 Rigid Robot (RR) 

An n-link rigid robot manipulator without considering friction or other 

disturbances can be described by 

 ( ) ( , ) ( )+ + =D q q C q q q g q τɺɺ ɺ ɺ  (1) 
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where 
n∈ℜq  is a vector of generalized coordinates, ( )D q  is the n n×  inertia 

matrix, ( , )C q q qɺ ɺ  is the n-vector of centrifugal and Coriolis forces, g(q) is the 

gravitational force vector, and τ is the control torque vector. Although equation 

(1) presents a highly nonlinear and coupled dynamics, several good properties 

can be summarized as (Ge et. al. 1998) 

Property 1: ( ) ( ) 0T= >D q D q  and there exist positive constants α1 and α2, 

1 2α α≤  such that 1 2( )n nα α≤ ≤I D q I  for all 
n∈ℜq . 

Property 2: ( ) 2 ( , )−D q C q qɺ ɺ  is skew-symmetric. 

Property 3: The left-hand side of (1) can be linearly parameterized as the 

multiplication of a known regressor matrix ( , , ) n r×∈ℜY q q qɺ ɺɺ  with a parameter 

vector 
r∈ℜp , i.e. 

 ( ) ( , ) ( ) ( , , ) .+ + =D q q C q q q g q Y q q q pɺɺ ɺ ɺ ɺ ɺɺ  (2) 

Example 3.1: A 2-D planar robot model 

 

 

Figure 3.1 A 2-D planar robot 

Consider a planar robot with two rigid links and two rigid revolute joints 

shown in Figure 3.1. Its governing equation can be represented by (Slotine and 

Li 1991) 
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11 12 1 11 12 1 1 1

21 22 2 21 22 2 2 2

d d q c c q g

d d q c c q g

τ
τ

           
+ + =           

           

ɺɺ ɺ

ɺɺ ɺ
 (3) 

where 
2 2 2

11 1 1 1 2 1 2 1 2 2 2( 2 cos )c c cd m l I m l l l l q I= + + + + +  

2
12 21 2 1 2 2 2 2 2cosc cd d m l l q m l I= = + +  

2
22 2 2 2cd m l I= +  

11 2 1 2 2 2sincc m l l q q= − ɺ  

12 2 1 2 2 1 2sin ( )cc m l l q q q= − +ɺ ɺ  

21 2 1 2 2 1sincc m l l q q= − ɺ  

22 0c =  

1 1 1 1 2 2 1 2 1 1cos [ cos( ) cos ]c cg m l g q m g l q q l q= + + +  

2 2 2 1 2cos( )cg m l g q q= +  

Property 1 and 2 can be confirmed easily by direct derivation, while property 3 

will further be investigated in Chapter 4.  

3.3 Rigid Robot Interacting with Environment (RRE) 

Suppose the robot manipulator will interact with a frictionless constraint 

surface, then equation (3.2-1) is modified to 

 ( ) ( , ) ( ) ( )T
a ext+ + = −D q q C q q q g q τ J q Fɺɺ ɺ ɺ  (1) 

where ( ) n n
a

×∈ℜJ q  is the Jacobian matrix which is assumed to be nonsingular, 

and 
n

ext ∈ℜF  is the external force vector at the end-effector. During the free 

space tracking phase, there will be no external force and equation (1) 

degenerates to (3.2-1). To facilitate controller derivation, it is sometimes more 

convenient to represent (1) in the Cartesian space as 

 ( ) ( , ) ( ) ( )
T

x x x a ext
−+ + = −D x x C x x x g x J q τ Fɺɺ ɺ ɺ  (2) 
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where 
n∈ℜx  is the coordinate in the Cartesian space, and other symbols are 

defined as 

 

1

1 1

( ) ( ) ( ) ( )

( , ) ( )[ ( , ) ( ) ( ) ( )] ( )

( ) ( ) ( )

T
x a a

T
x a a a a

T
x a

− −

− − −

−

=

= −

=

D x J q D q J q

C x x J q C q q D q J q J q J q

g x J q g q

ɺɺɺ  (3) 

Example 3.2: A 2-D planar robot interacting with the environment 

Let us consider the 2-D robot in Example 3.1 again, but with a constraint 

surface as shown in Figure 3.2. Its equation of motion in the Cartesian space is 

represented as 

 

11 12 11 12 1

21 22 21 22 2

11 12 1

21 22 2 0

x x x x x

x x x x x

T

a a ext

a a

d d x c c x g

d d y c c y g

J J f

J J

τ
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−

         
+ +         

         

     
= +     
     

ɺɺ ɺ

ɺɺ ɺ

 (4) 

where 
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a a
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J J l q l q q l q q

J J l q l q q l q q
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Figure 3.2 A 2-D planar robot interacting with a constraint surface 

3.4 Electrically-Driven Rigid Robot (EDRR) 

Let us consider the electrically-driven rigid robot. The dynamic equation of 

a rigid robot with consideration of motor dynamics is described as
 

 ( ) ( , ) ( )+ + =D q q C q q q g q Hiɺɺ ɺ ɺ  (1a) 

 b+ + =Li Ri K q uɺ ɺ  (1b) 

where 
n∈ℜi  is the vector of motor armature currents, 

n∈ℜu  is the control 

input voltage, 
n n×∈ℜH  is an invertible constant diagonal matrix characterizing 

the electro-mechanical conversion between the current vector and the torque 

vector, 
n n×∈ℜL  is a constant diagonal matrix of electrical inductance, 

n n×∈ℜR  represents the electrical resistance matrix, and 
n n

b
×∈ℜK  is a 

constant matrix for the motor back-emf effect. Inclusion of the actuator 

dynamics greatly increases the system order which gives large impact on the 

complexity of the controller design; especially, when the system contains 

uncertainties and disturbances. 
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Example 3.3: With the consideration of the motor dynamics, the 2-D robot 

introduced in Example 3.1 is now rewritten as 

 
11 12 1 11 12 1 1 1 1

21 22 2 21 22 2 2 2 2

0

0

d d q c c q g h i

d d q c c q g h i

             
+ + =             

             

ɺɺ ɺ

ɺɺ ɺ
 (2a) 
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2 2 2 2 22

00 0

00 0

b

b

kL r i q ui

kL r i q ui

            
+ + =            

           

ɺ ɺ

ɺ ɺ
 (2b) 

3.5 Electrically-Driven Rigid Robot Interacting with Environment 

(EDRRE) 

The dynamics of a rigid-link electrically-driven robot interacting with the 

environment can be described by
 

 ( ) ( , ) ( ) ( )T
a ext+ + = −D q q C q q q g q Hi J q Fɺɺ ɺ ɺ  (1a) 

 b+ + =Li Ri K q uɺ ɺ  (1b) 

We may also use equation (3.3-3) to transform (1) to the Cartesian space 

 ( ) ( , ) ( ) ( )
T

x x x a ext
−+ + = −D x x C x x x g x J q Hi Fɺɺ ɺ ɺ  (2a) 

 b+ + =Li Ri K q uɺ ɺ  (2b) 

Example 3.4: The robot in Example 3.3 can be modified to include the 

effect of the interaction force with the environment in the Cartesian space as 
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T
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 (3b)
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3.6 Flexible Joint Robot (FJR) 

The transmission mechanism in many industrial robots contains flexible 

components, such as the harmonic drives. Consideration of the joint flexibility 

in the controller design is one of the approaches to increase the control 

performance. For a robot with n links, we need to use 2n generalized coordinates 

to describe its whole dynamic behavior when taking the joint flexibility into 

account. Therefore, the modeling of the flexible joint robot is far more complex 

than that of the rigid robot.  

The dynamics of an n-rigid link flexible-joint robot can be described by
 

 ( ) ( , ) ( )+ + = −D q q C q q q g q K(θ q)ɺɺ ɺ ɺ  (1a) 

 a+ + − =Jθ Bθ K(θ q) τɺɺ ɺ  (1b) 

where 
n∈ℜq  is the vector of link angles, 

n∈ℜθ  is the vector of actuator 

angles, 
n

a ∈ℜτ  is the vector of actuator input torques. J, B and K are n n×  

constant diagonal matrices of actuator inertias, damping and joint stiffness, 

respectively. 

Example 3.5: A single-link flexible-joint robot 

Let us consider a single-link flexible-joint robot as shown in Figure 3.3. It 

can rotate in a vertical plane with the assumptions that its joint can only deform 

in the direction of joint rotation, the link is rigid, and the viscous damping is 

neglected. Its dynamic equation is in the form of (1) and can be represented in 

the state space as 

 

Figure 3.3 A single-link flexible-joint robot 
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1 2

2 1 1 3

3 4

4 1 3

sin ( )

1
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x x

MgL K
x x x x

I I

x x

K
x x x u

J J

=

= − − −

=

= − +

ɺ

ɺ

ɺ

ɺ

 (2) 

where xi∈ℜ, i=1,…,4 are state variables, and the output y=x1 is the link 

angular displacement, i.e., θ2 in the figure. The link inertial I, the rotor inertia J, 

the stiffness K, the link mass M, the gravity constant g, and the center of mass L 

are positive numbers. The control u is the torque delivered by the motor. 

Example 3.6: A 2-D rigid-link flexible-joint robot 

The equation of motion for the robot introduced in Example 3.1 with 

consideration of joint flexibility can be represented as 

 
11 12 1 11 12 1 1 1 1 1

21 22 2 21 22 2 2 2 2 2

0

0

d d q c c q g k q

d d q c c q g k q

θ
θ

−             
+ + =             −             

ɺɺ ɺ

ɺɺ ɺ
 (3a) 

 
1

2

1 1 1 1 11 1
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a

a

j b k q

j b k q

τθθ θ
τθθ θ

−            
+ + =            −            

ɺɺ ɺ

ɺɺ ɺ
 (3b) 

3.7 Flexible-Joint Robot Interacting with Environment (FJRE) 

The dynamics of an n-link flexible-joint robot interacting with the 

environment can be described by 

 ( ) ( , ) ( ) ( ) )
T

x x x a ext
−+ + = − −D x x C x x x g x J q K(θ q Fɺɺ ɺ ɺ  (1a) 

 ( ) a+ + − =Jθ Bθ K θ q τɺɺ ɺ  (1b) 

Example 3.7: A 2-D rigid-link flexible-joint robot interacting with 

environment 
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When the robot in Example 3.6 performs compliant motion control, its 

dynamic equation in the Cartesian space becomes 

 

11 12 11 12 1

21 22 21 22 2
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T
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3.8 Electrically-Driven Flexible Joint Robot (EDFJR) 

The dynamics of an electrically-driven flexible-joint robot can be described 

by including the motor dynamics to (3.6-1) as 

 ( ) ( , ) ( ) ( )+ + = −D q q C q q q g q K θ qɺɺ ɺ ɺ  (1a) 

 ( )+ + − =Jθ Bθ K θ q Hiɺɺ ɺ  (1b) 

 b+ + =Li Ri K q uɺ ɺ  (1c) 

Example 3.8: A 2-D electrically-driven flexible-joint robot 

When considering the actuator dynamics, the robot in Example 3.6 is able 

to be modified in the form 
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3.9 Electrically-Driven Flexible-Joint Robot Interacting with 

Environment (EDFJRE) 

The dynamics of an electrically-driven flexible-joint robot interacting with 

the environment in the Cartesian space can be described by 

 ( ) ( , ) ( ) ( ) )
T

x x x a ext
−+ + = − −D x x C x x x g x J q K(θ q Fɺɺ ɺ ɺ  (1a) 

 ( )+ + − =Jθ Bθ K θ q Hiɺɺ ɺ  (1b) 

 b+ + =Li Ri K q uɺ ɺ  (1c) 

It is the most complex system considered in this book. For each joint, a 5
th
 

order differential equation is needed to model its dynamics. 

Example 3.9: A 2-D electrically-driven flexible-joint robot interacting with 

environment 

When considering the actuator dynamics, the robot in Example 3.7 can be 

rewritten into the form 
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3.10 Conclusions 

In this chapter, eight robot models have been introduced. Some of them 

consider the actuator dynamics, some take the joint flexibility into account, and 

some allow the robot to interact with the environment. These robot models are 

summarized in Table 3-1 for comparison. In the following chapters, controllers 
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will be designed for these robots when the models are known followed by 

derivations of adaptive controllers for uncertain robots. 

Table 3.1 Robot models considered in this book 

 

Systems 

 

Dynamics Models 

Equation 

Numbers 

RR ( ) ( , ) ( )+ + =D q q C q q q g q τɺɺ ɺ ɺ  (3.2-1) 

RRE ( ) ( , ) ( ) ( )
T

x x x a ext
−+ + = −D x x C x x x g x J q τ Fɺɺ ɺ ɺ  (3.3-2) 

EDRR ( ) ( , ) ( )

b

+ + =

+ + =

D q q C q q q g q Hi

Li Ri K q u

ɺɺ ɺ ɺ

ɺ ɺ

 
(3.4-1) 
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(3.7-1) 

EDFJR ( ) ( , ) ( ) ( )

( )

b

+ + = −

+ + − =

+ + =

D q q C q q q g q K θ q

Jθ Bθ K θ q Hi

Li Ri K q u

ɺɺ ɺ ɺ

ɺɺ ɺ

ɺ ɺ

 

(3.8-1) 

EDFJRE ( ) ( , ) ( )

( ) )

( )

x x x

T
a ext

b

−

+ +

= − −

+ + − =

+ + =

D x x C x x x g x

J q K(θ q F

Jθ Bθ K θ q Hi

Li Ri K q u

ɺɺ ɺ ɺ

ɺɺ ɺ

ɺ ɺ

 

(3.9-1) 
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Chapter 4    

Adaptive Control of Rigid Robots 

4.1 Introduction 

The dynamics of a rigid robot is well-known to be modeled by a set of 

coupled highly nonlinear differential equations. Its controller design is generally 

not easy even when the system model is precisely known. In practical operations 

of an industrial robot, since the mathematical model inevitably contains various 

uncertainties and disturbances, the widely used computed-torque controller may 

not give high precision performance. Under this circumstance, several robust 

control schemes (Abdallah et. al. 1991) and adaptive control strategies (Ortega 

and Spong 1988, Pagilla and Tomizuka 2001) are suggested.  

For the adaptive approaches, although these control laws can give proper 

tracking performance under various uncertainties, most of them require 

computation of the regressor matrix. This is because, with the regressor matrix, 

the robot dynamics is able to be expressed in a linearly parameterized form so 

that a proper Lyapunov function candidate can be found to give stable update 

laws for uncertain parameters. Since the regressor matrix depends on the joint 

position, velocity and acceleration, it should be updated in every control cycle. 

Due to the complexity in the regressor computation, these approaches may have 

difficulties in practical implementation. Sadegh and Horowitz (1990) proposed a 

method to allow off-line computation of the regressor using the desired 

trajectories instead of actual measurements. Sometimes a large memory space 

should be allocated to store the look-up table containing the regressor. Lu and 

Meng (1991a, 1993) proposed some recursive algorithms for general n DOF 

robots. Kawasaki et al. (1996) presented a model-based adaptive control for a 

robot manipulator whose regressor was computed explicitly by a recursive 

algorithm based on the Newton-Euler formulation. Yang (1999) proposed a 

robust adaptive tracking controller for manipulators whose regressor depends 

only on the desired trajectory and hence can be calculated off-line.  
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Some regressor-free approaches for the adaptive control of robot 

manipulators are available. In Qu and Dorsey (1991), a non-regressor based 

controller was proposed using linear state feedback. To confirm robust stability 

of the closed loop system, one of their controller parameters should be 

determined based on variation bounds of some complex system dynamics. 

However, it is generally not easy to find such a parameter for robots with more 

than 3 DOF. Song (1994) suggested an adaptive controller for robot motion 

control without using the regressor. In his design, some bounds of the system 

dynamics should be found, and the tracking error can not be driven to arbitrary 

small in the steady state. Park et al. (1994) designed an adaptive sliding 

controller which does not require computation of the regressor matrix, but some 

critical bounded time functions are to be determined to have bounded tracking 

error performance. Yuan and Stepanenko (1993) suggested an adaptive PD 

controller for flexible joint robots without using the high-order regressor, but the 

usual regressor is still needed. Su and Stepanenko (1996) designed a robust 

adaptive controller for constrained robots without using the regressor matrix, but 

bounds of some system dynamics should be available. Huang et al. (2006) 

proposed an adaptive controller for robot manipulators without computation of 

the regressor matrix. Chien and Huang (2007b) designed a regressor-free 

adaptive controller for electrically driven robots. 

In this chapter, we are going to study the regressor-free adaptive control 

strategies for rigid robot manipulators. We firstly review the conventional 

adaptive control laws for rigid robots in Section 4.2 whose regressor matrix 

depends on the joint position, velocity and acceleration which is inconvenient in 

real-time implementation. In addition, in the process of updating the inertia 

matrix, there might be some singularity problem which greatly limits the 

effectiveness of the approach. The famous Slotine and Li approach reviewed in 

Section 4.3 eliminates the requirement for the acceleration feedback and avoids 

the singularity problem. However, it is still based on the regressor matrix. In 

Section 4.4, we investigate the entries in the regressor matrix and the parameter 

vector to justify the necessity for the regressor-free approach. The regressor-free 

adaptive control strategy is then designed in Section 4.5 based on the function 

approximation technique. In Section 4.6, the regressor-free design is extended to 

the system considering the actuator dynamics. Significant performance 

improvement can be seen in the simulation results to verify the efficacy of the 

regressor-free design.  
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4.2 Review of Conventional Adaptive Control for Rigid Robots 

Let us consider the rigid robot described in (3.2-1) 

 ( ) ( , ) ( )+ + =D q q C q q q g q τɺɺ ɺ ɺ  (1) 

If all parameters are available, a PD controller can be designed as 

 [ ( ) ( )]d d d p d= − − − − + +τ D q K q q K q q Cq gɺɺ ɺ ɺ ɺ  (2) 

where 
n

d ∈ℜq  is the desired trajectory, and gain matrices , n n
d p

×∈ℜK K  

are selected such that the closed loop dynamics  

 ,d p+ + =e K e K e 0ɺɺ ɺ  d= −e q q  (3) 

is asymptotically stable. It is obvious that realization of controller (2) needs the 

knowledge of the system model. Now, let us consider the case when some of the 

parameters are not available and an adaptive controller is to be designed. 

As indicated in (3.2-2), the left hand side of equation (1) can be linearly 

parameterized as a known regressor matrix ( , , ) n r×∈ℜY q q qɺ ɺɺ  multiplied by an 

unknown parameter vector 
r∈ℜp , i.e., 

 ( ) ( , ) ( ) ( , , )+ + =D q q C q q q g q Y q q q pɺɺ ɺ ɺ ɺ ɺɺ  (4) 

An intuitive controller can be designed based on (2) as 

 ˆˆ ˆ[ ( ) ( )]d d d p d= − − − − + +τ D q K q q K q q Cq gɺɺ ɺ ɺ ɺ  (5) 

where ˆˆ ˆ,  and D C g  are estimates of D, C and g, respectively. With the 

controller defined in (5), the closed loop system becomes 

 ˆ ( )d p+ + = − − −D e K e K e Dq Cq gɶɶɺɺ ɺ ɺɺ ɺ ɶ  (6) 

where ˆˆ ˆ, , and  = − = − = −D D D C C C g g gɶɶ ɶ  are estimation errors. By defining 

ˆ= −p p pɶ  with ˆ r∈ℜp  an estimate of p in (4) and assuming that D̂  is 

invertible for all time 0t ≥ , equation (6) can be further written to be 

 
1ˆ ( , , )d p

−+ + = −e K e K e D Y q q q pɺɺ ɺ ɺ ɺɺ ɶ  (7) 
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The above error dynamics implies that if we may find a proper update law for p̂  

such that ˆ →p p  asymptotically, then (7) converges to (3) as ,t →∞  and 

hence, we may have convergence of the output tracking error. To this end, let us 

denote 
2[ ]T T T n= ∈ℜx e eɺ  to represent equation (7) in its state space form 

 
1ˆ −= −x Ax BD Ypɶɺ  (8) 

where 
2 2n n n

p d

× 
= ∈ℜ − − 

0 I
A

K K
 and 

2
.

n n

n

× 
= ∈ℜ 
 

0
B

I
 To design an 

update law for p̂  to ensure closed loop stability, a Lyapunov-like function 

candidate can be selected as 

 
1 1

( , )
2 2

T T
V = +x p x Px p Γpɶ ɶ ɶ  (9) 

where 
r r×∈ℜΓ  is a positive definite matrix and 

2 2T n n×= ∈ℜP P  is a 

positive definite solution to the Lyapunov equation 
T + = −A P PA Q  for a 

given positive definite matrix 
2 2

.
T n n×= ∈ℜQ Q  Along the trajectory of (8), 

the time derivative of V can be computed to be 

 
11 ˆ ˆ[( ) ]

2

T T T TV −= − − +x Qx p D Y B Px Γpɺɺ ɶ  (10) 

By selecting the update law as 

 
1 1ˆˆ [ ( , , )]T T− −= −p Γ D Y q q q B Pxɺ ɺ ɺɺ  (11) 

equation (10) becomes 

 
1

0
2

TV = − ≤x Qxɺ  (12) 

Hence, we have proved that 
2n

L∞∈x  and 
r

L∞∈pɶ . Since it is easy to have 

 
0 0 0

( ) ( ) 2 2[ (0) ( )] ,T T
dt dt Vdt V V

∞ ∞ ∞

= = − = − ∞ < ∞∫ ∫ ∫Qx Qx x Qx ɺ  

we may conclude 
2
2 .
n

L∈x  Because A is Hurwitz and x is bounded, equation (8) 

gives boundedness of xɺ  if D̂  is nonsingular. Therefore, asymptotic convergence 
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of x can be concluded by Barbalat’s lemma. This further implies asymptotic 

convergence of the output tracking error e. It can also be proved that 

convergence of the parameter vector is dependent to the PE condition of the 

reference input signal. To realize the control law (5) and update law (11), the 

joint accelerations are required to be available. However, their measurements are 

generally costly and subject to noise. In addition, although the inertia matrix D 

is nonsingular for all t>0, its estimate D̂  is not guaranteed to be invertible. 

Hence, (11) might suffer the singularity problem when the determinant of D̂  

gets very close to 0, and some projection modification should be applied. To 

solve these problems, a well-known strategy proposed by Slotine and Li (1988, 

1991) based on the passivity design for rigid robots will be introduced in next 

section.  

4.3 Slotine and Li’s Approach 

To get rid of the need for the joint acceleration feedback and to avoid           

the possible singularity problem stated above, Slotine and Li proposed                

the following design strategy. Define an error vector = +s e Λeɺ  where 

1 2( , ,..., )ndiag λ λ λ=Λ  with 0iλ >  for all i=1,…,n. By this definition, 

convergence of s implies convergence of the output error e. Rewrite the robot 

model (4.2-1) into the form 

 d d+ + + − + − =Ds Cs g Dq DΛe Cq CΛe τɺ ɺɺ ɺ ɺ  (1) 

Suppose the robot model is precisely known, then we may pick an intuitive 

controller for (1) as 

 d d d= − + − + −τ Dq DΛe Cq CΛe g K sɺɺ ɺ ɺ  (2) 

where Kd is a positive definite matrix. Hence, the closed loop system becomes 

 d+ + =Ds Cs K s 0ɺ  (3) 

To justify the feasibility of the controller (2), let us define a Lyapunov-like 

function candidate as 
1

.
2

T
V = s Ds  Its time derivative along the trajectory of (3) 

can be computed as 

 
1

( 2 )
2

T T
dV = − + −s K s s D C sɺ ɺ  
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Since 2−D Cɺ  can be proved to be skew-symmetric, the above equation becomes 

 0
T

dV = − ≤s K sɺ  (4) 

It is easy to prove that s is uniformly bounded and square integrable, and sɺ  is 

also uniformly bounded. Hence, →s 0  as t →∞ , or we may conclude that the 

tracking error e converges asymptotically. It is noted that the above design is 

valid if all robot parameters are known. 

Now let us consider the case when D, C and g in (1) are not available, and 

controller (2) cannot be realized. A controller can be constructed based on (2) as 

 ˆ ˆˆ ˆ ˆd d d= − + − + −τ Dq DΛe Cq CΛe g K sɺɺ ɺ ɺ  (5) 

if some update laws for the estimates ˆ ,D  Ĉ  and ĝ  can be properly designed. 

The above control law can be rewritten into the form 

 ˆˆ ˆ d= + + −τ Dv Cv g K sɺ  (6) 

where d= −v q Λeɺ  is a known signal vector. With this control law, the closed 

loop system can be represented in the form 

 d+ + = − − −Ds Cs K s Dv Cv gɶɶɺ ɶɺ  (7) 

The right hand side of the above equation can be further expressed in the 

linearly parameterized form 

 ( , , , )d+ + = −Ds Cs K s Y q q v v pɺ ɺ ɶɺ  (8) 

It is worth to mention that unlike the regressor matrix ( , , )Y q q qɺ ɺɺ  in (4.2-7), the 

regressor matrix ( , , , )Y q q v vɺ ɺ  in (8) is independent to the joint accelerations. 

On the other hand, if we may find an appropriate update law for p̂  such that 

→p 0ɶ  as ,t →∞  then (8) converges to (3) asymptotically, and the closed loop 

stability can be ensured. To find the update law, let us define a Lyapunov-like 

function candidate as  

 
1 1

( , )
2 2

T T
V = +x p s Ds p Γpɶ ɶ ɶ  (9) 

Its time derivative along the trajectory of (8) can be derived as 

 ( )T T T
dV = − − +s K s p Γp Y sɺɺ ɶ ɶ  (10) 
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Hence, the update law can be picked as 

 
1ˆ ( , , , )T−= −p Γ Y q q v v sɺ ɺ ɺ  (11) 

and (10) becomes  

 0.
T

dV = − ≤s K sɺ  (12) 

This is the same result we have in (4) and same convergence performance can 

thus be concluded for the tracking error. To implement the control law (6) and 

update law (11), we do not need the information of joint accelerations and it is 

free from the singularity problem in the estimation of the inertia matrix.  

4.4 The Regressor Matrix 

In the above development, the robot model has to be represented as a linear 

parametric form so that an adaptive controller can be designed. However, 

derivation of the regressor matrix for a high-DOF robot is tedious. In the real-

time realization, the regressor matrix has to be computed in every control cycle, 

and its complexity results in a considerable burden to the control computer. 

Besides, to satisfy the limitation of the traditional adaptive design that the 

uncertainties should be time-invariant, all time varying terms in the robot 

dynamics are collected inside the regressor matrix. It can be seen that all entries 

in the parameter vector are unknown constants and most of them are relatively 

easy to obtain. For example, the 2-D robot in (3.2-3) can be represented into a 

linear parameterization form in (4.2-4) by defining the parameter vector as 

(Spong and Vidyasagar 1989) 

 

2
1 1

2
2 1

2
2 2

2 1 2

1

2

1 1

2 1

2 2

c

c

c

c

c

m l

m l

m l

m I l

I

I

m l g

m l g

m l g

 
 
 
 
 
 
 =  
 
 
 
 
 
  

p  (1) 
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and the regressor matrix is in the form 

 

1 2 1 2 14 1 1 2 1 1 1 2

1 2 24 2 2 1 2

cos cos cos( )
( , , )

0 0 0 0 cos( )

q q q q y q q q q q q q

q q y q q q q

+ + + 
=  + + 

Y q q q
ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺ ɺɺ
ɺɺ ɺɺ ɺɺ ɺɺ

  (2) 

where  

 

2
14 2 1 2 2 2 1 2 2 2

24 2 1 2

2cos cos 2sin sin

cos sin .

y q q q q q q q q q

y q q q

= + − −

= +

ɺɺ ɺɺ ɺ ɺ ɺ

ɺɺ

  

For the acceleration-free regressor used in (4.3-8), one realization can be given as 

 
1 2 2 2 14 1 1 2

1 2 24 1 2

cos cos cos( )
( , , , )

0 0 0 cos( )

v v v q y q q q

v v y q q

+′ 
=  + +′ 

Y q q v v
ɺ ɺ ɺ

ɺ ɺ
ɺ ɺ

 (3) 

where  

 
14 2 2 1 2 2 1 2 2 2

24 1 2 1 1 2

cos sin ( ) sin

cos sin

y v q v q q q q v q

y v q v q q

= + + +′

= +′

ɺ ɺ ɺ ɺ

ɺ

 

and the corresponding parameter vector is 

 

1

2 2 2
1 2 1 2 2 1 2

2
2 2 2

2 1 2

2 1 2

1 1 2 1

2 2

2

c c

c

c

c

c

c

m l m l m l I I

m l I

m l l

m l l

m l g m l g

m l g

 + + + +
 

+ 
 

=  
 
 + 
  

p  (4) 

In (1) and (4), the entries are some combinations of system parameters such as 

link lengths, masses, and moments of inertia,…, etc. Obviously, these quantities 

are relatively easy to measure in practical applications compared to the 

derivation of the regressor matrix. However, in traditional robot adaptive control 

designs, we are required to know the complex regressor matrix, but update 

the easy-to-obtain parameter vector. To ease the controller design and 

implementation, it is suggested to consider the regressor-free adaptive control 
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strategies. In next section, a FAT-based adaptive controller is designed for a 

rigid robot without the need for the regressor matrix. 

4.5 FAT-Based Adaptive Controller Design 

The same controller (4.3-6) is employed in this approach 

 ˆˆ ˆ d= + + −τ Dv Cv g K sɺ  (1a) 

and hence the closed-loop dynamics can still be represented as 

 d+ + = − − −Ds Cs K s Dv Cv gɶɶɺ ɶɺ  (1b) 

This implies that s is an output of a stable first order filter driven by the 

approximation errors and tracking errors. If some proper update laws can be 

found so that ˆ →D D , ˆ →C C  and ˆ →g g , then 0→e  can be concluded 

from (1b). Since D, C and g are functions of states and hence functions of time, 

traditional adaptive controllers are not applicable to give proper update laws 

except that the linearly parameterization assumption as shown in (4.3-8) is 

feasible. On the other hand, since their variation bounds are not given, 

conventional robust designs do not work either. Here, we would like to use FAT 

to representation D, C and g with the assumption that proper numbers of basis 

functions are employed 

 

T

T

T

= +

= +

= +

D D D

C C C

g g g

D W Z ε

C W Z ε

g W z ε

 (2a) 

where 
2

Dn nβ ×∈ℜDW , 
2n nβ ×∈ℜ C

CW  and gn nβ ×
∈ℜgW  are weighting 

matrices and 
2

Dn nβ ×∈ℜDZ , 
2

n nβ ×∈ℜ C

CZ  and 
1gnβ ×

∈ℜgz  are matrices of 

basis functions. The number ( )β ⋅  represents the number of basis functions used. 

Using the same set of basis functions, the corresponding estimates can be 

represented as 

 

ˆ ˆ

ˆ ˆ

ˆˆ

T

T

T

=

=

=

D D

C C

g g

D W Z

C W Z

g W z

 (2b) 
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Therefore, the controller (1) becomes 

 ˆ ˆ ˆT T T
d= + + −D D C C g gτ W Z v W Z v W z K sɺ  (3) 

and the closed loop system dynamics can be represented as 

 1
T T T

d+ + = − − − +D D C C g gDs Cs K s W Z v W Z v W z εɶ ɶ ɶɺ ɺ  (4) 

where ( ) ( ) ( )
ˆ

⋅ ⋅ ⋅= −W W Wɶ  and 1 1( , , , , ) n
d= ∈ℜD C gε ε ε ε ε s qɺɺ  is a lumped 

approximation error vector. Since ( )⋅W  are constant vectors, their update laws 

can be easily found by proper selection of a Lyapunov-like function. Let us 

consider a candidate  

 

1
( , , , )

2

1
( )

2

T

T T T

V

Tr

=

+ + +

D C g

D D D C C C g g g

s W W W s Ds

W Q W W Q W W Q W

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ  (5) 

where 
2 2n nβ β×∈ℜ D D

DQ , 
2 2

C Cn nβ β×∈ℜCQ  and g gn nβ β×∈ℜgQ  are positive 

definite weighting matrices. The time derivative of V along the trajectory of (4) 

can be computed as 

 

1

[ ]

1 ˆ ˆ ˆ( )
2

T T T T
d

T T T T T

V

Tr

= − − − − −

+ − + + +

D D C C g g

D D D C C C g g g

s Cs K s W Z v W Z v W z

s Ds W Q W W Q W W Q W s ε

ɺ ɶ ɶ ɶɺ

ɺ ɺ ɺɺ ɶ ɶ ɶ
 

Using the fact that the matrix 2−D Cɺ  is skew-symmetric, we further have  

 1

ˆ[ ( )]

ˆ ˆ  [ ( )] [ ( )]

T T T
d

T T T T T

V Tr

Tr Tr

= − − +

− + − + +

D D D D

C C C C g g g g

s K s W Z vs Q W

W Z vs Q W W z s Q W s ε

ɺɺ ɶ ɺ

ɺ ɺɶ ɶ  (6) 

Let us select the update laws with σ-modifications to be 

 

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

T

T

T

σ

σ

σ

−

−

−

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

W Q Z vs W

W Q Z vs W

W Q z s W

ɺ
ɺ

ɺ

ɺ

 (7) 
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where ( )σ ⋅  are positive numbers. Hence, equation (6) becomes 

 

1
ˆ( )

ˆ ˆ( ) ( )

T T T
d

T T

V Tr

Tr Tr

σ

σ σ

= − + +

+ +

D D D

C C C g g g

s K s s ε W W

W W W W

ɺ ɶ

ɶ ɶ  (8) 

Remark 1: Suppose a sufficient number of basis functions are used and the 

approximation error can be ignored, then it is not necessary to include the σ-

modification terms in (7). Hence, (8) can be reduced to (4.3-12), and 

convergence of s can be further proved by Barbalat’s lemma.  

Remark 2: If the approximation error cannot be ignored, but we can find a 

positive number δ  such that 1 δ≤ε , then a robust term robustτ  can be added 

into (1a) to have a new control law 

 ˆˆ ˆ  d robust= + + − +τ Dv Cv g K s τɺ  (9) 

Consider the Lyapunov-like function candidate (5) again, and the update law (7) 

without σ-modification; then the time derivative of V becomes 

 
T T

d robustV δ≤ − + +s K s s s τɺ  (10) 

If we select 1 2[sgn( ) sgn( ) sgn( )]T
robust ns s sδ= −τ ⋯ , where si, 

i=1,…,n is the i-th entry in s, then we may have 0
T

dV ≤ − ≤s K sɺ   which is 

similar to the result of (4.3-12). This will further give convergence of the output 

error by Barbalat’s lemma.   

With the existence of the approximation error 1ε  and the σ-modification 

terms, equation (8) may not conclude its definiteness as the one we have in      

(4.3-12). The following two inequalities are very useful in further derivation 

 

2

2 1

1 min

min

1
( )

2 ( )

T T
d d

d

λ
λ

 
− + ≤ − − 

  

ε
s K s s ε K s

K
 (11a) 

 ( ) ( ) ( ) ( ) ( ) ( )

1 1ˆ( ) ( ) ( )
2 2

T T T
Tr Tr Tr⋅ ⋅ ⋅ ⋅ ⋅ ⋅≤ −W W W W W Wɶ ɶ ɶ  (11b) 

The proof for the first inequality is straightforward, and the proof for the second 

one can be found in the Appendix. Together with the relationship 
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2

max max

max max

1
[ ( )]

2

1
[ ( ) ( ) ( )

2

         ( ) ( ) ( ) ( )]

T T T T

T

T T

V Tr

Tr

Tr Tr

λ λ

λ λ

= + + +

≤ +

+ +

D D D C C C g g g

D D D

C C C g g g

s Ds W Q W W Q W W Q W

D s Q W W

Q W W Q W W

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶ  (12) 

we may rewrite (8) into the form 

 

2

1

min

2

max min max

max

max

2 ( )

1
{[ ( ) ( )] [ ( )

2

1
] ( )} { [ ( ) ] ( )

2

1
[ ( ) ] ( ) } [ ( )

2

( ) ( )]

d

d

T T

T T

T T

V V

Tr Tr

Tr Tr

Tr Tr

α
λ

αλ λ αλ

σ αλ σ

αλ σ σ

σ σ

≤ − +

+ − +

− + −

+ − +

+ +

D

D D D C C C C

g g g g D D D

C C C g g g

ε

K

D K s Q

W W Q W W

Q W W W W

W W W W

ɺ

ɶ ɶ ɶ ɶ

ɶ ɶ

 (13) 

where α is a constant to be selected as  

 
min

max max max max

( )
min , , ,

( ) ( ) ( ) ( )

d σλ σ σ
α

λ λ λ λ
 

≤  
 

gD C

D C g

K

D Q Q Q
 (14) 

then (13) becomes 

 

2

1

min

1
[ ( )

2 ( ) 2

( ) ( )]

T

d

T T

V V Tr

Tr Tr

α σ
λ

σ σ

≤ − + + +

+

D D D

C C C g g g

ε
W W

K

W W W W

ɺ

 (15) 

This implies 0V <ɺ  whenever 

 

0

2

1

min

1 1
sup ( ) [ ( )

2 ( ) 2

( ) ( )]

T

td

T T

V Tr

Tr Tr

τ
τ σ

αλ α

σ σ
≥

> +

+ +

D D D

C C C g g g

ε W W
K

W W W W  (16) 
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It should be noted that selection of α in (14) depends on the maximum 

eigenvalue of the inertia matrix D which is not available. However, according to 

Property 1 in Section 3.2, it is easy to prove that  , 0D D
η η∃ >  such that 

max ( ) Dλ η≤D  and min ( )
D

λ η≥D  and (14) can be rewritten as 

 
min

max max max

( )
min , , ,

( ) ( ) ( )

d

D

σλ σ σ
α

λ λ λη

  ≤  
  

gD C

D C g

K

Q Q Q
 

Since α will not be used in the realization of the control law or the update law, 

we are going to use similar treatment in (14) in later chapters to simplify the 

derivation.  

It can be seen that all terms in the right side of (16) are constants. By 

proper selection of the parameters there, we may adjust the set where 0V ≥ɺ  to 

be sufficiently small. Hence, we have proved that s, DWɶ , CWɶ  and gWɶ  are 

uniformly ultimately bounded. In addition, we may also compute the upper 

bound for V by solving the differential inequality of V in (15) as 

 

0

0

2( )
0 1

min

1
( ) ( ) sup ( )

2 ( )

1
      [ ( ) ( ) ( )]

2

t t

t td

T T T

V t e V t

Tr Tr Tr

α

τ
τ

αλ

σ σ σ
α

− −

< <
≤ +

+ + +D D D C C C g g g

ε
K

W W W W W W  (17) 

Using the inequality 

 

2

min min

min min

1
 [ ( ) ( ) ( )

2

 ( ) ( ) ( ) ( )]

T

T T

V Tr

Tr Tr

λ λ

λ λ

≥ +

+ +

D D D

C C C g g g

D s Q W W

Q W W Q W W

ɶ ɶ

ɶ ɶ ɶ ɶ  (18) 

we may find the upper bound for 
2

s  as 

 

2

min

min

min min

min

1
[2 ( ) ( )

( )

( ) ( ) ( ) ( )]

2

( )

T

T T

V Tr

Tr Tr

V

λ
λ

λ λ

λ

≤ −

− −

≤

D D D

C C C g g g

s Q W W
D

Q W W Q W W

D

ɶ ɶ

ɶ ɶ ɶ ɶ  
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With (17), this can be further written as 

 

0

0

2 2( )
0 1

min min min

min

2 1
( ) sup ( )

( ) ( ) ( )

1
      [ ( ) ( ) ( )]

( )

t t

t td

T T T

e V t

Tr Tr Tr

α

τ
τ

λ αλ λ

σ σ σ
αλ

− −

< <
≤ +

+ + +D D D C C C g g g

s ε
D D K

W W W W W W
D

 (19) 

We may also write the bound for the error signal s as 

 

0

0

( )
0 2

1

min min min

1

2

min

2 ( ) 1
sup ( )

( ) ( ) ( )

1
 [ ( ) ( ) ( )]

( )

t t

t td

T T T

V t
e

Tr Tr Tr

α

τ
τ

λ αλ λ

σ σ σ
αλ

− −

< <
≤ +

+ + +D D D C C C g g g

s ε
D D K

W W W W W W
D

 (20) 

Inequality (20) implies that the time history of the error signal s is bounded by 

an exponential function plus some constants. This completes the transient 

performance analysis. 

Table 4.1 summarizes the adaptive control laws derived in this section. 

Two columns are arranged to present the regressor-based and regressor-free 

designs respectively according to their controller forms, update laws, and 

implementation issues.  

Table 4.1 Summary of the adaptive control for RR 

Rigid-Link Rigid-Joint Robot 

( ) ( , ) ( )+ + =D q q C q q q g q τɺɺ ɺ ɺ   (4.2-1) 

 

Regressor-based Regressor-free 

 

Controller 

ˆˆ ˆ

ˆ   ( , , , )

d

d

= + + −
= −

τ Dv Cv g K s

Y q q v v p K s

ɺ

ɺ ɺ

 

(4.3-6) 

ˆˆ ˆ

ˆ ˆ   

ˆ

d

T T

T
d

= + + −

= +

+ −

g g D D

C C

τ Dv Cv g K s

W z W Z v

W Z v K s

ɺ

ɺ  

(4.5-1) 

 

Adaptive Law 

 

1ˆ T−= −p Γ Y sɺ  

(4.3-11) 

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

T

T

T

σ

σ

σ

−

−

−

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

W Q Z vs W

W Q Z vs W

W Q z s W

ɺ
ɺ

ɺ

ɺ

  

(4.5-7) 

Realization 

Issue 

Need regressor matrix Does not need regressor matrix 
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Example 4.1: 

Consider a 2-DOF planar robot represented in example 3.1, and we are 

going to verify the control strategy developed in this section by using computer 

simulations. Actual values of link parameters are selected as m1=m2=0.5(kg), 

l1= l2=0.75(m), lc1= lc2=0.375(m), and I1=I2=0.0234(kg-m
2
). We would 

like the endpoint to track a 0.2m radius circle centered at (0.8m, 1.0m) in 10 

seconds without knowing its precise model. The initial condition of the 

generalized coordinate vector is set to be (0) [0.0022 1.5019 0 0]T=q , 

i.e., the endpoint is initially at (0.8m, 0,75m). Since it is away from the desired 

initial endpoint position (0.8m, 0,8m), some significant transient response can 

be observed. The controller in (4.5-1a) is applied with the gain matrices 

 
20 0

0 20
d

 
=  
 

K , and  
10 0

0 10

 
=  
 

Λ . 

Since we have assumed that the entries of D, C and g are all unavailable, and 

their variation bounds are not known, we employ the FAT to have the 

representations in (2). The 11-term Fourier series is selected as the basis 

function for the approximation. Therefore, ˆ
DW  and ˆ

CW  are in 
44 2×ℜ , and 

ˆ
gW  is in 

22 2×ℜ . The initial weighting vectors for the entries are assigned to be 

 

11

12 21

22

11

12 21

22

1 2

11 1

11 1

11 1

11 1

11 1

11 1

11 1

ˆ (0) [0.05 0 0]

ˆ ˆ(0) (0) [ 0.05 0 0]

ˆ (0) [0.1 0 0]

ˆ (0) [0.05 0 0]

ˆ ˆ(0) (0) [ 0.05 0 0]

ˆ (0) [0.1 0 0]

ˆ ˆ(0) (0) [0 0 0]

T
D

T
D D

T
D

T
C

T
C C

T
C

T
g g

×

×

×

×

×

×

×

= ∈ℜ

= = − ∈ℜ

= ∈ℜ

= ∈ℜ

= = − ∈ℜ

= ∈ℜ

= = ∈ℜ

w

w w

w

w

w w

w

w w

⋯

⋯

⋯

⋯

⋯

⋯

⋯

 

The gain matrices in the update laws (4.5-7) are selected as 

 
1

44
− =DQ I , 

1
44

− =CQ I  and 
1

22100− =gQ I .  
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In this simulation, we assume that the approximation error can be neglected, and 

hence the σ-modification parameters are chosen as ( ) 0σ ⋅ = . The simulation 

results are shown in Figure 4.1 to 4.6. Figure 4.1 shows the tracking 

performance of the robot endpoint and its desired trajectory in the Cartesian 

space. It is observed that the endpoint trajectory converges nicely to the desired 

trajectory, although the initial position error is quite large. After the transient 

state, the tracking error is small regardless of the time-varying uncertainties in 

D, C and g. Computation of the complex regressor is avoided in this strategy 

which greatly simplifies the design and implementation of the control law. 

Figure 4.2 presents the time history of the joint space tracking performance. The 

transient states converge very fast without unwanted oscillations. The control 

efforts to the two joints are reasonable that can be verified in Figure 4.3. Figure 

4.4 to 4.6 are the performance of function approximation. Although most 

parameters do not converge to their actual values, they still remain bounded as 

desired.  
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Figure 4.1 Tracking performance in the Cartesian space  

(－ actual trajectory;  --- desired trajectory) 
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Figure 4.2 Joint space tracking performance  

(－ actual trajectory;  --- desired trajectory) 
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Figure 4.3  The control efforts for both joints are all reasonable 
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Figure 4.4 Approximation of D 

(－estimate;  --- actual value) 
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Figure 4.5 Approximation of C 

(－estimate;  --- actual value) 



4.6  Consideration of Actuator Dynamics    101 

 

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Time(sec)

g
(1

)

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

Time(sec)

g
(2

)

 

Figure 4.6 Approximation of g 

(－estimate;  --- actual value) 

4.6 Consideration of Actuator Dynamics 

In this section, we are going to derive adaptive controllers for the rigid-link 

electrically-driven robot described in (3.4-1) as
 

 ( ) ( , ) ( )+ + =D q q C q q q g q Hiɺɺ ɺ ɺ  (1a) 

 b+ + =Li Ri K q uɺ ɺ  (1b) 

We firstly consider the case when all robot parameters are known, and then the 

regressor-based adaptive controller is derived if the robot parameters are not 

available. Finally, a regressor-free adaptive controller is introduced. Several 

simulation results will be presented to justify the necessity for the consideration 

of the actuator dynamics, and to evaluate the performance of the controllers 

designed here.  

With the definitions of s and v in Section 4.2, we may rewrite (1a) into the 

form 

 + + + + =Ds Cs g Dv Cv Hiɺ ɺ  (2) 
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Suppose all of the robot parameters are known, then we may design a proper 

control law u such that the current i in (1b) follows the trajectory 

 
1( )d

−= + + −i H g Dv Cv K sɺ  (3) 

where dK  is a positive definite matrix. Substituting (3) into (2), the closed           

loop dynamics becomes .d+ + =Ds Cs K s 0ɺ  It is exactly the same as the           

one in (4.3-3), and hence convergence of s follows. To realize the perfect 

current vector in (3), we have to design a control input u in (1b) to ensure that 

the actual current can converge to the perfect one. Since all parameters are 

assumed to be known at the present stage, we may construct the control input in 

the form 

 d b c i= + + −u Li Ri K q K eɺ ɺ  (4) 

where i d= −e i i  is the current error, and id is the desired current trajectory 

which is equivalent to the perfect current in (3). The gain matrix Kc is selected 

to be positive definite. Substituting (4) into (1b), the dynamics for the current 

tracking loop becomes  

 i c i+ =Le K e 0ɺ  (5) 

On the other hand, since the desired current is defined according to (3) as 

 
1( )d d

−= + + −i H g Dv Cv K sɺ  (6) 

we may rewrite (2) into the form below to represent the dynamics of the output 

tracking loop 

 ( )d d+ + = −Ds Cs K s H i iɺ  (7) 

To prove the close loop stability, let us consider the Lyapunov-like function 

candidate 

 
1 1

( , )
2 2

T T
i i iV = +s e s Ds e Le  (8) 
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Along the trajectory of (5) and (7), we may compute the time derivative of V as 

 

1
( 2 )

2

[ ] 0

T T T T
d i i c i

T T
i

i

V = − + − + −

 
= − ≤ 

 

s K s s D C s s He e K e

s
s e Q

e

ɺ ɺ

 (9) 

where 

1

2

1

2

d

c

 − 
=  
 −  

K H

Q

H K

 is positive definite by proper selection of Kc and 

Kd. It is easy to further prove that s and ei are also square integrable, and their 

time derivatives are uniformly bounded. Hence, by Barbalat’s lemma, we may 

conclude asymptotic convergence of s and ei.  

In summary, if all parameters in the EDRR (1) are available, the controller 

(4) with the perfect current trajectory (6) can give asymptotic convergence of the 

output error. 

Remark 1: It has to be noted that in controller (4), we have to find the time 

derivative of the desired current trajectory which implies that we need to 

feedback the joint accelerations to complete that computation. This necessity 

will be eliminated in the following design of the FAT-based regressor-free 

adaptive controller in section 4.6.2.    

In next step, we would like to derive a regressor-based adaptive controller 

for EDRR. The regressor-free design will be developed in section 4.6.2. 

4.6.1 Regressor-based adaptive control 

Let us consider the EDRR in (1) and (2) again 

 + + + + =Ds Cs g Dv Cv Hiɺ ɺ  (10a) 

 b+ + =Li Ri K q uɺ ɺ  (10b) 

Suppose D, C, g, L, R, and Kb are not available, and we may not realize the 

control laws in (4) and (6). Instead, let us consider the desired current trajectory 
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1

1

ˆˆˆ( )

ˆ[ ( , , , ) ]

d d

d

−

−

= + + −

= −

i H g Dv Cv K s

H Y q q v v p K s

ɺ

ɺ ɺ  (11) 

which is a modification of (6) with D̂ , Ĉ , ĝ  and p̂  the estimates of D, C, g 

and p, respectively. With this desired current trajectory, equation (10a) can be 

written as 

 

( )

( , , , ) ( )

d d

d

+ + = − − − + −
= − + −

Ds Cs K s Dv Cv g H i i

                      Y q q v v p H i i

ɶɶɺ ɶɺ

ɺ ɶɺ  (12) 

where ˆ= −D D Dɶ , ˆ= −C C Cɶ , ˆ= −g g gɶ  and ˆ= −p p pɶ . If we may design a 

controller u and an update law such that d→i i  and ˆ →p p, then (12) implies 

convergence of the output error vector. Let us consider the controller which is a 

modification of (4) as 

 ˆ ˆ ˆ
d b c i= + + −u Li Ri K q K eɺ ɺ  (13) 

where L̂ , R̂  and ˆ
bK  are estimates of L, R and Kb, respectively. For 

convenience, let use define 

 

3

3

3

[ ]

[ ]

ˆ ˆ ˆˆ [ ]

T T T T n
d

T T T T n n
i b

T T T T n n
i b

×

×

= ∈ℜ

= ∈ℜ

= ∈ℜ

φ i i q

p L R K

p L R K

ɺ ɺ

 

Therefore, the controller (13) becomes 

 ˆ T
i c i= −u p φ K e  (14) 

Substituting (14) into (10b), we may have the dynamics in the current tracking 

loop 

 
T

i c i i+ = −Le K e p φɺ ɶ  (15) 

where ˆi i i= −p p pɶ . To proof the closed loop stability and to find appropriate 

update laws, let us consider the Lyapunov-like function candidate 

 
1 1 1 1

( , , , ) ( )
2 2 2 2

T T T T
i i i i i i iV Tr= + + +s e p p s Ds e Le p Γp p Γ pɶ ɶ ɶ ɶ ɶ ɶ  (16) 
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where 
r r×∈ℜΓ  and 

3 3n n
i

×∈ℜΓ  are positive definite matrices. Along the 

trajectories of (12) and (15), the time derivative of V is computed as 

 ˆ ˆ( ) [ ( )]

T T T
d i i c i

T T T T
i i i i

V

Tr

= − + −

− + − +

s K s s He e K e

p Γp Y s p Γ p φe

ɺ

ɺ ɺɶ ɶ  (17) 

The update laws can thus be picked as 

 

1

1

ˆ

ˆ

T

T
i i i

−

−

= −

= −

p Γ Y s

p Γ φe

ɺ

ɺ
 (18) 

Therefore, (17) can be further written as 

 [ ] 0
T T

i

i

V
 

= − ≤ 
 

s
s e Q

e
ɺ  (19) 

where 

1

2

1

2

d

c

 − 
=  
 −  

K H

Q

H K

 is positive definite by proper selection of dK  

and cK . Equation (19) implies that s and ei are uniformly bounded and square 

integrable. Their time derivatives can also be proved to be bounded. Hence, 

asymptotic convergence of s and ei can be obtained by the Barbalat’s lemma. 

This further implies d→q q  and d→i i  as t →∞ .  

Remark 2: Realization of controller (14) and update law (18) needs to know the 

time derivative of the desired current which implies the need for the joint 

acceleration feedback and the time derivative of the regressor matrix. All of 

these requirements will be eliminated in the following design of the FAT-based 

regressor-free adaptive controller.  

4.6.2 Regressor-free adaptive control 

Now, let us consider the case when D, C, g, L, R  and Kb are not 

available, and qɺɺ  is not easy to measure, we would like to design a desired 

current di  so that a FAT-based adaptive controller u can be constructed without 
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using the regressor matrix to have d→i i  which further implies convergence of 

the output error as desired. Instead of (6), let us consider the desired current di  

in (11) as  

 
1 ˆˆˆ( )d d

−= + + −i H g Dv Cv K sɺ  (20) 

where D̂ , Ĉ  and ĝ  are respectively estimates of D, C and g. The dynamics of 

the output tracking loop can thus be found as 

 

ˆ( ) ( )

ˆ ˆ( ) ( )

d d+ + = − + −

+ − + −

Ds Cs K s H i i D D v

C C v g g

ɺ ɺ

 (21) 

If a proper controller u and update laws for D̂ , Ĉ  and ĝ  can be designed, we 

may have ,d→i i ˆ ,→D D ˆ →C C  and ˆ →g g  so that (21) can give desired 

performance. Here, according to (4), let us select the control input to be  

 ˆ
c i= −u f K e  (22) 

where f̂  is an estimate of the function ( , , )d d b= + +f i i q Li Ri K qɺ ɺɺ ɺ . 

Substituting (22) into (1b), we may have the dynamics of the current tracking 

loop 

 ˆ
i c i+ = −Le K e f fɺ  (23) 

If an appropriate update law for f̂  can be designed, we may ensure d→i i  as 

t →∞ . Let us apply the function approximation representation for D, C, g and 

f as
 

   

T

T

T

T

= +

= +

= +

= +

D D D

C C C

g g g

f f f

D W Z ε

C W Z ε

g W z ε

f W z ε

 (24) 

where 
2

,Dn nβ ×∈ℜDW
2

,n nβ ×∈ℜ C

CW ,gn nβ ×∈ℜgW  and fn nβ ×∈ℜfW  are 

weighting matrices,
2

,Dn nβ ×∈ℜDZ  
2

,n nβ ×∈ℜ C

CZ
1
,gnβ ×∈ℜgz  and 
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1fnβ ×∈ℜfz  are matrices of basis functions, and ( )⋅ε  are approximation error 

matrices. The number ( )β ⋅  represents the number of basis functions used. Using 

respectively the same set of basis functions, the corresponding estimates can 

also be represented as 

 

ˆ ˆ

ˆ ˆ

ˆˆ

ˆ ˆ

T

T

T

T

=

=

=

=

D D

C C

g g

f f

D W Z

C W Z

g W z

f W z

 (25) 

then equation (21) and (23) becomes 

 1( ) T T T
d d+ + = − − − − +D D C C g gDs Cs K s H i i W Z v W Z v W z εɶ ɶ ɶɺ ɺ  (26a) 

 2
T

i c i+ = − +f fLe K e W z εɶɺ  (26b) 

where 1 1( , , )d= D C gε ε ε ,ε ,ε s qɺɺ  and 2 2 ( , )i= fε ε ε e  are lumped approximation 

errors. Since ( )⋅W  are constant matrices, their update laws can be easily found 

by proper selection of the Lyapunov-like function. Let us consider a candidate  

 

1 1
( , , , , , )

2 2

1
        ( )

2

T T
i i i

T T T T

V

Tr

= +

+ + + +

D C g f

D D D C C C g g g f f f

s e W W W W s Ds e Le

W Q W W Q W W Q W W Q W

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (27) 

The matrices
2 2

,n nβ β×∈ℜ D D

DQ
2 2

,C Cn nβ β×∈ℜCQ ,g gn nβ β×∈ℜgQ  and 
f fn nβ β×∈ℜfQ  are all positive definite. The time derivative of V along the 

trajectory of (26) can be computed as 

 

1 2

ˆ ˆ[ ( ) ( )

ˆ ˆ( ) ( )]

T T T T T
d i i c i i

T T T T

T T T T
i

V

Tr

= − + − + +

− + + +

+ + + +

D D D D D C C C

g g g g f f f f

s K s s He e K e s ε e ε

W Z vs Q W W Z vs Q W

W z s Q W W z e Q W

ɺ

ɺ ɺɶ ɶɺ

ɺ ɺɶ ɶ  (28) 
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By selecting the update laws as 

 

1

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

T

T

T

T
i

σ

σ

σ

σ

−

−

−

−

= − +

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

f f f f f

W Q Z vs W

W Q Z vs W

W Q z s W

W Q z e W

ɺ
ɺ

ɺ

ɺ

ɺ

 (29) 

where (.)σ  are positive numbers. With these selections, equation (28) becomes 

 

1

2

ˆ[ ] [ ] ( )

ˆ ˆ ˆ( ) ( ) ( )

T T T T T
i i

i

T T T

V Tr

Tr Tr Tr

σ

σ σ σ

   
= − + +   

   

+ + +

D D D

C C C g g g f f f

s ε
s e Q s e W W

e ε

W W W W W W

ɺ ɶ

ɶ ɶ ɶ  (30) 

where 

1

2

1

2

d

c

 − 
=  
 −  

K H

Q

H K

 is positive definite which can be achieved by 

proper selections of Kd and Kc. 

Remark 3: Realization of the control law (22) and update laws (29) does not 

need the information of joint accelerations which largely simplifies its 

implementation. 

Remark 4: Suppose a sufficient number of basis functions are used and the 

approximation error can be ignored, then it is not necessary to include the              

σ-modification terms in (29). Hence, (30) can be reduced to (9), and 

convergence of s and ei can be further proved by Barbalat’s lemma.  

Remark 5: If the approximation error cannot be ignored, but we can find 

positive numbers δ1 and δ2 such that 1 1δ≤ε  and 2 2δ≤ε , then robust terms 
τrobust 1 and τrobust 2 can be included into (20) and (22) to have 

 

1
1

2

ˆˆˆ( )

ˆ

d d robust

c i robust

−= + + − +

= − +

i H g Dv Cv K s τ

u f K e τ

ɺ
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Consider the Lyapunov-like function candidate (27) again, and the update law 

(29) without σ-modification; then the time derivative of V becomes 

 1 2 1 2[ ]
T T T T

i i robust i robust

i

V δ δ
 

≤ − + + + + 
 

s
s e Q s e s τ e τ

e
ɺ   

If we select the vector 1 1 1 2[sgn( ) sgn( ) sgn( )]T
robust ns s sδ= −τ ⋯ , where 

si, i=1,…,n  is the  i-th entry in s, and 
12 2[sgn( ) sgn( )]

n

T
robust i ie eδ= −τ ⋯ , 

where 
kie , k=1,…,n  is the k-th entry in ei, then we may have (9) again. This 

will further give convergence of the output error by Barbalat’s lemma.  

Owing to the existence of 1ε  and 2ε  in (30), the definiteness of Vɺ  cannot 

be determined. In the following, we would like to investigate closed loop 

stability in the presence of these approximation errors. It is very easy to prove 

the inequalities hold 

 

1

2

2 2

1

min

2min

( ) ( ) ( ) ( ) ( ) ( )

[ ] [ ] 

1 1
( )

2 ( )

1 1ˆ( ) ( ) ( )
2 2

T T T T
i i

i

i

T T T
Tr Tr Tr

λ
λ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

   
− +   

   
    

≤ − −         

≤ −

s ε
s e Q s e

e ε

s ε
Q

e εQ

W W W W W Wɶ ɶ ɶ

 (31) 

Together with the relationship 

 

2

max max

max max

max

1
[ (

2

)]

1
    [ ( ) ( ) ( )

2

( ) ( ) ( ) ( )

( ) ( )]

T T T T
i i

T T

T

i

T T

T

V Tr

Tr

Tr Tr

Tr

λ λ

λ λ

λ

= + + +

+ +

 
≤ + 

 

+ +

+

D D D C C C

g g g f f f

D D D

C C C g g g

f f f

s Ds e Le W Q W W Q W

W Q W W Q W

s
A Q W W

e

Q W W Q W W

Q W W

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ  (32) 

where 
 

=  
 

D 0
A

0 L
, we may rewrite (30) into the form 
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2 2

1

max min

2min

max max

max max

1 1
[ ( ) ( )]

2 2 ( )

1 1
[ ( ) ] ( ) [ ( ) ] ( )

2 2

1 1
[ ( ) ] ( ) [ ( ) ] ( )

2 2

1
[ ( ) ( )

2

i

T T

T T

T T

V V

Tr Tr

Tr Tr
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α αλ λ
λ

αλ σ αλ σ

αλ σ αλ σ

σ σ σ

   
≤ − + − +   

   

+ − + −
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D D D D C C C C

g g g g f f f f

D D D C C C

s ε
A Q

e εQ

Q W W Q W W

Q W W Q W W

W W W W

ɺ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

( ) ( )]T T
Tr Trσ+g g g f f fW W W W  (33) 

where α is a constant to be selected as  

 
min

max max max max max

( )
min , , , ,

( ) ( ) ( ) ( ) ( )

σλ σ σ σ
α

λ λ λ λ λ
 

≤  
 

gD C f

D C g f

Q

A Q Q Q Q
 (34) 

Then (33) becomes 

 

2

1

2min

1 1
[ ( )

2 ( ) 2

     ( ) ( ) ( )]

T

T T T

V V Tr

Tr Tr Tr

α σ
λ

σ σ σ

 
≤ − + + 

 

+ + +

D D D

C C C g g g f f f

ε
W W

εQ

W W W W W W

ɺ

 (35) 

This implies 0V <ɺ  whenever 

 

0

2

1

2min

( )1 1
sup [ ( )

( )2 ( ) 2

( ) ( ) ( )]

T

t

T T T

V Tr

Tr Tr Tr

τ

τ
σ

ταλ α

σ σ σ

≥
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D D D

C C C g g g f f f

ε
W W

εQ

W W W W W W  (36) 

Hence, we have proved that s, ei, DWɶ , CWɶ , gWɶ  and fWɶ  are uniformly 

ultimately bounded. From (35), we may also compute the upper bound for V as  

 

0

0

2

1( )
0
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( )2 ( )

1
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2
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ταλ
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+ +

+ +

D D D C C C

g g g f f f

ε

εQ

W W W W

W W W W  (37) 
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Using the inequality 
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min min

min min

min

1 1
( ) [ ( ) ( )

2 2

( ) ( ) ( ) ( )

( ) ( )]

T

i

T T
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V Tr

Tr Tr

Tr
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f f f
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A Q W W

e

Q W W Q W W

Q W W
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ɶ ɶ  (38) 

we may find the upper bound for 
2

[ ]T T T
is e  as 
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2min min min
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( ) sup
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1
[ ( ) ( )
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W W W W
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Therefore, we may compute the bound as 

 

0

0

( ) 10 2

2min min min
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1

2

( )2 ( ) 1
sup

( )( ) ( ) ( )

1
[ ( ) ( )

( )

( ) ( )]
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T T
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V t
e

Tr Tr

Tr Tr

α

τ

τ
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σ σ
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< <
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+ +
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s ε

e εA A Q
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This proves that the time history of the error signal is bounded by an exponential 

function plus some constants. The transient performance analysis is thus 

completed. 

Table 4.2 summarizes the adaptive control of EDRR derived in this section 

in terms of their controller forms, update laws and implementation issues. 
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Table 4.2 Summary of the adaptive control of EDRR 

Electrically Driven Rigid Robot 

b

+ + + + =
+ + =

Ds Cs g Dv Cv Hi

Li Ri K q u

ɺ ɺ

ɺ ɺ

   (4.6-1), (4.6-2) 

 

Regressor-based Regressor-free 

 

Controller 

1 ˆ[ ( , , , ) ]

ˆ 

d d

T
i c i

−= −
= −

i H Y q q v v p K s

u p φ K e

ɺ ɺ
 

(4.6-11)  (4.6-14) 

1 ˆˆˆ( )

ˆ
d d

c i

−= + + −
= −

i H g Dv Cv K s

u f K e

ɺ
 

 (4.6-20)  (4.6-22) 

 

Adaptive 

Law 

 

1

1

ˆ

ˆ

T

T
i i i

−

−

= −
= −

p Γ Y s

p Γ φe

ɺ

ɺ
   

(4.6-18) 

1

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

T

T

T

T
i

σ

σ

σ

σ

−

−

−

−

= − +

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

f f f f f

W Q Z vs W

W Q Z vs W

W Q Z s W

W Q Z e W

ɺ
ɺ

ɺ

ɺ

ɺ

 

 (4.6-29) 

 

Realization 

Issue 

1. need computation of regressor 

matrix 

2. need diɺ  to compute u which 

implies the need for the joint 

accelerations and time derivative 

of Y. 

1. no need for regressor matrix or 

its time derivatives 

2. no need for joint accelerations 

Example 4.2: 

Consider the same 2-DOF planar robot in example 4.1 with the inclusion of 

the actuator dynamics, and we are going to verify the control strategy developed 

in this section by using computer simulations. Actual values of link parameters 

are selected as m1=m2=0.5(kg), l1= l2=0.75(m), lc1= lc2=0.375(m), and 

I1=I2=0.0234(kg-m
2
). Parameters related to the actuator dynamics are 

given with h1=h2=10(N-m/A), L1=L2=0.025(H), r1=r2=1(Ω), and 

kb1=kb2=1(Vol/rad/sec). In order to observe the effect of the actuator 

dynamics, the endpoint is required to track a 0.2m radius circle centered at 

(0.8m, 1.0m) in 2 seconds which is much faster then the case in example 

4.1.  The initial conditions of the generalized coordinate vector is 

(0) [0.0022 1.5019 0 0]T=q , i.e., the endpoint is still at (0.8m, 0,75m) 

initially. Three cases will be investigated in this example to clarify the 

significance of the actuator dynamics in the closed loop stability. In case 1, an 

adaptive controller designed for EDRR robots is applied to a EDRR robot. Since 

the actuator dynamics is considered in the controller, good performance is to be 

expected. However, if an adaptive controller for RR is applied to the same 



4.6  Consideration of Actuator Dynamics    113 

 

EDRR with the same set of controller parameters, the performance would, of 

course, be unsatisfactory which will be presented in case 2. In the last case, we 

consider the same configuration in case 2, but with improvements in the tracking 

performance via controller gain adjustments. It is seen that although the     

tracking error can be limited to some range, the control effort would become 

impractically huge. Hence, we may arrive at a conclusion later that 

consideration of the actuator dynamics is very important if good performance is 

required. Table 4.3 summarizes the configuration of the simulation cases.  

Table 4.3  Simulation cases 

 Plant Controller Remark 

Case 1 EDRR Designed for EDRR - 

Case 2 EDRR Designed for RR Same controller parameters as in Case 1 

Case 3 EDRR Designed for RR Same configuration as in Case 2 but 

with gain adjustments 

 

It has to be emphasized that, in case 2 and 3, the robot models are in the 

voltage level, i.e., the input to the joint is voltage (Figure 4.7). However, the 

controllers designed for RR are in the torque level, i.e., their outputs are torque. 

Hence, some modification is needed so that the robot and the controller are 

compatible.  

 

 

 

Figure 4.7 The input signal for a RR is in the torque level and its controller should also be in 

the torque level. The input for the EDRR is in the voltage level implying that its controller 

must be with output in voltage 

The adaptive controller in (4.5-1a) is designed for the rigid robot in the 

torque level. Now, let us introduce a conversion matrix τK  which satisfies 

( ) ( ) ( )τ ∞ = ∞ = ∞K u Hi τ  so that the controller becomes in the voltage level 

 

1

1

ˆˆ ˆ( )

ˆ ˆ ˆ   ( )

d

T T T
d

τ

τ

−

−

= + + −

= + + −D D C C g g

u K Dv Cv g K s

K W Z v W Z v W z K s

ɺ

ɺ  (39) 

EDRR 
Voltage q 

RR 

Torque q 
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The update laws can still be derived to be 

 

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

T

T

T

σ

σ

σ

−

−

−

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

W Q Z vs W

W Q Z vs W

W Q z s W

ɺ
ɺ

ɺ

ɺ

 (40) 

Therefore, some more detail in the simulation cases can be summarized as 

shown in Table 4.4. 

Case 1: Controller for EDRR applied to EDRR 

The controller in (22) is applied with the gain matrices 

 
20 0

0 20
d

 
=  
 

K , 
10 0

0 10

 
=  
 

Λ  and 
50 0

0 50
c

 
=  
 

K . 

Table 4.4 Realization details in simulation cases 

 Plant Controller Update Laws 

Case 1 EDRR 

(4.6-1) 

1

1

ˆˆˆ( )

ˆ ˆ(

ˆ   )

d d

T T

T
d
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−

= + + −
= +

+ −
g g D D
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H W z W Z v
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ɺ
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T
c i
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= −f f

u f K e

W z K e
  

(4.6-20), (4.6-22) 
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f f f f f
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ɺ

ɺ

ɺ

ɺ

 

(4.6-29) 

Case 2 EDRR 

(4.6-1) 

1

1

ˆˆ ˆ( )

ˆ ˆ(

ˆ   )

d

T T

T
d

τ

τ

−

−
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D D C C
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K W Z v W Z v
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(4.6-39) 
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(4.6-40) 

Case 3 EDRR 

(4.6-1) 

1

1

ˆˆ ˆ( )

ˆ ˆ(
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d

T T

T
d
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τ
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−
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(4.6-40) 
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The initial value for the desired current can be found by calculation from (20) as 

(0) (0) [1.5498 3.3570]T
d = = −i i . The 11-term Fourier series is selected as 

the basis function for the approximation so that ˆ
DW  and ˆ

CW  are in 
44 2×ℜ , 

while ˆ
gW  and ˆ

fW  are in 
22 2×ℜ . The initial weighting vectors for the entries 

are assigned to be 
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⋯

⋯

⋯

⋯
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The gain matrices in the update laws (29) are selected as 

 
1

44
− =DQ I , 

1
44

− =CQ I , 
1

22100− =gQ I , and 
1

22100
− =fQ I .  

The approximation error is assumed to be neglected, and the σ-modification 

parameters are all zero. The simulation results are shown in Figure 4.8 to 4.15. 

Figure 4.8 shows the tracking performance of the robot endpoint and its desired 

trajectory in the Cartesian space. It is observed that the endpoint trajectory 

converges smoothly to the desired trajectory, although the initial position error 

is quite large and most plant parameters are uncertain. The transient state takes 

only about 0.3 seconds which can be justified from the joint space tracking 

history in Figure 4.9. This justifies the effectiveness of the consideration of the 

actuator dynamics when high performance control is required. The performance 

in the current tracking loop is quite good as shown in Figure 4.10. The control 

efforts to the two joints are reasonable that are presented in Figure 4.11. Figure 

4.12 to 4.15 are the performance of function approximation. Although most 

parameters do not converge to their actual values, they still remain bounded as 

desired.  
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Figure 4.8 Robot endpoint tracking performance in the Cartesian space 

(－ actual trajectory;  --- desired trajectory) 
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Figure 4.9 Joint space tracking performance 

(－ actual trajectory;  --- desired trajectory) 
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Figure 4.10 Tracking in the current loop 

(－ actual trajectory;  --- desired trajectory) 
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Figure 4.11 Control efforts 
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Figure 4.12 Approximation of D 

(－estimate;  --- actual value) 

0 0.5 1 1.5 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time(sec)

C
(1

1
)

0 0.5 1 1.5 2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time(sec)

C
(1

2
)

0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time(sec)

C
(2

1
)

0 0.5 1 1.5 2

0

0.05

0.1

0.15

0.2

Time(sec)

C
(2

2
)

 

Figure 4.13 Approximation of C 

(－estimate;  --- actual value) 
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Figure 4.14 Approximation of g 

(－estimate;  --- actual value) 
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Figure 4.15 Approximation of f 

(－estimate;  --- actual value) 
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Case 2: Controller for RR applied to EDRR 

Controller (39) is used with 
10 0

0 10
τ

 
=  
 

K (N-m/Vol). All other required 

parameters for the controller and update law (40) are the same as those in the 

previous case. The purpose of using the same set of parameters is to have an 

effective comparison. In the following figures we may observe that the 

controller designed for RR is not able to give acceptable performance to a 

EDRR under the conditions when the actuator dynamics is important such as the 

fast motion trajectory tested here. The simulation results are presented in 

Figure 4.16 to 4.22. Figure 4.16 shows that the endpoint motion does not 

converge to the desired trajectory. Figure 4.17 indicates that the joint space 

motion deviates from the desired trajectory after 0.6 seconds. Figure 4.18 and 19 

presents the motor current and the control effort respectively, and impractically 

large values can be seen in both curves. Function approximation results shown 

in Figure 20 to 22 are not satisfactory either.  
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Figure 4.16 Tracking performance in the Cartesian space. It can be observed that the 

controller designed for RR is not able to give satisfactory performance when applied to  

EDRR under fast motion condition  
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Figure 4.17 The joint space motion trajectory 
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Figure 4.18 Motor currents go to impractically large values after 1.8 seconds 
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Figure 4.19 The control efforts become very large after 1.8 seconds 
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Figure 4.20 Approximation of D 
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Figure 4.21 Approximation of C 
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Figure 4.22 The estimate of vector g diverges very fast  
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Case 3: Same as case 2 but with adjusted control parameters 

Same configuration as in case 2 is considered here but with adjusted gain 

matrices 

 
200 0

0 200
d

 
=  
 

K  and 
100 0

0 100

 
=  
 

Λ . 

The gain matrices in the update laws are selected as 

 
1

440.01
− =DQ I , 

1
440.01

− =CQ I , and 
1

22
− =gQ I .  

The simulation results are shown in Figure 4.23 to 29. The Cartesian space 

tracking performance in Figure 4.23 shows significant improvement (compared 

with Figure 4.16), but the tracking error is still large (compared with Figure 4.8). 

The joint space tracking performance is shown in Figure 4.24. The motor 

currents and control efforts shown in Figure 4.25 and 26 respectively are still 

unacceptably large. The estimated parameters in Figure 4.27 to 29 are bounded 

as desired.  

 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

X

Y

 

Figure 4.23 Robot endpoint tracking performance in the Cartesian space. After proper gain 

adjustment, significant improvement in the tracking performance can be observed. However, 

the tracking error is still unacceptable  
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Figure 4.24 The joint space tracking performance 
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Figure 4.25 Motor currents go to impractically large values 
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Figure 4.26 The control efforts become very large 
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Figure 4.27 Approximation of D 
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Figure 4.28 Approximation of C 
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Figure 4.29 Approximation of g 
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4.7 Conclusions  

In this chapter, we consider the adaptive control of rigid robots in the free 

space. In Section 4.2, a regressor based adaptive controller is derived. To 

implement the update law, the estimate of the inertia matrix is required to be 

nonsingular and the joint accelerations should be known. Slotine and Li’s 

approach derived in Section 4.3 is well-known to be free from the singularity 

problem in the estimate of the inertia matrix, and its realization does not need 

the information of the joint accelerations. All of these approaches need to 

calculate of the regressor matrix. We have seen in Section 4.4 that computation 

of the regressor matrix is tedious in general; a regressor-free adaptive controller 

is derived in Section 4.5 based on the FAT. In some operation conditions, the 

actuator dynamics should be carefully considered to give better control 

performance. A regressor-based adaptive controller is derived in Section 4.6.1 

for a EDRR. However, it not only needs the joint acceleration feedback but also 

the calculation of the time derivative of the regressor matrix. A regressor-free 

adaptive controller for EDRR is then introduced in Section 4.6.2, whose 

implementation is similar to those in Section 4.4. Finally, example 4.2 

investigates the necessity for the consideration of the actuator dynamics in three 

cases. The simulation results show that, under the fast motion condition, only 

the controller designed with consideration of actuator dynamics can give good 

performance with reasonable control efforts for a EDRR.  
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Chapter 5    

Adaptive Impedance Control of Rigid Robots 

5.1 Introduction 

The impedance control of robot manipulators is to maintain a desired 

dynamic relationship between the end-effector and the environment where a 

second order mass-spring-damper system is used to specify the target behavior. 

It gives a unified approach for controlling the robot in both free space and 

constrained motion phases. Following the work of Hogan (1985), several studies 

of the impedance control have been proposed. Anderson and Spong (1988) 

combined the impedance control with the hybrid control. Goldenberg (1988) 

used feedback and feedforward compensation for both force and impedance 

control. Mills and Liu (1991) proposed an impedance control method to control 

the generalized contact force and position. Gonzalez and Widmann (1995) 

presented a hybrid impedance control scheme which uses force commands to 

replace desired trajectory. Yoshikawa (2000) surveyed the force control for 

robot manipulators. 

In Hogan’s design, the entire robot dynamics is required to be known, and 

the impedance controller is derived so that the closed loop system behaves like 

the target impedance which can interact with the environment compliantly. In 

practical applications, however, the dynamics of the robot manipulator and the 

environment inevitably contains various uncertainties and disturbances. Under 

this circumstance, one of the effective ways to deal with this difficulty is to 

apply the adaptive strategy to the impedance control. Slotine and Li (1987) 

extended the adaptive free motion control to the constrained manipulators. Kelly 

et al. (1987) suggested two adaptive impedance controllers to reduce model 

uncertainties. Lu and Meng (1991b) presented a concept of target-impedance 

reference trajectories to deal with the problems of imperfect sensor feedback and 

uncertain robot parameters. Based on singular motion robot representation, 

Carelli and Kelly (1991) designed an adaptive position/force controller for 

constrained robots to achieve global stability results. Colbaugh et al. (1991) 
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proposed a direct adaptive impedance control scheme without the knowledge of 

the structure or the parameters of the robot dynamics. Since joint acceleration is 

difficult to measure precisely, Zhen and Goldenberg (1995) designed an 

adaptive impedance controller without requiring measurements or estimates of 

acceleration. Using the camera-in-hand, Mut et. al. (2000) proposed an adaptive 

impedance tracking controller with visual feedback. 

Most of the existing adaptive impedance designs require computation of the 

regressor matrix. In this chapter, we would like to introduce an adaptive 

impedance controller based on FAT without using the regressor matrix (Chien 

and Huang 2004). This chapter is organized as following: Section 5.2 reviews 

the traditional impedance control and adaptive impedance control strategies. 

Section 5.3 presents regressor-based adaptive impedance control designs. 

Section 5.4 gives the regressor–free adaptive impedance controller based on 

FAT with rigorous proof of closed loop stability. Section 5.5 considers the case 

of inclusion of actuator dynamics. Simulation cases are also presented for 

verifying the effectiveness of the scheme introduced. 

5.2 Impedance Control and Adaptive Impedance Control 

The dynamics of an n-link rigid robot interacting with the environment can 

be described by (3.3-1) as 

 ( ) ( , ) ( ) T
a ext+ + = −D q q C q q q g q τ J Fɺɺ ɺ ɺ  (1) 

where ( ) n n
a

×∈ℜJ q  is the Jacobian matrix, which is assumed to be 

nonsingular, and 
n

ext ∈ℜF  is the external force exerted by the end-effector on 

the environment which is assumed to be measured precisely by a wrist force 

sensor. It is often more convenient to describe the dynamics of the robot in the 

Cartesian space when interacting with the environment. Let 
n∈ℜx  be the 

position vector of the end-effector in the Cartesian space and we may rewrite 

equation (1) as 

 ( ) ( , ) ( )
T

x x x a ext
−+ + = −D x x C x x x g x J τ Fɺɺ ɺ ɺ  (2a) 

where 

 

1

1 1

( ) ( )

( , ) [ ( , ) ( ) ]

( ) ( )

T
x a a

T
x a a a a

T
x a

− −

− − −

−

=

= −

=

D x J D q J

C x x J C q q D q J J J

g x J g q

ɺɺɺ  (2b) 
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In the traditional impedance control, all system parameters are given and a 

controller is designed so that the closed-loop system behaves like the target 

impedance 

 ( ) ( ) ( )i d i d i d ext− + − + − = −M x x B x x K x x Fɺɺ ɺɺ ɺ ɺ  (3) 

where 
n

d ∈ℜx  is the desired trajectory, and ,
n n

i
×∈ℜM ,

n n
i

×∈ℜB  and 
n n

i
×∈ℜK  are diagonal matrices representing the desired apparent inertia, 

damping, and stiffness, respectively. Equation (3) implies that, in the free space 

tracking phase of the operation, i.e. 0,ext =F  the system trajectory converges to 

the desired trajectory asymptotically. On the other hand, in the constrained 

motion phase, equation (3) represents a stable 2nd order LTI system driven by 

the external force. Conceptually, we may regard the impedance controller as a 

model reference controller and the target impedance plays the role of the 

reference model. The impedance controller drives the robot to follow the 

dynamics of the reference model in both the free space tracking and constrained 

motion phases without any switching activity. 

Since all quantities in equation (2) are known, we may design the 

impedance controller as below such that the closed loop system behaves like the 

target dynamics shown in (3) 

 
1

( )

{ [ ( ) ( ) ]}

T
a ext x x

T
a x d i i d i d ext

−

= + +

+ − − + − +

τ J F C x g

J D x M B x x K x x F

ɺ

ɺɺ ɺ ɺ  (4) 

where the terms in the first parenthesis is to cancel the corresponding dynamics 

in the robot model, while the rest of the terms are for completing the target 

impedance in (3). It is obvious that by plugging (4) into (2), the closed loop 

system becomes exactly the target impedance (3). 

Suppose some of the system parameters are not available and the above 

impedance controller cannot be realized. An adaptive controller can thus be 

designed by referring (4) as  

 
1

ˆ ˆ( )

ˆ { [ ( ) ( ) ]}

T
a ext x x

T
a x d i i d i d ext

−

= + +

+ − − + − +

τ J F C x g

J D x M B x x K x x F

ɺ

ɺɺ ɺ ɺ  (5) 

where quantities with hats are respective estimates. Substituting (5) into (2) and 

after some straightforward manipulations, we may have 
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1

( ) ( ) ( )

ˆˆ ˆ ˆ[( ) ( ) ( )]

i d i d i d

i x x x x x x x ext
−

− + − + −

= − + − + − −

M x x B x x K x x

M D D D x C C x g g F

ɺɺ ɺɺ ɺ ɺ

ɺɺ ɺ  (6) 

Define ˆ ,x x x= −D D Dɶ  ˆ
x x x= −C C Cɶ  and ˆ ,x x x= −g g gɶ  then (6) can be 

further written as 

 
1 1 1 1ˆ ( )i i i i x x x x i ext
− − − −+ + = − + + −e M B e M K e D D x C x g M Fɶɶɺɺ ɺ ɶɺɺ ɺ  (7) 

Represent the right side of (7) into a linearly parameterized regressor form to 

have 

 
1 1 1 1ˆ ( , , )i i i i x x i ext
− − − −+ + = − −e M B e M K e D Y x x x p M Fɺɺ ɺ ɶɺ ɺɺ  (8) 

Denote 
2[ ]T T T n= ∈ℜx e eɺ  and then equation (8) is rewritten as 

 
1 1ˆ( )x x x x i ext
− −= − −x A x B D Yp M Fɶɺ  (9) 

where 
2 2

1 1

n n n n n
x

i i i i

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

M K M B
 and 

2
.

n n n n
x

n

× × 
= ∈ℜ 
 

0
B

I
 To 

design an update law for ˆ xp  to ensure closed loop stability, a Lyapunov-like 

function candidate can be selected as 

 
1 1

( , )
2 2

T T
x xV = +x p x Px p Γpɶ ɶ ɶ  (10) 

where 
r r×∈ℜΓ  is a positive definite matrix and 

2 2T n n×= ∈ℜP P  is a 

positive definite solution to the Lyapunov equation 
T
x x+ = −A P PA Q  for a 

given positive definite matrix 
2 2

.
T n n×= ∈ℜQ Q  Along the trajectory of (9), 

the time derivative of V can be computed to be 

 
1 11 ˆ ˆ[( ) ]

2

T T T T T
x x x x x i extV − −= − − + +x Qx p D Y B Px Γp x PB M Fɺɺ ɶ  (11) 

In the free space tracking phase, the external force is zero, i.e. ext =F 0, and the 

selection of the update law  

 
1 1ˆˆ ( )T T

x x x
− −= −p Γ D Y B Pxɺ  (12) 
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gives the result 

 
1

0
2

TV = − ≤x Qxɺ . (13) 

Hence, we have 
2n

L∞∈x  and 
r

x L∞∈pɶ . It is also very easy to have 
2
2

n
L∈x , 

and  
2n

L∞∈xɺ ; therefore, by Barbalat’s lemma we may conclude asymptotic 

convergence of x. This further implies asymptotic convergence of the tracking 

error e in the free space tracking phase. However, in the constrained motion 

phase, i.e. ext ≠F 0, the selection of the update law in (12) will give the result 

 
11

2

T T
x i extV

−= − +x Qx x PB M Fɺ  (14) 

Therefore, we may not conclude any stability property for the system states. A 

possible modification to the controller (5) is to include an additional term as 

 

1

1

ˆ ˆˆ( ) { [ ( )

( ) ]}

T T
a ext x x a x d i i d

T
i d ext a

−= + + + − −

+ − − +

τ J F C x g J D x M B x x

K x x F J τ

ɺ ɺɺ ɺ ɺ

 (15) 

where τ1 is to be designed. Substituting (15) into (2) and we may have 

 
1 1

1

( ) ( ) ( )

ˆˆ ˆ ˆˆ[( ) ( ) ( )]

i d i d i d

i x x x x x x x ext i x
− −

− + − + −

= − + − + − − +

M x x B x x K x x

M D D D x C C x g g F M D τ

ɺɺ ɺɺ ɺ ɺ

ɺɺ ɺ  (16) 

Let 
1

1
ˆ

x i ext
−=τ D M F , then (16) becomes 

 

1 1 1

1

ˆ ( )

ˆ ( , , )

i i i i x x x x

x x

− − −

−

+ + = − + +

= −

e M B e M K e D D x C x g

D Y x x x p

ɶɶɺɺ ɺ ɶɺɺ ɺ

ɶɺ ɺɺ  (17) 

Similar to (9), we may represent (17) into 

 
1ˆ

x x x x
−= −x A x B D Ypɶɺ  (18) 

Select the same Lyapunov-like function candidate in (10), and then we may 

have  

 
11 ˆ ˆ[( ) ]

2

T T T T
x x x xV

−= − − +x Qx p D Y B Px Γpɺɺ ɶ  (19) 
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With the selection of the update law in (12), equation (19) becomes (13). 

Therefore, the system is stable for both the free space tracking and constrained 

motion phases. However, it should be noted that, according to (16), the modified 

controller (15) can only ensure convergence of the closed loop system to the 

dynamics 

 ( ) ( ) ( )i d i d i d− + − + − =M x x B x x K x x 0ɺɺ ɺɺ ɺ ɺ  (20) 

if all parameters converge to their exact values. It is obvious that (20) is 

different from the target impedance in (3).  

Remark 1: To realize the control law (15) and update law (12), we need to 

feedback the acceleration in the Cartesian space for the calculation of the 

regressor. In addition, the update law also suffers the singularity problem of ˆ ,xD  

and some projection technique should be applied.  

5.3 Regressor-Based Adaptive Impedance Controller Design 

In the previous section, direct extension of the approach in section 4.2 to 

the adaptive impedance control does not ensure convergence of the closed loop 

system to the target impedance. In this section, we would like to apply Slotine 

and Li’s approach introduced in section 4.3 to facilitate the design of the 

adaptive impedance controller. Similar to the result in section 4.3, the design is 

free from the feedback of acceleration information and free from the singularity 

problem in parameter estimations. In addition, the closed loop system will 

converge to the target impedance once the parameters go to their actual values. 

Instead of (5.2-3), we consider a new target impedance 

 ( ) ( ) ( )i i d i i d i i d ext− + − + − = −M x x B x x K x x Fɺɺ ɺɺ ɺ ɺ  (1a) 

where 
n

i ∈ℜx  is the state vector of the reference model 

 i i i i i i i d i d i d ext+ + = + + −M x B x K x M x B x K x Fɺɺ ɺ ɺɺ ɺ  (1b) 

If an adaptive controller can be designed such that i→x x  asymptotically, then 

the new target impedance (1a) converges to (5.2-3) as desired. Meanwhile, 

because x converges to xi, the dynamics of x will also converge to the dynamics 

of xi in (1b), i.e., the target impedance.  
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Define an error vector = + Λs e eɺ  where i= −e x x  is the state error in the 

Cartesian space and 1 2( , ,..., )ndiag λ λ λ=Λ  with 0iλ >  for all i=1,…,n. 

Rewrite the robot model (5.2-2) into the form 

 
T

x x x x x a ext
−+ + + + = −D s C s g D v C v J τ Fɺ ɺ  (2) 

where .i= − Λv x eɺ  The adaptive control law is designed as 

 ˆˆˆ( )T
a x x x ext d= + + + −τ J g D v C v F K sɺ  (3) 

Then the closed loop system can be represented in the form 

 x x d x x x+ + = − − −D s C s K s D v C v gɶɶɺ ɶɺ  (4) 

Represent the right side of (4) into a linearly parameterized regressor form to 

have 

 ( , , , )x x d x+ + = −D s C s K s Y x x v v pɺ ɶɺ ɺ  (5) 

It is noted that the regressor matrix here is not a function of Cartesian space 

accelerations. To find the update law, define the Lyapunov-like function 

candidate as  

 
1 1

( , )
2 2

T T
x x x xV = +x p s D s p Γpɶ ɶ ɶ  (6) 

Its time derivative along the trajectory of (5) can be derived as 

 ˆ( )T T T
d x xV = − − +s K s p Γp Y sɺɺ ɶ  (7) 

Hence, the update law is selected as 

 
1ˆ ( , , , )T

x
−= −p Γ Y x x v v sɺ ɺ ɺ  (8) 

and (7) becomes  

 0.
T

dV = − ≤s K sɺ  (9) 

It is very easy to prove by Barbalat’s lemma that →s 0  as t →∞ , and hence 

i→x x  as t →∞ . This further implies the dynamics of x will converge to the 
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reference model in (1b), and hence the closed loop system will converge to the 

target impedance in (5.2-3). This solves one of the difficulties encountered in 

previous section.  

Remark 2: To implement the control (3) and update law (8), we do not need the 

information of Cartesian space accelerations and there is no singularity problem 

in the inertia matrix estimation. However, the regressor matrix is still needed in 

the update law. 

5.4 FAT-Based Adaptive Impedance Controller Design 

In this section, a FAT-based adaptive impedance controller is designed 

without requiring the knowledge of the regressor. Let us consider the controller 

(5.3-3), 

 ˆˆˆ( )T
a x x x ext d= + + + −τ J g D v C v F K sɺ  (1) 

and the closed loop dynamics (5.3-4) again 

 x x d x x x+ + = − − −D s C s K s D v C v gɶɶɺ ɶɺ  (2) 

If we may design appropriate update laws such that ˆ
x x→D D , ˆ

x x→C C , and 

ˆ x x→g g , then (2) becomes  

 x x d+ + =D s C s K s 0ɺ  (3) 

and with proper selection of Kd we may have asymptotic convergence of s 

which further implies convergence of the closed loop system to the target 

impedance. To design the update laws without utilizing the regressor matrix, let 

us apply the function approximation representation 

 

x x x

x x x

x x x

T
x

T
x

T
x

= +

= +

= +

D D D

C C C

g g g

D W Z ε

C W Z ε

g W z ε

 (4) 

where 
2

D

x

n nβ ×∈ℜDW , 
2

x

n nβ ×∈ℜ C

CW  and g

x

n nβ ×∈ℜgW  are weighting 

matrices,  
2

D

x

n nβ ×∈ℜDZ , 
2

x

n nβ ×∈ℜ C

CZ  and 
1g

x

nβ ×∈ℜgz  are matrices of 
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basis functions, and ( )⋅ε  are approximation error matrices. The number ( )β ⋅  

represents the number of basis functions used. Using the same set of basis 

functions, the corresponding estimates can also be represented as 

 

ˆ ˆ

ˆ ˆ

ˆˆ

x x

x x

x x

T
x

T
x

T
x

=

=

=

D D

C C

g g

D W Z

C W Z

g W z

 (5) 

where ˆ ,
xDW ˆ

xCW  and ˆ
xgW  are respectively the estimates of ,

xDW
xCW  and 

.
xgW  With these representations, equation (2) becomes 

 1x x x x x x

T T T
x x d+ + = − − − +D D C C g gD s C s K s W Z v W Z v W z εɶ ɶ ɶɺ ɺ  (6) 

where ( ) ( ) ( )
ˆ

⋅ ⋅ ⋅= −W W Wɶ  and 1 1( , , , , )
x x x

n
i= ∈ℜD C gε ε ε ε ε s xɺɺ  is a lumped 

vector of  approximation errors. Since ( )⋅W  are constant vectors, their update 

laws can be easily found by proper selection of the Lyapunov-like function. Let 

us consider a candidate  

 

1
( , , , )

2

1
( )

2

x x x

x x x x x x x x x

T
x

T T T

V

Tr

=

+ + +

D C g

D D D C C C g g g

s W W W s D s

W Q W W Q W W Q W

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ  (7) 

where 
2 2

x

n nβ β×∈ℜ D D

DQ , 
2 2

C C

x

n nβ β×∈ℜCQ  and g g

x

n nβ β×∈ℜgQ  are positive 

definite weighting matrices. The time derivative of V along the trajectory of (6) 

can be computed as 

 

1
ˆ[ ( )

ˆ ˆ   ( ) ( )]

x x x x

x x x x x x x x

T T T T
d

T T T T

V Tr= − + − +

+ + + +

D D D D

C C C C g g g g

s K s s ε W Z vs Q W

W Z vs Q W W z s Q W

ɺɺ ɶ ɺ

ɺ ɺɶ ɶ  (8) 

Choosing the update laws to be 

 

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

x x x x x

x x x x x

x x x x x

T

T

T

σ

σ

σ

−

−

−

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

W Q Z vs W

W Q Z vs W

W Q z s W

ɺ
ɺ

ɺ

ɺ

 (9) 
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where ( )σ ⋅  are positive constants, then equation (8) becomes 

 

1
ˆ( )

ˆ ˆ( ) ( )

x x x

x x x x x x

T T T
d

T T

V Tr

Tr Tr

σ

σ σ

= − + +

+ +

D D D

C C C g g g

s K s s ε W W

W W W W

ɺ ɶ

ɶ ɶ  (10) 

It can further be derived to 

2

max min max

max max

2

1

min

1
{[ ( ) ( )] [ ( ) ] ( )

2

       [ ( ) ] ( ) [ ( ) ] ( )

       [ ( ) ( ) ( )]}
( )

x x x x

x x x x x x x x

x x x x x x x x x

T
x d

T T

T T T

d

V V Tr

Tr Tr

Tr Tr Tr

α αλ λ αλ σ

αλ σ αλ σ

σ σ σ
λ

≤ − + − + −

+ − + −

+ + + +

D D D D

C C C C g g g g

D D D C C C g g g

D K s Q W W

Q W W Q W W

ε
W W W W W W

K

ɺ ɶ ɶ

ɶ ɶ ɶ ɶ

 

By selecting 

  
min

max max max max

( )
min , , ,

( ) ( ) ( ) ( )

xx x

x x x

d

x

σσ σλ
α

λ λ λ λ
 

≤  
 

gD C

D C g

K

D Q Q Q
, 

we may have 

 

2

1

min

1
 [ ( )

2 ( ) 2

( ) ( )]

x x x

x x x x x x

T

d

T T

V V Tr

Tr Tr

α σ
λ

σ σ

≤ − + +

+ +

D D D

C C C g g g

ε
W W

K

W W W W

ɺ

 (11) 

Therefore, 0V <ɺ  whenever  

 
0

2

1

min

sup ( )
1

[ ( )
2 ( ) 2

( ) ( )]

x x x

x x x x x x

t T

d

T T

V Tr

Tr Tr

τ
τ

σ
αλ α

σ σ

≥> +

+ +

D D D

C C C g g g

ε

W W
K

W W W W

 

and we have proved that s, 
xDWɶ ,

xCWɶ  and 
xgWɶ are uniformly ultimately 

bounded. On the other hand, differential inequality (11) implies 

 

0

0

2( )
0 1

min

1
( ) ( ) sup ( )

2 ( )

1
         [ ( ) ( ) ( )]

2
x x x x x x x x x

t t

t td

T T T

V t e V t

Tr Tr Tr

α

τ
τ

αλ

σ σ σ
α

− −

< <
≤ +

+ + +D D D C C C g g g

ε
K

W W W W W W
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By the relationship from (7) as 

 

2

min min

min min

1
 [ ( ) ( ) ( )

2

    ( ) ( ) ( ) ( )]

x x x

x x x x x x

T
x

T T

V Tr

Tr Tr

λ λ

λ λ

≥ +

+ +

D D D

C C C g g g

D s Q W W

Q W W Q W W

ɶ ɶ

ɶ ɶ ɶ ɶ

 

we may derive the bound for s as 

 

0

0

( )0 2
1

min min min

min

1

2

2 ( ) 1
( ) sup ( )

( ) ( ) ( )

1
[ ( ) ( )

( )

( )]

x x x x x x

x x x

t t

t tx x d

T T

x

T

V t
t e

Tr Tr

Tr

α

τ
τ

λ αλ λ

σ σ
αλ

σ

− −

< <
≤ +

+ +

+

D D D C C C

g g g

s ε
D D K

W W W W
D

W W

 

Remark 3: If a sufficient number of basis functions are employed in the 

function approximation so that 1 0≈ε , the σ-modification terms in (9) can be 

eliminated and (10) becomes 
T

dV = −s K sɺ  which implies 2
n n

L L∞∈ ∩s . It is 

straightforward to prove sɺ  to be uniformly bounded, and hence convergence of 

s can be concluded by Barbalat’s lemma. 

Remark 4: Suppose 1ε  cannot be ignored and there exist a positive number δ   

such that 1 δ≤ε  for all 0t ≥ , then, instead of (1), a new controller can be 

constructed as 

 ˆˆˆ( )T
a ext x x x d robust= + + + − +τ J F g D v C v K s τɺ  (12) 

where robustτ  is the robust term to be designed. Let us consider the Lyapunov 

function candidate (7) and the update law (9) again but with ( ) 0σ ⋅ = . The time 

derivative of V can be computed as  

 
T T

d robustV δ≤ − + +s K s s s τɺ        

By picking 1[sgn( ) sgn( )]T
robust ns sδ= −τ ⋯ , where si, i=1,…,n are the           

i-th element of the vector s, we may have 0V ≤ɺ , and asymptotic convergence 

of s can be concluded by Barbalat’s lemma. 



140    Chapter 5  Adaptive Impedance Control of Rigid Robots 

 

Remark 5: The regressor-free adaptive design introduced in this section is also 

free from the acceleration information and the singularity problem in inertia 

matrix estimation. In addition, the closed loop system will converge to the actual 

target impedance provided all parameters are properly estimated. 

Table 5.1 summarizes the adaptive impedance control laws derived in this 

section. Two columns are arranged to present the regressor based and regressor-

free designs respectively according to their controller forms, adaptive laws and 

implementation issues. 

Table 5.1 Summary of adaptive impedance control for RR 

Rigid robot interacting with environment 

( ) ( , ) ( )
T

x x x a ext
−

+ + = −D x x C x x x g x J τ Fɺɺ ɺ ɺ   (5.2-2a) 

 

Regressor-based Regressor-free 

 

Controller 

ˆˆˆ(

)

T
a x x x

ext d

= + +

+ −

τ J g D v C v

F K s

ɺ
 

(5.3-3) 

ˆˆˆ(

)

T
a x x x

ext d

= + +

+ −

τ J g D v C v

F K s

ɺ
 

(5.4-1) 

 

Adaptive Law 

 

1ˆ ( , , , )
T

x
−

= −p Γ Y x x v v sɺ
ɺ ɺ  

(5.3-8) 

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

x x x x x

x x x x x

x x x x x

T

T

T

σ

σ

σ

−

−

−

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

W Q Z vs W

W Q Z vs W

W Q z s W

ɺ
ɺ

ɺ

ɺ

 

(5.4-9) 

Realization  Need regressor matrix Does not need regressor matrix 

Example 5.1:  

The 2-DOF planar robot (3.3-4) is considered in this example to verify the 

efficacy of the strategy developed in this section by computer simulation. Actual 

values of system parameters are the same as those in example 4.1, i.e. 

m1=m2=0.5(kg), l1=l2=0.75(m), lc1=lc2=0.375(m), and I1=I2=0.0234(kg-m
2
). The 

endpoint starts from (0) (0) [0.8 0.75 0 0]T
i m m= =x x  to track a 0.2m 

radius circle centered at (0.8m, 1.0m) in 10 seconds without knowing its precise 

model. The constraint surface is smooth and can be modeled as a linear spring 

(Spong and Vidyasagr 1989) fext=kw(x-xw) where fext is the force acting on the 

surface, kw=5000N/m is the environmental stiffness, x is the coordinate of the 

end-point in the X direction, and xw=0.95m is the position of the surface. 

Hence, the external force vector becomes [ 0]T
ext extf=F . Since the surface is 

away from the desired initial endpoint position (0.8m, 0,8m), different phases of 
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operations can be observed. The controller in (1) is applied with the gain 

matrices 

 
50 0

0 50
d

 
=  
 

K , and 
20 0

0 20

 
=  
 

Λ . 

Parameter matrices in the target impedance are selected as 

 
0.5 0

0 0.5
i

 
=  
 

M , 
100 0

0 100
i

 
=  
 

B  and 
1500 0

0 1500
i

 
=  
 

K .  

The 11-term Fourier series is selected as the basis function for the approximation 

of entries in xD , xC  and xg . Therefore, ˆ
DW  and ˆ

CW  are in 
44 2×ℜ , and ˆ

gW  

is in 
22 2×ℜ . The initial weighting vectors for the entries are assigned to be 

11

11 1ˆ (0) [0.05 0 0]
x

T
D

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
D D

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
D

×= ∈ℜw ⋯  

11

11 1ˆ (0) [0.05 0 0]
x

T
C

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
C C

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
C

×= ∈ℜw ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]
x x

T
g g

×= = ∈ℜw w ⋯ . 

The gain matrices in the update laws (9) are designed as 

 
1

x

−
DQ 440.1= I , 

1
440.1

x

− =CQ I  and 
1

2250
x

− =gQ I . 

In this simulation, we assume that the approximation error can be neglected, and 

hence the σ-modification parameters are chosen as ( ) 0σ ⋅ = . The simulation 

results are shown in Figure 5.1 to 5.7. Figure 5.1 shows the robot endpoint 

tracking performance in the Cartesian space. It can be seen that after some 

transient response the endpoint converges to the desired trajectory in the free 
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space nicely. Afterwards, the endpoint contacts with the constraint surface at 

xw=0.95(m) compliantly. When entering the free space again, the endpoint 

follows the desired trajectory with very small tracking error regardless of the 

system uncertainties. Computation of the complex regressor is avoided in this 

strategy which greatly simplifies the design and implementation of the control 

law. Figure 5.2 presents the time history of the joint space tracking performance. 

The transient states converge very fast without unwanted oscillations. The joint 

space trajectory in the constraint motion phase is smooth. The control efforts to 

the two joints are reasonable that can be verified in Figure 5.3. The external 

forces exerted on the endpoint during the constraint motion phase are shown in 

Figure 5.4. Figure 5.5 to 5.7 are the performance of function approximation. 

Although most parameters do not converge to their actual values, they still 

remain bounded as desired.  
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Figure 5.1 Robot endpoint tracking performance in the Cartesian space. After some transient 

the endpoint converges to the desired trajectory in the free space nicely. Afterwards, the 

endpoint contacts with the constraint surface compliantly. When entering the free space  

again, the endpoint follows the desired trajectory with very small tracking error regardless  

of the system uncertainties 
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Figure 5.2 The joint space tracking performance. The transient is very fast and the constraint 

motion phase is smooth 
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Figure 5.3 The control efforts for both joints are all reasonable 
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Figure 5.4 Time histories of the external forces in the Cartesian space  
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Figure 5.5 Approximation of Dx 
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Figure 5.6 Approximation of Cx 
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Figure 5.7 Approximation of gx 
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5.5 Consideration of Actuator Dynamics 

When the actuator dynamics is included, equation (5.2-1) has to be 

modified to 

 ( ) ( , ) ( ) T
a ext+ + = −D q q C q q q g q Hi J Fɺɺ ɺ ɺ  (1a) 

 b+ + =Li Ri K q uɺ ɺ  (1b) 

In this section, we firstly consider the case when all parameters in (1) are known 

and a controller is developed so that the closed loop system behaves like the 

target impedance in (5.2-3). Then, a regressor-based adaptive controller is 

designed for (1) under the assumption that the system parameters contain 

uncertainties. Finally, we will derive a regressor-free adaptive controller for the 

impedance control of system (1).  

With the same definitions of s and v in (5.3-2), equation (1a) can be 

represented in the Cartesian space as 

 
T

x x x x x a ext
−+ + + + = −D s C s g D v C v J Hi Fɺ ɺ  (2) 

Suppose ,xD  xC  and xg  are known, and we may design a proper control law 

such that motor armature current i follows the trajectory  

 
1 ( )T

a x x x d ext
−= + + − +i H J g D v C v K s Fɺ  (3) 

where dK  is a positive definite matrix. Then the closed loop dynamics becomes 

.x x d+ + =D s C s K s 0ɺ  With proper selection of Kd, we may have asymptotic 

convergence of s which further implies convergence of the closed loop system 

to the target impedance. To make the actual current i converge to the perfect 

current in (3), let us select the control input in (1b) as  

 d b c i= + + −u Li Ri K q K eɺ ɺ  (4) 

where i d= −e i i  is the current error, 
n

d ∈ℜi  is the desired current which is 

equivalent to the perfect current trajectory (3), and 
n n

c
×∈ℜK  is a positive 

definite matrix. Substituting (4) into (1b), we may have .i c i+ =Le K e 0ɺ  

Therefore, it is easy to prove that d→i i  as t →∞  with proper selection of 

gain matrix cK . 
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In summary, if all parameters in the rigid-link electrically-driven robot (1) 

are available, the controller (4) can give asymptotic convergence of the closed 

loop system behavior to the target impedance. 

5.5.1 Regressor-based adaptive controller 

Consider the robot model in (2) and (1b), and assume that xD , xC , xg , L, 

R  and bK  are uncertain matrices. Therefore, controller (4) and perfect current 

trajectory (3) are not realizable. Let us modify (3) to 

 

1

1

ˆˆˆ( )

ˆ [ ( , , , ) ]

T
d a x x x d ext

T
a x d ext

−

−

= + + − +

= − +

i H J g D v C v K s F

H J Y x x v v p K s F

ɺ

ɺ ɺ  (5) 

where quantities with hats are respectively the estimated values, and regressor 

matrix Y is defined similarly to the one in (5.2-8). The output tracking loop 

dynamics can be obtained from (2) and (5) as 

 

( )

( , , , ) ( )

T
x x d x x x a d

T
x a d

−

−

+ + = − − − + −

= − + −

D s C s K s D v C v g J H i i

Y x x v v p J H i i

ɶɶɺ ɶɺ

ɶɺ ɺ  (6) 

If controller u can be designed such that d→i i , and update law is selected to 

have ˆ x x→p p , then (6) reduces to ,x x d+ + =D s C s K s 0ɺ  and convergence of 

the system dynamics to the target impedance can be obtained. A modified 

controller from (4) is designed as 

 

ˆ ˆ ˆ

ˆ

d b c i

T
i c i

= + + −

= −

u Li Ri K q K e

p φ K e

ɺ ɺ

 (7) 

where 
3[ ]T T T T n

d= ∈ℜφ i i qɺ ɺ  and ˆ ip  is an estimate of the parametric 

matrix 
3[ ]T T T T n n

i b
×= ∈ℜp L R K . The current tracking loop dynamics 

with the controller in (7) can be represented in the form 

 
T

i c i i+ = −Le K e p φɺ ɶ  (8) 

where ˆi i i= −p p pɶ . A Lyapunov-like function candidate can be found as 

 
1 1 1

( , , , ) ( )
2 2 2

T T T T
i x i x i i x x i i iV Tr= + + +s e p p s D s e Le p Γp p Γ pɶ ɶ ɶ ɶ ɶ ɶ  (9) 
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where 
r r×∈ℜΓ  and 

3 3n n
i

×∈ℜΓ  are positive definite matrices. Along the 

trajectories of (6) and (8), the time derivative of V is computed as 

 ˆ ˆ( ) [ ( )]

T T T T
d a i i c i

T T T T
x x i i i i

V

Tr

−= − + −

− + − +

s K s s J He e K e

p Γp Y s p Γ p φe

ɺ

ɺ ɺɶ ɶ  (10) 

The update laws are selected as 

 

1

1

ˆ

ˆ

T
x

T
i i i

−

−

= −

= −

p Γ Y s

p Γ φe

ɺ

ɺ
 (11) 

and (10) becomes 

 [ ] 0
T T

i

i

V
 

= − ≤ 
 

s
s e Q

e
ɺ  (12) 

where 

1

2

1

2

T
d a

T
a c

−

−

 − 
=  
 −  

K J H

Q

J H K

 is positive definite by proper selection 

of Kd and Kc. Equation (12) implies that s and ei are uniformly bounded and 

square integrable. It can also be proved that sɺ  and ieɺ  are uniformly bounded. 

Hence, asymptotic convergence in the current tracking loop and output tracking 

loop can be concluded from Barbalat’s lemma.  

Remark 6: Realization of controller (7) and update laws in (11) require the time 

derivative of id in (5) which implies the needs for xɺɺ , extFɺ  and Yɺ . Availability 

of all of these quantities is impractical in general; therefore, some more feasible 

controllers are to be developed.  

5.5.2 Regressor-free adaptive controller 

Suppose xD , xC , xg , L, R and Kb are not available, and we would like 

to design a regressor-free adaptive controller so that the closed-loop dynamics 

converges to the target impedance. Besides, realization of the controller 

designed in this section has to be independent to the acceleration feedback and 

time derivatives of the external force.   
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Consider the robot model in (2) and (1b) again. Since most robot 

parameters are unavailable, controller (4) and perfect current trajectory (3) are 

not realizable. The perfect current trajectory can be modified similar to (5) as 

 
1 ˆˆˆ( )T

d a ext x x x d
−= + + + −i H J F g D v C v K sɺ  (13) 

Substituting (13) into (2), we may obtain the output tracking loop dynamics 

 ( )T
x x d x x x a d

−+ + = − − − + −D s C s K s D v C v g J H i iɶɶɺ ɶɺ  (14) 

If controller u can be designed such that d→i i , and there are some update 

laws to have ˆ
x x→D D , ˆ

x x→C C  and ˆ x x→g g , then (14) reduces to 

,x x d+ + =D s C s K s 0ɺ  and convergence of the system dynamics to the target 

impedance can be obtained. According to (7), let us select the control input in 

(1b) as  

 ˆ
c i= −u f K e  (15) 

where f̂  is an estimate of ( , , )d d b= + +f i i q Li Ri K qɺ ɺɺ ɺ . Substituting this control 

law into (1b), we may have the dynamics in the current tracking loop 

 ˆ
i c i+ = −Le K e f fɺ  (16) 

If an appropriate update law for f̂  can be selected, we may have d→i i . Since 

xD , xC , xg  and f are functions of time, traditional adaptive controllers are not 

directly applicable. To design the update laws, let us apply the function 

approximation representation
 

 
x x x

T
x = +D D DD W Z ε  (17a) 

 
x x x

T
x = +C C CC W Z ε  (17b) 

 
x x x

T
x = +g g gg W z ε  (17c) 

 
T= +f f ff W z ε  (17d) 

where 
2

D

x

n nβ ×∈ℜDW , 
2

x

n nβ ×∈ℜ C

CW , g

x

n nβ ×∈ℜgW  and fn nβ ×∈ℜfW  

are weighting matrices, 
2

D

x

n nβ ×∈ℜDZ , 
2

x

n nβ ×∈ℜ C

CZ , 
1g

x

nβ ×∈ℜgz  and 
1fnβ ×∈ℜfz  are matrices of basis functions, and ( )⋅ε  are approximation error 
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matrices. The number ( )β ⋅  represents the number of basis functions used. Using 

the same set of basis functions, the corresponding estimates can also be 

represented as 

 ˆ ˆ
x x

T
x = D DD W Z  (17e) 

 ˆ ˆ
x x

T
x = C CC W Z  (17f) 

 ˆˆ
x x

T
x = g gg W z  (17g) 

 ˆ ˆ T= f ff W z  (17h) 

Define ( ) ( ) ( )
ˆ

⋅ ⋅ ⋅= −W W Wɶ , then equation (14) and (16) become 

 1

( )
x x

x x x x

T T
x x d a d

T T

−+ + = − −

− − +

D D

C C g g

D s C s K s J H i i W Z v

W Z v W z ε

ɶɺ ɺ

ɶ ɶ  (18a) 

 2
T

i c i+ = − +f fLe K e W z εɶɺ  (18b) 

where 1 1( , , , , )i= D C gε ε ε ε ε s xɺɺ  and 2 2 ( , )f i=ε ε ε e  are lumped approximation 

errors. Since ( )⋅W  are constant matrices, their update laws can be easily found 

by proper selection of the Lyapunov-like function. Let us consider a candidate  

1 1 1
( , , , , , ) (

2 2 2

)

x x x x x x

x x x x x x

T T T
i x i i

T T T

V Tr= + +

+ + +

D C g f D D D

C C C g g g f f f

s e W W W W s D s e Le W Q W

W Q W W Q W W Q W

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ  (19) 

The matrices 
2 2

x

n nβ β×∈ℜ D D

DQ , 
2 2

C C

x

n nβ β×∈ℜCQ , g g

x

n nβ β×
∈ℜgQ  and 

f fn nβ β×
∈ℜfQ  are all positive definite. The time derivative of V along the 

trajectory of (18) can be computed as 

 

1 2  

ˆ ˆ[ ( ) ( ) 

ˆ ˆ( ) ( )]

x x x x x x x x

x x x x

T T T T T T
d a i i c i i

T T T T

T T T T
i

V

Tr

−= − + − + +

− + + +

+ + + +

D D D D C C C C

g g g g f f f f

s K s s J He e K e s ε e ε

W Z vs Q W W Z vs Q W

W z s Q W W z e Q W

ɺ

ɺ ɺɶ ɶɺ

ɺ ɺɶ ɶ  (20) 
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The update laws can thus be selected as 

 
1ˆ ˆ( )

x x x x x

T σ−= − +D D D D DW Q Z vs W
ɺ

ɺ  (21a) 

 
1ˆ ˆ( )

x x x x x

T σ−= − +C C C C CW Q Z vs W
ɺ

 (21b) 

 
1ˆ ˆ( )

x x x x x

T σ−= − +g g g g gW Q z s W
ɺ

 (21c) 

 
1ˆ ˆ( )T

i σ−= − +f f f f fW Q z e W
ɺ

 (21d) 

and (20) becomes  

 

1

2

ˆ[ ] [ ] ( )

ˆ ˆ ˆ( ) ( ) ( )

x x x

x x x x x x

T T T T T
i i

i

T T T

V Tr

Tr Tr Tr

σ

σ σ σ

   
= − + +   

   

+ + +

D D D

C C C g g g f f f

s ε
s e Q s e W W

e ε

W W W W W W

ɺ ɶ

ɶ ɶ ɶ  (22) 

where 

1

2

1

2

T
d a

T
a c

−

−

 − 
=  
 −  

K J H

Q

J H K

 is positive definite by proper selection of 

Kd and Kc. Owing to the existence of 1ε  and 2ε  in (22), definiteness of Vɺ  cannot 

be determined. Let us proceed by considering the upper bound of V in (19) as 

 

2

max max

max max

max

1 1
( ) [ ( ) ( )

2 2

( ) ( ) ( ) ( )

( ) ( )]

x x x

x x x x x x

T

i

T T

T

V Tr

Tr Tr

Tr

λ λ

λ λ

λ

 
≤ + 

 

+ +

+

D D D

C C C g g g

f f f

s
A Q W W

e

Q W W Q W W

Q W W

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

 

where 
x 

=  
 

D 0
A

0 L
, and the inequalities 

 

1

2

2 2

1

min

2min

[ ] [ ] 

1 1
( )

2 ( )

T T T T
i i

i

i

λ
λ

   
− +   

   
    

≤ − −         

s ε
s e Q s e

e ε

s ε
Q

e εQ
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 ( ) ( ) ( ) ( ) ( ) ( )

1 1ˆ( ) ( ) ( )
2 2

T T T
Tr Tr Tr⋅ ⋅ ⋅ ⋅ ⋅ ⋅≤ −W W W W W Wɶ ɶ ɶ  

then we may rewrite (22) into 

[ ]
2

max min max

max max

2

1

max

2min

1 1
( ) ( ) {[ ( ) ] ( )

2 2

[ ( ) ] ( ) [ ( ) ] ( ) 

1 1
[ ( ) ] ( )}  { ( )

2 ( ) 2

x x x x

x x x x x x x x

x x x

T

i

T T

T T

V V Tr

Tr Tr

Tr Tr

α αλ λ αλ σ

αλ σ αλ σ

αλ σ σ
λ

σ

 
≤ − + − + − 

 

+ − + −

 
+ − + + 

 

+

D D D D

C C C C g g g g

f f f f D D D

s
A Q Q W W

e

Q W W Q W W

ε
Q W W W W

εQ

ɺ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

( ) ( ) ( )}
x x x x x x

T T TTr Tr Trσ σ+ +C C C g g g f f fW W W W W W
 

where α is selected to satisfy 

 
min

max max max max max

( )
min , , , ,

( ) ( ) ( ) ( ) ( )

xx x

x x x

σσ σλ σ
α

λ λ λ λ λ
 

≤  
 

gD C f

D C g f

Q

A Q Q Q Q
. 

With this selection, we may further have 

 

2

1

2min

1 1
[ ( )

2 ( ) 2

    ( ) ( ) ( )]

x x x

x x x x x x

T

T T T

V V Tr

Tr Tr Tr

α σ
λ

σ σ σ

 
≤ − + + 

 

+ + +

D D D

C C C g g g f f f

ε
W W

εQ

W W W W W W

ɺ

 (23) 

So, 0V <ɺ  can be concluded whenever 

 

0

2

1

2min

( )1 1
sup [ ( )

( )2 ( ) 2

( ) ( ) ( )]

x x x

x x x x x x

T

t

T T T

V Tr

Tr Tr Tr

τ

τ
σ

ταλ α

σ σ σ

≥

 
> + 

 

+ + +

D D D

C C C g g g f f f

ε
W W

εQ

W W W W W W  (24) 

Hence, we have proved that s, ie , 
xDWɶ , 

xCWɶ , 
xgWɶ  and fWɶ  are uniformly 

ultimately bounded. On the other hand, (23) also implies 
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0

0

2

1( )
0

2min

( )1
( ) ( ) sup

( )2 ( )

1
[ ( ) ( )

2

( ) ( )]

x x x x x x

x x x

t t

t t

T T

T T

V t e V t

Tr Tr

Tr Tr

α

τ

τ
ταλ

σ σ
α

σ σ

− −

< <

 
≤ +  

 

+ +

+ +

D D D C C C

g g g f f f

ε

εQ

W W W W

W W W W  (25) 

Consider the lower bound of V in (19) as 

 

2

min min

min min min

1 1
( ) [ ( ) ( )

2 2

( ) ( ) ( ) ( ) ( ) ( )]

x x x

x x x x x x

T

i

T T T

V Tr

Tr Tr Tr

λ λ

λ λ λ

 
≥ + 

 

+ + +

D D D

C C C g g g f f f

s
A Q W W

e

Q W W Q W W Q W W

ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ  

This implies 
min

2

( )i

V

λ
 

≤ 
 

s

e A
. Together with (25), we have the bound for 

the error signal vector as 

 

0

0

( ) 10 2

2min min min

min

1

2

( )2 ( ) 1
sup

( )( ) 2 ( ) ( )

1
[ ( ) ( )

2 ( )

( ) ( )]

x x x x x x

x x x

t t

t ti

T T

T T

V t
e

Tr Tr

Tr Tr

α

τ

τ
τλ αλ λ

σ σ
αλ

σ σ

− −

< <

   
≤ +   

   

+ +

+ +

D D D C C C

g g g f f f

s ε

e εA A Q

W W W W
A

W W W W  

Remark 7: If the number of basis functions is chosen to be sufficiently large 

such that 1 0≈ε  and 2 0≈ε , then (22) becomes 

 [ ] 0
T T

i

i

V
 

= − ≤ 
 

s
s e Q

e
ɺ  

This implies that s and ei are uniformly bounded and square integrable. It is also 

easy to prove that sɺ  and ieɺ  are uniformly bounded; as a result, asymptotic 
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convergence of s and ei can be concluded by Barbalat’s lemma. This further 

implies that d→i i  and ,d→q q even though the robot model contains 

uncertainties. 

Remark 8: Suppose 1ε  and 2ε  cannot be ignored but their variation bounds are 

available, i.e. there exists positive constants 1 2, 0δ δ >  such that 1 1 δ≤ε  and 

2 2 δ≤ε  for all 0t ≥ . To cover the effect of these bounded approximation 

errors, the desired current (13), and the control input (15) are modified to be 

 
1

1
ˆˆˆ( )T

d a ext x x x d robust
−= + + + − +i H J F g D v C v K s τɺ  

 2
ˆ

c i robust= − +u f K e τ  

where 1robustτ  and 2robustτ  are robust terms to be designed. Let us consider           

the Lyapunov-like function candidate (19) and the update law (21) without           

σ-modification again. The time derivative of V can be computed as  

 1 2 1 2[ ]
T T T T

i i robust i robust

i

V δ δ
 

= − + + + + 
 

s
s e Q s e s τ e τ

e
ɺ  

By picking 1 1 1[sgn( ) sgn( )]T
robust ns sδ= −τ ⋯ , where is , i=1,…,n is 

the i-th element of the vector s and 
12 2[sgn( ) sgn( )]

n

T
robust i ie eδ= −τ ⋯ , 

where 
kie , k=1,…,n is the k-th element of the vector ei, we may have 0≤Vɺ , 

and asymptotic convergence of the state error can be concluded by Barbalat’s 

lemma. 

Remark 9: Realization of the desired current (13), control law (15) and update 

laws (21) does not need the information of the regressor matrix, joint 

accelerations, or time derivatives of the external force, which largely simplified 

the implementation. 

The adaptive impedance control of EDRR is summarized in Table 5.2. 

Both the regressor-based and regressor-free approaches are listed for 

comparison. It should be noted that, in the actual implementation, the former 

needs to know the regressor and its derivative, and the knowledge of the joint 

acceleration as well as the time derivative of the external force.  
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Table 5.2 Summary of adaptive impedance control for EDRR 

Electrically driven rigid robot interacting with environment 
T

x x x x x a ext
−+ + + + = −D s C s g D v C v J Hi Fɺ ɺ  

 

b+ + =Li Ri K q uɺ ɺ  

(5.5-1), (5.5-2) 

 

Regressor-based Regressor-free 

 

Controller 

1

1

ˆˆˆ(

)

ˆ     [ ( , , , )

]

T
d a x x x

d ext

T
a x

d ext

−

−

= + +
− +

=
− +

i H J g D v C v

K s F

H J Y x x v v p

K s F

ɺ

ɺ ɺ

 

ˆ ˆ ˆ

ˆ

d b c i

T
i c i

= + + −

= −

u Li Ri K q K e

p φ K e

ɺ ɺ
 

(5.5-5), (5.5-7) 

1 ˆˆ(

ˆ )

T
d a ext x x

x d

−= + +

+ −

i H J F g D v

C v K s

ɺ
 

ˆ
c i= −u f K e  

(5.5-13), (5.5-15) 

 

Adaptive Law 

1

1

ˆ

ˆ

T
x

T
i i i

−

−

= −

= −

p Γ Y s

p Γ φe

ɺ

ɺ

 

(5.5-11) 

1

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

x x x x x

x x x x x

x x x x x

T

T

T

T
i

σ

σ

σ

σ

−

−

−

−

= − +

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

f f f f f

W Q Z vs W

W Q Z vs W

W Q z s W

W Q z e W

ɺ
ɺ

ɺ

ɺ

ɺ

 

(5.5-21) 

Realization Issue Need to know the regressor  

matrix, the derivative of the 

regressor matrix, the joint 

accelerations, and the derivative  

of the external force. 

Does not need the information for  

the regressor matrix, its derivative, 

the joint accelerations, or the 

derivative of the external force. 

Example 5.2: 

Consider the same 2-DOF planar robot in example 5.1 with the inclusion of 

the actuator dynamics, and we would like to verify the controller developed in this 

section by computer simulations. Actual values of link parameters are selected as 

m1=m2=0.5(kg), l1= l2=0.75(m), lc1= lc2 =0.375(m), and I1=I2=0.0234(kg-m
2
). 

Parameters related to the actuator dynamics are the same with those used in 

chapter 4 and are given with h1=h2=10(N-m/A), L1=L2=0.025(H), r1=r2=1(Ω), 

and kb1=kb2=1(Vol/rad/sec). In order to observe the effect of the actuator 

dynamics, the endpoint is required to track a 0.2m radius circle centered at 
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(0.8m, 1.0m) in 2 seconds which is much faster than the case in example 

5.1. The initial conditions of the generalized coordinate vector is 

(0) [0.0022 1.5019 0 0]T=q , i.e., the endpoint is still at (0.8m, 0,75m) 

initially. The controller gain matrices are selected as 

 
50 0

0 50
d

 
=  
 

K , 
20 0

0 20

 
=  
 

Λ  and 
100 0

0 100
c

 
=  
 

K . 

The initial value for the desired current can be found by calculation as 

 (0) (0) [0.8 0.1]T
d = =i i . 

The matrices in the target impedance are picked as 

 
0.5 0

0 0.5
i

 
=  
 

M , 
100 0

0 100
i

 
=  
 

B  and 
1500 0

0 1500
i

 
=  
 

K . 

The 11-term Fourier series is selected as the basis function for the 

approximation so that ˆ
xDW  and ˆ

xCW  are in 
44 2×ℜ , while ˆ

xgW  and ˆ
fW  are 

in 
22 2×ℜ . The initial weighting vectors for the entries are assigned to be 

11

11 1ˆ (0) [0.05 0 0]
x

T
D

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
D D

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
D

×= ∈ℜw ⋯  

11

11 1ˆ (0) [0.05 0 0]
x

T
C

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
C C

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
C

×= ∈ℜw ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]
x x

T
g g

×= = ∈ℜw w ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
f f

×= = ∈ℜw w ⋯  
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The gain matrices in the update laws are selected as  

 
1
x

−
DQ 440.1= I , 

1
440.1

x

− =CQ I , 
1

2250
x

− =gQ I  and 
1

2210000
− =fQ I . 

The approximation error is also assumed to be neglected, and the σ-modification 

parameters are all zero. The simulation results are shown in Figure 5.8 to 5.16. 

Figure 5.8 shows the tracking performance of the robot endpoint and its desired 

trajectory in the Cartesian space. It is observed that the endpoint trajectory 

converges smoothly to the desired trajectory in the free space tracking and 

contacts compliantly in the constrained motion phase. Although the initial error 

is quite large, the transient state takes only about 0.2 seconds which can be 

justified from the joint space tracking history in Figure 5.9. The performance in 

the current tracking loop is very good as shown in Figure 5.10. The control 

efforts to the two joints are reasonable that are presented in Figure 5.11. Figure 

4.12 shows the time histories of the external forces. Figure 4.13 to 4.16 are the 

performance of function approximation. Although most parameters do not 

converge to their actual values, they still remain bounded as desired. 
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Figure 5.8 Robot endpoint tracking performance in the Cartesian space 
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Figure 5.9 Joint space tracking performance 
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Figure 5.10 Tracking in the current tracking loop 
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Figure 5.11 Control efforts 
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Figure 5.12 External force trajectories 
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Figure 5.13 Approximation of Dx 
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Figure 5.14 Approximation of Cx 
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Figure 5.15 Approximation of gx 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

3

4

5

Time(sec)

f(
1
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−3

−2

−1

0

1

2

3

Time(sec)

f(
2
)

 

Figure 5.16 Approximation of f 
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5.6 Conclusions 

Compliant interaction between the robot and environment is very important 

in the industrial applications. In this chapter, we consider the adaptive 

impedance control of rigid robots where the impedance control enables the robot 

to have good performance in the free space tracking phase and to behave like the 

target impedance in the constrained motion phase. In Section 5.2, a regressor-

based impedance controller is derived, but the closed loop system may not 

converge to the target impedance even when all parameters converge to their 

actual values. In Section 5.3, an adaptive impedance control is constructed by 

following the design introduced in Section 4.3. However, implementation of this 

controller requires the knowledge of not only the regressor matrix and its time 

derivative, but also the joint accelerations and time derivative of the external 

force. Therefore, it is not feasible for practical applications. A regressor-free 

adaptive impedance controller is thus designed in Section 5.4 which does not 

need the availability of the additional information required in the previous 

section. Finally, the actuator dynamics is considered in Section 5.5. Simulation 

cases show that the robot can be operated at a much higher speed with good 

performance for both the free space tracking and compliant motion control.  



 

163 

Chapter 6    

Adaptive Control of Flexible-Joint Robots 

6.1 Introduction 

Most controllers for industrial robots are designed based on the rigid robot 

assumption. Consideration of the joint flexibility in the controller design is one 

of the approaches to increase the control performance. For a robot with n links, 

we need to use 2n generalized coordinates to describe its whole dynamic 

behavior when taking the joint flexibility into account. Therefore, the modeling 

of the flexible joint robot is far more complex than that of the rigid robot. Since 

the mathematical model is only an approximation of the real system, the 

simplified representation of the system behavior will contain model inaccuracies 

such as parametric uncertainties, unmodeled dynamics and external 

disturbances. Because these inaccuracies may degrade the performance of the 

closed-loop system, any practical design should consider their effects. The 

inherent highly nonlinear coupling and model inaccuracies make the controller 

design for a flexible joint robot extremely difficult. Spong (1989, 1995) 

proposed one of the first adaptive controllers for flexible joint robots based on 

the singular perturbation formulation of the robot dynamics. A simple composite 

controller was designed such that the joint elastic forces were stabilized by a fast 

feedback control and link variables were controlled by a slow control law. Ge 

(1996) suggested a robust adaptive controller based on a new singular 

perturbation model where the motor tracking error was modeled as the fast 

variables instead of the joint elastic forces. This innovative approach leads to a 

controller more robust to the case of load sensor failure, gives a new insight into 

the control design problem of flexible joint robots and presents an alternative 

singular perturbation model for controller design. Ott et. al. (2000) verified a 

singular perturbation based adaptive controller for flexible joint robots 

experimentally. The tracking quality was improved significantly by the use of 

the adaptive control law compared to the non-adaptive one. Dixon et. al. (1999) 

proposed an adaptive partial state feedback controller for flexible joint robots 
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based on the backstepping design with the knowledge of the regression matrix. 

A backstepping design based output feedback adaptive controller for flexible 

joint robot was suggested in Yim (2001). Kozlowski and Sauer (1999a, 1999b) 

suggested an adaptive controller to have semi-global convergence to an 

arbitrarily small neighborhood of the equilibrium point in the presence of 

bounded disturbances. Like other adaptive strategies, the uncertain parameters 

are required to be time-invariant and capable of being collected to form a 

parameter vector. Huang and Chen (2004a) proposed an adaptive backstepping-

like controller based on FAT for single-link flexible-joint robots with 

mismatched uncertainties. Similar to most backstepping designs, the derivation 

is too complex to robots with more joints. Chien and Huang (2006b) suggested a 

FAT-based adaptive controller for general flexible-joint robots without requiring 

the computation of the regressor matrix. Chien and Huang (2006a) designed an 

adaptive impedance controller for the flexible-joint robots to give good 

performance in both the free space tracking and compliant motion phase. Chien 

and Huang (2007a) included the actuator into consideration in the design of an 

adaptive controller for flexible-joint robots.  

In this chapter, we would like to study the FAT-based adaptive controller 

designs for n-link flexible-joint robots. The tedious computation of the regressor 

matrix is avoided. This chapter is organized as following: in Section 6.2, we 

consider the control of a known flexible-joint robot. Section 6.3 derives the 

regressor-based adaptive controller and Section 6.4 presents regressor-free 

adaptive controller. Section 6.5 considers the actuator dynamics. 

6.2 Control of Known Flexible-Joint Robots 

The rigid-link flexible-joint robot considered in this chapter is shown in 

(3.6-1) as 

 ( ) ( , ) ( ) ( )+ + = −D q q C q q q g q K θ qɺɺ ɺ ɺ  (1a) 

 ( ) a+ + − =Jθ Bθ K θ q τɺɺ ɺ  (1b) 

Define a transmission torque ( )t =τ K θ - q (Spong 1987, Lin and Goldenberg 

1995), then (1) can be rewritten to be 

 t+ + =Dq Cq g τɺɺ ɺ  (2a) 

 ( , )t t t t t a+ + = −J τ B τ τ τ q q qɺ ɺɺɺɺ ɺ  (2b) 
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where 
1

t
−=J JK , 

1
t

−=B BK , and ( , ) = +q q q Jq Bqɺ ɺɺ ɺɺ ɺ . Since (2) is in a 

cascade form connected by the torque τt, a backstepping-like design procedure 

can be employed by regarding τt as a control signal to (2a), and a desired 

trajectory tdτ  is designed for the convergence of q. If a proper aτ  can 

be constructed such that t td→τ τ , then we may have d→q q . Define the 

tracking error d= −e q q  and the error signals = +s e Λeɺ  and d= −v q Λeɺ . 

Equation (2a) becomes 

 t+ + + + =Ds Cs g Dv Cv τɺ ɺ  (3) 

Suppose that all parameters in the system model are available, then the desired 

torque tdτ  can be defined as 

 td d= + + −τ g Dv Cv K sɺ  (4) 

With this desired torque, (3) gives the output tracking dynamics 

 d t td+ + = −Ds Cs K s τ τɺ  (5a) 

If a control torque aτ  can be designed to have t td→τ τ , then (5a) becomes  

 d+ + =Ds Cs K s 0ɺ  (5b) 

and convergence of the output error follows. To this end, we would like to 

employ the model reference control (MRC) rule below. Let us consider a 

reference model 

 r r r r r r r td r td r td+ + = + +J τ B τ K τ J τ B τ K τɺɺ ɺ ɺɺ ɺ  (6) 

where 
n

r ∈ℜτ  is the state vector, and matrices 
n n

r
×∈ℜJ , 

n n
r

×∈ℜB , and 
n n

r
×∈ℜK  are selected to give proper dynamics for the convergence of rτ  to 

tdτ . Define 
1( , ) ( )td td td r r td r td

−= +τ τ τ K B τ J τɺ ɺɺ ɺ ɺɺ , and rewrite (2b) and (6) into 

the state space form 

 p p p p a p= + −x A x B τ B qɺ  (7a) 

 ( )m m m m td td= + +x A x B τ τɺ  (7b) 
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where 
2[ ]T T T n

p t t= ∈ℜx τ τɺ  and 
2[ ]T T T n

m r r= ∈ℜx τ τɺ  are augmented state 

vectors. 2 2

1 1

n n n n
p

t t t

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J J B
 and 2 2

1 1

n n n n
m

r r r r

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J K J B
 

are augmented system matrices, and 
2

1

n n
p

t

×
−

 
= ∈ℜ 
 

0
B

J
 and 

2

1

n n
m

r r

×
−

 
= ∈ℜ 
 

0
B

J K
 are augmented input gain matrices. Let t p p=τ C x  

and r m m=τ C x  be respectively the output signal vector for (7a) and (7b), 

where 
2[ ] n n

p m n n
×

×= = ∈ℜC C I 0  are augmented output signal matrices. It 

is noted that ( , )m mA B  is controllable, ( , )m mA C  is observable, and the 

transfer function 
1( )m m ms

−−C I A B  is strictly positive real. According to the 

MRC rule, the control torque aτ  is selected as 

 ( , )a p td td= + +τ Θx Φτ h τ q  (8) 

where 
2n n×∈ℜΘ  and 

n n×∈ℜΦ  are matrices satisfying relations 

p p m+ =A B Θ A  and p m=B Φ B , respectively, and ( , ) n
td td= + ∈ℜh τ q Φτ q . 

Substitute (8) into (7a) to have 

 ( )p m p m td td= + +x A x B τ τɺ  (9) 

Define m p m= −e x x  and t rτ = −e τ τ  be error vectors, then from (7b) and 

(9) we may have the torque tracking loop dynamics  

 m m m=e A eɺ  (10a) 

 m mτ =e C e  (10b) 

To prove stability in the output tracking loop (5a) and the torque tracking loop 

(10), a Lyapunov-like function candidate is designed as 

 
1

( , )
2

T T
m m t mV = +s e s Ds e P e  (11) 

where 
2 2T n n

t t
×= ∈ℜP P  is a positive definite matrix satisfying the Lyapunov 

equation 
T T
m t t m m m+ = −A P P A C C . Along the trajectory (5a) and (10), the time 

derivative of V is computed as 
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 [ ] 0
T T

V τ
τ

 
= − ≤ 

 

s
s e Q

e
ɺ  (12) 

where 

1

2

1

2

d n n

n n n n

×

× ×

 
− 

=  
 −
  

K I

Q

I I

 is positive definite by proper selection of Kd. 

Equation (12) implies uniform boundedness and square integrability of s and τe . 

Uniform boundedness of sɺ  and τeɺ  can also be proved easily; therefore, we may 

conclude d→q q  and t td→τ τ  as t →∞  by Barbalat’s lemma.  

Remark 1: Dependence of ( , )tdh τ q  in (8) implies the requirements for the 

knowledge of joint accelerations or even their higher time derivatives. This 

greatly restricts the application of the strategy presented here. In next section, a 

regressor-based adaptive controller will be derived. However, its realization will 

still be limited due to its dependence on high-order state variable feedbacks. 

Finally, a regressor-free adaptive control is developed in section 6.4 to ease its 

realization.   

6.3 Regressor-Based Adaptive Control of Flexible-Joint Robots 

Let us consider the system described in (6.2-3) and (6.2-2b) as 

 t+ + + + =Ds Cs g Dv Cv τɺ ɺ  (1a) 

 ( , )t t t t t a+ + = −J τ B τ τ τ q q qɺ ɺɺɺɺ ɺ  (1b) 

where D, C and g are assumed to be unavailable here. Hence, (6.2-4) and           

(6.2-8) are not feasible. A new version of the transmission torque is designed as 

 

ˆˆˆ

ˆ( , , , )

td d

d

= + + −

= −

τ g Dv Cv K s

Y q q v v p K s

ɺ

ɺ ɺ  (2) 

The dynamics of the output tracking loop can then be obtained by plugging (2) 

into (1a) as 

 

( )

( , , , ) ( )

d t td

t td

+ + = − − − + −

= − + −

Ds Cs K s Dv Cv g τ τ

Y q q v v p τ τ

ɶɶɺ ɶɺ

ɺ ɶɺ  (3) 
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Therefore, if an effective control torque aτ  can be designed to have t td→τ τ , 

and a proper update law can be selected so that ˆ →p p , then (3) implies           

(6.2-5b). The dynamics for the torque tracking loop is exactly the same as those 

in the previous section with the control law in (6.2-8). Therefore, we may select 

a Lyapunov-like function candidate  

 
1 1

( , , )
2 2

T T T
m m t mV = + +s e p s Ds e P e p Γpɶ ɶ ɶ  (4) 

where 
2 2T n n

t t
×

= ∈ℜP P  is a positive definite matrix satisfying the Lyapunov 

equation 
T T
m t t m m m+ = −A P P A C C , and 

r r×∈ℜΓ  is positive definite. Along 

the trajectory of (3) and (6.2-10), the time derivative of (4) becomes 

 ˆ( )T T T T T
dV τ τ τ= − + − − +s K s s e e e p Γp Y sɺɺ ɶ  (5) 

The update law is picked to be 

 
1ˆ T−= −p Γ Y sɺ  (6) 

Hence, (5) becomes exactly (6.2-12), and all stability properties are the same 

there.  

Remark 2: To implement the strategy designed in this section, we do not need 

the knowledge of D, C and g. However, it still needs the feedback of joint 

accelerations and their higher order time derivatives. In addition, computation of 

the regressor matrix and its time derivatives are necessary here. 

6.4 FAT-Based Adaptive Control of Flexible-Joint Robots 

Let us consider the system described in (6.3-1) as 

 t+ + + + =Ds Cs g Dv Cv τɺ ɺ  (1a) 

 ( , )t t t t t a+ + = −J τ B τ τ τ q q qɺ ɺɺɺɺ ɺ  (1b) 

where D(q), ( , )C q qɺ  and g(q) are not available and their variation bounds are 

not given. We would like to design a desired transmission torque ττττtd so that a 

proper control torque τa can be constructed to have convergence in the torque 

tracking loop, i.e., t td→τ τ . Since D(q), ( , )C q qɺ  and g(q) are not available, 
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the traditional adaptive control and robust control are not easy to be applied 

here. In the following, we would like to use the function approximation 

technique to design an adaptive controller for the rigid-link flexible-joint robot 

without the knowledge of the regressor matrix. Since the adaptive control of 

flexible-joint robots is much more difficult than that for its rigid-joint 

counterpart, avoidance of the regressor computation in the FAT-based design 

largely simplifies the implementation in the real-time environment. 

The desired transmission torque τd can be designed as  

 ˆˆˆtd d= + + −τ g Dv Cv K sɺ  (2) 

where D̂ , Ĉ  and ĝ  are estimates of D(q), ( , )C q qɺ  and g(q), respectively. 

Substituting (2) into (1a), we may have the dynamics for the output tracking loop 

 ( )d t td+ + = − − − + −Ds Cs K s Dv Cv g τ τɶɶɺ ɶɺ  (3) 

where ˆ= −D D Dɶ , ˆ= −C C Cɶ , and ˆ= −g g gɶ . If a proper controller aτ  and 

update laws for D̂ , Ĉ  and ĝ  can be designed, we may have t td→τ τ , 
ˆ ,→D D ˆ →C C  and ˆ →g g  so that (3) can give desired performance. Hence, 

we would like to derive the dynamics for the torque tracking loop next. To this 

end, the same MRC scheme used in Section 6.2 is employed here. Consider the 

reference model in (6.2-6) again 

 r r r r r r r td r td r td+ + = + +J τ B τ K τ J τ B τ K τɺɺ ɺ ɺɺ ɺ  (4) 

With the definition 
1( , ) ( )td td td r r td r td

−= +τ τ τ K B τ J τɺ ɺɺ ɺ ɺɺ , we may represent (1b) 

and (4) into the state space representation as 

 p p p p a p= + −x A x B τ B qɺ  (5a) 

 ( )m m m m td td= + +x A x B τ τɺ  (5b) 

where px , mx , pA , mA , pB , and mB  are defined in Section 6.2. The pair 

( , )m mA B  is controllable, ( , )m mA C  is observable, and the transfer function 
1( )m m ms

−−C I A B  is SPR, where Cm is also defined in Section 6.2. Since 

system (1) contains uncertainties, the control torque in (6.2-8) is not feasible. A 

new one is constructed as 

 ˆ
a p td= + +τ Θx Φτ h  (6) 
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where ĥ  is the estimate of ( , )td td= +h τ q Φτ q , 
2n n×∈ℜΘ  and 

n n×∈ℜΦ  

are matrices satisfying p p m+ =A B Θ A  and p m=B Φ B  respectively. 

Plugging (6) into (5a), we have the dynamics 

 ˆ( ) ( )p m p m td td p= + + + −x A x B τ τ B h hɺ  (7) 

With the definition of m p m= −e x x  and t rτ = −e τ τ , we may have the 

dynamics in the torque tracking loop  

 ˆ( )m m m p= + −e A e B h hɺ  (8a) 

 m mτ =e C e  (8b) 

If we may design an appropriate update law such that ˆ →h h , then (8) implies 

0m →e  as t →∞ . To proceed further, let us apply the function approximation 

representation
 

 

T

T

T

T

= +

= +

= +

= +

D D D

C C C

g g g

h h h

D W Z ε

C W Z ε

g W z ε

h W z ε

 (9) 

where
2

,Dn nβ ×∈ℜDW
2

,n nβ ×∈ℜ C

CW ,gn nβ ×∈ℜgW and hn nβ ×∈ℜhW are 

weighting matrices,
2

,Dn nβ ×∈ℜDZ  
2

,n nβ ×∈ℜ C

CZ  
1
,gnβ ×∈ℜgz and 

1hnβ ×∈ℜhz  are matrices of basis functions, and ( )⋅ε  are approximation error 

matrices. Using the same set of basis functions, the corresponding estimates can 

also be represented as 

 

ˆ ˆ

ˆ ˆ

ˆˆ

ˆ ˆ

T

T

T

T

=

=

=

=

D D

C C

g g

h h

D W Z

C W Z

g W z

h W z

 (10) 

Define ( ) ( ) ( )⋅ ⋅ ⋅= −W W Wɶ ɶ , then the output error tracking dynamics (3) and the 

torque tracking dynamics (8a) become 
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 1

( ) T
d t td

T T

+ + = − −

− − +

D D

C C g g

Ds Cs K s τ τ W Z v

W Z v W z ε

ɶɺ ɺ

ɶ ɶ  (11a)  

 2
T

m m m p p= − +h he A e B W z B εɶɺ  (11b) 

where 1 1( , , , , )d= D C gε ε ε ε ε s qɺɺ  and 2 2 ( , )m= hε ε ε e  are lumped 

approximation errors. Since ( )⋅W  are constant vectors, their update laws can be 

easily found by proper selection of the Lyapunov-like function. Let us consider 

a candidate  

 

1 1
( , , , , , ) (

2 2

)

T T T
m m t m

T T T

V Tr= + +

+ + +

D C g h D D D

C C C g g g h h h

s e W W W W s Ds e P e W Q W

W Q W W Q W W Q W

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ  (12) 

where 
2 2T n n

t t
×= ∈ℜP P  is a positive definite matrix satisfying the Lyapunov 

equation .
T T
m t t m m m+ = −A P P A C C  The matrices 

2 2

,n nβ β×∈ℜ D D

DQ  
2 2

,C Cn nβ β×∈ℜCQ  g gn nβ β×∈ℜgQ  and h hn nβ β×∈ℜhQ  are positive definite. 

The time derivative of V along the trajectory of (11) can be computed as 

 

1 2

ˆ ˆ[ ( ) ( )]

ˆ ˆ[ ( ) ( )]

T T T T T
d m t p

T T T T

T T T T
m t p

V

Tr

Tr

τ τ τ= − + − + +

− + + +

− + + +

D D D D C C C C

g g g g h h h h

s K s s e e e s ε e P B ε

W Z vs Q W W Z vs Q W

W z s Q W W z e P B Q W

ɺ

ɺ ɺɶ ɶɺ

ɺ ɺɶ ɶ  (13) 

If we design m p=B B  such that 
T T
m t p τ=e P B e  and select the update laws as 

 
1ˆ ˆ( )T σ−= − +D D D D DW Q Z vs W

ɺ
ɺ  (14a) 

 
1ˆ ˆ( )T σ−= − +C C C C CW Q Z vs W

ɺ
 (14b) 

 
1ˆ ˆ( )T σ−= − +g g g g gW Q z s W

ɺ
 (14c) 

 
1ˆ ˆ( )T

τ σ−= − +h h h h hW Q z e W
ɺ

 (14d) 
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where ( )σ ⋅  are positive constants, then (13) becomes 

 

1

2

ˆ[ ] [ ] ( )

ˆ ˆ ˆ       ( ) ( ) ( )

T T T T T

T T T

V Tr

Tr Tr Tr

τ τ
τ

σ

σ σ σ

   
= − + +   

   

+ + +

D D D

C C C g g g h h h

s ε
s e Q s e W W

e ε

W W W W W W

ɺ ɶ

ɶ ɶ ɶ  (15) 

where 

1

2

1

2

d n n

n n n n

×

× ×

 
− 

=  
 −
  

K I

Q

I I

 is positive definite due to the selection of 

gain matrix Kd.  

Remark 3: If the number of basis functions are chosen to be sufficiently large 

such that 1 ≈ε 0  and 2 ≈ε 0, then (15) becomes 

 [ ] 0
T T

V τ
τ

 
= − ≤ 

 

s
s e Q

e
ɺ      

Therefore it implies that that τe  and s  are uniformly bounded and square 

integrable. Furthermore, τeɺ  and sɺ  can be shown to be uniformly bounded; as a 

result, asymptotic convergence of τe  and s can easily be concluded by 

Barbalat’s lemma. This further implies that d→τ τ  and d→q q  as t →∞  

even though ,D ,C g  and h are all unknown. 

Remark 4: Suppose 1ε  and 2ε  cannot be ignored but their variation bounds are 

available i.e. there exists positive constants 1 2, 0δ δ >  such that 1 1δ≤ε  and 

2 2δ≤ε . To cover the effect of these bounded approximation errors, the 

desired transmission torque (2) and actuator input (6) are modified to be 

 1
ˆˆ ˆtd d robust= + + − +τ Dv Cv g K s τɺ  

 2
ˆ

a p td robust= + + +τ Θx Φτ h τ  

where 1robustτ  and 2robustτ  are robust terms to be designed. Let us consider the 

Lyapunov-like function candidate (12) and update laws (14) without the                

σ-modification terms again. The time derivative of V can be computed as  
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 1 2 1 2[ ]
T T T T

robust robustV τ τ τ
τ

δ δ
 

≤ − + + + + 
 

s
s e Q s e s τ e τ

e
ɺ    

By picking 1 2 1[sgn( ) sgn( )]
T

robust ns sδ= −τ ⋯ , where is , i=1,…,n is the 

i-th element of the vector s, and 
1 22 2[sgn( ) sgn( )]

n

T
robust e eτ τδ= −τ ⋯  

where 
i

eτ , i=1,…,2n is the i-th element of the vector τe , we may have 

0V ≤ɺ  and asymptotic convergence of the state error can be concluded by 

Barbalat’s lemma.  

Owing to the existence of 1ε  and 2ε  in (15), the definiteness of Vɺ  cannot 

be determined. By using the inequalities similar to those in (4.6-31), we may 

define 
2

T
m t m

 
=  
 

D 0
A

0 C P C
 and rewrite (15) into 

 

2 2

1

max min

2min

max max

max

max

1 1
[ ( ) ( )]

2 2 ( )

1
{[ ( ) ] ( ) [ ( )

2

] ( ) [ ( ) ] ( )

1
[ ( ) ] ( )} [ ( )

2

( ) (

T

T T

T T

T

V V

Tr

Tr Tr

Tr Tr

Tr Tr

τ
α αλ λ

λ

αλ σ αλ

σ αλ σ

αλ σ σ

σ σ

   
≤ − + − +   

   

+ − +

− + −

+ − +

+ +

D D D D C

C C C g g g g

h h h h D D D

C C C g

s ε
A Q

e εQ

Q W W Q

W W Q W W

Q W W W W

W W W

ɺ

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

) ( )]T T
Trσ+g g h h hW W W  (16) 

where α is a constant selected to satisfy 

 
min

max max max max max

( )
min , , , ,

( ) ( ) ( ) ( ) ( )

σλ σ σ σ
α

λ λ λ λ λ

 
≤  

 

gD C h

D C g h

Q

A Q Q Q Q
 

so that we have 

 

2

1

2min

1 1
[ ( )

2 ( ) 2

    ( ) ( ) ( )]

T

T T T

V V Tr

Tr Tr Tr

α σ
λ

σ σ σ

 
≤ − + + 

 

+ + +

D D D

C C C g g g h h h

ε
W W

εQ

W W W W W W

ɺ

 (17) 
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Therefore, 0V <ɺ  whenever  

 

0

2

1

2min

( )1 1
sup [ ( )

( )2 ( ) 2

( ) ( ) ( )]

T

t

T T T

V Tr

Tr Tr Tr

τ

τ
σ

ταλ α

σ σ σ

≥

 
> + 

 

+ + +

D D D

C C C g g g h h h

ε
W W

εQ

W W W W W W  (18) 

This verifies that s, τe , DWɶ , CWɶ , gWɶ , and hWɶ  are uniformly ultimately 

bounded. Differential inequality (17) can be solved to have the upper bound for 

V(t) as 

 

0

0

2

1( )
0

2min

( )1
( ) ( ) sup

( )2 ( )

1
[ ( ) ( )

2

( ) ( )]

t t

t t

T T

T T

V t e V t

Tr Tr

Tr Tr

α

τ

τ

ταλ

σ σ
α

σ σ

− −

< <

 
≤ +  

 

+ +

+ +

D D D C C C

g g g h h h

ε

εQ

W W W W

W W W W  (19) 

From (12), we may estimate the lower bound for V as 

2

min

1
( )

2
V

τ
λ

 
≥  

 

s
A

e
 

which gives the expression  

 
min

2 ( )

( )

V t

τ λ
 

≤ 
 

s

e A
 

Together with (19), we may have the bound for the error signals as 

 

0

0

( ) 10 2

2min min min

min

1

2

( )2 ( ) 1
sup

( )( ) ( ) ( )

1
[ ( ) ( )

( )

( ) ( )]

           

t t

t t

T T

T T

V t
e

Tr Tr

Tr Tr

α

ττ

τ

τλ αλ λ

σ σ
αλ

σ σ

− −

< <

   
≤ +   

   

+ +

+ +

D D D C C C

g g g h h h

s ε

e εA A Q

W W W W
A

W W W W

 

Therefore, the bound is a weighted exponential function shifted with a constant. 
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Remark 5: To implement the desired transmission torque (2), actuator input (6) 

and update law (14), we do not need the regressor matrix, the knowledge of joint 

accelerations, or their derivatives. Therefore, it is feasible for realization. 

Table 6.1 summarizes the adaptive control laws derived in this section 

based on their controller forms, update laws and implementation issues. 

Table 6.1 Summary of the adaptive control for FJR 

Flexible-Joint Robot 

( , )

t

t t t t t a

+ + + + =

+ + = −

Ds Cs g Dv Cv τ

J τ B τ τ τ q q q

ɺ ɺ

ɺ ɺɺɺɺ ɺ

     (6.3-1) 

 

Regressor-based Regressor-free 

 

Controller 

ˆˆˆ

ˆ( , , , )

td d

d

= + + −

= −

τ g Dv Cv K s

Y q q v v p K s

ɺ

ɺ ɺ

 

( , )a p td td= + +τ Θx Φτ h τ q

(6.3-2), (6.2-8) 

ˆˆˆtd d= + + −τ g Dv Cv K sɺ  

ˆ
a p td= + +τ Θx Φτ h  

(6.4-2), (6.4-6) 

 

Adaptive Law 

 

1ˆ T−= −p Γ Y sɺ  

(6.3-6) 

1

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

T

T

T

T
τ

σ

σ

σ

σ

−

−

−

−

= − +

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

h h h h h

W Q Z vs W

W Q Z vs W

W Q z s W

W Q z e W

ɺ
ɺ

ɺ

ɺ

ɺ

 

 (6.4-14) 

Realization 

Issue 

Need information of joint 

accelerations and their higher 

derivatives. Need to compute 

the regressor matrix and its time 

derivatives. 

Does not need joint accelerations. 

Does not need to compute the 

regressor matrix. 

Example 6.1: 

Consider the flexible-joint robot in (3.6-3), and we are going to verify the 

regressor-free adaptive control strategy developed in this section by computer 

simulations. Actual values of link parameters are selected as m1=m2=0.5(kg), 

l1=l2=0.75(m), lc1=lc2=0.375(m), I1=I2=0.0234(kg-m
2
), and k1=k2=100(N-m/rad). 

Parameters for the actuator part are chosen as j1=0.02(kg-m
2
), j2=0.01(kg-m

2
), 

b1=5(N-m-sec/rad), and b2=4(N-m-sec/rad)(Chien and Huang 2007a). We 

would like the endpoint to track a 0.2m radius circle centered at (0.8m, 1.0m) in 
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10 seconds without knowing its precise model. The initial condition for the 

generalized coordinate is at (0) (0) [0.0022 1.5019 0 0]T= =q θ , i.e., the 

endpoint is initially at (0.8m, 0,75m). It is away form the desired initial endpoint 

position (0.8m, 0,8m) for observation of the transient. The initial state for the 

reference model is (0) [1.8 2.8 0 0]T
r = −τ , which is the same as the 

initial state for the desired torque. The controller in (6) is applied with the gain 

matrices 

 
5 0

0 5
d

 
=  
 

K , and 
5 0

0 5

 
=  
 

Λ .  

The 11-term Fourier series is selected as the basis function for the 

approximation. Therefore, ˆ
DW  and ˆ

CW  are in 
44 2×ℜ , while ˆ

gW  and ˆ
hW  are 

in 
22 2×ℜ . The initial weighting vectors for the entries are assigned to be 

11

11 1ˆ (0) [0.05 0 0]T
D

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]T
D D

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]T
D

×= ∈ℜw ⋯  

11

11 1ˆ (0) [0.05 0 0]T
C

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]T
C C

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]T
C

×= ∈ℜw ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
g g

×= = ∈ℜw w ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
h h

×= = ∈ℜw w ⋯  

The gain matrices in the update law (14) are selected as 

 
1−

DQ 442= I , 
1

442
− =CQ I , 

1
2210− =gQ I , and 

1
2210000

− =hQ I  

The approximation error is assumed to be neglected in this simulation, and the  

σ-modification parameters are chosen as 0)( =⋅σ .  
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The simulation results are shown in Figure 6.1 to 6.8. Figure 6.1 shows the 

tracking performance of the robot endpoint and its desired trajectory in the 

Cartesian space. It is observed that the endpoint trajectory converges nicely to 

the desired trajectory, although the initial position error is quite large. After the 

transient state, the tracking error is small regardless of the time-varying 

uncertainties in D, C and g. Computation of the complex regressor is avoided in 

this strategy which greatly simplifies the design and implementation of the 

control law. Figure 6.2 presents the time history of the joint space tracking 

performance. The transient states converge very fast and the tracking errors are 

small. The control efforts to the two joints are reasonable that can be verified in 

Figure 6.3. The control torque for both joints can be seen in Figure 6.4. 

Figure 6.5 to 6.8 are the performance of function approximation. Although most 

parameters do not converge to their actual values, they still remain bounded as 

desired. 
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Figure 6.1 Tracking performance in the Cartesian space  
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Figure 6.2 Joint space tracking performance. It can be seen that the transient is fast,  

and the tracking error is very small 
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Figure 6.3 Torque tracking performance. It can be seen that the torque errors for  

both joints are small 
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Figure 6.4 The control torques for both joints are reasonable 
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Figure 6.5 Approximation of D 
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Figure 6.6 Approximation of C 
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Figure 6.7 Approximation of g 
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Figure 6.8 Approximation of h 

6.5 Consideration of Actuator Dynamics 

According to (6.4-1) and (3.8-1), the dynamics of a rigid-link flexible-joint 

electrically-driven robot can be described by
 

 t+ + + + =Ds Cs g Dv Cv τɺ ɺ  (1a) 

 ( , )t t t t t+ + = −J τ B τ τ Hi q q qɺ ɺɺɺɺ ɺ  (1b) 

 b+ + =Li Ri K q uɺ ɺ  (1c) 

This system is in a cascade form with the configuration shown in Figure 6.9. 

 

 

 

Figure 6.9 Cascade structure in equation (1) 

Equation (1c) Equation (1b) Equation (1a) 

u i ττt s 
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Therefore, the backstepping-like procedure can be applied here. The concept is 

to design a desired torque trajectory tdτ  first for convergence of s in (1a). A 

desired current trajectory id can then be found to ensure t td→τ τ  in (1b). 

Finally, the control effort u is constructed to have convergence of i to id.  

Assuming that all parameters in (1) are known, then the desired torque can 

be designed as 

 td d= + + −τ g Dv Cv K sɺ  (2) 

Therefore, the dynamics for output error tracking is found to be 

 d t td+ + = −Ds Cs K s τ τɺ  (3) 

To ensure torque tracking in (1b), the MRC rule is applied with the reference 

model 

 r r r r r r r td r td r td+ + = + +J τ B τ K τ J τ B τ K τɺɺ ɺ ɺɺ ɺ  (4) 

where 
n

r ∈ℜτ  is the state vector of the reference model, and 
n n

r
×∈ℜJ , 

n n
r

×∈ℜB , and 
n n

r
×∈ℜK  are selected to give convergence of rτ  to tdτ . 

With the definition of 
1( , ) ( )td td td r r td r td

−= +τ τ τ K B τ J τɺ ɺɺ ɺ ɺɺ , we may rewrite 

(1b) and (4) into the state space representation 

 p p p p p= + −x A x B Hi B qɺ  (5a) 

 ( )m m m m td td= + +x A x B τ τɺ  (5b) 

where 
2

[ ]
T T T n

p t t= ∈ℜx τ τɺ  and 
2[ ]T T T n

m r r= ∈ℜx τ τɺ  are augmented state 

vectors. 2 2

1 1

n n n n
p

t t t

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J J B
 and 2 2

1 1

n n n n
m

r r r r

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J K J B
 

are augmented system matrices, and 
2

1

n n
p

t

×
−

 
= ∈ℜ 
 

0
B

J
 and 

2

1

n n
m

r r

×
−

 
= ∈ℜ 
 

0
B

J K
 are augmented input gain matrices. Let t p p=τ C x  

and r m m=τ C x  be respectively the output signal vector for (5a) and (5b), 

where 
2[ ] n n

p m n n
×

×= = ∈ℜC C I 0  are augmented output signal matrices. 

The pair ( , )m mA B  is controllable, ( , )m mA C  is observable, and the transfer 
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function 
1( )m m ms

−−C I A B  is SPR. According to the MRC design, the desired 

current id is selected as 

 
1[ ( , )]d p td td
−= + +i H Θx Φτ h τ q  (6) 

where Θ  and Φ  are matrices satisfying p p m+ =A B Θ A  and p m=B Φ B , 

respectively, and h is defined as ( , )td td= +h τ q Φτ q . Using (6) and (5a), we 

may obtain  

 ( ) ( )p m p m d td p d= + + + −x A x B τ τ B H i iɺ ɺ  (7) 

With the definition m p m= −e x x  and t rτ = −e τ τ , the dynamics for the 

torque tracking loop becomes 

 ( )m m m p d= + −e A e B H i iɺ  (8a) 

 m mτ =e C e  (8b) 

In order to ensure t td→τ τ  and d→i i , the control law in (1c) is designed as 

 d b c i= + + −u Li Ri K q K eɺ ɺ  (9) 

where i d= −e i i  is the current error vector, and Kc is a positive definite 

matrix. Plugging, (9) into (1c), we may have the dynamics for the current 

tracking loop 

 i c i+ =Le K e 0ɺ  (10) 

At this stage, we have the output error dynamics in (3), the dynamics of the 

torque tracking loop in (8) and the dynamics of the current tracking loop in (10). 

We have to ensure that all of these dynamics be stable. To this end, let us 

consider a Lyapunov-like function candidate 

 
1 1

( , , )
2 2

T T T
m i m t m i iV = + +s e e s Ds e P e e Le  (11) 

where 
2 2T n n

t t
×= ∈ℜP P  is a positive definite matrix satisfying the Lyapunov 

equation 
T T
m t t m m m+ = −A P P A C C . Along the trajectories of (3), (8) and (10), 

the time derivative of V can be computed as 
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1
( 2 )

2

T T T
d

T T T
m t p i i c i

V τ

τ τ

= − + − +

− + −

s K s s D C s s e

e e e P B He e K e

ɺ ɺ

 (12) 

Selecting m p=B B  and according to the Kalman-Yakubovic lemma, equation 

(12) becomes 

 [ ] 0T T T
i

i

V τ τ

 
 = − ≤ 
  

s

s e e Q e

e

ɺ  (13) 

where 

1

2

1 1

2 2

1

2

d n n

n n n n

c

×

× ×

 
− 

 
 = − −
 
 
 −
  

K I 0

Q I I H

0 H K

 is positive definite due to proper 

selection of Kd and Kc. Therefore, we have proved that s, τe  and ie  are 

uniformly bounded, and their square integrability can also be proved from (13). 

Furthermore, uniformly boundedness of sɺ , τeɺ , and ieɺ  are also easy to be 

proved, and hence, d→q q , t td→τ τ , and d→i i  follow by Barbalat’s lemma.  

Remark 6: To implement the control strategy, all system parameters are 

required to be available, and we need to feedback qɺɺ  and its higher order 

derivatives. Therefore, the design introduced in this section is not feasible for 

practical applications.  

6.5.1 Regressor-based adaptive controller design   

Consider the system in (1) again, but D, C, g, L, R and Kb are 

unavailable. The desired torque trajectory in (2) is not feasible, and we modify 

it as 

 

ˆˆˆ

ˆ( , , , )

td d

d

= + + −

= −

τ g Dv Cv K s

Y q q v v p K s

ɺ

ɺ ɺ  (14) 
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where D̂ , Ĉ  and ĝ  are estimates of D, C, and g, respectively. Plugging (14) 

into (1a), and we may obtain the error dynamics for the output tracking loop 

 

( )

( , , , ) ( )

d t td

t td

+ + = − − − + −

= − + −

Ds Cs K s Dv Cv g τ τ

 Y q q v v p τ τ

ɶɶɺ ɶɺ

ɺ ɶɺ  (15) 

where ˆ= −D D Dɶ , ˆ= −C C Cɶ , ˆ= −g g gɶ , and ˆ= −p p pɶ . Therefore, if we 

may find a control law to drive t td→τ τ  and an update law to have ˆ →p p , 

then (15) implies convergence of the output error. To this end, we would like to 

use the MRC rule with the reference model in (4) and the state space 

representation in (5). The desired current trajectory is designed as the one in (6) 

to have the dynamics for the torque tracking loop as in (8). Instead of the 

controller in (9), we use 

 

ˆ ˆ ˆ

ˆ

d b c i

T
i c i

= + + −

= −

u Li Ri K q K e

p φ K e

ɺ ɺ

 (16) 

where 
3[ ]T T T T n

d= ∈ℜφ i i qɺ ɺ , 
3ˆ ˆ ˆˆ [ ]T T T T n n

i b
×= ∈ℜp L R K , and we 

may have the dynamics for the current tracking loop as 

 
T

i c i i+ = −Le K e p φɺ ɶ  (17) 

where ˆi i i= −p p pɶ . To prove stability, we select the Lyapunov-like function 

candidate 

 

1
( , , , , ) ( 2

2

) ( )

T T T
m i i m t m i i

T T
i i i

V

Tr

= + +

+ +

s e e p p s Ds e P e e Le

p Γp p Γ p

ɶ ɶ

ɶ ɶ ɶ ɶ  (18) 

where 
2 2T n n

t t
×= ∈ℜP P  is positive definite satisfying the Lyapunov equation 

T T
m t t m m m+ = −A P P A C C . Taking time derivative of (18) along the trajectories 

of (8), (15) and (17), we have 

 ˆ ˆ         ( ) [ ( )]

T T T T T
d m t p i i c i

T T T T
i i i i

V

Tr

τ τ τ= − + − + −

− + − +

s K s s e e e e P B He e K e

p Γp Y s p Γ p φe

ɺ

ɺ ɺɶ ɶ  (19) 
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Pick m p=B B  to have 
T T
m t p τ=e P B e , then the update law can be selected to be 

 
1ˆ T−= −p Γ Y sɺ  (20a) 

 
1ˆ T

i i i
−= −p Γ φeɺ  (20b) 

Thus, (19) becomes (13); therefore, we have proved that s, τe  and ie  are 

uniformly bounded, and their square integrability can also be proved from (13). 

Furthermore, uniformly boundedness of sɺ , τeɺ , and ieɺ  are also easy to be 

proved, and hence, d→q q , t td→τ τ , and d→i i  follow by Barbalat’s lemma.  

Remark 7: To implement the controller strategy, we do not need to have the 

knowledge of most system parameters, but we have to feedback qɺɺ  and calculate 

the regressor matrix and their higher order derivatives. Therefore, the design 

introduced in this section is not feasible for practical applications, either. 

6.5.2 Regressor-free adaptive controller design  

Consider the system in (1) again, but D, C, g, L, R and Kb are 

unavailable. The desired torque trajectory in (2) is modified as 

 ˆˆˆtd d= + + −τ g Dv Cv K sɺ  (21) 

The dynamics for the output tracking loop can thus be written as 

 ( )d t td+ + = − − − + −Ds Cs K s Dv Cv g τ τɶɶɺ ɶɺ  (22) 

Therefore, if we may find a control law to drive t td→τ τ  and update laws to 

have ˆ →D D , ˆ →C C , and ˆ →g g , then (22) implies convergence of the 

output error. To this end, we would like to use the MRC rule with the reference 

model in (4) and the state space representation in (5). The desired current 

trajectory is designed according to (6) to be 

 
1 ˆ[ ]d p td
−= + +i H Θx Φτ h  (23) 

where ĥ  is an estimate of ( , )td td= +h τ q Φτ q . Consequently, the dynamics 

for the torque tracking loop becomes 
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 ˆ( ) ( )m m m p d p= + − + −e A e B H i i B h hɺ  (24a) 

 m mτ =e C e  (24b) 

Hence, if we may design a control law to ensure d→i i  and an update law to 

have ˆ →h h , then we may have convergence of the torque tracking loop. The 

control strategy can be constructed as 

 ˆ
c i= −u f K e  (25) 

where i d= −e i i  is the current error, Kc is a positive definite matrix and f̂  is 

an estimate of ( , , )d d b= + +f i i q Li Ri K qɺ ɺɺ ɺ . With this control law, the dynamics 

for the current tracking loop can be found as 

 ˆ
i c i+ = −Le K e f fɺ  (26) 

If we may select a proper update law to have ˆ →f f , (26) ensures convergence 

in the current tracking loop. Since ( )D q , ( , )C q qɺ , ( )g q , ( , )tdh τ q  and 

( , , )df i i qɺ ɺ  are time-varying functions and their variation bounds are not given, 

we would like to use their function approximation representations as 

 
T= +D D DD W Z ε  (27a) 

 
T= +C C CC W Z ε  (27b) 

 
T= +g g gg W z ε  (27c) 

 
T= +h h hh W z ε  (27d) 

 
T= +f f ff W z ε  (27e) 

where 
2

Dn nβ ×∈ℜDW , 
2

n nβ ×∈ℜ C

CW , gn nβ ×∈ℜgW , ,hn nβ ×∈ℜhW  and 
fn nβ ×∈ℜfW  are weighting matrices for D, C, g, h, and f, respectively, while 

2
Dn nβ ×∈ℜDZ , 

2
n nβ ×∈ℜ C

CZ , 
1gnβ ×∈ℜgz , 

1hnβ ×∈ℜhz , and 
1fnβ ×∈ℜfz  

are basis function matrices. Likewise, we have the representations for the 

estimates as 

 ˆ ˆ T= D DD W Z  (27f) 

 ˆ ˆ T= C CC W Z  (27g) 
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 ˆˆ T= g gg W z  (27h) 

 ˆ ˆ T= h hh W z  (27i) 

 ˆ ˆ T= f ff W z  (27j) 

Thus the output error dynamics (22), torque tracking error dynamics (24a), and 

current tracking error dynamics (26) can be rewritten as 

 1( ) T T T
d t td+ + = − − − − +D D C C g gDs Cs K s τ τ W Z v W Z v W z εɶ ɶ ɶɺ ɺ  (28a)  

 2
T

m m m p p i p= − + +h he A e B W z B He B εɶɺ  (28b) 

 3
T

i c i+ = − +f fLe K e W z εɶɺ  (28c) 

where 1 1( , , , , )d= D C gε ε ε ε ε s qɺɺ , 2 2 ( , )m= hε ε ε e , and 3 3( , )i= fε ε ε e  are 

lumped approximation error vectors. Define the Lyapunov-like function 

candidate as 

 

1
( , , , , , , , )

2

1 1
(

2 2

)

T T
m i m t m

T T T
i i

T T T

V

Tr

= +

+ + +

+ + +

D C g h f

D D D C C C

g g g h h h f f f

s e e W W W W W s Ds e Pe

e Le W Q W W Q W

W Q W W Q W W Q W

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ  (29) 

where matrices 
2 2

D Dn nβ β×∈ℜDQ , 
2 2

C Cn nβ β×∈ℜCQ , g gn nβ β×∈ℜgQ , 
h hn nβ β×∈ℜhQ , and f fn nβ β×∈ℜfQ  are positive definite. Along the trajectory 

of (28), we may compute the time derivative of V as 

 

1

2 3
ˆ[ ( )

ˆ ˆ( )] [ ( )

ˆ ˆ( )] [ ( )]

T T T T T T
d m t p i i c i

T T T T
m t p i

T T T T

T T T T
m t p i

V

Tr

Tr

Tr

τ τ τ= − + − + − +

+ + − +

+ + − +

+ + − +

D D D D

C C C C g g g g

h h h h f f f f

s K s s e e e e P B He e K e s ε

e P B ε e ε W Z vs Q W

W Z vs Q W W z s Q W

W z e P B Q W W z e Q W

ɺ

ɺɶ ɺ

ɺ ɺɶ ɶ

ɺ ɺɶ ɶ  (30) 
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If we select m p=B B  so that 
T T
m t p τ=e P B e , and if we pick the update laws as 

 
1ˆ ˆ( )T σ−= − +D D D D DW Q Z vs W

ɺ
ɺ  (31a) 

 
1ˆ ˆ( )T σ−= − +C C C C CW Q Z vs W

ɺ
 (31b) 

 
1ˆ ˆ( )T σ−= − +g g g g gW Q z s W

ɺ
 (31c) 

 
1ˆ ˆ( )T

τ σ−= − +h h h h hW Q z e W
ɺ

 (31d) 

 
1ˆ ˆ( )T

i σ−= − +f f f f fW Q z e W
ɺ

 (31e) 

then (30) becomes 

 

1

2

3

[ ] [ ] 

ˆ ˆ ˆ   ( ) ( ) ( )

ˆ ˆ   ( ) ( )

T T T T T T
i i

i

T T T

T T

V

Tr Tr Tr

Tr Tr

τ τ τ

σ σ σ

σ σ

   
   = − +   
      

+ + +

+ +

D D D C C C g g g

h h h f f f

s ε

s e e Q e s e e ε

e ε

W W W W W W

W W W W

ɺ

ɶ ɶ ɶ

ɶ ɶ  (32) 

where 

1

2

1 1

2 2

1

2

d n n

n n n n

c

×

× ×

 
− 

 
 = − −
 
 
 −
  

K I 0

Q I I H

0 H K

 is positive definite due to proper 

selection of gain matrices Kd and Kc.  

Remark 8: Realization of the control law (25) and update laws (31) does not 

need the information of joint accelerations, regressor matrix, or their higher 

order derivatives, which largely simplified its implementation. 

Remark 9: Suppose a sufficient number of basis functions are used and the 

approximation error can be ignored, then it is not necessary to include the           
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σ-modification terms in (31). Hence, (32) can be reduced to (13), and 

convergence of s, eτ and ei can be further proved by Barbalat’s lemma.   

Remark 10: If the approximation error cannot be ignored, but we can find 

positive numbers δ1, δ2 and δ3 such that i iδ≤ε , i=1,2,3, then robust terms 

τrobust 1, τrobust 2 and τrobust 3 can be included into (21), (23) and (25) to have 

 1
ˆˆˆtd d robust= + + − +τ g Dv Cv K s τɺ  

 
1

2
ˆ[ ]d p td robust

−= + + +i H Θx Φτ h τ  

 3
ˆ

c i robust= − +u f K e τ  

Consider the Lyapunov-like function candidate (29) again, and the update law 

(31) without σ-modification; then the time derivative of V becomes 

 
1 2 3

1 2 3

[ ]  T T T
i i

i

T T T
robust robust i robust

V τ τ τ

τ

δ δ δ
 
 = − + + + 
  

+ + +

s

s e e Q e s e e

e

s τ e τ e τ

ɺ

 

If we select 1 1 1 2[sgn( ) sgn( ) sgn( )]T
robust ns s sδ= −τ ⋯  where si, 

i=1,…,n is the i-th entry in s, 
1 22 2[sgn( ) sgn( )]

n

T
robust e eτ τδ= −τ ⋯  

where 
j

eτ , j=1,…,n is the j-th entry in τe , and 

13 3[sgn( ) sgn( )]
n

T
robust i ie eδ= −τ ⋯  where 

kie , k=1,…,n is the k-th 

element in ei, then we may have (13) again. This will further give convergence 

of the output error by Barbalat’s lemma.  

Owing to the existence of the approximation errors, the definiteness of Vɺ  

cannot be determined. By considering the inequality 

2

max max max

max max max

1 1
( ) [ ( ) ( ) ( ) ( )

2 2

( ) ( ) ( ) ( ) ( ) ( )]

T T

i

T T T

V Tr Tr

Tr Tr Tr

τλ λ λ

λ λ λ

 
 ≤ + + 
  

+ + +

D D D C C C

g g g h h h f f f

s

A e Q W W Q W W

e

Q W W Q W W Q W W

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ
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where 2 T
m t m

 
 

=  
 
 

D 0 0

A 0 C P C 0

0 0 L

, we may rewrite (32) as 

 

2 2

1

max min 2

min

3

max max

max max

max

1 1
[ ( ) ( )]  

2 2 ( )

1
{[ ( ) ] ( ) [ ( ) ] ( )

2

[ ( ) ] ( ) [ ( ) ] ( )

[ ( ) ] (

i

T T

T T

T

V V

Tr Tr

Tr Tr

Tr

τα αλ λ
λ

αλ σ αλ σ

αλ σ αλ σ

αλ σ

   
   ≤ − + − +   
      

+ − + −

+ − + −

+ −

D D D D C C C C

g g g g h h h h

f f f

s ε

A Q e ε
Q

e ε

Q W W Q W W

Q W W Q W W

Q W

ɺ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ
1

)} [ ( ) ( )
2

( ) ( ) ( )]

T T

T T T

Tr Tr

Tr Tr Tr

σ σ

σ σ σ

+ +

+ + +

f D D D C C C

g g g h h h f f f

W W W W W

W W W W W W

ɶ

 

where α is selected to satisfy 

min

max max max max max max

( )
min , , , , ,

( ) ( ) ( ) ( ) ( ) ( )

σλ σ σ σ σ
α

λ λ λ λ λ λ

 
≤  

 

gD C h f

D C g h f

Q

A Q Q Q Q Q
 

such that we may further have 

 

2

1

2

min

3

1 1
[ ( )

2 ( ) 2

( ) ( )

( ) ( )]

T

T T

T T

V V Tr

Tr Tr

Tr Tr

α σ
λ

σ σ

σ σ

 
 ≤ − + + 
  

+ +

+ +

D D D

C C C g g g

h h h f f f

ε

ε W W
Q

ε

W W W W

W W W W

ɺ

 (33) 

Therefore, we have proved that 0V <ɺ  whenever  

 0

2

1

2

min
3

( )
1 1

 sup ( ) [ ( )
2 ( ) 2

( )

( ) ( ) ( ) ( )]

T

t

T T T T

V Tr

Tr Tr Tr Tr

τ

τ

τ σ
αλ α

τ

σ σ σ σ

≥

 
 > + 
  

+ + + +

D D D

C C C g g g h h h f f f

ε

ε W W
Q

ε

W W W W W W W W
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i.e., s, τe , ie , DWɶ , CWɶ , gWɶ , hWɶ , and fWɶ  are uniformly ultimately 

bounded. In addition, (33) implies 

 

0

0

2

1

( )
0 2

min
3

( )
1

( ) ( ) sup ( )
2 ( )

( )

1
[ ( ) ( )

2

( ) ( ) ( )]

t t

t t

T T

T T T

V t e V t

Tr Tr

Tr Tr Tr

α

τ

τ

τ
αλ

τ

σ σ
α

σ σ σ

− −

< <

 
 ≤ +  
  

+ +

+ + +

D D D C C C

g g g h h h f f f

ε

ε
Q

ε

W W W W

W W W W W W  (34) 

Together with the inequality 

 

2

min min min

min min min

1 1
( ) [ ( ) ( ) ( ) ( )

2 2

    ( ) ( ) ( ) ( ) ( ) ( )]

T T

i

T T T

V Tr Tr

Tr Tr Tr

τλ λ λ

λ λ λ

 
 ≥ + + 
  

+ + +

D D D C C C

g g g h h h f f f

s

A e Q W W Q W W

e

Q W W Q W W Q W W

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

 

we may find the error bound  

 

0

0

1
( )0 2

2

min min min
3

min

1

2

( )
2 ( ) 1

sup ( )
( ) ( ) ( )

( )

1
[ ( ) ( )

( )

( ) ( ) ( )]

t t

t t

i

T T

T T T

V t
e

Tr Tr

Tr Tr Tr

α

τ
τ

τ

τ
λ αλ λ

τ

σ σ
αλ

σ σ σ

− −

< <

   
   ≤ +   
      

+ +

+ + +

D D D C C C

g g g h h h f f f

s ε

e ε
A A Q

e ε

W W W W
A

W W W W W W

 

Table 6.2 summarizes the adaptive control for EDFJR derived in 

this chapter in terms of the controller forms, update laws and implementation 

issues. 
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Table 6.2 Summary of the adaptive control for EDFJR 

Electrically driven flexible-joint robots 

( , )

t

t t t t t

b

+ + + + =

+ + = −

+ + =

Ds Cs g Dv Cv τ

J τ B τ τ Hi q q q

Li Ri K q u

ɺ ɺ

ɺ ɺɺɺɺ ɺ

ɺ ɺ

        (6.5-1) 

 

Regressor-based Regressor-free 

 

Controller 

ˆˆˆ

ˆ( , , , )

td d

d

= + + −

= −

τ g Dv Cv K s

Y q q v v p K s

ɺ

ɺ ɺ

 

1
[ ( , )]d p td td

−= + +i H Θx Φτ h τ q  

ˆ ˆ ˆ

ˆ

d b c i

T
i c i

= + + −

= −

u Li Ri K q K e

p φ K e

ɺ ɺ
 

(6.5-14), (6.5-6), (6.5-16) 

ˆˆˆtd d= + + −τ g Dv Cv K sɺ  

1 ˆ[ ]d p td
−= + +i H Θx Φτ h  

ˆ
c i= −u f K e  

(6.5-21), (6.5-23),  

(6.5-25) 

 

Adaptive 

Law 

 

1

1

ˆ

ˆ

T

T
i i i

−

−

= −

= −

p Γ Y s

p Γ φe

ɺ

ɺ

 

(6.5-20) 

1

1

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

T

T

T

T

T
i

τ

σ

σ

σ

σ

σ

−

−

−

−

−

= − +

= − +

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

h h h h h

f f f f f

W Q Z vs W

W Q Z vs W

W Q z s W

W Q z e W

W Q z e W

ɺ
ɺ

ɺ

ɺ

ɺ

ɺ

 

(6.5-31) 

Realization 

Issue 

Need to know the regressor matrix, 

joint accelerations and their higher 

derivatives. 

Does not need the information for 

the regressor matrix, joint 

accelerations, or their derivatives. 

Example 6.2: 

Consider the flexible-joint robot in example 6.1 but with consideration of the 

motor dynamics. Actual values of link parameters are selected as m1=m2=0.5(kg), 

l1= l2=0.75(m), lc1= lc2=0.375(m), I1=I2=0.0234(kg-m
2
), and k1=k2=100(N-m/rad). 

Parameters for the actuator part are chosen as j1=0.02(kg-m
2
), j2=0.01(kg-m

2
), 

b1=5(N-m-sec/rad), b2=4(N-m-sec/rad), and h1=h2=10(N-m/A). Electrical 

parameter for the actuator are L1=L2 =0.025(H), r1=r2=1(Ω), kb1=kb2 =1 

(Vol/rad/sec) (Chien and Huang 2007a). In order to observe the effect of the 

actuator dynamics, the endpoint is required to track a 0.2m radius circle centered 

at (0.8m, 1.0m) in 2 seconds which is much faster than the case in example 6.1. 

The initial condition for the generalized coordinate vector is at 

(0) (0) [0.0022 1.5019 0 0]T= =q θ , i.e., the endpoint is initially at 
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(0.8m, 0,75m). It is away from the desired initial endpoint position (0.8m, 0,8m) 

for observation of the transient. The initial state for the reference model is 

(0) [15.5 33.6 0 0]T
r = −τ , which is the same as the initial state for the 

desired torque. The controller gain matrices are selected as 

 
20 0

0 20
d

 
=  
 

K , 
10 0

0 10

 
=  
 

Λ , and 
50 0

0 50
c

 
=  
 

K . 

The initial value for the desired current can be found by calculation as 

 (0) [77.5 83.9]T= −i . 

The 11-term Fourier series is selected as the basis function for the approximation. 

Therefore, ˆ
DW  and ˆ

CW  are in 
44 2×ℜ , while ˆ

gW , ˆ
hW , and ˆ

fW  are in 
22 2×ℜ . The initial weighting vectors for the entries are assigned to be 

11

11 1ˆ (0) [0.05 0 0]T
D

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]T
D D

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]T
D

×= ∈ℜw ⋯  

11

11 1ˆ (0) [0.05 0 0]T
C

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]T
C C

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]T
C

×= ∈ℜw ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
g g

×= = ∈ℜw w ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
h h

×= = ∈ℜw w ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
f f

×= = ∈ℜw w ⋯  

The gain matrices in the update law (31) are selected as 
1−

DQ 440.1= I , 
1

440.1
− =CQ I , 

1
2250− =gQ I , 

1
221000

− =hQ I , and 
1

2210000
− =fQ I . The 

approximation error is assumed to be neglected in this simulation, and the           

σ-modification parameters are chosen as ( ) 0σ ⋅ = .  
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The simulation results are shown in Figure 6.10 to 6.19. Figure 6.10 shows 

the tracking performance of the robot endpoint and its desired trajectory in the 

Cartesian space. It is observed that the endpoint trajectory converges nicely to 

the desired trajectory, although the initial position error is quite large. After the 

transient state, the tracking error is small regardless of the time-varying 

uncertainties in D, C, g, h, and f. Computation of the complex regressor is 

avoided in this strategy which greatly simplifies the design and implementation 

of the control law. Figure 6.11 presents the time history of the joint space 

tracking performance. The torque tracking performance is shown in Figure 6.12. 

It can be seen that the torque errors for both joints are small. Figure 6.13 

presents the current tracking performance. It is observed that the strategy can 

give very small current error. The control voltages to the two motors are 

reasonable that can be verified in Figure 6.14. Figure 6.15 to 6.19 are the 

performance of function approximation. Although most parameters do not 

converge to their actual values, they still remain bounded as desired. 

 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

X

Y

 

Figure 6.10 Robot endpoint tracking performance in the Cartesian space. After some  

transient, the endpoint converges to the desired trajectory nicely regardless of the  

uncertainties in the robot model 
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Figure 6.11 Joint space tracking performance. It can be seen that the transient is fast,  

and the tracking error is very small 
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Figure 6.12 Torque tracking performance. It can be seen that the torque errors for  

both joints are small 
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Figure 6.13 Current tracking performance. It can be seen that the current errors for  

both joints are small 
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Figure 6.14 The control voltages for both joints are reasonable 
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Figure 6.15 Approximation of D 
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Figure 6.16 Approximation of C 
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Figure 6.17 Approximation of g 
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Figure 6.18 Approximation of h 
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Figure 6.19 Approximation of f 

6.6 Conclusions 

Adaptive controllers for flexible-joint robots in the free space are derived in 

this chapter. The MRC rule is utilized in Section 6.2 for the control of a known 

FJR. In Section 6.3, a regressor based adaptive controller is derived. However, 

its implementation requires the knowledge of joint accelerations, the regressor 

matrix, and their higher order derivatives. Therefore, the control strategy is not 

practical. The regressor-free adaptive controller based on FAT is designed in 

Section 6.4 whose realization do not need the joint accelerations, the regressor 

matrix, or their higher order derivatives. The actuator dynamics is considered in 

Section 6.5. A regreesor-based adaptive controller is developed for EDFJR in 

Section 6.5.1. However, its realization still needs the joint accelerations, 

regressor matrix, and their derivatives. A regreesor-free adaptive controller for 

EDFJR is then introduced in Section 6.5.2 and it is free from the information for 

joint accelerations or the regressor matrix. 
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Chapter 7 

Adaptive Impedance Control of  

Flexible-Joint Robots 

7.1 Introduction 

Many practical operations of industrial robots such as grinding and 

assembling involve contact problems between the end-effector and the 

environment. To control the robot to interact compliantly with the environment, 

several approaches have been proposed. Two major strategies are hybrid control 

presented by Raibert and Craig (1981), and impedance control proposed by 

Hogan (1985). These two approaches are based on the same assumption that the 

robot is constructed with rigid links and joints. However, a lot of industrial robot 

manipulators are designed with harmonic drives to gain high torque with 

reduced motor speed. To achieve better output performance, the joint flexibility 

due to the harmonic drives should be carefully considered.  

Using the singular perturbation formulation and the concept of integral 

manifold, Spong (1989) derived a control approach for force/impedance control 

of flexible-joint robot. Jankowski and ElMaraghy (1991) proposed a nonlinear 

decoupling and linearizing feedback control based on inverse dynamics. Ahmad 

(1993) addressed the problem of hybrid force/position control utilizing the 

constraint formulation developed by Yoshikawa (1986). Based on the solution 

of the acceleration level inverse dynamic equations, Ider (2000) presented a 

hybrid force and motion trajectory tracking control law. Ott et. al. (2003) 

proposed an impedance controller based on an internal torque controller in a 

cascade structure. Schaffer et. al. (2003) implemented the impedance controllers 

based on three different kinds of nullspace projections for the realization of 

nullspace stiffness.  

Since the mathematical model is only an approximation of the real system, 

the simplified representation of the system behavior will contain model 

inaccuracies such as parametric uncertainties, and unmodeled dynamics. 
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Because these inaccuracies may degrade the performance of the closed-loop 

system, any practical design should consider their effects. Lian et. al. (1991) 

presented an adaptive force tracking control scheme for a single-link mechanism 

with flexible joint based on a two-stage controller. Lin and Goldenberg (1995, 

1996, 1997) proposed a combined adaptive and robust control approach to 

control the motion, internal force, contact force and joint torque simultaneously. 

Colbaugh et. al. (1997) presented two adaptive schemes for flexible-joint robots 

based on impedance control and position/force control. In addition, it was shown 

that the schemes ensure semiglobal uniform boundedness of all signals, and that 

the ultimate size of the system errors can be made arbitrarily small. Hu and 

Vukovich (2001) developed a position and force control scheme for flexible-

joint robots based on the concept of the integral manifold. However, most of the 

adaptive constrained motion control approaches need the information of time 

derivative of the external force which is rarely available precisely in practical 

applications. Therefore, an adaptive compliant control strategy for flexible joint 

robot without requiring the time rate of the force feedback is imperative. 

Moreover, in most adaptive control strategies for robot manipulators, the 

uncertainties should be linearly parameterizable into the regressor form. It is 

well-known that derivation of the regressor matrix of a high DOF rigid robot is 

generally tedious. For the flexible-joint robot, its dynamics is much more 

complex than that of its rigid-joint counterpart. Hence, the computation of the 

regressor matrix becomes extremely difficult. Chien and Huang (2006a) 

proposed a regressor-free adaptive controller for the impedance control of a 

flexible-joint robot. In this chapter, we would like to consider the impedance 

control problem for a flexible-joint robot. In Section 7.2, an impedance 

controller is designed for a known flexible-joint robot. A regressor-based 

adaptive impedance controller for a flexible-joint robot is derived in Section 7.3. 

In Section 7.4, a regressor-free impedance controller is constructed with 

consideration of the joint flexibility. Finally, in Section 7.5, the actuator 

dynamics is include in the system equation of a flexible-joint robot, resulting in 

the most complex case in this book. 

7.2 Impedance Control of Known Flexible-Joint Robots 

The dynamics of an n-link flexible-joint robot interacting with the 

environment is described in (3.7-1) which can be transformed in the form below 

by using the same technique in (6.2-2) 
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T

x x x a t ext
−+ + = −D x C x g J τ Fɺɺ ɺ  (1a) 

 ( , )t t t t t a+ + = −J τ B τ τ τ q q qɺ ɺɺɺɺ ɺ  (1b) 

where 
n∈ℜx , 

1
t

−=J JK , 
1

t
−=B BK , ( , ) = +q q q Jq Bqɺ ɺɺ ɺɺ ɺ  and ( )t =τ K θ - q . 

Suppose all system parameters are known and a controller is to be designed so 

that the closed-loop system behaves like the target impedance 

 ( ) ( ) ( )i d i d i d ext− + − + − = −M x x B x x K x x Fɺɺ ɺɺ ɺ ɺ  (2) 

where 
n

d ∈ℜx  is the desired trajectory, and ,
n n

i
×∈ℜM ,

n n
i

×∈ℜB and 
n n

i
×∈ℜK  are diagonal matrices representing the desired apparent inertia, 

damping, and stiffness, respectively. The strategy is to regard the impedance 

controller as a model reference controller, and the target impedance in (2) plays 

the role of the reference model. Instead of direct utilization of (2), we consider 

the new target impedance 

 ( ) ( ) ( )i i d i i d i i d ext− + − + − = −M x x B x x K x x Fɺɺ ɺɺ ɺ ɺ  (3) 

where 
n

i ∈ℜx  is the state vector of (3). If we can design a controller such that 

x converges asymptotically to xi then the two target impedances are equivalent.  

Define i= −e x x , = +s e Λeɺ , and i= −v x Λeɺ , then we may rewrite (1a) 

into 

 
T

x x x x x a t ext
−+ + + + = −D s C s g D v C v J τ Fɺ ɺ  (4) 

We would like to regard tτ  as the control torque to drive the system in (4) so 

that the output tracking error will converge. This can be done by considering the 

desired torque trajectory 

 ( )T
td a ext x x x d= + + + −τ J F g D v C v K sɺ  (5) 

Plugging (5) into (4), we have the dynamics for the output tracking error 

 ( )T
x x d a t td

−+ + = −D s C s K s J τ τɺ  (6) 

Therefore, if we may construct a proper controller aτ  in (1b) to have t td→τ τ , 

then (6) implies convergence of x to xi. This further implies convergence of the 
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closed-loop system dynamics to the target impedance. To this end, we are going 

to employ the MRC rule with the reference model 

 r r r r r r r td r td r td+ + = + +J τ B τ K τ J τ B τ K τɺɺ ɺ ɺɺ ɺ  (7) 

where 
n

r ∈ℜτ  is the state vector of the reference model. Matrices 
n n

r
×∈ℜJ , 

n n
r

×∈ℜB , and 
n n

r
×∈ℜK  are selected for the convergence of rτ  to tdτ . 

Define 
1( , ) ( )td td td r r td r td

−= +τ τ τ K B τ J τɺ ɺɺ ɺ ɺɺ , and we may represent (1b) and (7) 

into their state space representations 

 p p p p a p= + −x A x B τ B qɺ  (8a) 

 ( )m m m m td td= + +x A x B τ τɺ  (8b) 

where 
2

[ ]
T T T n

p t t= ∈ℜx τ τɺ  and 
2[ ]T T T n

m r r= ∈ℜx τ τɺ  are augmented state 

vectors, 2 2

1 1

n n n n
p

t t t

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J J B
 and 2 2

1 1

n n n n
m

r r r r

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J K J B
 

are augmented system matrices, and 
2

1

n n
p

t

×
−

 
= ∈ℜ 
 

0
B

J
 and 

2

1

n n
m

r r

×
−

 
= ∈ℜ 
 

0
B

J K
 are augmented input gain matrices. The pair 

( , )m mA B  is controllable, and ( , )m mA C  is observable, where 
2[ ] n n

p m n n
×

×= = ∈ℜC C I 0  are augmented output matrices characterizing 

the output signals t p p=τ C x  and r m m=τ C x , respectively. The transfer 

function 
1( )m m ms

−−C I A B  is SPR due to proper selection of the matrices Jr, 

Br and Kr. The MRC rule can thus be designed as 

 ( , )a p td td= + +τ Θx Φτ h τ q  (9) 

where 
2n n×∈ℜΘ  and 

n n×∈ℜΦ  are matrices satisfying p p m+ =A B Θ A  

and p m=B Φ B . The vector 
n∈ℜh  is defined as ( , )td td= +h τ q Φτ q . 

Substituting (9) into (8a), we may have the dynamics after some manipulation 

 ( )p m p m td td= + +x A x B τ τɺ  (10) 
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Define m p m= −e x x  and t rτ = −e τ τ , then using (8b) and (10) we may 

obtain the error dynamics 

 m m m=e A eɺ  (11a) 

 m mτ =e C e  (11b) 

Let us consider the Lyapunov-like function candidate 

 
1

( , )
2

T T
m x m t mV = +s e s D s e P e  (12) 

where 
2 2T n n

t t
×= ∈ℜP P  is a positive definite matrix satisfying the Lyapunov 

equation 
T T
m t t m m m+ = −A P P A C C . Along the trajectory of (6) and (11), we 

may compute the time derivative of V as 

 [ ] 0
T T

V τ
τ

 
= − ≤ 

 

s
s e Q

e
ɺ  (13) 

where 

1

2

1

2

T
d a

T
a n n

−

−
×

 
− 

=  
 −
  

K J

Q

J I

 is positive definite with proper selection of 

Kd and Kc. Therefore, s and em are uniformly bounded and square integrable. It 

is also easy to prove that sɺ  and τeɺ  are uniformly bounded. Hence, convergence 

of s and em can be concluded by Barbalat’s lemma. This implies that the closed 

loop system converges asymptotically to the target impedance. 

Remark 1: This strategy is feasible only when all system parameters are 

available. In addition, we need to feedback accelerations and external forces as 

well as their higher order derivatives that largely restrict the practical 

applications.  

7.3 Regressor-Based Adaptive Impedance Control of  

Flexible-Joint Robots 

In this section, we are concerned with the case when the system parameters 

are not available. Consider the system equation (7.2-4) and (7.2-1b) again 
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T

x x x x x a t ext
−+ + + + = −D s C s g D v C v J τ Fɺ ɺ  (1a) 

 ( , )t t t t t a+ + = −J τ B τ τ τ q q qɺ ɺɺɺɺ ɺ  (1b) 

We would like to design a control torque aτ  such that the closed-loop system 

converges to the target impedance (7.2-3)  

 ( ) ( ) ( )i i d i i d i i d ext− + − + − = −M x x B x x K x x Fɺɺ ɺɺ ɺ ɺ  (2) 

Since xD , xC , and xg  are not known, desired transmission torque tdτ  in      

(7.2-5) is not realizable. Let us consider a modified version 

 

ˆˆˆ( )

ˆ [ ( , , , ) ]

T
td a ext x x x d

T
a ext x d

= + + + −

= + −

τ J F g D v C v K s

J F Y x x v v p K s

ɺ

ɺ ɺ  (3) 

where ˆ
xD , ˆ

xC , ˆ xg , and ˆ xp  are estimates of xD , xC , xg , and xp , 

respectively. With this new desired transmission torque, equation (1a) becomes 

 

( )

( , , , ) ( )

T
x x d x x x a t td

T
x a t td

−

−

+ + = − − − + −

= − + −

D s C s K s D v C v g J τ τ

Y x x v v p J τ τ

ɶɶɺ ɶɺ

ɶɺ ɺ  (4) 

where ˆ
x x x= −D D Dɶ , ˆ

x x x= −C C Cɶ , ˆx x x= −g g gɶ , and ˆx x x= −p p pɶ . 

Hence, if a proper control torque aτ  can be constructed such that t td→τ τ , 

and an update law can be designed to have ˆ x x→p p , then (4) implies 

convergence of s, i.e., the closed-loop system behaves like the target impedance. 

Here, the MRC rule is going to be used again to complete the design. Let us 

consider the reference model (7.2-7) and the state space representation (7.2-8). 

The control torque is selected as (7.2-9) to have the torque tracking loop 

dynamics (7.2-11) 

 m m m=e A eɺ  (5a) 

 m mτ =e C e  (5b) 

The Lyapunov-like function candidate is selected as 

 
1 1

( , , )
2 2

T T T
m x x m t m x xV = + +s e p s D s e P e p Γpɶ ɶ ɶ  (6) 
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where 
2 2T n n

t t
×

= ∈ℜP P  is a positive definite matrix satisfying the Lyapunov 

equation 
T T
m t t m m m+ = −A P P A C C , and 

r r×∈ℜΓ  is positive definite. Along 

the trajectories of (4) and (5), the time derivative of (6) can be computed as 

 ˆ( )T T T T T T
d a x xV τ τ τ

−= − + − − +s K s s J e e e p Γp Y sɺɺ ɶ  (7) 

If we select the update law as 

 
1ˆ T

x
−= −p Γ Y sɺ  (8) 

then (7) becomes (7.2-13), and same performance can be concluded.  

Remark 2: In this design, we do not need to know the system parameters, but 

the regressor matrix should be known. Again, in realization of the control torque 

aτ , we need to feedback the accelerations and external forces as well as their 

higher order derivatives. Therefore, this strategy is not practical either.  

7.4 Regressor-Free Adaptive Impedance Control of  

Flexible-Joint Robots 

Let us consider the uncertain system equation (7.3-1) again 

 
T

x x x x x a t ext
−+ + + + = −D s C s g D v C v J τ Fɺ ɺ  (1a) 

 ( , )t t t t t a+ + = −J τ B τ τ τ q q qɺ ɺɺɺɺ ɺ  (1b) 

The same transmission torque in (7.3-3) is to be used without the regressor 

representation 

 ˆˆˆ( )T
td a ext x x x d= + + + −τ J F g D v C v K sɺ  (2) 

Again, equation (1a) can be further written as 

 ( )T
x x d x x x a t td

−+ + = − − − + −D s C s K s D v C v g J τ τɶɶɺ ɶɺ  (3) 

Along the same line as in the previous section, we would like to employ the MRC 

rule to have t td→τ τ , and the reference model in (7.2-7) is to be used again 

 r r r r r r r td r td r td+ + = + +J τ B τ K τ J τ B τ K τɺɺ ɺ ɺɺ ɺ  (4) 
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Similar to (7.2-8), we have the state space representation 

 p p p p a p= + −x A x B τ B qɺ  (5a) 

 ( )m m m m td td= + +x A x B τ τɺ  (5b) 

The control torque can thus be designed based on the MRC rule as 

 ˆ
a p td= + +τ Θx Φτ h  (6) 

where 
2n n×∈ℜΘ  and 

n n×∈ℜΦ  satisfy p p m+ =A B Θ A  and p m=B Φ B , 

respectively, and ĥ  is the estimate of ( , )td td= +h τ q Φτ q . Plugging (6) into 

(5a) gives 

 ˆ( ) ( )p m p m td td p= + + + −x A x B τ τ B h hɺ  (7) 

With the definition of m p m= −e x x  and t rτ = −e τ τ , we have the dynamics 

for the torque tracking loop 

 ˆ( )m m m p= + −e A e B h hɺ  (8a) 

 m mτ =e C e  (8b) 

Therefore, if we may find a proper update law to have ˆ →h h, then the torque 

tracking can be achieved. To proceed, let us consider the function approximation 

representations of xD , xC , xg , and h as 

 
x x x

T
x = +D D DD W Z ε  (9a) 

 
x x x

T
x = +C C CC W Z ε  (9b) 

 
x x x

T
x = +g g gg W z ε  (9c) 

 
T= +h h hh W z ε  (9d) 

Their estimates are respectively represented as 

 ˆ ˆ
x x

T
x = D DD W Z  (9e) 

 ˆ ˆ
x x

T
x = C CC W Z  (9f) 



7.4  Regressor-Free Adaptive Impedance Control of Flexible-Joint Robots    209 

 

 ˆˆ
x x

T
x = g gg W z  (9g) 

 ˆ ˆ T= h hh W z  (9h) 

Therefore, (3) and (8a) can be rewritten as 

 1

( )
x x

x x x x

T T
x x d a t td

T T

−+ + = − −

− − +

D D

C C g g

D s C s K s J τ τ W Z v

W Z v W z ε

ɶɺ ɺ

ɶ ɶ  (10a) 

 2
T

m m m p p= − +h he A e B W z B εɶɺ  (10b) 

where 1 1( , , , , )
x x x i= D C gε ε ε ε ε s xɺɺ  and 2 2 ( , )m= hε ε ε e  are lumped approximation 

errors. Select the Lyapunov-like function candidate as 

 

1 1
( , , , , , ) (

2 2

)

x x x x x x

x x x x x x

T T T
m x m t m

T T T

V Tr= + +

+ + +

D C g h D D D

C C C g g g h h h

s e W W W W s D s e Pe W Q W

W Q W W Q W W Q W

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ  (11) 

where 
2 2

x

n nβ β×∈ℜ D D

DQ , 
2 2

C C

x

n nβ β×∈ℜCQ , g g

x

n nβ β×
∈ℜgQ , and 

h hn nβ β×∈ℜhQ  are positive definite matrices. 
2 2T n n

t t
×= ∈ℜP P  is a positive 

definite matrix satisfying the Lyapunov equation 
T T
m t t m m m+ = −A P P A C C . 

Along the trajectory of (10), the time derivative of (11) can be found as 

 

1 2

ˆ ˆ    [ ( ) ( )]

ˆ ˆ    [ ( ) ( )]

x x x x x x x x

x x x x

T T T T T T
d a m t p

T T T T

T T T T
m t p

V

Tr

Tr

τ τ τ
−= − + − + +

− + + +

− + + +

D D D D C C C C

g g g g h h h h

s K s s J e e e s ε e P B ε

W Z vs Q W W Z vs Q W

W z s Q W W z e P B Q W

ɺ

ɺ ɺɶ ɶɺ

ɺ ɺɶ ɶ  (12) 

By defining m p=B B  to have 
T T
m t p τ=e P B e , and selecting the update laws as 

 
1ˆ ˆ( )

x x x x x

T σ−= − +D D D D DW Q Z vs W
ɺ

ɺ  (13a) 

 
1ˆ ˆ( )

x x x x x

T σ−= − +C C C C CW Q Z vs W
ɺ

 (13b) 

 
1ˆ ˆ( )

x x x x x

T σ−= − +g g g g gW Q z s W
ɺ

 (13c) 

 
1ˆ ˆ( )T

τ σ−= − +h h h h hW Q z e W
ɺ

 (13d) 
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then (12) becomes 

 

1

2

ˆ[ ] [ ] ( )

ˆ ˆ ˆ ( ) ( ) ( )

x x x

x x x x x x

T T T T T

T T T

V Tr

Tr Tr Tr

τ τ
τ

σ

σ σ σ

   
= − + +   

   

+ + +

D D D

C C C g g g h h h

s ε
s e Q s e W W

e ε

W W W W W W

ɺ ɶ

ɶ ɶ ɶ  (14) 

where 

1

2

1

2

T
d a

T
a n n

−

−
×

 
− 

=  
 −
  

K J

Q

J I

 is positive definite by proper selection of Kd.  

Remark 3: If a sufficient number of basis functions are employed in the 

function approximation so that 1 0≈ε  and 2 0≈ε , the σ-modification terms in 

(13) can be eliminated and (14) becomes [ ] 0
T T

V τ
τ

 
= − ≤ 

 

s
s e Q

e
ɺ  which 

implies both s and τe  are uniformly bounded and square integrable. It is 

straightforward to prove sɺ  and τeɺ  to be uniformly bounded, and hence 

convergence of s and τe  can be concluded by Barbalat’s lemma, i.e., the 

closed-loop system converges to the target impedance. 

Remark 4: Suppose 1ε  and 2ε  cannot be ignored and there exist positive 

numbers δ1 and δ2 such that 1 δ≤ε  and 2 2δ≤ε  for all 0t ≥ , then, instead 

of (2) and (6), the modified controllers can be constructed as 

 1
ˆˆˆ( )T

td a ext x x x d robust= + + + − +τ J F g D v C v K s τɺ  

 2
ˆ

a p td robust= + + +τ Θx Φτ h τ   

where 1robustτ  and 2robustτ  are robust terms to be designed. Let us consider the 

Lyapunov function candidate (11) and the update law (13) again but with 

( ) 0σ ⋅ = . The time derivative of V can be computed as  

 1 2 1 2[ ]
T T T T

robust robustV τ τ τ
τ

δ δ
 

= − + + + + 
 

s
s e Q s e s τ e τ

e
ɺ     
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By picking 1 1 1[sgn( ) sgn( )]T
robust ns sδ= −τ ⋯ , where si, i=1,…,n is the 

i-th element of the vector s, and 
1 22 2[sgn( ) sgn( )]

n

T
robust e eτ τδ= −τ ⋯ , 

where 
k

eτ , k=1,…,2n is the k-th entry of τe , we may have 0V ≤ɺ , and 

asymptotic convergence of s and τe  can be concluded by Barbalat’s lemma.  

Due to existence of 1ε  and 2ε , we may not determine definiteness of Vɺ . 

Consider the inequality 

 

2

max max max

max max

1 1
 ( ) [ ( ) ( ) ( ) ( )

2 2

         ( ) ( ) ( ) ( )]

x x x x x x

x x x

T T

T T

V Tr Tr

Tr Tr

τ
λ λ λ

λ λ

 
≤ + + 

 

+ +

D D D C C C

g g g h h h

s
A Q W W Q W W

e

Q W W Q W W

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 

where 
2

T
m t m

 
=  
 

D 0
A

0 C P C
, we may rewrite (14) to be 

 

2 2

1

max min

2min

max max

max

max

1 1
[ ( ) ( )]

2 2 ( )

1
{[ ( ) ] ( ) [ ( )

2

] ( ) [ ( ) ] ( )

1
[ ( ) ] ( )} [ ( )

2

x x x x x

x x x x x x x

x x x

x

T

T T

T T

V V

Tr

Tr Tr

Tr Tr

T

τ
α αλ λ

λ

αλ σ αλ

σ αλ σ

λ σ σ

σ

   
≤ − + − +   

   

+ − +

− + −

+ − +

+

D D D D C

C C C g g g g

h h h h D D D

C

s ε
A Q

e εQ

Q W W Q

W W Q W W

Q W W W W

ɺ

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

( ) ( ) ( )]
x x x x x

T T T
r Tr Trσ σ+ +C C g g g h h hW W W W W W

 

where α is selected to satisfy 

 
min

max max max max max

( )
min , , , ,

( ) ( ) ( ) ( ) ( )

xx x

x x x

σσ σλ σ
α

λ λ λ λ λ

 
≤  

 

gD C h

D C g h

Q

A Q Q Q Q
. 

Hence, we may have 

 

2

1

2min

1 1
[ ( )

2 ( ) 2

    ( ) ( ) ( )]

x x x

x x x x x x

T

T T T

V V Tr

Tr Tr Tr

α σ
λ

σ σ σ

 
≤ − + + 

 

+ + +

D D D

C C C g g g h h h

ε
W W

εQ

W W W W W W

ɺ

 (15) 
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This implies that 0V ≤ɺ  whenever 

 
0

2

1

2min

( )1 1
 sup [ ( )

( )2 ( ) 2

    ( ) ( ) ( )]

x x x

x x x x x x

T

t

T T T

V Tr

Tr Tr Tr

τ

τ
σ

ταλ α

σ σ σ

≥

 
> + 

 

+ + +

D D D

C C C g g g h h h

ε
W W

εQ

W W W W W W

 

i.e., s, τe , 
xDWɶ , 

xCWɶ , 
xgWɶ , and hWɶ  are uniformly ultimately bounded. The 

differential inequality (15) can be solved to have 

 

0

0

2

1( )
0

2min

( )1
( ) ( ) sup

( )2 ( )

1
[ ( ) ( )

2

( ) ( )]

x x x x x x

x x x

t t

t t

T T

T T

V t e V t

Tr Tr

Tr Tr

α

τ

τ

ταλ

σ σ
α

σ σ

− −

< <

 
≤ +  

 

+ +

+ +

D D D C C C

g g g h h h

ε

εQ

W W W W

W W W W

  

Together with the inequality 

 

2

min min min

min min

1 1
( ) [ ( ) ( ) ( ) ( ) 

2 2

( ) ( ) ( ) ( )]

x x x x x x

x x x

T T

T T

V Tr Tr

Tr Tr

τ
λ λ λ

λ λ

 
≥ + + 

 

+ +

D D D C C C

g g g h h h

s
A Q W W Q W W

e

Q W W Q W W

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 

we may find the error bound 

 

0

0

( ) 10 2

2min min min

min

1

2

( ) ( )2 ( ) 1
sup

( ) ( )( ) ( ) ( )

1
[ ( ) ( )

( )

( ) ( )]

x x x x x x

x x x

t t

t t

T T

T T

t V t
e

t

Tr Tr

Tr Tr

α

ττ

τ

τλ αλ λ

σ σ
αλ

σ σ

− −

< <

   
≤ +   

   

+ +

+ +

D D D C C C

g g g h h h

s ε

e εA A Q

W W W W
A

W W W W

  

Remark 5: Realization of the strategy does not need the information of the 

regressor matrix, accelerations, or time derivatives of the external force, which 

largely simplifies the implementation.   
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Table 7.1 summarizes the adaptive impedance control designs for FJR in this 

chapter in terms of the controller forms, adaptive laws and implementation issues. 

Table 7.1 Summary of the adaptive impedance control for FJR 

Flexible-joint robots interacting with environment 

 

( , )

T
x x x x x a t ext

t t t t t a

−
+ + + + = −

+ + = −

D s C s g D v C v J τ F

J τ B τ τ τ q q q

ɺ ɺ

ɺ ɺɺɺɺ ɺ

      (7.3-1) 

 

Regressor-based Regressor-free 

 

Controller 

ˆˆ(

ˆ )

ˆ      [ ( , , , )

]

T
td a ext x x

x d

T
a ext x

d

= + +

+ −

= +

−

τ J F g D v

C v K s

J F Y x x v v p

K s

ɺ

ɺ ɺ

 

( , )a p td td= + +τ Θx Φτ h τ q  

(7.3-3), (7.2-9) 

ˆˆ(

ˆ )

T
td a ext x x

x d

= + +

+ −

τ J F g D v

C v K s

ɺ
 

ˆ
a p td= + +τ Θx Φτ h  

(7.4-2), (7.4-6) 

 

Adaptive Law 

 

1ˆ T
x

−
= −p Γ Y sɺ  

(7.3-8) 

1

1

1

1

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

x x x x x

x x x x x

x x x x x

T

T

T

T
τ

σ

σ

σ

σ

−

−

−

−

= − +

= − +

= − +

= − +

D D D D D

C C C C C

g g g g g

h h h h h

W Q Z vs W

W Q Z vs W

W Q z s W

W Q z e W

ɺ
ɺ

ɺ

ɺ

ɺ

(7.4-13) 

Realization 

Issue 

Need to feedback joint 

accelerations, external force, and 

their higher derivatives. 

Does not need the information for 

the  joint accelerations. Does not 

need to know the higher 

derivatives of the joint 

accelerations or external force. 

Example 7.1:  

Consider the flexible-joint robot (3.6-3), and we would like to verify the 

efficacy of the strategy developed in this section by computer simulation. Actual 

values of the system parameters are m1=m2=0.5(kg), l1= l2=0.75(m), 

lc1= lc2=0.375(m), I1=I2=0.0234(kg-m
2
), and k1=k2=100(N-m/rad). Parameters 

at the motor side are j1=0.02(kg-m
2
), j2=0.01(kg-m

2
), b1=5(N-m-sec/rad), and 

b2=4(N-m-sec/rad). The endpoint and the motor angle start from the initial 

value (0) [0.8 0.75 0 0]T
m m=x and (0) [0.0022 1.5019 0 0]T

=θ   

respectively to track a 0.2m radius circle centered at (0.8m, 1.0m) in 10 seconds 

without knowing its precise model. The initial state for the reference model is 

(0) [9.8 3.2 0 0]T
r =τ , which is the same as the initial value for the 
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desired transmission torque. The constraint surface is smooth and can be 

modeled as a linear spring fext=kw(x-xw) where fext is the force acting on the 

surface, kw=5000N/m is the environmental stiffness, x is the coordinate of the 

end-point in the X direction, and xw=0.95m is the position of the surface. Since 

the surface is away from the desired initial endpoint position (0.8m, 0,8m), 

different phases of operations can be observed. The controller is applied with the 

gain matrices 

 
20 0

0 20
d

 
=  
 

K , and  
10 0

0 10

 
=  
 

Λ . 

Parameter matrices in the target impedance are selected as 

 
0.5 0

0 0.5
i

 
=  
 

M ,
100 0

0 100
i

 
=  
 

B , and 
1000 0

0 1000
i

 
=  
 

K .  

The 11-term Fourier series is selected as the basis function for the 

approximation of entries in xD , xC , xg , and h. Therefore, ˆ
DW  and ˆ

CW  are 

in 
44 2×ℜ , and ˆ

gW  and ˆ
hW  are in 

22 2×ℜ . The initial weighting vectors for the 

entries are assigned to be 

11

11 1ˆ (0) [0.05 0 0]
x

T
D

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
D D

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
D

×= ∈ℜw ⋯  

11

11 1ˆ (0) [0.05 0 0]
x

T
C

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
C C

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
C

×= ∈ℜw ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]
x x

T
g g

×= = ∈ℜw w ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
h h

×= = ∈ℜw w ⋯  

The gain matrices in the update laws (9) are designed as 

 
1

x

−
DQ 440.01= I , 

1
440.01

x

− =CQ I , 
1

2250
x

− =gQ I , and 
1

2210
− =hQ I . 
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We assume in the simulation that the approximation error can be neglected, and 

hence the σ-modification parameters are chosen as ( ) 0σ ⋅ = . The simulation 

results are shown in Figure 7.1 to 7.9. Figure 7.1 shows the robot endpoint 

tracking performance in the Cartesian space. It can be seen that after some 

transient response the endpoint converges to the desired trajectory in the free 

space nicely. Afterwards, the endpoint contacts with the constraint surface at 

xw=0.95(m) compliantly. When entering the free space again, the endpoint 

follows the desired trajectory with very small tracking error regardless of the 

system uncertainties. Figure 7.2 presents the time history of the joint space 

tracking performance. The transient states converge very fast without unwanted 

oscillations. The joint space trajectory in the constraint motion phase is smooth. 

Figure 7.3 gives the torque tracking performance. The control efforts to the two 

joints are reasonable that can be verified in Figure 7.4. The external forces 

exerted on the endpoint during the constraint motion phase are shown in Figure 

7.5. Figure 7.6 to 7.9 are the performance of function approximation. Although 

most parameters do not converge to their actual values, they still remain 

bounded as desired.  

 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.75

0.8

0.85

0.9

0.95
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Figure 7.1 Robot endpoint tracking performance in the Cartesian space. After some transient 

the endpoint converges to the desired trajectory in the free space nicely. Afterwards, the 

endpoint contacts with the constraint surface compliantly. When entering the free space again, 

the endpoint follows the desired trajectory with very small tracking error regardless of the 

system uncertainties 
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Figure 7.2 The joint space tracking performance. The transient is very fast and the constraint 

motion phase is smooth 
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Figure 7.3 Torque tracking performance 
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Figure 7.4 The control efforts for both joints are all reasonable 
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Figure 7.5 Time histories of the external forces in the Cartesian space  
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Figure 7.6 Approximation of Dx 
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Figure 7.7 Approximation of Cx 
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Figure 7.8 Approximation of gx 
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Figure 7.9 Approximation of h 
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7.5 Consideration of Actuator Dynamics 

According to (3.9-1) and (7.2-4), the dynamics of a rigid-link flexible-joint 

electrically-driven robot interacting with the environment can be described by
 

 
T

x x x x x a t ext
−+ + + + = −D s C s g D v C v J τ Fɺ ɺ  (1a) 

 ( , )t t t t t+ + = −J τ B τ τ Hi q q qɺ ɺɺɺɺ ɺ  (1b) 

 b+ + =Li Ri K q uɺ ɺ  (1c) 

This system is in a cascade form similar to the configuration shown in 

Figure 6.9, and hence the backstepping-like procedure can be applied here. A 

desired torque trajectory tdτ  is firstly designed for convergence of s in (1a). 

The desired current trajectory id can then be found to ensure t td→τ τ  in (1b). 

Finally, the control effort u in (1c) is constructed to have convergence of i to id.  

Assuming that all parameters in (1) are known, and then the desired torque 

can be designed as 

 ( )T
td a ext x x x d= + + + −τ J F g D v C v K sɺ  (2) 

Therefore, the dynamics for output error tracking is found to be 

 ( )T
x x d a t td

−+ + = −D s C s K s J τ τɺ  (3) 

To ensure torque tracking in (1b), the MRC rule is applied with the reference 

model 

 r r r r r r r td r td r td+ + = + +J τ B τ K τ J τ B τ K τɺɺ ɺ ɺɺ ɺ  (4) 

where 
n

r ∈ℜτ  is the state vector of the reference model, and 
n n

r
×∈ℜJ , 

n n
r

×∈ℜB , and 
n n

r
×∈ℜK  are selected to give convergence of rτ  to tdτ . 

With the definition of 
1( , ) ( )td td td r r td r td

−= +τ τ τ K B τ J τɺ ɺɺ ɺ ɺɺ , we may rewrite 

(1b) and (4) into the state space representation 

 p p p p p= + −x A x B Hi B qɺ  (5a) 

 ( )m m m m td td= + +x A x B τ τɺ  (5b) 
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where 
2

[ ]
T T T n

p t t= ∈ℜx τ τɺ  and 
2[ ]T T T n

m r r= ∈ℜx τ τɺ  are augmented state 

vectors. 2 2

1 1

n n n n
p

t t t

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J J B
 and 2 2

1 1

n n n n
m

r r r r

× ×
− −

 
= ∈ℜ 

− − 

0 I
A

J K J B
 

are augmented system matrices, and 
2

1

n n
p

t

×
−

 
= ∈ℜ 
 

0
B

J
 and 

2

1

n n
m

r r

×
−

 
= ∈ℜ 
 

0
B

J K
 are augmented input gain matrices. Let t p p=τ C x  

and r m m=τ C x  be respectively the output signal vector for (5a) and (5b), 

where 
2[ ] n n

p m n n
×

×= = ∈ℜC C I 0  are augmented output signal matrices. 

The pair ( , )m mA B  is controllable, ( , )m mA C  is observable, and the transfer 

function 
1( )m m ms

−−C I A B  is SPR. According to the MRC design, the desired 

current id is selected as 

 
1[ ( , )]d p td td

−= + +i H Θx Φτ h τ q  (6) 

where Θ  and Φ  are matrices satisfying p p m+ =A B Θ A  and p m=B Φ B , 

respectively, and h is defined as ( , )td td= +h τ q Φτ q . Substituting (6) into 

(5a), we may obtain  

 ( ) ( )p m p m d td p d= + + + −x A x B τ τ B H i iɺ ɺ  (7) 

With the definition m p m= −e x x  and t rτ = −e τ τ , the dynamics for the 

torque tracking loop becomes 

 ( )m m m p d= + −e A e B H i iɺ  (8a) 

 m mτ =e C e  (8b) 

In order to ensure t td→τ τ  and d→i i , the control law in (1c) is designed as 

 d b c i= + + −u Li Ri K q K eɺ ɺ  (9) 

where i d= −e i i  is the current error vector, and Kc is a positive definite 

matrix. Plugging, (9) into (1c), we may have the dynamics for the current 

tracking loop 

 i c i+ =Le K e 0ɺ  (10) 
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To prove the closed loop stability of the whole system, let us consider a 

Lyapunov-like function candidate 

 
1 1

( , , )
2 2

T T T
m i m t m i iV = + +s e e s Ds e P e e Le  (11) 

where 
2 2T n n

t t
×= ∈ℜP P  is a positive definite matrix satisfying the Lyapunov 

equation 
T T
m t t m m m+ = −A P P A C C . Along the trajectories of (3), (8) and (10), 

the time derivative of V can be computed as 

 

1
( 2 )

2

T T T T
d x x a

T T T
m t p i i c i

V τ

τ τ

−= − + − +

− + −

s K s s D C s s J e

e e e P B He e K e

ɺ ɺ

 (12) 

Selecting m p=B B  such that 
T T
m t p τ=e P B e , equation (12) becomes 

 [ ] 0T T T
i

i

V τ τ

 
 = − ≤ 
  

s

s e e Q e

e

ɺ  (13) 

where 

1

2

1 1

2 2

1

2

T
d a

T
a n n

c

−

−
×

 
− 

 
 = − −
 
 
 −
  

K J 0

Q J I H

0 H K

 is positive definite due to proper 

selection of Kd and Kc. Therefore, we have proved that s, τe  and ie  are 

uniformly bounded, and their square integrability can also be proved from (13). 

Furthermore, uniformly boundedness of sɺ , τeɺ , and ieɺ  are also easy to be 

proved, and d→q q , t td→τ τ , and d→i i  follow by Barbalat’s lemma. Hence, 

the closed-loop system behaves like the target impedance. 

Remark 6: To implement the control strategy, all system parameters are 

required to be available, and we need to feedback qɺɺ  and its higher order 

derivatives. Therefore, the design introduced in this section is not feasible for 

practical applications.  
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7.5.1 Regressor-based adaptive controller design   

Consider the system in (1) again, but Dx, Cx, gx, L, R and Kb are 

unavailable. The desired torque trajectory in (2) is not feasible, and we modify 

it as 

 

ˆˆˆ( )

ˆ  [ ( , , , ) ]

T
td a ext x x x d

T
a ext x d

= + + + −

= + −

τ J F g D v C v K s

J F Y x x v v p K s

ɺ

ɺ ɺ  (14) 

where ˆ
xD , ˆ

xC , ˆ xg , and ˆ xp  are estimates of xD , xC , xg , and xp , 

respectively. Plugging (14) into (1a), and we may obtain the error dynamics for 

the output tracking loop 

 

( )

( , , , ) ( )

T
x x d x x x a t td

T
x a t td

−

−

+ + = − − − + −

= − + −

D s C s K s D v C v g J τ τ

 Y x x v v p J τ τ

ɶɶɺ ɶɺ

ɶɺ ɺ  (15) 

where ˆ
x x x= −D D Dɶ , ˆ

x x x= −C C Cɶ , ˆx x x= −g g gɶ , and ˆx x x= −p p pɶ . 

Therefore, if we may find a controller so that t td→τ τ  and an update law to 

have ˆ →p p, then (15) implies asymptotic convergence of the output error. To 

this end, we would like to use the MRC rule with the reference model in (4) and 

the state space representation in (5). The desired current trajectory is designed as 

the one in (6) to have the dynamics for the torque tracking loop as in (8). Instead 

of (9), a new controller is designed as 

 

ˆ ˆ ˆ

ˆ

d b c i

T
i c i

= + + −

= −

u Li Ri K q K e

p φ K e

ɺ ɺ

 (16) 

where 
3[ ]T T T T n

d= ∈ℜφ i i qɺ ɺ , 
3ˆ ˆ ˆˆ [ ]T T T T n n

i b
×= ∈ℜp L R K , and we 

may have the dynamics for the current tracking loop as 

 
T

i c i i+ = −Le K e p φɺ ɶ  (17) 

where ˆi i i= −p p pɶ . To prove stability, we select the Lyapunov-like function 

candidate 

 

1
( , , , , )

2

1 1
 ( )

2 2

T T
m i x i x m t m

T T T
i i x x i i i

V

Tr

= +

+ + +

s e e p p s D s e P e

e Le p Γp p Γ p

ɶ ɶ

ɶ ɶ ɶ ɶ  (18) 
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where 
2 2T n n

t t
×= ∈ℜP P  is positive definite satisfying the Lyapunov equation 

T T
m t t m m m+ = −A P P A C C . Taking time derivative of (18) along the trajectories 

of (8), (15) and (17), we have 

 ˆ ˆ             ( ) [ ( )]

T T T T T T
d a m t p i i c i

T T T T
x x i i i i

V

Tr

τ τ τ
−= − + − + −

− + − +

s K s s J e e e e P B He e K e

p Γp Y s p Γ p φe

ɺ

ɺ ɺɶ ɶ  (19) 

Pick m p=B B  to have 
T T
m t p τ=e P B e , then the update law can be selected to be 

 
1ˆ T

x
−= −p Γ Y sɺ  (20a) 

 
1ˆ T

i i i
−= −p Γ φeɺ  (20b) 

Thus, (19) becomes (13); therefore, we have proved that s, τe  and ie  are 

uniformly bounded, and their square integrability can also be proved from (13). 

Furthermore, uniformly boundedness of sɺ , τeɺ , and ieɺ  are also easy to be 

proved, and hence, d→q q , t td→τ τ , and d→i i  follow by Barbalat’s 

lemma. Consequently, we may conclude that the closed-loop system will behave 

like the target impedance regardless of the system uncertainties. 

Remark 7: To implement the controller strategy, we do not need to have the 

knowledge of most system parameters, but we have to feedback qɺɺ  and calculate 

the regressor matrix and their higher order derivatives. Therefore, the design 

introduced in this section is not feasible for practical applications, either. 

7.5.2 Regressor-free adaptive controller design  

Consider the system in (1) again, but Dx, Cx, gx, L, R and Kb are 

unavailable. The desired torque trajectory in (2) is modified as 

 ˆˆˆ( )T
td a ext x x x d= + + + −τ J F g D v C v K sɺ  (21) 

The dynamics for the output tracking loop can thus be written as 

 ( )T
x x d x x x a t td

−+ + = − − − + −D s C s K s D v C v g J τ τɶɶɺ ɶɺ  (22) 

Therefore, if we may find a control law to drive t td→τ τ  and update laws to 

have ˆ
x x→D D , ˆ

x x→C C , and ˆ x x→g g , then (22) implies convergence of 
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the output error. To this end, we would like to use the MRC rule again with the 

reference model in (4) and the state space representation in (5). The desired 

current trajectory is designed according to (6) to be 

 
1 ˆ[ ]d p td

−= + +i H Θx Φτ h  (23) 

where ĥ  is an estimate of ( , )td td= +h τ q Φτ q . Consequently, the dynamics 

for the torque tracking loop becomes 

 ˆ( ) ( )m m m p d p= + − + −e A e B H i i B h hɺ  (24a) 

 m mτ =e C e  (24b) 

Hence, if we may design a control law to ensure d→i i  and an update law to 

have ˆ →h h , then we may have convergence of the torque tracking loop. The 

control strategy can be constructed as 

 ˆ
c i= −u f K e  (25) 

where i d= −e i i  is the current error, Kc is a positive definite matrix and f̂  

is an estimate of ( , , )d d b= + +f i i q Li Ri K qɺ ɺɺ ɺ . With this control law, the 

dynamics for the current tracking loop can be found as 

 ˆ
i c i+ = −Le K e f fɺ  (26) 

If we may select a proper update law to have ˆ →f f , (26) ensures convergence 

in the current tracking loop. Since Dx, Cx, gx, ( , )tdh τ q  and ( , , )df i i qɺ ɺ  are 

time-varying functions and their variation bounds are not given, their function 

approximation representations are employed as 

 
x x x

T
x = +D D DD W Z ε  (27a) 

 
x x x

T
x = +C C CC W Z ε  (27b) 

 
x x x

T
x = +g g gg W z ε  (27c) 

 
T= +h h hh W z ε  (27d) 

 
T= +f f ff W z ε  (27e) 
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where 
2

D

x

n nβ ×∈ℜDW , 
2

x

n nβ ×∈ℜ C

CW , g

x

n nβ ×∈ℜgW , ,hn nβ ×∈ℜhW  

and fn nβ ×∈ℜfW  are weighting matrices for Dx, Cx, gx, h, and f, respectively, 

while 
2

D

x

n nβ ×∈ℜDZ , 
2

x

n nβ ×∈ℜ C

CZ , 
1g

x

nβ ×∈ℜgz , 
1hnβ ×∈ℜhz , and 

1fnβ ×∈ℜfz  are basis function matrices. Likewise, we have the representations 

for the estimates as 

 ˆ ˆ
x x

T
x = D DD W Z  (27f) 

 ˆ ˆ
x x

T
x = C CC W Z  (27g) 

 ˆˆ
x x

T
x = g gg W z  (27h) 

 ˆ ˆ T= h hh W z  (27i) 

 ˆ ˆ 
T= f ff W z  (27j) 

Thus, the output error dynamics (22), torque tracking error dynamics (24a), and 

current tracking error dynamics (26) can be rewritten as 

 1

( )
x x

x x x x

T T
x x d a t td

T T

−+ + = − −

− − +

D D

C C g g

D s C s K s J τ τ W Z v

W Z v W z ε

ɶɺ ɺ

ɶ ɶ  (28a)  

 2
T

m m m p p i p= − + +h he A e B W z B He B εɶɺ  (28b) 

 3
T

i c i+ = − +f fLe K e W z εɶɺ  (28c) 

where 1 1( , , , , )
x x x i= D C gε ε ε ε ε s xɺɺ , 2 2 ( , )m= hε ε ε e , and 3 3( , )i= fε ε ε e  are 

lumped approximation error vectors. Define the Lyapunov-like function 

candidate as 

 

1
( , , , , , , , ) [ 2

2

 ( ) 

( )]

x x x

x x x x x x x x x

T T
m i x m t m

T T T T
i i

T T

V

Tr

Tr

= +

+ + + +

+ +

D C g h f

D D D C C C g g g

h h h f f f

s e e W W W W W s D s e Pe

e Le W Q W W Q W W Q W

W Q W W Q W

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ  (29) 

where matrices 
2 2

x

n nβ β×∈ℜ D D

DQ , 
2 2

C C

x

n nβ β×∈ℜCQ , g g

x

n nβ β×∈ℜgQ , 
h hn nβ β×∈ℜhQ , and f fn nβ β×∈ℜfQ  are positive definite. Along the trajectory 

of (28), we may compute the time derivative of V as 
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1 2 3
ˆ[ ( )]

ˆ ˆ[ ( ) ( )]

ˆ ˆ[ ( ) ( )]

x x x x

x x x x x x x x

T T T T T T
d a m t p i i c i

T T T T T
m t p i

T T T T

T T T T
m t p i

V

Tr

Tr

Tr

τ τ τ
−= − + − + −

+ + + − +

− + + +

− + + +

D D D D

C C C C g g g g

h h h h f f f f

s K s s J e e e e P B He e K e

s ε e P B ε e ε W Z vs Q W

W Z vs Q W W z s Q W

W z e P B Q W W z e Q W

ɺ

ɺɶ ɺ

ɺ ɺɶ ɶ

ɺ ɺɶ ɶ  (30) 

If we select m p=B B  so that 
T T
m t p τ=e P B e , and if we pick the update laws as 

 
1ˆ ˆ( )

x x x x x

T σ−= − +D D D D DW Q Z vs W
ɺ

ɺ  (31a) 

 
1ˆ ˆ( )

x x x x x

T σ−= − +C C C C CW Q Z vs W
ɺ

 (31b) 

 
1ˆ ˆ( )

x x x x x

T σ−= − +g g g g gW Q z s W
ɺ

 (31c) 

 
1ˆ ˆ( )T

τ σ−= − +h h h h hW Q z e W
ɺ

 (31d) 

 
1ˆ ˆ( )T

i σ−= − +f f f f fW Q z e W
ɺ

 (31e) 

then (30) becomes 

 

1

2

3

[ ] [ ]  

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

x x x x x x x x x

T T T T T T
i i

i

T T T

T T

V

Tr Tr Tr

Tr Tr

τ τ τ

σ σ σ

σ σ

   
   = − +   
      

+ + +

+ +

D D D C C C g g g

h h h f f f

s ε

s e e Q e s e e ε

e ε

W W W W W W

W W W W

ɺ

ɶ ɶ ɶ

ɶ ɶ  (32) 

where 

1

2

1 1

2 2

1

2

T
d a

T
a n n

c

−

−
×

 
− 

 
 = − −
 
 
 −
  

K J 0

Q J I H

0 H K

 is positive definite due to proper 

selection of Kd and Kc.  
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Remark 8: Realization of the control law (25) and update laws (31) does not 

need the information of joint accelerations, regressor matrix, or their higher 

order derivatives, which largely simplified their implementation. 

Remark 9: Suppose a sufficient number of basis functions are used and the 

approximation error can be ignored, then it is not necessary to include the           

σ-modification terms in (31). Hence, (32) can be reduced to (13), and 

convergence of s, eτ and ei can be further proved by Barbalat’s lemma. 

Therefore, the closed loop system behaves like the target impedance.  

Remark 10: If the approximation error cannot be ignored, but we can find 

positive numbers δ1, δ2 and δ3 such that i iδ≤ε , i=1,2,3, then robust terms 

τrobust 1, τrobust 2 and ττrobust 3 can be included into (21), (23) and (25) to have 

 ˆˆˆ( )T
td a ext x x x d robust= + + + − +τ J F g D v C v K s τɺ  

 
1

2
ˆ[ ]d p td robust

−= + + +i H Θx Φτ h τ  

 3
ˆ

c i robust= − +u f K e τ  

Consider the Lyapunov-like function candidate (29) again, and the update law 

(31) without σ-modification; then the time derivative of V becomes 

 
1 2 3

1 2 3

[ ]  T T T
i i

i

T T T
robust robust i robust

V τ τ τ

τ

δ δ δ
 
 = − + + + 
  

+ + +

s

s e e Q e s e e

e

s τ e τ e τ

ɺ

 

If we select 1 1 1 2[sgn( ) sgn( ) sgn( )]T
robust ns s sδ= −τ ⋯ where si, 

i=1,…,n is the i-th entry in s, 
1 22 2[sgn( ) sgn( )]

n

T
robust e eτ τδ= −τ ⋯  

where 
j

eτ , j=1,…,n is the j-th entry in τe , and 

13 3[sgn( ) sgn( )]
n

T
robust i ie eδ= −τ ⋯  where 

kie , k=1,…,n is the k-th 

element in ei, then we may have (13) again. This will further give convergence 

of the output error by Barbalat’s lemma.   

Owing to the existence of the approximation errors, the definiteness of Vɺ  

cannot be determined. By considering the inequality 
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2

max max

max max

max max

1 1
( ) [ ( ) ( )

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )]

x x x

x x x x x x

T

i

T T

T T

V Tr

Tr Tr

Tr Tr

τλ λ

λ λ

λ λ

 
 ≤ + 
  

+ +

+ +

D D D

C C C g g g

h h h f f f

s

A e Q W W

e

Q W W Q W W

Q W W Q W W

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 

where 2 T
m t m

 
 

=  
 
 

D 0 0

A 0 C P C 0

0 0 L

, we may rewrite (32) as 

 

2 2

1

max min 2

min
3

max max

max

max max

1 1
[ ( ) ( )]

2 2 ( )

1
{[ ( ) ] ( ) [ ( )

2

] ( ) [ ( ) ] ( )

[ ( ) ] ( ) [ ( )

x x x x x

x x x x x x x

i

T

T T

T

V V

Tr

Tr Tr

Tr

τα αλ λ
λ

αλ σ αλ

σ αλ σ

αλ σ αλ

   
   ≤ − + − +   
      

+ − +

− + −

+ − +

D D D D C

C C C g g g g

h h h h f

s ε

A Q e ε
Q

e ε

Q W W Q

W W Q W W

Q W W Q

ɺ

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

1
] ( )} [ ( ) ( )

2

( ) ( ) ( )]

x x x x x x

x x x

T T T

T T T

Tr Tr Tr

Tr Tr Tr

σ σ σ

σ σ σ

− + +

+ + +

f f f D D D C C C

g g g h h h f f f

W W W W W W

W W W W W W

ɶ ɶ

 

where α is selected to satisfy 

 min

max max max max max max

( )
min , , , , ,

( ) ( ) ( ) ( ) ( ) ( )

xx x

x x x

σσ σλ σ σ
α

λ λ λ λ λ λ

 
≤  

 

gD C h f

D C g h f

Q

A Q Q Q Q Q
 

such that we may further have 

 

2

1

2

min

3

1 1
[ ( )

2 ( ) 2

( ) ( )

( ) ( )]

x x x

x x x x x x

T

T T

T T

V V Tr

Tr Tr

Tr Tr

α σ
λ

σ σ

σ σ

 
 ≤ − + + 
  

+ +

+ +

D D D

C C C g g g

h h h f f f

ε

ε W W
Q

ε

W W W W

W W W W

ɺ

 (33) 
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Therefore, we have proved that 0V <ɺ  whenever  

 

0

2

1

2

min

3

( )
1 1

 sup ( ) [ ( )
2 ( ) 2

( )

( ) ( )

( ) ( )]

x x x

x x x x x x

T

t

T T

T T

V Tr

Tr Tr

Tr Tr

τ

τ

τ σ
αλ α

τ

σ σ

σ σ

≥

 
 > + 
  

+ +

+ +

D D D

C C C g g g

h h h f f f

ε

ε W W
Q

ε

W W W W

W W W W

 

i.e., s, τe , ie , 
xDWɶ , 

xCWɶ , 
xgWɶ , hWɶ , and fWɶ  are uniformly ultimately 

bounded. In addition, (33) implies 

 

0

0

2

1

( )
0 2

min

3

( )
1

( ) ( ) sup ( )
2 ( )

( )

1
[ ( ) ( )

2

( ) ( ) ( )]

x x x x x x

x x x

t t

t t

T T

T T T

V t e V t

Tr Tr

Tr Tr Tr

α

τ

τ

τ
αλ

τ

σ σ
α

σ σ σ

− −

< <

 
 ≤ +  
  

+ +

+ + +

D D D C C C

g g g h h h f f f

ε

ε
Q

ε

W W W W

W W W W W W

 

Together with the inequality 

 

2

min min

min min

min min

1 1
( ) [ ( ) ( )

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )]

x x

x x x x x x

T

i

T T

T T

V Tr

Tr Tr

Tr Tr

τλ λ

λ λ

λ λ

 
 ≥ + 
  

+ +

+ +

D D D

C C C g g g

h h h f f f

s

A e Q W W

e

Q W W Q W W

Q W W Q W W

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 

we may find the error bound  

 

0

0

1
( )0 2

2

min min min
3

min

1

2

( )
2 ( ) 1

sup ( )
( ) ( ) ( )

( )

1
[ ( ) ( )

( )

( ) ( ) ( )]

x x x x x x

x x x

t t

t t

i

T T

T T T

V t
e

Tr Tr

Tr Tr Tr

α

τ
τ

τ

τ
λ αλ λ

τ

σ σ
αλ

σ σ σ

− −

< <

   
   ≤ +   
      

+ +

+ + +

D D D C C C

g g g h h h f f f

s ε

e ε
A A Q

e ε

W W W W
A

W W W W W W
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Therefore, the error signal is bounded by an exponential function. Table 7.2 

summarizes the adaptive impedance control of EDFJR in terms of their 

controller forms, adaptive laws and implementation issues.  

Table 7.2 Summary of the adaptive impedance control for EDFJR 

Electrically driven flexible-joint robots interacting with environment 

( , )

T
x x x x x a t ext

t t t t t

b

−+ + + + = −
+ + = −

+ + =

D s C s g D v C v J τ F

J τ B τ τ Hi q q q

Li Ri K q u

ɺ ɺ

ɺ ɺɺɺɺ ɺ

ɺ ɺ

   (7.5-1) 

 

Regressor-based Regressor-free 

 

Controller 

ˆˆ(

ˆ )

ˆ      [ ( , , , )

]

T
td a ext x x

x d

T
a ext x

d

= + +

+ −

= +
−

τ J F g D v

C v K s

J F Y x x v v p

K s

ɺ

ɺ ɺ

1[ ( , )]d p td td
−= + +i H Θx Φτ h τ q

ˆ ˆ ˆ

ˆ

d b c i

T
i c i

= + + −

= −

u Li Ri K q K e

p φ K e

ɺ ɺ
 

(7.5-14), (7.5-6), (7.5-16) 

ˆˆ(

ˆ )

T
td a ext x x

x d

= + +

+ −

τ J F g D v

C v K s

ɺ
 

1 ˆ[ ]d p td
−= + +i H Θx Φτ h  

ˆ
c i= −u f K e  

(7.5-21), (7.5-23), (7.5-25) 

 

Adaptive Law 
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(7.5-20) 

1
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(7.5-31) 

Realization 

Issue 

Need to know the regressor 

matrix, joint accelerations and 

their higher derivatives. 

Does not need the information for 

the regressor matrix, joint 

accelerations, or their derivatives. 

Example 7.2:  

Consider flexible-joint robot in example 7.1 but with consideration of the 

motor dynamics. Actual values of link parameters are selected as m1=m2=0.5(kg), 

l1=l2=0.75(m), lc1=lc2=0.375(m), I1=I2=0.0234(kg-m
2
), and k1=k2=100(N-m/rad). 

Parameters for the actuator part are chosen as j1=0.02(kg-m
2
), j2=0.01(kg-m

2
), 

b1=5(N-m-sec/rad), b2=4(N-m-sec/rad), and h1=h2=10(N-m/A). Electrical 

parameter for the actuator are L1=L2=0.025(H), r1=r2=1(Ω), kb1=kb2=1 

(Vol/rad/sec) (Chien and Huang 2007a). The stiffness of the constrained surface 
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is assumed to be kw=5000(N/m). In order to observe the effect of the actuator 

dynamics, the endpoint is required to track a 0.2m radius circle centered at 

(0.8m, 1.0m) in 2 seconds which is much faster than the case in example 7.1. 

The initial condition for the generalized coordinate vector is at 

(0) (0) [0.0022 1.5019 0 0]T= =q θ , i.e., the endpoint is initially at 

(0.8m, 0,75m). It is away from the desired initial endpoint position (0.8m, 0,8m) 

for observation of the transient. The initial state for the reference model is 

(0) [8.1 1.4 0 0]T
r =τ , which is the same as the initial state for the 

desired torque. The controller gain matrices are selected as 

 
50 0

0 50
d

 
=  
 

K , 
20 0

0 20

 
=  
 

Λ , and 
200 0

0 200
c

 
=  
 

K . 

The initial value for the desired current can be found by calculation as 

 (0) (0) [16.2 1.4]T
d = =i i . 

The matrices in the target impedance are picked as 

 
0.5 0

0 0.5
i

 
=  
 

M ,
100 0

0 100
i

 
=  
 

B , and 
1500 0

0 1500
i

 
=  
 

K . 

The 11-term Fourier series is selected as the basis function for the approximation. 

Therefore, ˆ
xDW  and ˆ

xCW  are in 
44 2×ℜ , while ˆ

xgW , ˆ
hW , and ˆ

fW  are in 
22 2×ℜ . The initial weighting vectors for the entries are assigned to be 

11

11 1ˆ (0) [0.05 0 0]
x

T
D

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
D D

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
D

×= ∈ℜw ⋯  

11

11 1ˆ (0) [0.05 0 0]
x

T
C

×= ∈ℜw ⋯  

12 21

11 1ˆ ˆ(0) (0) [ 0.05 0 0]
x x

T
C C

×= = − ∈ℜw w ⋯  

22

11 1ˆ (0) [0.1 0 0]
x

T
C

×= ∈ℜw ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]
x x

T
g g

×= = ∈ℜw w ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
h h

×= = ∈ℜw w ⋯  

1 2

11 1ˆ ˆ(0) (0) [0 0 0]T
f f

×= = ∈ℜw w ⋯  
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The gain matrices in the update law (31) are selected as 
1

x

−
DQ 440.001= I , 

1
440.001

x

− =CQ I , 
1

22100
x

− =gQ I , 
1

2210
− =hQ I , and 

1
2210000

− =fQ I . In this 

simulation, the approximation error is assumed to be neglected, and the σ-

modification parameters are chosen as ( ) 0σ ⋅ = .  

The simulation results are shown in Figure 7.10 to 7.20. Figure 7.10 shows 

the tracking performance of the robot endpoint and its desired trajectory in the 

Cartesian space. It is observed that the endpoint trajectory converges smoothly 

to the desired trajectory in the free space tracking and contacts compliantly in 

the constrained motion phase. Computation of the complex regressor is avoided 

in this strategy which greatly simplifies the design and implementation of the 

control law. Although the initial error is quite large, the transient state takes only 

about 0.2 seconds which can be justified from the joint space tracking history in 

Figure 7.11. The torque tracking performance is shown in Figure 7.12. It can be 

seen that the torque errors for both joints are small. Figure 7.13 presents the 

current tracking performance. It is observed that the strategy can give very small 

current error. The control voltages to the two motors are reasonable that can be 

verified in Figure 7.14. Figure 7.15 to 7.20 are the performance of function 

approximation. Although most parameters do not converge to their actual 

values, they still remain bounded as desired. 
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Figure 7.10 Robot endpoint tracking performance in the Cartesian space 
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Figure 7.11 Joint space tracking performance 
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Figure 7.12 Tracking in the torque tracking loop 
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Figure 7.13 Tracking in the current tracking loop 
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Figure 7.14 Control efforts 
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Figure 7.15 External force trajectories 
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Figure 7.16 Approximation of Dx 
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Figure 7.17 Approximation of Cx 
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Figure 7.18 Approximation of gx 
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Figure 7.19 Approximation of h 
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Figure 7.20 Approximation of f 
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7.6 Conclusions 

In this chapter, we consider the case when the flexible-joint robot contacts 

with the environment. The adaptive impedance controllers are derived to give 

good performance in both free space tracking and constraint motion phase. 

Firstly, the MRC rule is utilized in Section 7.2 for the impedance control of a 

known FJR. To deal with the uncertainties, a regressor based adaptive controller 

is derived in Section 7.3. However, its implementation requires the knowledge 

of joint accelerations, the regressor matrix, and their higher order derivatives. 

Therefore, the control strategy is not practical. The regressor-free adaptive 

impedance controller is developed in Section 7.4 whose realization do not need 

the joint accelerations, the regressor matrix, or their higher order derivatives. 

The actuator dynamics is included in the system equation in Section 7.5. A 

regreesor-based adaptive impedance controller is then developed for EDFJR in 

Section 7.5.1. However, its realization still needs the joint accelerations, 

regressor matrix, and their derivatives. A regreesor-free adaptive impedance 

controller for EDFJR is then introduced in Section 7.5.2 and it is free from the 

information for joint accelerations or the regressor matrix. Several simulation 

results show that the regressor-free design can give good performance to an 

EDFJR operating in a compliant motion environment.  
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Appendix 

Lemma A1:  

Let 
1

1 2[ ]T n
i i i inw w w

×= ∈ℜw ⋯ , i=1,…,m and W is a block 

diagonal matrix defined as 1 2{ , , , } mn m
mdiag

×= ∈ℜW w w w⋯ . Then, 

2

1

( )

m

T
i

i

Tr

=

=∑W W w . 

Proof: The proof is straightforward as below: 

 

1 1

22

1 1

2 2

2

1

2

2

2

T

T
T

T
mm

T

T

T
m m

m

   
   
   =
   
     

 
 
 =
 
 
 

 
 
 

=  
 
  

w 0 0 w 0 0

0 w 00 w 0
W W

0 0 w0 0 w

w w 0 0

0 w w 0

0 0 w w

w 0 0

0 w 0

0 0 w

⋯ ⋯

⋯⋯

⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮

⋯⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

Therefore, we have 
2

1

( )

m

T
i

i

Tr

=

=∑W W w . 
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Lemma A2:  

Suppose 
1

1 2[ ]T n
i i i inw w w

×= ∈ℜw ⋯  and 
1

1 2[ ]T n
i i i inv v v

×= ∈ℜv ⋯ , i=1,…,m. Let W and V be block diagonal 

matrices that are defined as 1 2{ , , , } mn m
mdiag

×= ∈ℜW w w w⋯  and 

1 2{ , , , } mn m
mdiag

×= ∈ℜV v v v⋯ , respectively. Then, 

1

( )

m

T
i i

i

Tr

=

≤∑V W v w . 

Proof: The proof is also straightforward: 

 

1 1

22

1 1

2 2
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T
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T
m m

   
   
   =    
   
    

 
 
 =  
 
  

v 0 0 w 0 0

0 w 00 v 0
V W

0 0 w0 0 v

v w 0 0

0 v w 0

0 0 v w

⋯ ⋯

⋯⋯

⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮

⋯⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

Hence, 

 

1 1 2 2

1 1 2 2

1

( ) ...

...

.

T T T T
m m

m m

m

i i

i

Tr

=

= + + +

≤ + + +

=∑

V W v w v w v w

v w v w v w

v w

 

Lemma A3:  

Let W be defined as in lemma A1, and Wɶ  is a matrix defined as 
ˆ= −W W Wɶ , where Ŵ  is a matrix with proper dimension. Then  

 
1 1ˆ( ) ( ) ( )
2 2

T T T
Tr Tr Tr≤ −W W W W W Wɶ ɶ ɶ  
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Proof:  

 

2

1

2 2 2

1

2 2

1

ˆ( ) ( ) ( )

( )      (by lemma A1 and A2)

1
[ ( ) ]
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1
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1 1
( ) ( )    (by lemma A1)

2 2
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i i i
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m

i i i i

i
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i i
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T T

Tr Tr Tr

Tr Tr

=

=
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≤ −
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w w w
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ɶ ɶ

ɶ ɶ

ɶ

ɶ ɶ

 

In the above lemmas, we consider properties of a block diagonal matrix. In 

the following, we would like to extend the analysis to a class of more general 

matrices. 

Lemma A4:  

Let W be a matrix in the form 1 2[ ]T T T T pmn m
p

×= ∈ℜW W W W⋯  

where 1 2{ , , , } mn m
i i i imdiag

×= ∈ℜW w w w⋯ , i=1,…,p, are block diagonal 

matrices with the entries of vectors 
1

1 2[ ]T n
ij ij ij ijnw w w

×= ∈ℜw ⋯ , 

j=1,…,m. Then, we may have 
2

1 1

( )

p m

T
ij

i j

Tr

= =

=∑∑W W w .  

Proof:  
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1

1 1

[ ]T T T
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Hence, we may calculate the trace as 
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        (by lemma A1)
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Lemma A5:  

Let V and W be matrices defined in lemma A4, Then, 

1 1

( )

p m

T
ij ij

i j

Tr

= =

≤∑∑V W v w .  

Proof:  

 

1 1

1 1
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1 1

( ) ( ) ( )

        (by lemma A2)
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V W V W V W

v w v w

v w

⋯

⋯  

Lemma A6:  

Let W be defined as in lemma A4, and Wɶ  is a matrix defined as 
ˆ= −W W Wɶ , where Ŵ  is a matrix with proper dimension. Then  

 
1 1ˆ( ) ( ) ( )
2 2

T T T
Tr Tr Tr≤ −W W W W W Wɶ ɶ ɶ  
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Proof:  
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Symbols, Definitions and Abbreviations 

Abbreviations 

RR : Rigid Robot 

RRE : Rigid Robot interacting with Environment 

EDRR : Electrically-Driven Rigid Robot 

EDRRE : Electrically-Driven Rigid Robot interacting with Environment 

FJR : Flexible-Joint Robot 

FJRE : Flexible-Joint Robot interacting with Environment 

EDFJR : Electrically-Driven Flexible-Joint Robot 

EDFJRE : Electrically-Driven FJR interacting with Environment 

PE : Persistent Excitation 

FAT : Function Approximation Technique 

MRC : Model Reference Control 

MRAC : Model Reference Adaptive Control 

SPR : Strictly Positive Real 

UUB : Uniformly Ultimately Bounded 

General Symbols and Definitions 

a : scalar (unbold lower case) 

a : vector (bold lower case) 

A : matrix (bold upper case) 

In : n n×  identity matrix 

ai : i-th element of vector a 

aij : (i,j)-th element of matrix A 

a
T
 : transpose of vector a 

A
T
 : transpose of matrix A 

A
-1

 : inverse of matrix A 
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Tr(A) : trace of matrix A 

â  : estimation of scalar a 

aɶ  : error between a and â  

â  : estimation of vector a 

aɶ  : error between a and â  

Â  : estimation of matrix A 

Aɶ  : error between A and Â  

( )iλ A  : i-th eigenvalue of matrix A 

min ( )λ A  : minimum eigenvalue of matrix A 

max ( )λ A  : maximum eigenvalue of matrix A 

a  : absolute value of scalar a 

a  : norm of vector a 

A  : determinant of matrix A 

A  : norm of matrix A 

min{.} : minimum operation 

sup(.) : least upper bound  

diag{…} : diagonal matrix 

Symbols and Definitions in Robot Model 

li : length of link i 

mi : mass of link i 

Ii : moment of inertia of link i 

B : actuator damping matrix 

Bi : desired apparent damping 

C : vector of centrifugal and Coriolis forces 

Cx : C in the Cartesian space 

D : inertia matrix 

Dx : D in the Cartesian space 

Fext : external force  

g : gravitational force vector 

gx : g in the Cartesian space 

H : electro-mechanical conversion matrix 

i : armature current vector 

id : desired current trajectory 

J : actuator inertia matrix 

Ja : Jacobian matrix 
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K : joint stiffness matrix 

Kb : back-emf matrix 

Ki : desired apparent stiffness 

L : electrical inductance matrix 

Mi : desired apparent inertia 

p : parameter vector 

px : parameter vector in the Cartesian space 

q : generalized coordinate vector 

qd : desired trajectory for q 

R : electrical resistance matrix 

x : coordinate in the Cartesian space 

xd : desired trajectory for x 

Y : regressor matrix 

θ  : actuator angle 

τ  : control torque vector 

aτ  : actuator input torque vector 

tτ  : transmission torque 

Symbols and Definitions in Controller Design 

d : disturbance 

e : error signal 

e : error vector 

ei : current error vector 

em : output tracking error vector 

eτ : torque tracking error vector 

kw : stiffness of the wall 

Kd : gain matrix for velocity error 

Kp : gain matrix for position error 

Kτ : conversion matrix 

P, Q, Γ  : positive matrices 

s : sliding surface variable 

s : error vector 

sat(.) : saturation function 

sgn(.) : signum function 

u : control input signal 

u : control input vector 
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v : a known signal vector 

V : Lyapunov function candidate 

w : a vector of weightings 

W : a matrix of weightings 

z : a vector of basis functions 

Z : a matrix of basis functions 

α  : a constant 

β : number of basis function 

ε  : approximation error 

iε  : approximation error 

φ  : thickness of the boundary layer 

σ  : sigma modification constant 

ϕ : known signal vector 

robustτ  : robust term 

Λ  : diagonal gain matrix 
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Index 

Acceleration feedback, 3, 84, 87, 

105, 128, 148 

Actuator dynamics, 4, 71, 75, 101, 

146, 181, 220 

Approximation error, 16, 63, 69, 137, 

209 

Autonomous system, 35-37 

 

Backstepping, 4, 164, 182, 220 

Barbalat’s lemma, 35, 38, 47, 69, 87, 

93, 103, 133 

Basis, 1, 12, 15, 16, 31 

Basis function, 1, 3, 7, 11, 32, 61, 91, 

97, 137 

Boundary layer, 43, 44 

 

Compliant motion, 3, 8, 162 

Computed torque controller, 83 

Conversion matrix, 113 

Current tracking loop, 102, 104, 106, 

147, 149, 183, 221 

 

Dead zone, 55, 56 

Decrescent, 37, 38 

 

ED, 1 

EDFJR, 2, 79, 192, 193, 231  

EDFJRE, 2, 4, 5, 80 

EDRR, 2, 75, 154 

EDRRE, 2, 4, 76 

Equilibrium point, 36, 37, 51, 52, 57 

 

FAT, 1, 7, 8, 11, 61, 62, 91, 136 

Feedback linearization, 2 

Flexible joint robot, 163, 201 

FJR, 2, 8, 9, 77, 175 

FJRE, 2, 4, 78 

Fourier coefficient, 16, 18, 23, 31 

Fourier series, 16-18, 23, 24, 97, 141 

Function norms, 30 

 

Harmonic drive, 5 

Hilbert space, 11, 15, 16, 31, 117 

 

Impedance control, 4, 129, 201 

Inner product space, 14, 15 

Invariant set theorem, 35, 37 

Inversion-based controller, 40 

 

Joint flexibility, 5, 163, 201 

 

Linearly parameterization, 3, 7, 31, 

89, 91 

LaSalle’s theorem, 37 

Lyapunov 

 function, 35, 37, 38, 46 

 stability theorem, 11, 37 

 stability theory, 35 



262    Index 

Matrix norms, 29 

Model reference adaptive control, 11, 

45 

MRAC, 11, 45, 46, 48, 50, 58, 62 

MRC, 46, 49, 58, 165, 204 

 

Nonautonomous system, 36, 37, 39, 

63 

Normed function space, 30 

Normed vector space, 14, 15 

 

Orthogonal functions, 11, 17, 18 

Orthonormal function, 18, 24, 31 

Output tracking loop, 102, 106, 147, 

223 

 

PE, 47, 50, 87 

Persistent excitation, 50, 51 

Polynomials 

 Taylor, 19, 24 

 Chebyshev, 19, 24 

 Legendre, 20, 24 

 Hermite, 20, 24 

 Laguerre, 21, 24 

 Bessel, 22, 24 

 

Radially unbounded, 37, 38, 50 

Real linear space, 12 

Regressor matrix, 1-8, 83, 85, 88, 89, 

134, 186, 207 

Rigid robots, 2, 83-85, 87, 129 

Robust adaptive control, 54 

RR, 2, 71, 140 

RRE, 2, 4, 73 

 

Saturation function, 43, 66 

Signum function, 43, 66 

Singularity problem, 3, 84, 87, 89, 

134 

Sliding condition, 40, 41, 44, 60 

Sliding control, 11, 39, 41-45, 57, 

59-61 

Stable, 36-39 

 asymptotically, 35-38, 41, 45 

 exponentially, 36, 38, 51, 52 

 uniformly, 36, 38, 50-52 

 uniformly asymptotically, 36 

 

Target impedance, 129, 131, 203 

Torque tracking loop, 166, 168, 206 

Transmission torque, 164, 167-169, 

206 

 

Uncertainties 

 additive, 41 

 general, 11, 57, 58, 61 

 multiplicative, 41, 64 

 time-varying, 1, 6-8 

Uniformly ultimately bounded, 3-6, 

8, 62, 68, 95, 110, 138, 152, 174, 

212 

 

Vector norms, 28 

Vector spaces, 11, 12, 14, 15 

 

σ-modification, 54, 56, 66, 92, 108, 

139, 172, 210 
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