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Preface

The traditional computed torque design is only adequate for the control
of robot manipulators with precisely known dynamics. In the industrial
environment, however, an accurate robot model is not generally available, and
most robots are limited to be operated under slow motion conditions so that
some system dynamics can be ignored. When performing the tasks with precise
tracking of fast trajectories under time-varying payloads, several considerations
such as the joint flexibility and actuator dynamics are unavoidable. This will
generally lead to some extremely complex robot model which greatly increases
the difficulty in the controller design. What is worse is that estimation of the
system parameters in this complex model becomes more challenging. It is
reasonable to regard some system dynamics as uncertainties to simplify the
modeling tasks. The robust controls and adaptive designs are then utilized to
deal with these uncertainties. However, the former needs the knowledge of the
variation bounds for the uncertainties, while the later requires the linear
parameterization of the uncertainties into a known regressor multiplied by an
unknown constant parameter vector. When the system contains time-varying
uncertainties whose variation bounds are not given (defined later as general
uncertainties), both the robust control and adaptive design are not feasible in
general.

In the conventional adaptive control of robot manipulators, the robot
model is assumed to be linearly parameterizable into the regressor form. But the
derivation of the regressor matrix is tedious in most cases, and computation of
the regressor matrix during each sampling period in the real-time realization is
too time-consuming. This suggests the need for some regressor-free adaptive
designs.

The aim of this book is to address recent developments of the unified
regressor-free adaptive controller designs for robot manipulators with consideration
of joint flexibility and actuator dynamics. The unified approach is still valid for
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viii Preface

the robot control in the compliant motion environment. The main tool used in
this new design is the function approximation technique which represents the
general uncertainties in the robot model as finite combinations of basis functions
weighted with unknown constant coefficients.

The book has been written as a text suitable for postgraduate students in the
advanced course for the control of robot manipulators. In addition, it is also
intended to provide valuable tools for researches and practicing engineers who
currently employ the regressor-based algorithms but would benefit significantly
from the use of the regressor-free strategies.

We would like to thank all of our colleagues and students with whom we
have discussed the basic problems in the control of robot manipulators over the
last few years. Without them, many issues would never have been clarified. This
work was partially supported by the National Science Council of the Republic of
China government and by the National Taiwan University of Science and
Technology. The authors are grateful for their support.

An-Chyau Huang,
Ming-Chih Chien

Mechanical Engineering Department
National Taiwan University of Science and Technology



Contents

Preface ..ot vii
1 INEroduction...........c.cccoooiiiiiiiiiiiiiiiciciee e 1
2 Preliminaries ............c.cocoooiiiiiiiiiiiiiniii e 11
2.1 INOAUCHION. .. .eiiiiiiiiieiteeiie ettt 11

2.2 VECIOT SPACES ..cuveeurienrieiierierieenieenitete et e s 11
22,1 MELIIC SPACE ..ottt 13

2.2.2  Normed VECLOr SPACE....c.eerueruirreriienieenieeieeteneenieenieenaenns 14

2.3 Best Approximation Problem in Hilbert Space.........c.cccoceevuerunenne. 15

2.4 Orthogonal FUNCHONS. .....cccucotirierieiieiieieetenteie e 17

2.5 Vector and Matrix AnalysiS........c.ccoecievieiiiniienieniieneeieeieee e 24
2.5.1 Properties Of MatriCes.......cceevuieuerienieniieieire e 24

2.5.2 Differential calculus of vectors and matrices.................... 26

2.6 Various NOIMIS ....c.cccueriiriiriiiiieieieieie ettt s 28
2.6.1  VECLOI NOIMS. .....eoueiuieiiiniiieniiereniteieereteie st eneeeenenens 28

2.6.2  MALIiX NOIMIS. ..c..eouieuieiieniiieniiereeie ettt eneeeenenens 29

2.6.3 Function norms and normed function spaces.................... 30

2.7 Representations for ApproXimation ...........ecceeceeevereenieenueennennennes 31

2.8 Lyapunov Stability Theory .........c.cccceevieiiniiiniinieiieeeceeeeee 35
2.8.1  Concepts Of Stability........cccceevuirierienieniirieiieienceeeee 35

2.8.2  Lyapunov stability theorem.........c..ccoceeveevervinencencennenne 37

2.9 SHAING CONIOL....coitiiiiiiiiiiiieriencececeteeee e 39
2.10 Model Reference Adaptive Control ...........cccceceevienieneenennennenne. 45
2.10.1 MRAC of LTI scalar SyStems .........cccceceevuerceereereenueennenns 45

2.10.2 MRAC of LTI systems: VECIOI CASE.......cccuervereerreerueennenne 48

2.10.3 Persistent €XCItation ........c.ccoevereieieieienieniineneeeeeeienns 50

2.10.4 Robust adaptive CONtrol ..........coceeveeneeneenennenieeneeneeiene 54

ix



x Contents

2.11 General UnCertainties .........ccecuevueruerieereeieienienieneseseeeeeenennens 57
2.11.1 MRAC Of LTV SYStemS....cc.cecveruerienieiieiieieeieeresieenneen 58
2.11.2 Sliding control for systems with unknown variation

DOUNAS....coiiiiiiiiiiieetc ettt 59

2.12 FAT-Based Adaptive Controller Design ..........ccoceveereenennuennene. 61

3 Dynamic Equations for Robot Manipulators...............c.ccccveevviennnn. 71

3.1 INtrOAUCHON ...ttt 71

3.2 RiZId RODOL ..ottt 71

3.3 Rigid Robot Interacting with Environment ............ccccccceevvennenen. 73

3.4 Electrically-Driven Rigid Robot........ccccooiriiiiiniiniiiiiiciicnicees 75

3.5 Electrically-Driven Rigid Robot Interacting with Environment.... 76

3.6 Flexible Joint RODOL........ccociiiiiiiiiiiiniiiicicicciec e 77

3.7 Flexible Joint Robot Interacting with Environment....................... 78

3.8 Electrically-Driven Flexible Joint Robot..........c..ccccocievininenen. 79

3.9 Electrically-Driven Flexible Joint Robot Interacting with
ENVIFONMENt ......ooiiiiiiiiiiiiicicicice e 80

4 Adaptive Control of Rigid Robots..............c.cccoevviimniinniiiniieiieiens 83

4.1 INEFOAUCHION ..ottt ittt ettt 83

4.2 Review of Conventional Adaptive Control for Rigid Robots........ 85

4.3  Slotine and Li’s Approach...........ccccceceiiiiieiiininiiiiieieeee 87

4.4 The Regressor MatriX ......cooceveeierienienienieeniceieeee st 89

4.5 FAT-Based Adaptive Controller Design ........ccccceeerviereeneenennene 91

4.6  Consideration of Actuator Dynamics .........ccccceverveerveeneeneenennnene 101
4.6.1 Regressor-based adaptive control ...........ccccoeveeereencnnnne. 103
4.6.2 Regressor-free adaptive control...........cceceeeveveeniencnnene. 105

5 Adaptive Impedance Control of Rigid Robots................ccceevvinnnnn. 129

5.1 INrodUCHION .....ocviiiiiiiiieiieicicicee e 129

5.2 Impedance Control and Adaptive Impedance Control................... 130

5.3 Regressor-Based Adaptive Impedance Controller Design............. 134

5.4 FAT-Based Adaptive Impedance Controller Design..................... 136

5.5 Consideration of Actuator Dynamics ............cccceevvevieneenneennennenne. 146
5.5.1 Regressor-based adaptive controller...........cccceecuerveneennen. 147

5.5.2 Regressor-free adaptive controller..........ccccecevuenieneennen. 148



Contents  xi

6 Adaptive Control of Flexible Joint Robots ...............ccccoevvvvinninnnnnnn. 163
6.1 INOUCHION. .. ..eieiiiiiieiieeiie ettt 163
6.2 Control of Known Flexible Joint RObOtS ..........cccceeriieriiinnienneen. 164
6.3 Regressor-Based Adaptive Control of Flexible Joint Robots ........ 167
6.4 FAT-Based Adaptive Control of Flexible Joint Robots................. 168
6.5 Consideration of Actuator Dynamics.........cccccecveveenieeneenennueneenne 181
6.5.1 Regressor-based adaptive controller design..........cc.......... 184
6.5.2 Regressor-free adaptive controller design..........c..ccccc...... 186
7 Adaptive Impedance Control of Flexible Joint Robots....................... 201
7.1 INroduCtioN.....co.eeuiiiiiiiiiieieeccrcee et 201
7.2 Impedance Control of Known Flexible Joint Robots..................... 202
7.3 Regressor-Based Adaptive Impedance Control of Flexible
JOINt RODOLS ..ottt 205
7.4 Regressor-Free Adaptive Impedance Control of Flexible
JOINt RODOLS ..ottt 207
7.5 Consideration of Actuator Dynamics.........cccccecveveeneeneenennuennenne 220
7.5.1 Regressor-based adaptive controller design..........cc.......... 223
7.5.2 Regressor-free adaptive controller design............cceueeueeee 224
APPEIIX ..ottt ettt e sttt 241
References ............ccoooeviiiiiniiiiiiiiiicicc e 247
Symbols, Definitions and Abbreviations.................cccccoevviiiniiiiniiinieeee, 257



Chapter 1

Introduction

Robot manipulators have been widely used in the industrial applications in
the past decades. Most of these applications are restricted to slow-motion
operations without interactions with the environment. This is mainly due to
limited performance of the available controllers in the market that are based on
simplified system models. To increase the operation speed with more servo
accuracy, advanced control strategies are needed. Consideration of the actuator
dynamics in the controller design is one of the possible ways to improve system
performance. Although some of the industrial robots are driven by hydraulic or
pneumatic actuators, most of them are still activated by motors. Therefore,
similar to majority of the related literature, we are only going to consider
electrically driven (ED) robot manipulators in this book. On the other hand,
explicit inclusion of the joint flexibility into the system dynamics can also
improve the control performance. Since the robot dynamics is highly nonlinear,
consideration of these effects will largely increase the difficulty in the controller
design. Besides, the robot model inevitably contains uncertainties and
disturbances; this makes the control problem extremely difficult.

In this book, we would like to consider the control problem of robot
manipulators with consideration of actuator dynamics, joint flexibility and
various system uncertainties. These uncertainties are assumed to be time-varying
but their variation bounds are not available. Due to their time-varying nature,
most traditional adaptive designs are not feasible. Because their variation
bounds are not known, most conventional robust schemes are not applicable.
The main strategy we employed in this book to deal with the uncertainties is
based on the function approximation techniques (FAT). The basic idea of FAT
is to represent the uncertain term as a finite combination of known basis
functions so that proper update laws can be derived based on the Lyapunov-like
design to give good performance. Since the FAT-based adaptive design does not
need to represent the system dynamics into a regressor form, it is free from
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computation of the regressor matrix. Derivation of the regressor matrix is well-
known to be very tedious for a robot manipulator with more than four joints.
The regressor-free strategy greatly simplified the controller design process.
Because, for the traditional robot adaptive control, the complex regressor matrix
has to be updated in every control cycle in the real-time implementation,
the regressor-free algorithm also effectively simplified the programming
complexity.

When the robot end-effector contacts with the environment, the controllers
designed for performing the free space tracking tasks cannot provide appropriate
control performance. In this book, the renowned impedance control strategy will
be incorporated into the FAT-based design so that some regressor-free adaptive
controllers with consideration of the actuator dynamics for the robot manipulators
can be obtained.

To have a better understanding of the problems we are going to deal with,
Table 1.1 presents the systems considered in this book. The abbreviations listed
will be used throughout this book to simplify the presentation.

Table 1.1 Systems considered in this book

Systems Abbreviation
1 | Rigid robot in the free space RR
2 | Rigid robot interacting with the environment RRE
3 | Electrically-driven rigid robot in the free space EDRR
4 | Electrically-driven rigid robot interacting with the environment EDRRE
5 | Flexible-joint robot in the free space FJR
6 | Flexible-joint robot interacting with the environment FJRE
7 | Electrically-driven flexible-joint robot in the free space EDFJR
8 | Electrically-driven flexible-joint robot interacting with environment EDFJRE

Free space tracking of a rigid robot

It can be seen that systems from 1 to 7 are all special cases of 8. However,
it is not appropriate to derive a controller for the system in 8 directly, because
starting from the simple ones can give us more insight into the unified approach
to be introduced. Let us consider the tracking problem of a rigid robot in the free
space first. It is the simplest case in this book and several control strategies can
also be found in robotics textbooks under various conditions. We will start with
the case when all system parameters are precisely known, and a feedback
linearization based controller is constructed to give proper performance.
Afterwards, we assume that most parameters in the robot model are not known
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but a regressor can be derived such that all uncertain parameters are collected
into an unknown vector. Conventional adaptive strategies can thus be applied to
give update laws to this unknown parameter vector, and closed loop stability can
also be proved easily. However, implementation of this scheme requires the
information of joint accelerations which is impractical in most industrial
applications. What is worse is that the estimation in the inertia matrix might
suffer the singularity problem. A well-known design proposed by Slotine and Li
is then reviewed to get rid of the need for joint acceleration feedback and avoid
the singularity problem. In the above designs, the robot dynamics should be
linearly parameterized into a known regressor matrix multiplied by an unknown
parameter vector. The regressor matrix is known to be tedious in its derivation
for a robot with degree of freedom more than 4. The regressor matrix is not
unique for a given robot, but depending on the selection of the parameter vector.
The entries of this vector should be constants that are combinations of unknown
system parameters. However, these parameters are mostly easier to be found
than the derivation of the regressor matrix. For example, the weight, length,
moment of inertia and gravity center of a link are frequently seen in the
parameter vector and their values are very easy to measure in practice. It is not
reasonable to construct a controller whose design needs to know an extremely
complex regressor matrix but to update an easy-to-obtain parameter vector.
Motivated by this reasoning, the regressor-free adaptive control approach is
developed. The uncertain matrices and vectors in the robot model will be
represented as finite combinations of basis functions. Update laws for the
weighting matrices can be obtained by the Lyapunov-like design. The effect
of the approximation error is investigated with rigorous mathematical
justifications. The output error can thus be proved to be uniformly ultimately
bounded. Finally, the trajectory of the output error is bounded by a weighted
exponential function plus some constant. With proper adjustment of controller
parameters, both the transient performance and the steady state error can be
modified.

Compliant motion control of a rigid robot

Item 2, 4, 6 and 8 in Table 1.1 relate to the compliant motion control of
robot manipulators whose dynamic model include the effect of the external force
vector exerted by the environment. Many control strategies are available for
rigid robots to give closed loop stability in the compliant motion applications.
Among them, the impedance control employed in this book is the most widely
used one which is a unified approach for controlling robot manipulators in both
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free space tracking and compliant motion phases. The impedance controller
makes the robot system behave like a target impedance in the Cartesian space,
and the target impedance is specified as a mass-spring-damper system. For rigid
robots, we start with the case when the robot system and the environment are
known and the impedance controller is designed. The regressor-based adaptive
impedance controller is then derived for robot systems containing uncertainties.
To avoid derivation of the regressor matrix, the regressor-free adaptive
impedance controller using function approximation techniques is introduced.
For the impedance controller of EDRRE, FJRE and EDFJRE, much more
complex derivations will be involved due to the complexity in the system model.
Unlike the rigid robots, the regressor-based designs of these robots need
additional information such as the derivative of the regressor matrix, the joint
accelerations and derivative of the external force. All of these are not generally
available, and hence regressor-free designs are introduced to get rid of their
necessity. The unified approach in the FAT-based regressor-free adaptive
impedance controller designs for RRE, EDRRE, FIRE and EDFIRE can all give
uniformly ultimately bounded performance to the output error and the transient
performance can also be evaluated by using the bound for the output error
signal.

Consideration of the actuator dynamics

The control problem of rigid robot manipulators has been well developed
under the assumption that all actuator dynamics are neglected. However, it had
been reported that the robot control problem should carefully consider the
actuator dynamics to have good tracking performance, especially in the cases of
high-velocity movement and highly varying loads. Therefore, in item 3, 4, 7 and
8 of Table 1.1, we include considerations of actuator dynamics in the system
equations to investigate their effects in performance improvement. The input
vector to a robot without consideration of the actuator dynamics contains
torques to the joints, while the input vector to electrically-driven robots is with
signals in voltages. This special cascade structure connecting the actuator and
the robot dynamics enables us to employ backstepping-like designs to eliminate
uncertainties entering the system in a mismatched fashion. The regressor-based
adaptive designs are introduced first for items 3, 4, 7 and 8 followed by their
regressor-free counterparts. Implementations of most regressor-based methods
introduced here need the information of the derivative of the regressor matrix
and joint accelerations, but the regressor-free designs do not. Besides, the
uniformly ultimately bounded performance can be proved to be maintained
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when considering the actuator dynamics by using the regressor-free approach.
Simulation cases for justifying performance improvements are designed with
high speed tracking problems. All of these regressor-free schemes give good
performance regardless of various system uncertainties.

Consideration of the joint flexibility

Many industrial robots use harmonic drives to reduce speed and amplify
output torque. A cup-shape component in the harmonic drive provides elastic
deformation to enable large speed reduction. Therefore, it is known that
harmonic drives introduce significant torsional flexibility into the robot joints.
To have a high performance robot control system, elastic coupling between
actuators and links cannot be neglected. Modeling of these effects, however,
produces an enormously complicated model. For simplicity, most researches
regard the flexibility as an effect of the linear torsional spring connecting the
shaft of the motor and the end about which the link is rotating. Two second-
order differential equations should be used to describe the dynamic of a flexible
joint: one for the motor shaft and one for the link. This implies that the number
of degree-of-freedom is twice the number for a rigid robot, since the motion of
the motor shaft is no longer simply related to the link angle by the gear ratio.
The high system order and highly nonlinear coupling in the dynamics equation
result in difficulties in the controller design. If the system model contains
inaccuracies and uncertainties, the controller design problem becomes extremely
difficult. In this book, we are going to design conventional regressor-based
adaptive controllers for this system first and followed by a regressor-free control
strategy. In addition, adaptive controllers for impedance control of flexible joint
robot will also be derived. Furthermore, the actuator dynamics are to be
considered so that in the most complex case a regressor-free adaptive impedance
controller will be designed for an EDFJRE. When considering the joint
flexibility, the realization of the regressor-based adaptive controller requires the
knowledge of joint accelerations, the regressor matrix, and their derivatives. The
regressor-free designs, however, do not need these additional information.

The regressor-free adaptive controller design

Calculation of the regressor matrix is a must in the traditional adaptive
control of robot manipulators which is because the update laws are able to be
designed only when the parameter vectors are unknown constants. Parameterization
of the uncertainties into multiplications of the regressor matrix with the
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unknown parameter vector need to be done based on the system model. With
proper definitions of the entries in the parameter vector, the regressor matrix can
then be determined. Since these definitions are not unique, the regressor matrix
for a given robot is not unique either. Some definitions will give relatively
simple forms for the regressor matrix, while some will become very complex.
When the degree of freedom of the robot is more than four, the derivation of the
regressor matrix becomes very tedious. In general, the entries in the parameter
vector are combinations of the quantities such as the link masses, dimensions of
the links, and moments of inertia. These quantities are relatively easier to
measure compared with the derivation of the regressor matrix. However, the
traditional adaptive designs are only capable of updating these easy-to-measure
parameters, but require the complex regressor matrix to be known. In addition,
in every control cycle of the real-time implementation, the calculation of the
regressor matrix is also time consuming which largely limits the computation
hardware selections, especially in the embedded applications. In this book, a
unified approach for the design of regressor-free adaptive controllers for robot
manipulators is introduced which is feasible for robots with considerations of
the actuator dynamics, joint flexibilities as well as the interaction with the
environment. All of these designs will end up with the uniformly ultimately
bounded closed loop performance via the proofs using the Lyapunov-like
techniques.

The FAT-based design

Two main approaches are available for dealing with uncertainties in control
systems. The robust strategies need to know the worst case of the system so that
a fixed controller is able to be constructed to cover the uncertainties. In most
cases, the worst case of the system is evaluated by proper modeling of the
uncertainties either in the time domain or frequency domain. The variation
bounds estimated from the uncertainty model are then used to design the robust
terms in the controller. In some practical cases, however, these variation bounds
are not available, and hence most robust strategies are infeasible. The other
approach for dealing with system uncertainties is the adaptive method. Although
intuitively we think that an adaptive controller should be able to give good
performance to a system with time-varying uncertainties, conventional adaptive
designs can actually be useful to systems with constant uncertainties. Therefore,
to be feasible for the adaptive designs all time-varying parts in the system
dynamics should be collected into a known regressor matrix, while the unknown
constant parameters are put into a parameter vector. This process is called the
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linear parameterization of the uncertainties which is almost a must for adaptive
designs. After the parameterization, proper update laws can then be derived to
provide sufficient information to the certainty equivalence based adaptive
controller such that the closed loop system can give good performance.
However, there are some practical cases whose uncertainties are not able to be
linearly parameterized (e.g., various friction effects), and some others are
linearly parameterizable but the regressor matrices are too complex to derive
(e.g., robot manipulators).

Now let us consider a case when the uncertainties are time-varying and
their variation bounds are not available. Since they are time-varying, most
traditional robust designs fail. Because their variation bounds are unknown,
most conventional adaptive strategies are infeasible. In this book, we are going
to call this kind of uncertainties the general uncertainties. For a system with
general uncertainties, few control schemes are available to stabilize the closed
loop system. Because the regressor-free adaptive controller design for robot
manipulators should avoid the use of the regressor matrix, a new representation
for the system uncertainties is needed. In this case, it is more practical to regard
the uncertainties in the robot model to be general uncertainties, and the
controller design problem is a challenge. Here, in this book, we employ the
function approximation technique to represent the uncertainties into finite
combinations of basis functions. This effectively transforms a general
uncertainty into a known basis vector multiplied by a vector of unknown
coefficients. Since these coefficients are constants, update laws can be derived
by using the Lyapunov-like methods. Due to the fact that the mathematical
background for the function approximation has well been established and the
controller design portion follows the traditional adaptive strategies, the FAT-
based adaptive method provides an effective tool in dealing with controller
design problems involving the general uncertainties.

Organization of the book

Robot systems considered in this book are all listed in Tables 1.1 according
to the complexity in their dynamics. For better presentation, however, they will
be arranged into the chapters different from the order as shown in the table. In
Chapter 2, the backgrounds for mathematics and control theories useful in this
book are reviewed. Readers familiar to these fundamentals are suggested to go
directly to the next chapter. Various concepts from the linear algebra and real
analysis are briefly presented in this chapter. Some emphasis will be placed on
the spaces where the function approximation techniques are valid. Various
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orthonormal functions are also listed with their effective ranges for the
convenience in the selection of basis functions for the FAT-based designs. Then
the Lyapunov stability theory and the Lyapunov-like methods are reviewed in
detail followed by the introduction of the control theories such as the sliding
control and model reference adaptive control. After these conventional robust
and adaptive designs, the concept of general uncertainties is presented.
Limitations in the sliding controller designs when the variation bounds for the
uncertainties are not available are investigated. Likewise, the problem for the
model reference adaptive control when the system contains time-varying
parameters is illustrated. Finally, the FAT-based adaptive controller is designed
for these systems with general uncertainties in detail.

Chapter 3 collects all dynamic equations for systems listed in Table 1.1.
These equations will be used in later chapters for controller designs. Examples
for these systems will also be presented, and they will also be used in the
simulation studies later. Adaptive control strategies for the rigid robots are
introduced in Chapter 4. Traditional regressor-based adaptive rules will be
derived first followed by some investigation into the detail of the regressor
matrix and the parameter vector. This justifies the necessity for the regressor-
free adaptive designs. A FAT-based regressor-free adaptive controller is then
derived for the rigid robot with consideration of the approximation errors. The
rigorous proof for the closed loop stability is presented to give uniformly
ultimately bounded performance. Next, the actuator dynamics is included into
the system model and adaptive controllers are derived using regressor-based
designs and regressor-free designs. Significant amount of simulation results are
provided to justify the efficacy of the controllers when actuator dynamics are
considered.

Chapter 5 considers the compliant motion control of rigid robot
manipulators. The impedance controller is employed to enable the robot to
interact with the environment compliantly while maintaining good performance
in the free space tracking. The traditional impedance controller is reviewed first
for the system with known dynamics. A regressor-based and a regressor-free
adaptive controller are then derived. Finally, the actuator dynamics is considered
to improve the control performance.

Chapter 6 includes joint flexibility into consideration such that the order of
the system model is doubled compared with its rigid joint counterpart. Control
of a known FJR is firstly reviewed. The regressor-based adaptive controller is
then introduced followed by the derivation of the regressor-free controller. The
actuator dynamics will be considered in the last section of this chapter. A 5"
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order differential equation should be used to describe a single link in this case
which makes the controller design problem become extremely challenging.

The last chapter deals with the problem of the adaptive impedance control
for FJR. We review the control of a known robot first to have some basic
understanding of this problem. The regressor-based adaptive controller is then
designed, but it requires some impractical knowledge in the real-time
implementation. The regressor-free adaptive controller is derived without any
requirements on additional information. Consideration of the actuator dynamics
further complicated the problem, and the regressor-free adaptive design is still
able to give good performance to the closed loop system.
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Chapter 2

Preliminaries

2.1 Introduction

Some mathematical backgrounds are reviewed in this chapter. They can be
found in most elementary mathematics books; therefore, most results are
provided without proof. On the other hand, some preliminaries in control
theories will also be presented in this chapter as the background for the
theoretical development introduced in the later chapters. In Section 2.2, some
notions of vector spaces are introduced. Some best approximation problems in
the Hilbert space will be mentioned in Section 2.3. Various orthogonal functions
are collected in Section 2.4 to facilitate the selection of basis functions in FAT
applications. The vector and matrix analysis is reviewed in Section 2.5 which
includes their differential calculus operations. Norms for functions, vectors and
matrices are summarized in Section 2.6, and some normed spaces are also
introduced. Section 2.7 illustrates the approximation representations of
functions, vectors and matrices. The Lyapunov stability theory is reviewed in
Section 2.8. The concept of sliding control is provided in Section 2.9 as an
introduction to the robust design for a system containing uncertainties defined in
compact sets. Section 2.10 gives the basics of the model reference adaptive
control to linear time-invariant systems. To robustify the adaptive control loop,
some modifications of the adaptive designs are also presented in Section 2.10.
The concept of general uncertainties is clarified in Section 2.11. The limitations
for traditional MRAC and robust designs will also be discussed. Finally, the
FAT-based adaptive controller is introduced in Section 2.12 to cover the general
uncertainties.

2.2 Vector Spaces

Vector spaces provide an appropriate framework for the study of
approximation techniques. In this section we review some concepts and results
useful in this book.

11



12 Chapter 2 Preliminaries

A nonempty set X is a (real) vector space if the following axioms are
satisfied:

x+yeX, Vx,yeX
X+y=y+x, Vx,ye X
(x+y)+z=x+(y+2), Vx,y,ze X
There is a unique vector 0 € X such that Xx+0=x, Vxe X

VX € X, there exists a unique vector —X € X such that X+ (—x) =0

axeX,VxeX, VaeR
a(fx)=(af)x, Vxe X, Va,feR
Ix=x, Vxe X

(x+pP)x=ax+Px,VxeX,Va,feR
ax+y)=ax+ay, Vx,ye X, VaeR

For example, the set of all n-tuples of real numbers is a real vector space and is
known as R". The set of all real-valued functions defined over an interval
[a,b]€ R is also a vector space. The set of all functions maps the interval
[a,b]€ R into R" can also be proved to be a vector space. In some literature,
the real vector space is also known as the real linear space.

If X;,....X; €R" and ¢y, ...,c;, €N, a vector of the form ¢;X; +...+ ¢, X,
is said to be a linear combination of the vectors Xi,...,X; . The set of vectors
X,...,X; € R" is said to be independent if the relation ¢;X; +...+ ¢y X, =0
implies ¢; =0,i=1,...,k ; otherwise, the set of vectors is dependent. If S C R"
and if R is the set of all linear combinations of elements of S, then § spans R, or
we may say that R is the span of S. An independent subset of a vector space
X C R" which spans X is called a basis of X. A vector space is n-dimensional
if it contains an independent set of n vectors, but every set of n+1 vectors is a
dependent set.
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2.2.1 Metric space

A set X of elements p, g, r,... is said to be a metric space if with any two
points p and ¢ there is associated a real number d(p, g), the distance between p
and ¢, such that

d(p,q)>0if p#q;
d(p,p)=0;
d(p,q)=d(q,p);
d(p,.g)<d(p,r)+d(r,q) forany re X .

The distance function on a metric space can be thought of as the length of a
vector; therefore, many useful concepts can be defined. A set EC X is said
to be open if for every x € E, there is a ball B(x,r)={y€ X| d(y,x)<r}
such that B(x,r) C E for some positive r. A set is closed if and only if its
complement in X is open. A set E is bounded if Ir >0 such that
d(x,y)<rVx,yeE.Let S CT be two subsets of X. § is said to be dense in
T if for each element ¢ in T and each € > 0, there exists an element s in S such
that d(s,t) <&. Thus every element of T can be approximated to arbitrary
precision by elements of S.

Let X and Y be metric spaces with distance functions dy and dy,
respectively. A function f: X — Y is said to be continuous at a point x € X if
f(x+0x)— f(x) whenever & x — 0. Or, we may say, f is continuous at x if
given € >0, there exist 0 >0 such that dy (x,y) <0 = dy (f(x), f(¥) <E.
A function f is continuous on E C X if it is continuous at every points of F,
and it is uniformly continuous on E if given &> 0, there exist 0(€) >0 such
that dy (x,y)<d = dy(f(x), f(¥) <& forall x,y€E.

The distance function generates the notion of convergence: A sequence
{x;} in a metric space X is said to be convergent to an element x if for each
&> 0 there exists an integer n such that d(x,x;) <& whenever i >n. A set
E C X is compact if each sequence of points in E contains a subsequence
which converges to a point in E. In particular, a compact subset of R" is
necessarily closed and bounded. The sequence {x;} is a Cauchy sequence if for
each £>0 there exists an integer n such that p,g>n= d(x,,x,)<€.
Clearly, every convergent sequence is a Cauchy sequence, but the converse is
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not true in general. A complete metric space X is a space where every Cauchy
sequence converges to a point in X.

2.2.2 Normed vector space

Let X be a vector space, a real-valued function |||| defined on X is said to
be a norm on X if it satisfies the following properties

||x|| >0,Vxe X,x#0
o] =0
”CVX” = |CZ| ||X|| for any scalar ¢«
[+ vl <[l +[y]. vx.y € X

A normed vector space (X ,||||) is a metric space with the metric defined by
d(X,y)=||X—y||, VX,y € X . The concept of sequence convergence can be
defined using the norm as the distance function. Hence, we are now ready to

define convergence of series. The series ZX,- is said to converge to x € X if
i=1
the sequence of partial sums converges to X, i.e., if V&> 0,3n>0 such that
m
in —X|| < €& whenever m>n .
i=1
A complete normed vector space is called a Banach space. In a normed
vector space, the length of any vector is defined by its norm. To define the angle
between any two vectors, in particular the concept of orthogonality between
vectors, we need the notion of the inner product space.
An inner product <X,y> on a real vector space X is a real-valued mapping
of the pair X,y € X with the properties

(xy)=(y.x)
(ax.y)=a(x.y)
<x+y,z> =<x,z>+<y,z> ,Vze X

(x,x>>OVx¢0
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A real vector space with an inner product defined is called a real inner product
space. An inner product space is a normed vector space and hence a metric
space with

d(x,y)=[x-y|=(x~y.x~y)

For any two vectors X and y in an inner product space, we have the Schwarz
inequality in the form |<X,y>| < ||X||||y|| . The equality holds if and only if X and
y are dependent. Two vectors X,y are orthogonal if X,y> =0. Let {x;} be a
set of elements in an inner product space X. {X;} is an orthogonal set if
<X,<,X j> =0, Vi# j.If in addition every vector in the set has unit norm, the set
is orthonormal.

A Hilbert space is a complete inner product space with the norm induced
by its inner product. For example, R" is a Hilbert space with inner product

n

<XaY> = ZXiyi

i=1
Suppose functions x(¢) and y(¢) are defined in a domain D, then L, is a

Hilbert space with the inner product <x, y> = J. x(®)y(t)dt.
D

2.3 Best Approximation Problem in Hilbert Space

Let U be a set of vectors in a Hilbert space H. The algebraic span S(U) is
defined as the set of all finite linear combinations of vectors X; € U (Stakgold
1979). The set S (U) is the closure of S(U) and is called the closed span of U.
For example, if U = {l,x,xz,...} C L,, then S(U) is the set of all polynomials,
whereas E(U) =L,. The set U is a spanning set of H if E(U) is dense in H.
The Hilbert space H is separable if it contains a countable spanning set U. The
space L, is separable since the countable set {l,x,xz,...} is a spanning set. Any
finite-dimensional Hilbert space is separable because its basis is a countable
spanning set. Since an infinite-dimensional space cannot have a finite spanning
set, a separable infinite-dimensional Hilbert space must contain a countably
infinite set U={X;} so that each vector X € H can be approximated to any
desired accuracy by a linear combination of a finite number of elements of U.
This can be rewritten as: given € >0 and X € H, there exist an integer n such
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n
that X—Zcixi <& where ¢;€R,i=1,..,n. It can be proved that a
i=1
separable Hilbert space H contains an orthonormal spanning set, and the
spanning set is necessarily an orthonormal basis of H. An orthonormal basis is
also known as a complete orthonormal set.

The best approximation problem in a separable Hilbert space is to
approximate an arbitrary vector X € H by a linear combination of the given
independent set U = {X,,...,X,, }. Since the set of linear combination of X,...,X,,
is an n-dimensional linear manifold M,, an orthonormal basis {e,,...,e,} for
M, can be constructed from U by using the Gram-Schmidt procedure.
Therefore, the approximation error can be calculated as

n 2 5 1 2 \ 2
X—Zc[ei =] +2|<x,e[>—ci| _2|<X’ei>| W
i=1 i=l =

Hence, the minimum error can be obtained when c; =<X,e,<>. These c; are
known as the Fourier coefficients of X with respect to the orthonormal basis
{e,...,e,}. With these coefficients, the vector X €& H is approximated as

n

2<X,e,~>e,~ , and the approximation error becomes
i=1

n

2 n
x-Dixede] =[xl - Ylxe) ®
i=1

i=1

If an additional vector e, is included into the orthonormal set, the vector
n+l

X € H is thus approximated by the series 2<X,e[>ei, which is the same as
i=1

the previous one except that one extra term <X,e,<+1>e,<+1 is added. This implies

that previously calculated Fourier coefficients do not need to be recalculated. It

can also be observed that the right hand side of (2) gets smaller when the

orthonormal set is taken larger. Hence, the best approximation to X improves as

we use more terms in the orthonormal set. As the number of terms used goes to

infinity, the approximating series becomes the Fourier series 2<X,e,~>e,~.
i=1
Hence, (2) implies
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s = |(x.e0)]” 3)
i=1

which is known as the Parseval’s identity. Convergence of the Fourier series can
be proved by using the Riesz-Fischer theorem with the fact that the partial sum

of the series 2|<X,e[>|2 is monotonically increasing and is bounded above by
i=1

||X||2. Consequently, it is easy to prove that 1im<x,e,»> =0, i.e., the coefficients

of the Fourier series vanish as i — oo. o

2.4 Orthogonal Functions

In the previous section we have reviewed the general framework for the
best approximation problem in the Hilbert space. In this section, we would like
to restrict the scope to the function approximation problem using orthogonal
functions.

The set of real-valued functions {@;(x)} defined over some interval [a,b]
is said to form an orthogonal set on that interval if

i#]j

b p—
J ¢;(X)¢j(X)dX{¢ 0 iz (1)

a

b
An orthogonal set {@;(x)} on [a,b] having the property J. ¢,<2(x)dx=l for

all i is called an orthonormal set on [a,b]. The set of real-valued functions
{@;(x)} defined over some interval [a,b] is orthogonal with respect to the
weight function p(x) on that interval if

%]

b pa—
J p(x)9;(x)9; (X)dX{i 0 iz 2)

a

Any set of functions orthogonal with respect to a weight function p(x) can be
converted into a set of functions orthogonal to 1 simply by multiplying each
member of the set by /p(x) if p(x)>0 on that interval. For any set of
orthonormal functions {@;(x)} on [a,b], an arbitrary function f(x) can be
represented in terms of ¢@;(x) by a series
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F () =a1g1(x) + 20, (x) ++ 4,0, (X) +-- 3)

This series is called a generalized Fourier series of f(x) and its coefficients
are Fourier coefficients of f(x) with respect to {¢;(x)}. Multiplying by @, (x)
and integrating over the interval [a,b] and using the orthogonality property, the
series becomes

b b
[ reos,dr=c,[ g2 cax @
Hence, the coefficient ¢, can be obtained from the quotient

b
[ res,ma
c. = a

n— b (5)
[ orcoax

It should be noted that although the orthogonality property can be used to
determine all coefficients in (3), it is not sufficient to conclude convergence of
the series. To guarantee convergence of the approximating series, the orthogonal
set should be complete. An orthogonal set {@;(x)} on [a,b] is said to be

b
complete if the relation J g2(x)@;(x)dx =0 can hold for all values of i only if

g(x) can have non-zero values in a measure zero set in [a,b]. Here, g(x) is
b
called a null function on [a,b] satisfying J. g7 (x)dx=0. It is easy to prove

that if {@;(x)} is a complete orthonormal set on [a,b] and the expansion
@ (x)+crdr (x)+---+c, @, (x)+--- of f(x) converges and can be
integrated term by term, then the sum of the series differs from f(x) by at most
a null function.

Examples of orthonormal functions

Since there are many areas of applications of orthonormal functions, a
sizable body of literature can be easily found. In this section, we consider some
of the orthonormal functions that are frequently encountered in engineering
problems and useful in our applications.
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1. Taylor polynomials

In the calculus courses, it is well known that given a function f(x) and a
point ¢ in the domain of f, suppose the function is n-times differentiable at c,
then we can construct a polynomial

Pn(x>=f(c)+f'(c>(x—c)+%(x—c)2
(n)
+"'+M(X—C)n (6)
n!

where P,(x) is called the nth-degree Taylor polynomial approximation of f at
c. The Taylor polynomial is not well suited to approximate a function f(x)
over an interval [a,b] if the approximation is to be uniformly accurate over the
entire domain. Taylor polynomial approximation is known to yield very small
error near a given point, but the error increases in a considerable amount as we
move away from that point. The following orthogonal polynomials, however,
can give a more uniform approximation error over the specified interval.

2. Chebyshev polynomials

The set of Chebyshev polynomials is orthogonal with respect to the weight
function (1—x ) z on the interval [-1,1]. The first two polynomials are
Ty(x)=1 and T (x) = x, and the remaining polynomials can be determined by
the recurrence relation

Tn+l(x) = 2XTn (X) _Tn—l(x) 7

for all n=1,2,... For convenience, we list the first 7 polynomials below

To(x)=1
Ti(x)=x
T,(x)=2x> -1

Ty(x) = 4x> —3x
T,(x)=8x"*—8x*+1

Ts(x) =16x° —20x° +5x
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To(x)=32x% —48x* +18x% -1
Ty (x)=64x" —112x° +56x° —7x

3. Legendre polynomials

The set of Legendre polynomials is orthogonal with respect to the weight
function p(x)=1 on the interval [-1,1]. The first two polynomials are
Ly(x)=1 and L,(x) = x, and the remaining polynomials can be determined by
the recurrence relation

(n+ DL, (x) =2n+1)xL,(x) —nL,(x) ®)
for all n=1,2,... Here, we list the first 7 polynomials for convenience
Ly(x)=1

Li(x)=x

1
Ly(x) =5(3x2 -1

1
Ly(x)= 5(5963 -3x)
1 4 2
L,(x)= 3 (35x" =30x" +3)
1 5 3
Ls(x)= §(63x —70x” +15x)

Le(x) =%(231x6 —-315x* +105x* -5)

1
L(x)= E(429x7 —693x° +315x° —35x)

4. Hermite polynomials

The set of Hermite polynomials is orthogonal with respect to the weight
function p(x)=e " on the interval (—oo,o0). The first two polynomials are



2.4 Orthogonal Functions 21

Hy(x)=1 and H,(x)=2x, and the remaining polynomials can be determined
by the recurrence relation

H, . (x)=2xH, (x)—2nH,_(x) )
for all n=1,2,... Here, we list the first 7 polynomials as
Ho(x)=1
H,(x)=2x
H,(x)=4x>-2
Hy(x)=8x" —12x
H,(x)=16x"—48x* +12
Hs(x)=32x" —160x> +120x
H(x) = 64x% —480x* +720x* —120

H,(x)=128x" —1344x° +3360x> —1680x

5. Laguerre polynomials

The set of Laguerre polynomials is orthogonal with respect to the weight
function p(x)=e " on the interval [0,e0). The first two polynomials are
Ly(x)=1 and L;(x) =—x+1, and the remaining polynomials can be determined
by the recurrence relation

Ly (x) = (2n+1=x)L,(x) = n’L,- (x) (10)
for all n=1,2,... The following are the first 7 polynomials
Ly(x)=1
Li(x)=—x+1

Ly(x)=x*—4x+2
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Ly(x)=-x"+9x> —18x+6
Ly(x)=x" —16x> +72x* —96x + 24
Ls(x) = —x +25x* —=200x> + 600x? — 600x +120
Le(x) = x° =36x° +450x* —2400x + 5400x° — 4320x + 720

L(x)=—x" +49x° —882x +7350x* — 29400x°
+52920x2 —35280x + 5040

6. Bessel polynomials

The set of Bessel polynomials is orthogonal with respect to the weight
function p(x)= x on the interval [0,b] in the form

b
EACEYRGREE (11)
0

for all i # j. The Bessel polynomials can be calculated with

. il (_l)mx2m
7nl0=x zzzm*"mz(mm)z (12

m=0
In particular, for n=0, 1, the Bessel polynomials are

2 4 6

X X X
P TP EVERP EIVEE

3 5 7
X X X

X
—— + - +
2 274 27.4%.6 27-4*.6°-8

Ji(x) =

These two series converge very rapidly, so that they are useful in computations.
The recurrence relation below can also be used to find other Bessel polynomials
based on J((x) and J;(x) given above.
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2n
Jn+l(x):_‘]n—l(x)+7]n(x) (13)

It should be noted that k;, i=1,2,... in (11) are real numbers so that
J,(kib) =0, i.e., they are distinct roots of J, =0. These roots for n=0, 1 are
listed here for reference

Jo(x) =0 for x=2.405, 5.520, 8.654, 11.792, 14.931, ...

J(x)=0 forx=0, 3.832,7.016, 10.173, 13.324, ...

Having the orthogonality property in (11), we can represent a given function
f(x) in a series of the form in [0,b] with a given n

F) =Y eid (ki) (14)
i=1

This series is called a Fourier-Bessel series or simply a Bessel series.

7. Fourier series

A bounded period function f(x) can be expanded in the form
ar nTx . nIXx
(x)=—+ a, cos——+b, sin—— (15)
f="5 4 Q| aneos T sin

if in any one period it has at most a finite number of local extreme values and a
finite number of discontinuities. (15) is called the Fourier series of function
f(x). The constants ag, a, and b,,n=1,23,... are called Fourier coefficients,
and the value 27 is the period of f(x). It can be proved that the Fourier series
converges to f(x) at all points where f(x) is continuous and converges to the
average of the right- and left-hand limits of f(x) at each point where it is
discontinuous.

Table 2.1 summarizes the orthonormal functions introduced in this section.
When using these functions in approximation applications, it is very important
that the valid range for the functions to be orthonormal is ensured.
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Table 2.1 Some useful orthonormal functions

Valid
Polynomial Interval Forms
Taylor [a,b] ”
P= O+ (-0 (-2
(n)
LG
n'
Chebyshev [-1,1] To(x)=1
Ti(x)=x
Ty1(x) = 2xT,(x) = T,-1 (%)
Legendre [-1,1] Ly(x)=1
Li(x)=x
(n+DL, 1 (x) =2n+1)xL,(x) —nL,(x)
Hermite (=00, 0) Hy(x)=1
H(x)=2x
H, . (x)=2xH,(x)—2nH,_(x)
Laguerre [0,0) Ly(x)=1
Li(x)=—x+1
L,i(x)=Q2n+1-x)L,(x)=n’L,_,(x)
Bessel [0,b] 2 x* x°
j"(x)zl_?+ 28 TR
i ¥
X)==— = 4T
SRR TV R EEN
2n
Jn+l ()C) = _Jn—l (x) + 7 Jn (x)
Fourier One s
nITx
i iod = cos +b sin——
series perio fx)= Zl[ i T }

2.5 Vector and Matrix Analysis

2.5.1 Properties of matrices

Let A € R™™" be a matrix with n rows and m columns, and a; € R be
the (7, j)th element of A. Matrix A can also be represented as [a;;]. If the rows
and columns are interchanged, then the resulting m X7 matrix is called the
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transpose of A, and is denoted by A’ The transpose operation has the following
properties:

(ADHT =A (1a)
(A+B) =A" +B" VBeR™" (1b)
(AB)" =B"A” VBeR™" (1c)

A matrix AeR™" is symmetric if A=A", and is skew-symmetric if
A =-A". For any matrix A € R, A+A” is symmetric and A —A” is
skew-symmetric. If A is a mXn matrix, then A" A is symmetric. A matrix
AeR™ is diagonal if a;=0,Yi# j. A diagonal matrix A can be
written as diag(ay,...,d,,). An identity matrix is a diagonal matrix with
ap=-=dpy =1.

A matrix AeR™" is nonsingular if IBER" such that
AB =BA =1 where Lis an n X n identity matrix. If B exists, then it is known
as the inverse of A and is denoted by A", The inverse operation has the
following properties:

(AH'T=A (2a)

(AN =A™’ (2b)

(aA)™ =$A‘l VaeR,a#0 (2¢)
(AB)"' =B'A™" VB e R™" with valid inverse 2d)

A matrix A € R™" is said to be positive semi-definite (denoted by A > 0)
if X" Ax>0 VxeR". It is positive definite (denoted by A >0) if X’ AX >0
VxeNR",x#0. It is negative (semi-)definite if —A is positive (semi-)definite.
A time-varying matrix A(t) is uniformly positive definite if 3o >0 such that
A(t)>ol.

Let A € R™", then the rrace of A is defined as

Tr(A)= Y a; 3)
i=1
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where a;; is the ith diagonal element of A. The trace operation has the following
properties:

Tr(A)=Tr(AT) (4a)
Tr(cA)=aTr(A) VaeR (4b)
Tr(A+B)=Tr(A)+Tr(B) VBeR"™" (4¢)

Tr(AB)=Tr(BA)=Tr(A"B") VA eR™" BeR™" (4d)
X'y=Tr(xy")=Tr(yx")=y'x Vx,yeR” (4e)

2.5.2 Differential calculus of vectors and matrices

Suppose f(x):R" — R is a differentiable function, then the gradient
vector is defined as

F o7
- o 5
f (x)= [ oo } 5
and if f is twice differentiable, then the Hessian matrix can be defined as
22 ox; 0x;x,,
= ®)
ox ) )
of .. 9f
| Ox,x; ox, |

Let a;(x) be the (ij)th element of matrix A(x) € R with xR, then the
derivative of A with respect to x is computed as

[day(x)  day,(x) ]
dx dx
d . . .
aA(x) = : . : (7)
danl (X) . danm (-x)
L dx dx |
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Let £(.): R — R be a real-valued mapping, then

of O ]
if(A)_ 86.111 ‘ aa.lm
" =| . :
’ o

| da,, 0d,, |

®)

The following basic properties of matrix calculus are useful in this book.

LarB) =24 vapen
dx dx

—(AB) —‘;—AB+A@ VA e R™" Be R

dx

iA*I =—A*1%

Al VAeRm"
dx dx

9 (xTy)=y Vxye®R”

ox

a T n

—x'y)=x Vx,yeR

dy
a T nxm m
—(Ax)=A" VYAeR" xeR
ox
i(xTAx)zxxT VA eRY" xeR"
JA

aiA(xTATAX) =2Axx’ VAeR"",xeR"

ai(xTAx) =Ax+A'x=2Ax VA eR"" xeR"
X

ai(yTAx) =Ax VAeR"" xeR",yeR"
y

(%9a)

(9b)

C)

(9d)

(%e)

9D)

%92

(9h)

(1))

n
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a%{(yTAx) =A"y VAeR"",xeR",yeR"

d 0 0
—Tr(AB ——T ATBTY =—T1rBTAT
A r(AB) A ( )= A r( )

= iTr(BA) =B” VAeR"" BeR™"
oA

J J d
—Tr(BAC ——T B'ATCTy=—Tr(CTATB”
A r( ) A ( )= A r( )
- iTr(ACB) = iTr(CBA)
JA JA
d

= a—ATr(ATBTCT) =B’C" VA,B,CeR™"

2.6 Various Norms

2.6.1 Vector norms

Let x € R", then the p-norm of X can be defined as

1
n » P
I, =| Xl
p
i=1

for 1< p < oo, Three most commonly used vector norms are

n
[, norm on R": ||x||1 = 2|xi|

i=1

I, norm on R": |x||2 /2|x

l. normon R":  |x||_ = max |x;|

1<i<n

(9k)

(C)))

(9m)

ey

(22)

(2b)

(20)

The I, norm on R” is known as the Euclidean norm on R", which is also

an inner product norm. All p-norms are equivalent in the sense that if
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|| ||[71 and || || are two different norms, then there exist ¢, € R, such
that o ||X|| <||X|| <a, ||X|| for all x€R". For A € R™", any nonzero
vector X; satlsfymg Ax; /IX is called an eigenvcetor associated with an
eigenvalue A; of A. Let A, (A) and A, (A) be the maximum and
minimum eigenvalues of A € W™, respectively, then we have the useful
inequality

Jmin AN < X" AX < A (A) ¥ 3)

2.6.2 Matrix norms

Let A€ R"", then the matrix norm induced by the p-norm of vector
x € R" is defined as

IIA x|,
= sup ||Ax|| %)

||X|| M, =

for 1< p < oo In particular, when p =1,2,00, we have

Al =

Al = max ZI%I (5a)
|A]l, =\ Auar (AT A) (5b)
A].. = max Zlaul (50)

The following relations are useful in this book.
[AB]<[A][B] (6a)
|A+B]<]A]+[B] (6b)

|A-B]=[A]-[8| (60)
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2.6.3 Function norms and normed function spaces

A real-valued function defined on R* is measurable if and only if it is the
limit of a sequence of piecewise constant functions over R except for some
measure zero sets. Let f(¢): R, — R be a measurable function, then its
p-norm is defined as

1

171, =D:|f(t)|pdt}” for p e[l, o) (7a)

The normed function spaces with p =1,2,00 are defined as

L={fO): R, > R|f], =[] £ 0] dr < o] (8)
L ={ £, ﬁm‘n =10 <oo} &)
L.. ={f(z>:im —>93‘||f||m = s{gp)lml <oo} (8¢)

Let f:R, > R" with f(©)=[f,(t)--- f,(t)]" be a measurable vector
function, then the corresponding p-norm spaces are defined as

Li=1f(): R, > R"

f], = J 2|ﬁ(t)|dt <oo (9a)

0 i=1

Ly=<£(): R, > R"

i=1

£, = J N [ fi@)de < e (9b)
0

Lffo={f(t):9i+—>93”

o). =max|£,0] <=} o0
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2.7 Representations for Approximation

In this section some representations for approximation of scalar functions,
vectors and matrices using finite-term orthonormal functions are reviews. Let us
consider a set of real-valued functions {z,(f)} that are orthonormal in [t;, ;]
such that

5 0, i#j
j zi(wz,»(t)dr:{ T (1)
t 1 ]

’

5]
With the definition of the inner product < f, g >=J‘ f(@®)g()dt and its
151

corresponding norm || f || =./< f,f >, the space of functions for which || f ||
exists and is finite is a Hilbert space. If {z,(f)} is an orthonormal basis in the

sense of (1) then every f(f) with || f || finite can be expanded in the form
F@O = wz) @)
i=1

where w; =< f, z; > is the Fourier coefficient, and the series converges in the
sense of mean square as

15} 2

k
lim | |f(0)= Y wizi ()] dt=0. 3)
n—oo )

n

This implies that any function f(f) in the current Hilbert space can be
approximated to arbitrarily prescribed accuracy by finite linear combinations of
the orthonormal basis {z;(f)} as

k
F@O=Y wizi0). (4a)
i=1

An excellent property of (4a) is its linear parameterization of the time-varying
function f(f) into a basis function vector z(t) =[z,(t)--- 24 (")]" and a time-
invariant coefficient vector w =[w - --wk]T, ie.,

f@y=wz@) (4b)
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We would like to abuse the notation by writing the approximation as
fO=w"a®) (4c)

provided a sufficient number of the basis functions are used. In this book,
equation (4) is used to represent time-varying parameters in the system dynamic
equation. The time-varying vector z(f) is known while W is an unknown
constant vector. With this approximation, the estimation of the unknown time-
varying function f(f) is reduced to the estimation of a vector of unknown
constants w.

In the following, three representations are introduced for approximating a
matrix M(z) € R?*Y. By letting g=1, the same technique can be used to
approximate vectors.

Representation 1: We may use the technique in (4) to represent individual
matrix elements. Let W, Z; e R for all i, j, then matrix M is represented
to be

T T T
My My e my, Wiz, WpZp o W2y,
my My - My whiz Wiz wh.zZ
q 21221 2Ly 2¢22
M=| . oo e . ; : TG
m m e m T T T
rl P2 pPq WpZy WpoZy W iZ pg

An operation ® can be defined to separate the above representation into two
parts as

T T T
Wiz, WpZp o Wiy,
T T T
W2Zy WxZy - WyZy,
T T T
WpilZpr WpoZpy o0 Wy,
T T T
Wi Wi e qu 7 Y AP) cee Zlq
T T T
[ Wa Wapo o Wh, ® Zy Zyp v Iy
T T T
w w w Zpi Zp Zpg

pPq
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Or, we may write the above relation in the following form
M=W'Q®Z (6)

where W is a matrix containing all w;; and Z is a matrix of all z;. Since this is
not a conventional operation of matrices, dimensions of all involved matrices do
not follow the rule for matrix multiplication. Here, Wis a p X kg matrix and
Z is a kp X g matrix, but the dimension of M after the operation is still pXgq.
This notation can be used to facilitate the derivation of update laws.

Representation 2: Let us assume that all matrix elements are approximated
using the same number, say ,3, of orthonormal functions, and then the matrix
M(1) €R7*Y can be represented in the conventional form for matrix

multiplications
M=W'Z (7

where M, Z € R7%*P are in the form

who0 0 L wh 0 o 0 w0 )
wi=| © who oo 0 10 wh o 0 11 0 wh

P I T s

0 0 whi l 0 0 - wh | 0o 0 wh,

7 Zgl Zj;l | 0 0 0 | | ]
gro| 0 0 0 lzh oz ez | 0

. S S P DT :

0 0 - 0 1 0 0 - 0 | - | zjy z3 - Zp|

The matrix elements W;; and z;; are X1 vectors. It can be easily check that

T T T
Wiz, WipZp o Wiy,
T T T
W) Z WHZ oo WhHZ
T 21221 2Ly 2¢ZL2
M=W'Z= . ) . s (8)
T T T
WpiZpr WpZpy o0 WpeZp,

In this representation, we use the usual matrix operation to represent M, but the
sizes of W and Z are apparently much larger than those in the representation 1.
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Since this representation is compatible to all conventional matrix operations, it
is used in this book for representing functions, vectors and matrices.

Representation 3: In the above representations, all matrix elements are
approximated by the same number of orthonormal functions. In many
applications, however, it may be desirable to use different number of
orthonormal functions for different matrix elements. Suppose the component
form of a vector field f(X) is written as

f0)=[Ax) L&) - fu) ©)
and we may approximate the real-valued function f;(x),i=1,....m as
fi®)=wyz, (10)

where W, ,Z e R?*! and p; is the number of terms of the basis functions
selected to approximate f;. Hence, (9) can be written as

T T T T
f(X) [Wf]Zfl szzfz e meme]

Wi1Z11 T W22 + 0t Wi iy,

W21221 + WpZop + 0+ Wap, Z0p,

(11)
WulZml T Wi Zpo 00+ Wum Zmp,,,

Define py,x = max p; and let w; =0 for all i=1,..,m and j> p;, then
i=l,---,m

(11) can be further written in the following form

wy, 0 -+ 0 211 _Wlpmax 0 ... 0 U
0 ) 0 Wy, e 0 o
T IR el P B R
0 0 e Wi Zml L O O e ‘,VmpmaX Zmpmz,x
Define
Wi 0 0 ]
O WZi O ,
Wi=| . S o=l oz ozl (13)
0 0 Wi
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where i=1,...,pnax and then (8) can be expressed in the form

Pmax
f(x)= ZW[Z,» (14)

i=1

For approximating the matrix M(7) € R”*?, we may rewrite it into a row
vector as M =[m,;---m,] where m, € R?. Therefore, we may approximate
m; using the technique above as

Plmax P gmax
M= E Wlizli E A%

i=1 i=1

z (15)

qi®qi

2.8 Lyapunov Stability Theory

The Lyapunov stability theory is widely used in the analysis and design of
control systems. To ensure closed loop stability and boundedness of internal
signals, all controllers derived in this book will be based on the rigorous
mathematical proof via the Lyapunov or Lyapunov-like theories. The concept of
stability in the sense of Lyapunov will be introduced first in this section
followed by Lyapunov stability theorems for autonomous and non-autonomous
systems. The invariant set theorem will be reviewed to facilitate the proof for
asymptotically stability of autonomous systems when only negative semi-
definite of the time derivative of the Lyapunov function can be concluded. On
the other hand, a Lypunov-like technique summarized in Barbalat’s lemma will
also be reviewed. It is going to be used for almost every controller designed in
this book.

2.8.1 Concepts of stability

Let us consider a nonlinear dynamic system described by the differential
equation

x=f(x,1) (1)

where Xx€R" and f:R" xR, - R" . If the function f dose not explicitly
depend on time ¢, i.e., the system is in the form
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x =f(x) 2

then the system is called an autonomous system; otherwise, a non-autonomous
system. The state trajectory of an autonomous system is independent of the
initial time, but that of a non-autonomous system is generally not. Therefore, in
studying the behavior of a non-autonomous system, we have to consider the
initial time explicitly. The system (1) is linear if f(X,t) = A(t)x for some
mapping A(-): R, — R If the matrix A is a function of time, the system is
linear time-varying; otherwise, linear time-invariant.

Stability is the most important property of a control system. The concept of
stability of a dynamic system is usually related to the ability to remain in a state
regardless of small perturbations. This leads to the definition of the concept of
the equilibrium state or equilibrium point. A state X, is said to be an
equilibrium point of (1), if f(x,,) =0 for all > 0. For simplicity, we often
transform the system equations in such a way that the equilibrium point is the
origin of the state space.

The equilibrium point X, =0 of the autonomous system (2) is said to be
(i) stable, if VR >0,3r >0 such that [x(0)|<r = |x(t)||<R, Vt=0; (i)
asymptotically stable, if it is stable and if 3r; >0 such that [x(0)||< r; implies
that X(r) — 0 as r—> oo ; (iii) exponentially stable, if Jar,A >0, such that
||X(t)|| < 0(||x(0)||e’/1’ for all >0 in some neighborhood N of the origin; (iv)
globally asymptotically (or exponentially) stable, if the property holds for any
initial condition.

The equilibrium point X, =0 of the non-autonomous system (1) is
said to be (1) stable at t,, if VR>0,3ar(R,ty)>0 such that
||X(t0)|| <r(R,ty) = ||X(t)|| <R, Vt=t,; otherwise the equilibrium point is
unstable (i) asymptotically stable at t if it is stable and 3r(fy) >0 such that
[x(t0)]| < 1 (to) implies that |x()|— 0 as t —>oo; (iii) uniformly stable if
VR>0,3r(R)>0 such that [x(ty)||<r(R)=|x()|<R, Vt=ty; (iv)
uniformly asymptotically stable if it is uniformly stable and 3r; > 0 such that
||X(t0 )” < r; implies that ||X(t)|| — 0 as t — oo; (V) exponentially stable at tg, if
Ja,A>0, such that ||X(t)||Sa"x(to)”e_’w_t“) for all >, in some ball
around the origin; (vi) globally (uniformly) asymptotically (or exponentially)
stable, if the property holds for any initial conditions. It is noted that exponential
stability always implies uniform asymptotic stability. Likewise, uniform
asymptotic stability always implies asymptotic stability, but the converse is not
generally true.
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2.8.2 Lyapunov stability theorem

A continuous function &(r): R — R is said to belong to class K if
(0)=0
a(r)>0 Vr>0
a(n)za(r) Yn>r.

A continuous function V(X,7):R" X R, > R is locally positive definite if
there exists a class K function ¢(-) such that V(x,f) > 0{(||X||) for all t >0 in
the neighborhood N of the origin of R". It is positive definite if N =R". A
continuous function V(X,1): R" X R, — R is locally decrescent if there exists
a class K function F(-) such that V(x,7) < ,B(HX”) for all =0 in the
neighborhood N of the origin of R". Tt is decrescent if N =R". A continuous
function V(x,7):R" xR, >R is radially unbounded if V(X,t)—> oo
uniformly in time as ||X|| — oo If function V(X,¢) is locally positive definite
and has continuous partial derivatives, and if its time derivative along the
trajectory of (1) is negative semi-definite then it is called a Lyapunov function
for system (1).

Lyapunov stability theorem for autonomous systems

Given the autonomous system (2) with an equilibrium point at the origin,
and let N be a neighborhood of the origin, then the origin is (i) stable if there
exists a scalar function V(x) >0 Vxé& N such that V(X) <0; (ii) asymptotic
stable if V(x)>0 and V(X) <0; (i) globally asymptotically stable if
V(x)>0, V(X) <0 and V(x) is radially unbounded.

LaSalle’s theorem (Invariant set theorem)

Given the autonomous system (2) suppose V(x)>0 and V(x) <0 along
the system trajectory. Then (2) is asymptotically stable if V does not vanish
identically along any trajectory of (2) other than the trivial solution X = (). The
result is global if the properties hold for the entire state space and V(X) is
radially unbounded.

Lyapunov stability theorem for non-autonomous systems

Given the non-autonomous system (1) with an equilibrium point at the
origin, and let N be a neighborhood of the origin, then the origin is (i) stable if
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VX € N, there exists a scalar function V(X,7) such that V (X, t)>0 and
V(x,1) <0; (i) uniformly stable if V(X,t) >0 and decrescent and V(x,1)<0;
(iii) asymptotically stable if V(x,t)>0 and V(X,t)<0, @iv) globally
asymptotically stable if Yx € R", there exists a scalar function V(X,#) such
that V(x,#) >0 and V(X,t)<0 and V(x,t) is radially unbounded; (v)
uniformly asymptotically stable if ¥Yxe& N, there exists a scalar function
V(x,) such that V(x,£)>0 and decrescent and V(X,7)<0; (vi) globally
uniformly asymptotically stable if Yx € R", there exists a scalar function
V(X t) such that V(x,7)>0 and decrescent and is radially unbounded and
V(x,1)<0; (v11) exponentially stable if there exits «, ,3 ¥ >0 such that
VX€EN, 0{||X|| <V(x,1) < ﬂ”x” and V(x,7) < ]/"X” (viii) globally
exponentially stable if it is exponentially stable and V(X,t) is radially
unbounded.

Barbalat’s lemma

La Salle’s theorem is very useful in the stability analysis of autonomous
systems when asymptotic stability is desired but only with negative semi-
definite result for the time derivative of the Lyapunov function. Unfortunately,
La Salle’s theorem does not apply to non-autonomous systems. Therefore, to
conclude asymptotic stability of a non-autonomous system with V <0, we need
to find a new approach. A simple and powerful tool called Barbalat’s lemma can
be used to partially remedy this situation. Let f(¢) be a differentiable function,
then Barbalat’s lemma states that if lim f(#) =k < oo and f (t) is uniformly
continuous, then lim f (#)=0.TIt can tb_éwproved that a differentiable function is
uniformly continﬁgﬁos if its derivative is bounded. Hence, the lemma can be
rewritten as: if lim f(#) =k <oo and f () exists and is bounded, then
f — 0 as £ —> oo In the Lyapunov stability analysis, Barbalat’s lemma can be
applied in the fashion similar to La Salle’s theorem: If V(x,f) is lower
bounded, V< 0, and V is bounded, then V — 0 as t — oo. It should be noted
that the Lyapunov function is only required to be lower bounded in stead of
positive definite. In addition, we can only conclude convergence of V, not the
states. In this book, we would like to use the other form of Barbalat’s lemma to
prove closed loop stability. If we can prove that a time function e is bounded
and square integrable, and its time derivative is also bounded, then e is going to
converge to zero asymptotically. It can be restated as: if e€ L., ML, and
eéeL,., then e—0 as t — oo,
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2.9 Sliding Control

A practical control system should be designed to ensure system stability
and performance to be invariant under perturbations from internal parameter
variation, unmodeled dynamics excitation and external disturbances. For
nonlinear systems, the sliding control is perhaps the most popular approach to
achieve the robust performance requirement. In the sliding control, a sliding
surface is designed so that the system trajectory is force to converge to the
surface by some worst-case control efforts. Once on the surface, the system
dynamics is reduced to a stable linear time invariant system which is irrelevant
to the perturbations no matter from internal or external sources. Convergence of
the output error is then easily achieved. In this section, we are going to review
the sliding controller design including two smoothing techniques to eliminate
the chattering activity in the control effort.

Let us consider a non-autonomous system

x™ = f(x,0)+ g(xX,0)u+d(t) 1)

where x=[x %--- x" P ]Te R" is the state vector, xe R the output of interest,
and u(f)eR the control input. The function f(x,/)eR and the disturbance
d(H)eR are both unknown functions of time, but bounds of their variations
should be available. The control gain function g(xX,#)€ R is assumed to be non-
singular for all admissible X and for all time . In the following derivation, we
would like to design a sliding controller with the knowledge of g(X,?) first, and
then a controller is constructed with unknown g(X,7). Let us assume that f(X,?)
and d(t) can be modeled as

f=rntdf (2a)

d=d,+Ad (2b)
where f,, and d, are known nominal values of f and d, respectively. The
uncertain terms Af and Ad are assumed to be bounded by some known
functions (x,7) >0 and B(x,t) >0, respectively, as

|Af| < a(x,1) (3a)

|Ad| < B(x,1) (3b)
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Since the system contains uncertainties, the inversion-based controller

b
g(x,1)

u =

[=f(x,0)=d(1)+V] “

is not realizable. We would like to design a tracking controller so that the output
x tracks the desired trajectory x; asymptotically regardless of the presence of
uncertainties. Let us define a sliding surface s(X,t)=0 as a desired error
dynamics, where s(X,?) is a linear stable differential operator acting on the
tracking error e=x-x, as

d
=(—+A)"" 5
S(dt+) e )

where A >0 determines the behavior of the error dynamics. Selection of the
sliding surface is not unique, but the one in (5) is preferable simply because it is
linear and it will result in a relative degree one dynamics, i.e. # appears when we
differentiate s once. One way to achieve output error convergence is to find a
control u such that the state trajectory converges to the sliding surface. Once on

. . d n-1
the surface, the system behaves like a stable linear system (z+/1) e=0;
t

therefore, asymptotic convergence of the tracking error can be obtained. Now,
the problem is how to drive the system trajectory to the sliding surface. With
s(x,1) =0 as the boundary, the state space can be decomposed into two parts:
the one with s >0 and the other with s <0. Intuitively, to make the sliding
surface attractive, we can design a control u so that s will decrease in the s >0
region, and it will increase in the s <0 region. This condition is called the
sliding condition which can be written in a compact form

58 <0 (6)
Using (5), the sliding surface for system (1) is of the form
d -
s=(—+A)""e
dt

=cietcre++c, e +c,e 7
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(n=D1A"*
(n—-k)k-D!

respect to time once to make u appear

where ¢} = k=1,...,n-1, and c,=1. Let us differentiate s with

s=cie++c,e" "V +c,e™

=cie+- e, e+ x™ - x(P

=ce+tc,e" V+f+gu+d—x’ (®)

Let us select the control u as

1
u=—[~cré——c,1e" ™ = fo, —d, +x§" — 1 5gn(s)] ©)
8

where 77; >0 is a design parameter to be determined, so that (8) becomes
s =Af +Ad —n, sgn(s) (10)
To satisfy the sliding condition (6), let us multiply both sides of (10) with s as

s§ = (Af +Ad)s —ms|
<(a+B)|s|-mls| (11

By picking 7, = + f+1 with 77 > 0, the above inequality becomes
58 < —77|s| (12)

Therefore, with the controller (9), the sliding surface (7) is attractive, and the
tracking error converges asymptotically regardless of the uncertainties in f and
d, once the sliding surface is reached. Now, let us consider the case when
g(x,1) is not available, but we do know that it is non-singular for all admissible
state and time #, and its variation bound is known with 0 < g in < 2 < g4 In
stead of the additive uncertainty model we used for f and d, a multiplicative
model is chosen for g as

g =8gmnlg (13)
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where Ag satisfies the relation

— & min & max

Ogymjn_ SAgS_Eyma)w

8m 8m

In this case, the controller is chosen as

1
u=—[-ce==c,e" = fr = d, + ;" =7 sga(s)]

8m

Substituting (15) into (8), we have

§=(1=A)lcie+-+c,1e" "+ fo, +d, —x]
+Af + Ad — Agn, sgn(s)

Multiplying both sides with s, equation (16) becomes

ss=(1-Ag)lcie+-+c,1e" "+ f+d, —x1s
+(Af +Ad)s — Agmy|s|

< (1= min)

+(a+ﬂ)|s|_yminﬂl|s|

cé+tc, "+ £, +d, —xP||s|

The parameter 7); can thus be selected as

cé+tc, eVt fr+d, — x5

1
1 =——[0=¥min)
J/ .

min

+Ha+pB)+n]

(14)

5)

(16)

a7

(18)

where 77 is a positive number. Therefore, we can also have the result in (12).

Smoothed sliding control law

Both controllers (9) and (15) contain the switching function sgn(s). In
practical implementation, the switching induced from this function will
sometimes result in control chattering. Consequently, the tracking performance

degrades, and the high-frequency unmodeled dynamics may be excited. In some

cases, the switching controller has to be modified with a continuous
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approximation. One approach is to use the saturation function sat(o’) defined
below instead of the signum function sgn(s) .

o if |o] < ¢

sgn(o) if [o]>¢ (19)

sat(o) = {

where @ >0 is called the boundary layer of the sliding surface. When s is
outside the boundary layer, i.e., |s| > ¢, the sliding controller with sgn(s) is

s
exactly the same as the one with sat(—). Hence, the boundary layer is also

attractive. When s is inside the boundary layer, equation (10) becomes
. s
s+7715=Af+Ad (20)

This implies that the signal s is the output of a stable first-order filter whose
input is the bounded model error Af + Ad . Thus, the chattering behavior can
indeed be eliminated with proper selection of the filer bandwidth and as long as
the high-frequency unmodeled dynamics is not excited. One drawback of this
smoothed sliding controller is the degradation of the tracking accuracy. At best
we can say that once the signal s converges to the boundary layer, the output
tracking error is bounded by the value ¢@.

s
Instead of the saturation function, we may also use — to have a smoothed

version of the sliding controller. This selection is very easy in implementation,
because the robust term is linear in the signal s. For example, controller (9) can
be smoothed in the form

1
u ZE[_Clé - _Cn—le(n_l) - fm - dm + x;[n) /) %] (21)

To justify its effectiveness, the following analysis is performed. When s is
outside the boundary layer, (10) can be rewritten in the form

&=Af+Ad—771% (22)
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With the selection of #; = & + [f + 17, the sliding condition can be checked as

2

s§ = (Af +Ad)s—

2

S(a+,6)|s|—(0(+,6+77)%

_(a+,6)|s|[ |q ¢ (23)

Since |s| > ¢, i.e., when outside the boundary layer, we may have the result
52
5§ < —1—. Hence, the boundary layer is still attractive. When s is inside the

boundary layer, equation (20) can be obtained; therefore, effective chattering
elimination can be achieved. Let us now consider the case when g(X,t) is

.- . L S
unknown and the sliding controller is smoothed with — as

1 s
u=—Iu+x{" —m—] (24)
&m ¢
where it = —cje—+--—c,_1e" " - fn—d,,. By selecting 77, according to (18),
the sliding condition is checked with
| 2
| _ 1 s
ssS[(l—ﬂmin)|u|+0(+,6]|s|{1——}—77— (25)
¢ ¢
2

) s
If s is outside the boundary layer, (25) implies s§ < —77—, i.e., all trajectories

will eventually converge to the boundary layer even though the system contains
uncertainties. Since inside the boundary layer there is also an equivalent first
order filter dynamics, the chattering activity can be effectively eliminated. The
output tracking error, however, can only be concluded to be uniformly bounded.

s
There is one more drawback for the smoothing using —, i.e., the initial control
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effort may become enormously large if there is a significant difference between
the desired trajectory and the initial state. To overcome this problem, desired
trajectory and initial conditions should be carefully selected.

2.10 Model Reference Adaptive Control (MRAC)

Adaptive control and robust control are two main approaches for
controlling systems containing uncertainties and disturbances. The sliding
control introduced in the previous section is one of the robust designs widely
used in the literature. In this section, the well-known MRAC is reviewed as an
example in the traditional adaptive approach. For an adaptive controller to be
feasible the system structure is assumed to be known and a set of unknown
constant system parameters (or equivalently the corresponding controller
parameters) are to be estimated so that the closed loop stability is ensured via a
certainty equivalence based controller. In this section, the MRAC for a linear
time-invariant scalar system is introduced first, followed by the design for the
vector case. The persistent excitation condition is investigated for the
convergence of estimated parameters. Two modifications to the update law are
introduced to robustify the adaptive loop when the system contains unmodeled
dynamics or external disturbances.

2.10.1 MRAC of LTI scalar systems

Consider a linear time-invariant system described by the differential
equation

Xp=a,x,+b,u (1

where x, € R is the state of the plant and u € R the control input. The
parameters a, and b, are unknown constants, but sgn(b,,) is available. The pair
(ap, by) is controllable. The problem is to design a control u and an update law
so that all signals in the closed loop plant are bounded and the system output X,
tracks the output x,, of the reference model

Xy = QX + by 1 2)

asymptotically, where a,, and b,, are known constants with a,, <0, and r is a
bounded reference signal. If plant parameters a, and b, are available, the model
reference control (MRC) rule can be designed as
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u=ax,+br 3)

-a b
P and b=—" are perfect gains for transforming dynamics in
P P
(1) into (2). Since the values of a, and b, are not given, we may not select these
perfect gains to complete the MRC design in (3) and the model reference

adaptive control (MRAC) rule is constructed instead

a
where a =

u=a(t)x, +b(t)r )

where d and b are estimates of a and b, respectively, and proper update laws
are to be selected to give @ — a and b — b. Define the output tracking error as

e=X,— Xy (®)]
then the error dynamics can be computed as following
é=a,e+b,(G—a)x, +b,(b-b)r 6)

Define the parameter errors @ = @ —a and b = b — b, then equation (6) is further
written as

é=aye+b,ax, +b,,15r @)

This is the dynamics of the output error e, which is a stable linear system driven
by the parameter errors. Therefore, if update laws are found to have convergence
of these parameter errors, convergence of the output error is then ensured. To
find these update laws for @ and b, let us define a Lyapunov function
candidate

-~ 1 1 -
V(e,a,b)y=—e*+—|b,| (@’ +b* 8
(e,d.b) == 2| )| ¢ ) ®)
Taking the time derivative of V along the trajectory of (7), we have
V =eé+|b,|(aa+bb)
=e(aye+byax, + b,,l;r) + |b,,| (Ezﬁ + I;I;)

= a,e” +|b,|[sgn(b, )ex, + a1+ b|b,|[sgn(b,)er +b] ©)
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If the update laws are selected as

a=-sgn(b,)ex, (10a)
b= —sgn(b,)er (10b)

then (9) becomes
V=a,e <0 (11)

This implies that e, d,l; € L.. . From the simple derivation

J' o2t = —a,;lf Vdt = az' (Vy - V) < oo
0

0

we know that e € L,. The result é € L., can easily be concluded from (7).
Therefore, if follows from Barbalat’s lemma that the output error e(f) converges
to zero asymptotically as f — oo. In summary, the controller (4) together with
update laws in (10) make the system (1) track the reference model (2)
asymptotically with boundedness of all internal signals. It can be observed in
(10) that the update laws are driven by the tracking error e. Once e gets close to
zero, the estimated parameters converges to some values. We cannot predict the
exact values these parameters will converge to from the above derivation. Let us
consider the situation when the system gets into the steady state, i.e., when
t — oo. The error dynamics (7) becomes

ax, +br=0 (12)
If r is a constant, then x,, in (12) can be found as x,, = x,, = kr, where k = -
am

is the d.c. gain of the reference model (2). Equation (12) further implies
ki+b=0 (13)

which is exactly a straight line in the parameter error space. Therefore, for a
constant reference input r, both the estimated parameters do not necessarily
converge to zero. To investigate the problem of parameter convergence, we need
the concept of persistent excitation. A signal v R" is said to satisfy the
persistent excitation (PE) condition if ¢, T > 0 such that
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t+T T
I v dt>al (14)
t

Define v=|[x, r]T and 67:[& l;]T, and equation (12) is able to be
represented into the vector form

}zo (15)

- a
vio =[x, r]L;

Since v’ = 0, its integration in [¢,£+7T7] is
t+T T ~
J' w'fdi =0 (16)
t
When ¢ — oo, update laws in (10) imply é — 0; therefore, (16) becomes
t+T T o~
I vv dtf =0 17
t

Hence, if v is PE, equation (17) implies ] =0, i.e., parameter convergence
when ¢ — oo. A more general treatment of the PE condition will be presented in
Section 2.10.3.

2.10.2 MRAC of LTI systems: vector case

Consider a linear time-invariant system
x,=A,x,+B,u (18)

where X, € R" is the state vector, u€R"” is the control vector, and
A, eR"" and B, € R"*" are unknown constant matrices. The pair (A,, B,)
is controllable. The problem is to find a control u so that all signals in the closed
loop system are bounded and the system states asymptotically track the states of
the reference model

X, =A,X, +B,r (19)
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where A, € R and B, € R are known and re R” is a bounded
reference input vector. All eigenvalues of A,, are assumed to be with strictly
negative real parts. A control law for this problem can be designed in the form

u=BAx, +Br (20

where A and B are feedback gain matrices. Substituting (20) into (18), the
closed loop system is derived as

x,=(A,+B,BA)x, +B Br 21
Hence, if A and B are chosen so that
A,+B,BA=A, (22a)

B,B=B, (22b)

then the behavior of system (18) is identical to that of the reference model. The
control in (20) is called the MRC rule if A and B satisfy (22). Since the values
of A,, and B,, are not given, the MRC rule is not realizable. Now, let us replace
the values A and B in (20) with their estimates A(l‘) and ﬁ(t) , respectively, to
have the MRAC rule

u=B@OA@)x, +B()r (23)

We would like to design proper update laws to have A—> A and B5B.
Define the tracking error

€e=X,—X, 24)
then the error dynamics can be computed as following

é=A,(x,-x,)+B,(A-A)x,
+(B,B-B,)Ax, +(B,B-B,)r
=A,e+B,Ax, +(B,B-B,)(Ax, +r) (25)
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where A=A —A. Using the relations in (22), the above equation is reduced to

é=A,e+B,Ax, +B,(B'B-DB ' (BAx, +Br)
=A,e+B,Ax,+B, (B -B)u (26)

Define fil =B - IAYI, then equation (26) becomes
é=A,e+B,Ax, +B,Bu 27
To find update laws for A and ]§, let us define a Lyapunov function candidate
V(e,A.B))=¢'Pe+Tr(A"A +B[B)) (28)

where P € R™" is a positive definite matrix satisfying AP +PA,, =—-Q for
some positive definite matrix Q € R, Taking time derivative of V along the
trajectory of (27) and selecting the update laws

A= —BﬁPexi (29a)

A

B, =-B! Peu’ (29b)

we have the result V = —e” Qe < 0. By using the identity (2.5-9¢), update law
(29b) can be transformed to

B=-BB’Peu’B (29¢)

Therefore, we have proved that the origin (e,A,ﬁl) =0 is uniformly stable
using controller (23) with update laws in (29). It should be noted that the control
scheme can only guarantee uniform stability of the origin in the {e,;&,ﬁ}
space. Since the Lyapunov function in (28) is not radially unbounded, the global
behavior cannot be concluded. If the reference input is PE, convergence of the
estimated parameters can further be proved.

2.10.3 Persistent excitation

We have introduced MRAC laws for linear time-invariant systems to have
asymptotic tracking error convergence performance. However, we can only
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obtain uniformly boundedness of parameter errors in those systems. In this
section, we are going to investigate the problem of persistency of excitation of
signals in the closed loop system, which relates to the convergence of the
parameter vector. Consider a special linear system (Marino and Tomei 1996)

x=Ax+Q" )z (30a)

7=-Q()Px (30b)

where xeR" and Zze R”. A e R™" is a Hurwitz matrix, and P e R is a
positive definite matrix satisfying A”P+PA =—Q for some positive definite
nxn matrix Q. The pXn real matrix £ has the property that ||Q(t)|| and
HQ(I)“ are uniformly bounded. System (30) is frequently encountered in the
parameter convergence analysis of adaptive systems. Equation (30a) usually
corresponds to the tracking error dynamics and (30b) is the update law. These
can be confirmed with MRAC systems introduced in the previous section. To
have parameter convergence in those systems, it is equivalent to require
convergence of vector z in (30b). Here, we would like to prove that as long as
the persistent excitation condition is satisfied by the signal matrix €, the
equilibrium point (X,z) =0 is globally exponentially stable.

We first show that the tracking error vector X converges to zero
asymptotically as £ — oo. Define a Lyapunov function candidate

V(x,z)=x"Px+z2'z 3D
Along the trajectory of (30), the time derivative of V can be computed to have
V=x"(ATP+PA)x = —x"Qx<0 (32)

Hence, the origin of (30) is uniformly stable, and x € L.,, z € L,. From the
computation

j xTQxdzz—f Vit =V, — V. < oo
0

0

we have X € L;. Boundedness of X can be obtained by observing (30a).
Therefore, by Barbalat’s lemma, we have proved X — 0 as  — oo.
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To prove asymptotic convergence of Z, we need to prove that V& >0,
a7, >0 such that ||z(t)|| <&, Vt2T,. Since when t =2T,, V in (31) satisfies
V(T,) =2V (t), or equivalently

x"(THPX(T,) +z" (T)z(T,) = x" ()Px(t) + 2" (1)z(1)
>z" (H)z(t) (33)

Using relation (2.6-3), inequality (33) becomes
A VX +]|2T)|* 2 |20)]

This further implies

2] < A @YX + 2T (34)

Since we have proved X — 0 as t — oo, this implies that V>0, 3¢, >0
such that Vt >1,,

£

L—
kol< 7=

2
(GBS % +a@)|? (36)

If we may claim that V& >0, T >0 and for any initial conditions of X and z,
dt>T such that ||z(t)|| < &, then we may use this property to say that V& >0,
£

Nt

[-2 2
& &
written as ||z(t)|| < —2 +—2 =¢ for all t 2T,. This completes the proof of

z — 0 as t — oo, if the claim is justified. Since all properties hold for all X and
Z, and are uniform respect to the initial time, the equilibrium point (X,z) =0 is
globally uniformly stable. Since the system is linear, it is also globally
exponentially stable.

(35)

Plug (35) into (34), yields

a7, >t, such that ||Z(Tg)|| < Under this condition, (36) can be further
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Now let us prove the above claim by contradiction, i.e., to prove that
V& >0, we cannot find #,>0 such that ||Z(t)|| > ¢ for all ¢ 2¢,. Suppose there
exists a #; >0 such that ||z(t)||>£ for all £ >¢,. The PE condition says that

there exist T, k>0, such that
t+T T
f QOQ (1)dr > >0 Vi>1,.
t
For all we R”, ||W|| =1, inequality (37) implies

t+T
J' wQ(r)PQT (r)wdz > k... (P) Vi1,
t

Let w= ﬁ , then (38) becomes
y/

t+T
[ 2" o@Pre’ 0adr > k@) izt
t
> kA, (P)E? Vi1
Consider the bounded function for some 7>0
1
r (2(0),1) = E[ZT(t +T)z(t+T)—2z" (1)z(1)]
Its time derivative is computed as following
br=2" ¢ +T)z(t +T)—2" (1)2(1)
T
- .|' 212" (pya(o))de
t dt
Using (30) and (39), equation (41) can be derived as
. t+T .
by = f [x'PQ’ QPx — 2 OPx — 2" QPAx]d7
t
t+T
—.|' 2 QPQ zdr
t
t+T .
< .|. [x" PQTQPx - 2" OPx — 2’ QPAX]d7
t

— kA, (P)e* Vit

(37)

(38)

(39)

(40)

(41)

(42)



54 Chapter 2 Preliminaries

Since X, z, Q and Q are all uniformly bounded, there exist S_Z, X and Z such

that Q = max{sup”Q(t)”,supHQ(t)“}, X = sup||x(t)|| and Z = sup”z(t)”. Then
t t t t

the integration term in (42) can be represented in the form

t+T .
J' [x"PQTQPx — 2" OPx — ' QPAx]dr
t

— — —_ t+T
<[AL2 (P)Q*X + Ay (P)QZ + Ay (P)Qz||A||]f |x(@)|dz  3)
t
Since we have proved that ||X|| — 0 as t — oo, then Jf, >0 such that V¢ >t¢,
t+T . 1
I [x"PQ'QPx —z" QPx —z" QPAX]d7 < 5 kA (P)e*  (44)
t
Plug (44) into (42) for all ¢ = max{¢;,?,}, we have
; 1 2 2 1 2
¢T S Ekﬂ,mm (P)g - kﬂ’mm (P)g = _E kﬂ’min (P)£ < 0

Hence, ¢ is an unbounded function, which is a contradiction to the assumption
in (40). Therefore, we have proved the claim.

2.10.4 Robust adaptive control

The adaptive controllers presented in Section 2.10.1 and 2.10.2 are
developed for LTI systems without external disturbances or unmodeled
dynamics. For practical control systems, uncertain parameters may vary with
time and the system may contain some non-parametric uncertainties. Rohrs
et. al. (1985) showed that in the presence of a small amount of measurement
noise and high-frequency unmodeled dynamics, an adaptive control system
presents slow parameter drift behavior and the system output suddenly diverges
sharply after a finite interval of time. For practical implementation, an adaptive
control system should be designed to withstand all kinds of non-parametric
uncertainties. Some modifications of the adaptive laws have been developed to
deal with these problems. In the following, a technique called dead-zone is
introduced followed by the review of the well-known c-modification.
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Dead-Zone

Consider the uncertain linear time-invariant system
X, =a,x,+b,u+d(t) (45)

where a,, is unknown but b, # 0 is available. The disturbance d(f) is assumed
to be bounded by some & > 0. A reference model is designed as

Xy = QX + by 1 (46)

an—a .
where a,, <0 and b, =b,. Let a =—" " and b=1 be ideal feedback
P
gains for the MRAC law (4). Since a,, is not given, a practical feedback law is
designed to be

u=a(t)x,+br 47)

where a(t) is the estimate of a. Let e = x, —x,, and d = d —a, then the error
dynamics is computed as

e=aye+b,ax,+d(t) (48)
The time derivative of the Lyapunov function
V(ed)=~(*+a?)
2
along the trajectory of (48) is
Vzamez+€z(b,,ex,, +ﬁ)+ed (49)
With the selection of the update law
a=-b 2€X ), (50)
(49) becomes

V=a,e’+ed
=(d—|am|e)e
S(5—|am||e|)|e| (51)
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If 5—|am||e| <0, ie., |e| >i, then (51) implies that V is non-increasing.

||
) ) - o
Let D be the set where V will grow unbounded, i.e. D =1 (e,a) |e| Sm ;
a,
therefore, the modified update law
. - if (e,a) e D¢
G=1 (e ‘f) (52)
0 if(e,a)e D

assures boundedness of all signals in the system. The notation D° denotes the
complement of D. The modified update law (52) implies that when the error e is
within the dead-zone D, the update law is inactive to avoid possible parameter
drift. It should be noted that, however, the asymptotic convergence of the error
signal e is no longer valid after the dead-zone modification even when the
disturbance is removed.

c-modification

In applying the dead-zone modification, the upper bound of the disturbance
signal is required to be given. Here, a technique called o-modification is
introduced which does not need the information of disturbance bounds.

Instead of (52), the update law (50) is modified as
a=-b,ex,—o0a (53)
where O is a small positive constant. Then (51) becomes
V=a,e’-cai+ed
S—|am|ez—0'€zz—0'€za+|e|5 (54)

for some unknown & > 0. Rewrite the two terms in (54) involving e as

2

1 ) 1 16°
“|%m 2+ 52__ m B — — < |Y%m 2+__
on]e* +1e6 =3 o= | 3o+ 31
L. 187
< 2|am|e +2|am| (55)
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Likewise, the rest two terms in (54) are derived as
~2 ~ ~2 ~
-oa " —-caa<—-0a +0'|a||a|

1 ~2 1 2
<-—ca’+=old (56)
2 2
Substituting (55) and (56) into (54), we have
. 1 1 1
VS——|am|ez+————0'a +—O'|a| (57)
2 2
Adding and subtracting &V for some & >0, (57) becomes

. 167 1 1 1
VS—aV+——+50'|a|2+E[a—|am|]e2+5[a—a]d2 (58)

2|

Picking o < mjn{|am| ,O0}, we obtain

2
Ve-av 0 Lolf (59)
2|a,| 2
Therefore, V<0 , if
16 1 2
>——+—old|". (60)
2ala,| 2a

This implies that signals in the closed loop system are uniformly bounded.
Hence, the additional term 0 @ in the update law makes the adaptive control
system robust to bounded external disturbances, although bounds of these
disturbances are not given. One drawback of this method is that the origin of the
system (48) and (53) is no longer an equilibrium point, i.e., the error signal e
will not converge to zero even when the disturbance is removed.

2.11 General Uncertainties

We have seen in Section 2.9 that, to derive a sliding controller, the
variation bounds of the parametric uncertainties should be give. Availability for
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the knowledge of the uncertainty variation bounds is a must for almost all robust
control strategies. This is because the robust controllers need to cover system
uncertainties even for the worst case. One the other hand, we know from
Section 2.10 that for the adaptive controller to be feasible the unknown
parameters should be time-invariant. This is also almost true for most adaptive
control schemes. Let us now consider the case when a system contains time-
varying uncertainties whose variation bounds are not known. Since it is time-
varying, traditional adaptive design is not feasible. Because the variation bounds
are not given, the robust strategies fail. We would like to call this kind of
uncertainties the general uncertainties. It is challenging to design controllers for
systems containing general uncertainties.

In Section 2.11.1, we are going to have some investigation on the
difficulties for the design of adaptive controllers when the system has time-
varying parameters. In Section 2.11.2, we will look at the problem in designing
robust controllers for systems containing uncertain parameters without knowing
their bounds.

2.11.1 MRAC of LTV systems

In the conventional design of adaptive control systems such as the one
introduced in Section 2.10, there is a common assumption that the unknown
parameters to be updated should be time-invariant. This can be understood by
considering the scalar linear time-varying system

X, =a,t)x, +b,u (1)

where a, is a time-varying unknown parameter and b, >0 is known. A
controller is to be constructed such that the system behaves like the dynamics of
the reference model

Xy = QX + b1 2)

ay —a, (t) .

where a,, <0 and b,, =b,. Let a(t) =————— and b =1 be ideal feedback
p

gains for the MRC law u = a(t)x, +br. Since a,(f) is not given, a practical

feedback law based on the MRAC is designed

u=da(t)x, +br 3)
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where d(t) is an adjustable parameter of the controller. Let e = x p — Xy and
a(t)=a(t)— a(t), then the error dynamics is computed to be

e=aye+b,ax, %)

Take the time derivative of the Lyapunov function candidate
~ 1 2 1 ~2
V(e,a)=—e”~+—b,a 5)
2 27

along the trajectory of (4), we have
V=a,e’ +b,dlex, +d—ad) (6)
If we choose the update law similar to the one in (2.10-10a)
a=—ex, 7)
then (6) becomes
V=a,e’ —b,aa (8)
Since @ and a are not available, the definiteness of V can not be determined.
Therefore, we are not able to conclude anything about the properties of the
signals in the closed loop system. From here, we know that the assumption for
the unknown parameters to be time-invariant is very important for the feasibility

of the design of adaptive controllers. It is equivalent to say that the traditional
MRAC fails in controlling systems with time-varying uncertainties.

2.11.2 Sliding control for systems with unknown variation bounds

Consider a first order uncertain nonlinear system
x=f0+g(xnu ©

where f(x,f) is a bounded uncertainty and g(x,f) is a known nonsingular
function. The uncertainty f(x,f) is modeled as the summation of the known
nominal value f;, and the unknown variation Af .
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f(x.0) = f, +Af (10)

Since Af is a bounded function with unknown bounds, there is a positive
constant ¢ satisfying

|Af| < an

Let us select the sliding variable s = x — x,;, where x, is the desired trajectory.
The dynamics of the sliding variable is computed as

s=f+gu—x, (12)

By selecting the sliding control law as
1
u =E[—fm +Xg =11 5gn(s)] (13)

equation (12) becomes
§=Af —115gn(s) (14)
Multiplying s to the both sides to have

8§ = Afs—771|s|
<(a-m)|s] (15)

Since « is not given, we may not select 77; similar to the one we have in (2.9-
11). Therefore, the sliding condition can not be satisfied and the sliding control
fails in this case.

Bound estimation for uncertain parameter

An intuitive attempt in circumvent the difficulty here is to estimate & by
using conventional adaptive strategies. Since ¢ itself is a constant, it might be
possible to design a proper update law & for its estimate &.

Let 77 be a positive number, then we may pick 77, =& +7 so that
equation (15) becomes

sSSO?|s|—77|s| (16)
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where & = & — & . Consider a Lyapunov function candidate
V==s"+—-« 17)
2

Its time derivative can be found as

V=ss—ada

< —p|s|+a(s|- &) (18)
By selecting the update law as
@=|s| (19)
equation (18) becomes
V<-nls (20)

It seems that the estimation of the uncertainty bound can result in closed loop
stability. However, in practical applications, the error signal s will never be zero,
and the update law (19) implies an unbounded . Therefore, the concept in
estimation of the uncertainty bound is not realizable.

2.12 FAT-Based Adaptive Controller Design

In practical realization of control systems, the mathematical model
inevitably contains uncertainties. If the variation bounds of these uncertainties
are available, traditional robust control strategies such as the Lyapunov redesign
and sliding control are applicable. If their bounds are not given, but we know
that these uncertainties are time-invariant, various adaptive control schemes are
useful. It is possible that system uncertainties are time-varying without knowing
their bounds (general uncertainties); therefore, the above tools are not feasible.
In this book, we would like to use the FAT-based designs to overcome the given
problem. The basic idea of the FAT is to represent the general uncertainties by
using a set of known basis functions weighted by a set of unknown coefficients
(Huang and Kuo 2001, Huang and Chen 2004b, Chen and Huang 2004). Since
these coefficients are constants, the Lyapunov designs can thus be applied to
derive proper update laws to ensure closed loop stability. This approach has
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been successfully applied to the control of many systems, such as robot
manipulators (Chien and Huang 2004, 2006a, 2006b, 2007a, 2007b, Huang and
Chen 2004a, Huang et. al. 2006, Huang and Liao 2006), active suspensions
(Chen and Huang 2005a, 2005b, 2006), pneumatic servo (Tsai and Huang
2008a, 2008b), vibration control (Chang and Shaw 2007), DC motors (Liang
et. al. 2008) and jet engine control (Tyan and Lee 2005).

In Section 2.11.1, we know that the traditional MRAC is unable to give
proper performance to LTV systems. In the first part of this section, we would
like to present the FAT-based MRAC to the same LTV system as in
Section 2.11.1 without considering the approximation error. The asymptotical
convergence can be obtained if a sufficient number of basis functions are used.
In the second part of this section, we will investigate the effect of the
approximation error in detail. By considering the approximation error in the
adaptive loop, the output error can be proved to be uniformly ultimately
bounded. The bound for the transient response of the output error can also be
estimated as a weighted exponential function plus some constant offset.

FAT-based MRAC for LTV systems

Let us consider the linear time-varying system (2.11-1) again
X, =a,t)x, +b,u (1

We have proved in Section 2.11.1 that traditional MRAC is infeasible to give
stable closed loop system due to the fact that a, is time-varying. Let us apply the
MRAC rule in (2.11-3) once again so that the error dynamics becomes

é=aye+b,(a-a)x, )

_ap(t)

P
time-varying, traditional MRAC design will end up with (2.11-8), and no
conclusions for closed loop system stability can be obtained. Here, let us
represent @ and @ using function approximation techniques shown in (2.7-4) as

A . . . .
where a(t) = is the perfect gain in the MRAC rule. Since it is

T
A=W Z+€

o 3)
A=Wz
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where we R™ is a vector of weightings, W€ R" is its estimate and
z € R"™ is a vector of basis functions. The positive integer 7, is the number of
terms we selected to perform the function approximation. In this case, we would
like to assume that sufficient terms are employed so that the approximation error
£ is ignorable. Later in this section, we are going to investigate the effect of the
approximation error in detail. Define W = W — W, and then equation (2) can be
represented into the form

. ~ T
é=a,e+b,W zx, “)

A new Lyapunov-like function candidate is given as

- 1L, 1. ;.
V(ie,W)=—e"+—b,W W 5
(e, W) 5 S (5)

Its time derivative along the trajectory of (4) is computed to be

V=ei—b,w W
=a,e’ +bp\7VT(pre—VAV) (6)
By selecting the update law
W =zx,e @)
we may have
V= a,e’ <0 (8)

This implies that both e and W are uniformly bounded. The output error e can
also be concluded to be square integrable from (8). In addition, the boundedness
of ¢ can easily be observed from (4). Hence, it follows from Barbalat’s lemma
that e will converge to zero asymptotically.

Consideration of approximation error

Let us consider a more general non-autonomous system in the standard
form
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x| =X
Xy = X3
: )
Xpo1 =X,
X, = f(X,0)+g(X,0)u
where X=[x;, X, - x,]" €Q, and Q is a compact subset of R". f(x,f)

is an unknown function with unknown variation bound. The uncertain function
g(x,t) is assumed to be bounded by 0< gin(X,1) < g(X,1) £ gmax (X,1) for
some known functions gmin and guax for all Xx€ € and f€[f;,o°). Let
&m =~/ &min€max be the nominal function, and then we may represent g in the
form g=g,(X,t1)Ag(x,t) where Ag is the multiplicative uncertainty
satisfying

0<Omin = Emin Ag < Smax _ O

8m 8m

We would like to design a controller such that the system state X tracks the
desired trajectory X, € Q,, where Q, is a compact subset of €. Define the
tracking error vector as €=X—X,; =[X] =Xy Xp—Xog - X, — xnd]T.
The control law can be selected as

= (= ftv-u,) (10)
Em

where f is an estimate of f, u, is a robust term to cover the uncertainties in g,
n—1

and V= X,g — ZkieM is to complete the desired dynamics. The coefficients
i=0

k; are selected so that the matrix

0 0 0
0 0 1 0
A=| 11 [eme
0 0 0 1
ko ki —ky o e
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is Hurwitz. With the controller (10), the last line of (9) becomes
. g &
Xn = f +_(_f +V—ur)
8m
=(f = )+A=Ag)(f —v)+Vv—Agu,
This can further be written into the form
n—1 R R
bt Y kieia = (f = )+ (1=8g)(f ~v) - Agu,
i=0
Its state space representation is thus
e=Ae+b[(f - f)+1-Ag)(f -v)—Agu,] (11)
where b=[0 0 --- 1]" € R". Since fis a general uncertainty, we may not

use traditional adaptive strategies to have stable closed loop system. Let us
apply the function approximation techniques to represent f and its estimate as

f=wlz+e
f =w'z
Then (11) becomes
é=Ae+b[Wz+e+(1-Ag)(f—v)—Agu,] (12)

where W = w —W. To find the update law, let us consider the Lyapunov-like
function candidate

V=ePe+tw'I'w (13)
where P and T' are positive definite matrices. In addition, P satisfies the

Lyapunov equation A’P+PA =—-Q where Q is some positive definite
matrix. Taking the time derivative of (13) along the trajectory of (12), we have
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V=e (ATP+PA)e+2[(1-Ag)(f —v)—Agu, b Pe
+2eb"Pe+ 2w’ (zb"Pe—T'w)
<—e"Qe+2(1+ )| f - v‘ [b7Pe|—26,,1,b" Pe

+2¢b"Pe+ 2w’ (zb" Pe—I'w)
We may thus select

1+ O
5min

f - v‘ sgn(bTPe) (14a)

U,

Ww=I"(zb"Pe-0oW), 0>0 (14b)

The signum function in (14a) might induce chattering control activity which
would excite un-modeled system dynamics. Some modifications can be used to
smooth out the control law. The most intuitive way is to replace the signum
function with the saturation function as

1400
§min

U,

‘f —v‘ sat(b” Pe) (14¢)

One drawback for this modification is the reduction in the output tracking
accuracy. It is also noted that the o-modification term in (14b) is to robustify the
adaptive loop. With (14), the time derivative of V becomes

V<—-e'Qe+2eb Pe+ 20w W
=—e'Qe+2ecb"Pe+ 20w (W—W)
2

<~ Anin Q) ||e]]* + 2 Amax (P) ][] + 20 [ w — W] ] (15)
(a) (b)

Let us derive part (a) in (15) using straightforward manipulations as
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~nin (Q)[e]”+ 2 (P ]
2
1 2 (P)] €]
= | Vi Q] - ===
2[ I A/ Amin (Q) j

4ﬂfriax (P) EZJ
2/1n21ax (P) 82

5[ A0 -
<=2 @] +

Likewise, part (b) can also be written as
W w =[] < ] w] - [
S T 2 Loy oo
== (Wl =Iwlh* =2 %] = wl

<= =l

Therefore (15) becomes

2/1[%13)& (P) 2

. 1 -
Vet an @l + 2= P o5 s ol

L LT e M U
©
We would like to relate (c) to V by considering
V=€ Pe+ W TW < Aoy (P) €] + Apmax (D] (17)

Now (16) can be further derived as
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V<-av+ [azmax (P)- @}Heﬂz

2]'1121ax (P) £2

+ ax - W 2+ 2+
[0 (D) = 1] + 0 | w] 2 (Q)

ﬂ’min (Q) o
2 2 (P) " Ay (1)

Pick o < min{ } , then we have

2
V<-av +o|w] + Lo P 2 ()

Hence, V <0 whenever

mm (Q) 21

2
(ew"v)eEz{(e,v”v)wﬂallwllz 2 P) (e (4}

This implies that (e, W) is uniformly ultimately bounded. Note that the size of
the set E is adjustable by proper selection of &, o, P, and Q. Smaller size of E
implies more accurate in output tracking. However, this parameter adjustment is
not always unlimited, because it might induce controller saturation in
implementation.

The above derivation only demonstrates the boundedness of the closed loop
system, but in practical applications the transient performance is also of great
importance. For further development, we may solve the differential inequality in
(18) to have the upper bound for V

2
v<e oy y+ Zlwl? + 2 (P) eXr 19
e (to) a”W" PRI (1) (19)

By using the definition in (13), we may also find an upper bound of V as
=e"Pe+ W TW > Apin (Pl + Aoin (D) W]

This gives the upper bound for the tracking error

lef < =1V = A ()91 S

Awin (P) Amin (P)
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Taking the square root and using (19), we have

Jol s L5 Oy
Amin (P 05/1mm P)

2 (P)
+ 20
\/ mm (P)/imm (Q) f0<T<l‘| (T)| 0

Hence, we have proved that the tracking error is bounded by a weighted
exponential function plus a constant. This also implies that by adjusting
controller parameters, we may improve output error convergence rate. However,
it might also induce controller saturation problem in practice.

The case when the bound for the approximation error is known

If the bound for €is known, i.e. there exists some £ >0 such that |£| <pB
for all t = ¢,, then u, in (14a) can be modified as

1 + §max ﬂ

f- v‘ sen(b”Pe) + 5—sgn(bTPe)

5min min

u, =

If the control law and the update law are still selected as (10) and (14b) with
o0 =0, then we may have

V < -e"Qe+2|¢|[b"Pe| - 2|b P
<—-e'Qe<0

Therefore, we may also have asymptotical convergence of the output error by
using Barbalat’s lemma.
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Chapter 3

Dynamic Equations for Robot Manipulators

3.1 Introduction

In this chapter, we review the mathematical models for the robot
manipulators considered in this book. For their detailed derivation, please refer
to any robotics textbooks. In Section 3.2, a set of 2n coupled nonlinear ordinary
differential equations are used to describe the dynamics of an n-link rigid robot.
When interacting with the environment, the external force is included into the
dynamics equation which is presented in Section 3.3. The actuator dynamics is
considered in Section 3.4, and a motor model is coupled to each joint dynamics,
resulting in a set of 3n differential equations in its dynamics. In Section 3.5, the
dynamics for an electrically driven rigid robot interacting with the environment
is presented. It is composed of 3n differential equations with the inclusion of the
external force. Section 3.6 takes the joint flexibility into account where a set of
4n differential equations are used to represent the dynamics of an n-link flexible-
joint robot. To investigate the effect when interacting with the environment, the
external force is added into the dynamics equation in Section 3.7. With
consideration of the motor dynamics in each joint of the flexible joint robot, its
model becomes a set of 5n differential equations in Section 3.8. Finally, we
include the external force in Section 3.9 to have the most complex dynamics
considered in this book, i.e., the dynamics for an electrically driven flexible joint
robot interacting with the environment.

3.2 Rigid Robot (RR)

An n-link rigid robot manipulator without considering friction or other
disturbances can be described by

D(@g+C(q.q)q+glq@ =7 )
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where q € R" is a vector of generalized coordinates, D(q) is the n X n inertia
matrix, C(q,q)q is the n-vector of centrifugal and Coriolis forces, g(q) is the
gravitational force vector, and T is the control torque vector. Although equation
(1) presents a highly nonlinear and coupled dynamics, several good properties
can be summarized as (Ge et. al. 1998)

Property 1: D(q) =D’ (q) >0 and there exist positive constants ¢ and 05,
o £ a, such that oI, <D(q) L a1, forall qeR".

Property 2: D(q)—2C(q,q) is skew-symmetric.

Property 3: The left-hand side of (1) can be linearly parameterized as the
multiplication of a known regressor matrix Y(q,q,q) € R with a parameter
vector pe R, ie.

D(q)q +C(q.4)q +g(q) = Y(q.4.4)p- 2)

Example 3.1: A 2-D planar robot model

A 4

Figure 3.1 A 2-D planar robot

Consider a planar robot with two rigid links and two rigid revolute joints
shown in Figure 3.1. Its governing equation can be represented by (Slotine and
Li 1991)
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d d . . T
{ 11 12}[?1}_{011 C12i||:?1i|+|:gli|:|: 1} 3)
dy dxn || g Ca € |92 82 7

where dyy =myl + 1) +my(IF +12 + 211, cos g,) + I,
diz =dy = mylil5 cOs gy +moldy + 1,
dy =mols +1,
cn =—mylilpsingaq,
cip =—mylilr sing, (g1 +q2)
o1 = —mylilp 81N g1 4,
=0
g1 =myl,gcosq +mygll.,cos(q +qz)+1 cosq ]

82 =myl g cos(q +q»)

Property 1 and 2 can be confirmed easily by direct derivation, while property 3
will further be investigated in Chapter 4.

3.3 Rigid Robot Interacting with Environment (RRE)

Suppose the robot manipulator will interact with a frictionless constraint
surface, then equation (3.2-1) is modified to

D(q)4+C(q,9)q+g(q) =7t-J, (QF,, 4))

where J ,(q) € R"" is the Jacobian matrix which is assumed to be nonsingular,
and F,, € R" is the external force vector at the end-effector. During the free
space tracking phase, there will be no external force and equation (1)
degenerates to (3.2-1). To facilitate controller derivation, it is sometimes more
convenient to represent (1) in the Cartesian space as

D, ()% +C,(x, 0k +g,(x) =J. (@t -F.y 2
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where X € R” is the coordinate in the Cartesian space, and other symbols are
defined as

D.x)=J." (@D(@)J.'(q
C.(x,%)=J."(@[C(q,q) - DI, (@I .(@1T. (@) 3)
g.x)=J." (qQglq)

Example 3.2: A 2-D planar robot interacting with the environment

Let us consider the 2-D robot in Example 3.1 again, but with a constraint
surface as shown in Figure 3.2. Its equation of motion in the Cartesian space is

represented as

|:dxll dx12:||:x‘:| [an Cx12:||:x:| {8)(1}

LT |t
dioy dyn ||y Cx21 Cx2 || Y 8x2

-T
Ja Ja T exi
:{ 11 12} { 1}_{f t:| @)
Ja Jan (2 0

|:Ja11 Ja12}_{—lﬁin(%)—lzsin(%‘le) —lzsin(éh"‘CIz)}
Jaat Jam lycos(q) +1,c08(q1 +q2)  [yc08(q1 +q2)

|:dxll dx12:|_|:‘]all Ja12:|T|:dll d12:||:-]a11 J¢112i|_1
dy dix - Jaor Jam dy dy || Jan Jam
[Cm Cx12:|_|:Ja11 Ja12]T([C11 011
Cx21 Cx22 - Jat Jam Cn C»
_{dn d12:||:Ja11 Ja12:|-1|:ja11 ja12:| |:Ja11 11111_1
d21 d22 Jann Jax j¢¢21 jazz Jar Jam

-T
|:gxl:|:|:‘]all J¢112:| {81}
8x2 Jar Jan 82

where
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constraint
surface

Y

A
e
\i/rl x‘«f X

Figure 3.2 A 2-D planar robot interacting with a constraint surface

3.4 Electrically-Driven Rigid Robot (EDRR)

Let us consider the electrically-driven rigid robot. The dynamic equation of
a rigid robot with consideration of motor dynamics is described as

D(q)q+C(q,q)q +g(q) = Hi (1a)
Li+Ri+K,q=u (1b)

where i € R" is the vector of motor armature currents, u € R" is the control
input voltage, H € R"" is an invertible constant diagonal matrix characterizing
the electro-mechanical conversion between the current vector and the torque
vector, L e R™" is a constant diagonal matrix of electrical inductance,
R € R™" represents the electrical resistance matrix, and K, € R"*" is a
constant matrix for the motor back-emf effect. Inclusion of the actuator
dynamics greatly increases the system order which gives large impact on the
complexity of the controller design; especially, when the system contains
uncertainties and disturbances.
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Example 3.3: With the consideration of the motor dynamics, the 2-D robot
introduced in Example 3.1 is now rewritten as

] e 11 Y A P
dy dy || G» Ca €292 82 0 h|li
L 0 11 + n 0 f‘1 + khl 0 6:11 _ 1231 (2b)
0 Lz i2 0 r %) 0 ka q2 Uy

3.5 Electrically-Driven Rigid Robot Interacting with Environment
(EDRRE)

The dynamics of a rigid-link electrically-driven robot interacting with the
environment can be described by

D(q){+C(q.9)q +g(q) =Hi-J (q)F., (1a)

Li+Ri+K,q=u (1b)
We may also use equation (3.3-3) to transform (1) to the Cartesian space
D, (0% +C,(x, )X +g,(x) = J, (QHi~F,y (2a)

Li+Ri+K,q=u (2b)

Example 3.4: The robot in Example 3.3 can be modified to include the
effect of the interaction force with the environment in the Cartesian space as

|:dx11 dx12:||:jéj| {Cm Cx12j||:x:| {gm}
e |t =
doy doo ||y Cx21 Cx2 ||y 8x2
-T
Ja J. h 0] ex
11 12 1 %l + Sex (3a)
Jan Jam 0 h|li 0
L 0 11 + n 0 fl + kb, 0 6:11 _ iy (3b)
O L2 i2 0 r 1% O kbz q> 1Z%)
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3.6 Flexible Joint Robot (FJR)

The transmission mechanism in many industrial robots contains flexible
components, such as the harmonic drives. Consideration of the joint flexibility
in the controller design is one of the approaches to increase the control
performance. For a robot with n links, we need to use 2n generalized coordinates
to describe its whole dynamic behavior when taking the joint flexibility into
account. Therefore, the modeling of the flexible joint robot is far more complex
than that of the rigid robot.

The dynamics of an n-rigid link flexible-joint robot can be described by

D(q)q+C(q,9)q +g(q) =K(0—-q) (la)

JO+BO+KO-q) =1, (1b)

where q € R" is the vector of link angles, @ € R" is the vector of actuator
angles, T, € R" is the vector of actuator input torques. J, B and K are nxn
constant diagonal matrices of actuator inertias, damping and joint stiffness,
respectively.

Example 3.5: A single-link flexible-joint robot

Let us consider a single-link flexible-joint robot as shown in Figure 3.3. It
can rotate in a vertical plane with the assumptions that its joint can only deform
in the direction of joint rotation, the link is rigid, and the viscous damping is
neglected. Its dynamic equation is in the form of (1) and can be represented in
the state space as

AT

Figure 3.3 A single-link flexible-joint robot
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).Cl =Xy
)'C2:_ Sinxl——(xl—x3)
. (2
X3 = X4
. K( )+ 1
Xg=—(x—x3)+—u
4 7 17 X3 7
where x;€ R, i=1,...,4 are state variables, and the output y=x; is the link

angular displacement, i.e., &, in the figure. The link inertial /, the rotor inertia J,
the stiffness K, the link mass M, the gravity constant g, and the center of mass L
are positive numbers. The control u is the torque delivered by the motor.

Example 3.6: A 2-D rigid-link flexible-joint robot

The equation of motion for the robot introduced in Example 3.1 with
consideration of joint flexibility can be represented as

d dp [ G ] kk 01 6,-

[ 11 12 {?1}_[011 C12}{f11}{81}={1 { 1 %} (a)

dy dzz_ q> €y Cxn |92 82 0 kz_ 6, —q,
oo0l[é ] [br o[6] [k 0][6-qi] [7a
J . 4?1 Nk 4?1 R =4 |_| Ta 3b)
0 |6, 0 by] 6, 0 k||h—qr| |7a

3.7 Flexible-Joint Robot Interacting with Environment (FJRE)

| I |

The dynamics of an n-link flexible-joint robot interacting with the
environment can be described by

D, ()% +C,(x, 0% +g,(x) =J, (QKO-q) - F,y (1)

JO+BO+K®O-q)=T, (1b)

Example 3.7: A 2-D rigid-link flexible-joint robot interacting with
environment
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When the robot in Example 3.6 performs compliant motion control, its
dynamic equation in the Cartesian space becomes

|:dxll dx12:||:x‘:| [an Cx12:||:x:| {8)(1}
LT |t =
dioy dyn ||y Cx21 Cx2 || Y 8x2
Jai Jao [k 07[6, - [
[ 11 12} [1 }[ 1 CII:|+ f r} (2a)
Jaor Jax 0 ky||6—q L 0
i, 0]l @& b, 0 ) kk 0| 6,— _Ta
Ji . 4?1 Nk l?1 e =4 | _| Ta (2b)
0 J2 62 0 bz 62 0 kz 92 —q» _Taz

3.8 Electrically-Driven Flexible Joint Robot (EDFJR)

The dynamics of an electrically-driven flexible-joint robot can be described
by including the motor dynamics to (3.6-1) as

D(q)q +C(q,9)q +g(q) =K(0-q) (1a)
JO+BO+K(0—q)=Hi (1b)
Li+Ri+K,q=u (1c)

Example 3.8: A 2-D electrically-driven flexible-joint robot

When considering the actuator dynamics, the robot in Example 3.6 is able
to be modified in the form

{dn d12]?1}+{011 C12}F1]{81}:{k1 0}{91_511} (2a)
dy dy 192 Cy Cxn |92 82 0 k| 6—q>
i 0 ;é;'+‘b1 ol [k ofa-al_[m 0 s
0 J2 92_ L 0 bz 92 0 kz 62 —q> 0 ]’lz 1)
Ll 0 _l‘:l + n 0 %1 + k;,l 0 ?'1 _ u; (ZC)
0 Lz _i2 0 r 1) 0 kbz q> U,
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3.9 Electrically-Driven Flexible-Joint Robot Interacting with
Environment (EDFJRE)

The dynamics of an electrically-driven flexible-joint robot interacting with
the environment in the Cartesian space can be described by

D, (0% +C,(x,%)%x+g,(x)=J, (KO -q)-F,, (1a)
JO+BO+K(0—q)=Hi (1b)
Li+Ri+K,q=u (1c)

It is the most complex system considered in this book. For each joint, a 5"
order differential equation is needed to model its dynamics.

Example 3.9: A 2-D electrically-driven flexible-joint robot interacting with
environment

When considering the actuator dynamics, the robot in Example 3.7 can be
rewritten into the form

|:dxll dx12:||:x‘:| |:Cxll Cx12:||:-)'c:| {8)(1}
L[ NI
dor do || Cx2t Cx22 JLY 8x2
Ja Ja - k 0 6 - ex
{ 11 12} { 1 }{ 1 %]{f t:| (2a)
Jar Janm 0 ky|[6,—q> 0
0l 6] [b olé]| [k O6- no 0
Ji . G dma 174 | _| f1 (2b)
0 Jj2]| 6, 0 b6 0 kr||6—q> 0 hli
0| 01 k 0 ]
L {1 + n %1 4| ?1 _ u 20)
0 L2 i2 0 Nl 0 khz q»> u,
3.10 Conclusions
In this chapter, eight robot models have been introduced. Some of them
consider the actuator dynamics, some take the joint flexibility into account, and

some allow the robot to interact with the environment. These robot models are
summarized in Table 3-1 for comparison. In the following chapters, controllers
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will be designed for these robots when the models are known followed by
derivations of adaptive controllers for uncertain robots.

Table 3.1 Robot models considered in this book

Equation
Systems Dynamics Models Numbers
RR D(@)g+C(q.q)q+g(@) =7 (3.2-1)
RRE D, (0% +C,(x,0x+g,(x) =1, (1-F, (3.3-2)
EDRR D(q)q +C(q,4)q +g(q) =Hi (3.4-1)
Li+Ri+K,q=u
EDRRE | D, (x)%+C,(x, %)% +g,(x)=J." (@Hi-F,, (352)
Li+Ri+K,q=u
FIR D(@)q +C(q.4)q +g(q) =K(6-q) (3.6-1)
JO+BO+K(@O-q)=T1,

=J." (@QK@®-q)-F,,
JO+BO+K®O-q) =1,
EDFIR | D(q)4+C(q.q)q +g(q) =K(®0-q) (3.8-1)
JO+BO+K(0-q)=Hi
Li+Ri+K,g=u

EDFIRE | D, (x)%+C, (X, X)X +g.(X) (3.9-1)
=J." (@K(®-q)-F,,

JO+BO+K(0—-q)=Hi

Li+Ri+K,q=u
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Chapter 4

Adaptive Control of Rigid Robots

4.1 Introduction

The dynamics of a rigid robot is well-known to be modeled by a set of
coupled highly nonlinear differential equations. Its controller design is generally
not easy even when the system model is precisely known. In practical operations
of an industrial robot, since the mathematical model inevitably contains various
uncertainties and disturbances, the widely used computed-torque controller may
not give high precision performance. Under this circumstance, several robust
control schemes (Abdallah et. al. 1991) and adaptive control strategies (Ortega
and Spong 1988, Pagilla and Tomizuka 2001) are suggested.

For the adaptive approaches, although these control laws can give proper
tracking performance under various uncertainties, most of them require
computation of the regressor matrix. This is because, with the regressor matrix,
the robot dynamics is able to be expressed in a linearly parameterized form so
that a proper Lyapunov function candidate can be found to give stable update
laws for uncertain parameters. Since the regressor matrix depends on the joint
position, velocity and acceleration, it should be updated in every control cycle.
Due to the complexity in the regressor computation, these approaches may have
difficulties in practical implementation. Sadegh and Horowitz (1990) proposed a
method to allow off-line computation of the regressor using the desired
trajectories instead of actual measurements. Sometimes a large memory space
should be allocated to store the look-up table containing the regressor. Lu and
Meng (1991a, 1993) proposed some recursive algorithms for general n DOF
robots. Kawasaki et al. (1996) presented a model-based adaptive control for a
robot manipulator whose regressor was computed explicitly by a recursive
algorithm based on the Newton-Euler formulation. Yang (1999) proposed a
robust adaptive tracking controller for manipulators whose regressor depends
only on the desired trajectory and hence can be calculated off-line.

83
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Some regressor-free approaches for the adaptive control of robot
manipulators are available. In Qu and Dorsey (1991), a non-regressor based
controller was proposed using linear state feedback. To confirm robust stability
of the closed loop system, one of their controller parameters should be
determined based on variation bounds of some complex system dynamics.
However, it is generally not easy to find such a parameter for robots with more
than 3 DOF. Song (1994) suggested an adaptive controller for robot motion
control without using the regressor. In his design, some bounds of the system
dynamics should be found, and the tracking error can not be driven to arbitrary
small in the steady state. Park et al. (1994) designed an adaptive sliding
controller which does not require computation of the regressor matrix, but some
critical bounded time functions are to be determined to have bounded tracking
error performance. Yuan and Stepanenko (1993) suggested an adaptive PD
controller for flexible joint robots without using the high-order regressor, but the
usual regressor is still needed. Su and Stepanenko (1996) designed a robust
adaptive controller for constrained robots without using the regressor matrix, but
bounds of some system dynamics should be available. Huang et al. (2006)
proposed an adaptive controller for robot manipulators without computation of
the regressor matrix. Chien and Huang (2007b) designed a regressor-free
adaptive controller for electrically driven robots.

In this chapter, we are going to study the regressor-free adaptive control
strategies for rigid robot manipulators. We firstly review the conventional
adaptive control laws for rigid robots in Section 4.2 whose regressor matrix
depends on the joint position, velocity and acceleration which is inconvenient in
real-time implementation. In addition, in the process of updating the inertia
matrix, there might be some singularity problem which greatly limits the
effectiveness of the approach. The famous Slotine and Li approach reviewed in
Section 4.3 eliminates the requirement for the acceleration feedback and avoids
the singularity problem. However, it is still based on the regressor matrix. In
Section 4.4, we investigate the entries in the regressor matrix and the parameter
vector to justify the necessity for the regressor-free approach. The regressor-free
adaptive control strategy is then designed in Section 4.5 based on the function
approximation technique. In Section 4.6, the regressor-free design is extended to
the system considering the actuator dynamics. Significant performance
improvement can be seen in the simulation results to verify the efficacy of the
regressor-free design.
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4.2 Review of Conventional Adaptive Control for Rigid Robots

Let us consider the rigid robot described in (3.2-1)
D(@)g+C(q.q)q+gl@ =1 (1)
If all parameters are available, a PD controller can be designed as
T=D[q, -K,(q-q.)-K,(q-q,)]+Cq+g 2

where q, € R" is the desired trajectory, and gain matrices K,, K, € R""
are selected such that the closed loop dynamics

e+K,e+K,e=0, e=q—q, 3)

is asymptotically stable. It is obvious that realization of controller (2) needs the
knowledge of the system model. Now, let us consider the case when some of the
parameters are not available and an adaptive controller is to be designed.

As indicated in (3.2-2), the left hand side of equation (1) can be linearly
parameterized as a known regressor matrix Y (q,q,q) € R"*" multiplied by an
unknown parameter vector p € R', i.e.,

D(q)q +C(q,9)q +g(q) = Y(q.4.4)p )
An intuitive controller can be designed based on (2) as
t=Dli, -K,@-4,)-K,(@-q)1+Cq+§ )

where D,C and g are estimates of D, C and g, respectively. With the
controller defined in (5), the closed loop system becomes

DE+K,e+K ,e)=-Dj-Cq-3 ©6)
where D=D-D,C=C-C, and g = g — g are estimation errors. By defining
p=p-p with peR" an estimate of p in (4) and assuming that D is

invertible for all time ¢ = 0, equation (6) can be further written to be

é+K,e+K,e=-D"Y(q,q,§)p )
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The above error dynamics implies that if we may find a proper update law for p
such that Pp — p asymptotically, then (7) converges to (3) as ¢ —> o, and
hence, we may have convergence of the output tracking error. To this end, let us
denote X = [eT e’ ]T eR*" o0 represent equation (7) in its state space form

x=Ax-BD'Yp (8)
0 I,

K, K,

update law for P to ensure closed loop stability, a Lyapunov-like function
candidate can be selected as

0
where A :[ }e R and B = L

n

}6%2"”. To design an

1 1 _,
Vx,p)= EXTPX +EpTl“p 9)

where T € R™ is a positive definite matrix and P=P" e R*”*" is a
positive definite solution to the Lyapunov equation A’P+PA =—-Q for a
given positive definite matrix Q= Q" € R*”*". Along the trajectory of (8),
the time derivative of V can be computed to be

. 1 A X
1% :—EXTQX— P DY) B Px+Tp] (10)
By selecting the update law as

p=-T'[D'Y(q.q.4)]" B"Px (11)

equation (10) becomes
. 1 T
VZ_EX Qx<0 (12)
Hence, we have proved that X € L2" and p € L., . Since it is easy to have
f QX (JQx)dr =J' x" Qxdt = J' 2Vt =2[V (0) -V (e0)] < o0,
0 0 0

we may conclude X € L%". Because A is Hurwitz and X is bounded, equation (8)
gives boundedness of X if D is nonsingular. Therefore, asymptotic convergence
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of X can be concluded by Barbalat’s lemma. This further implies asymptotic
convergence of the output tracking error e. It can also be proved that
convergence of the parameter vector is dependent to the PE condition of the
reference input signal. To realize the control law (5) and update law (11), the
joint accelerations are required to be available. However, their measurements are
generally costly and subject to noise. In addition, although the inertia matrix D
is nonsingular for all >0, its estimate D is not guaranteed to be invertible.
Hence, (11) might suffer the singularity problem when the determinant of D
gets very close to 0, and some projection modification should be applied. To
solve these problems, a well-known strategy proposed by Slotine and Li (1988,
1991) based on the passivity design for rigid robots will be introduced in next
section.

4.3 Slotine and Li’s Approach

To get rid of the need for the joint acceleration feedback and to avoid
the possible singularity problem stated above, Slotine and Li proposed
the following design strategy. Define an error vector §=¢&+ Ae where
A =diag(A, Ay,..., A,) with A, >0 for all i=1,...,n. By this definition,
convergence of S implies convergence of the output error €. Rewrite the robot
model (4.2-1) into the form

Ds+Cs+g+Dq, —DAe+Cq, —CAe=1 ()

Suppose the robot model is precisely known, then we may pick an intuitive
controller for (1) as

1=Dq, —DAé+Cq, - CAe+g—-K s )

where K is a positive definite matrix. Hence, the closed loop system becomes
Ds+Cs+K; s=0 3)
To justify the feasibility of the controller (2), let us define a Lyapunov-like

1
function candidate as V = ESTDS. Its time derivative along the trajectory of (3)

can be computed as

V= —s"K s +%ST(D -2C)s
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Since D —2C can be proved to be skew-symmetric, the above equation becomes
V= —s"K <0 %)

It is easy to prove that S is uniformly bounded and square integrable, and § is
also uniformly bounded. Hence, s — 0 as t — oo, or we may conclude that the
tracking error € converges asymptotically. It is noted that the above design is
valid if all robot parameters are known.

Now let us consider the case when D, C and g in (1) are not available, and
controller (2) cannot be realized. A controller can be constructed based on (2) as

t=Dq, -DAe+Cq, —CAe+8-K s (5)

if some update laws for the estimates D, C and g can be properly designed.
The above control law can be rewritten into the form

T=ﬁV+éV+§—de (6)

where v =, — Ae is a known signal vector. With this control law, the closed
loop system can be represented in the form

DS+Cs+de:—ﬁV—CV—g @)

The right hand side of the above equation can be further expressed in the
linearly parameterized form

Ds+Cs+K, s=-Y(q,q,v,V)p @®)

It is worth to mention that unlike the regressor matrix Y(q,q,() in (4.2-7), the
regressor matrix Y((,(,V, V) in (8) is independent to the joint accelerations.
On the other hand, if we may find an appropriate update law for P such that
P — 0 as t — oo, then (8) converges to (3) asymptotically, and the closed loop
stability can be ensured. To find the update law, let us define a Lyapunov-like
function candidate as

- 1 1 _,.
V(x,p)=—s'Ds+—p'I'p ©)
2 2
Its time derivative along the trajectory of (8) can be derived as

V=--s"K;s-p Tp+Y’s) (10)
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Hence, the update law can be picked as
p=-T"Y"(q.,q,v,¥)s (1)
and (10) becomes
V=-=s"K;<0. (12)

This is the same result we have in (4) and same convergence performance can
thus be concluded for the tracking error. To implement the control law (6) and
update law (11), we do not need the information of joint accelerations and it is
free from the singularity problem in the estimation of the inertia matrix.

4.4 The Regressor Matrix

In the above development, the robot model has to be represented as a linear
parametric form so that an adaptive controller can be designed. However,
derivation of the regressor matrix for a high-DOF robot is tedious. In the real-
time realization, the regressor matrix has to be computed in every control cycle,
and its complexity results in a considerable burden to the control computer.
Besides, to satisfy the limitation of the traditional adaptive design that the
uncertainties should be time-invariant, all time varying terms in the robot
dynamics are collected inside the regressor matrix. It can be seen that all entries
in the parameter vector are unknown constants and most of them are relatively
easy to obtain. For example, the 2-D robot in (3.2-3) can be represented into a
linear parameterization form in (4.2-4) by defining the parameter vector as
(Spong and Vidyasagar 1989)

m1lc21
m2112
mzlfz
myll,»
P=| )
I,
ml. g

mylig

_mzlczg |
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and the regressor matrix is in the form

o Gi G2 Gitdr Yu G Gitga cosq cosq; cos(q+qr)
Y(q,q,9) = . .. ..
0 0 Gi+g: yu G2 G2 0 0 cos(qi+4q2)

2

where

Yia = 2€08 ¢4 + €08 GG, —28Inq>G,G, —sin Q2C'I§

Y24 =COS G2 +5ing;.

For the acceleration-free regressor used in (4.3-8), one realization can be given as

y y v, COS 4 cos cos(qg; +
Y(q,('],v,\")={l 2 2 qg>  Yia 91 (¢ 512)} 3)

0 vi+v, 0 Va 0 cos(qi +92)

where

Yia =V, €08 g, + ViG> 8in g, +(q1 + ¢2)v2Sin g

, .
Y24 =V1€CO8q; + Vg, 81N g,
and the corresponding parameter vector is

_mllclz + mzllz + mzlczz + 11 + 12_
leczz +12
2m,ll,
p= e @)

mylil .,

ml.g+mylig

myl.r g

In (1) and (4), the entries are some combinations of system parameters such as
link lengths, masses, and moments of inertia,..., etc. Obviously, these quantities
are relatively easy to measure in practical applications compared to the
derivation of the regressor matrix. However, in traditional robot adaptive control
designs, we are required to know the complex regressor matrix, but update
the easy-to-obtain parameter vector. To ease the controller design and
implementation, it is suggested to consider the regressor-free adaptive control
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strategies. In next section, a FAT-based adaptive controller is designed for a
rigid robot without the need for the regressor matrix.

4.5 FAT-Based Adaptive Controller Design

The same controller (4.3-6) is employed in this approach
T=f)V+éV+g—de (1a)

and hence the closed-loop dynamics can still be represented as
Ds+Cs+K,s=-Dv-Cv-§ (1b)

This implies that S is an output of a stable first order filter driven by the
approximation errors and tracking errors. If some proper update laws can be
found so that D—>D, C— C and g —> g, then e > 0 can be concluded
from (1b). Since D, C and g are functions of states and hence functions of time,
traditional adaptive controllers are not applicable to give proper update laws
except that the linearly parameterization assumption as shown in (4.3-8) is
feasible. On the other hand, since their variation bounds are not given,
conventional robust designs do not work either. Here, we would like to use FAT
to representation D, C and g with the assumption that proper numbers of basis
functions are employed

D=W}Z, +¢p
C= WgZC +&c (23)
g=W/z,+¢g,

where Wp € R” 'BDX", We eR” Pexnand W, € R"P*" are weighting
matrices and Zp € R" o xn , LceR" Bexn and zZ, e R are matrices of
basis functions. The number ﬂ(.) represents the number of basis functions used.
Using the same set of basis functions, the corresponding estimates can be
represented as

ﬁ = WgZD
C=W.Zc (2b)
g= Wgng
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Therefore, the controller (1) becomes
W7 o .wTl 7T
T=WpZpv+WeZcv+Wyz, —Ks 3)
and the closed loop system dynamics can be represented as
D$+Cs+ K, s=-WpZpv—-WEZev-W, z, +¢ 4)
where W, =W, —W,, and & =& (Ep,&c,&,S,d,) ER" is a lumped
approximation error vector. Since W, are constant vectors, their update laws

can be easily found by proper selection of a Lyapunov-like function. Let us
consider a candidate

s o 1
V(s,Wp,Wc,W,) =5STDS
1 - . . .
+5Tr(WI€QDWD +WeQcWe + W, Q,W,) ®
where Qp € R Poxnho , Qce R Pexnbe ang Q€ R gre positive

definite weighting matrices. The time derivative of V along the trajectory of (4)
can be computed as

V=sT[—Cs—de—Wgzn"’—WchV_Wgng]
l Trye X7 A X7 7T A ved A T
+25 Ds—-Tr(WpQpWp + WeQcWe + W, Q,W,) +s" g

Using the fact that the matrix D-2C is skew-symmetric, we further have

V ="K s —Tr{Wj (Zp¥s” +QpWp)]
~TAWE (Zevs” +QeWo)l ~TrIW, (z,s" +Q,W,)l+s"e, (6)
Let us select the update laws with o-modifications to be
Wy =—Qp (Zp¥s” +0pWp)
VAVC =-Q¢ (Zevs" +0cWe) (7

Wg =-Q;'(z,s" + O'gWg)
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where 0 are positive numbers. Hence, equation (6) becomes

V = _STKdS + ST81 + UDTV(WSWD)

+0cTr(WEWE) + 0, Tr(W, W,) 8)

Remark 1: Suppose a sufficient number of basis functions are used and the
approximation error can be ignored, then it is not necessary to include the o-
modification terms in (7). Hence, (8) can be reduced to (4.3-12), and
convergence of s can be further proved by Barbalat’s lemma.

Remark 2: If the approximation error cannot be ignored, but we can find a
positive number & such that ||£1|| <&, then a robust term T, can be added
into (1a) to have a new control law

T:ﬁv+év+g_K(ls+wauﬂ (9)

Consider the Lyapunov-like function candidate (5) again, and the update law (7)
without o-modification; then the time derivative of V becomes

V <—s"Ks+8|ls]|+5 T oms (10)

If we select T, =—0[sgn(s;) sgn(s,) --- sgn(s, ), where s,
i=1,...,n is the i-th entry in s, then we may have V< —STde <0 which is
similar to the result of (4.3-12). This will further give convergence of the output
error by Barbalat’s lemma.

With the existence of the approximation error € and the o-modification
terms, equation (8) may not conclude its definiteness as the one we have in
(4.3-12). The following two inequalities are very useful in further derivation

2

T T 1 2 ”81”
s K s+s' ¢ <——| Apin K )|s]| ———— 11a
d 1 > ( d)” " (K. (1Ta)

3T ¥k 1 T 1 T ¥R

The proof for the first inequality is straightforward, and the proof for the second
one can be found in the Appendix. Together with the relationship



94 Chapter 4 Adaptive Control of Rigid Robots

V= %[STDS FTHWEQpWp + WEQeWe + W Q, W, )]
1 Y
<~ Vo D)[8]* + Ammax (Q)Tr(W W)
+ Aonax (Q)TH(WEWE) + Ay (Q)Tr (W, Wy )]

we may rewrite (8) into the form

V<-aV +—"£1”2
- 2ﬂ’min (Kd)

1
410 (D) = i K DIls|° +[max Q)
. 1 S
—opITr(WhyWp)} + 5{ [ (Qc) — 0 1Tr(WEWe)
s 1
+[0M'max (Qg) - O'g ]Tr(WgTWg) } + E[O'DTr(W];WD)
+oTr(WEWe) + 0, Tr(Wy W,)]

where /is a constant to be selected as

agmin{ﬂmin(Kd)’ Op ’ Oc ’ Oy }
/1mdx(D) ﬂmdx(QD) ﬂ’max(QC) ﬂ’max(Qg)

then (13) becomes

\7s—av+——Eﬂﬁ——+}{anﬂ(“%Vﬂﬂ+
22min (K d ) 2

ocTr(WEWe) + 0, Tr(W, W)

This implies V <0 whenever

1 2 1 T
V>————suple(7)| +—I[opTr(Wp W,
20{/1min(Kd)TZfIz" 1 )" 20{[ plr(WpWp)

+0Tr(WEWe) +0,Tr(W, Wy)]

12)

13)

(14)

5)

(16)
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It should be noted that selection of ¢ in (14) depends on the maximum
eigenvalue of the inertia matrix D which is not available. However, according to
Property 1 in Section 3.2, it is easy to prove that 3 7 p:1, >0 such that
Anax (D) <77, and Ay, (D) 2 n, and (14) can be rewritten as

aSmin{

/7'mir1_(Kd) Op Oc Oy
77D ’ﬂmax(QD)’//i'max(QC)’/lmax(Qg)

Since & will not be used in the realization of the control law or the update law,
we are going to use similar treatment in (14) in later chapters to simplify the
derivation.

It can be seen that all terms in the right side of (16) are constants. By
proper selection of the parameters there, we may adjust the set where V20 to
be sufficiently small. Hence, we have proved that s, WD, WC and Wg are
uniformly ultimately bounded. In addition, we may also compute the upper
bound for V by solving the differential inequality of V in (15) as

V(©) e ™V (1) + sup [&1(2)]

1
20 min (K ) ty<z<t

1
+ Z—[UDTr(WS Wp) +0cTr(WEW) + 0, Tr(Wy W)l (17)
o
Using the inequality

1 -
Vo2 D)[ls]* + Amin (Q)Tr (W W)

+ Aunin Q)T (WEWE) + Apin (Q)Tr (W, Wy)] (18)

we may find the upper bound for ||s||2 as

1 I
I < 5 2V = i Q)T (W5 W)

= Zin Q)T (WEWE) = Ayin (Q)Tr(W, W, )]
<2 y
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With (17), this can be further written as

e 1 )
a(t to)V
o< (D) Ot Dy e [

1
+ m[am(wg W) +0cTr(WEWe) +0,Tr(Wy W)l (19)

We may also write the bound for the error signal S as

sl <

2V(Io (I*To) 1
+ €,(7)
Ain (D) O (D) Auin (K ) WIL” @)

1

[opTr(Wh Wp) + 0 Tr(WEWE) + 0, Tr(Wi W)l (20)

1
B —
\ Mmin (D)

Inequality (20) implies that the time history of the error signal S is bounded by
an exponential function plus some constants. This completes the transient
performance analysis.

Table 4.1 summarizes the adaptive control laws derived in this section.
Two columns are arranged to present the regressor-based and regressor-free
designs respectively according to their controller forms, update laws, and
implementation issues.

Table 4.1 Summary of the adaptive control for RR

Rigid-Link Rigid-Joint Robot
D(q)§+C(q.¢)q+g(q) =T (“4.2-1)
Regressor-based Regressor-free
1=Dv+Cv+g-K, s t=Dv+Cv+g-Kys
Controller . A . A
= Y(@.4.v. Vp-Kys = Wiz, + WiZp¥
(4.3-6) s
+ WC ch -K 4S
(4.5-1)
Wp =-Qp (Zps” +opW,
Adaptive Law f')= I'Y’s o Qp (Zyp pWp)
43-11) We =-Q& (Zevs" +0cWe)
W, =-Q,'(z,s" +0,W,)
(4.5-7)
Realization Need regressor matrix Does not need regressor matrix
Issue
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Example 4.1:

Consider a 2-DOF planar robot represented in example 3.1, and we are
going to verify the control strategy developed in this section by using computer
simulations. Actual values of link parameters are selected as m;=m,=0.5(kg),
L=6=0.75(m), 11=15=0.375(m), and I,=1,=0.0234(kg-m’). We would
like the endpoint to track a 0.2m radius circle centered at (0.8m, 1.0m) in 10
seconds without knowing its precise model. The initial condition of the
generalized coordinate vector is set to be q(0)=[0.0022 1.5019 0 0]",
i.e., the endpoint is initially at (0.8m, 0,75m). Since it is away from the desired
initial endpoint position (0.8m, 0,8m), some significant transient response can
be observed. The controller in (4.5-1a) is applied with the gain matrices

20 0 10 O
Kd d A = .
0 20/ 0 10
Since we have assumed that the entries of D, C and g are all unavailable, and
their variation bounds are not known, we employ the FAT to have the

representations in (2). The 11-term Fourier series is selected as the basis
function for the approximation. Therefore, WD and WC are in R*?, and

A~

W, isin R*>2. The initial weighting vectors for the entries are assigned to be

Wp, (0)=[005 0 - 0" e R
Wp, (0)=Wp, (0)=[-0.05 0 --- 0" eR'™
Wp,(0)=[0.1 0 - 0" eR!™!

W, (0)=[0.05 0 - o e R
We,(0)=Wc, (0)=[-0.05 0 --- 0]" eR'™
We,(0)=[0.1 0 -- 0" e R

W, (0)=w,(0)=[0 0 -- 07 e R

The gain matrices in the update laws (4.5-7) are selected as

QBI = 144’ Qél = I44 and Q;l = 100122 .
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In this simulation, we assume that the approximation error can be neglected, and
hence the o-modification parameters are chosen as 0, =0. The simulation
results are shown in Figure 4.1 to 4.6. Figure 4.1 shows the tracking
performance of the robot endpoint and its desired trajectory in the Cartesian
space. It is observed that the endpoint trajectory converges nicely to the desired
trajectory, although the initial position error is quite large. After the transient
state, the tracking error is small regardless of the time-varying uncertainties in
D, C and g. Computation of the complex regressor is avoided in this strategy
which greatly simplifies the design and implementation of the control law.
Figure 4.2 presents the time history of the joint space tracking performance. The
transient states converge very fast without unwanted oscillations. The control
efforts to the two joints are reasonable that can be verified in Figure 4.3. Figure
4.4 to 4.6 are the performance of function approximation. Although most
parameters do not converge to their actual values, they still remain bounded as

desired.
1.2f ]
115 R
110 R
1.051 g
iL |
>
095} R
09t |
085} |
08} - = R
075} ‘ ‘ ‘ ‘ ‘ ‘ ‘ B
06 0.65 07 0.75 o).(s 0.85 0.9 0.95 1

Figure 4.1 Tracking performance in the Cartesian space
(— actual trajectory; --- desired trajectory)
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4.6 Consideration of Actuator Dynamics

In this section, we are going to derive adaptive controllers for the rigid-link
electrically-driven robot described in (3.4-1) as

D(q)q +C(q.9)q +g(q) = Hi (1a)
Li+Ri+K,q=u (1b)

We firstly consider the case when all robot parameters are known, and then the
regressor-based adaptive controller is derived if the robot parameters are not
available. Finally, a regressor-free adaptive controller is introduced. Several
simulation results will be presented to justify the necessity for the consideration
of the actuator dynamics, and to evaluate the performance of the controllers
designed here.

With the definitions of § and v in Section 4.2, we may rewrite (1a) into the
form

Ds+Cs+g+Dv+Cv=Hi )
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Suppose all of the robot parameters are known, then we may design a proper
control law u such that the current i in (1b) follows the trajectory

i=H '(g+Dv+Cv-K, s) (3)

where K, is a positive definite matrix. Substituting (3) into (2), the closed
loop dynamics becomes DS+ Cs+ K, s=0. It is exactly the same as the
one in (4.3-3), and hence convergence of S follows. To realize the perfect
current vector in (3), we have to design a control input u in (1b) to ensure that
the actual current can converge to the perfect one. Since all parameters are
assumed to be known at the present stage, we may construct the control input in
the form

u=Li, +Ri+K,q-K_e, 4)
where €; =i—1i, is the current error, and i, is the desired current trajectory
which is equivalent to the perfect current in (3). The gain matrix K., is selected
to be positive definite. Substituting (4) into (1b), the dynamics for the current
tracking loop becomes

Léi+KCe,~ =O (5)
On the other hand, since the desired current is defined according to (3) as

i,=H ' (g+Dv+Cv-K, s) (6)

we may rewrite (2) into the form below to represent the dynamics of the output
tracking loop

Ds+Cs+K, s=H(i-i,) )

To prove the close loop stability, let us consider the Lyapunov-like function
candidate

l oo 17
V(s,e;)=—s'Ds+—e; Le; 8
(s.e;) > > ®)
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Along the trajectory of (5) and (7), we may compute the time derivative of V as

. 1. .
V==s"Ks +EST (D-2C)s+s"He; —e! K .e;

S
=-s" e?JQ[ }so ©)
€
1
K, _EH
where Q = ! is positive definite by proper selection of K, and
-—H K.
2

K. Tt is easy to further prove that s and €; are also square integrable, and their
time derivatives are uniformly bounded. Hence, by Barbalat’s lemma, we may
conclude asymptotic convergence of S and e;.

In summary, if all parameters in the EDRR (1) are available, the controller
(4) with the perfect current trajectory (6) can give asymptotic convergence of the
output error.

Remark 1: It has to be noted that in controller (4), we have to find the time
derivative of the desired current trajectory which implies that we need to
feedback the joint accelerations to complete that computation. This necessity
will be eliminated in the following design of the FAT-based regressor-free
adaptive controller in section 4.6.2.

In next step, we would like to derive a regressor-based adaptive controller
for EDRR. The regressor-free design will be developed in section 4.6.2.

4.6.1 Regressor-based adaptive control

Let us consider the EDRR in (1) and (2) again
Ds+Cs+g+Dv+Cv=Hi (10a)
Li+Ri+K,qj=u (10b)

Suppose D, C, g, L, R, and K, are not available, and we may not realize the
control laws in (4) and (6). Instead, let us consider the desired current trajectory
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i,=H'(g+Dv+Cv-K,s)
=H'[Y(q,q,v,V)p-Ks] (11)

which is a modification of (6) with D, C, g and P the estimates of D, C, g
and p, respectively. With this desired current trajectory, equation (10a) can be
written as

Ds+Cs+K, s=-Dv-Cv-g+H(i—-i,)
= _Y(q’q7 Vyv)f’+H(i_id) (12)
where D=D-D, C=C-C, g=g—§ and p=p—p. If we may design a
controller u and an update law such that i — i, and p — p, then (12) implies

convergence of the output error vector. Let us consider the controller which is a
modification of (4) as

u:I:id +ﬁi+ﬁbq—Kce,« (13)

where L, R and K, are estimates of L, R and K,, respectively. For
convenience, let use define

o=li; i’ 41 eR”
P; 17 R” KI| eR¥mr
f)i — [I:T ﬁT KbT]T c SKMXVL
Therefore, the controller (13) becomes
u=p/o-K.e, (14)

Substituting (14) into (10b), we may have the dynamics in the current tracking
loop

Lé; +Ke, =—p/ o (15)

where P; =p; —P;. To proof the closed loop stability and to find appropriate
update laws, let us consider the Lyapunov-like function candidate

1 1 | B
V(s.e:.p,p;) =ESTDS +EeiTLei +EpTFp +§Tr(piTFipi) (16)
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where T € R and I'; e R are positive definite matrices. Along the
trajectories of (12) and (15), the time derivative of V is computed as

V==s"K;s+s'He, —e'K e,

—p" (Tp+Y"s)-Tr[p! (Tp; +gel)] a7

The update laws can thus be picked as

f) =-I'Y"s
. (18)
p;i=-Ti'ge;
Therefore, (17) can be further written as
. T T S
V=—s e ]Q{ }SO (19)
€;
1
K, ——H
where Q = 2 is positive definite by proper selection of K,
1
-—H K.
2

and K. Equation (19) implies that s and e; are uniformly bounded and square
integrable. Their time derivatives can also be proved to be bounded. Hence,
asymptotic convergence of S and €; can be obtained by the Barbalat’s lemma.
This further implies q — q, and i —> i, as t — oo,

Remark 2: Realization of controller (14) and update law (18) needs to know the
time derivative of the desired current which implies the need for the joint
acceleration feedback and the time derivative of the regressor matrix. All of
these requirements will be eliminated in the following design of the FAT-based
regressor-free adaptive controller.

4.6.2 Regressor-free adaptive control

Now, let us consider the case when D, C, g, L, R and K, are not
available, and  is not easy to measure, we would like to design a desired
current i, so that a FAT-based adaptive controller u can be constructed without
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using the regressor matrix to have i — i, which further implies convergence of
the output error as desired. Instead of (6), let us consider the desired current i,
in (11) as

i,=H'@+Dv+Cv-K,s) (20)

where f), C and g are respectively estimates of D, C and g. The dynamics of
the output tracking loop can thus be found as

Ds+Cs+K,s=H(i-i,)+(D-D)¥
HC-Ov+(E-g) 1)
If a proper controller u and update laws for D C and & can be designed, we

may have i > 1y, D—>D, CoC and g — g so that (21) can give desired
performance. Here, according to (4), let us select the control input to be

u=f-K.e, 22)

where f is an estimate of the function f(id,i,Q) =Li, +Ri +K,q.
Substituting (22) into (1b), we may have the dynamics of the current tracking
loop

A

Lé[+KCe[:f_f (23)

If an appropriate update law for f can be designed, we may ensure i — 1, as
t — oo, Let us apply the function approximation representation for D, C, g and

fas
DZW];ZD +8D
C=W(lZc+¢
clcTéc 24)
g=WgTzg g,
fZWfTZf + &

where WD eR” ?Bp xn W Eg’{n 2B xn W Eg{nﬂgxn, and W Eg{nﬁfxn are
weighting matrices, ZpeR" ﬁ"x” Z e R" ﬂCX"’ z, eg{"ﬁg“ and
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Zs € R"1*! are matrices of basis functions, and €(, are approximation error
matrices. The number f3, represents the number of basis functions used. Using
respectively the same set of basis functions, the corresponding estimates can
also be represented as

ﬁ = WIJ)-ZD
é = WgZC
. (25)
g=W,z,
f = WfTZf

then equation (21) and (23) becomes
D$+Cs+K s=H(i-i,)-WpZpv-WEZev-W/z, +8,  (262)
Le; + K e; =—Wszf +g, (26b)
where € =€;(€p,€c,&,,5,(,) and &, =€,(&,€;) are lumped approximation

errors. Since W, are constant matrices, their update laws can be easily found
by proper selection of the Lyapunov-like function. Let us consider a candidate

. o~ e~ 1 1
V(S’ei’WD’WC’Wg’Wf) ZESTDS-I—EetTLei
1 . L . o
+ET” (WpQpWp + WEQWe + W, Q,W, + W QW) (27)
The matrices Qp € %"zﬂnxnzﬁv, Qce R he X"Zﬂc, Q, € RrBexmBe - and
Q; € R"7"Pr are all positive definite. The time derivative of V along the

trajectory of (26) can be computed as

V=-s"K,;s+s"He, —e/K_e, +s"¢, +e ¢,
—Tr[WS (ZD"’ST + QDWD) + Wg (ZCvST + chc)
+W; (28" +QWy)+ W (zre] +QrWp)] (28)
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By selecting the update laws as
VAVD =—Qp (Zpvs' + O'DWD)
VAVC =—Qc (Zcvs' + O'CWC)
. (29)
W, =-Q,'(z,s" +0,W,)
W; =—Q;' (z¢e] + 0 W)

where 0, are positive numbers. With these selections, equation (28) becomes

. S & ~ oA
V=-s" e?]Q{ :|+[ST e?][ l}al,Tr(WgWD)
€; L)
+0Tr(WEWe) + 0, Tr(We W) + o Tr(W{ Wy ) (30)
1
K, -—-H
where Q = ! 2 is positive definite which can be achieved by

-—H K.

2

proper selections of K, and K...

Remark 3: Realization of the control law (22) and update laws (29) does not
need the information of joint accelerations which largely simplifies its
implementation.

Remark 4: Suppose a sufficient number of basis functions are used and the
approximation error can be ignored, then it is not necessary to include the
o-modification terms in (29). Hence, (30) can be reduced to (9), and
convergence of S and €; can be further proved by Barbalat’s lemma.

Remark 5: If the approximation error cannot be ignored, but we can find
positive numbers & and & such that ||al|| <0, and ||£2|| < 0,, then robust terms
Trobusr1 and Tropusr2 can be included into (20) and (22) to have

id = H_l(g+DV+CV_Kg's"'rrobustl)

A

u=f _Kcei + T robust 2
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Consider the Lyapunov-like function candidate (27) again, and the update law
(29) without o-modification; then the time derivative of V becomes

V < _[ST ]Q|: :|+ §l "S” + 52 "e || + S T robust 1 + e T robust 2

If we select the vector T o1 = —0i[sgn(s;) sgn(s,) -+ sgn(sn)]T, where
Sii=1,...,n is the i-th entry in S, and T2 =—0a[sgn(e; ) -+ sgn(e; N
where e, , k=1,...,n is the k-th entry in e;, then we may have (9) again. This

will further give convergence of the output error by Barbalat’s lemma.

Owing to the existence of € and €, in (30), the definiteness of V cannot
be determined. In the following, we would like to investigate closed loop
stability in the presence of these approximation errors. It is very easy to prove
the inequalities hold

—s" e ]Q[S}L[ST e ] Fl}
(3 &

1 S 2 1 € 2
5 )] gl o
Tr(WL W) < Tr(W< yWo) - Tr(W( W)
Together with the relationship
V= %[STDS +e'Le; + Tr(W5QpWp + WEQWe
+ W, Q,W, + W{ Q;W;)]
)
< %Mmax (A) m + Ao Q)T (W W)
+ A (Q)Tr(WEWE) + A (Q)Tr(Wy W)
+ Amax (Qp)Tr(W{ Wp)] (32)

D O
where A = [ 0 L} , we may rewrite (30) into the form
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2

1 {sl}
+—
2200 (Q) || &2

1 ~ T 1 L
+E[Mmax (Qp)—0op 1Tr(WpWp) +E[Mmax (Qc)~ocITr(WeWe)

2

V S (D (A) (Q)]H[:}

1 o o 1 .
+E[Mmax (Qg) - O'g ]Tr(WgTWg) +5[0{ﬂmax (Qf) —O¢ ]Tr(waWf)

1
+5[0'DTr(W,§WD) +0Tr(WEWe) + 0, Tr(Wy Wy) + o Tr(W{ Wy)] (33)

where /is a constant to be selected as

" {x‘tmm(Q) Op oc Oy Oy }(34)
j'malx(A),ﬂfmax(QD)’ﬂ’ma\x(QC)’ﬂmax(Qg),ﬂmax Qf)

Then (33) becomes

2

) 1
V<-aV+ +5[0'DTr(W$WD)

ol
2//i'min (Q) 82
+0cTr(WEWe) + 0, Tr(W, W) + o Tr(W{ Wy )] (35)

This implies V <0 whenever

1 [81(7):|
V>————sup
2000 (Q) 721, || €2(7)

+0cTr(WEWe) + 0,Tr(Wy Wy) + 0 Tr(Wy Wy)] (36)

2
1
+ —[O'DT”(WgWD)
20

Hence, we have proved that S, e;, WD, WC, Wg and Wf are uniformly
ultimately bounded. From (35), we may also compute the upper bound for V as

1 {31(1)}
———— sup
20 in (Q) ty<z<t|| €2(T)

1
+2—[aDTr(W,§WD) +0cTr(WEWe)
(04

2
V() <e TV (1) +

+0,Tr(W, Wy)+ oy Tr(W{ Wy)] (37)
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Using the inequality

2

V2 | S 4 U @uITHWE W)

N

+ Aunin Q)T (WEWE) + Ain (Q)Tr (W, Wy)

+ Amin (Qe ) Tr (W Wp)] (38)

we may find the upper bound for H[ST el ]TH2 as

N

2 2

2

<—— Uy (1) +
Jonin (A) ’

1 |:81(T)i|
sup
OM'min (A)ﬂmin (Q) to<z<t| €2 (T)

+—————[opTr(WpWp) + o cTr(WEW,
a/imm(A)[ pIr(WpWp)+0ocTr(WeWe)
+0,Tr(Wg Wy) + 0 Tr(W{ Wp)]

Therefore, we may compute the bound as

[ s } [2V(tg) -Zu-) 1
<, | e + sup
€; //i’miﬂ (A) \/Mmin (A)ﬂ’min (Q) fo<T<t

1
+m[O’DTr(W]7)-WD)+UCTr(W€WC)

1
+0,Tr(Wg Wy) + 0 Tr(W{ Wy)]?

[31(7)}
£,(7)

This proves that the time history of the error signal is bounded by an exponential
function plus some constants. The transient performance analysis is thus
completed.

Table 4.2 summarizes the adaptive control of EDRR derived in this section
in terms of their controller forms, update laws and implementation issues.
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Table 4.2 Summary of the adaptive control of EDRR

Electrically Driven Rigid Robot
Ds+Cs+g+Dv+Cv=Hi @6-1). (4.6-2)

Li+Ri+K,g=u

Regressor-based Regressor-free
i, =H'[Y(q.q.v.9p-K,s] | i,=H'@+Dv+Cv-K,s)
Controller u = f),T(I) -K.e; u=f- K e

(4.6-11) (4.6-14) (4.6-20) (4.6-22)

VAVI) =-Qp (Zpvs' + O'DWD)

Adaptive 5 =-T'YTs R - )
Law IA) oo We =-Q¢ (Zevs” +0cWe)
p;=-T; ge; ; o r .
W, =-Q, (Zs" +0,W,)
(4.6-18) R g . )
W =-Q; (Zye; +0:Wy)
(4.6-29)
1. need computation of regressor | 1. no need for regressor matrix or
Realization matrix its time derivatives
Issue 2. need i 4 to compute uw which | 2. no need for joint accelerations

implies the need for the joint
accelerations and time derivative
of Y.

Example 4.2:

Consider the same 2-DOF planar robot in example 4.1 with the inclusion of
the actuator dynamics, and we are going to verify the control strategy developed
in this section by using computer simulations. Actual values of link parameters
are selected as my=m,=0.5(kg), l1=01=0.75(m), 1,=1,=0.375(m), and
1,=1,=0.0234(kg-m"). Parameters related to the actuator dynamics are
given with hl =h2= IO(N-m/A), L1 =L2=0025(H), ry=r= 1(9), and
kyi=kp=1(Vol/rad/sec). In order to observe the effect of the actuator
dynamics, the endpoint is required to track a 0.2m radius circle centered at
(0.8m, 1.0m) in 2 seconds which is much faster then the case in example
4.1. The initial conditions of the generalized coordinate vector is
q(0)=[0.0022 1.5019 O 01", i.e., the endpoint is still at (0.8m, 0,75m)
initially. Three cases will be investigated in this example to clarify the
significance of the actuator dynamics in the closed loop stability. In case 1, an
adaptive controller designed for EDRR robots is applied to a EDRR robot. Since
the actuator dynamics is considered in the controller, good performance is to be
expected. However, if an adaptive controller for RR is applied to the same
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EDRR with the same set of controller parameters, the performance would, of
course, be unsatisfactory which will be presented in case 2. In the last case, we
consider the same configuration in case 2, but with improvements in the tracking
performance via controller gain adjustments. It is seen that although the
tracking error can be limited to some range, the control effort would become
impractically huge. Hence, we may arrive at a conclusion later that
consideration of the actuator dynamics is very important if good performance is
required. Table 4.3 summarizes the configuration of the simulation cases.

Table 4.3 Simulation cases

Plant Controller Remark
Case 1 EDRR Designed for EDRR -

Case 2 EDRR Designed for RR Same controller parameters as in Case 1

Case 3 EDRR Designed for RR Same configuration as in Case 2 but
with gain adjustments

It has to be emphasized that, in case 2 and 3, the robot models are in the
voltage level, i.e., the input to the joint is voltage (Figure 4.7). However, the
controllers designed for RR are in the torque level, i.e., their outputs are torque.
Hence, some modification is needed so that the robot and the controller are
compatible.

Torque q Voltage q
— > RR L » — » EDRR L »

Figure 4.7 The input signal for a RR is in the torque level and its controller should also be in
the torque level. The input for the EDRR is in the voltage level implying that its controller
must be with output in voltage

The adaptive controller in (4.5-1a) is designed for the rigid robot in the
torque level. Now, let us introduce a conversion matrix K, which satisfies
K u(e0) = Hi(ec) = T(o0) so that the controller becomes in the voltage level

u= K;l(ﬁv+év+g—de)
=K (WS Zpv+WEZev+ W]z, - K s) (39)
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The update laws can still be derived to be
W =—Qp (Zp¥s” +0pWp)
VAVC =-Q¢ (Zcvs" +0cWo) (40)
Wg =-Q,'(z,8" +0,W,)

Therefore, some more detail in the simulation cases can be summarized as
shown in Table 4.4.

Case 1: Controller for EDRR applied to EDRR

The controller in (22) is applied with the gain matrices
20 0 10 0 50 0
K, = , A= and K, = )
0 20 0 10 0 50

Table 4.4 Realization details in simulation cases

Plant Controller Update Laws

Case 1 ZDéfg iy =H ' @+DVv+Cv-K,9)| W, =-Qp(Zp¥s” +0pWp)
g -l wT N7 ¢ 2 X
=H A(Wgzg *WoZoV | W, =-Qd(Zevs” +0cWe)

+W{Zcv-K,s) E - A
cZLc d W, =-Q,'(z,s" +0,W,)

u=f‘—KCe,v W Q' (z;e! W)
CWT., t =—Qr (Zr€; +0 V¢
= Wiz -Kee (4.6-29)

(4.6-20), (4.6-22)

Case 2 EDRR u:K;l(ﬁV+éV+g—Kd5) WD =—Q51(ZDVST +O-DWD)

@6 | T B ;
= K‘i (WDZDV+ Wczcv WC — —QEI(ZCVST +O-CWC)
+WgTzg -K,s) A -1 T X
W, =— z,8 +0,W,
(4.6-39) e =0 (25" + 05 Wy)

(4.6-40)

Case 3 aDéfﬁ u=K;' Dv+Cv+8-K.8) | Wy =—Qy (Zpvs” +0pWp)
=K (WS Zpv+ W Zcv We = -Qd (Zevs” +0We)
T, _ R ~
\ 6-;9\7Vg z, —K;s) W, = —Q;(ngT +0,W,)
(4.6-39) (4.6-40)
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The initial value for the desired current can be found by calculation from (20) as
i,(0)=i(0)=[1.5498 —3.3570]". The 11-term Fourier series is selected as
the ba31s function for the approximation so that WD and WC are in R,
while W and Wf are in R, The initial weighting vectors for the entries
are asmgned to be

Wp, (0)=[0.05 0 - 0]" eR'"™
Wp,(0)=Wp, (0)=[-0.05 O - 0] e R
Wp,(0)=[0.1 0 - o eR'™
Wc,(0)=[0.05 0 -- 0" e R
We,(0)=Wc, (0)=[-0.05 0 --- 0]" eR"™
We,(0)=[0.1 0 -- o eR'™

W, (0)=W, 0)=[0 0 - 0" eR"™

W (0)=w.(0)=[0 0 - 0" e R

The gain matrices in the update laws (29) are selected as
p =L, Qc' =L, Q' =100Iy, and Q;' =100I,, .

The approximation error is assumed to be neglected, and the o-modification
parameters are all zero. The simulation results are shown in Figure 4.8 to 4.15.
Figure 4.8 shows the tracking performance of the robot endpoint and its desired
trajectory in the Cartesian space. It is observed that the endpoint trajectory
converges smoothly to the desired trajectory, although the initial position error
is quite large and most plant parameters are uncertain. The transient state takes
only about 0.3 seconds which can be justified from the joint space tracking
history in Figure 4.9. This justifies the effectiveness of the consideration of the
actuator dynamics when high performance control is required. The performance
in the current tracking loop is quite good as shown in Figure 4.10. The control
efforts to the two joints are reasonable that are presented in Figure 4.11. Figure
4.12 to 4.15 are the performance of function approximation. Although most
parameters do not converge to their actual values, they still remain bounded as
desired.
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1151

0.95F

09

0.75F
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 4.8 Robot endpoint tracking performance in the Cartesian space
(— actual trajectory; --- desired trajectory)
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Figure 4.9 Joint space tracking performance
(— actual trajectory; --- desired trajectory)
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Figure 4.10 Tracking in the current loop
(— actual trajectory; --- desired trajectory)
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Figure 4.11 Control efforts
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Figure 4.12 Approximation of D
(—estimate; --- actual value)
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Figure 4.13 Approximation of C
(—estimate; --- actual value)
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Figure 4.14 Approximation of g
(—estimate; --- actual value)
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Figure 4.15 Approximation of f
(—estimate; --- actual value)
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Case 2: Controller for RR applied to EDRR

10 O
Controller (39) is used with K, = [ 0 10} (N-m/Vol). All other required

parameters for the controller and update law (40) are the same as those in the
previous case. The purpose of using the same set of parameters is to have an
effective comparison. In the following figures we may observe that the
controller designed for RR is not able to give acceptable performance to a
EDRR under the conditions when the actuator dynamics is important such as the
fast motion trajectory tested here. The simulation results are presented in
Figure 4.16 to 4.22. Figure 4.16 shows that the endpoint motion does not
converge to the desired trajectory. Figure 4.17 indicates that the joint space
motion deviates from the desired trajectory after 0.6 seconds. Figure 4.18 and 19
presents the motor current and the control effort respectively, and impractically
large values can be seen in both curves. Function approximation results shown
in Figure 20 to 22 are not satisfactory either.

0.8

0.7

Figure 4.16 Tracking performance in the Cartesian space. It can be observed that the
controller designed for RR is not able to give satisfactory performance when applied to
EDRR under fast motion condition
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Figure 4.17 The joint space motion trajectory
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Figure 4.18 Motor currents go to impractically large values after 1.8 seconds
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Figure 4.19 The control efforts become very large after 1.8 seconds
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Figure 4.20 Approximation of D
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Figure 4.22 The estimate of vector g diverges very fast
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Case 3: Same as case 2 but with adjusted control parameters

Same configuration as in case 2 is considered here but with adjusted gain

matrices
200 O 100 O
K, = and A = .
0 200 0 100

The gain matrices in the update laws are selected as
Qf)1 =0.01144, El =0.01144,and Qél 2122.

The simulation results are shown in Figure 4.23 to 29. The Cartesian space
tracking performance in Figure 4.23 shows significant improvement (compared
with Figure 4.16), but the tracking error is still large (compared with Figure 4.8).
The joint space tracking performance is shown in Figure 4.24. The motor
currents and control efforts shown in Figure 4.25 and 26 respectively are still
unacceptably large. The estimated parameters in Figure 4.27 to 29 are bounded
as desired.

1151

1.05

0.9

0.85

0.8

L L L L
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
X

Figure 4.23 Robot endpoint tracking performance in the Cartesian space. After proper gain
adjustment, significant improvement in the tracking performance can be observed. However,
the tracking error is still unacceptable
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control input 1 (vol)
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Figure 4.26 The control efforts become very large
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4.7 Conclusions

In this chapter, we consider the adaptive control of rigid robots in the free
space. In Section 4.2, a regressor based adaptive controller is derived. To
implement the update law, the estimate of the inertia matrix is required to be
nonsingular and the joint accelerations should be known. Slotine and Li’s
approach derived in Section 4.3 is well-known to be free from the singularity
problem in the estimate of the inertia matrix, and its realization does not need
the information of the joint accelerations. All of these approaches need to
calculate of the regressor matrix. We have seen in Section 4.4 that computation
of the regressor matrix is tedious in general; a regressor-free adaptive controller
is derived in Section 4.5 based on the FAT. In some operation conditions, the
actuator dynamics should be carefully considered to give better control
performance. A regressor-based adaptive controller is derived in Section 4.6.1
for a EDRR. However, it not only needs the joint acceleration feedback but also
the calculation of the time derivative of the regressor matrix. A regressor-free
adaptive controller for EDRR is then introduced in Section 4.6.2, whose
implementation is similar to those in Section 4.4. Finally, example 4.2
investigates the necessity for the consideration of the actuator dynamics in three
cases. The simulation results show that, under the fast motion condition, only
the controller designed with consideration of actuator dynamics can give good
performance with reasonable control efforts for a EDRR.



Chapter 5

Adaptive Impedance Control of Rigid Robots

5.1 Introduction

The impedance control of robot manipulators is to maintain a desired
dynamic relationship between the end-effector and the environment where a
second order mass-spring-damper system is used to specify the target behavior.
It gives a unified approach for controlling the robot in both free space and
constrained motion phases. Following the work of Hogan (1985), several studies
of the impedance control have been proposed. Anderson and Spong (1988)
combined the impedance control with the hybrid control. Goldenberg (1988)
used feedback and feedforward compensation for both force and impedance
control. Mills and Liu (1991) proposed an impedance control method to control
the generalized contact force and position. Gonzalez and Widmann (1995)
presented a hybrid impedance control scheme which uses force commands to
replace desired trajectory. Yoshikawa (2000) surveyed the force control for
robot manipulators.

In Hogan’s design, the entire robot dynamics is required to be known, and
the impedance controller is derived so that the closed loop system behaves like
the target impedance which can interact with the environment compliantly. In
practical applications, however, the dynamics of the robot manipulator and the
environment inevitably contains various uncertainties and disturbances. Under
this circumstance, one of the effective ways to deal with this difficulty is to
apply the adaptive strategy to the impedance control. Slotine and Li (1987)
extended the adaptive free motion control to the constrained manipulators. Kelly
et al. (1987) suggested two adaptive impedance controllers to reduce model
uncertainties. Lu and Meng (1991b) presented a concept of target-impedance
reference trajectories to deal with the problems of imperfect sensor feedback and
uncertain robot parameters. Based on singular motion robot representation,
Carelli and Kelly (1991) designed an adaptive position/force controller for
constrained robots to achieve global stability results. Colbaugh et al. (1991)

129
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proposed a direct adaptive impedance control scheme without the knowledge of
the structure or the parameters of the robot dynamics. Since joint acceleration is
difficult to measure precisely, Zhen and Goldenberg (1995) designed an
adaptive impedance controller without requiring measurements or estimates of
acceleration. Using the camera-in-hand, Mut et. al. (2000) proposed an adaptive
impedance tracking controller with visual feedback.

Most of the existing adaptive impedance designs require computation of the
regressor matrix. In this chapter, we would like to introduce an adaptive
impedance controller based on FAT without using the regressor matrix (Chien
and Huang 2004). This chapter is organized as following: Section 5.2 reviews
the traditional impedance control and adaptive impedance control strategies.
Section 5.3 presents regressor-based adaptive impedance control designs.
Section 5.4 gives the regressor—free adaptive impedance controller based on
FAT with rigorous proof of closed loop stability. Section 5.5 considers the case
of inclusion of actuator dynamics. Simulation cases are also presented for
verifying the effectiveness of the scheme introduced.

5.2 Impedance Control and Adaptive Impedance Control

The dynamics of an n-link rigid robot interacting with the environment can
be described by (3.3-1) as

D(q)§+C(q,4)q+g(q) =7-JF,, (1)

where J,(q) € R™" is the Jacobian matrix, which is assumed to be
nonsingular, and F,,, € R" is the external force exerted by the end-effector on
the environment which is assumed to be measured precisely by a wrist force
sensor. It is often more convenient to describe the dynamics of the robot in the
Cartesian space when interacting with the environment. Let X € R" be the
position vector of the end-effector in the Cartesian space and we may rewrite
equation (1) as

D, (x)%+C,(x,0)x+g,(x) =J, 1~ F., (2a)
where

D.(x)=J."D()J;

C.(x,%) =J."[C(q,9) - D(@J;' T, 1T (2b)

g.(x)=J."g(q)
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In the traditional impedance control, all system parameters are given and a
controller is designed so that the closed-loop system behaves like the target
impedance

M;(X-X,)+B;X-X,)+K;(x-x;) = -F,, 3)

where X, € R" is the desired trajectory, and M; € R"", B, € R"", and
K; € R™" are diagonal matrices representing the desired apparent inertia,
damping, and stiffness, respectively. Equation (3) implies that, in the free space
tracking phase of the operation, i.e. F,,; =0, the system trajectory converges to
the desired trajectory asymptotically. On the other hand, in the constrained
motion phase, equation (3) represents a stable 2nd order LTI system driven by
the external force. Conceptually, we may regard the impedance controller as a
model reference controller and the target impedance plays the role of the
reference model. The impedance controller drives the robot to follow the
dynamics of the reference model in both the free space tracking and constrained
motion phases without any switching activity.

Since all quantities in equation (2) are known, we may design the
impedance controller as below such that the closed loop system behaves like the
target dynamics shown in (3)

1=J,(F,, +Cx+g,)
+J0D, (%, -M;'[B;(x—%,) +K;(x—x,) +F,,]} @

where the terms in the first parenthesis is to cancel the corresponding dynamics
in the robot model, while the rest of the terms are for completing the target
impedance in (3). It is obvious that by plugging (4) into (2), the closed loop
system becomes exactly the target impedance (3).

Suppose some of the system parameters are not available and the above
impedance controller cannot be realized. An adaptive controller can thus be
designed by referring (4) as

=)0 (F +C.x+8,)
+JTD {%, ~M['[B,(x—%,) + K, (x—x,) +F,, 1} (5)

where quantities with hats are respective estimates. Substituting (5) into (2) and
after some straightforward manipulations, we may have
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M,x-x,)+B;(x—x,)+K;(x-x,)
=M,D;'[(D, -D,)x+(C,-C)x+ (&, —g.,)]-F,, (6)

Define D, =D, -D,, C,=C,-C, and g.=g,—g,., then (6) can be
further written as

é+M;B,e+M;'K,e=-D;'(D,x+C,x+8,)-M;'F,, (7

Represent the right side of (7) into a linearly parameterized regressor form to
have

é+M;'B,e+M;'K,e=-D'Y(x,%x,X)p, ~-M;'F,, 8)

Denote X =[e” é”]” € R*" and then equation (8) is rewritten as

XZAXX_Bx(lA))_CIYf)x _Mi_lFexr) (9)
0n><n In Oan
where A, = o o e R and B, = e R, To
"MK, -M;'B, I,

design an update law for P, to ensure closed loop stability, a Lyapunov-like
function candidate can be selected as

V(xp) =%XTPX+%13§F13X (10)

where T € R™ is a positive definite matrix and P=P" e R*”*" is a
positive definite solution to the Lyapunov equation AP +PA, =-Q for a
given positive definite matrix Q = Q" € R*”*". Along the trajectory of (9),
the time derivative of V can be computed to be

V= —%xTQx—pi[(ﬁ;IY)TBipm p.]+x’PBM;'F,, (1)

In the free space tracking phase, the external force is zero, i.e. F,, =0, and the
selection of the update law

b, =-T'(D;'Y)"BIPx (12)
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gives the result
. 1 ;
V:—Ex Qx<0. (13)

Hence, we have Xx€ L2 and p, € L. It is also very easy to have x € L3",
and XELEQ"; therefore, by Barbalat’s lemma we may conclude asymptotic
convergence of X. This further implies asymptotic convergence of the tracking
error € in the free space tracking phase. However, in the constrained motion
phase, i.e. F,,; # 0, the selection of the update law in (12) will give the result

. 1
V= _EXTQX'FXTPBXM;lFext (14)

Therefore, we may not conclude any stability property for the system states. A
possible modification to the controller (5) is to include an additional term as

1=J0(F, +C x+8,)+J7D (X, - M;'[B;(Xx—%,)
+Ki(X_Xd)_Fext]}+JZ;T1 (15)

where T; is to be designed. Substituting (15) into (2) and we may have

M,x-x,)+B;(x—x,)+K;(x-x,)
=M, D'[(D,-D)x+(C,-C)x+ (&, -g)]-F., +MD't, (16)

Let T, = ]A)xMi_lFm, then (16) becomes

6+M;B,e+M;'K,e=-D7' (D &+C.x+8.)
=-D'Y(x, %, X)p, (17)

Similar to (9), we may represent (17) into
x=A x-B D;'Yp, (18)

Select the same Lyapunov-like function candidate in (10), and then we may
have

. 1 A ;
V=-ox'Qx=piD V) BIPx+ T, (19)
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With the selection of the update law in (12), equation (19) becomes (13).
Therefore, the system is stable for both the free space tracking and constrained
motion phases. However, it should be noted that, according to (16), the modified
controller (15) can only ensure convergence of the closed loop system to the
dynamics

M,(X_Xd)+BI(X_Xd)+Kl(X_Xd)=0 (20)

if all parameters converge to their exact values. It is obvious that (20) is
different from the target impedance in (3).

Remark 1: To realize the control law (15) and update law (12), we need to
feedback the acceleration in the Cartesian space for the calculation of the
regressor. In addition, the update law also suffers the singularity problem of ﬁx,
and some projection technique should be applied.

5.3 Regressor-Based Adaptive Impedance Controller Design

In the previous section, direct extension of the approach in section 4.2 to
the adaptive impedance control does not ensure convergence of the closed loop
system to the target impedance. In this section, we would like to apply Slotine
and Li’s approach introduced in section 4.3 to facilitate the design of the
adaptive impedance controller. Similar to the result in section 4.3, the design is
free from the feedback of acceleration information and free from the singularity
problem in parameter estimations. In addition, the closed loop system will
converge to the target impedance once the parameters go to their actual values.
Instead of (5.2-3), we consider a new target impedance

M;(X; —X,)+B;(X; —Xx,) +K;(x; - x,) =-F,, (Ta)
where X; € R" is the state vector of the reference model
Miii+BiXi+KiXi =Miid +B,~Xd +Kixd_Fex1‘ (1b)

If an adaptive controller can be designed such that X — X; asymptotically, then
the new target impedance (la) converges to (5.2-3) as desired. Meanwhile,
because X converges to X;, the dynamics of X will also converge to the dynamics
of X; in (1b), i.e., the target impedance.
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Define an error vector § =€+ Ae where € =X —X; is the state error in the
Cartesian space and A =diag(A,A,,...,A,) with 4 >0 for all i=1,...,n.
Rewrite the robot model (5.2-2) into the form

Ds$+Cs+g,+D,v+C,v=J,"1-F,, )

where v =X; — Ae. The adaptive control law is designed as
t=Ji@ +D.V+Cv+F,, ~Kys) 3)

Then the closed loop system can be represented in the form

Ds+Cs+K;s=-D v-C,v-§, )

Represent the right side of (4) into a linearly parameterized regressor form to
have

Ds+Cs+K;s=-Y(x,X,v,V)p, (5)
It is noted that the regressor matrix here is not a function of Cartesian space

accelerations. To find the update law, define the Lyapunov-like function
candidate as

1 1
V(xp,) =ESTDXS+EI”)§F15X (6)

Its time derivative along the trajectory of (5) can be derived as
V=-s"K;—pL(Ip,+Y’'s) (7)
Hence, the update law is selected as
P =-T'Y' (x,x,v,¥)s )
and (7) becomes
V=-s"K;<0. )

It is very easy to prove by Barbalat’s lemma that s — 0 as # — oo, and hence
X — X; as t —> oo. This further implies the dynamics of X will converge to the
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reference model in (1b), and hence the closed loop system will converge to the
target impedance in (5.2-3). This solves one of the difficulties encountered in
previous section.

Remark 2: To implement the control (3) and update law (8), we do not need the
information of Cartesian space accelerations and there is no singularity problem
in the inertia matrix estimation. However, the regressor matrix is still needed in
the update law.

5.4 FAT-Based Adaptive Impedance Controller Design

In this section, a FAT-based adaptive impedance controller is designed
without requiring the knowledge of the regressor. Let us consider the controller
(5.3-3),

=J£(gx+ﬁxv+éxV+Fext_KdS) (1)

and the closed loop dynamics (5.3-4) again

Ds$+Cs+K;ss=-D v-C,v-§, @

If we may design appropriate update laws such that ﬁx —->D,, éx — C,, and
8. — g,, then (2) becomes

Ds+Cs+K; ;s=0 3)

and with proper selection of K; we may have asymptotic convergence of s
which further implies convergence of the closed loop system to the target
impedance. To design the update laws without utilizing the regressor matrix, let
us apply the function approximation representation

D, =Wp Zp +&p,
Cx = ngzcx +8CX (4)
g, = Wngzgx +8&,,

where W € R" “oxn W eR” Bexn and W, e R are weighting
matrices, Zp €NR" ﬁ”xn Zc €R” *Bexn ang Zg € e R are matrices of
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basis functions, and €, are approximation error matrices. The number /[
represents the number of basis functions used. Using the same set of basis
functions, the corresponding estimates can also be represented as

ﬁx = WSXZDX

C.=Wl Z¢. (5)
8. = Wngzgr

where Wy, , W¢ and W, are respectively the estimates of Wy , W and
W, . With these representations, equation (2) becomes

. 57T o T 57T
Ds+Cs+Ky;s=-Wp Zp v-W¢ Z¢c v-W, 2, +g (6)
where W, =W, - W, and & =¢(ep_,&c, &g .5 %;) €R" is a lumped
vector of approximation errors. Since W,., are constant vectors, their update

laws can be easily found by proper selection of the Lyapunov-like function. Let
us consider a candidate

S s s 1
V(s,Wp, ,Wc, ,W, )= ESTDXS
1. -~ N N N N N
+ ET”(WIQQDX Wy, + W, Qc, We, +We, QW) @)

2 2 2 2
where Qp_ € R" Poxnbo. Qc, eR” Pexn”be and Q,, € R are positive
definite weighting matrices. The time derivative of V along the trajectory of (6)
can be computed as

V=-=s"K;ss+s"g ~Tr[W} (Zp vs" +Qp. WD )
+W¢ (Ze vs" +Qc. WC )+ W, (28" +Q,, Wgr)] (®)
Choosing the update laws to be
vAVDX = —Qf)lx (Zyp, vs' +0p, VAVDX)
V;ch =-Qc. (Zc,vs" +0c, W) ©))
W, =-Q, (2, 8" +o, W)
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where 0, are positive constants, then equation (8) becomes

V = —STKdS + STSI + O'DXTT(W];X WDX )

+0¢ Tr(WE We )+ 0, Tr(W, W, ) (10)
It can further be derived to
. 1 ~ -
V<i-aV+ E{ [Mmax (Dx) - /1min (Kd )]”8"2 + [Mmu (QDX ) - O-DX ]Tr(VV]])“A WDX )
+[ 0 (Qc, ) = O, ITr(WE We ) +[@nax (Qg, ) — 0 TTr( Wy, Wy )

2
+ % +[op, Tr(Wp Wy )+ 0c Tr(WE We )+ 0 Tr(W, W, )1}
min d

By selecting

asmin{ﬂmin(Kd) Op, Oc, Oy, }’

ﬂmax (Dx) ’ ﬂmax (QDX ) ’ ﬂmax (QCX ) ’ ﬂ'max (ng)

we may have
2
V<-aV +ﬂ +l[0D Tr(Wp, Wp_)
22min(Ky) 207 s
+0¢, Tr(WE W, ) +0, Tr(Wy, Wy )] (1)

Therefore, V <0 whenever

sup|e; (7))

S22 4 o Tr(WE W
2Ky 20 70T (W W)

+oc, Tr(WE We )+ 0, Tr(W, W, )]

and we have proved that S, V~VDX, WCX and V~Vgx are uniformly ultimately
bounded. On the other hand, differential inequality (11) implies

—a(t— 1 2
< a(t—ty)
Vise V(to)+—2 2 -n(Kd)mSBEtHSI(T)”

1
+ . [op, Tr(Wp, Wy )+ 0c, Tr(WE, We, )+ 0 Tr(W, W, )]
o
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By the relationship from (7) as

1 - -
V2 D8] + Amin Q) TH(WH Wy )

+ Anin (Qc )TF(WE We )+ A (Q ) Tr (W, W, )]

we may derive the bound for S as

/ W(ty) ~Zau-10) 1
s@|L | ————e 2 + sup ||g,(7)
|| || ﬂmin (Dx) \/a/lmin (Dx)ﬂ'l‘mn (Kd) t0<‘[<t|| : ||

1 T T
+———=1[0p Tr(Wp Wp, ) +0oc Tr(Wc,Wc,)
\ O Ain (D)

1
+0, Tr(W, W, )]

Remark 3: If a sufficient number of basis functions are employed in the
function approximation so that €, =0, the omodification terms in (9) can be
eliminated and (10) becomes V = —s"K s which implies s€ L. N L3. It is
straightforward to prove § to be uniformly bounded, and hence convergence of
S can be concluded by Barbalat’s lemma.

Remark 4: Suppose € cannot be ignored and there exist a positive number &
such that ||£1|| < ¢ for all >0, then, instead of (1), a new controller can be
constructed as

T:JZI-(Fext+gx+ﬁxv+éxV_de+Tr0bLtst) (12)

where T, 1S the robust term to be designed. Let us consider the Lyapunov
function candidate (7) and the update law (9) again but with o, = 0. The time
derivative of V can be computed as

V<-—s"K,s+ é‘||s|| +8TT
By picking T, = —O [sgn(s;) --- sgn(sn)]T, where s;, i=1,...,n are the

i-th element of the vector s, we may have V <0, and asymptotic convergence
of S can be concluded by Barbalat’s lemma.
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Remark 5: The regressor-free adaptive design introduced in this section is also
free from the acceleration information and the singularity problem in inertia
matrix estimation. In addition, the closed loop system will converge to the actual
target impedance provided all parameters are properly estimated.

Table 5.1 summarizes the adaptive impedance control laws derived in this
section. Two columns are arranged to present the regressor based and regressor-
free designs respectively according to their controller forms, adaptive laws and
implementation issues.

Table 5.1 Summary of adaptive impedance control for RR

Rigid robot interacting with environment

Dx(x)X + CX(X, X)X + gx(x) = J;TT - Fexl (5.2-2a)

Regressor-based Regressor-free
t=Ji(§. +D . v+C,v t=Ji(§. +D . v+C,v
Controller +F. ~K,8) +F. —K,8)
(5.3-3) (5.4-1)

A ; o N
Wp, =-Qp, (Zp, V8" +op, Wp,)

Adaptive Law p.=-T'Y (x,%,v,V)s A 3
P (X,X,v,V) We, =—Q¢ (Z¢ vs" +0¢. W)

(5.3-8) )
Wy, =—Q;! (28" +0, W)
(5.4-9)
Realization Need regressor matrix Does not need regressor matrix

Example 5.1:

The 2-DOF planar robot (3.3-4) is considered in this example to verify the
efficacy of the strategy developed in this section by computer simulation. Actual
values of system parameters are the same as those in example 4.1, i.e.
my=my=0.5(kg), [;=1,=0.75(m), l,;=1.,=0.375(m), and I,=1,=0.0234(kg-m"). The
endpoint starts from x(0)=x,(0)=[0.8m 0.75m 0 0]” to track a 0.2m
radius circle centered at (0.8m, 1.0m) in 10 seconds without knowing its precise
model. The constraint surface is smooth and can be modeled as a linear spring
(Spong and Vidyasagr 1989) f...=k,(x-x,,) where f,,, is the force acting on the
surface, k,,=5000N/m is the environmental stiffness, x is the coordinate of the
end-point in the X direction, and x,,=0.95m is the position of the surface.
Hence, the external force vector becomes F,,, =[ f,., 0]” . Since the surface is
away from the desired initial endpoint position (0.8m, 0,8m), different phases of
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operations can be observed. The controller in (1) is applied with the gain

matrices
50 O 20 0
K, = ,and A = .
0 50 0 20

Parameter matrices in the target impedance are selected as

05 O 100 O 1500 O
Mi = R Bi = and Ki = .
{ 0 0.5} { 0 100} { 0 1500}

The 11-term Fourier series is selected as the basis function for the approximation
of entries in D, C, and g,. Therefore, Wp and W¢ are in R4 and W,
isin R*>*?. The initial weighting vectors for the entries are assigned to be

W5, (0)=[0.05 0 - 0] eR'™
Wp,, (0)=W,, (0)=[-005 0 --- 0] c Rix!
Wp, (0)=[0.1 0 - 0" eR'™
We, (0)=[005 0 --- 0]" eR'™
We, (0)=Wc, (0)=[-005 0 --- 0]" eR"™
We, (0)=[0.1 0 - 0" eR"™

W, (0)=W,,(0)=[0 0 - 0] eR™".
The gain matrices in the update laws (9) are designed as
Qp. =0.114, Q¢ =0.11, and Q' =50I,.

In this simulation, we assume that the approximation error can be neglected, and
hence the o-modification parameters are chosen as 0., =0 . The simulation
results are shown in Figure 5.1 to 5.7. Figure 5.1 shows the robot endpoint
tracking performance in the Cartesian space. It can be seen that after some
transient response the endpoint converges to the desired trajectory in the free
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space nicely. Afterwards, the endpoint contacts with the constraint surface at
Xx,=0.95(m) compliantly. When entering the free space again, the endpoint
follows the desired trajectory with very small tracking error regardless of the
system uncertainties. Computation of the complex regressor is avoided in this
strategy which greatly simplifies the design and implementation of the control
law. Figure 5.2 presents the time history of the joint space tracking performance.
The transient states converge very fast without unwanted oscillations. The joint
space trajectory in the constraint motion phase is smooth. The control efforts to
the two joints are reasonable that can be verified in Figure 5.3. The external
forces exerted on the endpoint during the constraint motion phase are shown in
Figure 5.4. Figure 5.5 to 5.7 are the performance of function approximation.
Although most parameters do not converge to their actual values, they still
remain bounded as desired.

0951 A

0.9 ’ b

0.85 b

0.8 — = 4

0.75f I I I I I L]
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

X

Figure 5.1 Robot endpoint tracking performance in the Cartesian space. After some transient
the endpoint converges to the desired trajectory in the free space nicely. Afterwards, the
endpoint contacts with the constraint surface compliantly. When entering the free space

again, the endpoint follows the desired trajectory with very small tracking error regardless
of the system uncertainties
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Figure 5.2 The joint space tracking performance. The transient is very fast and the constraint
motion phase is smooth
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Figure 5.3 The control efforts for both joints are all reasonable
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5.5 Consideration of Actuator Dynamics

When the actuator dynamics is included, equation (5.2-1) has to be
modified to

D(q)d +C(q.9)q+g(q) =Hi-J]F,, (1a)

Li+Ri+K,q=u (1b)

In this section, we firstly consider the case when all parameters in (1) are known
and a controller is developed so that the closed loop system behaves like the
target impedance in (5.2-3). Then, a regressor-based adaptive controller is
designed for (1) under the assumption that the system parameters contain
uncertainties. Finally, we will derive a regressor-free adaptive controller for the
impedance control of system (1).

With the same definitions of § and v in (5.3-2), equation (la) can be
represented in the Cartesian space as

Ds+Cs+g, +D v+C,v=J,Hi-F,, )

Suppose D,, C, and g, are known, and we may design a proper control law
such that motor armature current i follows the trajectory

i=H'Jl (g, +D v+C,v-K s+F,,) 3)

where K is a positive definite matrix. Then the closed loop dynamics becomes
D.s+C.s+ K s =0. With proper selection of K;, we may have asymptotic
convergence of § which further implies convergence of the closed loop system
to the target impedance. To make the actual current i converge to the perfect
current in (3), let us select the control input in (1b) as

u=Li, +Ri+K,q-K.e )

where €; =i—1, is the current error, i, € R" is the desired current which is
equivalent to the perfect current trajectory (3), and K, € R"™" is a positive
definite matrix. Substituting (4) into (1b), we may have Leé; +K.e; =0.
Therefore, it is easy to prove that i — i, as t — oo with proper selection of
gain matrix K, .
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In summary, if all parameters in the rigid-link electrically-driven robot (1)
are available, the controller (4) can give asymptotic convergence of the closed
loop system behavior to the target impedance.

5.5.1 Regressor-based adaptive controller

Consider the robot model in (2) and (1b), and assume that D,, C,, g,, L,
R and K, are uncertain matrices. Therefore, controller (4) and perfect current
trajectory (3) are not realizable. Let us modify (3) to
iy =H"J (@, +D,v+C,v-Ks+F,,)
=H_1J£[Y(X9X, V,V)f)x _KdS+Fext] (5)
where quantities with hats are respectively the estimated values, and regressor
matrix Y is defined similarly to the one in (5.2-8). The output tracking loop
dynamics can be obtained from (2) and (5) as
Ds$+Cs+Kyss=-D v-C,v—g, +J. H(i—i,)
=-Y(x,%,v,V)p, +J, H(i-i,) (6)
If controller u can be designed such that i — i,, and update law is selected to
have p, — p.., then (6) reduces to D,§+C,s+ K s=0, and convergence of
the system dynamics to the target impedance can be obtained. A modified
controller from (4) is designed as
u=Li, +Ri+K,q-K.e;
=pi0-K.e, @
_iT T  TqT 3n AL . .
where @ =[i; i° '] €R™ and P, is an estimate of the parametric

matrix p; =[L" R” K} 1" € R*". The current tracking loop dynamics
with the controller in (7) can be represented in the form

Lé;, +K.e, =—p/o (8)

where P; =p; —P;. A Lyapunov-like function candidate can be found as

| 1 1, e
V(s.e;,p..p:)= ESTDXS +5e?Lei +Epprx +Tr(p; L) (9
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where T € R and I'; e R*" are positive definite matrices. Along the
trajectories of (6) and (8), the time derivative of V is computed as

V=-s"K;s+s"J,"He, —e'K .e;

—pT(p, +Ys)~Trp! (T;p; + el )] (10)

The update laws are selected as

p.=-T'Y"s
: (1)
P =-T7 'o¢/
and (10) becomes
. S
V=—s" el»T]Q{ }so (12)
€;
[
Kd __Ja H
where Q = | 2 is positive definite by proper selection
—JJH K.
2

of K, and K. Equation (12) implies that s and e; are uniformly bounded and
square integrable. It can also be proved that § and €; are uniformly bounded.
Hence, asymptotic convergence in the current tracking loop and output tracking
loop can be concluded from Barbalat’s lemma.

Remark 6: Realization of controller (7) and update laws in (11) require the time
derivative of iz in (5) which implies the needs for X, Fex, and Y. Availability
of all of these quantities is impractical in general; therefore, some more feasible
controllers are to be developed.

5.5.2 Regressor-free adaptive controller

Suppose D,, C,, g., L, R and K, are not available, and we would like
to design a regressor-free adaptive controller so that the closed-loop dynamics
converges to the target impedance. Besides, realization of the controller
designed in this section has to be independent to the acceleration feedback and
time derivatives of the external force.



5.5 Consideration of Actuator Dynamics 149

Consider the robot model in (2) and (lb) again. Since most robot
parameters are unavailable, controller (4) and perfect current trajectory (3) are
not realizable. The perfect current trajectory can be modified similar to (5) as

iy =H'JI(F,+& +D,v+C,v-K,s) (13)
Substituting (13) into (2), we may obtain the output tracking loop dynamics
Ds$+Cs+K,;s=-D v-C.v-§, +J,"H(i-i,) (14)

If controller u can be designed such that i — i,, and there are some update
laws to have ]A)x%Dx, éx—>Cx and g, —g,, then (14) reduces to
D.s+C,s+K;s=0, and convergence of the system dynamics to the target
impedance can be obtained. According to (7), let us select the control input in
(1b) as

u:f’—KCei (15)

where f is an estimate of f(i 4.1,4) =Li, + Ri+K,q. Substituting this control
law into (1b), we may have the dynamics in the current tracking loop

A

Lé[+KCe[:f_f (16)

If an appropriate update law for f can be selected, we may have i — i . Since
D,, C,, g, and f are functions of time, traditional adaptive controllers are not
directly applicable. To design the update laws, let us apply the function
approximation representation

D, =W} Zy +gp (17a)
C.=W({ Zc, +sc, (17b)
=W, z, +g, (17¢)
f=Wz +g (17d)

where Wp € R” “oxn . We, eR” “hexn . W, E%"ﬂ‘*’x" and W; € R

are Welghtlng matrices, Zp, R 'BDX" Zc, E%" ﬁLX" Zy, E%"'Bg ! and
x1

Zs € R are matrices of basis functlons and g€y are approximation error



150 Chapter 5 Adaptive Impedance Control of Rigid Robots

matrices. The number [, represents the number of basis functions used. Using
the same set of basis functions, the corresponding estimates can also be
represented as

D.=W; Zy (17¢)
C.=W¢ Z. (17f)
g.=W, z,, (17g)

f =Wz (17h)

Define W(.) = W(,) —W,,, then equation (14) and (16) become
D,s+C,s+Ks=J,"H(Gi-i,)- W} Zp v

~WE Ze v-W, 7, +g, (18a)

Le; + K e; :—Wszf +g, (18b)

where €, =€,(€p,&c,€4,8,X;) and €, =€,(€/,€;) are lumped approximation
errors. Since W, are constant matrices, their update laws can be easily found
by proper selection of the Lyapunov-like function. Let us consider a candidate

X = Ea— 1 1 1 - -
V(s.e;, Wp_,Wc W, W)= ESTDXS +5e,~TLe,~ +5Tr(WIT,XQDX Wy,
+WE, Qe W, + W Qg Wy, + Wi QW) (19)
The matrices QDX € SK”Z'BDX”ZﬁD , QCX c mnzﬂc xn’*Be , ng c mnﬂg xnf, and

Q; e RPEr e all positive definite. The time derivative of V along the
trajectory of (18) can be computed as

V=--s"K;s+s"J,"He, —e/K e, +s'¢, +e'¢,
“THW, (Z, ¥8" +Qp, Wp )+ WE (Zc, vs” +Qc, We,)
+Wng (zg,8" +Qy, ng )+ Wi (ze] + Qi W)l (20)
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The update laws can thus be selected as

‘;)\VDX =-Qp. (Zp, vs" +0p, VAVDX ) (21a)
V;ch =-Qc (Zc,vs" +0o¢, We,) (21b)
V;Vgx =-Q, (zys" +0, W, ) @21c)
W = -Qf'(zse] +0¢Wy) (21d)

and (20) becomes

V=—s" e?]Q{s}[sT el [Sl}anxTr(Wﬁx"AVm)
€;

€

+0¢ Tr(WE We )+ 0, Tr(Wy Wy ) +o (Wi Wy)  (22)

K, —1J;TH
2

where Q = is positive definite by proper selection of

1

2
K, and K.. Owing to the existence of € and €, in (22), definiteness of V' cannot
be determined. Let us proceed by considering the upper bound of V'in (19) as

N

+ Amax (Qe TH(WE We )+ A (Qg VTr(Wo W, )
+ Amax (Qe)Tr (Wi Wi)]

JJH K,

2

V< %Amax (A) +%[/Im (Qo,)Tr(W5, Wp,)

X

0

s’ e;T]Q[S}[ST el Fl}

2
1 S
< —E ﬂmin (Q)H|:el:| -

0
where A = { L} , and the inequalities

2

L
ﬂmin (Q)

]
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Tr (W, W,,) < ~Tr(WE W) -~ Tr(W/,W,
r(We,) <~>)—2 r(Wo,We) > r(Wo,We)

then we may rewrite (22) into

2

1 ~ ~
+E{ [aﬂmax (QDA ) - O-D‘ ]TV(VVIY)-A VVDA )

]

Hmax (Qc, ) =0, ITr(WE We, ) +[0Amax (Qg, ) — 0 1Tr (W, W, )

2
1 €
€

o 1
HO s (Qp) — o ITr(Wf Wp)} +——— + E{UDA Tr(Wp Wp,)
+oc, Tr(WE We,) +0, Tr(W, W, ) +0:Tr(W{ Wp)}

. 1
V<-aVv +E[aﬂmax (A) - ﬂ'min (Q)]

2min (Q)

where ¢is selected to satisfy

aSmin{ﬁmm(Q), Obp, ’ Oc, ’ Og, , O }
/1max (A) /1mdx (QDX) ﬂ’max (QCX) ﬂmax (ng) ﬂmax (Qf)

With this selection, we may further have

1 {31 }
2/1min (Q) 82
+0c, Tr(WE We, ) +0, Tr(Wy W, ) +0Tr(Wy We)l  (23)

2

1
V<-aV+ +5[0DX Tr(Wp, Wp_)

So, V <0 can be concluded whenever

1 {sl(r)}
V>————sup
20 i (Q) 21, ||| £2(7)

+0c, Tr(WE We )+ 0, Tr(Wy W, )+ ocTr(Wf We)l (24)

2
1
+—1[op, Tr(Wp Wp )
2x ’

Hence, we have proved that s, e;, V~VDX, V~ch, V~Vgx and Wf are uniformly
ultimately bounded. On the other hand, (23) also implies



5.5 Consideration of Actuator Dynamics 153

1 {61(1)}
——— sup
20 in (Q) 1y <r<t|| €2(7)

2
V() <e 0V (1) +

# (00, Tr(Wg, W, )+ 0, Tr(WE, W)
(04
+0g Tr(W, Wy )+ 0¢Tr(W{ Wp)] (25)

Consider the lower bound of Vin (19) as

N

+umin (Qc )T (WE W, ) + Anin (Qg VT (W, Wy ) + Auin (Qe)Tr (WY We)]

N

the error signal vector as

M

2

1 1 50T Yi
V2> E Ain (A) + E [Auin (Qp,)T7 (ngx Wp,)

2V
< [——— . Together with (25), we have the bound for

Amin (A)
{81(7)}
£,(7)

[0, Tr(Wp, Wp,) +0¢, Tr(WE, We,)

This implies

2V (ty) ~5u-n) 1
-——e + sup
Aunin (A) 20 (A) A (Q) ty<r<

A

PO
\V 2a/1min (A)
1

+ 0, Tr(W, W, )+ 0 Tr(W{ Wp)]2

Remark 7: If the number of basis functions is chosen to be sufficiently large
such that €, =0 and &, = 0, then (22) becomes

V=—s" e?]QLS}S 0

This implies that S and €; are uniformly bounded and square integrable. It is also
easy to prove that § and €; are uniformly bounded; as a result, asymptotic
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convergence of S and e; can be concluded by Barbalat’s lemma. This further
implies that i —>i,; and q— qy, even though the robot model contains
uncertainties.

Remark 8: Suppose €, and €, cannot be ignored but their variation bounds are
available, i.e. there exists positive constants d;,0, >0 such that || 81” <, and
|| 82” <9, for all t>0. To cover the effect of these bounded approximation
errors, the desired current (13), and the control input (15) are modified to be

. 14T ~ AL A
1 =H Ja(Fext+gx+DxV+CxV_KdS+Trobustl)

A

u= f - Kcei + T robust 2

where T,pu1 and T,.p:2 are robust terms to be designed. Let us consider
the Lyapunov-like function candidate (19) and the update law (21) without
o-modification again. The time derivative of V can be computed as

A N T T e
i

By picking T,opu = —0i[sgn(s)) -+ sgn(s,)]", where s;, i=1,...,n is
the i-th element of the vector § and T ,.p,2 =—02[sgn(e; ) - sgn(e;, W,
where ¢; , k=1,...,n is the k-th element of the vector €;, we may have V < 0,

and asymptotic convergence of the state error can be concluded by Barbalat’s
lemma.

Remark 9: Realization of the desired current (13), control law (15) and update
laws (21) does not need the information of the regressor matrix, joint
accelerations, or time derivatives of the external force, which largely simplified
the implementation.

The adaptive impedance control of EDRR is summarized in Table 5.2.
Both the regressor-based and regressor-free approaches are listed for
comparison. It should be noted that, in the actual implementation, the former
needs to know the regressor and its derivative, and the knowledge of the joint
acceleration as well as the time derivative of the external force.
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Table 5.2 Summary of adaptive impedance control for EDRR

Electrically driven rigid robot interacting with environment
Ds$+Cs+g, +D,v+C,v=J,"Hi-F,,
Li+Ri+K,q=u
(5.5-1), (5.5-2)

Regressor-based Regressor-free

id =H_1JZ(§x+ﬁxi’+éxV id :Hing(Fext-i—gx-{—ﬁxv

Controller -Kys+F.) +C,v-K,s)
=H 'JI[Y(X,%,v,V)p, u=f-K.e
K s+F,;] (5.5-13), (5.5-15)
u=Li, +Ri+K,q-K_e,
= IA)IT(P - K(?ei
(5.5-5), (5.5-7)
f)x =_r_lYTS WDY =—(2_DlY (ZDXVST +O—DXWDX)
Adaptive Law A _ _p-l T X ~
p; =-T; ¢e; We, =-Q¢ (Z¢ vs" +oc W)
(5.5-11) ' '

X ., ’ N
We, =-Q,, (2,5 +0, W)

Vin =-Qr'(zce] +0yWp)
(5.5-21)

Realization Issue

Need to know the regressor
matrix, the derivative of the
regressor matrix, the joint
accelerations, and the derivative

Does not need the information for
the regressor matrix, its derivative,
the joint accelerations, or the
derivative of the external force.

of the external force.

Example 5.2:

Consider the same 2-DOF planar robot in example 5.1 with the inclusion of
the actuator dynamics, and we would like to verify the controller developed in this
section by computer simulations. Actual values of link parameters are selected as
my=m,=0.5(kg), I,=6L=0.75(m), l,1=1,,=0.375(m), and I,=1,=0.0234(kg-m’).
Parameters related to the actuator dynamics are the same with those used in
chapter 4 and are given with h;=h,=10(N-m/A), L,=L,=0.025(H), r;=r,=1(L),
and ky =ky,=1(Vol/rad/sec). In order to observe the effect of the actuator
dynamics, the endpoint is required to track a 0.2m radius circle centered at
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(0.8m, 1.0m) in 2 seconds which is much faster than the case in example
5.1. The initial conditions of the generalized coordinate vector is
q(0)=10.0022 1.5019 O 01", ie., the endpoint is still at (0.8m, 0,75m)
initially. The controller gain matrices are selected as

50 O 20 0O 100 O
K, = , A= and K, = )
0 50 0 20 0 100
The initial value for the desired current can be found by calculation as

i,(0)=i(0)=[0.8 0.1]".

The matrices in the target impedance are picked as

05 O 100 O 1500 O
M[ = N Bi = and K[ = .
0 05 0 100 0 1500

The 11-term Fourier series is selected as the basis function for the
approximation so that Wy, and Wc_ are in R***, while W, and Wy are
in R***?. The initial weighting vectors for the entries are assigned to be

Wp, (0)=[005 0 -- 0 eR!™!
Wp, (0)=Wp_ (0)=[-0.05 0 --- 0]" eR"™!
W5, (0)=[0.1 0 - 0] eR!™

We, (0)=[005 0 - 0] eR'™

We  (0)=We (0)=[-0.05 0 --- 0] eR'"™
We  (0)=[0.1 0 - 0] eR'™

W, (0)=w,, (0)=[0 0 -- 07 e R

VAVf](O):VAVfZ(O)z[O o -- O]TEmHXl
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The gain matrices in the update laws are selected as
Qp. =0.11,,, Q¢ =0.11,4, Q;' =50I,, and Q;' =100001,, .

The approximation error is also assumed to be neglected, and the o-modification
parameters are all zero. The simulation results are shown in Figure 5.8 to 5.16.
Figure 5.8 shows the tracking performance of the robot endpoint and its desired
trajectory in the Cartesian space. It is observed that the endpoint trajectory
converges smoothly to the desired trajectory in the free space tracking and
contacts compliantly in the constrained motion phase. Although the initial error
is quite large, the transient state takes only about 0.2 seconds which can be
justified from the joint space tracking history in Figure 5.9. The performance in
the current tracking loop is very good as shown in Figure 5.10. The control
efforts to the two joints are reasonable that are presented in Figure 5.11. Figure
4.12 shows the time histories of the external forces. Figure 4.13 to 4.16 are the
performance of function approximation. Although most parameters do not
converge to their actual values, they still remain bounded as desired.

>
0.951 B
0.9 B
0.851 B
0.8 B
0.75F | I I I I I I I L]
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
X

Figure 5.8 Robot endpoint tracking performance in the Cartesian space
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Figure 5.9 Joint space tracking performance
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Figure 5.10 Tracking in the current tracking loop
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5.6 Conclusions

Compliant interaction between the robot and environment is very important
in the industrial applications. In this chapter, we consider the adaptive
impedance control of rigid robots where the impedance control enables the robot
to have good performance in the free space tracking phase and to behave like the
target impedance in the constrained motion phase. In Section 5.2, a regressor-
based impedance controller is derived, but the closed loop system may not
converge to the target impedance even when all parameters converge to their
actual values. In Section 5.3, an adaptive impedance control is constructed by
following the design introduced in Section 4.3. However, implementation of this
controller requires the knowledge of not only the regressor matrix and its time
derivative, but also the joint accelerations and time derivative of the external
force. Therefore, it is not feasible for practical applications. A regressor-free
adaptive impedance controller is thus designed in Section 5.4 which does not
need the availability of the additional information required in the previous
section. Finally, the actuator dynamics is considered in Section 5.5. Simulation
cases show that the robot can be operated at a much higher speed with good
performance for both the free space tracking and compliant motion control.



Chapter 6

Adaptive Control of Flexible-Joint Robots

6.1 Introduction

Most controllers for industrial robots are designed based on the rigid robot
assumption. Consideration of the joint flexibility in the controller design is one
of the approaches to increase the control performance. For a robot with n links,
we need to use 2n generalized coordinates to describe its whole dynamic
behavior when taking the joint flexibility into account. Therefore, the modeling
of the flexible joint robot is far more complex than that of the rigid robot. Since
the mathematical model is only an approximation of the real system, the
simplified representation of the system behavior will contain model inaccuracies
such as parametric uncertainties, unmodeled dynamics and external
disturbances. Because these inaccuracies may degrade the performance of the
closed-loop system, any practical design should consider their effects. The
inherent highly nonlinear coupling and model inaccuracies make the controller
design for a flexible joint robot extremely difficult. Spong (1989, 1995)
proposed one of the first adaptive controllers for flexible joint robots based on
the singular perturbation formulation of the robot dynamics. A simple composite
controller was designed such that the joint elastic forces were stabilized by a fast
feedback control and link variables were controlled by a slow control law. Ge
(1996) suggested a robust adaptive controller based on a new singular
perturbation model where the motor tracking error was modeled as the fast
variables instead of the joint elastic forces. This innovative approach leads to a
controller more robust to the case of load sensor failure, gives a new insight into
the control design problem of flexible joint robots and presents an alternative
singular perturbation model for controller design. Ott et. al. (2000) verified a
singular perturbation based adaptive controller for flexible joint robots
experimentally. The tracking quality was improved significantly by the use of
the adaptive control law compared to the non-adaptive one. Dixon et. al. (1999)
proposed an adaptive partial state feedback controller for flexible joint robots
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based on the backstepping design with the knowledge of the regression matrix.
A backstepping design based output feedback adaptive controller for flexible
joint robot was suggested in Yim (2001). Kozlowski and Sauer (1999a, 1999b)
suggested an adaptive controller to have semi-global convergence to an
arbitrarily small neighborhood of the equilibrium point in the presence of
bounded disturbances. Like other adaptive strategies, the uncertain parameters
are required to be time-invariant and capable of being collected to form a
parameter vector. Huang and Chen (2004a) proposed an adaptive backstepping-
like controller based on FAT for single-link flexible-joint robots with
mismatched uncertainties. Similar to most backstepping designs, the derivation
is too complex to robots with more joints. Chien and Huang (2006b) suggested a
FAT-based adaptive controller for general flexible-joint robots without requiring
the computation of the regressor matrix. Chien and Huang (2006a) designed an
adaptive impedance controller for the flexible-joint robots to give good
performance in both the free space tracking and compliant motion phase. Chien
and Huang (2007a) included the actuator into consideration in the design of an
adaptive controller for flexible-joint robots.

In this chapter, we would like to study the FAT-based adaptive controller
designs for n-link flexible-joint robots. The tedious computation of the regressor
matrix is avoided. This chapter is organized as following: in Section 6.2, we
consider the control of a known flexible-joint robot. Section 6.3 derives the
regressor-based adaptive controller and Section 6.4 presents regressor-free
adaptive controller. Section 6.5 considers the actuator dynamics.

6.2 Control of Known Flexible-Joint Robots

The rigid-link flexible-joint robot considered in this chapter is shown in
(3.6-1) as

D(q)q+C(q,9)q+g(q) =K(0-q) (la)

JO+BO+K@O-q) =T, (1b)

Define a transmission torque T, = K(0-q) (Spong 1987, Lin and Goldenberg
1995), then (1) can be rewritten to be

Dg+Cq+g=r, (2a)

JT, +B1, +71, =1, —ﬁ(q,Q) (2b)
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where J, =JK™', B,=BK™', and q(q,4)=JG+Bq. Since (2) is in a
cascade form connected by the torque T, a backstepping-like design procedure
can be employed by regarding T, as a control signal to (2a), and a desired
trajectory T, is designed for the convergence of q. If a proper T, can
be constructed such that T, — T,,, then we may have q — q,. Define the
tracking error € =q—q, and the error signals s =€+ Ae and v=(q, — Ae.
Equation (2a) becomes

Ds+Cs+g+Dv+Cv=r, 3)

Suppose that all parameters in the system model are available, then the desired
torque T,, can be defined as

Tld=g+DV+CV—KdS (@)
With this desired torque, (3) gives the output tracking dynamics
DS+CS+KdS:T,«_Ttd (5a)
If a control torque T, can be designed to have T, — T, , then (5a) becomes
Ds+Cs+K;s=0 (5b)
and convergence of the output error follows. To this end, we would like to
employ the model reference control (MRC) rule below. Let us consider a
reference model
Jr;tr+Br;rr+KrTrZJV%rd+Br‘ttd+Kthd (6)
where 1, €R" is the state vector, and matrices J, € R, B, € R, and
K, € R™" are selected to give proper dynamics for the convergence of T, to
T,.. Define T,;(T,4,Ty) = KZI(B T +J,T,4), and rewrite (2b) and (6) into
the state space form
x,=A,x,+B,1,-B,q (7a)

Xm = Ame +Bm(Trd +?rd) (7b)
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where Xp=[T,T I eR* and x,=[t7 71" €R*" are augmented state
0 Liscn 0 L
Vectors. Ap = -1 -1 ECJ{ZVDQ" and A, = -1 -1 ESKZ”XZH
-J. -J/'B, -J, K, -J. B,

0
are augmented system matrices, and B”Z[J—l ERIN and
t

B, :[]_?K }69{2"” are augmented input gain matrices. Let T, =C,X,
and 17, =C,X,, be respectively the output signal vector for (7a) and (7b),
where C, =C,, =[I,4, 0]€ R™2" are augmented output signal matrices. It
is noted that (A,,B,) is controllable, (A,,C,,) is observable, and the
transfer function C,,(sI-A,,)"'B,, is strictly positive real. According to the
MRC rule, the control torque T, is selected as

T, = ®X17 +q)Ttd +h(?td ’a) (8)

where @€ R and ®eR™" are matrices satisfying relations
A,+B,®=A, and B,® =B,,, respectively, and h(T,;,q) = ®T,, +q € R".
Substitute (8) into (7a) to have

szAmXp+Bm(Ttd +?td) (9)

Define €, =X, —X,, and €, =T, — 1T, be error vectors, then from (7b) and
(9) we may have the torque tracking loop dynamics

e, =A,e, (10a)
e, =C,e, (10b)

To prove stability in the output tracking loop (5a) and the torque tracking loop
(10), a Lyapunov-like function candidate is designed as

V(s,em)zésTDs+e,T,,P,em (11

where P, =P/ € R*¥?" is a positive definite matrix satisfying the Lyapunov
equation ALP, +P,A,, =—C/.C,,. Along the trajectory (5a) and (10), the time
derivative of V is computed as
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. T T S
V=—s e,]Q[ }SO (12)
eT
1
Kd __Inxn
where Q = 1 2 is positive definite by proper selection of K.
- 2 In><n In><n

Equation (12) implies uniform boundedness and square integrability of S and e .
Uniform boundedness of § and €, can also be proved easily; therefore, we may
conclude q — q, and T, =T, as t — oo by Barbalat’s lemma.

Remark 1: Dependence of h(T,;,q) in (8) implies the requirements for the
knowledge of joint accelerations or even their higher time derivatives. This
greatly restricts the application of the strategy presented here. In next section, a
regressor-based adaptive controller will be derived. However, its realization will
still be limited due to its dependence on high-order state variable feedbacks.
Finally, a regressor-free adaptive control is developed in section 6.4 to ease its
realization.

6.3 Regressor-Based Adaptive Control of Flexible-Joint Robots

Let us consider the system described in (6.2-3) and (6.2-2b) as
Ds+Cs+g+Dv+Cv=r, (1a)
JT, +B1, +1, =1, —ﬁ(q,Q) (1b)

where D, C and g are assumed to be unavailable here. Hence, (6.2-4) and
(6.2-8) are not feasible. A new version of the transmission torque is designed as

Tid =g+ﬁV+CV—KdS
=Y(q.q,v,V)p-Kys 2

The dynamics of the output tracking loop can then be obtained by plugging (2)
into (1a) as

Ds+Cs+K ;s=-Dv-Cv—-g+(1, —T4)
=-Y(q,q,v,V)p+ (T, —Ty) 3)
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Therefore, if an effective control torque T, can be designed to have T, — T4,
and a proper update law can be selected so that p— p, then (3) implies
(6.2-5b). The dynamics for the torque tracking loop is exactly the same as those
in the previous section with the control law in (6.2-8). Therefore, we may select
a Lyapunov-like function candidate

1 1
V(s,e,..p) =ESTDs+e,TnP,em +51”)Tl“f) %)

where P, =P/ € R*”*" is a positive definite matrix satisfying the Lyapunov
equation A'P, +P,A,, =—C.C,,, and T € R is positive definite. Along
the trajectory of (3) and (6.2-10), the time derivative of (4) becomes

V==s"K,ss+s"e, —ele, —p" (Tp+Y's) 5)
The update law is picked to be
p=-T"'Y"s (6)

Hence, (5) becomes exactly (6.2-12), and all stability properties are the same
there.

Remark 2: To implement the strategy designed in this section, we do not need
the knowledge of D, C and g. However, it still needs the feedback of joint
accelerations and their higher order time derivatives. In addition, computation of
the regressor matrix and its time derivatives are necessary here.

6.4 FAT-Based Adaptive Control of Flexible-Joint Robots

Let us consider the system described in (6.3-1) as
Ds+Cs+g+Dv+Cv=r, (1a)
JT, +B1, +71, =1, —ﬁ(q,Q) (1b)

where D(q), C(q,q) and g(q) are not available and their variation bounds are
not given. We would like to design a desired transmission torque T,; so that a
proper control torque T, can be constructed to have convergence in the torque
tracking loop, i.e., T, = T, . Since D(q), C(q,q) and g(q) are not available,
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the traditional adaptive control and robust control are not easy to be applied
here. In the following, we would like to use the function approximation
technique to design an adaptive controller for the rigid-link flexible-joint robot
without the knowledge of the regressor matrix. Since the adaptive control of
flexible-joint robots is much more difficult than that for its rigid-joint
counterpart, avoidance of the regressor computation in the FAT-based design
largely simplifies the implementation in the real-time environment.
The desired transmission torque T, can be designed as

T,d=§+f)V+CV—de )

where D, C and g are estimates of D(q), C(q,q) and g(q), respectively.
Substituting (2) into (1a), we may have the dynamics for the output tracking loop

Ds+Cs+K, s=-Dv-Cv-g+(1,—1y) (3)

where D=D-D, C=C-C, and g=g—¢g. If a proper controller T, and
update laws for D C and € can be designed, we may have T, = T, ,
DD, C—C and € — g so that (3) can give desired performance. Hence,
we would like to derive the dynamics for the torque tracking loop next. To this
end, the same MRC scheme used in Section 6.2 is employed here. Consider the
reference model in (6.2-6) again

Jr;tr+Bri-r+KrTr:Jr;trd+Bri-td+Kthd (4)

With the definition Ty (T,5, %) =K, (B, Ty +J,%4), we may represent (1b)
and (4) into the state space representation as

=A,x,+B,t,-B,q (5a)
Xy = Amxm +Bm (Ttd +?td) (Sb)

where X, X,,, A,, A,,, B,, and B,, are defined in Section 6.2. The pair
(A,,,B,,) is controllable, (A,,,C,,) is observable, and the transfer function
C,(sI-A,)'B,, is SPR, where C, is also defined in Section 6.2. Since
system (1) contains uncertainties, the control torque in (6.2-8) is not feasible. A
new one is constructed as

«=0x,+Pt, +h 6)
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where R is the estimate of h(T,;,q) = ®Ty +q, @ € R and ® € R
are matrices satisfying A,+B,0=A, and B,®=B, respectively.
Plugging (6) into (5a), we have the dynamics

,=A,X, +B, (1, +7,)+B,(h—h) (7

With the definition of e, =X, —-X, and €, =T, —T,, we may have the
dynamics in the torque tracking loop

é,=A,e,+B,(h-h) (82)
e, =C,e, (8b)

If we may design an appropriate update law such that h— h, then (8) implies
e,, — 0 as t — oo. To proceed further, let us apply the function approximation
representation

D=W}Z, +¢p

CZWgZC +8C
) ©)
g=W,z, +g,

h=WhTZh +8h

where Wp € R” “Boxn , We ECJ{" ﬁcx" W, e‘ﬁ"ﬁ" " and Wy, € R ar,
weighting matrlces ZD eRTIN ZoeR” CX" Zg € Rrbex! and
Zh € R"P*1 are matrices of basis functlons, and € are appr0x1mat10n error
matrices. Using the same set of basis functions, the corresponding estimates can
also be represented as

ﬁ: WgZD
é = W(Jj-ZC
o (10)
g=W,z,
ﬁ = W}?Zh

Define W(.) =W, - W(.), then the output error tracking dynamics (3) and the
torque tracking dynamics (8a) become
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Ds+Cs+K s= (1, —Ty)- WhZpv
X7 T X7 T
~WeZev-Wyz, +8 (11a)
én=A,e,—B, Wiz, +B g, (11b)

where € =¢£(£p,€c,%4,8,(4y) and €, =¢£,(g4,€,) are lumped
approximation errors. Since W, are constant vectors, their update laws can be
easily found by proper selection of the Lyapunov-like function. Let us consider
a candidate
I W W W 17 T 1 77 .
V(s.e,,Wp,Wc,W,, W) = ES Ds+e,Pe,, +5Tr(WDQDWD

+ WeQcWe + Wy QW + Wy Qu W) (12)
where P, =P/ € R*”*" is a positive definite matrix satisfying the Lyapunov
equation A!P,+PA, =—C)C,. The matrices QpeR" Poxn’fio

Qce R fexn*be Q, € R™Be and Qp € R are positive definite.
The time derivative of V along the trajectory of (11) can be computed as

V=-"K,;s+s"e, —ele, +s"¢ +e,PB ¢,
~Tr[Wh (Zpvs” +QpWp)+ W& (Zcvs" +QcWe)l

~Tr{ W, (28" +Q,W,)+ Wy (z,el,P,B, + Q,W,)] (13)

If we design B,, =B, such that e/ PB p= el and select the update laws as

WD =-Qp (Zpvs” +opWp) (14a)
VLVC =-Q¢ (Zevs' +0cWe) (14b)
Wg =-Q,'(zgs" +0,W,) (14c)

Wi, =-Qy;' (zper +0, W) (14d)
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where O, are positive constants, then (13) becomes

V=—[s" eZ]Q[S}L[sT el] Fl}mnmwgwn)

T €

+0cTr(WEWE) + 0, Tr(W, Wy) + 0, Tr(Wy Wy,) (15)

1
Kd _Elnxn
where Q = is positive definite due to the selection of

__Inxn In><n

gain matrix K.

Remark 3: If the number of basis functions are chosen to be sufficiently large
such that €, =0 and €, =0, then (15) becomes

V=—s" eZ]Q{ 5 }so

Therefore it implies that that €, and S are uniformly bounded and square
integrable. Furthermore, €, and $ can be shown to be uniformly bounded; as a
result, asymptotic convergence of e, and S can easily be concluded by
Barbalat’s lemma. This further implies that T—7T; and q > q, as f —> oo
even though D, C, g and h are all unknown.

Remark 4: Suppose € and €, cannot be ignored but their variation bounds are
available i.e. there exists positive constants 0;,0, >0 such that ”81” <0, and
||£2||S52. To cover the effect of these bounded approximation errors, the
desired transmission torque (2) and actuator input (6) are modified to be

T = Dv+Cyv +g_KdS + T obust1
T, = @Xp + (I)Ttd +h+ T robust 2
where T,,pusr1 and T,opu52 are robust terms to be designed. Let us consider the

Lyapunov-like function candidate (12) and update laws (14) without the
o-modification terms again. The time derivative of V can be computed as
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I o T T S T
T
By picking T ,opus1 = —02[sgn(s;) -+ sgn(s, )]T, where s;, i=1,...,n is the
i-th element of the vector S, and T,pps 2 =—O2[sgn(e;) -+ sgn(e,,, NE
where e, , i=1,...,2n is the i-th element of the vector e€,, we may have
V <0 and asymptotic convergence of the state error can be concluded by
Barbalat’s lemma.

Owing to the existence of € and €, in (15), the definiteness of V cannot
be determined. By using the inequalities similar to those in (4.6-31), we may

D 0
define A =

- and rewrite (15) into
0 2C,pPcC,

M
+—_—
€ 2/lmmn(Q)
1 .~

+5{[Mmax (QD)_O-D]Tr(wlng)'f_[OM'max(QC)

0 ITr(WEWE) + [0y (Qg) — 0, ITr (W, W)

2 2

V <-aV+ %[aﬂmax (A) - ﬂ'min (Q)]‘

-]

O 1
HAmax (Qn) _O'h]T”(WhTWh)} +5[0'DT”(W1§WD)

+0Tr(WEWe) +0,Tr(We Wy) + 0w Tr(Wy W)l (16)

where (¢is a constant selected to satisfy

aSmin{/lmjn(Q), Op , Oc , Oy ’ On }
ﬂ’max(A) ﬂ’max(QD) j’max(QC) ﬂmax(Qg) ﬂmax(Qh)

so that we have

2

1
+E[O-DTr(WI§WD)

V<-aVv+

1 [sl }
2ﬂ'min (Q) 82
+0cTr(WEWe) + 0, Tr(W, W) + oy Tr(Wy W)l A7)
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Therefore, V <0 whenever

2

1
+_[0'DTr(WIJ)-WD)
20

1 [81(7):|
V>————sup
20010 (Q) 721, || €2(7)

+0Tr(WEWe) + 0, Tr(Wy W) + o Tr(Wy Wy)] (18)

This verifies that s, e, , WD R WC s Wg, and Wh are uniformly ultimately
bounded. Differential inequality (17) can be solved to have the upper bound for

V(?) as
1 {81(7)}
———— sup
ZMMH(Q) to <7<t 82(7)

2
V() <e “UTV (1) +

1
+2—[aDTr(W,§ Wp) +0cTr(WEWe)

o
+0,Tr(Wy Wy) + 0 Tr(Wy Wy)] (19)

N

2

1
From (12), we may estimate the lower bound for V as V > E/Imm (A)

{s}< 2V (1)
e |\ Auin(A)

Together with (19), we may have the bound for the error signals as

M o]
e, £,(7)

which gives the expression

2V(ty) ~5u-n) 1
—e + sup
Amin (A) O in (A) Ayin (Q) t0<2t

1 T T
+——[0pTr(WpWp)+0cTr(WcWe)
aﬂmin (A)
1

+0,Tr(Wy W) + 0 Tr(Wy Wy)]?

Therefore, the bound is a weighted exponential function shifted with a constant.
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Remark 5: To implement the desired transmission torque (2), actuator input (6)
and update law (14), we do not need the regressor matrix, the knowledge of joint
accelerations, or their derivatives. Therefore, it is feasible for realization.

Table 6.1 summarizes the adaptive control laws derived in this section
based on their controller forms, update laws and implementation issues.

Table 6.1 Summary of the adaptive control for FJR

Flexible-Joint Robot
Ds"+Cs+-g+Dv+Cv =_‘rt ) 6.3-1)
Ji +B, +1,=7,-9(q,9)
Regressor-based Regressor-free
Tld=g+l’\)‘.’+év—KdS T,d=§+IA)V+éV—de
Controller =Y(q,q,v,v)p—-K s T,=0x,+®1, + h
T, = Ox P + (I)Tta’ + h(?td ’a) (64‘2)7 (64'6)
(6.3-2), (6.2-8)
Wp =-Qp (Zpvs” +0pWp)
Adaptive Law h=_1'y7T A _ A
p=-T"¥'s We =-Qc (Zevs" +0cWe)
(6.3-6) N R
W, =-Q;'(z,s" +0,W,)
Wi =—Qu' (zner +0,Wy)
(6.4-14)
Realization Need information of joint Does not need joint accelerations.
Issue accelerations and their higher Does not need to compute the
derivatives. Need to compute regressor matrix.
the regressor matrix and its time
derivatives.
Example 6.1:

Consider the flexible-joint robot in (3.6-3), and we are going to verify the
regressor-free adaptive control strategy developed in this section by computer
simulations. Actual values of link parameters are selected as m;=m,=0.5(kg),
1L,=5=0.75(m), I.,=1.,=0.375(m), I,=1,=0.0234(kg-m"), and k,;=k,=100(N-m/rad).
Parameters for the actuator part are chosen as j1=0.02(kg-m?), j,=0.01(kg-m>),
b=5(N-m-sec/rad), and b,=4(N-m-sec/rad)(Chien and Huang 2007a). We
would like the endpoint to track a 0.2m radius circle centered at (0.8m, 1.0m) in
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10 seconds without knowing its precise model. The initial condition for the
generalized coordinate is at q(0) =0(0) =[0.0022 1.5019 0 01", ie., the
endpoint is initially at (0.8m, 0,75m). It is away form the desired initial endpoint
position (0.8m, 0,8m) for observation of the transient. The initial state for the
reference model is T,(0)=[1.8 —2.8 0 0]", which is the same as the
initial state for the desired torque. The controller in (6) is applied with the gain

matrices
50 50
K, = ,and A = )
0 5 0 5

The 11-term Fourier series is selected as the basis function for the
approximation. Therefore, Wy and W¢ are in R while W, and W), are
in R*¥*?. The initial weighting vectors for the entries are assigned to be

Wp, (0)=[0.05 0 - 0" e R
Wp,(0)=Wp, (0)=[-0.05 0 -- 017 e R
Wp,(0)=[0.1 0 - 0] eR'™
W, (0)=[0.05 0 --- 0]" eR'™
We, (0)=We, (0)=[-005 0 - 0]" € glix!
We,(0)=[0.1 O -- 0 e R
W, (0)=W,(0)=[0 0 - 0]"eR"™
W, (0)=W, (0)=[0 0 - 0] eR'™

The gain matrices in the update law (14) are selected as

Qp =2, Qc' =2Ly. Q;' =10I,, and Q;' =100001,,

The approximation error is assumed to be neglected in this simulation, and the
o-modification parameters are chosen as 0, = 0.
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The simulation results are shown in Figure 6.1 to 6.8. Figure 6.1 shows the
tracking performance of the robot endpoint and its desired trajectory in the
Cartesian space. It is observed that the endpoint trajectory converges nicely to
the desired trajectory, although the initial position error is quite large. After the
transient state, the tracking error is small regardless of the time-varying
uncertainties in D, C and g. Computation of the complex regressor is avoided in
this strategy which greatly simplifies the design and implementation of the
control law. Figure 6.2 presents the time history of the joint space tracking
performance. The transient states converge very fast and the tracking errors are
small. The control efforts to the two joints are reasonable that can be verified in
Figure 6.3. The control torque for both joints can be seen in Figure 6.4.
Figure 6.5 to 6.8 are the performance of function approximation. Although most
parameters do not converge to their actual values, they still remain bounded as
desired.
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Figure 6.1 Tracking performance in the Cartesian space
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Figure 6.2 Joint space tracking performance. It can be seen that the transient is fast,
and the tracking error is very small
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Figure 6.3 Torque tracking performance. It can be seen that the torque errors for
both joints are small
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Figure 6.8 Approximation of h

6.5 Consideration of Actuator Dynamics

According to (6.4-1) and (3.8-1), the dynamics of a rigid-link flexible-joint
electrically-driven robot can be described by

Ds+Cs+g+Dv+Cv=r, (1a)
Ji +B1, +1, =Hi-q(q,4) (1b)
Li+Ri+K,q=u (1c)

This system is in a cascade form with the configuration shown in Figure 6.9.

u i T S
—»| Equation (lc) Equation (1b) |t Equation (la) [—p

v

Figure 6.9 Cascade structure in equation (1)
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Therefore, the backstepping-like procedure can be applied here. The concept is
to design a desired torque trajectory T, first for convergence of S in (la). A
desired current trajectory iz can then be found to ensure T, — T,; in (1b).
Finally, the control effort u is constructed to have convergence of i to i,.

Assuming that all parameters in (1) are known, then the desired torque can
be designed as

T,=g+Dv+Cv-K s 2)
Therefore, the dynamics for output error tracking is found to be
Ds+CS+KdS:T,—Trd 3)

To ensure torque tracking in (1b), the MRC rule is applied with the reference
model

Jr;tr+Br‘i:r+KrTr=Jr;ttd+Br‘i’-td+Kthd (4)

where T, €R" is the state vector of the reference model, and J, € R"",
B, e R, and K, € R™" are selected to give convergence of T, to T.
With the definition of Ty (Ty,%w) =K, (B, 1,y +J,%4), we may rewrite
(1b) and (4) into the state space representation

x,=A,x,+B Hi-B,q (5a)

Xm = Amxm +Bm(Tz‘d +?rd) (Sb)

where X, =[t7 #71"eR? and x,,=[t] 171" €eR?" are augmented state

0 I”Xﬂ 2 2 0 I”Xﬂ 2 2

vectors. A, =| L |[ERTand A=l L |ERT
_Jt _Jt Bt —Jr K, —J, Br

0

-1
t

} eR¥™"  and

are augmented system matrices, and B, ={

J'K,
and 1, =C,X,, be respectively the output signal vector for (5a) and (5b),

where C, =C,, =[I,x, 0] R™*" are augmented output signal matrices.
The pair (A,,,B,,) is controllable, (A,,,C,,) is observable, and the transfer

0
B, ={ € R¥™™" are augmented input gain matrices. Let T, = C X,
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function C,,(sI—A,,)"'B,, is SPR. According to the MRC design, the desired
current i, is selected as

id = H71[®Xp + (I)Trd +h(?1‘daa)] (6)

where @ and @ are matrices satisfying A, +B,0=A, and B,®=8B,,,
respectively, and h is defined as h(7,,,q) = ®T,, + . Using (6) and (5a), we
may obtain

szAmXp‘f‘Bm(Td +?,«d)+BpH(i_id) (7)

With the definition e, =X, —X,, and €, =T, —T,, the dynamics for the
torque tracking loop becomes

e,=A,e,+B HGi-i,) (8a)
e, =C,e, (8b)

In order to ensure T, — T,; and i — i, the control law in (1¢) is designed as
u=Li, +Ri+K,q-K_e 9)

where €; =i—i, is the current error vector, and K, is a positive definite
matrix. Plugging, (9) into (lc), we may have the dynamics for the current
tracking loop

Lé,~+KCe,~ =O (10)

At this stage, we have the output error dynamics in (3), the dynamics of the
torque tracking loop in (8) and the dynamics of the current tracking loop in (10).
We have to ensure that all of these dynamics be stable. To this end, let us
consider a Lyapunov-like function candidate

1 1
V(s,em,ei)zgsTDs+e,TnP,em +Ee,~TLe,~ (11

where P, = P,T eR™ is a positive definite matrix satisfying the Lyapunov
equation AP +PA, =-C'C,,. Along the trajectories of (3), (8) and (10),
the time derivative of V can be computed as
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. 1 .
V=-s"K,s +EST (D-2C)s+s’e,
T T T
—-ece; +e¢,PB He, —¢ K. e, (12)

Selecting B,, =B, and according to the Kalman-Yakubovic lemma, equation
(12) becomes

S
Vv=—s" e el1Q|e, <0 (13)
€;
Kd 21n><n 0
1 . . .
where Q = —EIM" 1. _EH is positive definite due to proper
1
0 _EH K.

selection of K, and K.. Therefore, we have proved that s, e, and e; are
uniformly bounded, and their square integrability can also be proved from (13).
Furthermore, uniformly boundedness of §, €,, and €; are also easy to be
proved, and hence, q — (4, T; — T;s,and i — i, follow by Barbalat’s lemma.

Remark 6: To implement the control strategy, all system parameters are
required to be available, and we need to feedback ¢ and its higher order
derivatives. Therefore, the design introduced in this section is not feasible for
practical applications.

6.5.1 Regressor-based adaptive controller design

Consider the system in (1) again, but D, C, g, L, R and K, are
unavailable. The desired torque trajectory in (2) is not feasible, and we modify
it as

Ty =§+ﬁV+év—de
= Y(qu’ Vy‘.’)ﬁ_de (14)
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where ﬁ, C and g are estimates of D, C, and g, respectively. Plugging (14)
into (la), and we may obtain the error dynamics for the output tracking loop

Ds+Cs+K s=-Dv-Cv-g+(1, —Ty)

Z_Y(q’q’ V’ V)ﬁ"’(‘rr _Tl‘d) (15)
where D=D-D, C=C-C, g=g—¢g, and p=p—p . Therefore, if we
may find a control law to drive T, — T,; and an update law to have p — p,
then (15) implies convergence of the output error. To this end, we would like to
use the MRC rule with the reference model in (4) and the state space
representation in (5). The desired current trajectory is designed as the one in (6)

to have the dynamics for the torque tracking loop as in (8). Instead of the
controller in (9), we use

u= I:id +lii+IA(bq—Kce,«
=plo—-K.e (16)

where @ =[i5 i’ q"1 eR*, p,=[L7 RT KI)" eR>™", and we
may have the dynamics for the current tracking loop as

Lé, +K.e,=—plo (17)

where P; =p; —P;. To prove stability, we select the Lyapunov-like function
candidate
- . 1
V(s,e,.e,p,p;)= E(STDS +2e,Pe, +e/ Le,

+p'Tp)+Tr(p; Tp;) (18)

where P, =P/ € R¥*" is positive definite satisfying the Lyapunov equation
AP, +PA, =-ClC,,. Taking time derivative of (18) along the trajectories
of (8), (15) and (17), we have

V=-s"K,s+s'e, —ele, +e,PB He, —¢ K_e

—p"(Cp+Y's)~Trp! (TP, + pel)] (19)



186 Chapter 6 Adaptive Control of Flexible-Joint Robots

Pick B,, =B, to have e/.PB p= e’ then the update law can be selected to be
p=-T"'Y"s (20a)
p;=-T'pe] (20b)

Thus, (19) becomes (13); therefore, we have proved that S, €, and e; are
uniformly bounded, and their square integrability can also be proved from (13).
Furthermore, uniformly boundedness of §, €,, and €; are also easy to be
proved, and hence, q — q,, T; — T, and i — i, follow by Barbalat’s lemma.

Remark 7: To implement the controller strategy, we do not need to have the
knowledge of most system parameters, but we have to feedback q and calculate
the regressor matrix and their higher order derivatives. Therefore, the design
introduced in this section is not feasible for practical applications, either.

6.5.2 Regressor-free adaptive controller design

Consider the system in (1) again, but D, C, g, L, R and K, are
unavailable. The desired torque trajectory in (2) is modified as

r,d=g+ﬁv+év—de (21)

The dynamics for the output tracking loop can thus be written as
Ds+Cs+K, s=-Dv-Cv-g+(1,—1y) (22)
Therefore, if we may find a control law to drive T, — T,;, and update laws to
have D—>D, C—C, and §— g, then (22) implies convergence of the
output error. To this end, we would like to use the MRC rule with the reference

model in (4) and the state space representation in (5). The desired current
trajectory is designed according to (6) to be

i,=H'[Ox, +®T,, +h] (23)

where h is an estimate of h(T,;,q) = ®T,; +q. Consequently, the dynamics
for the torque tracking loop becomes
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e, =A,e,+B,Hi-i,)+B,(h—h) (242)
e, =C,e, (24b)

Hence, if we may design a control law to ensure i — i, and an update law to
have h — h, then we may have convergence of the torque tracking loop. The
control strategy can be constructed as

u=f’—KCe,~ (25)

where e; =i—1i, is the current error, K, is a positive definite matrix and f is
an estimate of f(i,,i,q)=Li, + Ri+ K ,q. With this control law, the dynamics
for the current tracking loop can be found as

Lé, +K.e;, =f—f (26)

If we may select a proper update law to have f— f, (26) ensures convergence
in the current tracking loop. Since D(q), C(q,q)., g(q), h(7,,q) and
f(i, ,i,q) are time-varying functions and their variation bounds are not given,
we would like to use their function approximation representations as

D=WpZ,+¢p (27a)
C=W{Z¢+ec (27b)
g=W/z,+¢g, (27¢)
h=W/z, +¢, (27d)
f=W/z; +¢g (27¢)

where Wy e R Poxn , We e R Aexn . W, e R W, € R">" " and
W; € RPN are weighting matrices for D, C, g, h, and f, respectively, while
Zp R Z e R P, Z, € RrP g e RPN and z; e R
are basis function matrices. Likewise, we have the representations for the
estimates as

D=W.Z, (27f)

C=W(Zc (27g)
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g=W,z, (27h)
h=W/z, (27i)
f=Wz 27j)

Thus the output error dynamics (22), torque tracking error dynamics (24a), and
current tracking error dynamics (26) can be rewritten as

D$+Cs+ K s=(1,—T,4) - WpZpV—WEZev-Wiz, +g,  (28a)
é,=A,e,—B, Wiz, +B He, +B ¢, (28b)

Le, + K e; = —Wszf + &3 (28¢)

where € =¢€;(€p,€c,€4,5,q4), € =£3(€4.€,), and &; =2£5(g;,€;) are

lumped approximation error vectors. Define the Lyapunov-like function
candidate as

V(s,em,e[,WD,WC,Wg,Wh,Wf)=%STDs+e,T,,P,em
€L+ TR QoW + WEQCWe
+V~VgT QgWg + Wi Qu Wi, + WY QWi) (29)
where matrices Qp € R" PP Qe R b Q, € RPexnbe

Q, R and Qp € R™"Fr are positive definite. Along the trajectory
of (28), we may compute the time derivative of V as

V=-=s"K;s+s"e,—ele, + ef,,P,BpHei —e/K.e, +s'¢g
T T =T T B
+e,PB &, +te; &5 —Tr[Wp (Zpvs' +QpWp)
+WE(Zevs" +QcWe)l-Tr W, (z,8" +Q,W,)

+Wy (zpen P B, + QW) 1-Tr{W{ (z;e] +Q;W;)l  (30)
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If we select B,, =B, so that e,T,,P,B,, =e!, andif we pick the update laws as

WD = —QBI(ZDVST +O.DWD) (3121)
WC = _QEI(ZCvST +O—CWC) (31b)
W, =-Q;'(z,8" +,W,) (le)
Wi = Qi (24l + 0, Wy) (31d)
Wf =-Qy'(zse] +0yWy) (31e)
then (30) becomes
S €
V=—1s" el e/ 1Q|e. |+[s' er e/]|e;
€; &3
+0pIr(Wh Wp) + 0 cTr(WEW) + 0, Tr(W, Wy)
+ oW Tr (Wi Wy) + o Tr(W{ Wy ) 32)
_ | -
Kd _Elnxn 0
1 1 . . .
where Q = —EIM L., ——H | is positive definite due to proper
1
0 —-—H K.
L 2 i

selection of gain matrices K, and K...

Remark 8: Realization of the control law (25) and update laws (31) does not
need the information of joint accelerations, regressor matrix, or their higher
order derivatives, which largely simplified its implementation.

Remark 9: Suppose a sufficient number of basis functions are used and the
approximation error can be ignored, then it is not necessary to include the
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o-modification terms in (31). Hence, (32) can be reduced to (13), and
convergence of S, €;and e; can be further proved by Barbalat’s lemma.

Remark 10: If the approximation error cannot be ignored, but we can find
positive numbers &, & and s such that ||8,|| <0;, i=1,2,3, then robust terms
Trobust 1> Trobusr2 and Tropus3 can be included into (21), (23) and (25) to have

T =g+D"7+CV_K¢]S+Tmbustl

. -1 h
1, = H [®Xp +(I)Ttd +h+Tmbust2]

u= f — Kcei + T robust 3

Consider the Lyapunov-like function candidate (29) again, and the update law
(31) without o=modification; then the time derivative of V becomes

S
V=—s" el e/1Q|e, [+ s|+3]le.]+3s e
€;

T T T
ts' T robust 1 +e 7 Trobust 2 + €; Trobust3

If we select T,opus =—0i[sgn(s;) sgn(sy) --- sgn(s,)]” where s,
i=1,...,n is the i-th entry in S, T,,pg2 =—02[sgn(e;) -+ sgn(e,,, )"
where ez, j=1,...,n is the  j-th entry in e, and
Trobuss = —O3sgn(e; ) -+ sgn(e; )]" where e, , k=1,...,n is the k-th

element in e;, then we may have (13) again. This will further give convergence

of the output error by Barbalat’s lemma.
Owing to the existence of the approximation errors, the definiteness of V
cannot be determined. By considering the inequality

2
S
1 1 Y .
V< Eﬂmax (A) € +5[/1max (QD)Tr(W];WD) +/1max (QC)TF(WCTWC)
€;

+ Amax Q)T (W W) + A (Qu)TF(Wi Wi) + A (Qe)Tr (W Wi)]
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D 0 0
where A= 0 2C!P,C,, 0 |, we may rewrite (32) as
0 0 L
2 2
1 ° T
V <=0V +—=[0Ama (A) = Ain e, +—|ll &
2[ (A) = Amin (Q)] 7l &
i €3

2 ([ @ Q)= O TH W W) + [ (Qe) = G THWEWe)
H Wi (Qg) = T ITr(Wy W) + [0 (Qn) — 0 ITr(Wy Wi,)
HW Q) = LT W W+ [0 Tr(WE Wo) + 0 TH(WEWe)
+0,Tr(W, W)+ o Tr(Wy Wy) + o Tr(W{ Wy )]

where (¢is selected to satisfy

0{<min{/1min(Q) Op Oc Og On Oy }
B ﬂmax (A) , ﬂmax (QD) , ﬂmax (QC) , ﬂmax (Qg) , ﬂmax (Qh) ’ /1max (Qf)
such that we may further have

2
€

1
€ +5[O-DTF(W]§WD)

€3

+0ocTr(WeWe) + 0, Tr(W, Wy)

+0,Tr(Wi Wy) + o, Tr(Wi Wp)] (33)

V<—aV+

1
24 (Q)

Therefore, we have proved that V <0 whenever

e’

1
> migg £,(7) +£[0'DTF(WI€WD)
£3(7)

+0 Tr(WEWe) + 0, Tr(We W) + 0w Tr(Wy Wy) + 0 Tr(W{ Wy )]
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ie., S, e,, e;, WD, WC, Wg, Wh, and Wf are uniformly ultimately
bounded. In addition, (33) implies

| £(7)

—a(t—ty)
V(t)<e V(ty)+ —20{/1mm @ tos(urpit €,(7)
£3(7)

+2i[aDTr(W$ Wp) + 0 cTr(WEWe)
104

+0 Tr(Wy Wy) + 0w Tr(Wy Wy) + 0 Tr(Wy Wy)] (34)

Together with the inequality

2

S
1 1 o .~
VZEﬂmm(A) e, +5[/1min(QD)Tr(W$WD)+ﬂmm(Qc)Ti’(WcTWc)
€;

+ Anin (Q)TT(Wy W)+ Auyin (Qu)Tr (Wit W) + A (Q)Tr (WY Wy)]

we may find the error bound

S 5 o ! (1)
e, I f/lmv—(t;)ez(rm)+ A sup ||| €2(7)
e in( ) \/a min( ) ‘min (Q) fo <7<t 83(7)

[opTr(WpWp) +0cTr(WEWe)

I S
‘\/ aﬂmin (A)

1

+0,Tr(Wy W) + o Tr(Wy W) + o Tr(Wf{ Wy)]?

Table 6.2 summarizes the adaptive control for EDFJR derived in
this chapter in terms of the controller forms, update laws and implementation
issues.
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Table 6.2 Summary of the adaptive control for EDFJR

Electrically driven flexible-joint robots
Ds+Cs+g+Dv+Cv=r1,

JAi, +B.1,+1,=Hi—-q(q.q) (6.5-1)
Li+Ri+K,g=u
Regressor-based Regressor-free
1,=8+Dv+Cv-K,s 1, =8+DV+Cv-K,s
Controller =Y(q.q,v,V)p-K s i, =H[Ox, + D, + fi]
i,=H'[Ox, + D1, +h(T,,q)] u=f-K.e
u=Li, +Ri+K,q-K_e; (6.5-21), (6.5-23),

(6.5-25)
= f)zT(P - Kcei
(6.5-14), (6.5-6), (6.5-16)

VAVD =—Qp (Zpvs" + O'DWD)

Adaptive f) =-r'Y’s N . , R

Law . WC = _QC (chs + O'ch)
p;=-T i_l(PeiT x o - <

(6.5-20) W, =-Q; (2,8 +0,Wy)

Wi =-Qy' (zye] + 0, Wy)

W =-Qi'(zce] +0¢Wp)

(6.5-31)

Realization Need to know the regressor matrix, Does not need the information for

Issue joint accelerations and their higher the regressor matrix, joint
derivatives. accelerations, or their derivatives.

Example 6.2:

Consider the flexible-joint robot in example 6.1 but with consideration of the
motor dynamics. Actual values of link parameters are selected as m;=m,=0.5(kg),
1,=0,=0.75(m), I,4=1,,=0.375(m), I,=1,=0.0234(kg-m"), and ky=k,=100(N-m/rad).
Parameters for the actuator part are chosen as j1=0.02(kg-m2), j2=0.01(kg-m2),
b1=5(N-m-sec/rad), b,=4(N-m-sec/rad), and hy=h,=10(N-m/A). Electrical
parameter for the actuator are L;=L,=0.025(H), ri=r=1(Q), ky=kyn=1
(Vol/rad/sec) (Chien and Huang 2007a). In order to observe the effect of the
actuator dynamics, the endpoint is required to track a 0.2m radius circle centered
at (0.8m, 1.0m) in 2 seconds which is much faster than the case in example 6.1.
The initial condition for the generalized coordinate vector is at

q(0)=0(0)=[0.0022 1.5019 0 01", ie., the endpoint is initially at
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(0.8m, 0,75m). It is away from the desired initial endpoint position (0.8m, 0,8m)
for observation of the transient. The initial state for the reference model is
7,(0)=[15.5 —33.6 0 0]", which is the same as the initial state for the
desired torque. The controller gain matrices are selected as

20 0 10 0O 50 0
K, = , A= ,and K, = )
0 20 0 10 0 50
The initial value for the desired current can be found by calculation as

i(0)=[77.5 -83.9]".

The 11-term Founer serles is selected as the basis function for the appr0x1mat10n
Therefore, WD and WC are in R**?, while W Wh , and Wf are in
R*2. The initial weighting vectors for the entries are assigned to be

Wp, (0)=[0.05 0 - 0]" eR"™
Wp, (0)=wp, (0)=[-0.05 0 -- 017 e R
Wp, (0)=[0.1 O -- o eR'™

W, (0)=[0.05 0 --- 0]" eR'™
We,(0)=wc, (0)=[-0.05 0 --- 0" e R
We,(0)=[0.1 0 -- 0" e R

W, (0)=w,(0)=[0 0 - 07 e R

W, (0)=W, (0)=[0 0 - 0] eR'™

w,(0)=w,(0)=[0 0 --- O]TGCJ{“XI

The gain matrices in the update law (31) are selected as Q[)l =0.114,
Q¢ =0.1I,, Q,'=50I,, Q;' =1000I, and Q;'=10000I,,. The
approximation error is assumed to be neglected in this simulation, and the
o-modification parameters are chosen as o, =0.



6.5 Consideration of Actuator Dynamics 195

The simulation results are shown in Figure 6.10 to 6.19. Figure 6.10 shows
the tracking performance of the robot endpoint and its desired trajectory in the
Cartesian space. It is observed that the endpoint trajectory converges nicely to
the desired trajectory, although the initial position error is quite large. After the
transient state, the tracking error is small regardless of the time-varying
uncertainties in D, C, g, h, and f. Computation of the complex regressor is
avoided in this strategy which greatly simplifies the design and implementation
of the control law. Figure 6.11 presents the time history of the joint space
tracking performance. The torque tracking performance is shown in Figure 6.12.
It can be seen that the torque errors for both joints are small. Figure 6.13
presents the current tracking performance. It is observed that the strategy can
give very small current error. The control voltages to the two motors are
reasonable that can be verified in Figure 6.14. Figure 6.15 to 6.19 are the
performance of function approximation. Although most parameters do not
converge to their actual values, they still remain bounded as desired.

Figure 6.10 Robot endpoint tracking performance in the Cartesian space. After some
transient, the endpoint converges to the desired trajectory nicely regardless of the
uncertainties in the robot model
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Figure 6.11 Joint space tracking performance. It can be seen that the transient is fast,
and the tracking error is very small
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Figure 6.12 Torque tracking performance. It can be seen that the torque errors for
both joints are small
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Figure 6.13 Current tracking performance. It can be seen that the current errors for
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Figure 6.14 The control voltages for both joints are reasonable
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Figure 6.16 Approximation of C
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6.6 Conclusions

Adaptive controllers for flexible-joint robots in the free space are derived in
this chapter. The MRC rule is utilized in Section 6.2 for the control of a known
FJR. In Section 6.3, a regressor based adaptive controller is derived. However,
its implementation requires the knowledge of joint accelerations, the regressor
matrix, and their higher order derivatives. Therefore, the control strategy is not
practical. The regressor-free adaptive controller based on FAT is designed in
Section 6.4 whose realization do not need the joint accelerations, the regressor
matrix, or their higher order derivatives. The actuator dynamics is considered in
Section 6.5. A regreesor-based adaptive controller is developed for EDFJR in
Section 6.5.1. However, its realization still needs the joint accelerations,
regressor matrix, and their derivatives. A regreesor-free adaptive controller for
EDFIR is then introduced in Section 6.5.2 and it is free from the information for
joint accelerations or the regressor matrix.



Chapter 7

Adaptive Impedance Control of
Flexible-Joint Robots

7.1 Introduction

Many practical operations of industrial robots such as grinding and
assembling involve contact problems between the end-effector and the
environment. To control the robot to interact compliantly with the environment,
several approaches have been proposed. Two major strategies are hybrid control
presented by Raibert and Craig (1981), and impedance control proposed by
Hogan (1985). These two approaches are based on the same assumption that the
robot is constructed with rigid links and joints. However, a lot of industrial robot
manipulators are designed with harmonic drives to gain high torque with
reduced motor speed. To achieve better output performance, the joint flexibility
due to the harmonic drives should be carefully considered.

Using the singular perturbation formulation and the concept of integral
manifold, Spong (1989) derived a control approach for force/impedance control
of flexible-joint robot. Jankowski and ElMaraghy (1991) proposed a nonlinear
decoupling and linearizing feedback control based on inverse dynamics. Ahmad
(1993) addressed the problem of hybrid force/position control utilizing the
constraint formulation developed by Yoshikawa (1986). Based on the solution
of the acceleration level inverse dynamic equations, Ider (2000) presented a
hybrid force and motion trajectory tracking control law. Ott et. al. (2003)
proposed an impedance controller based on an internal torque controller in a
cascade structure. Schaffer et. al. (2003) implemented the impedance controllers
based on three different kinds of nullspace projections for the realization of
nullspace stiffness.

Since the mathematical model is only an approximation of the real system,
the simplified representation of the system behavior will contain model
inaccuracies such as parametric uncertainties, and unmodeled dynamics.
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Because these inaccuracies may degrade the performance of the closed-loop
system, any practical design should consider their effects. Lian et. al. (1991)
presented an adaptive force tracking control scheme for a single-link mechanism
with flexible joint based on a two-stage controller. Lin and Goldenberg (1995,
1996, 1997) proposed a combined adaptive and robust control approach to
control the motion, internal force, contact force and joint torque simultaneously.
Colbaugh et. al. (1997) presented two adaptive schemes for flexible-joint robots
based on impedance control and position/force control. In addition, it was shown
that the schemes ensure semiglobal uniform boundedness of all signals, and that
the ultimate size of the system errors can be made arbitrarily small. Hu and
Vukovich (2001) developed a position and force control scheme for flexible-
joint robots based on the concept of the integral manifold. However, most of the
adaptive constrained motion control approaches need the information of time
derivative of the external force which is rarely available precisely in practical
applications. Therefore, an adaptive compliant control strategy for flexible joint
robot without requiring the time rate of the force feedback is imperative.
Moreover, in most adaptive control strategies for robot manipulators, the
uncertainties should be linearly parameterizable into the regressor form. It is
well-known that derivation of the regressor matrix of a high DOF rigid robot is
generally tedious. For the flexible-joint robot, its dynamics is much more
complex than that of its rigid-joint counterpart. Hence, the computation of the
regressor matrix becomes extremely difficult. Chien and Huang (2006a)
proposed a regressor-free adaptive controller for the impedance control of a
flexible-joint robot. In this chapter, we would like to consider the impedance
control problem for a flexible-joint robot. In Section 7.2, an impedance
controller is designed for a known flexible-joint robot. A regressor-based
adaptive impedance controller for a flexible-joint robot is derived in Section 7.3.
In Section 7.4, a regressor-free impedance controller is constructed with
consideration of the joint flexibility. Finally, in Section 7.5, the actuator
dynamics is include in the system equation of a flexible-joint robot, resulting in
the most complex case in this book.

7.2 Impedance Control of Known Flexible-Joint Robots

The dynamics of an n-link flexible-joint robot interacting with the
environment is described in (3.7-1) which can be transformed in the form below
by using the same technique in (6.2-2)
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DXX+CXX+gX = J;T‘rr _Fext (13)
Ji, +B1, +1, =1, _Q(qaq) (1b)

where xe R", J, =JK', B, =BK™, q(q,4) =J§+Bq and 7, =K(0-q).
Suppose all system parameters are known and a controller is to be designed so
that the closed-loop system behaves like the target impedance

M;(X-X,)+B;(x-X,) +K;(x-x;) = -F,, 2

where x, € R" is the desired trajectory, and M; € R, B, € R"", and
K, € R™" are diagonal matrices representing the desired apparent inertia,
damping, and stiffness, respectively. The strategy is to regard the impedance
controller as a model reference controller, and the target impedance in (2) plays
the role of the reference model. Instead of direct utilization of (2), we consider
the new target impedance

M;(%; -%,)+B;(X; - %) +K;(x; - x;) =-F,, (3
where X; € R" is the state vector of (3). If we can design a controller such that
X converges asymptotically to X; then the two target impedances are equivalent.

Define e=x—X;, s=€+ Ae, and v =X; — Ae, then we may rewrite (1a)
into

Ds+Cs+g. +D.v+C,v=J."1,-F,, “)

We would like to regard T, as the control torque to drive the system in (4) so
that the output tracking error will converge. This can be done by considering the
desired torque trajectory

Tid :Jg(Fext+gx+va+va_de) (5)
Plugging (5) into (4), we have the dynamics for the output tracking error

Ds$+Cs+Kys=J."(1,—1y) (6)

Therefore, if we may construct a proper controller T, in (1b) to have T, — 7,4,
then (6) implies convergence of X to X;. This further implies convergence of the
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closed-loop system dynamics to the target impedance. To this end, we are going
to employ the MRC rule with the reference model

Jr;l:-r +Br‘if-r +KrTr =Jr;ttd +Br‘i’-td +Kthd (7)

where T, €R" is the state vector of the reference model. Matrices J, € R"",
B, e R, and K, € R"" are selected for the convergence of T, to T,.
Define T,y (t,4,%4) =K, (B, %,y +J,%,4), and we may represent (1b) and (7)
into their state space representations

x,=Ax,+B,t,-B,q (8a)
Xm =Ame+Bm(Trd +?rd) (Sb)
where X, =[t7 #71"eR? and x,,=[t. 171" €R?" are augmented state
0 In><n 0 I” n
vectors, A, =| L [eRTand A, = 1 X1 e R 2mx2n
_Jt _Jt Bz _J; Kr —J;B,

0

-1
t

} eR¥™"  and

are  augmented system matrices, and B, ={

B, = {]_?K }e R¥™ " are augmented input gain matrices. The pair
(A,,,B,) is controllable, and (A,,,C,) is observable, where
C,=C, =1, 0]e R™2" are augmented output matrices characterizing
the output signals T, =C,x, and 7, =C,X,,, respectively. The transfer
function C,,(sI—A,,)™'B,, is SPR due to proper selection of the matrices J,,
B, and K,. The MRC rule can thus be designed as

Ta =®Xp +(I)Ttd +h(?rd’a) (9)
where @ € R and ® € R are matrices satisfying A, +B,0=A,,
and B,®=B,,. The vector heR" is defined as h(T,,q)=PT,+q.

Substituting (9) into (8a), we may have the dynamics after some manipulation

Xp =AmXp+Bm(Ttd +?td) (10)
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Define e,, =X, —X,, and €; =T, —1T,, then using (8b) and (10) we may
obtain the error dynamics

e,=A,e, (11a)
e, =C,e, (11b)

Let us consider the Lyapunov-like function candidate
1 7 T
V(s,e,,) ZES D,s+e,Pe, (12)

where P, =P/ € R*¥?" is a positive definite matrix satisfying the Lyapunov
equation AP +PA, =-C'C,,. Along the trajectory of (6) and (11), we
may compute the time derivative of V as

. S
V=-s" eZ]Q[ }so (13)
eT
1 __
Kd __JaT
where Q = ! is positive definite with proper selection of
_EJ;T In><n

K, and K. Therefore, s and e,, are uniformly bounded and square integrable. It
is also easy to prove that § and €, are uniformly bounded. Hence, convergence
of s and e, can be concluded by Barbalat’s lemma. This implies that the closed
loop system converges asymptotically to the target impedance.

Remark 1: This strategy is feasible only when all system parameters are
available. In addition, we need to feedback accelerations and external forces as
well as their higher order derivatives that largely restrict the practical
applications.

7.3 Regressor-Based Adaptive Impedance Control of
Flexible-Joint Robots

In this section, we are concerned with the case when the system parameters
are not available. Consider the system equation (7.2-4) and (7.2-1b) again
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Ds$+C,s+g,+D,v+C,v=J."1,-F,, (1a)

Jt +Bt, +T, =1, _q(q>q) (1b)

We would like to design a control torque T, such that the closed-loop system
converges to the target impedance (7.2-3)

M, (X, -X,)+B;(x; - x,) +K;(x; - x,) =-F,, ()

Since D,, C,, and g, are not known, desired transmission torque T,; in
(7.2-5) is not realizable. Let us consider a modified version

Ty = (B +8,+D,v+C,v-K,s)
=JI[F. + Y(X,X,V, V)P, — K 8] 3)

where D,, C,, g,, and P, are estimates of D,, C,, g,, and p,,
respectively. With this new desired transmission torque, equation (1a) becomes

Ds$+Cs+Kyss=-D v-C,v-g,+J. (r,-1u)
= _Y(Xa Xa v, V)ﬁx + J;T (Tt - Ttd) (4)

where f)x =Dx_ﬁx > éx ZCX_CX > gx zgx_gx , and f’x pr_f)x .
Hence, if a proper control torque T, can be constructed such that T, — 7,4,
and an update law can be designed to have P, — p,. then (4) implies
convergence of S, i.e., the closed-loop system behaves like the target impedance.
Here, the MRC rule is going to be used again to complete the design. Let us
consider the reference model (7.2-7) and the state space representation (7.2-8).
The control torque is selected as (7.2-9) to have the torque tracking loop
dynamics (7.2-11)

e, =A,e, (5a)
e, =C,e, (5b)

The Lyapunov-like function candidate is selected as

1 1
V(Saemaf’x)ZESTst—l—erTnPrem +Ef’§rf’x (6)
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where P, =P/ € R**" is a positive definite matrix satisfying the Lyapunov
equation A'P, +P,A,, =—C.C,,, and T € R is positive definite. Along
the trajectories of (4) and (5), the time derivative of (6) can be computed as

V=--s"K,;s+s"J; e, —ele, —p (T, +Y's) 7)
If we select the update law as
p.=-T'Y"s (8)
then (7) becomes (7.2-13), and same performance can be concluded.

Remark 2: In this design, we do not need to know the system parameters, but
the regressor matrix should be known. Again, in realization of the control torque
T., we need to feedback the accelerations and external forces as well as their
higher order derivatives. Therefore, this strategy is not practical either.

7.4 Regressor-Free Adaptive Impedance Control of
Flexible-Joint Robots

Let us consider the uncertain system equation (7.3-1) again
Ds$+Cs+g. +D.v+C,v=J."1,-F,, (1a)
Ji +Ba +1, =1, _(_l(q>q) (1b)

The same transmission torque in (7.3-3) is to be used without the regressor
representation

T =30 (Foy +8,+ D,V +Cv-Kys) )
Again, equation (1a) can be further written as
Ds$+Cs+K,;s=-Dv-C.v-§,+J. (1, - 1,) 3)

Along the same line as in the previous section, we would like to employ the MRC
rule to have T, — 7,4, and the reference model in (7.2-7) is to be used again

Jr;tr+Bri-r+KrTr:Jr;trd+Bri-td+Kthd (4)
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Similar to (7.2-8), we have the state space representation
x,=Ax,+B,t,-B,q (52)
X, =A,X,+B,, (T +Tw) (5b)
The control torque can thus be designed based on the MRC rule as
T,=0x, +P1, +h 6)

where ©@ € R™*" and ® € R"™" satisfy A,+B,0=A, and B,®=B,,
respectively, and h is the estimate of h(T,;,q) = ®T,; + q. Plugging (6) into
(5a) gives

X, =A,X, +B, (1, +7,)+B,(h—h) (7

With the definition of e,, =X, —X,, and €, =T, —T,, we have the dynamics
for the torque tracking loop

é,=A,e,+B,(h-h) (82)
e, =C,e, (8b)

Therefore, if we may find a proper update law to have h — h, then the torque
tracking can be achieved. To proceed, let us consider the function approximation
representations of D, C,, g,,and h as

D, =W} Zy +gp (9a)
C,=W¢ Ze, +sc, (9b)
2. =Wz, +8g ()
h=W/z, +g, (9d)

Their estimates are respectively represented as
D, =Wg Zp (%)

C,=W{ Z¢. )
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8. =W, z,, )
h=Wz, (9h)

Therefore, (3) and (8a) can be rewritten as

D,s+C,s+Kys=J."(t,— 1)~ W} Zp v
—WC Z¢e v— W Zy tE (10a)

én=A,e,—B, Wiz, +B ¢, (10b)

where € =¢€(€p, ,&c, &g, ,S,X;) and €, = &,(&p,€,,) are lumped approximation
errors. Select the Lyapunov-like function candidate as

] 1. i
V(S, €m> WDX 5 WCX 5 ng 5 Wh) = ESTDXS + ez-nPtem -|-§T‘r(‘&][7;A QDX WDX
+WEQc, We, + W Qg Wy, + Wi QW) (n

where Qp €R” “oxn* by Qc, eR” “exn®be Q.. e R ang
Q€ REBr e positive definite matrices. P, =P e %Z"XZ" is a posmve
definite matrix satisfying the Lyapunov equation A.P,+P,A, =-CLC,,
Along the trajectory of (10), the time derivative of (11) can be found as

V=-s"K;s+s'J."e, —e’e, +sTsl+eTPB €,
—TI"[WD (ZD VS +QD WD )+WC (ZC VS +QC WC )

—TrW{ (245" +Qy, W )+ Wy (zyePB, +Q,,W,,)] (12)

By defining B,, =B, to have e,T,,Per = e’ and selecting the update laws as

VAVDX = —Qf)lx (Zp, vs' + Op, VAVDX ) (13a)
VAVCX = —Qa (Zc, vs' + Oc, VAVCX ) (13b)
_ng (ngST +O—gxng) (13¢)

Wi, =-Qy;' (zper +0,W,) (13d)
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then (12) becomes

€

V=—[s" eg]Q[S}HsT eZ][
e,

+0¢c,Tr(WE We )+ 0, Tr(Wg W, )+ 0 Tr(We Wy)  (14)

} +0p, Tr(Wp Wp )

€

1
K d A J a !
where Q = 1 is positive definite by proper selection of K.
- 5 J ;T In><n

Remark 3: If a sufficient number of basis functions are employed in the
function approximation so that € =0 and &, =0, the o-modification terms in

S

(13) can be eliminated and (14) becomes 1% =—[ST eZ]Q[ }SO which

€
implies both § and e, are uniformly bounded and square integrable. It is
straightforward to prove § and €, to be uniformly bounded, and hence
convergence of S and e, can be concluded by Barbalat’s lemma, i.e., the
closed-loop system converges to the target impedance.

Remark 4: Suppose €, and €, cannot be ignored and there exist positive
numbers & and & such that ||g,||< & and ||£2|| <&, for all >0, then, instead
of (2) and (6), the modified controllers can be constructed as

T 5 +D v+ C
T = Ja (Fext +gx +DXV+CXV_KdS+TmbL¢st1)
T, = @Xp +(I)Trd +h+Trobusr2

where T,,pusr1 and T 5452 are robust terms to be designed. Let us consider the
Lyapunov function candidate (11) and the update law (13) again but with
0y =0. The time derivative of V can be computed as

V=-s" ef]Q{ :
(]

}51 I5]+6 Je.[+57 % + 7T

T
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By picking T,opus1 = —0i[sgn(s;) - sgn(sn)]T, where s;, i=1,...,n is the
i-th element of the vector S, and T,.p2 = —0a2[sgn(e, ) -+ sgn(e,,, N,
where e, , k=1,...,2n is the k-th entry of e,, we may have VSO, and
asymptotic convergence of S and €, can be concluded by Barbalat’s lemma.

Due to existence of €, and €,, we may not determine definiteness of V.
Consider the inequality

]

+ A (Qg VT (Wi Wy )+ A (Qu)Tr (Wit W]

2

1 1 .~ .
V S () 4 [ @, YTr (Wi Wp, ) + A (Qc )TH(WE We)

D 0
where A = . , we may rewrite (14) to be
0 2C,pC,
1 S ? 1 € ?
V <-aV+ _[aﬂmax (A) - ﬂmin (Q)] |: :| T |: ' :|
2 € 2/7'min (Q) €

+2 ([ (@, )= 0, TH WG, Wo, ) +[2he Q)
—0 ¢, ITr(WE We, ) +[0nax (Qq,) — 04 1Tr(Wg, Wy )
H Amax (Qu) = G4 ITr (Wi W)} + %[anx Tr(Wp, Wp,)
+0c Tr(WE, We )+ 0 Tr(Wy W, )+ 0, Tr(Wy Wy)]

where ¢is selected to satisfy

aSmin{ﬂmm(Q), Obp, ’ Oc, , Og, , On }
ﬂmax (A) ﬂmax (QDX ) ﬂ’max (QCX ) ﬂ’max (Qgi ) ﬂ’max (Qh)

Hence, we may have

2
1
+ E[O-DX T”(Wﬂ Wp)

V<-aV+

1 |:£1 :|
2ﬂmin (Q) 82
+0c. Tr(WE W, ) +0, Tr(Wy Wy )+ 0w Tr(Wy W)l (15)
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2

1
+—[op Tr(Wp Wp )
2a ’

This implies that V <0 whenever
1

[31(7)}
> ———————sup

20Ain (Q) 721, || €2(7)
+0c, Tr(WE We, )+ 0, Tr(W, Wy )+ 0w Tr(Wy Wy)]

ie., S, €;, V~VDX R V~VCX R V~Vgx , and Wh are uniformly ultimately bounded. The
differential inequality (15) can be solved to have
{31(7)}
£,(7)

1
+2—[0'DX Tr(Wp Wp ) +0c Tr(W¢ We )
o

2

1
V() <e * 0V (1)) + ——— su
0 20(ﬂmjn (Q) to <£r

+0g Tr(W, Wy )+ 0, Tr(Wy Wy)]

Together with the inequality

]

+omin (Qg T (W Wy ) + A (Qu)Tr (Wit Wiy)]

2

1 1 -~ .o
vz > Anin (A) ) [Arin (Qo, )T (W5, Wp )+ Auin (Qc )TH(WE, W)

we may find the error bound

s(t)
e, (1)

< |2V e—%(r—m) s 1

{81(7)}
sup
A (A) O in (A) A (Q) ty<r<t [ 82(7)

1
+—
T ™
1

+0y Tr(We W, )+ 0, Tr(Wy Wy)12

Tr(Wp Wp ) +0c Tr(W¢ We )

Remark 5: Realization of the strategy does not need the information of the
regressor matrix, accelerations, or time derivatives of the external force, which
largely simplifies the implementation.
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Table 7.1 summarizes the adaptive impedance control designs for FIR in this
chapter in terms of the controller forms, adaptive laws and implementation issues.

Table 7.1 Summary of the adaptive impedance control for FJR

Flexible-joint robots interacting with environment
. . _x-T _
Ds+C,s+g, +D,v+C,v=]J,1,-F,, (7.3-1)
Jt, +B1, +1,=71,-q(q,9)
Regressor-based Regressor-free
T,,;=JZ(FM+§X+IA)X"’ thlzJZ(Fext+gx+va
Controller A ~
+C,v—K, s) +C,v-K s)
=JilF +Y(X,%,V, V)P, | T, =Ox,+®7, +h
-K s] (7.4-2), (7.4-6)
T, = @Xp + (I)Ttd +h(?td ,El)
(7.3-3), (7.2-9)
. W, =-Qp. (Zp, V8" +0op Wp)
Adaptive Law p.= ryZs N B . R
(73-8) WCX =_QCX (ZCYVS +O-CYWCY)
We, = _Q; (Zg..ST +0, W)
Wi =-Qu' (znel + 0, Wy)
(7.4-13)
Realization Need to feedback joint Does not need the information for
Issue accelerations, external force, and the joint accelerations. Does not
their higher derivatives. need to know the higher
derivatives of the joint
accelerations or external force.
Example 7.1:

Consider the flexible-joint robot (3.6-3), and we would like to verify the
efficacy of the strategy developed in this section by computer simulation. Actual
values of the system parameters are m;=m,=0.5(kg), [,=0,=0.75(m),
l1=1.,=0.375(m), 11:12:0.0234(kg-m2), and k;=k,=100(N-m/rad). Parameters
at the motor side are j;=0.02(kg-m?), j,=0.01(kg-m?), b;=5(N-m-sec/rad), and
b,=4(N-m-sec/rad). The endpoint and the motor angle start from the initial
value x(0)=[0.8m 0.75m 0 0]" and 0(0)=[0.0022 1.5019 0 0]"
respectively to track a 0.2m radius circle centered at (0.8m, 1.0m) in 10 seconds
without knowing its precise model. The initial state for the reference model is
7,(0)=[9.8 3.2 0 0]", which is the same as the initial value for the
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desired transmission torque. The constraint surface is smooth and can be
modeled as a linear spring f,,,=k,(x-x,) where f,, is the force acting on the
surface, k,,=5000N/m is the environmental stiffness, x is the coordinate of the
end-point in the X direction, and x,,=0.95m is the position of the surface. Since
the surface is away from the desired initial endpoint position (0.8m, 0,8m),
different phases of operations can be observed. The controller is applied with the

gain matrices
20 0 10 0
K, = ,and A= .
0 20 0 10

Parameter matrices in the target impedance are selected as

05 O 100 O 1000 O
M,‘Z ,B[: ,and Kl‘: .
0 05 0 100 0 1000

The 11-term Fourier series is selected as the basis function for the
approximation of entries in D, C,, g,, and h. Therefore, WD and WC are
in R**?, and Wg and Wh are in R*>**. The initial weighting vectors for the
entries are assigned to be

Wp,, (0)=[0.05 0 - 0] eR'™
Wp , (0)=W, (0)=[-0.05 0 --- 0]" eR"™
Wp, (0)=[0.1 0 - 0]" eR™
We, (0)=[0.05 0 - 0] eR™
We, (0)=Wc, (0)=[-005 0 -+ 0] € QRlix!
We,,(0)=[01 0 - 0]" eR"™
W, (0O)=W, (0)=[0 0 - 0]"eR'™
W, (0)=W, (0)=[0 0 - 0] eR'™

The gain matrices in the update laws (9) are designed as

Qp. =0.01,, Q¢ =0.011,,, Q,' =50I,,, and Q;' =10I,,.
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We assume in the simulation that the approximation error can be neglected, and
hence the o-modification parameters are chosen as 0, =0. The simulation
results are shown in Figure 7.1 to 7.9. Figure 7.1 shows the robot endpoint
tracking performance in the Cartesian space. It can be seen that after some
transient response the endpoint converges to the desired trajectory in the free
space nicely. Afterwards, the endpoint contacts with the constraint surface at
x,=0.95(m) compliantly. When entering the free space again, the endpoint
follows the desired trajectory with very small tracking error regardless of the
system uncertainties. Figure 7.2 presents the time history of the joint space
tracking performance. The transient states converge very fast without unwanted
oscillations. The joint space trajectory in the constraint motion phase is smooth.
Figure 7.3 gives the torque tracking performance. The control efforts to the two
joints are reasonable that can be verified in Figure 7.4. The external forces
exerted on the endpoint during the constraint motion phase are shown in Figure
7.5. Figure 7.6 to 7.9 are the performance of function approximation. Although
most parameters do not converge to their actual values, they still remain
bounded as desired.

1151

1.05

09

0.85

0.75F b

Figure 7.1 Robot endpoint tracking performance in the Cartesian space. After some transient
the endpoint converges to the desired trajectory in the free space nicely. Afterwards, the
endpoint contacts with the constraint surface compliantly. When entering the free space again,
the endpoint follows the desired trajectory with very small tracking error regardless of the
system uncertainties
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Figure 7.2 The joint space tracking performance. The transient is very fast and the constraint
motion phase is smooth
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Figure 7.3 Torque tracking performance
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Figure 7.4 The control efforts for both joints are all reasonable
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Figure 7.5 Time histories of the external forces in the Cartesian space
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7.5 Consideration of Actuator Dynamics

According to (3.9-1) and (7.2-4), the dynamics of a rigid-link flexible-joint
electrically-driven robot interacting with the environment can be described by

Ds$+Cs+g,+D v+C,v=J."1,-F,, (1a)
Jt, +B1,+1, =Hi—-q(q,q) (1b)
Li+Ri+K,q=u (1c)

This system is in a cascade form similar to the configuration shown in
Figure 6.9, and hence the backstepping-like procedure can be applied here. A
desired torque trajectory T,; is firstly designed for convergence of s in (la).
The desired current trajectory i, can then be found to ensure T, — T, in (1b).
Finally, the control effort w in (1¢) is constructed to have convergence of i to ig.

Assuming that all parameters in (1) are known, and then the desired torque
can be designed as

Tw :Jg(Fext+gx+va+va_de) (2)
Therefore, the dynamics for output error tracking is found to be
DXS‘f‘CXS‘f‘KdS:J;T(TT_TTd) (3)

To ensure torque tracking in (1b), the MRC rule is applied with the reference
model

Jr;tr+Bri-r+KrTr:Jr;trd+Bri-td+Kthd (4)
where T, €R" is the state vector of the reference model, and J, € R,
B, e R, and K, € R are selected to give convergence of T, to T.

With the definition of T,y (T,4,%q) =K' (B, Ty +J,%4), we may rewrite
(1b) and (4) into the state space representation

x,=A,x,+B,Hi-B,q (5a)

Xm = Amxm +Bm(Tz‘d +?rd) (Sb)
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where sz[TlT 71" eR*™ and x,,=[t" t7]" €R*" are augmented state

0 Ill><n 2 2 0 Il’le’l 2 2

vectors. A, = |eRT"and A, =| L |ERT
_Jt _Jt Bt _Jr Kr _Jr Br

0

-1
t

} eR¥™"  and

are augmented system matrices, and B, ={
0 2nxn . . .

B, = K eR are augmented input gain matrices. Let T, =C X,

and 1, =C,X,, be respectively the output signal vector for (5a) and (5b),

where C, =C,, =[I,, 0] R™*" are augmented output signal matrices.

The pair (A,,,B,,) is controllable, (A,,,C,,) is observable, and the transfer

function C,,(sI—A,,)"'B,, is SPR. According to the MRC design, the desired
current i, is selected as

i,=H'[0x, +®1, +h(T,,q)] (6)

where @ and @ are matrices satisfying A, +B,0=A, and B,®=B,,
respectively, and h is defined as h(T,,q) = ®T,;, + . Substituting (6) into
(5a), we may obtain

x,=A,x,+B,(t,+7,)+B H(i-i,) ™

With the definition €, =X, —X,, and €, =T, —T,, the dynamics for the
torque tracking loop becomes

e, =A,e,+B HGI-i,) (8a)
e, =C,e, (8b)

In order to ensure T, — T,; and i — i, the control law in (1¢) is designed as
u=Li, +Ri+K,q-K_e 9)

where €; =i—i, is the current error vector, and K, is a positive definite
matrix. Plugging, (9) into (lc), we may have the dynamics for the current
tracking loop

Léi+KCe,~ =0 (10)
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To prove the closed loop stability of the whole system, let us consider a
Lyapunov-like function candidate

1 1
V(s,em,ei)zstDs+ef,,Ptem +Ee,»TLe[ (1)

where P, =P/ € R*”*" is a positive definite matrix satisfying the Lyapunov
equation AP +PA, =-C'C,,. Along the trajectories of (3), (8) and (10),
the time derivative of V can be computed as

. 1 .
V=-=-s"K;+ EST (D,-2C,)s+s"J. e,
—ele, +e,PB He, —e/K.e; (12)
Selecting B,, =B, such that e,TnPer =el, equation (12) becomes
S
V=-s" el e/ 1Qle, |<0 (13)
€
_ | _
K ——=J.7 0
¢ 2
1__; 1 . .. ..
where Q = 57 | —H | is positive definite due to proper
1
0 ——H K.
L 2 i

selection of K, and K.. Therefore, we have proved that S, €, and e; are
uniformly bounded, and their square integrability can also be proved from (13).
Furthermore, uniformly boundedness of §, €,, and €; are also easy to be
proved, and q — q4, T, T4, and i — i, follow by Barbalat’s lemma. Hence,
the closed-loop system behaves like the target impedance.

Remark 6: To implement the control strategy, all system parameters are
required to be available, and we need to feedback ¢ and its higher order
derivatives. Therefore, the design introduced in this section is not feasible for
practical applications.
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7.5.1 Regressor-based adaptive controller design

Consider the system in (1) again, but D,, C,, g, L, R and K, are
unavailable. The desired torque trajectory in (2) is not feasible, and we modify
it as

T =i (Fey +8,+D, v+ Cv—K,s)
= JalFoy + Y(X,X,V, V)P, — K 8] (14)
where ﬁx, éx, g., and P, are estimates of D,, C,, g,, and p,,
respectively. Plugging (14) into (1a), and we may obtain the error dynamics for
the output tracking loop
Ds$+Cs+K,;s=-D v-C,v-§,+J.," (1, -7,)
=-Y(X,%,V, V)P, +J, (T, ~Ty) (15)
where f)x = Dx _ﬁxy Cx = Cx _va gx =8x _ng and f’x =Px _f)X'
Therefore, if we may find a controller so that T, — T,; and an update law to
have p — p, then (15) implies asymptotic convergence of the output error. To
this end, we would like to use the MRC rule with the reference model in (4) and
the state space representation in (5). The desired current trajectory is designed as
the one in (6) to have the dynamics for the torque tracking loop as in (8). Instead
of (9), a new controller is designed as
u =I_A4id +lii+IA(bq—KLe,
=P/ o-K.e, (16)
where @ =[i] i’ 71" eR*, p,=[L7 RT KI)" eR*" and we
may have the dynamics for the current tracking loop as

T

Léi+KCe,~ Z_f)iq) (17)

where p; =p; —P;. To prove stability, we select the Lyapunov-like function
candidate

1
V(s.e,.€,p..pi)= ESTDXS +e,Pe,

1 1
+5e,~TLei +5ﬁ§rﬁx +Tr(p; TP;) (18)
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where P, =P/ € R¥”*" is positive definite satisfying the Lyapunov equation
AP, +PA, =—-C!C,,. Taking time derivative of (18) along the trajectories
of (8), (15) and (17), we have

V=-s"K,;s+s"J., e, —ele, +e,PB He, —¢/K.e;

~pL(TP, +Y's)~Trip] (I';p; +ge] )] (19)
Pick B,, =B, to have e/ PB p= e’ then the update law can be selected to be

p.=-T'Y"s (20a)

A

pi=-T:'oe (20b)
Thus, (19) becomes (13); therefore, we have proved that s, €, and e; are
uniformly bounded, and their square integrability can also be proved from (13).
Furthermore, uniformly boundedness of §, €,, and €; are also easy to be
proved, and hence, q > q,, T; = T, and i—1i,; follow by Barbalat’s

lemma. Consequently, we may conclude that the closed-loop system will behave
like the target impedance regardless of the system uncertainties.

Remark 7: To implement the controller strategy, we do not need to have the
knowledge of most system parameters, but we have to feedback q and calculate
the regressor matrix and their higher order derivatives. Therefore, the design
introduced in this section is not feasible for practical applications, either.

7.5.2 Regressor-free adaptive controller design

Consider the system in (1) again, but D,, C,, g, L, R and K, are
unavailable. The desired torque trajectory in (2) is modified as

T =J£(Fexz+gx+ﬁxv+éxV_de) (21)
The dynamics for the output tracking loop can thus be written as
Ds+Cs+K;ss=-D v-C,v-8,+J. (1, —Ty) (22)

Therefore, if we may find a control law to drive T, — T,; and update laws to
have D, - D,, C, > C,, and g, — g, then (22) implies convergence of
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the output error. To this end, we would like to use the MRC rule again with the
reference model in (4) and the state space representation in (5). The desired
current trajectory is designed according to (6) to be

i,=H'[@x, +®T,, +h] (23)

where h is an estimate of h(T,;,q) = ®T,; +q. Consequently, the dynamics
for the torque tracking loop becomes

e, =A,e,+B,Hi-i,)+B,(h—h) (24a)
e, =C,e, (24b)

Hence, if we may design a control law to ensure i — i, and an update law to
have h — h, then we may have convergence of the torque tracking loop. The
control strategy can be constructed as

A

u=f-K_e, (25)

where €; =i—i, is the current error, K, is a positive definite matrix and f
is an estimate of f(i,,i,q)=Li, + Ri+K,q. With this control law, the
dynamics for the current tracking loop can be found as

Lé, +K.e; =f—f (26)

If we may select a proper update law to have f— f, (26) ensures convergence
in the current tracking loop. Since D,, C,, g., h(T,;,q) and f(id,i,(']) are
time-varying functions and their variation bounds are not given, their function
approximation representations are employed as

D, =W} Zy +g&p (27a)
C,=W¢ Zc, +ec, 27b)
g8x= Wngng &g, (27¢)
h=W,z, +g, (27d)

f=W/z; +¢& (27¢)
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where Wp € EK” Boxn We eR” Hexn W, € RPm W, € RO
and W; € %"ﬁ I are Welghtlng matrices for Dx, Cx, g.. h, and f, respectively,
while Zp eR" ﬂDX" eR” ﬂLX" eRH g, E%"ﬁ”l , and
Zs € R are ba31s functlon matrices. L1kew1se we have the representations
for the estimates as

D, =W3 Zyp Q70
C.=W{ Zc, (27g)
8.=W, z, (27h)
h=W/z, (27i)
f=W/z 27)

Thus, the output error dynamics (22), torque tracking error dynamics (24a), and
current tracking error dynamics (26) can be rewritten as

Ds$+Cs+Kys=J." (1, —1.,)-Wp Zp ¥

-WE Ze v-W, 7, +g (28a)
é,=A,e,—B,W,z, +B He, +B ¢, (28b)
Lé, +K e, =—W{z; +¢; (28¢)

where & =£/(€p, .2, 8q,,8,X;), €2 =&,(8n.€,), and &; =&5(g;.€;) are
lumped approximation error vectors. Define the Lyapunov-like function
candidate as

s s s s 1
V(S7 €€, WDX s WCX s ng > Wh s “’f) = E[STDXS + zezthem
+e/Le; +Tr(Wp Qp Wp, +W¢ Qc, We, + W, Q, W)
+Tr(Wy Qu Wi, + WY QW) (29)

where matrices Qp. e R b Qc, eR” e xn’ e . Qg e RPexnbe
Qy, € R and Qp € R <y are positive definite. Along the trajectory
of (28), we may compute the time derivative of V as
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V=-="K,;s+s"J,"e, —ele, +e,PB He, —¢/K e
+s’g, +e!PB p€2+ elg, — Tr[VVgX (Zp, vs' + Qp, VAVDX )]
“THWE (Ze vs" + Qe We )+ WY (2, 8™ +Qq W, )]
~Tr Wi (2l BB, + QuWi) + W (zce] +Q;Wp)] (30)

If we select B,, =B, so that e,TnPer =e!, and if we pick the update laws as

Wp, =-Qp. (Zp, vs" +0p, Wp ) (3la)
WCX = _(2(_;Y (ZCX VST + O-CX WCX ) (31b)
W, =-Q,' (z,s" +0, W, ) (3lc)
Wi, =-Qy;' (zper +0,W,) (31d)
VAVf =-Q;' (z€] +0'fo) (31e)
then (30) becomes
S €
V=—s" el e/ 1Q|e, |+[s" e e/]|e
€; &3
+0p, Tr(Wh Wp ) +0c Tr(WE We )+ 0, Tr(Wy W)
+o, Tr(WL W) + o, Tr(W{ Wy) (32)
_ | _
K, -=J. o
¢ 2
1__, 1 ) . ..
where Q = 57 I,., ——H| is positive definite due to proper
1
0 -—H K.
2 i

selection of K, and K...
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Remark 8: Realization of the control law (25) and update laws (31) does not
need the information of joint accelerations, regressor matrix, or their higher
order derivatives, which largely simplified their implementation.

Remark 9: Suppose a sufficient number of basis functions are used and the
approximation error can be ignored, then it is not necessary to include the
o-modification terms in (31). Hence, (32) can be reduced to (13), and
convergence of S, €, and €; can be further proved by Barbalat’s lemma.
Therefore, the closed loop system behaves like the target impedance.

Remark 10: If the approximation error cannot be ignored, but we can find
positive numbers &, & and s such that ||8,|| <0;, i=1,2,3, then robust terms
Trobust 1> Trobusr2 ANd Tropusr3 €an be included into (21), (23) and (25) to have

T 5 +D v+ C
T = Ja(Fext +8, +DXV+CXV_KdS+Tmbust)
. -1 h
1, = H [®Xp +q)Ttd +h+Tmhmt2]
u:f_Kcei T T robust 3

Consider the Lyapunov-like function candidate (29) again, and the update law
(31) without o=modification; then the time derivative of V becomes

S
V=-s" el e’lQ|e, +§1||s||+52||e,||+53||e,~||
€;

T T T
tS' T robust 1 +e 7 Trobust2 + €; T robust3

If we select T, =—01[sgn(s;) sgn(sy) - sgn(sn)]T where s;,
i=1,...,n is the i-th entry in S, T,ppy2 =—02[sgn(e;,) -+ sgn(e,,, )"
where ez, j=1,...,n is the  j-th entry in e, and
Tropusts = —Os[sgn(e; ) -+ sgn(e; )] where e, , k=1,...,n is the k-th

element in e;, then we may have (13) again. This will further give convergence
of the output error by Barbalat’s lemma.

Owing to the existence of the approximation errors, the definiteness of 1%
cannot be determined. By considering the inequality
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2
1 1 - .
V< Eﬂm (A)|| e, +5[ﬂmax (Qp )Tr(Wp Wp )
€;
+ Amax (Qe )TH(WE We )+ A (Qg VTr(Wo W, )
+ Amax (Qu)TH (Wi Wy) + A (Qp)Tr (W Wy)]

D 0 0
where A=| 0 2C!P,C, 0], we may rewrite (32) as
0 0 L
2 2

1 ° 1 ©

V <=0V +—[0 g (A) = i e, || +——I||¢

2[ (A) = Amin (Q)] Al

i €3

1 .~
+E{ [Mmax (QDX ) - O-DX ]Tr(W];) WDX ) + [aﬂmax (QCX )

~0¢, ITr(WE W) + [0 (Qq, ) — 0 1Tr (W W, )
H e (Qn) = O 1T (Wi Wy) + [ @ (Qr)

—O¢ ]Tr(WfTWf )} +%[O-DX Tr(wlgx Wp ) +oc, T”(W& We,)
+0y Tr(Wy Wy )+ 0, Tr(Wy Wy) + oy Tr(Wi Wy)]

where (¢is selected to satisfy

aSmin{

Jnin(Q) O, oc. Ty, oy oy }
/’i'max (A) | /1max (QD‘ ) | /’i'max ((2CA ) ' ﬂmax (Qg‘ ) | /’i'max (Qh) | /’i'max (Qf)
such that we may further have

2
€

1
€ +5[0'DXT’”(W1§X Wp,)

€3

V<—aV+

1
24 (Q)

+oc Tr(WE We ) +0g Tr(W, W, )
+o, Tr(WI W, + o, Tr(W{ W) (33)
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Therefore, we have proved that V <0 whenever

€(7) |
> syl B ©) || 45 1ow THWE Wo)
€;(7)

+0c Tr(We, We )+ 0 Tr(Wy W, )
+0,Tr(WE Wy + o, Tr(WE Wp)]

ie., S, €,, €;, V~VDX, V~VCX, V~Vgx, Wh, and Wf are uniformly ultimately
bounded. In addition, (33) implies

1 £(7)

—a(t—ty)
Vit)<e V(ty)+ —20!/1min Q rnsi[ir €,(7)
£3(7)

1
+2—[0'DX Tr(Wp Wp ) +0c Tr(WE We )

(04
+0g Tr(W, Wy )+ 0, Tr(Wy Wy) + o Tr(W{ W)l

Together with the inequality

2

1 ! X
sz/imm(A) e, +E[/1mm(QD)Tr(W$XWDX)
€;

+ Amin (Qe )T (WE We ) + Anin (Q VT (W, W)
+ Aumin (Qu) T (W Wy) + Ain (Q)Tr (W Wi)]

we may find the error bound

S 5 o &(7)
e, I f Vo) eiE(HO)+ ! sup ||| €2(7)
ﬂmin (A) \/Olﬂmin (A)ﬂmin (Q) to<T<t

€; 83(7)

[, Tr(Wp, Wp ) + 0, Tr(WE, We,)

1
B —
\ aﬂmin (A)
1

+0, Tr(W W, )+ 0, Tr(Wi Wy) + o Tr(W{ Wy)]?
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Therefore, the error signal is bounded by an exponential function. Table 7.2
summarizes the adaptive impedance control of EDFJR in terms of their
controller forms, adaptive laws and implementation issues.

Table 7.2 Summary of the adaptive impedance control for EDFJIR

Electrically driven flexible-joint robots interacting with environment
D s+Cs+g,+D v+C,v=J."1, -F,

Ji, +B,1, +1, =Hi-q(q.4) (7.5-1)
Li+Ri+K,q=u
Regressor-based Regressor-free
Tu=Jo(Foy +8,+D,¥ Tu=Ji(Fo +E,+D¥
Controller +éxv_de) +éxV—K,1S)
=JulFou + Y%,V V)P, | i, =H'[Ox, + D1, +h]

~Kasl u=f-K_e
i,=H'[Ox,+ D1, +h(T,.Q)] (7.5-21), (76.51-23), (7.5-25)
u= I:id +ﬁi+Kbq—Kcei
= f’:T(P -K.e;
(7.5-14), (7.5-6), (71.5-16)

A o o .
Wp, =—Qp, (Zp,vs" +op, Wp,)

Adaptive Law A __1iyT .
P = -I''Y’'s & _ ~1 T o
L o We, =-Qc, (Z¢,vs* +0c, We,)
pi=-1; ¢¢; A 0 T 2
(7.5-20) We, =-Qq, (zg8" +0, W)
A -1 T <
Wi =—-Qu (zne; + 0, Wh)
A o - -
Wi =-Q; (zre; +0:Wr)
(7.5-31)
Realization Need to know the regressor Does not need the information for
Issue matrix, joint accelerations and the regressor matrix, joint
their higher derivatives. accelerations, or their derivatives.
Example 7.2:

Consider flexible-joint robot in example 7.1 but with consideration of the
motor dynamics. Actual values of link parameters are selected as m=m,=0.5(kg),
1,=0,=0.75(m), l,;=1.,=0.375(m), I,=1,=0.0234(kg-m?), and k,=k,=100(N-m/rad).
Parameters for the actuator part are chosen as j1=0.02(kg-m?), j»=0.01(kg-m>),
b,=5(N-m-sec/rad), b,=4(N-m-sec/rad), and h;=h,=10(N-m/A). Electrical
parameter for the actuator are L=L,=0.025(H), r=r=1(Q), ky=kn=1
(Vol/rad/sec) (Chien and Huang 2007a). The stiffness of the constrained surface
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is assumed to be k,,=5000(N/m). In order to observe the effect of the actuator
dynamics, the endpoint is required to track a 0.2m radius circle centered at
(0.8m, 1.0m) in 2 seconds which is much faster than the case in example 7.1.
The initial condition for the generalized coordinate vector is at
q(0)=0(0)=[0.0022 1.5019 0 01", ie., the endpoint is initially at
(0.8m, 0,75m). It is away from the desired initial endpoint position (0.8m, 0,8m)
for observation of the transient. The initial state for the reference model is
7,(0)=[8.1 1.4 0 0], which is the same as the initial state for the
desired torque. The controller gain matrices are selected as

50 0 20 0 200 O
K, = , A= ,and K, = .
0 50 0 20 0 200
The initial value for the desired current can be found by calculation as

i,(0)=i(0)=[16.2 1.4]".

The matrices in the target impedance are picked as

05 O 100 O 1500 O
M,‘Z ’Bi: ,and K[: .
0 05 0 100 0 1500

The 11-term Fourier series is selected as the basis function for the approximation.
Therefore, WD and WC are in R**2, while W . Wh, and Wf are in
R**? The initial weighting vectors for the entries are assigned to be

Wp,, (0)=[0.05 0 - 0] eR'™

VAVDm 0)=Wp_ (0)=[-0.05 0 --- 0" eR"™!
p,©0=[01 0 - 0" eR'™

We, (0)=[0.05 0 - 0] eR™

We,(0)=We, (0)=[-0.05 0 - 0] eR"™!

We  (0)=[0.1 0 - 0] eR'™

W, 0)=W, (0)=[0 0 - 0] eR'™

W, (0)=W, (0)=[0 0 - 0]" eR'™

W, (0)=W,(0)=[0 0 - 0]"eR'™
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The gain matrices in the update law (31) are selected as Q_Dt =0.0011 4,
Q¢ =0.0011,4, Q; =100I,,, Q' =10I,,, and Q;' =10000I,, . In this
simulation, the approximation error is assumed to be neglected, and the o~
modification parameters are chosen as o) = 0.

The simulation results are shown in Figure 7.10 to 7.20. Figure 7.10 shows
the tracking performance of the robot endpoint and its desired trajectory in the
Cartesian space. It is observed that the endpoint trajectory converges smoothly
to the desired trajectory in the free space tracking and contacts compliantly in
the constrained motion phase. Computation of the complex regressor is avoided
in this strategy which greatly simplifies the design and implementation of the
control law. Although the initial error is quite large, the transient state takes only
about 0.2 seconds which can be justified from the joint space tracking history in
Figure 7.11. The torque tracking performance is shown in Figure 7.12. It can be
seen that the torque errors for both joints are small. Figure 7.13 presents the
current tracking performance. It is observed that the strategy can give very small
current error. The control voltages to the two motors are reasonable that can be
verified in Figure 7.14. Figure 7.15 to 7.20 are the performance of function
approximation. Although most parameters do not converge to their actual
values, they still remain bounded as desired.

Figure 7.10 Robot endpoint tracking performance in the Cartesian space
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7.6 Conclusions

In this chapter, we consider the case when the flexible-joint robot contacts
with the environment. The adaptive impedance controllers are derived to give
good performance in both free space tracking and constraint motion phase.
Firstly, the MRC rule is utilized in Section 7.2 for the impedance control of a
known FJR. To deal with the uncertainties, a regressor based adaptive controller
is derived in Section 7.3. However, its implementation requires the knowledge
of joint accelerations, the regressor matrix, and their higher order derivatives.
Therefore, the control strategy is not practical. The regressor-free adaptive
impedance controller is developed in Section 7.4 whose realization do not need
the joint accelerations, the regressor matrix, or their higher order derivatives.
The actuator dynamics is included in the system equation in Section 7.5. A
regreesor-based adaptive impedance controller is then developed for EDFIR in
Section 7.5.1. However, its realization still needs the joint accelerations,
regressor matrix, and their derivatives. A regreesor-free adaptive impedance
controller for EDFJR is then introduced in Section 7.5.2 and it is free from the
information for joint accelerations or the regressor matrix. Several simulation
results show that the regressor-free design can give good performance to an
EDFIJR operating in a compliant motion environment.
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Appendix

Lemma Al:
Let w/=[wy, wp - w,]1eR™, i=1,...,m and W is a block

diagonal matrix defined as W =diag{w,,w,, -, W, } €R" ", Then,

Tr(W'W)=Y |wi”.

i=1

Proof: The proof is straightforward as below:

wiw=| O weo 00w e 0
0 0 wh 0 0 W,
_WlTwl 0 0
_ 0 WoW, 0
0 0 W, W,
w0
oo e
L0 0w

Therefore, we have Tr(W’' W) = 2"W,~”2 .

i=1
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Lemma A2:
Suppose wli=[wy, wp - w,]eR™ and
Vi =[viy Vi o v 1€ RV i=1,...,m. Let W and V be block diagonal

matrices that are defined as W =diag{w,,w,,---,w, }€R™" and

V=diag{v,,v,, +,V,, }€R"™ " respectively. Then, Tr(VTW)SZ”V,-””win .

i=1

Proof: The proof is also straightforward:

vi 0 - 0w, 0 - 0

VTWZ 0 \&) 0 0 W) 0
0 0 vl 0 0 W,
_VITWI 0 0

_ 0 viw,
| 0 0 VW
Hence,

Tr(VIW)=viw, +viw, +..+viw,
<[villlwil[+[vaflwa] + ..+ [valw.]
=Y Ivilllwil-
i=1

Lemma A3:

Let W be defined as in lemma Al, and W is a matrix defined as
W =W-W, where W is a matrix with proper dimension. Then

- ~ 1 1 -~ o~
Tr(WTW) < ETr(WTW) —ETr(WTW)
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Proof:
Tr(WIW) =Tr(W'W)-Tr(W'W)

< willlwil=%:*) by lemma Al and A2)
i=1

—

—2 (vl =5 = vl = wil
<= dwil*-
i=1

—Tr(W'W)—— Tr(W W) (by lemma Al)

[\)

[\)b—

[\)b—*

In the above lemmas, we consider properties of a block diagonal matrix. In
the following, we would like to extend the analysis to a class of more general
matrices.

Lemma A4:

Let W be a matrix in the form W’ =[W/ W, ... W;] € Rrmrm
where W, = diag{w,,W;»,"+,W;,} € R™" i=1,...,p, are block diagonal
matrices with the entries of vectors wg =[wi wya 0 Wil € e R,

j=1,...,m. Then, we may have Tr(WTW) = ii”wiinz

i=1 j=1

Proof:

W'W=[W .. W]

P

=W/ W +--+W;W,
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Hence, we may calculate the trace as
Tr(W W) =Tr(W/ W) +---+Tr(W, W,)

EHWU" te +2||Wp,|| (by lemma A1)

m
2
EHWUH

j=1

I
—_

i

Lemma AS:

Let V and W be matrices defined in lemma A4,

p m
VW) < Y vy ws

i=1 j=1
Proof:
Tr(V'W)=Tr(V/ W) +---+Tr(V;W,)

<Slivilse-s Shvallval o

P m
=2 D lvillwil

i=1 j=1

Lemma A6:

Let W be defined as in lemma A4, and W is a matrix defined as

W =W - W, where W is a matrix with proper dimension. Then

- ~ 1 1 -~ o~
Tr(WTW) < ETr(WTW) —ETr(WTW)
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Proof:
Tr(W W) =Tr(W W)= Tr(W' W)

P m
< 22(||w,||||w,||—||w,||2) (by lemma A4 and A5)

=1 j=1

2 1~ 2 - )
> D llwill sl = s =l )

j=1

NI»—* W
Mw

I
—_

m
m

2 ~ |2
> > will "=l

Jj=1

Mw

IA

NIH N | =

Il
—_

Tr(W'W)—— Tr(W W) (by lemma A4)
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Symbols, Definitions and Abbreviations

Abbreviations

RR : Rigid Robot

RRE : Rigid Robot interacting with Environment

EDRR : Electrically-Driven Rigid Robot

EDRRE : Electrically-Driven Rigid Robot interacting with Environment
FIR : Flexible-Joint Robot

FIRE : Flexible-Joint Robot interacting with Environment
EDFJR : Electrically-Driven Flexible-Joint Robot

EDFJRE : Electrically-Driven FJR interacting with Environment
PE : Persistent Excitation

FAT : Function Approximation Technique

MRC : Model Reference Control

MRAC : Model Reference Adaptive Control

SPR : Strictly Positive Real

UUB : Uniformly Ultimately Bounded

General Symbols and Definitions

: scalar (unbold lower case)

: vector (bold lower case)

: matrix (bold upper case)

: n X n identity matrix

: i-th element of vector a

: (i,j)-th element of matrix A
: transpose of vector a

: transpose of matrix A

: inverse of matrix A

257



258 Symbols, Definitions and Abbreviations

Tr(A) : trace of matrix A

a : estimation of scalar a

a : error between a and d

a : estimation of vector a

a : error between a and a

A : estimation of matrix A

A : error between A and A

A (A) : i-th eigenvalue of matrix A

Amin (A) : minimum eigenvalue of matrix A
Amax (A)  : maximum eigenvalue of matrix A
|a| : absolute value of scalar a

||a|| : norm of vector a

|A| : determinant of matrix A

||A|| : norm of matrix A

min{.} : minimum operation

sup(.) : least upper bound

diag{...} :diagonal matrix

Symbols and Definitions in Robot Model

[; : length of link i

m; : mass of link i

I; : moment of inertia of link i

B : actuator damping matrix

B; : desired apparent damping

C : vector of centrifugal and Coriolis forces
C, : C in the Cartesian space

D : inertia matrix

D, : D in the Cartesian space

| I : external force

g : gravitational force vector

g : g in the Cartesian space

H : electro-mechanical conversion matrix
i : armature current vector

iy : desired current trajectory

J : actuator inertia matrix

J. : Jacobian matrix
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K : joint stiffness matrix
K, : back-emf matrix
K; : desired apparent stiffness

L : electrical inductance matrix
M; : desired apparent inertia
P : parameter vector

Px : parameter vector in the Cartesian space
q : generalized coordinate vector

qu : desired trajectory for q

R : electrical resistance matrix

X : coordinate in the Cartesian space
Xy : desired trajectory for X

Y : regressor matrix

0 : actuator angle

T : control torque vector

T, : actuator input torque vector

T, : transmission torque

Symbols and Definitions in Controller Design

d : disturbance

e : error signal

e : error vector

€ : current error vector

€, : output tracking error vector
€ : torque tracking error vector
k., : stiffness of the wall

K, : gain matrix for velocity error
K, : gain matrix for position error
K, : conversion matrix

P.Q T : positive matrices

s : sliding surface variable

S . error vector

sat(.) : saturation function

sgn(.) : signum function

u : control input signal

u : control input vector
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6> "HRINN g2 <<

T robust

A

: a known signal vector

: Lyapunov function candidate
: a vector of weightings

: a matrix of weightings

: a vector of basis functions

: a matrix of basis functions

. a constant

: number of basis function

: approximation error

: approximation error

: thickness of the boundary layer
: sigma modification constant
: known signal vector

: robust term

: diagonal gain matrix



Index

Acceleration feedback, 3, 84, 87,
105, 128, 148

Actuator dynamics, 4, 71, 75, 101,
146, 181, 220

Approximation error, 16, 63, 69, 137,
209

Autonomous system, 35-37

Backstepping, 4, 164, 182, 220

Barbalat’s lemma, 35, 38, 47, 69, 87,
93,103, 133

Basis, 1, 12, 15, 16, 31

Basis function, 1, 3, 7, 11, 32, 61, 91,
97, 137

Boundary layer, 43, 44

Compliant motion, 3, 8, 162

Computed torque controller, 83

Conversion matrix, 113

Current tracking loop, 102, 104, 106,
147, 149, 183, 221

Dead zone, 55, 56
Decrescent, 37, 38

ED, 1

EDFIR, 2, 79, 192, 193, 231
EDFIRE, 2, 4, 5, 80

EDRR, 2, 75, 154

EDRRE, 2, 4, 76
Equilibrium point, 36, 37, 51, 52, 57

FAT, 1,7,8, 11, 61, 62,91, 136
Feedback linearization, 2

Flexible joint robot, 163, 201

FIR, 2,8,9, 77, 175

FIRE, 2,4, 78

Fourier coefficient, 16, 18, 23, 31
Fourier series, 16-18, 23, 24, 97, 141
Function norms, 30

Harmonic drive, 5
Hilbert space, 11, 15, 16, 31, 117

Impedance control, 4, 129, 201
Inner product space, 14, 15
Invariant set theorem, 35, 37
Inversion-based controller, 40

Joint flexibility, 5, 163, 201

Linearly parameterization, 3, 7, 31,
89,91
LaSalle’s theorem, 37
Lyapunov
function, 35, 37, 38, 46
stability theorem, 11, 37
stability theory, 35
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Matrix norms, 29

Model reference adaptive control, 11,
45

MRAC, 11, 45, 46, 48, 50, 58, 62

MRC, 46, 49, 58, 165, 204

Nonautonomous system, 36, 37, 39,
63

Normed function space, 30

Normed vector space, 14, 15

Orthogonal functions, 11, 17, 18

Orthonormal function, 18, 24, 31

Output tracking loop, 102, 106, 147,
223

PE, 47, 50, 87

Persistent excitation, 50, 51

Polynomials
Taylor, 19, 24
Chebyshev, 19, 24
Legendre, 20, 24
Hermite, 20, 24
Laguerre, 21, 24
Bessel, 22, 24

Radially unbounded, 37, 38, 50

Real linear space, 12

Regressor matrix, 1-8, 83, 85, 88, 89,
134, 186, 207

Rigid robots, 2, 83-85, 87, 129

Robust adaptive control, 54

RR, 2, 71, 140

RRE, 2,4, 73

Saturation function, 43, 66
Signum function, 43, 66
Singularity problem, 3, 84, 87, 89,
134
Sliding condition, 40, 41, 44, 60
Sliding control, 11, 39, 41-45, 57,
59-61
Stable, 36-39
asymptotically, 35-38, 41, 45
exponentially, 36, 38, 51, 52
uniformly, 36, 38, 50-52
uniformly asymptotically, 36

Target impedance, 129, 131, 203

Torque tracking loop, 166, 168, 206

Transmission torque, 164, 167-169,
206

Uncertainties
additive, 41
general, 11, 57, 58, 61
multiplicative, 41, 64
time-varying, 1, 6-8
Uniformly ultimately bounded, 3-6,
8,62, 68,95,110, 138, 152, 174,
212

Vector norms, 28
Vector spaces, 11, 12, 14, 15

o-modification, 54, 56, 66, 92, 108,
139,172,210
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