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Preface

In one form or another, robots have been around for many hundreds of

years and have caught the fancy of nearly all segments of society including

but not limited to lay people, novelists, engineers, and computer scientists.

While sophisticated algorithms for intelligent integration of robotic systems

into society have abounded for many decades, it is only recently that the

explosion of computational speed and its cheap availability have made many

of these ideas implementable in real-time so that the benefit of robots can

now extend beyond the confines of automated assembly lines and impact

people directly. Our increasing understanding of human sensory systems

and how they play into our superior cognition have led to the development

of specialized hardware setups that locally process data at the site of its

acquisition and pass on low bandwidth information (in the form of features

or keywords) that can be processed at one or more central locations for

higher level decision making.

This book aims to describe possible frameworks for setting up nonlinear

control design problems that need to be solved in the context of robots

trying to understand, interact with, and manipulate their environments.

Of course, the environment considered could be static or dynamic, struc-

tured or unstructured. Similarly, the robot may suffer from kinematic or

dynamic uncertainties. Finally, the measurements available for controller

use could be limited (e.g., lack of velocity feedback on robots) or excessive

(e.g., video frames captured at a 640×480 resolution by a 30 Hz video cam-
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era) – interestingly, both these scenarios require extra preprocessing and

computation to extract the required information. All the aforementioned

factors can conspire to make for highly challenging control design scenarios.

As the title suggests, our preferred framework for addressing these issues

will be Lyapunov-based nonlinear control design. Robots are highly nonlin-

ear systems and even though they can be linearized under some restrictive

assumptions, most practical scenarios require the design of nonlinear con-

trollers to work around uncertainty and measurement-related issues. It has

been our experience over the years that Lyapunov’s direct method is an

extremely effective tool to both design and analyze controllers for robotic

systems.

Chapter 1 begins by providing a brief history of robotics. It is followed

by an introduction to the Lyapunov-based design philosophy – pros and

cons are discussed. The chapter ends on a practical note by describing the

evolution of real-time control design systems and the associated operat-

ing environments and hardware platforms that they are based upon. In

Chapter 2, we provide the reader with a quick introduction to a host of

standard control design tools available for robotic systems. In order to pre-

pare for the chapters ahead, all these techniques are analyzed in a common

Lyapunov-based framework. The chapter begins by discussing computed

torque methods, where the model nonlinearities are canceled through exact

model knowledge, and the system robustness to unmodeled disturbances is

discussed under PD control, continuous robust control, and sliding mode

control. Next, adaptive control techniques are discussed when the model is

uncertain. A variety of adaptive update laws are discussed including the de-

sign of a NN-based strategy when the model cannot be expressed as linear

in the unknown/uncertain parameters. The chapter closes by discussing the

challenges of designing control laws for redundant link robot manipulators

when the control objectives are stated in the task-space of the robot.

When robots need to navigate through and/or interact with unstruc-

tured or dynamically changing environments, camera-based vision systems

are utilized to provide adequate sensing of the environment. Chapter 3

discusses some problems in visual servoing control. The first problem ad-

dressed is that of a robot end-effector tracking a prerecorded time-varying

reference trajectory under visual feedback from a monocular camera –

the use of a single camera results in uncertainty in the depth parameter

which needs to be adaptively corrected. The next problem that we address

in this chapter is that of estimating the shape of a continuum robot. Tra-

ditional position sensing devices such as encoders cannot be used in this

situation since it is not easy to define links and joints for such robots –
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instead, a vision based solution is proposed and then validated through

the design of kinematic controllers that regulate the pose of the robot end-

effector via feedback from a sequence of images from a fixed monocular

camera. The third problem dealt with in this chapter is that of design-

ing homography-based visual servo control methods for solving tracking

and regulation problems in the context of wheeled mobile robots. The fi-

nal problem addressed in Chapter 3 is the classic Structure from Motion

(SFM) problem, specifically the development of an adaptive nonlinear es-

timator in order to identify the Euclidean coordinates of feature points on

an object based upon relative movement between that object and a single

fixed camera.

Chapter 4 deals with the problems of path planning and control for

manipulator arms and wheeled mobile robots, both when the obstacle lo-

cations are known a priori and when they need to be determined in real

time using fixed or in-hand vision as an active feedback element. The first

problem addressed is path following using velocity field control (VFC) –

this technique can be applied when it is more critical to follow a contour

exactly than it is to track a desired time-varying trajectory (which inciden-

tally is the standard problem solved in most robotics literature). Another

application of path following is when a navigation function (NF) approach

is utilized to create a path around obstacles to a desired goal location. As

an extension, we also show how VFC- and NF-based techniques can be uti-

lized to solve the obstacle avoidance problem for mobile robots. We then

shift gears and address the problem of hybrid servoing control under visual

feedback, which may be required to manipulate a robot in unstructured

environments – the challenge here is the design of a desired trajectory in

the image space based on an image space NF that ensures that the features

on the object stay in the camera’s field-of-view through the course of the

robot’s motion. The final portion of this chapter deals with the design of

an image space extremum seeking path planner such that a singularity free

PBVS controller can be designed that works on visual feedback and is able

to reject lens distortion and uncertainties in the camera calibration.

In Chapter 5, we deal with the emerging research area of human-machine

interaction. While the primary control objective during human-machine

interaction is application specific, the secondary objective invariably is to

ensure the safety of the user – to this end, we illustrate the design of

control schemes based on passivity such that the machine is a net energy

sink. The chapter begins by exploring smart exercise machines that provide

optimal physical training for the user by altering the machine’s resistance

based on user performance. Steer-by-wire control of vehicles is discussed
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next, with the focus being on locking the steering response of the vehicle to

the user input as well as ensuring that the road feel experienced by the user

can be appropriately adjusted. The third problem addressed in this chapter

is that of teleoperator systems where the focus is on both facilitating the

application of desired motion and desired force in the remote environment

by the user, as well as ensuring that the system is safely able to reflect

desired forces back to the user. The final topic addressed in Chapter 5 is

that of a rehabilitation robot which is safely able to direct user limb motions

along selectable trajectories in space that optimize their rehabilitation after

disease or injury.

The material in this book (unless noted otherwise) has been derived from

the authors’ research work during the past several years in the area of con-

trols and robotics. This book is aimed at graduate students and researchers

who would like to understand the application of Lyapunov-based control

design techniques to emerging problems in robotics. This book assumes a

background in undergraduate level linear controls theory. Some knowledge

of nonlinear systems and Lyapunov-based design techniques for such sys-

tems may be desirable — however, the book contains adequate background

material in Chapter 2 and Appendix A as well as references to textbooks

that deal with these subjects should they be of interest to the reader.

The authors would like to thank our colleagues and collaborators for their

valuable assistance and counsel without which this work would not have

been possible. We are especially grateful to Dr. Jian Chen, whose work early

on as a graduate student at Clemson University and later as a collaborator

of the authors, has influenced many of the issues examined in this book. We

would also like to acknowledge the unselfish support of the following past

and present members of the Controls and Robotics group in the Department

of Electrical Engineering at Clemson University: Dr. Vilas Chitrakaran,

Dr. Michael McIntyre, Dr. Pradeep Setlur, Dr. Ximing Zhang, Dr. David

Braganza, Dr. Enver Tatlicioglu, and Mr. Abhijit Baviskar. Finally, we

would like to thank Mr. Jonathan Plant, Senior Editor at CRC Press for

his patience and counsel as well as Marsha Pronin, Project Coordinator,

and Karen Simon, Project Editor, for their help with reviewing samples

and assistance with preparation of the camera-ready manuscript.
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1

Introduction

1.1 History of Robotics

From time immemorial, human beings have been fascinated with building

and employing machines with human-like capabilities. As far back as 300

B.C., Greek philosophers, mathematicians, and inventors were postulating

or designing mechanical contraptions that had steam or water-based ac-

tuation as well as some level of autonomy. Around the middle of the last

millennium, Leonardo da Vinci and others built mechanical devices primar-

ily for amusement purposes. Cut to the industrial age, the great scientist

Nikola Tesla built and demonstrated a remote controlled submersible robot

boat at Madison Square Garden in the year 1898. The word “robot” (which

actually means “forced labor” in Czech) was introduced into our vocabu-

lary by playwright Karel Capek in a satirical 1920 play entitled Rossum’s

Universal Robots. Science fiction fans are, of course, very familiar with the

work of Isaac Asimov who first popularized the term “Robotics” and was

responsible for proposing the three fundamental laws of robotics.

Robotics has always attracted the fancy of moviemakers, and robots have

been an integral part of popular culture in the United States. The first

robot to appear on film was “Maria” in Fritz Lang’s 1926 movie named

Metropolis. In 1951, an alien and his robot appeared on the silver screen

in the movie The Day the Earth Stood Still. Arthur Clarke’s novel 2001:

A Space Odyssey was made into a movie in 1968 which featured a high
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functioning robot named HAL that turns rogue and is eventually discon-

nected. A movie that received a great deal of acclaim was Ridley Scott’s

Blade Runner that was released in 1982 and which featured Harrison Ford

as a hunter of illegal mutinous androids known as Replicants. Other movies

like The Terminator and the Matrix series have dealt with sophisticated,

high-functioning humanoids. Most recently, Pixar produced the smash hit

animated robotics film WALL-E which features a sentimental robot of the

same name that is designed to clean up the pollution created by mankind.

Space exploration has advantageously employed manipulator arms and

mobile robots over the years. Lunokhod 1 and 2 were the first robotic ex-

ploration vehicles (rovers) to be launched to an extraterrestrial body, the

moon, by the Soviets in 1970. After a long gap, the rover Sojourner landed

on Mars in 1997 as part of the Pathfinder Mission; it had vision assisted

autonomous navigation and was successful at obtaining and analyzing rock

and soil samples. This was followed in 2004 by the rovers Spirit and Op-

portunity that are still active and continue to analyze the Martian geology,

as well as its environment, to assess the possibility that life may have been

supported on Mars in the past. Most recently, the Phoenix lander executed

the first successful polar landing on the Martian surface and is currently

exploring the possibility of water existing or having existed on the red

planet.

The first commercial robotics company, named Unimation, was started

in 1956 by George Devol and J. Engelberger. As a result of this venture, the

first industrial robot was manufactured and marketed in the United States.

Unimate began work in a General Motors automobile plant in New Jersey

in 1961. This manipulator arm performed spot welding operations as well

as unloading of die casts. This was followed in 1978 by the Programmable

Universal Machine for Assembly, a.k.a. PUMA. Since that time, quite a few

other robot manufacturers have come and gone with only a few achieving

commercial success or longevity in the market. In recent years, personal and

professional service robots have picked up steam. For example, Lego has

achieved success with its Mindstorms Robotics Invention System as has

Sony with its AIBO robot pets. Most recently, Honda’s humanoid robot

ASIMO has hogged media limelight with its ability to perform a wide

variety of service and human interaction tasks.

Robotics in research settings has steadily continued to experience an up-

ward spiral since its inception. Robotics research got its academic start in

1959 with the inauguration of the Artificial Intelligence Laboratory at the

Massachusetts Institute of Technology by John McCarthy and Marvin Min-

sky. Other inaugurations of note were the establishment of the Artificial
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Intelligence Laboratory at Stanford University in 1963, and the Robotics In-

stitute at Carnegie Mellon University in 1979. The first computer-controlled

mechanical hand was developed at MIT in 1961 followed by the creation of

the Stanford Arm in the Stanford Artificial Intelligence Laboratory by Vic-

tor Scheinman in 1969. Early flexible robots of note were Minsky’s octopus-

like Tentacle Arm (MIT, 1968) and Shigeo Hirose’s Soft Gripper (Tokyo

Institute of Technology, 1976). An eight-legged walking robot named Dante

was built at Carnegie Mellon University which was followed by a more ro-

bust Dante II that descended into the crater of the volcano Mt. Spurr in

Alaska in 1994. Demonstrations of planning algorithms for robots began

in the late 1960s when Stanford Research Institute’s Shakey was able to

navigate structured indoor environments. A decade later, the Stanford cart

attempted navigation of natural outdoor scenes as well as cluttered indoor

environments. Modern robotics research is focused on higher dimensional

robots, modular robots, and the planning issues associated with these types

of devices. Simultaneously, robotics is making great strides in medicine and

surgery as well as assistance for individuals with disabilities.

1.2 Lyapunov-Based Control Philosophy

The requirements for increasing levels of autonomy and precision in robots

have necessitated the development of sophisticated control strategies. Mul-

tiple link robots have presented complex, coupled nonlinear dynamics that

have inspired the design of numerous output and state feedback control

designs, especially the global output feedback problem for robots has been

very challenging. Wheeled mobile robots have inspired the design of set-

point and tracking controllers for nonholonomic systems. Other applica-

tions that have challenged control designers have been rigid link flexible

joints in the late nineties as well as higher dimensional and continuum

robots of late.

Linear control design is often inadequate outside narrow operating regimes

where linearized system models are valid. Nonlinear control strategies can

take advantage of full or partial knowledge of the structure and/or pa-

rameters of the system in order to craft techniques that are robust to ex-

ogenous disturbances, measurement noise, and unmodeled dynamics. Re-

search investigators have utilized a variety of tools for analyzing nonlinear

systems arising from nonlinear controllers, nonlinear models, or a combina-

tion thereof – singular perturbation, describing functions, and phase plane

analysis are some of the popular tools. However, Lyapunov-based tech-

niques (in particular, the so-called direct method of Lyapunov) offer the
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distinct advantage that they allow both design and analysis under a com-

mon framework with one stage motivating the other in an iterative fashion.

Lyapunov theory and its derivatives are named after the Russian mathe-

matician and engineer Aleksander Mikhailovich Lyapunov (1857—1918).

Lyapunov stability theory has two main directions – the linearization

method and the aforementioned direct method of Lyapunov. The method

of linearization provides the fundamental basis for the use of linear con-

trol methods [1]. It states that a nonlinear system is locally stable if all the

eigenvalues of its linear approximation (via a Taylor series expansion about

a nominal operating point) are in the open left half plane and is unstable if

at least one is in the open right half plane. Furthermore, the stability can-

not be determined without further analysis if the linearization is marginally

stable. The direct method of Lyapunov relies on the physical property that

a system whose total energy is continuously being dissipated must even-

tually end up at an equilibrium point [1, 2]. Given a scalar, non-negative

energy (or energy-like) function V (t) for a system, it can be shown that if

its time derivative V̇ (t) ≤ 0, the system is stable in the sense of Lyapunov

in that the system states (energy) can be constrained for all future time to

lie inside a ball that is directly related to the size of the initial states of the

system.

While a lot of results have been derived in the last fifty years in order to

deduce stability properties based on the structure of the Lyapunov function

V (t) and its time derivative, we are no closer to understanding how one

may choose an appropriate V (t), i.e., it is not clear how closely the scalar

function V (t) should mimic the physical (kinetic and potential) energy of

the system. What is clear is that the objectives of the control design and

the constraints on the measurements lead to the definition of system states

that often guide the development of the Lyapunov function. Furthermore,

the control design itself is impacted by the need to constrain the time

derivative of the Lyapunov function to be negative definite or semi-definite

along the closed loop system trajectories. Thus, the control design and

the development of the Lyapunov function are intertwined, even though

the presentation may tend to indicate a monotonic trajectory from control

design toward stability analysis. In the ensuing chapters, one will be able

to gain an insight into the variety of choices for Lyapunov functions as well

as the appearance of non-intuitive terms in the control input signals that

will likely indicate an influence of the Lyapunov-based analysis method on

the control design.

While Lyapunov’s direct method is good at characterizing the stability

of equilibrium points for autonomous and nonautonomous systems alike, it
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works equally well in showing the boundedness and ultimate boundedness

of solutions when no equilibrium points exist [3]. Furthermore, the analysis

not only provides a guarantee of stability and the type of stability result

(uniform asymptotic, exponential, semi-global ultimately bounded, etc.), it

is also able to point out bounds on the regions where the results are guaran-

teed to be valid. This is in sharp contrast to linearization based approaches

where regions of convergence are not easily obtained. Finally, Lyapunov-

based design leads to faster identifiers and stronger controllers that are

able to prevent catastrophic instabilities associated with traditional esti-

mation based methods such as certainty equivalence [4]. While traditional

methods work well with linear systems, they can lead to troubling results

such as finite escape times in the case of nonlinear systems. A shortcoming

of the Lyapunov-based analysis techniques is that the chosen parameters

(while guaranteed to produced closed-loop stability) may be too conserva-

tive, thereby compromising the transient response of the system. Moreover,

Lyapunov stability theorems only provide sufficient conditions for stability,

i.e., without further work, it is not possible to say which of those conditions

are also necessary [3].

1.3 The Real-Time Computer Revolution

As we will see in the ensuing chapters, the nonlinear control, estimation,

and observation schemes emanating from an application of Lyapunov’s di-

rect method tend to have a complex structure and are generally computa-

requirement for the use of microprocessors, microcontrollers, and/or com-

puters to crunch the numbers. Furthermore, there is a requirement for fast

interface hardware for allowing the physical (generally analog) world to in-

teract bidirectionally with the digital domain without creating instabilities

and uncertainties due to factors such as phase lags from slow computation,

quantization noise due to finite precision, aliasing due to slow sampling,

uncertain order of execution of various computation modules, etc. In the

last decade, a multitude of control environments have been created in the

academic and industrial research and development communities to serve

this emerging need for reliable real-time computation.

A real-time implementation is different from a traditional implementa-

tion in that the worst-case performance of the hardware and the software is

the most important consideration rather than the average performance. In

real-time operation, the processing of external data arriving in the com-

puter must be completed within a predetermined time window, failing

tionally intense compared to their linear counterparts [2]. Thus, there is a
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which the results obtained are not useful even if they are functionally ac-

curate [5]. In real-time applications, two types of predictability have been

specified, namely, microscopic and macroscopic predictability [6]. Micro-

scopic predictability is the idea that each layer of the application from data

input to control output should operate deterministically and predictably

with failure at one layer dooming the entire application. However, a more

robust idea is macroscopic or overall or top-layer predictability which is

more suited for complex applications — here, failure to meet a deadline

for an internal layer is taken care of by specialized handling. As an exam-

ple, visual processing schemes generally aggregate data (inliers) to reach

a threshold of statistical significance, thus, the computation required may

vary substantially between different control cycles. Under such variation,

a robot running under an external visual-servoing control and an internal

encoder based control is normally programmed to extrapolate a setpoint

if a visual processing deadline is missed rather than shut down its entire

operation – a correction to the prediction (if necessary) is made in the

ensuing cycles when the visual information becomes available.

Traditionally, real-time prototyping has been performed on a heteroge-

neous system comprising a PC host and a DSP single-board computer

(SBC) system, where the control executes on the DSP SBC while the host

PC is used to provide plotting, data logging, and control parameter ad-

justments (online or offline) [7]. As explained in [8], the DSP board is de-

signed to very rapidly execute small programs that contain many floating

point operations. Moreover, since the DSP board is dedicated to executing

the control program, the host computer is not required to perform fast

and/or real-time processing – thus, in a heterogeneous architecture, the

host computer can run a non real-time operating system such as MS-DOS,

Windows, Linux, MacOS, etc. An example of such a system is the popu-

lar dSPACETM Controller Board based on PowerPC technology that sits

in the PCI bus of a general purpose computer (GPC). Other examples

of Host/DSP systems include the MS-Windows based Winmotor and the

QNX based QMotor 1.0 that were developed by the Clemson University

Controls and Robotics group in the 1990s. While still enormously popular,

there are some disadvantages to the host/DSP architecture. As explained

in [7] and [8], these include hardware cost, limited system flexibility, and

complexity of the software.

Over the years, developments in hardware and software have taken the

edge off the two main reasons for the existence of the host/DSP combina-

tion architecture. Increases in computational power in general over the last

decade as well as innovations such as pipelining and multiple core CPUs
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have made it possible for GPCs to be able to execute complex control

strategies at rates in excess of tens of KHz. Today’s desktop computers

can not only run complex control algorithms in the background, they can

simultaneously render high-bandwidth data in one or more GUI windows.

Furthermore, the other advantage offered by multiprocessor architectures,

namely, deterministic response, has been eliminated by the emergence of

hard real-time operating systems such as RTLinux and QNX [7]. Examples

of systems that harness the PC’s computational ability include Opal-RT

Technologies’ RT-LAB as well as QMotor 2.0 and its successor QMotor 3.0

both of which were developed by the Controls and Robotics group at Clem-

son University. All of these systems are based on QNX which is a real-time

microkernel operating system [9]. In particular, QMotor 3.0 [8] allows easy

incorporation of new hardware by employing a client-server architecture

where data from hardware can be accessed by the control program (client)

by talking to the server for that hardware – this communication is done

via message passing or by using shared memory.

Nearly all of the robot path planning and control algorithms derived

in the ensuing chapters have been validated through simulation or experi-

ments. While MATLABTM and SIMULINKTM have been the primary envi-

ronments for running computer simulations, the experimental work shown

here has been performed via control code written in C and compiled and

executed in the QMotor environment running on QNX-based desktop com-

puters.
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Robot Control

2.1 Introduction

This chapter provides background on some established control methods

that are available for holonomic robotic systems. The goal is to describe

a number of common control strategies that are applied to robotic sys-

tems under a common Lyapunov-based analysis framework. The chapter is

divided into four technical sections. The first section presents the dynam-

ics for a robot manipulator and several assumptions/properties associated

with those dynamics. The second section focuses on feedback mechanisms

that yield ultimate boundedness or asymptotic stability of the tracking er-

ror. In general, the controllers presented in this section fall under a broad

class of methods known as computed torque controllers – these methods

are a form of feedback linearization [3, 6, 8] in the sense that an inner-loop

controller is used to cancel out (exactly or approximately) the nonlinear

dynamics of the robot, resulting in residual dynamics for which a variety of

classical (e.g., root-locus based lead/lag compensation, frequency response

methods, etc.) and modern control methods may be applied (e.g., loop

shaping, linear quadratic regulator, pole placement, etc.). A proportional

derivative (PD) controller is first presented and analyzed with respect to

robustness to unknown disturbances – it is shown that high gain feedback

suffices to reduce the tracking error to a small ball around the origin (i.e.,

uniform ultimate boundedness (UUB)). A continuous robust controller is
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then designed and analyzed to show that high frequency feedback can be

utilized in lieu of high gain feedback to damp out the disturbance uncer-

tainty. Finally, a discontinuous controller is also presented to work around

the issue of steady-state tracking error. Discontinuous controllers (e.g., slid-

ing mode control) provide a method to obtain an asymptotic/exponential

stability result in the presence of uncertainties in the dynamics, provided

the actuator is able to provide infinite bandwidth.

The problem with high gain and high frequency approaches is that they

can lead to reduced stability margins and are susceptible to noise. Adap-

tive controllers are utilized in conjunction with or as an alternative to

robust control methods. Adaptive controllers are feedforward controllers

with a self-adjusting mechanism to compensate for uncertainties in the sys-

tem parameters — this online adjustment of the system weights allows for

asymptotic tracking without needing high gain or high frequency actuation.

However, the price to be paid for this improved performance is an increase

in the order of the overall control design. The Adaptive Control Design

Section describes several types of adaptive control methods including: a di-

rect adaptive controller, a desired compensation extension that allows for

off-line computation of the regression matrix, and a neural network based

controller when a linear in the parameters model is not available for the

uncertainty.

Finally, there are unique challenges that emerge when describing the

control objectives in the task-space of the robot. Given the fact that the

usefulness of robots is generally derived from establishing a desirable pose

(i.e., position and orientation) of the robot end-effector with respect to the

environment, it is often best to formulate control objectives for the robotic

system in the task-space. A potential exists for an over- or underdetermined

problem based on the task-space objective and the number of actuated

joints in the robot. A transformation is also required because the control

objective is formulated in the task-space while the control is implemented

in the joint-space. The last section in this chapter highlights these issues

and provides some typical solutions.

2.2 Modeling and Control Objective

2.2.1 Robot Manipulator Model and Properties

The system model for an n- link, revolute, direct-drive robot can be written

as

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + Fdq̇ + τd = τ (2.1)
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where q(t), q̇(t), q̈(t) ∈ Rn denote the link position, velocity, and accel-
eration vectors, respectively, M(q) ∈ Rn×n represents the inertia matrix,
Vm(q, q̇) ∈ Rn×n represents the centripetal-Coriolis matrix, G(q) ∈ Rn rep-
resents the gravity vector, Fd ∈ Rn×n is the constant, diagonal, positive-
definite, dynamic friction coefficient matrix, τd ∈ Rn is a bounded distur-
bance vector that represents other unmodeled dynamics (e.g., static fric-

tion), and τ(t) ∈ Rn represents the torque input vector.
The dynamic equation of (2.1) is assumed to exhibit the following prop-

erties which are employed during the control development and stability

analysis in the subsequent sections.

Property 2.1: The inertia matrix M(q) is a symmetric, positive-definite

matrix that satisfies the following inequality

m1 kξk2 ≤ ξTM(q)ξ ≤ m2 kξk2 ∀ξ ∈ Rn (2.2)

where m1, m2 are known positive constants, and k·k denotes the
standard Euclidean norm. The induced infinity norm, denoted by

k·ki∞, of the inverse of the inertia matrix is assumed to be bounded
by a known positive constant ζM as°°M−1°°

i∞ ≤ ζM

Property 2.2: The inertia and centripetal-Coriolis matrices satisfy the

following skew symmetric relationship

ξT
µ
1

2
Ṁ(q)− Vm(q, q̇)

¶
ξ = 0 ∀ξ ∈ Rn (2.3)

where Ṁ(q) denotes the time derivative of the inertia matrix.

Property 2.3: The dynamic equation of (2.1) can be linear parameterized

as

Yd(qd, q̇d, q̈d)θ =M(qd)q̈d + Vm(qd, q̇d)q̇d +G(qd) + Fdq̇d (2.4)

where θ ∈ Rp contains the unknown constant system parameters, and
the desired regression matrix Yd(qd, q̇d, q̈d) ∈ Rn×p contains known
bounded functions of the desired link position, velocity, and acceler-

ation trajectory signals denoted by qd(t), q̇d(t), q̈d(t) ∈ Rn, respec-
tively. It is assumed that qd(t), q̇d(t), q̈d(t),

···
q d(t), Yd(·), and Ẏd(·) are

all bounded functions of time.
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Property 2.4: The centripetal-Coriolis, gravity, friction, and disturbance

terms of (2.1) can be upper bounded as

kVm(q, q̇)ki∞ ≤ ζc1 kq̇k , kG(q)k ≤ ζg,

kFdki∞ ≤ ζfd, kτdk ≤ ζtd
(2.5)

where ζc1, ζg, ζfd, ζtd denote known positive bounding constants,

and k·ki∞ denotes the infinity-norm of a matrix.

Property 2.5: The centripetal-Coriolis matrix satisfies the switching re-

lationship

Vm(q, ξ)ν = Vm(q, ν)ξ ∀ξ, ν ∈ Rn. (2.6)

2.2.2 Control Objective

The objective in this chapter is to develop link position tracking controllers

for the robot manipulator model given by (2.1). To quantify the perfor-

mance of the control objective, the link position tracking error e(t) ∈ Rn
is defined as

e = qd − q (2.7)

where qd(t) ∈ Rn denotes the desired link position trajectory. To facilitate
the subsequent control development and stability analysis, the order of the

dynamic expression given in (2.1) can be reduced by defining a filtered

tracking error-like variable r(t) ∈ Rn as
r = ė+ αe (2.8)

where α ∈ R is a positive constant control gain. Specifically, by defining the
filtered tracking error, the control objective can be formulated in terms of

r(t), because linear analysis tools (see Lemmas A.18 and A.16 in Appendix

A) can be used to conclude that if r(t) is bounded then e(t) and ė(t) are

bounded, and if r(t) → 0 then e(t),ė(t) → 0. The mismatch θ̃(t) ∈ Rp
between the actual parameter vector θ and the estimate vector θ̂(t) ∈ Rp
is defined as

θ̃ = θ − θ̂. (2.9)

2.3 Computed Torque Control Approaches

2.3.1 PD Control

Control Development

After taking the second time derivative of (2.7), premultiplying the result-

ing expression byM(q), utilizing (2.1), and then performing some algebraic
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manipulation, the following expression can be obtained

Më =Mq̈d +N + τd − τ (2.10)

where N(q, q̇) ∈ Rn is an auxiliary function defined as

N = Vm(q, q̇)q̇ +G(q) + Fdq̇.

Based on the open-loop error system in (2.10), a computed torque PD

controller can be developed as

τ =M (q̈d + kdė+ kpe) +N (2.11)

where kp, kd ∈ R denote gains for the proportional and derivative errors,
respectively, where

kp = α (kd − α) + kp2 (2.12)

where kp2 ∈ R is an auxiliary proportional gain, and kd > α. The result-

ing closed-loop error system can be determined by substituting (2.11) into

(2.10) as

ë+ kdė+ kpe =M−1τd. (2.13)

Based on the closed-loop system of (2.13) and the bounds prescribed in

(2.5), it is easy to see the UUB property of the tracking error.

Alternative Control Development and Analysis

The PD controller developed in (2.11) is written in a traditional manner

with explicit gains for the proportional and derivative feedback. An al-

ternative approach is provided in this section that makes greater use of

the filtered tracking error formulation and illustrates the advantages of us-

ing Property 2.2. To facilitate the alternative design, the open-loop error

system for r(t) is formulated by taking the time derivative of (2.8), pre-

multiplying the resulting expression by M(q), and substituting (2.1) to

obtain

Mṙ =Mq̈d + Vm(q, q̇)q̇ +G(q) + Fdq̇ + τd − τ + αMė. (2.14)

Motivated by the desire to use Property 2.2, the expression in (2.14) is

rewritten as

Mṙ = −Vm(q, q̇)r − Fdr + τd − τ +N (2.15)

where N(q, q̇, t) ∈ Rn is now defined as

N =Mq̈d + Vm(q, q̇) (q̇d + αe) +G(q) + Fd (q̇d + αe) + αMė.
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Specifically, the computed torque PD controller developed in (2.11) is re-

designed as

τ = (k1 + k2) r +N. (2.16)

where k1 and k2 are control gains. To illustrate why the controller in (2.16)

can still be considered as a computed torque PD controller, consider the

alternate form

τ = kė+ αke+N

where k , k1 + k2 denotes the derivative gain, and αk denotes the pro-

portional gain. After substituting (2.16) into (2.15) the closed-loop error

system can be determined as

Mṙ = −Vm(q, q̇)r − Fdr + τd − kr. (2.17)

Theorem 2.1 Given the open-loop error system in (2.15), the computed

torque PD controller given in (2.16) ensures that the tracking error is glob-

ally uniformly ultimately bounded in the sense that

ke(t)k ≤
p
ζ0 exp(−ζ1t) + ζ2 (2.18)

for some positive constants ζ0, ζ1, ζ2.

Proof: Let V (t) ∈ R denote the non-negative function

V =
1

2
rTMr. (2.19)

By using (2.17) and Properties 2.1 and 2.2, the time derivative of (2.19)

can be expressed as

V̇ =
1

2
rT Ṁr + rT (−Vmr − Fdr + τd − kr)

= rT (−Fdr + τd − kr)

≤ −k krk2 + ζtd krk .
Completing the squares yields the following inequalities

V̇ ≤ −k1 krk2 − k2

"
krk2 − ζtd

k2
krk+

µ
ζtd
2k2

¶2#
+

ζ2td
4k2

≤ −k1m1

2
V +

ζ2td
4k2

(2.20)

where m1 is defined in Property 2.1. The inequality in (2.20) can be solved

using standard linear analysis tools (see Lemma A.20 in Appendix A) as

V (t) ≤ V (0) exp(−k1m1

2
t) +

ζ2td
2m1k1k2

(1− exp(−k1m1

2
t)). (2.21)
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Based on (2.19), the inequality in (2.21) can be written as

kr(t)k2 ≤ m2

m1
kr(0)k2 exp(−k1m1

2
t) +

ζ2td
m2
1k1k2

(1− exp(−k1m1

2
t))

≤
µ
m2

m1
kr(0)k2 − ζ2td

m2
1k1k2

¶
exp(−k1m1

2
t) +

ζ2td
m2
1k1k2

. (2.22)

The inequality in (2.18) can be obtained from (2.22) by invoking Lemma

A.21 in Appendix A.

2.3.2 Robust Control

The previous section illustrated how a PD controller can be used to yield

a UUB stability result in the presence of a bounded disturbance torque.

From the expression in (2.22), it is clear that by increasing the proportional

and derivative gains arbitrarily large (i.e., high gain feedback), the residual

steady state error ζ2 can be decreased arbitrarily small. Yet, high gain

feedback can be problematic if noise is present in the system (e.g., feedback

from a vision system, use of backwards differencing to obtain velocities from

position measurements, etc.). Motivated by the desire to reduce the steady-

state error without increasing the gains arbitrarily large, an alternative

robust controller can be developed that relies on high bandwidth from the

actuator.

Control Development

Consider the following computed torque controller

τ = kr + uR +N. (2.23)

that is designed the same as the PD controller in (2.16), with the addition of

a robustifying feedback component uR ∈ Rn. The high frequency (variable
structure) robustifying feedback term in (2.23) is defined as

uR =
rζ2td

krk ζtd + �
(2.24)

where � ∈ R is an arbitrarily small positive design constant. After substi-
tuting (2.23) and (2.24) into (2.15), the following closed-loop error system

is obtained

Mṙ = −Vm(q, q̇)r − Fdr + τd − rζ2td
krk ζtd + �

− kr. (2.25)
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Stability Analysis

Theorem 2.2 Given the open-loop error system in (2.15), the robust con-

troller given in (2.23) and (2.24) ensures that the tracking error is uni-

formly ultimately bounded in the sense that

ke(t)k ≤
p
ζ0 exp(−ζ1t) + ζ2 (2.26)

for some positive constants ζ0, ζ1, ζ2.

Proof: By using (2.25) and Properties 2.1 and 2.2, the time derivative

of (2.19) can be expressed as

V̇ =
1

2
rT Ṁr + rT

µ
−Vmr − Fdr + τd − rζ2td

krk ζtd + �
− kr

¶
= rT (−Fdr + τd − rζ2td

krk ζtd + �
− kr)

≤ −k krk2 + �

µ krk ζtd
krk ζtd + �

¶
≤ −k krk2 + �. (2.27)

The inequality in (2.27) can be used along with the same stability analysis

developed for the PD controllers to conclude that

kr(t)k2 ≤ m2

m1
kr(0)k2 exp(−km1

2
t) +

2�

km1
(1− exp(−km1

2
t))

≤
µ
m2

m1
kr(0)k2 − 2�

km1

¶
exp(−km1

2
t) +

2�

km1
.

(2.28)

The inequality in (2.26) can be obtained from (2.28) by invoking Lemma

A.21 in Appendix A. Comparing the results in (2.22) and (2.28) highlights

the benefits of the robust control design. Specifically, the steady state error

ζ2 in (2.28) does not depend on the upper bound on the disturbance term

ζtd and the residual error can be made arbitrarily small by either increasing

the control gains (as in the PD controller) or by decreasing the design

parameter �. Decreasing the design parameter � increases the bandwidth

requirements of the actuator.

2.3.3 Sliding Mode Control

Control Development

The last section illustrates how the increasing the frequency of the con-

troller can be used to improve the steady state error of the system. Taken
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to the extreme, if the design parameter � is set to zero, then the controller

requires infinite actuator bandwidth (which is not practical in typical en-

gineering systems), and the state error vanishes (theoretically). This dis-

continuous controller is called a sliding mode controller. To illustrate the

sliding mode control, consider the control design in (2.23) and (2.24) with

� = 0 as

τ = kr + sgn(r)ζtd +N. (2.29)

The corresponding closed-loop error system is given by

Mṙ = −Vm(q, q̇)r − Fdr + τd − sgn(r)ζtd − kr. (2.30)

Stability Analysis

Theorem 2.3 Given the open-loop error system in (2.15), the sliding mode

controller given in (2.29) and (2.30) ensures that the tracking error is glob-

ally exponentially stable.

Proof: By using (2.30) and Properties 2.1 and 2.2, the time derivative

of (2.19) can be expressed as

V̇ =
1

2
rT Ṁr + rT (−Vmr − Fdr + τd − sgn(r)ζtd − kr) (2.31)

= rT (−Fdr + τd − sgn(r)ζtd − kr)

≤ −k krk2

The inequality in (2.31) can be used to conclude that

ke(t)k ≤ kr(t)k ≤
r

m2

m1
kr(0)k exp(−km1

4
t). (2.32)

2.4 Adaptive Control Design

Control designs in the previous section use high gain feedback or high

(or infinite) frequency to compensate for the bounded disturbances in the

robot dynamics. The previous approaches also exploit exact knowledge of

the dynamic model in computed torque design. Various estimation meth-

ods can be used for estimation of the feedforward terms, thereby reducing

the requirement for high gains and high frequency to compensate for the

uncertainties/disturbances in the dynamic model. This section focuses on

two popular feedforward methods: adaptive control for systems with linear

in the parameters uncertainty, and neural network (and fuzzy logic)-based



© 2010 by Taylor and Francis Group, LLC

18 2. Robot Control

controllers to compensate for uncertainty that does not satisfy the linear

in the parameters assumption (Property 2.3).

The controllers in the previous sections were based on the assumption

of exact model knowledge (i.e., N(·) was used in the control designs to
(partially) feedback linearize the system) with the exception of the added

disturbance. In this section, the assumption of exact model knowledge is

relaxed, but the added disturbance is neglected for simplicity and without

loss of generality in the sense that the previous robust and sliding mode

feedback methods can be used in conjunction with the methods in this

section to also compensate for added disturbances.

2.4.1 Direct Adaptive Control

Control Development

The open-loop error system in (2.14) (with τd = 0) can be written as

Mṙ = −Vm(q, q̇)r − Fdr + Y θ − τ (2.33)

where Y (q, q̇, t) ∈ Rn×p is a nonlinear regression matrix, and θ ∈ Rp is
a vector of uncertain constant parameters (i.e., linear in the parameters

assumption) defined as

Y θ =Mq̈d + Vm(q, q̇) (q̇d + αe) +G(q) + Fd (q̇d + αe) + αMė.

Based on (2.33), an adaptive feedforward controller can be designed as

τ = Y θ̂ + kr (2.34)

where θ̂(t) ∈ Rp denotes a time varying estimate of θ. There is significant
variation in how the adaptive update law is developed to generate θ̂(t).

Typically, a tracking error based gradient update law is designed motivated

by the desire to cancel common terms in the Lyapunov analysis. Based on

the subsequent stability analysis, a gradient update law for the open-loop

error system in (2.33) is
·
θ̂ = ΓY T r (2.35)

where Γ ∈ Rp×p is a diagonal matrix of adaptation gains. In practice,
the initial condition θ̂(0) are best-guess estimates of the parameters (e.g.,

information obtained from a manufacturer’s specification sheet, or results

from some off-line parameter estimation method, etc.). Substituting (2.34)

into (2.33) yields the closed-loop error system

Mṙ = −Vm(q, q̇)r − Fdr + Y θ̃ − kr (2.36)
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where θ̃(t) ∈ Rp denotes the mismatch between the unknown parameters
and the estimate vector as

θ̃ = θ − θ̂. (2.37)

Stability Analysis

Theorem 2.4 Given the open-loop error system in (2.33), the adaptive

controller given in (2.34) and (2.35) ensures global asymptotic tracking in

the sense that

e(t)→ 0 as t→∞. (2.38)

Proof: Let V (t) ∈ R denote the non-negative function

V =
1

2
rTMr +

1

2
θ̃
T
Γ−1θ̃. (2.39)

By using (2.36), the time derivative of (2.37), and Properties 2.1 and 2.2,

the time derivative of (2.39) can be expressed as

V̇ = rT
³
Y θ̃ − Fdr − kr

´
− θ̃

T
Γ−1

·
θ̂. (2.40)

Substituting (2.35) into (2.40) and canceling common terms yields

V̇ = −rT (Fdr + kr) . (2.41)

Since the expression in (2.41) is always negative semi-definite, (2.39) can

be used to conclude that V (t), r(t), θ̃(t) ∈ L∞. Since r(t) ∈ L∞, linear
analysis methods [9] can be applied to (2.8) to prove that e(t), ė(t) ∈ L∞,
and since the desired trajectory qd(t) and its time derivatives are assumed

to be bounded, q(t), q̇(t) ∈ L∞. Given that q(t), q̇(t) ∈ L∞, then Proper-
ties 2.2 and 2.4 can be used to conclude that Y (q, q̇, t) ∈ L∞. The fact
that θ̃(t) ∈ L∞ can be used with (2.37) to conclude that θ̂(t) ∈ L∞. Since
Y (q, q̇, t), θ̂(t), r(t) ∈ L∞, the control is bounded from (2.34) and the adap-
tation law

·
θ̂(t) ∈ L∞ from (2.35). The closed-loop error dynamics in (2.36)

can be used to conclude that ṙ(t) ∈ L∞; hence, r(t) is uniformly continu-
ous from Lemma A.12 in Appendix A. Lemma A.14 in Appendix A can be

applied to (2.39) and (2.41) to conclude that r(t) is square integrable (i.e.,

r(t) ∈ L2). Since r(t), ṙ(t) ∈ L∞ and r(t) ∈ L2, a corollary to Barbalat’s
Lemma given in Lemma A.1 in Appendix A can be used to conclude that

r(t)→ 0 as t→∞. (2.42)

Based on (2.42), Lemma A.18 in Appendix A can be invoked to conclude

the result in (2.38).
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The motivation for the tracking error-based gradient update given in

(2.35) is clear from (2.40). Through some control design and analysis mod-

ifications, additional update laws can also be used to obtain the result in

(2.38) including least squares update laws and composite adaptive update

laws based on both tracking and prediction (of the output) error. An ex-

ample of a least squares adaptation law based on the tracking error is given

by
·
θ̂ = PY T r, Ṗ = −PY TY P (2.43)

where P (t) ∈ Rp×p is a time-varying symmetric matrix, where P (0) is

selected to be a positive definite, symmetric matrix. Composite adaptive

update laws are updates based on combining information from both the

tracking and the prediction error

·
θ̂ = PY T

f ε+ PY T r (2.44)

where Yf (·) denotes the regression matrix Y (·) after it has been convolved
with a low-pass filter, while ε(t) denotes the prediction error [12], [28].

DCAL Extension

The adaptive update laws in (2.35), (2.43), and (2.44) depend on q(t) and

q̇(t). This dependency means that the regression matrix must be computed

on-line and requires velocity feedback. For applications with demanding

sampling times or limited computational resources, the need to compute the

regression matrix on-line can be problematic. Moreover, velocity measure-

ments may only be available through numerical differentiation (and hence,

will likely contain noise), and some control designs require the derivative

of the regression matrix, thus requiring acceleration measurements. To ad-

dress these issues, this section describes the desired compensation adapta-

tion law (DCAL) first developed in [24]. DCAL control designs are based on

the idea of formulating a regression matrix that is composed of the desired

position and velocity feedback rather than the actual states. Therefore, the

regression matrix can be computed off-line (for an a priori given trajec-

tory) and does not require velocity measurements. Furthermore, even if

an adaptation law uses velocity feedback outside of the regression matrix

(e.g., such as r(t) in (2.35)), the DCAL-based desired regression matrix

can be integrated by parts so that the actual estimate θ̂(t) is only a func-

tion of position feedback. The following development illustrates how the

DCAL strategy can be applied along with a filter mechanism to develop

an adaptive output feedback controller (i.e., only q(t) and hence e(t) are

measurable).
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To facilitate the development of a DCAL based controller, a filter ef (t) ∈
Rn is defined as

ef = −ke+ p (2.45)

where k ∈ R is a positive filter gain, and p(t) ∈ Rn is generated from the

following differential expression

ṗ = −(k + 1)p+ (k2 + 1)e. (2.46)

The filter developed in (2.45) and (2.46) is included in the control design

by redefining the filtered tracking error r(t) in (2.8) as

r = ė+ e+ ef . (2.47)

The filtered tracking error in (2.47) is not measurable due to the dependence

on ė(t), but the definition of r(t) is useful for developing the closed-loop

error system and stability analysis. To develop the new open-loop error

system, time derivative of (2.47) is premultiplied by the inertia matrix,

and (2.1) (with τd = 0), (2.7), and (2.45)—(2.47) are used to yield

Mṙ = M(q)q̈d + Vm(q, q̇)q̇ +G(q) + Fdq̇ − τ (2.48)

+M (r − e− ef ) +M
¡−kė− (k + 1)p+ (k2 + 1)e¢ .

After using Property 2.5, (2.7), (2.45), and (2.47), the open-loop dynamics

can be expressed as

Mṙ = −Vm(q, q̇)r + Ydθ − kMr + χ− τ (2.49)

where Yd(qd, q̇d, q̈d)θ is defined in Property 2.3, and the auxiliary term χ(e,

r, q, q̇, q̇d) ∈ Rn is defined as

χ = M(q)q̈d + Vm(q, q̇d) (q̇d − r + e+ ef ) + Vm(q, q̇) (e+ ef )(2.50)

+G(q) + Fdq̇ +M (r − e− ef ) +M (e− ef )− Ydθ

By using the Mean Value Theorem, the term χ(r, e, ef , q, q̇, qd, q̇d, q̈d)

can be upper bounded as

kχk ≤ ζ1 kxk+ ζ2 kxk2 (2.51)

where ζ1, ζ2 ∈ R are some positive bounding constants, and x(t) ∈ R3n is
defined as

x =
h
rT eT eTf

iT
. (2.52)

Based on (2.49), an adaptive DCAL controller can be designed as

τ = Ydθ̂ − kef + e (2.53)
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where θ̂(t) is generated from the following gradient-based DCAL adaptive

update law
·
θ̂ = ΓY T

d r. (2.54)

By integrating (2.54) by parts, the estimate θ̂(t) can be expressed as

θ̂(t) = θ̂(0) + ΓY T
d e
¯̄t
0
− Γ

Z t

0

Ẏ T
d (σ) e (σ) d (σ) (2.55)

+Γ

Z t

0

Y T
d (σ) (e (σ) + ef (σ)) d (σ) .

From (2.53) and (2.55), the controller does not depend on velocity, and the

regression matrix can be computed off-line. Substituting (2.53) into (2.49)

yields the closed-loop error system

Mṙ = −Vm(q, q̇)r + Ydθ̃ − kMr + kef − e+ χ. (2.56)

To facilitate the subsequent stability analysis, let k be defined as the con-

stant

k =
1

m1

¡
ζ21kn1 + ζ22kn2 + 1

¢
(2.57)

where ζ1 and ζ2 are the constants defined in (2.51), and kn1 and kn2 ∈ R
are positive constants selected (large enough) to satisfy the following initial

condition dependent sufficient condition

kn2

µ
1− 1

4kn1

¶
≥ 1
4

max(1,m2) kx(0)k2 + λmax(Γ
−1)

°°°θ̃max(0)°°°2
min(1,m1, λmin(Γ−1))

(2.58)

where λmax() denotes the maximum eigenvalue of the argument, and θ̃max(0)

denotes a known upperbound on the parameter estimate mismatch.

Stability Analysis

Theorem 2.5 Given the open-loop error system in (2.49), the adaptive

controller given in (2.53) and (2.54) ensures semi-global asymptotic track-

ing in the sense that

e(t)→ 0 as t→∞ (2.59)

provided k is selected according to (2.58).

Proof: Let V (t) ∈ R denote the non-negative function

V =
1

2
rTMr +

1

2
eT e+

1

2
eTf ef +

1

2
θ̃
T
Γ−1θ̃ (2.60)
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that can be upper and lower bounded as

1

2
min(1,m1, λmin(Γ

−1)) kzk2 ≤ V ≤ 1
2
max(1,m2, λmax(Γ

−1)) kzk2
(2.61)

for some positive constants λ1, λ2 ∈ R and z(t) ∈ R3n+p is defined as

z =
h
rT eT eTf θ̃

T
iT

.

By using Properties 2.1 and 2.2, (2.45)—(2.47), and (2.56), the time deriva-

tive of (2.60), can be expressed as

V̇ = rT
³
Ydθ̃ − kMr + kef − e+ χ

´
+ eT (r − e− ef ) (2.62)

+
1

2
eTf
¡−k (r − e− ef )− (k + 1) (ef + ke) + (k2 + 1)e

¢− θ̃
T
Γ−1

·
θ̂.

Substituting (2.54) into (2.62) and canceling common terms yields

V̇ = rT (−kMr + χ)− eT e− eTf ef (2.63)

which, by using (2.51) can be upper bounded as

V̇ ≤ −km1 krk2 + ζ1 kxk krk+ ζ2 krk kxk2 − kek2 − kefk2 (2.64)

wherem1 is introduced in (2.2). By using (2.57) and completing the squares

on the first three terms in (2.64), the following inequality can be developed

V̇ ≤ −
Ã
1− 1

4kn1
− kxk

2

4kn2

!
kxk2 . (2.65)

By using (2.61), the inequality in (2.65) can be further upper bounded as

V̇ ≤ −
µ
1− 1

4kn1
− 0.5V

min(1,m1, λmin(Γ−1))kn2

¶
kxk2

≤ −c kxk2 if
µ
1− 1

4kn1
− 0.5V

min(1,m1, λmin(Γ−1))kn2

¶
≥ 0

(2.66)

for some positive constant c. The second inequality in (2.66) illustrates a

semi-global stability result. That is, if the condition in (2.66) is satisfied,

then V (t) will always be smaller or equal to V (0). Therefore, if the condition

in (2.66) is satisfied for V (0) then it will be satisfied for all time. As a result,

provided the sufficient condition given in (2.58) is satisfied (i.e., k is selected

large enough based on the initial conditions in the system), then (2.60) and

(2.66) can be used to conclude that V (t), z(t), x(t), e(t), ef (t), r(t), θ̃(t) ∈
L∞. Similar boundedness arguments can now be used to conclude that all
closed-loop signals are bounded and that x(t) ∈ L2, and Barbalat’s Lemma
given in Lemma A.1 in Appendix A can be used to conclude that

e(t)→ 0 as t→∞.
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2.4.2 Neural Network-Based Control

The adaptive control methods developed in the previous section are based

on the linear in the parameters assumption (see Property 2.3). Sometimes,

the system uncertainty contains unmodeled effects, or at least uncertainty

that does not satisfy Property 2.3. For these systems, function approxima-

tion methods (e.g., neural network (NN), fuzzy logic-based approximators,

genetic algorithms, etc.) can be used as a feedforward control method. The

advantage of function approximation is that the uncertainty does not need

to be modeled; however, function approximation methods have inherent

reconstruction errors that can degrade the steady-state performance of a

system (e.g., resulting in a UUB stability result). In this section, a NN-

based feedforward controller is developed (other function approximation

methods have a similar control structure).

Function Approximation

As a result of the universal approximation property, multilayer NNs can

approximate generic nonlinear continuous functions. Specifically, let S be
a compact simply connected set of Rp1+1. With map f : S → Rn, de-
fine Cn (S) as the space where f is continuous. There exist weights and

thresholds such that some function f(ξ) ∈ Cn (S) can be represented by a
three-layer NN as [14], [15]

f (ξ) =WTσ
¡
V T ξ

¢
+ ε (ξ) , (2.67)

for some given input ξ(t) ∈ Rp1+1. In (2.67), V ∈ R(p1+1)×p2 and W ∈
R(p2+1)×n are bounded constant ideal weight matrices for the first-to-

second and second-to-third layers respectively, where p1 is the number of

neurons in the input layer, p2 is the number of neurons in the hidden

layer, and n is the number of neurons in the output layer. The activation

function in (2.67) is denoted by σ (·) ∈ Rp2+1, and ε (ξ) ∈ Rn is the func-
tional reconstruction error. A variety of activation functions can be used

for σ (·). Some popular activation functions include sigmoid-based radial
basis functions and fuzzy logic-based triangle membership functions. Note

that augmenting the input vector ξ(t) and activation function σ (·) by “1”
allows thresholds to be included as the first columns of the weight matrices

[14], [15]. Thus, any tuning of W and V then includes tuning of thresh-

olds as well. The computing power of the NN comes from the fact that

the activation function σ (·) is nonlinear and the weights W and V can be

modified or tuned through some learning procedure [15]. Based on (2.67),

the typical three-layer NN approximation for f(ξ) is given as [14], [15]

f̂ (ξ) , ŴTσ(V̂ T ξ), (2.68)
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where V̂ (t) ∈ R(p1+1)×p2 and Ŵ (t) ∈ R(p2+1)×n are subsequently designed
estimates of the ideal weight matrices. The estimation errors for the ideal

weight matrices, denoted by Ṽ (t) ∈ R(p1+1)×p2 and W̃ (t) ∈ R(p2+1)×n, are
defined as

Ṽ , V − V̂ , W̃ ,W − Ŵ ,

and the mismatch for the hidden-layer output error for a given x(t), denoted

by σ̃(x) ∈ Rp2+1, is defined as
σ̃ , σ − σ̂ = σ(V T ξ)− σ(V̂ T ξ). (2.69)

The NN estimate has several properties that facilitate the subsequent

development. These properties are described as follows.

Property 2.6 The Taylor series expansion for σ
¡
V T ξ

¢
for a given ξ may

be written as [14], [15]

σ(V T ξ) = σ(V̂ T ξ) + σ
0
(V̂ T ξ)Ṽ T ξ +O(Ṽ T ξ)2, (2.70)

where σ
0
(V̂ T ξ) ≡ dσ

¡
V T ξ

¢
/d
¡
V T ξ

¢ |V T ξ=V̂ T ξ, and O(V̂ T ξ)2 de-

notes the higher order terms. After substituting (2.70) into (2.69)

the following expression can be obtained:

σ̃ = σ̂
0
Ṽ T ξ +O(Ṽ T ξ)2, (2.71)

where σ̂
0
, σ

0
(V̂ T ξ).

Property 2.7 The ideal weights are assumed to exist and be bounded by

known positive values so that

kV k2F ≤ V̄B (2.72)

kWk2F ≤ W̄B, (2.73)

where k·kF is the Frobenius norm of a matrix, and tr (·) is the trace
of a matrix.

Property 2.8 The estimates for the NN weights, Ŵ (t) and V̂ (t), can be

bounded using a smooth projection algorithm (see [21]).

Property 2.9 The typical choice of activation function is the sigmoid

function

σ(ξ) =
1

1 + eκξ
,

where

kσk < 1 and kσ̇k ≤ σn,

and σn ∈ R is a known positive constant.
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Property 2.10 On a given compact set S, the net reconstruction error

ε(ξ) is bounded as

kε(ξ)k ≤ εn,

where εn ∈ R is a known positive constant.

Closed-Loop Error System

The open-loop error system in (2.14) can be written as

Mṙ = −Vm(q, q̇)r + f + τd − τ (2.74)

where the function f(t) ∈ Rn is defined as

f ,M(q)q̈d + Vm(q, q̇) (q̇d + αe) +G(q) + Fdq̇ + αMė. (2.75)

The auxiliary function in (2.75) can be represented by a three layer NN as

described in (2.67) where the NN input x1(t) ∈ R5n+1 is defined as x1 , [1,
q̈d, q, q̇, e, ė]

T .

Based on (2.33), a NN-based feedforward controller can be designed as

τ = f̂ + kr (2.76)

where f̂(t) ∈ Rn is the estimate for f(t) and is defined as in (2.68), while
the update laws for Ŵ (t) and V̂ (t) are designed (and generated on-line)

based on the subsequent stability analysis as

·
Ŵ = Γ1σ̂r

T − Γ1σ̂
0
V̂ Tx1r

T
·
V̂ = Γ2x(σ̂

0T Ŵr)T (2.77)

where Γ1 ∈ R(p2+1)×(p2+1) and Γ2 ∈ R(p1+1)×(5n+1) are constant, positive
definite, symmetric gain matrices. The closed-loop error system can be

developed by substituting (2.76) into (2.74) and using (2.67) and (2.68) as

Mṙ = −Vm(q, q̇)r+WTσ
¡
V Tx1

¢−ŴTσ(V̂ Tx1)+ε (x1)+ τd−kr (2.78)

Simple algebraic manipulations as well as an application of the Taylor series

approximation in (2.71) yields

Mṙ = −Vm(q, q̇)r+W̃T σ̂−W̃T σ̂
0
V̂ Tx1+ŴT σ̂

0
Ṽ Tx1+χ−kr−e, (2.79)

where the notations σ̂1 and σ̃1 were introduced in (2.69), and χ(t) ∈ Rn is
defined as

χ = W̃T σ̂
0
V Tx1 +WTO(Ṽ Tx1)

2 + ε (x1) + τd + e. (2.80)
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Based on Properties 2.4, 2.6—2.10, χ(t) can be bounded as

kχk ≤ c1 + c2 kek+ c3 krk , (2.81)

where ci ∈ R, (i = 1, 2, 3) are known positive bounding constants. In (2.79),
k ∈ R is a positive constant control gain defined, based on the subsequent
stability analysis, as

k , k1 + kn1c
2
1 + kn2c

2
2 (2.82)

where k1, kn1, kn2 ∈ R are positive constant gains.

Stability Analysis

Theorem 2.6 Given the open-loop error system in (2.74), the NN-based

controller given in (2.76) ensures global uniformly ultimately bounded sta-

bility in the sense that

ke(t)k ≤ ε0 exp(−ε1t) + ε2 (2.83)

where ε0, ε1, ε2 are some positive constants, provided k is selected according

to the following sufficient conditions

α >
1

4kn2
k1 > c3 (2.84)

where c3 is defined in (2.81).

Proof : Let V (t) ∈ R denote a non-negative, radially unbounded function
defined as

V =
1

2
rTMr +

1

2
eT e+

1

2
tr(W̃TΓ−11 W̃ ) +

1

2
tr(Ṽ TΓ−12 Ṽ ). (2.85)

It follows directly from the bounds given in Properties 2.1, 2.7, and 2.8,

that V (t) can be upper and lower bounded as

λ1 kzk2 ≤ V (t) ≤ λ2 kzk2 + ζ, (2.86)

where λ1, λ2, ζ ∈ R are known positive bounding constants, and z(t) ∈ R2n
is defined as

z =
£
rT eT

¤T
.

The time derivative of V (t) in (2.85) can be determined as

V̇ = rT (
1

2
Ṁr − Vm(q, q̇)r + W̃T σ̂ − W̃T σ̂

0
V̂ Tx1 + ŴT σ̂

0
Ṽ Tx1 + χ

−kr − e) + eT (r − αe)− tr(W̃TΓ−11
·
Ŵ 1)− tr(Ṽ TΓ−12

·
V̂ ) (2.87)
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By using Properties 2.1 and 2.2, (2.77), (2.79), (2.81), and (2.82) the ex-

pression in (2.87) can be upper bounded as

V̇ ≤
h
c1 krk− kn1c

2
1 krk2

i
+
h
c2 kek krk− kn2c

2
2 krk2

i
+(c3 − k1) krk2−α kek2

(2.88)

where the fact that tr(AB) = tr(BA) was used. After applying the non-

linear damping argument provided in Lemma A.19 of Appendix A on the

bracketed terms, one obtains

V̇ ≤ 1

4kn1
−
µ
α− 1

4kn2

¶
kek2 − (k1 − c3) krk2 .

A further upperbound can be developed after using (2.84) and (2.85) as

follows

V̇ (t) ≤ − c

λ2
V (t) + εx, (2.89)

where c ∈ R and εx ∈ R are positive constants defined as

c , min
½
(k1 − c3) ,

µ
α− 1

4kn2

¶¾
and εx ,

1

4kn1
+

cζ

λ2
. (2.90)

The linear differential inequality in (2.89) can be solved as

V (t) ≤ V (0)e(−
c
λ2
)t + εx

λ2
c

h
1− e(−

c
λ2
)t
i
. (2.91)

The inequalities in (2.86) can now be used along with (2.90) and (2.91) to

conclude that

ke(t)k2 ≤
"
λ2 kz(0)k2 + ζ − εx

λ2
c

λ1

#
e(−

c
λ2
)t + εx

λ2
λ1c

. (2.92)

In a similar approach to the one developed in the first section, it can be

shown that all signals remain bounded.

2.5 Task-Space Control and Redundancy

The controllers developed in the previous sections are all based on a joint-

space-based control objective. Yet, the control objective for many robotic

applications is best described in the task-space or Cartesian-space where

the relationship between the robot and external objects is relevant. By us-

ing inverse kinematics, the desired task-space trajectory can be related to

the desired joint-space trajectory for all the controllers derived hitherto.

However, the problem becomes challenging when dealing with redundancy.
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A kinematically redundant manipulator is a robotic arm that has more

degrees of freedom (DOF) than required to perform an operation in the

task-space; hence, these extra degrees of freedom allow the robot manip-

ulator to perform more dextrous manipulation and/or provide the robot

manipulator system with increased flexibility for the execution of sophis-

ticated tasks. Since the dimension (i.e., n) of the link position variables is

greater than the dimension (i.e., m) of the task-space variables, the null

space of Jacobian matrix has a minimum dimension of n−m. That is, any

link velocity in the null space of the manipulator Jacobian will not affect the

task-space velocity. This motion of the joints is referred to as self-motion,

since it is not observed in the task-space. As stated in [7], [18], [19], and

[27], there are generally an infinite number of solutions for the inverse

kinematics of a redundant manipulator. Thus, given a desired task-space

trajectory, it can be difficult to select a reasonable joint-space trajectory

to ensure stability and boundedness of all signals along with satisfying the

mechanical constraints such as singularities and obstacle avoidance.

This section considers the nonlinear control of kinematically redundant

robot manipulators through the development of a computed torque expo-

nential link position and sub-task tracking controller. An adaptive full-state

feedback controller is also developed that achieves asymptotic link position

and sub-task tracking despite parametric uncertainty associated with the

dynamic model. The developed controllers do not require the computa-

tion of the inverse kinematics and do not place any restrictions on the

self-motion of the manipulator; hence, the extra degrees of freedom are

available for subtasks (i.e., maintaining manipulability, avoidance of joint

limits and obstacle avoidance). The reader is referred to [32] and [33] for

more details.

2.5.1 Kinematic Model

The end-effector position and orientation in the task-space, denoted by

x(t) ∈ Rm, is defined as follows

x = f(q) (2.93)

where f(q) ∈ Rm denotes the forward kinematics, and q(t) ∈ Rn denote
the link position. Based on (2.93), the differential relationships between the

end-effector position and the link position variables can be calculated as

ẋ = J(q) q̇

ẍ = J̇(q)q̇ + J(q)q̈
(2.94)
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where q̇(t), q̈(t) ∈ Rn denote the link velocity and acceleration vectors,
respectively, and the manipulator Jacobian, denoted by J(q) ∈ Rm×n, is
defined as

J(q) =
∂f(q)

∂q
. (2.95)

A pseudo-inverse of J(q), denoted by J+(q) ∈ Rn×m, is defined as

J+ = JT
¡
JJT

¢−1
(2.96)

where J+(q) satisfies the following equality

JJ+ = Im. (2.97)

where Im ∈ Rm×m denotes them×m identity matrix. As shown in [18], the

pseudo-inverse defined by (2.96) satisfies the Moore-Penrose Conditions

JJ+J = J J+J J+ = J+

(J+J)
T
= J+J (JJ+)

T
= JJ+

. (2.98)

In addition to the above properties, the matrix (In − J+J) satisfies the

following useful properties

(In − J+J) (In − J+J) = In − J+J J (In − J+J) = 0

(In − J+J)
T
= (In − J+J) (In − J+J)J+ = 0

. (2.99)

The control development in this section is based on the assumption

that the minimum singular value of the manipulator Jacobian, denoted

by σm is greater than a known small positive constant δ > 0, such that

max {kJ+(q)k} is known a priori and all kinematic singularities are always
avoided. For revolute robot manipulators, the Jacobian and its pseudo-

inverse are bounded for all possible q(t) (i.e., these kinematic terms only

depend on q(t) as arguments of trigonometric functions).

2.5.2 Control Objective and Error System Formulation

The task-space position error, denoted by e(t) ∈ Rm, is defined as
e = xd − x (2.100)

where xd(t) ∈ Rm denotes the desired task-space trajectory, where the

desired trajectory terms xd(t), ẋd(t), and ẍd(t) are assumed to be bounded

functions of time. As in [7], a sub-task tracking error, denoted by eN (t) ∈
Rn, can also be defined as

eN = (In − J+J) (g − q̇) (2.101)
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where In ∈ Rn×n denotes the n × n identity matrix, and g(t) ∈ Rn is
an auxiliary signal that is constructed according to the sub-task control

objective (e.g., joint-limit avoidance, or obstacle avoidance). The subse-

quent stability analysis mandates that the sub-task control objective be

formulated in such a manner that both g(t) and ġ(t) are bounded signals.

To provide motivation for the definition of the sub-task control objective

given by (2.101), take the time derivative of (2.100) and then substitute

(2.94) for ẋ(t) to obtain

ė = ẋd + αe− αe− Jq̇ (2.102)

where the term αe has been added and subtracted to right-hand side of

(2.102) to facilitate the control formulation, and α ∈ Rm×m denotes a

diagonal, positive definite gain matrix. Using the properties of the pseudo-

inverse of the manipulator Jacobian defined in (2.97), the relationship in

(2.102) can be rewritten as

ė = −αe+ J
¡
J+ (ẋd + αe) + (In − J+J)g − q̇

¢
. (2.103)

Based on the structure of (2.103) and the subsequent analysis, the filtered

tracking error signal, denoted by r(t) ∈ Rn, is defined as

r = J+ (ẋd + αe) + (In − J+J)g − q̇; (2.104)

hence, the closed-loop task-space position tracking error system can now

be written as

ė = −αe+ Jr. (2.105)

In the following control development, the structure of (2.105) is used to

ensure that the task-space error and the filtered tracking error defined by

(2.100) and (2.104), respectively, are both regulated. To illustrate how the

regulation of the filtered tracking error also ensures regulation of the sub-

task tracking error defined by (2.101), the filtered tracking error in (2.104)

is pre-multiplied by (In−J+J) and then the properties given in (2.99) are

applied to obtain

eN = (In − J+J)r (2.106)

where (2.101) was used. From (2.106), if r(t) is regulated then eN(t) is

regulated, and hence, the sub-task control can also be achieved.

The structure of (2.105) also provides motivation to regulate r(t) in order

to regulate e(t). Taking the time derivative of (2.104), pre-multiplying by

the inertia matrix M(q), and then substituting (2.1) yields the open loop

dynamics

Mṙ = −Vmr + Y φ− τ (2.107)
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where the regression matrix/parameter vector formulation Y φ is defined as

Y φ = M
d

dt
{J+ (ẋd + αe) + (In − J+J)g}

+Vm {J+ (ẋd + αe) + (In − J+J)g}
+G(q) + F (q̇)

(2.108)

where Y (ẍd, ẋd, x, q, q̇, ġ, g) ∈ Rn×r denotes a regression matrix, and φ ∈
Rr denotes the constant system parameters (e.g., mass, inertia, friction

coefficients).

2.5.3 Computed Torque Control Development and Stability

Analysis

Based on the above error system development and the subsequent stability

analysis, the control torque input τ(t) is designed as

τ = Y φ+Kr + JT e (2.109)

whereK ∈ Rn×n is a constant, positive definite, diagonal gain matrix. After
substituting (2.109) into (2.107), the closed-loop error system for r(t) can

be determined as

Mṙ = −Vmr − JT e−Kr. (2.110)

Theorem 2.7 The control law described by (2.109) guarantees global ex-

ponential task-space and sub-task tracking in the sense that both signals e(t)

and eN (t) are bounded by an exponential envelope.

Proof: Let V (t) ∈ R denote a non-negative, radially unbounded function
defined as

V =
1

2
eT e+

1

2
rTMr. (2.111)

After taking the time derivative of (2.111), substituting (2.105) and (2.110),

using Properties 2.1 and 2.2, and then canceling common terms, yields

V̇ = −eTαe− rTKr ≤ −2 min(α, λmin (K))
max(1, λmax (M))

V. (2.112)

The structure of (2.111) and (2.112) indicate that e(t) and r(t) ∈ L∞.
All signals can be shown to remain bounded by employing standard sig-

nal chasing arguments, utilizing assumptions that xd(t), ẋd(t), ẍd(t), g(t),

ġ(t) ∈ L∞, and using the fact kinematic and dynamic terms denoted by
M(q), Vm(q, q̇), G(q), J(q), and J

+(q) are bounded for all possible q(t). Yet,

a standard problem associated with redundant manipulators is that the self



© 2010 by Taylor and Francis Group, LLC

2.5 Task-Space Control and Redundancy 33

motion limits the ability to show that q(t) remains bounded; however, all

signals in the manipulator kinematics/dynamics and the control remain

bounded independent of the boundedness of q(t) because q(t) only appears

as the argument of trigonometric functions. The structure of (2.111) and

(2.112) indicates that e(t) and r(t) are bounded by an exponential enve-

lope, and hence, due to the boundedness of J+(q) and J(q), (2.106) can be

used to conclude that eN (t) is also bounded by an exponential envelope.

2.5.4 Adaptive Control Extension

The computed torque controller in (2.109) can also be developed as an

adaptive controller as

τ = Y φ̂+Kr + JT e (2.113)

where φ̂(t) ∈ Rr denotes the parameter estimate vector that is generated
based on the following update law

.

φ̂ = ΓφY
T r (2.114)

where Γφ ∈ Rr×r is a constant, positive definite, diagonal gain matrix.
After substituting (2.113) into (2.107), the closed loop dynamics for r(t)

can be obtained as

Mṙ = −Vmr + Y φ̃− JT e−Kr. (2.115)

where φ̃(t) = φ− φ̂(t) ∈ Rr denotes the parameter estimation error.
Theorem 2.8 The control law given by (2.113) and (2.114) guarantees

global asymptotic task-space and sub-task tracking in the sense that

lim
t→∞ e(t), eN (t) = 0. (2.116)

Proof: Let V (t) ∈ R denote a non-negative, radially unbounded function
defined as

Va =
1

2
eT e+

1

2
rTMr +

1

2
φ̃
T
Γ−1φ φ̃. (2.117)

After taking the time derivative of (2.117), substituting (2.105), (2.114),

and (2.115), using Properties 2.1 and 2.2, and then canceling common

terms, yields

V̇a = −eTαe− rTKr. (2.118)

The structure of (2.117) and (2.118) indicates that e(t), r(t), φ̃(t) ∈ L∞. All
signals remain bounded by noting that

·
φ̃(t) = −

·
φ̂(t) (i.e., φ is a constant
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vector) and employing similar arguments to those used in the previous

proof. Since all signals are bounded, (2.105) and (2.115) that ė(t) and

ṙ(t) are bounded (i.e., e(t) and r(t) are uniformly continuous). From the

structure of (2.118), standard arguments can be utilized to show that e(t),

r(t) ∈ L2. Since e(t), r(t) ∈ L2 and uniformly continuous, Lemma A.1 in
Appendix A can be invoked to conclude that limt→∞ ke(t)k, kr(t)k = 0;

hence, (2.116) follows directly from (2.106).
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Birkhäuser Boston, 2003.

[6] E. G. Gilbert and I. J. Ha, “An Approach to Nonlinear Feedback Con-

trol with Applications to Robotics,” IEEE Transactions on Systems,

Man, and Cybernetics, Vol. SMC-14, No. 6, pp. 879—884, 1984.

[7] P. Hsu, J. Hauser, and S. Sastry, “Dynamic Control of Redundant

Manipulators,” Journal of Robotic Systems, Vol. 6, pp. 133—148, 1989.

[8] L. R. Hunt, R. Su, and G. Meyer, “Global Transformations of Nonlin-

ear Systems,” IEEE Transactions on Automatic Control, Vol. 28, pp.

24—31, 1983.

[9] T. Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice Hall, 1980.

[10] H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2002.



© 2010 by Taylor and Francis Group, LLC

References 35

[11] O. Khatib, “Dynamic Control of Manipulators in Operational Space,”

Proceedings of the 6th IFTOMM Congress on Theory of Machines and

Mechanisms, pp. 1—10, New Delhi, Dec. 1983.
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3

Vision-Based Systems

3.1 Introduction

Often robots are required to inspect, navigate through, and/or interact with

unstructured or dynamically changing environments. Adequate sensing of

the environment is the enabling technology required to achieve these tasks.

Given recent advances in technologies such as computational hardware and

computer vision algorithms, camera-based vision systems have become a

popular and rapidly growing sensor of choice for robots operating in un-

certain environments.

Given some images of an environment, one of the first tasks is to de-

tect and identify interesting features in the object. These features can be

distinguished based on attributes such as color, texture, motion, and con-

trast. Textbooks such as [4, 32, 52, 88, 90, 94, 98, 109] provide an excellent

introduction and discussion of methods to find and track these attributes

from image to image. This chapter assumes that some attributes can be

used to identify an object of interest in an image, and points on the object,

known as “feature points,” can be tracked from one image to another. By

observing how these feature points move in time and space, control and

estimation algorithms can be developed. The first section of this chapter

describes image geometry methods using a single camera. The development

of this geometry enables the subsequent sections of the chapter to focus on

the control and estimation of the motion of a plane attached to an object.
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The terminology visual servo control refers to the use of information

from a camera directly in the feedback loop of a controller. The typical ob-

jective of most visual servo controllers is to force a hand-held camera to a

Euclidean position defined by a static reference image. Yet, many practical

applications require a robotic system to move along a predefined or dynam-

ically changing trajectory. For example, a human operator may predefine

an image trajectory through a high-level interface, and this trajectory may

need to be modified on-the-fly to respond to obstacles moving in and out

of the environment. It is also well known that a regulating controller may

produce erratic behavior and require excessive initial control torques if the

initial error is large. The controllers in Section 3.3 focus on the more gen-

eral tracking problem, where a robot end-effector is required to track a

prerecorded time-varying reference trajectory. To develop the controllers,

a homography-based visual servoing approach is utilized. The motivation

for using this approach is that the visual servo control problem can be

incorporated with a Lyapunov-based control design strategy to overcome

many practical and theoretical obstacles associated with more traditional,

purely image-based approaches. Specifically, one of the challenges of this

problem is that the translation error system is corrupted by an unknown

depth-related parameter. By formulating a Lyapunov-based argument, an

adaptive update law is developed to actively compensate for the unknown

depth parameter. In addition, the presented approach facilitates: i) transla-

tion/rotational control in the full six degree-of-freedom task-space without

the requirement of an object model, ii) partial servoing on pixel data that

yields improved robustness and increases the likelihood that the centroid

of the object remains in the camera field-of-view [85], and iii) the use of

an image Jacobian that is only singular for multiples of 2π, in contrast to

the state-dependent singularities present in the image Jacobians associated

with many of the purely image-based controllers. The controllers target

both the fixed camera and the camera-in-hand configurations. The control

development for the fixed camera problem is presented in detail, and the

camera-in-hand problem is included as an extension.

Conventional robotic manipulators are designed as a kinematic chain of

rigid links that bend at discrete joints to achieve a desired motion at its

end-effector. Continuum robots [92] are robotic manipulators that draw

inspiration from biological appendages like elephant trunks and squid ten-

tacles, and can bend anywhere along the length of their body. In theory,

they have infinite mechanical degrees-of-freedom so that their end-effector

can be positioned at a desired location while concurrently satisfying work-

space constraints such as tight spaces and the presence of obstacles. How-
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ever, from an engineering perspective, an important implication of such a

design is that although such devices have a high kinematic redundancy,

they are infinitely underactuated. A variety of bending motions must be

generated with only a finite number of actuators. While there has been con-

siderable progress in the area of actuation strategies for such robots [92],

the dual problem of sensing the configuration of such robots has been a

challenge. From a controls perspective, a reliable position controller would

require an accurate position sensing mechanism. However, internal motion

sensing devices such as encoders cannot be used to determine either the

shape or the end-effector position of a continuum robot, since there is no

intuitive way to define links and joints on such a device.

A literature survey reveals that a few indirect methods have been pro-

posed by researchers to estimate the shape of continuum robots, such as

models [31, 56] that relate internal bellow pressures in fluid filled devices,

or change in tendon length in tendon driven devices, or position of the

end-effector. However, these methods do not have accuracies comparable

to position sensing in rigid link robots because of the compliant nature of

continuum devices. For example, in a tendon driven continuum robot, due

to coupling of actuation between sections, various sections of the robot can

potentially change shape without the encoders detecting a change in tendon

length or tension. Motivated by a desire to develop an accurate strategy

for real-time shape sensing in such robots, Hannan et al. [57] implemented

simple image processing techniques to determine the shape of the Elephant

Trunk robotic arm, where images from a fixed camera were used to recon-

struct the curvatures of various sections of the robot. This technique was

only applicable to the case where the motion of the arm was restricted to a

plane orthogonal to the optical axis of the camera. However, the result in

[57] demonstrated conclusively that there is a large difference in curvature

measurements obtained from indirect cable measurements as compared to

a vision-based strategy, and hence, the information obtained from ad hoc

indirect shape measurement techniques is indeed questionable. Section 3.4

addresses this issue through a visual servo control approach. From a decom-

position of the homography and from the equations describing the forward

kinematics of the robot [68], the curvatures that define the shape of vari-

ous sections of the robot can be fully determined. Various kinematic control

strategies for hyperredundant robots [73, 97, 115] are then used to develop

a kinematic controller that accurately positions the robot end-effector to

any desired position and orientation by using a sequence of images from a

single external video camera.
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Homography-based visual servo control methods can also be used to de-

velop relative translation and rotation error systems for the mobile robot

regulation and tracking control problems. By using a similar approach as in

the previous applications in this chapter, projective geometric relationships

are exploited to enable the reconstruction of the Euclidean coordinates of

feature points with respect to the mobile robot coordinate frame. By de-

composing the homography into separate translation and rotation com-

ponents, measurable signals for the orientation and the scaled Euclidean

position can be obtained. Full Euclidean reconstruction is not possible due

to the lack of an object model and the lack of depth information from the

on-board camera to the target; hence, the resulting translation error system

is unmeasurable. To accommodate for the lack of depth information, the

unknown time-varying depth information is related to a constant depth-

related parameter. The closed loop error systems are then constructed us-

ing Lyapunov-based methods including the development of an adaptive

estimate for the constant depth related parameter. Both the setpoint and

tracking controllers are implemented on an experimental testbed. Details

of the testbed are provided along with experimental results that illustrate

the performance of the presented controllers.

In addition to visual servo control, the recovery of Euclidean coordinates

of feature points of a moving object from a sequence of images (i.e., image-

based motion estimation) is a mainstream research problem with signifi-

cant potential impact for applications such as autonomous vehicle/robotic

guidance, navigation, and path planning. Motion estimation bears a close

resemblance to the classical problem in computer vision, known as “Struc-

ture from Motion (SFM),” which is the determination of 3D structure of a

scene from its 2D projections on a moving camera. In the motion estimation

section of this chapter, a unique nonlinear estimation strategy is presented

that simultaneously estimates the velocity and structure of a moving object

using a single camera. By imposing a persistent excitation condition, the

inertial coordinates for all the feature points on an object are determined.

A homography-based approach is then utilized to develop the object kine-

matics in terms of reconstructed Euclidean information and image-space

information for the fixed camera system. The development of object kine-

matics requires a priori knowledge of a single geometric length between

two feature points on the object. A novel nonlinear integral feedback esti-

mation method is then employed to identify the linear and angular velocity

of the moving object. Identifying the velocities of the object facilitates the

development of a measurable error system that can be used to formulate

a nonlinear least squares adaptive update law. A Lyapunov-based analy-
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sis is then presented that indicates if a persistent excitation condition is

satisfied then the time-varying Euclidean coordinates of each feature point

can be determined. While the problem of estimating the motion and Eu-

clidean position of features on a moving object is addressed in this chapter

by using a fixed camera system, the development can also be recast for

the camera-in-hand problem where a moving camera observes stationary

objects. That is, by recasting the problem for the camera-in-hand, the de-

velopment in this chapter can also be used to address the Simultaneous

Localization and Mapping (SLAM) problem [36], where the information

gathered from a moving camera is utilized to estimate both the motion of

the camera (and hence, the relative position of the vehicle/robot) as well

as position of static features in the environment.

3.2 Monocular Image-Based Geometry

This section focuses on the image geometry obtained between images taken

by a single camera at different points in time and space. The geometry ob-

tained from observing four coplanar and non-colinear feature points from a

fixed camera is initially described. Euclidean reconstruction of the feature

points from image coordinates is then described. The geometry is then ex-

tended to the more popular camera-in-hand scenario, where the observed

object is stationary and the camera is moving. For both the fixed camera

and the camera-in-hand, the relative motion between the viewed object and

the camera is encoded through the construction of a homography that re-

lates two spatiotemporal images. Development is provided that summarizes

a well known decomposition algorithm that can be used to extract scaled

translation and rotation information from the homography construction.

Details are also provided that illustrate how a virtual parallax method en-

ables the homography-based techniques to be applied for problems where

the observed feature points do not lie in a plane.

3.2.1 Fixed-Camera Geometry

To make the subsequent development more tractable, four feature points

located on an object (i.e., the end-effector of a robot manipulator) denoted

by Oi ∀i = 1, 2, 3, 4 are considered to be coplanar and not colinear (It

should be noted that if four coplanar target points are not available, then

the subsequent development can exploit the classic eight-points algorithm

[84] with no four of the eight target points being coplanar or the subse-

quently described Virtual Parallax method). Based on this assumption,
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consider a fixed plane, denoted by π∗, that is defined by a reference image
of the object. In addition, consider the actual and desired motion of the

plane containing the end-effector target points, denoted by π and πd, re-

spectively (see Figure 3.1). To develop a relationship between the planes,

an inertial coordinate system, denoted by I, is defined where the origin co-
incides with the center of a fixed camera. The Euclidean coordinates of the

target points on π, πd, and π
∗ can be expressed in terms of I, respectively,

as
m̄i(t) ,

£
xi(t) yi(t) zi(t)

¤T
m̄di(t) ,

£
xdi(t) ydi(t) zdi(t)

¤T
m̄∗i ,

£
x∗i y∗i z∗i

¤T (3.1)

under the standard assumption that the distances from the origin of I to
the target points remains positive (i.e., zi (t), zdi(t), z

∗
i > ε where ε denotes

an arbitrarily small positive constant). Orthogonal coordinate systems F ,
Fd, and F∗ are attached to the planes π, πd, and π∗, respectively (see Figure
3.1). To relate the coordinate systems, let R (t), Rd (t), R

∗ ∈ SO(3) denote

the rotation between F and I, Fd and I, and F∗ and I, respectively, and let
xf (t), xfd (t), x

∗
f ∈ R3 denote the respective translation vectors expressed

in the coordinates of I. As also illustrated in Figure 3.1, n∗ ∈ R3 denotes
the constant unit normal to the plane π∗ expressed in the coordinates of
I, and si ∈ R3 denotes the constant coordinates of the i− th target point.

The constant distance from the origin of I to π∗ along the unit normal is
denoted by d∗ ∈ R and is defined as

d∗ , n∗T m̄∗i . (3.2)

The subsequent development requires that the constant rotation matrix

R∗ be known. The constant rotation matrix R∗ can be obtained a priori
using various methods (e.g., a second camera, Euclidean measurements).

The subsequent development is also based on the assumption that the

target points do not become occluded.

From the geometry between the coordinate frames depicted in Figure

3.1, the following relationships can be developed

m̄i = xf +Rsi
m̄di = xfd +Rdsi
m̄∗i = x∗f +R∗si .

(3.3)

After solving the third equation in (3.3) for si and then substituting the

resulting expression into the first and second equations, the following rela-

tionships can be obtained

m̄i = x̄f + R̄m̄∗i m̄di = x̄fd + R̄dm̄
∗
i , (3.4)
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FIGURE 3.1. Coordinate Frame Relationships between a Fixed Camera and the

Plane Defined by the Current, Desired, and Reference Feature Points (i.e., π, πd,

and π∗).

where R̄ (t), R̄d(t) ∈ SO (3) and x̄f (t), x̄fd (t) ∈ R3 are new rotational and
translational variables, respectively, defined as

R̄ = R (R∗)T R̄d = Rd (R
∗)T

x̄f = xf − R̄x∗f x̄fd = xfd − R̄dx
∗
f .

(3.5)

From (3.2), the relationships in (3.4) can be expressed as

m̄i =
³
R̄+

x̄f
d∗

n∗T
´
m̄∗i m̄di =

³
R̄d +

x̄fd
d∗

n∗T
´
m̄∗i . (3.6)

Geometric insight into the structure of R̄ (t) and x̄f (t) defined in (3.5)

can be obtained from Figures 3.1 and 3.2. Consider a fictitious camera that

has a frame I∗ attached to its center such that I∗ initially coincides with I.
Since I and I∗ coincide, the relationship between I∗ and F∗ can be denoted
by rotational and translational parameters (x∗f , R

∗) as is evident from Fig-

ure 3.1. Without relative translational or rotational motion between I∗ and
F∗, the two coordinate frames are moved until F∗ aligns with F , resulting
in Figure 3.2. It is now evident that the fixed camera problem reduces to

a stereo vision problem with the parameters (xf − R (R∗)T x∗f , R (R
∗)T )

denoting the translation and rotation between I and I∗.



© 2010 by Taylor and Francis Group, LLC

44 3. Vision-Based Systems

n*

(xf - RR*Txf*,  RR*T)

d*

Oi

(xf , R) (x
f *, R*)m i

m
i *

_

_

I

F

I∗

π n*

(xf - RR*Txf*,  RR*T)

d*

Oi

(xf , R) (x
f *, R*)m i

m
i *

_

_

I

F

I∗

π

FIGURE 3.2. Geometric relationships for R̄ (t) and x̄f (t) .

3.2.2 Euclidean Reconstruction

The relationship given by (3.6) provides a means to quantify a translation

and rotation error between F and F∗ and between Fd and F∗. Since the
Euclidean position of F , Fd, and F∗ cannot be directly measured, a Eu-
clidean reconstruction is developed in this section to obtain the position and

rotational error information by comparing multiple images acquired from

the fixed, monocular vision system. Specifically, comparisons are made be-

tween the current image, the reference image obtained a priori, and the a

priori known sequence of images that define the trajectory of Fd. To facili-
tate the subsequent development, the normalized Euclidean coordinates of

the points on π, πd, and π∗ can be respectively expressed in terms of I as
mi (t), mdi (t), m

∗
i ∈ R3, as

mi , m̄i

zi
=
h xi

zi

yi
zi

1
iT

(3.7)

mdi , m̄di

zdi
=
h xdi

zdi

ydi
zdi

1
iT

(3.8)

m∗i , m̄∗i
z∗i

=

∙
x∗i
z∗i

y∗i
z∗i

1

¸T
. (3.9)

From the expressions given in (3.6)—(3.9), the rotation and translation be-

tween the coordinate systems can now be related in terms of the normalized
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coordinates as

mi =
z∗i
zi|{z}

¡
R̄+ x̄hn

∗T ¢| {z }m∗i
αi H

(3.10)

mdi =
z∗i
zdi|{z}

¡
R̄d + x̄hdn

∗T ¢| {z }m∗i ,
αdi Hd

(3.11)

where αi (t) , αdi (t) ∈ R denote invertible depth ratios, H (t) , Hd(t) ∈
R3×3 denote Euclidean homographies [46], and x̄h (t) , x̄hd (t) ∈ R3 denote
scaled translation vectors that are defined as

x̄h =
x̄f
d∗

x̄hd =
x̄fd
d∗

. (3.12)

Each target point on π, πd, and π
∗ will have a projected pixel coordinate

expressed in terms of I, denoted by ui (t), vi (t) ∈ R for π, udi (t), vdi (t) ∈ R
for πd, and u∗i , v

∗
i ∈ R for π∗, that are defined as

pi ,
£
ui vi 1

¤T
pdi ,

£
udi vdi 1

¤T
p∗i ,

£
u∗i v∗i 1

¤T
.

(3.13)

In (3.13), pi (t), pdi (t), p
∗
i ∈ R3 represent the image-space coordinates of

the time-varying target points, the desired time-varying target point trajec-

tory, and the constant reference target points, respectively. To calculate the

Euclidean homography given in (3.10) and (3.11) from pixel information,

the projected pixel coordinates of the target points are related to mi (t),

mdi (t), and m∗i by the following pinhole camera models [46]

pi = Ami pdi = Amdi p∗i = Am∗i , (3.14)

where A ∈ R3×3 is a known, constant, and invertible intrinsic camera cali-
bration matrix that is explicitly defined as [84]

A =

⎡⎢⎢⎣
fku −fkv cot(θ) uo

0
fkv
sin(θ)

vo

0 0 1

⎤⎥⎥⎦ . (3.15)

In (3.15), uo, vo ∈ R denote the pixel coordinates of the principal point

(i.e., the image center that is defined as the frame-buffer coordinates of the

intersection of the optical axis with the image plane), ku, kv ∈ R represent
camera scaling factors, θ ∈ R is the angle between the axes of the imaging
elements (CCD) in the camera, and f ∈ R denote the focal length of
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the camera. After substituting (3.14) into (3.10) and (3.11), the following

relationships can be developed

pi = αi
¡
AHA−1

¢| {z } p∗i pdi = αdi
¡
AHdA

−1¢| {z } p∗i ,
G Gd

(3.16)

where G (t) = [gij(t)], Gd (t) = [gdij(t)] ∀i, j = 1, 2, 3 ∈ R3×3 denote
projective homographies. From the first relationship in (3.16), a set of 12

linearly independent equations given by the 4 target point pairs (p∗i , pi (t))
with 3 independent equations per target pair can be used to determine the

projective homography up to a scalar multiple (i.e., the product αi(t)G(t)

can be determined). From the definition of G(t) given in (3.16), various

techniques can then be used (e.g., see [47, 116]) to decompose the Euclidean

homography, to obtain αi(t), G(t), H(t), and the rotation and translation

signals R̄(t) and x̄h(t), and n∗. Likewise, by using the target point pairs
(p∗i , pdi (t)), the desired Euclidean homography can be decomposed to ob-
tain αdi(t), Gd(t), Hd(t), and the desired rotation and translation signals

R̄d(t) and x̄hd(t). The rotation matrices R(t) and Rd(t) can be computed

from R̄(t) and R̄d(t) by using (3.5) and the fact that R
∗ is assumed to

be known. Hence, R(t), R̄(t), Rd(t), R̄d(t), x̄h(t), x̄hd(t), and the depth

ratios αi (t) and αdi(t) are all known signals that can be used for control

synthesis.

3.2.3 Camera-in-Hand Geometry

Based on the development provided for the fixed camera problem in the

previous sections, the geometry for the camera-in-hand problem can be de-

veloped in a similar manner. Consider the geometric relationships depicted

in Figure 3.3, where the camera is held by a robot end-effector (not shown).

The coordinate frames F , Fd, and F∗ depicted in Figure 3.3 are attached to
the camera and denote the actual, desired, and reference locations for the

camera, respectively. From the geometry between the coordinate frames,

m̄∗i can be related to m̄i(t) and m̄di(t) as

m̄i = xf +Rm̄∗i m̄di = xfd +Rdm̄
∗
i , (3.17)

where m̄i(t), m̄di(t), and m̄∗i now denote the Euclidean coordinates of Oi

expressed in F , Fd, and F∗, respectively. In (3.17), R (t), Rd (t) ∈ SO(3)

denote the rotation between F and F∗ and between Fd and F∗, respec-
tively, and xf (t), xfd (t) ∈ R3 denote translation vectors from F to F∗ and
Fd to F∗ expressed in the coordinates of F and Fd, respectively. By utiliz-
ing (3.2), (3.7)—(3.9), and a relationship similar to (3.12), the expressions
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in (3.17) can be written as

mi = αi
¡
R+ xhn

∗T ¢| {z }
H

m∗i (3.18)

mdi = αdi
¡
Rd + xhdn

∗T ¢| {z }
Hd

m∗i (3.19)

In (3.18) and (3.19), xh (t) , xhd (t) ∈ R3 denote the following scaled trans-
lation vectors

xh =
xf
d∗

xhd =
xfd
d∗

,

αi(t) and αdi(t) are introduced in (3.10) and (3.11), and mi(t), mdi(t), and

m∗i now denote the normalized Euclidean coordinates of Oi expressed in

F , Fd, and F∗, respectively. Based on the development in (3.17)—(3.19),
the Euclidean reconstruction and control formulation can be developed in

the same manner as for the fixed camera problem. Specifically, the signals

R(t), Rd(t), xh(t), xhd(t), and the depth ratios αi(t) and αdi(t) can be

computed. The error systems for the camera-in-hand problem are defined

the same as for the fixed camera problem (i.e., see (3.36)—(3.39)); however,

u(t), ud(t), θ(t), and θd(t) are defined as in (3.45) in terms of R(t) and

Rd(t), respectively, for the camera-in-hand problem.

3.2.4 Homography Calculation

The previous development was based on the assumption that four cor-

responding coplanar but non-collinear feature points could be determined

and tracked between images. This section presents methods to estimate the

collineation G(t) and the scaled Euclidean homography by solving a set of

linear equations (3.16) obtained from the four corresponding coplanar and

non-collinear feature points.

Based on the arguments in [60], a transformation is applied to the projec-

tive coordinates of the corresponding feature points to improve the accuracy

in the estimation of G(t). The transformation matrices, denoted by P (t),

P ∗ ∈ R3×3, are defined in terms of the projective coordinates of three of
the coplanar non-collinear feature points as

P ,
£
p1 p2 p3

¤
P ∗ ,

£
p∗1 p∗2 p∗3

¤
. (3.20)

From (3.16) and (3.20), it is easy to show that

PG̃ = GP ∗, (3.21)
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FIGURE 3.3. Coordinate frame relationships between the fixed feature point

plane and the camera-in-hand at the current, desired, and reference position and

orientation (i.e., F, Fd, and F∗).

where

G̃ = P−1GP ∗ = diag
¡
α−11 , α−12 , α−13

¢
, diag (g̃1, g̃2, g̃3) . (3.22)

In (3.22), diag(.) denotes a diagonal matrix with arguments as the diagonal

entries. Utilizing (3.22), the relationship in (3.16) can be expressed in terms

of G̃(t) as

qi = αiG̃q
∗
i , (3.23)

where

qi = P−1pi (3.24)

q∗i = P ∗
−1
p∗i (3.25)

define the new transformed projective coordinates. Note that the transfor-

mation normalizes the projective coordinates, and it is easy to show that

[ q1 q2 q3 ] = [ q
∗
1 q∗2 q∗3 ] = I3 ∈ R3×3,

where I3 is the 3× 3 identity matrix. The transformed image coordinates
of a fourth matching pair of feature points

q4(t) , [ q4u(t) q4v(t) q4w(t) ]
T ∈ R3 q∗4 , [ q∗4u q∗4v q∗4w ]T ∈ R3
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can be expressed as

q4 = α4G̃q
∗
4 , (3.26)

where it can be shown that

q4u =
q4w
q∗4w

q∗4u
α3
α1

q4v =
q4w
q∗4w

q∗4v
α3
α2

q4w
q∗4w

=
α4
α3

.

The above set of equations can be solved for

α4(t)

α3(t)
and α3(t)G̃(t) = diag(

α3(t)

α1(t)
,
α3(t)

α2(t)
, 1).

Since the camera intrinsic calibration matrix is assumed to be known, the

scaled Euclidean homography can be calculated as

α3(t)H(t) = α3(t)A
−1G(t)A.

As noted before, H(t) can be decomposed into its constituent rotation

matrix, unit normal vector, scaled translation vector, and the depth ratio

α3(t). With the knowledge of α3(t) and
α4(t)

α3(t)
, the depth ratios α1, α2, α3,

and α4 can be calculated for all of the feature points.

If some noncoplanar points are also tracked between images, the depth

ratios for those feature points can also be determined. Consider a feature

point Oj on the object that is not on the plane π∗. The expressions in
(3.3)—(3.6) can be used to conclude that

mj =
z∗j
zj

Ã
x̄f
z∗j
+ R̄m∗j

!
. (3.27)

Multiplying both sides of the equation with the skew-symmetric form of

x̄h(t), denoted by [x̄h(t)]× ∈ R3×3, yields [84]

[x̄h]×mj = αj

Ã
[x̄h]×

x̄f
z∗j
+ [x̄h]× R̄m∗j

!
= αj [x̄h]× R̄m∗j . (3.28)

The signal x̄h(t) is directly obtained from the decomposition of Euclidean

homography matrix H(t). Hence, the depth ratios for feature points Oj not

lying on the plane π∗ can be computed as

αj =

°°[x̄h]×mj

°°°°[x̄h]× R̄m∗j
°° . (3.29)
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3.2.5 Virtual Parallax Method

In general, all feature points of interest on the moving object may not

be coplanar. In such a case, the virtual parallax method may be used to

develop a virtual plane from noncoplanar points. Based on the development

in [84], any three feature points on an object may be selected to define the

plane π∗ shown in Figure 3.4. All feature points Oi on a plane satisfy (3.16).

Consider a feature point Oj on the object that is not on the plane π
∗. Let us

define a virtual feature point O0j , on π
∗, defined at the point of intersection

of the vector from the optical center of the camera to Oj and the plane π
∗.

Let p∗j be the projective image coordinates of the point Oj (and O
0
j) on the

image plane when the object is at the reference position denoted by F∗.
As shown in Figure 3.4, when the object is viewed from a different pose,

resulting from either a motion of the object or a motion of the camera, the

actual feature point Oj and the virtual feature point O
0
j projects to pj(t)

and p0j(t), respectively, on the image plane of the camera. For any feature
point Oj , both pj(t) and p0j(t) lie on the same epipolar line lj [84] that is
given by

lj = pj × p0j , (3.30)

where × denotes the cross product of the two vectors. Since the projective
image coordinates of corresponding coplanar feature points satisfy (3.16),

then

lj = pj ×Gp∗j . (3.31)

Based on the constraint that all epipolar lines meet at the epipole [84], a

set of any three non-coplanar feature points can be selected such that the

epipolar lines satisfy the constraint ¯̄
lj lk ll

¯̄
= 0 (3.32)¯̄

pj ×Gp∗j pk ×Gp∗k pl ×Gp∗l
¯̄
= 0. (3.33)

The transformation matrices, denoted by P (t), P ∗ ∈ R3×3, and defined in
(3.20), are constructed using the image coordinates of the three coplanar

feature points selected to define the plane π∗. After coordinate transfor-
mations defined in (3.24) and (3.25), the epipolar constraint of (3.33) now

becomes ¯̄
qi × G̃q∗i qj × G̃q∗j qk × G̃q∗k

¯̄
= 0, (3.34)

where G̃(t) ∈ R3×3 is defined in (3.22). As shown in [84], the set of homo-
geneous equations in (3.34) can be written in the form

CjklX̄ = 0, (3.35)
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where X̄ =
£
g̃21 g̃2, g̃1g̃

2
2, g̃

2
1 g̃3, g̃

2
2 g̃3, g̃1g̃

2
3 , g̃2g̃

2
3, g̃1g̃2g̃3

¤T ∈ R7, and the ma-
trix Cjkl ∈ Rm×7 is of dimension m × 7 where m = n!

6(n−3)! and n is the

number of epipolar lines (i.e., one for image coordinates of each feature

point). Hence, apart from three coplanar feature points that define the

transformation matrices in (3.20), at least five additional feature points

(i.e., n = 5) are required in order to solve the set of equations given in

(3.35). As shown in [84], G̃(t) can be determined and used to calculate

the scale factors, rotation matrix and normal to the plane as previously

explained.

¼
¤

F ¤

Oj

O’j

lj

Reference view

p
j
¤

p
jp’

j

I
¤

FIGURE 3.4. Virtual parallax.

3.3 Visual Servo Tracking

3.3.1 Control Objective

The objective in this section is to develop a visual servo controller for the

fixed camera problem that ensures that the trajectory of F tracks Fd (i.e.,
m̄i(t) tracks m̄di(t)), where the trajectory of Fd is constructed relative to
the reference camera position/orientation given by F∗. To ensure that m̄i(t)

tracks m̄di(t) from the Euclidean reconstruction given in (3.10) and (3.11),

the tracking control objective can be stated as: R̄(t) → R̄d(t), m1(t) →
md1(t), and z1(t) → zd1(t) (and hence, x̄h(t) → x̄hd(t)). Any point Oi
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can be utilized in the subsequent development, so to reduce the notational

complexity, the image point O1 is used without loss of generality; thus, the

subscript 1 is utilized in lieu of i in the subsequent development. The 3D

control objective is complicated by the fact that only 2D image information

is measurable. That is, while the development of the homography provides

a means to reconstruct some Euclidean information, the formulation of

a controller is challenging due to the fact that the time varying signals

z1(t) and zd1(t) are not measurable. In addition, it is desirable to servo on

actual pixel information (in lieu of reconstructed Euclidean information)

to improve robustness to intrinsic camera calibration parameters and to

increase the likelihood that the object will stay in the camera field-of-view.

To reformulate the control objective in light of these issues, a translation

tracking error, denoted by ev (t) ∈ R3, is defined as follows:

ev = pe − ped (3.36)

where pe (t), ped (t) ∈ R3 are defined as

pe =
£
u1 v1 − ln (α1)

¤T
ped =

£
ud1 vd1 − ln (αd1)

¤T
,

(3.37)

and ln (·) denotes the natural logarithm. A rotation tracking error, denoted
by eω(t) ∈ R3, is defined as

eω , Θ−Θd (3.38)

where Θ(t), Θd(t) ∈ R3 denote the axis-angle representation of R̄(t) and
R̄d(t) as [105]

Θ = u(t)θ(t) Θd = ud(t)θd(t). (3.39)

For the representations in (3.39), u (t), ud (t) ∈ R3 represent unit rotation
axes, and θ (t) , θd (t) ∈ R denote the respective rotation angles about u(t)
and ud (t) that are assumed to be confined to the following regions

−π < θ (t) < π − π < θd (t) < π . (3.40)

Based on the error system formulations in (3.36) and (3.38), the control

objective can be stated as the desire to regulate the tracking error signals

ev(t) and eω(t) to zero.

If the tracking error signals ev(t) and eω(t) are regulated to zero then

the object can be proven to be tracking the desired trajectory. Specifically,

to ensure that m̄i(t) tracks m̄di(t) from the Euclidean reconstruction given

in (3.1), the tracking control objective can be stated as R̄(t) → R̄d(t),

m1(t) → md1(t), and z1(t) → zd1(t). The expressions in (3.13) and (3.37)
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can be used to conclude that if kev(t)k → 0 then p1(t) → pd1(t) and the

ratio α1(t)/αd1(t)→ 1; hence, (3.14) and the definition of the depth ratios

in (3.10) and (3.11) can be used to show that m1(t)→ md1(t) and z1(t)→
zd1(t). Given that m1(t)→ md1(t) and z1(t)→ zd1(t), (3.7) and (3.8) can

be used to prove that m̄1(t) → m̄d1(t). To examine if R̄(t) → R̄d(t), the

difference between the expressions defined in (3.5) can be determined as

(see Lemma B.1 in Appendix B)

R̄− R̄d = sin θ [u]× − sin θd [ud]× + 2 sin2
θ

2
[u]2× − 2 sin2

θd
2
[ud]

2
× . (3.41)

If keω(t)k→ 0, then (3.38) and (3.39) can be used to show that

u(t)θ(t)→ ud(t)θd(t) as t→∞, (3.42)

which implies that

ku(t)θ(t)k2 → kud(t)θd(t)k2 as t→∞,

and

θ2(t) ku(t)k2 → θ2d(t) kud(t)k2 as t→∞. (3.43)

Since ku(t)k = kud(t)k = 1, (3.43) can be used to conclude that

θ(t)→ ±θd(t) as t→∞.

The result in (3.42) indicates that

Case 1) u(t)→ ud(t) when θ(t)→ θd(t) (3.44)

Case 2) u(t)→ −ud(t) when θ(t)→ −θd(t) .

After substituting each case given in (3.44) into (3.41) and then passing

the limit, it is clear that R̄(t)→ R̄d(t). Based on the results that m̄1(t)→
m̄d1(t) and that R̄(t)→ R̄d(t), it is clear that m̄i(t)→ m̄di(t). A particular

solution for θ (t) and u(t) can be determined as [105]

θ = cos−1
µ
1

2

¡
tr
¡
R̄
¢− 1¢¶ [u]× =

R̄− R̄T

2 sin(θ)
, (3.45)

where the notation tr(·) denotes the trace of a matrix, and [u]× denotes

the 3×3 skew-symmetric expansion of u(t).
To develop a tracking control design, it is typical that the desired tra-

jectory is used as a feedforward component in the control design. Hence,

for a kinematic controller the desired trajectory is required to be at least

first order differentiable and at least second order differentiable for a dy-

namic level controller. To this end, a sufficiently smooth function (e.g., a
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spline function) is used to fit the sequence of target points to generate the

desired trajectory pdi(t); hence, it is assumed that ped(t) and ṗed(t) are

bounded functions of time. From the projective homography introduced in

(3.16), pdi(t) can be expressed in terms of the a priori known functions

αdi(t), Hd(t), R̄d(t),and x̄hd(t). Since these signals can be obtained from

the prerecorded sequence of images, sufficiently smooth functions can also

be generated for these signals by fitting a sufficiently smooth spline function

to the signals. In practice, the a priori developed smooth functions αdi(t),

R̄d(t), and x̄hd(t) can be constructed as bounded functions with bounded

time derivatives. Based on the assumption that R̄d(t) is a bounded first

order differentiable function with a bounded derivative, (3.45) can be used

to conclude that ud(t) and θd(t) are bounded first order differentiable func-

tions with a bounded derivative; hence, Θd(t) and Θ̇d(t) can be assumed to

be bounded. In the subsequent tracking control development, the desired

signals ṗed(t) and Θ̇d(t) will be used as a feedforward control term.

3.3.2 Control Formulation

To develop the open-loop error system for eω(t), the time derivative of

(3.38) is determined as (see Lemma B.1 in Appendix B)

ėω = LωRωe − Θ̇d. (3.46)

In (3.46), the Jacobian-like matrix Lω(t) ∈ R3×3 is defined as

Lω = I3 − θ

2
[u]× +

⎛⎜⎜⎝1− sinc (θ)

sinc2
µ
θ

2

¶
⎞⎟⎟⎠ [u]2× , (3.47)

where

sinc (θ (t)) , sin θ (t)

θ (t)
,

and ωe(t) ∈ R3 denotes the angular velocity of the object expressed in
F . By exploiting the fact that u(t) is a unit vector (i.e., kuk2 = 1), the

determinant of Lω (t) can be calculated as [83]

det (Lω) =
1

sinc2
µ
θ

2

¶ , (3.48)

where det (·) signifies the determinant operator. From (3.48), it is clear

that Lω (t) is only singular for multiples of 2π (i.e., out of the assumed

workspace); therefore, Lω (t) is invertible in the assumed workspace.
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To develop the open-loop error system for ev(t), the time derivative of

(3.36) is determined as (see Lemma B.2 in Appendix B)

z∗1 ėv = α1AeLvR
£
ve + [ωe]× s1

¤− z∗1 ṗed, (3.49)

where ve(t) ∈ R3 denotes the linear velocity of the object expressed in F .
In (3.49), Ae ∈ R3×3 is defined as

Ae = A−
⎡⎣ 0 0 u0
0 0 v0
0 0 0

⎤⎦ , (3.50)

where u0 and v0 were introduced in (3.15), and the auxiliary Jacobian-like

matrix Lv(t) ∈ R3×3 is defined as

Lv =

⎡⎢⎢⎣
1 0 −x1

z1
0 1 −y1

z1
0 0 1

⎤⎥⎥⎦ . (3.51)

The product AeLv(t) is an invertible upper triangular matrix from (3.50)

and (3.51).

Based on the structure of the open-loop error systems and subsequent

stability analysis, the angular and linear camera velocity control inputs for

the object are defined as

ωe = RTL−1ω (Θ̇d −Kωeω) (3.52)

ve = − 1

α1
RT (AeLv)

−1
(Kvev − ẑ∗1 ṗed)− [ωe]× ŝ1 . (3.53)

In (3.52) and (3.53), Kω, Kv ∈ R3×3 denote diagonal matrices of posi-
tive constant control gains, and ẑ∗1(t) ∈ R, ŝ1(t) ∈ R3 denote parameter
estimates that are generated according to the following adaptive update

laws
.

ẑ∗1(t) = −γ1eTv ṗed (3.54)

.

ŝ1 = −α1Γ2 [ωe]×RTLTv A
T
e ev, (3.55)

where γ1 ∈ R denotes a positive constant adaptation gain, and Γ2 ∈ R3×3
denotes a positive constant diagonal adaptation gain matrix. After substi-

tuting (3.52) into (3.46), the following closed-loop error dynamics can be

obtained

ėω = −Kωeω. (3.56)
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After substituting (3.53) into (3.49), the closed-loop translation error dy-

namics can be determined as

z∗1 ėv = −Kvev + α1AeLvR [ωe]× s̃1 − z̃∗1 ṗed, (3.57)

where the parameter estimation error signals z̃∗1(t) ∈ R and s̃1(t) ∈ R3 are
defined as

z̃∗1 = z∗1 − ẑ∗1 s̃1 = s1 − ŝ1 . (3.58)

From (3.56) it is clear that the angular velocity control input given in

(3.52) is designed to yield an exponentially stable rotational error system.

The linear velocity control input given in (3.53) and the adaptive update

laws given in (3.54) and (3.55) are motivated to yield a negative feedback

term in the translational error system with additional terms included to

cancel out cross-product terms involving the parameter estimation errors

in the subsequent stability analysis.

3.3.3 Stability Analysis

Theorem 3.1 The control inputs designed in (3.52) and (3.53), along with

the adaptive update laws defined in (3.54) and (3.55), ensure that eω (t) and

ev (t) are asymptotically driven to zero in the sense that

lim
t→∞ keω(t)k , kev(t)k = 0 . (3.59)

Proof: To prove Theorem 3.1, a non-negative function V (t) ∈ R is de-
fined as

V , 1

2
eTωeω +

z∗1
2
eTv ev +

1

2γ1
z̃∗21 +

1

2
s̃T1 Γ

−1
2 s̃1. (3.60)

After taking the time derivative of (3.60) and then substituting for the

closed-loop error systems developed in (3.56) and (3.57), the following ex-

pression can be obtained

V̇ = −eTωKωeω + eTv
¡−Kvev + α1AeLvR [ωe]× s̃1 − z̃∗1 ṗed

¢
(3.61)

− 1
γ1

z̃∗1
.

ẑ∗1 − s̃T1 Γ
−1
2

.

ŝ1,

where the time derivative of (3.58) was utilized. After substituting the

adaptive update laws designed in (3.54) and (3.55) into (3.61), the following

simplified expression can be obtained

V̇ = −eTωKωeω − eTvKvev, (3.62)

where the fact that [ωe]
T
× = − [ωe]× was utilized. Based on (3.58), (3.60),

and (3.62), it can be determined that eω(t), ev(t), z̃
∗
1(t), ẑ

∗
1(t), s̃1(t), ŝ1(t) ∈
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L∞ and that eω(t), ev(t) ∈ L2. Based on the assumption that Θ̇d(t) is
designed as a bounded function, the expressions given in (3.38), (3.47),

(3.48), and (3.52) can be used to conclude that ωe(t) ∈ L∞. Since ev(t) ∈
L∞, (3.7), (3.13), (3.14), (3.36), (3.37), and (3.51) can be used to prove that
m1(t), Lv(t) ∈ L∞. Given that ṗed(t) is assumed to be bounded function,
the expressions in (3.53)—(3.57) can be used to conclude that

.

ẑ∗1(t),
.

ŝ1(t),

ve(t), ėv(t), ėω(t) ∈ L∞. Since eω(t), ev(t) ∈ L2 and eω(t), ėω(t), ev(t),

ėv(t) ∈ L∞, Barbalat’s Lemma [102] can be used to prove the result given
in (3.59).

Remark 3.1 The result in (3.59) is practically global in the sense that it is

valid over the entire domain with the exception of the singularity introduced

by the exponential parameterization of the rotation matrix (see (3.40)) and

the physical restriction that zi(t), z
∗
i (t), and zdi(t) must remain positive.

Although the result stated in Theorem 3.1 indicates asymptotic convergence

for the rotation error eω(t), it is evident from (3.56) that

eω(t) ≤ eω(0) exp(−λmin(Kω)t)

where λmin(Kω) denotes the minimum eigenvalue of the constant matrix

Kω. However, the fact that eω(t) ≤ eω(0) exp(−λmin(Kω)t) does not sim-

plify the control development or stability analysis and the overall result-

ing control objective of tracking a desired set of prerecorded images is still

asymptotically achieved.

3.3.4 Camera-in-Hand Extension

The open-loop error dynamics for the rotation system can be derived as

ėω = −Lωωc − Θ̇d (3.63)

where the fact that

[ωc]× = −ṘRT (3.64)

is used, and ωc(t) denotes the camera angular velocity expressed in F . After
taking the time derivative of (3.17), the following expression for

.
m̄1(t) can

be derived for the camera-in-hand [43]

.
m̄1 = −vc + [m̄1]× ωc, (3.65)

where vc(t) denotes the linear velocity of the camera expressed in terms of

F . After utilizing (3.65), the open-loop dynamics for ev(t) can be deter-
mined as

z∗1 ėv = −α1AeLvvc +
¡
AeLv [m1]× ωc − ṗed

¢
z∗1 , (3.66)
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where ev(t), pe(t), ped(t) are defined in (3.36) and (3.37).

Based on the open-loop error systems in (3.63) and (3.66), the following

control inputs and adaptive update law are designed

ωc , L−1ω
³
Kωeω − Θ̇d

´
(3.67)

vc ,
1

α1
(AeLv)

−1
(Kvev − ẑ∗1 ṗed) +

1

α1
[m1]× ωcẑ

∗
1 (3.68)

.

ẑ
∗
1 , γ1e

T
v

¡
AeLv [m1]× ωc − ṗed

¢
(3.69)

resulting in the following closed-loop error systems

ėω = −Kωeω (3.70)

z∗1 ėv = −Kvev +
¡
AeLv [m1]× ωc − ṗed

¢
z̃∗1 . (3.71)

The result in (3.59) can now be proven for the camera-in-hand problem

using the same analysis techniques and the same nonnegative function as

defined in (3.60) with the term containing s̃1(t) eliminated.

3.3.5 Simulation Results

Simulation studies were performed to illustrate the performance of the con-

troller given in (3.52)—(3.55). For the simulation, the intrinsic camera cal-

ibration matrix is given as in (3.15) where u0 = 257 [pixels], v0 = 253

[pixels], ku = 101.4 [pixels·mm−1] and kv = 101.4 [pixels·mm−1] represent
camera scaling factors, φ = 90 [Deg] is the angle between the camera axes,

and f = 12.5 [mm] denotes the camera focal length. The control objective

is defined in terms of tracking a desired image sequence. For the simula-

tion, the desired image sequence was required to be artificially generated.

To generate an artificial image sequence for the simulation, the Euclidean

coordinates of four target points were defined as

s1 =

⎡⎣ 0.1

−0.1
0

⎤⎦ s2 =

⎡⎣ 0.1

0.1

0

⎤⎦ s3 =

⎡⎣ −0.10.1

0

⎤⎦ s4 =

⎡⎣ −0.1−0.1
0

⎤⎦
(3.72)

and the initial translation and rotation between the current, desired, and

reference image feature planes were defined as

xf (0) =

⎡⎣ −0.3−0.1
3.7

⎤⎦ xfd(0) =

⎡⎣ 0.2

0.1

4

⎤⎦ x∗f =

⎡⎣ 0.2

0.1

4

⎤⎦ (3.73)
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R(0) =

⎡⎣ −0.4698 −0.8660 −0.1710
−0.6477 0.4698 −0.5997
0.5997 −0.1710 −0.7817

⎤⎦ (3.74)

Rd(0) =

⎡⎣ 0.9568 −0.2555 −0.1386
−0.2700 −0.9578 −0.0984
−0.1077 0.1316 −0.9854

⎤⎦ (3.75)

R∗ =

⎡⎣ 0.9865 0.0872 −0.1386
0.0738 −0.9924 −0.0984
−0.1462 0.0868 −0.9854

⎤⎦ . (3.76)

The initial pixel coordinates can be computed from (3.72)—(3.76) as

p1 (0) =
£
170 182 1

¤T
p2 (0) =

£
110 213 1

¤T
p3 (0) =

£
138 257 1

¤T
p4 (0) =

£
199 224 1

¤T
pd1 (0) =

£
359 307 1

¤T
pd2 (0) =

£
343 246 1

¤T
pd3 (0) =

£
282 263 1

¤T
pd4 (0) =

£
298 324 1

¤T
p∗1 =

£
349 319 1

¤T
p∗2 =

£
355 256 1

¤T
p∗3 =

£
292 251 1

¤T
p∗4 =

£
286 314 1

¤T
.

The time-varying desired image trajectory was then generated by the kine-

matics of the target plane where the desired linear and angular velocities

were selected as

ved(t) =
£
0.2 sin (t) 0.3 sin (t) 0

¤
[m/ sec] (3.77)

ωed(t) =
£
0 0 0.52 sin (t)

¤
[rad/ sec].

The desired translational trajectory is given in Figure 3.5, and the desired

rotational trajectory is depicted in Figure 3.6. The generated desired image

trajectory is a continuous function; however, in practice, the image trajec-

tory would be discretely represented by a sequence of prerecorded images

and would require a data interpolation scheme; hence, a spline function

(i.e., the MATLAB spline routine) was utilized to generate a continuous

curve to fit the desired image trajectory. For the top two subplots in Fig-

ure 3.5, the pixel values obtained from the prerecorded image sequence are

denoted by an asterisk (only select data points were included for clarity of

illustration), and a cubic spline interpolation that was used to fit the data

points is illustrated by a solid line. For the bottom subplot in Figure 3.5

and all the subplots in Figure 3.6, a plus sign denotes reconstructed Eu-

clidean values computed using the prerecorded pixel data, and the spline

function is illustrated by a solid line.
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The control gains Kv and Kω and the adaptation gains γ1 and Γ2 were

adjusted through trial and error to the following values

Kv = diag {6, 8, 5} Kω = diag {0.6, 0.8, 0.7} (3.78)

γ1 = 3× 10−6 Γ2 = 10
−5 × diag {4.2, 5.6, 2.8} .

The resulting errors between the actual relative translational and rotational

of the target with respect to the reference target and the desired transla-

tional and rotational of the target with respect to the reference target are

depicted in Figure 3.7 and Figure 3.8, respectively. The parameter estimate

signals are depicted in Figure 3.9 and Figure 3.10. The angular and linear

control input velocities (i.e., ωe(t) and ve(t)) defined in (3.52) and (3.53)

are depicted in Figure 3.11 and Figure 3.12.
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FIGURE 3.5. Desired Translational Trajectory of the Manipulator End-Effector

Generated by a Spline Function to Fit Prerecorded Image Data.

While the results in Figure 3.7—Figure 3.12 provide an example of the

performance of the tracking controller under ideal conditions, several issues

must be considered for a practical implementation. For example, the per-

formance of the tracking control algorithm is influenced by the accuracy

of the image-space feedback signals and the accuracy of the reconstructed

Euclidean information obtained from constructing and decomposing the

homography. That is, inaccuracies in determining the location of a feature

from one frame to the next frame (i.e., feature tracking) will lead to errors

in the construction and decomposition of the homography matrix, leading



© 2010 by Taylor and Francis Group, LLC

3.3 Visual Servo Tracking 61

0 5 10 15 20 25 30
−15

−10

−5

0

Θ
d1

 [D
eg

]

0 5 10 15 20 25 30
−10

−5

0

Θ
d2

 [D
eg

]

0 5 10 15 20 25 30
−100

−50

0

Θ
d3

 [D
eg

]

Time [s]

FIGURE 3.6. Desired Rotational Trajectory of the Manipulator End-Effector

Generated by a Spline Function to Fit Prerecorded Image Data.
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FIGURE 3.7. Error between the Actual Translation Trajectory and the Desired

Translation Trajectory given in Figure 3.5 for the Noise-Free Case.
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FIGURE 3.8. Error between the Actual Rotation Trajectory and the Desired

Rotation Trajectory given in Figure 3.6 for the Noise-Free Case.

0 5 10 15 20 25 30
5.166

5.168

5.17

5.172

5.174

5.176

5.178

5.18

5.182

5.184

[m
]

Time [s]

FIGURE 3.9. Parameter Estimate for z∗1 for the Noise-Free Case.
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FIGURE 3.10. Parameter Estimates for s1 for the Noise-Free Case.
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FIGURE 3.11. Angular Velocity Control Input for the Noise-Free Case.
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FIGURE 3.12. Linear Velocity Control Input for the Noise-Free Case.

to errors in the feedback control signal. Inaccuracies in determining the

feature point coordinates in an image is a similar problem faced in nu-

merous sensor-based feedback applications (e.g., noise associated with a

force/torque sensor). Practically, errors related to sensor inaccuracies can

often be addressed with an ad hoc filter scheme or other mechanisms (e.g.,

an intelligent image processing and feature tracking algorithm, redundant

feature points and an optimal homography computation algorithm).

In light of these practical issues, another simulation was performed where

random noise was injected with a standard deviation of 1 pixel (i.e., the

measured feature coordinate was subject to ± 4 pixels of measurement

error) as in [84]. As in any practical feedback control application in the

presence of sensor noise, a filter was employed. Specifically, ad hoc third

order Butterworth low pass filters with a cutoff frequency of 10 rad/sec

were utilized to preprocess the corrupted image data. The control gains Kv

and Kω and the adaptation gains γ1 and Γ2 were tuned through trial and

error to the following values

Kv = diag {17, 11, 9} Kω = diag {0.4, 0.4, 0.4} (3.79)

γ1 = 5× 10−7 Γ2 = 10
−5 × diag {2.4, 3.2, 1.6} .

The resulting translational and rotational errors of the target are depicted

in Figure 3.13 and Figure 3.14, respectively. The parameter estimate signals

are depicted in Figure 3.15 and Figure 3.16. The control input velocities
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ωe(t) and ve(t) defined in (3.52) and (3.53) are depicted in Figure 3.17 and

Figure 3.18.

Another simulation was also performed to test the robustness of the

controller with respect to the constant rotation matrix R∗. The constant
rotation matrix R∗ in (3.5) is coarsely calibrated as diag{1,−1,−1}. The
resulting translational and rotational errors of the target are depicted in

Figure 3.19 and Figure 3.20, respectively.
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FIGURE 3.13. Error between the Actual Translation Trajectory and the Desired

Translation Trajectory given in Figure 3.5 for the Noise-Injected Case.

3.4 Continuum Robots

This section explores the problem of measuring the shape of a continuum

robot manipulator using visual information from a fixed camera. The mo-

tion of a set of fictitious planes can be captured by an image of four or

more feature points defined at various strategic locations along the body

of the robot. Using expressions for the robot forward kinematics and the

decomposition of a homography relating a reference image of the robot

to the actual robot image, the three dimensional shape information can

be continuously determined. This information can be used to demonstrate

the development of a kinematic controller to regulate the manipulator end-

effector to a constant desired position and orientation.
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FIGURE 3.14. Error between the Actual Rotation Trajectory and the Desired

Rotation Trajectory given in Figure 3.6 for the Noise-Injected Case.
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FIGURE 3.15. Parameter Estimate for z∗1 for the Noise-Injected Case.
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FIGURE 3.16. Parameter Estimates for s1 for the Noise-Injected Case.

0 5 10 15 20 25 30
−10

−5

0

5

10

ω
e1

 [D
eg

.s
−1

]

0 5 10 15 20 25 30
−10

−5

0

5

10

ω
e2

 [D
eg

.s
−1

]

0 5 10 15 20 25 30
−50

0

50

ω
e3

 [D
eg

.s
−1

]

Time [s]

FIGURE 3.17. Angular Velocity Control Input for the Noise-Injected Case.
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FIGURE 3.18. Linear Velocity Control Input for the Noise-Injected Case.
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FIGURE 3.19. Error between the Actual Translation Trajectory and the Desired

Translation Trajectory given in Figure 3.5 for the Noise-Injected Case with a

Coarse Calibration of R∗.
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FIGURE 3.20. Error between the Actual Rotation Trajectory and the Desired

Rotation Trajectory given in Figure 3.6 for the Noise-Injected Case with a Coarse

Calibration of R∗.

3.4.1 Continuum Robot Kinematics

The kinematics of a conventional, rigid-link, industrial robot can be con-

veniently described as a function of joint angles and link lengths using the

standard Denavit-Hartenberg convention [105]. This is a systematic method

of assigning orthogonal coordinate frames to the joints of the robot such

that the relative position and orientation between frames along the kine-

matic chain can be obtained as a product of homogeneous transformation

matrices. In comparison, continuum robots resemble snakes or tentacles in

their physical structure, and due to their continuous and curving shape,

there is no intuitive way to define links and joints on them. The concept

of curvature [20, 53, 58, 59] is a natural way to describe the kinematics of

a continuum robot. One such continuum robot is the Clemson Elephant

Trunk [58] which is composed of sixteen two degrees-of-freedom joints di-

vided into four sections, each section designed to bend with a constant

planar curvature. Every section is cable driven, and can be actuated such

that it defines a different orientation of the plane of its curvature relative

to its preceding section. Due to the rigid nature of the joints, torsion is not

possible within a section.
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FIGURE 3.21. A Planar Curve.

Based on the concept pioneered in [58], and further refined in [68], the

fundamental idea behind development of kinematics for an individual sec-

tion of this robot is to fit a virtual conventional rigid-link manipulator to

its continuous curvature, and develop relationships utilizing the well estab-

lished Denavit-Hartenberg procedure. Consider the sth section of the robot.

Using basic geometry, the kinematics of a 2D planar curve of arc length ls
and curvature ks can be described by three coupled movements – rotation

by an angle θs, followed by a translation xs, and a further rotation by angle

θs as shown in Figure 3.21. In Figure 3.21, xs ∈ R3 is the position vector
of the endpoint of the curve relative to its initial point, and

θs =
ksls
2

(3.80)

kxsk =
ls
θs
sin(θs). (3.81)

After treating the two rotations in the curve as discrete rotational joints and

the translation as a coupled discrete prismatic joint, the standard Denavit-

Hartenberg procedure [105] can be applied to obtain the forward kinematics

for the curve. Thus, the homogeneous transformation matrix for the planar

curve, denoted by Asp ∈ R4×4, can be obtained as [58]

Asp =

⎡⎢⎢⎢⎢⎢⎣
cos(ksls) − sin(ksls) 0

1

ks
{cos(ksls)− 1}

sin(ksls) cos(ksls) 0
1

ks
sin(ksls)

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ . (3.82)

The out-of-plane rotation of the section relative to the preceding plane

can be modelled as an additional rotational joint with rotation of angle φs
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about the initial tangent of the curve (see Figure 3.21). As discovered in

[68], this results in incorrect orientation of the frame defined at the other

end of the curve, since the body of the robot cannot experience torsion.

Therefore, in order to cancel out this torsion, the frame defined at the

distal end of the curve is finally rotated by −φs. Hence, for the 3D case,

the forward kinematics for the sth section of the continuum robot can be

obtained from the following homogeneous transformation matrix

As =

∙
Rs
s−1 tss−1

0 1

¸
, (3.83)

where

Rs
s−1 =

⎡⎣ 1+cos2(φs)cks sin(φs)cos(φs)cks −cos(φs)sin(ksls)
sin(φs)cos(φs)cks cos(ksls)-cos

2(φs)cks −sin(φs)sin(ksls)
sin(ksls)cos(φs) sin(ksls)sin(φs) cos(ksls)

⎤⎦ ,
(3.84)

tss−1 =

⎡⎢⎢⎢⎢⎣
1

ks
cos(φs)cks

1

ks
sin(φs)cks

1

ks
sin(ksls)

⎤⎥⎥⎥⎥⎦ , (3.85)

and cks(t) = cos(ksls) − 1. The matrix As in (3.83) transforms the coor-

dinates of a point defined in the coordinate frame Fs at the end of the
sth curved section to the coordinate frame Fs−1 defined at the end of the
(s− 1)th section. In the above equations, Rs

s−1 ∈ SO(3) and tss−1 ∈ R3
define, respectively, the rotation matrix and translation vector between the

frames Fs and Fs−1. Thus, for the entire robot with four sections, the
homogeneous transformation matrix can be calculated as

T 40 = A1A2A3A4. (3.86)

From (3.86) the end-effector position and orientation in the task-space of

the robot, denoted by p(t) ∈ R6, can be written as

χ = f(q), (3.87)

where f(q) ∈ R6 denotes the forward kinematics, and q(t) ∈ R8 denotes
the joint space variables for the robot defined as

q(t) =
£
φ1 k1 φ2 k2 φ3 k3 φ4 k4

¤T
, (3.88)

where φi(t) and ki(t) are the out-of-plane rotation and the curvature, re-

spectively, for the ith section.
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Based on (3.87), a differential relationship between the end-effector po-

sition and the joint space variables can be defined as [68]

χ̇ = J(q)q̇, (3.89)

where J(q) , ∂f(q)

∂q
∈ R6×8 is called a Jacobian matrix, and q̇(t) ∈ R8

denotes the joint space velocity vector. Note here that the determination

of the Jacobian matrix requires knowledge of the joint space vector q(t). In

the following section, we describe how q(t) can be constructed from images

of feature points along the manipulator as obtained from the fixed camera.

3.4.2 Joint Variables Extraction

The development in Section 3.2 can now be used to relate the feedback from

the video camera to the Euclidean coordinates of the sections of the robot.

An inertial coordinate system I is defined with an origin that coincides with
the center of the fixed camera (see Figure 3.22). For the sake of simplicity,

the origin of the inertial frame I is also assumed to coincide with the origin
of the robot base frame. At the end of sth section of the robot, consider a

transverse plane πs defined by four non-collinear target points denoted by

Osi ∀i = 1, 2, 3, 4 such that the origin of the previously defined coordinate
system Fs lies in πs. Also consider a fixed transverse plane denoted by π

∗
s

with four non-collinear target points denoted by O∗si ∀i = 1, 2, 3, 4, and a
coordinate system F∗s , which are defined when the end of the sth section
is at a reference position and orientation relative to the fixed camera (i.e.,

π∗s’s and F∗s ’s are defined by a reference image of the robot). This reference
image doesn’t necessarily represent the desired position to which we want

to regulate the end-effector of the robot. The 3D coordinates of the target

points Osi, O
∗
si, denoted by m̄si(t) , m̄

∗
si ∈ R3 in πs and π∗s, respectively,

can be expressed in the inertial coordinate system I as in (3.1). The points
Osi and O∗si represent the same features at different geometric locations,
and when expressed in the object reference frames Fs and F∗s , they have
the same coordinates. Likewise, the normalized coordinates, denoted by

msi(t) , m
∗
si ∈ R3 in πs and π∗s, respectively, can be defined as in (3.7)

and (3.9). The pixel coordinates expressed in terms of I are denoted by
usi (t) , vsi (t) ∈ R and u∗si, v∗si ∈ R, and are respectively defined as elements
of psi(t), p

∗
si ∈ R3 as in (3.13), where the pixel coordinates are related to

their normalized Euclidean coordinates by the pinhole camera model given

in (3.14).

To develop a relationship between the coordinate system I and the co-
ordinate system Fs defined at the end of the sth section of the robot,
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FIGURE 3.22. Coordinate Frame Relationships.

the rotation matrix between Fs and I is defined as Rs(t) ∈ SO(3), and

xs(t) ∈ R3 as the translation vector between Fs and I for s = 1, 2, 3, 4.

Similarly, let x∗s ∈ R3 be a constant translation vector between F∗s and I,
and R∗s ∈ SO(3) be the constant rotation matrix between F∗s and I. The
constant rotation matrix R∗s is assumed to be known, since the robot can
be set to a known reference configuration, or that the constant rotation

can be obtained a priori using various methods such as a second camera

or calibrated Euclidean measurements. As also illustrated in Figure 3.22,

n∗s ∈ R3 denotes a constant normal to the reference plane π∗s expressed in
the coordinates of I, and the constant distance d∗s ∈ R from I to plane
π∗s along the unit normal as in (3.2). By using the fact that Osi and O∗si
represent the same feature point at different geometric locations and the

geometry between the coordinate frames Fs, F∗s and I depicted in Figure
3.22, the following relationships can be developed

m̄si = xs +RsOsi (3.90)

m̄∗si = x∗s +R∗sOsi. (3.91)

After solving (3.91) for Osi and substituting the resulting expression into

(3.90), the following relationships can be obtained

m̄si = x̄s + R̄sm̄
∗
si, (3.92)

where R̄s (t) ∈ SO (3) and x̄s (t) ∈ R3 are the new rotational and transla-
tional variables, respectively, defined as

R̄s = Rs (R
∗
s)
T x̄s = xs − R̄sx

∗
s . (3.93)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420006278-c3&iName=master.img-000.jpg&w=254&h=156
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After utilizing (3.2), the relationship in (3.92) can be expressed as in (3.10)

as

msi =
z∗si
zsi|{z}

µ
R̄s +

x̄s
d∗s

n∗Ts

¶
| {z }m∗si,

αsi Hs

(3.94)

where αsi(t) ∈ R is the depth ratio, and Hs(t) ∈ R3×3 denotes the Eu-
clidean homography between the coordinate systems Fs and F∗s . The rela-
tionships in (3.14) can be used to rewrite (3.94) in terms of the projective

homography as in (3.16).

By utilizing the methods described in Section 3.2 (see also [47, 116]),

Hs (t) can be decomposed into rotational and translational components as

in (3.94). Specifically, the rotation matrix R̄s (t) can be computed from the

decomposition of Hs(t). The rotation matrix Rs(t), defining the orientation

of the end of the sth section of the robot relative to the camera fixed frame

I, can then be computed from R̄s(t) by using (3.93) and the fact that

R∗s is known a priori. Since Rs(t) is a rotation matrix between I and
Fs, it can be viewed as a composition of two rotational transformations;
a rotational transformation from frame I to Fs−1 followed by a second
rotational transformation from Fs−1 to Fs. Hence, Rs

s−1(t) in (3.84) can
be progressively computed (i.e., the rotation matrix from one section of the

robot to the next) as [105]

Rs
s−1 = (Rs−1)TRs ∀s = 1, 2, 3, 4. (3.95)

From (3.83), the joint space variables for the sth section can hence be

determined as

ks =
1

ls
cos−1([Rs

s−1]33)

φs = sin−1
µ
[Rs

s−1]32
sin(ksls)

¶
, (3.96)

where ls ∈ R is the known arc length of the section and the notation [·]xy
denotes a matrix element at row x and column y. With the knowledge

of all the joint variables q(t) as computed from (3.96), T 40 of (3.86), and

consequently, the Jacobian J(q) of (3.89) can be calculated online.

3.4.3 Task-Space Kinematic Controller

The control objective is the regulation of the end-effector of the manipula-

tor to a desired position and orientation denoted by χd ∈ R6. This desired
configuration of the robot may be available as an image, and the technique
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described in the previous sections may be applied to compute χd. The mis-

match between the desired and actual end-effector Cartesian coordinates

is the task-space position error, denoted by e(t) ∈ R6, as

e , χ− χd. (3.97)

Utilizing the velocity kinematics in (3.89), and the fact that χ̇d = 0, the

open loop error dynamics for e(t) can be expressed as

ė = Jq̇. (3.98)

The kinematic control input q̇(t) can be designed [115] as

q̇ = −J+βe+ (I8 − J+J)g, (3.99)

where β ∈ R6×6 is a diagonal, positive definite gain matrix, In ∈ Rn×n
denotes the n × n identity matrix, and J+(q) denotes the pseudo-inverse

[6] of J(q), defined as

J+ , JT (JJT )−1. (3.100)

In (3.99), g(t) ∈ R8 is a bounded auxiliary signal that is constructed accord-
ing to a sub-task control objective such as obstacle avoidance. For example,

if the joint-space configuration that avoids an obstacle in the manipulator’s

work-space is known to be qr, then g(t) can be designed as

g , γ(qr − q), (3.101)

where γ ∈ R is a positive gain constant. In designing q̇ (t) as in (3.99), an
inherent assumption is that the minimum singular value of the Jacobian,

denoted by σm, is greater than a known small positive constant δ > 0,

such that max {kJ+(q)k} is known a priori, and all kinematic singularities
are avoided. Note that J+(q) satisfies the following equalities

JJ+ = In (3.102)

J(I8 − J+J) = 0. (3.103)

Substituting the control input of (3.99) into (3.98) yields

ė = −βe, (3.104)

where (3.102) and (3.103) have been used. Hence, e(t) is bounded by the

following exponentially decreasing envelope

ke(t)k ≤ ke(0)k exp(−λt), (3.105)

where λ ∈ R is the minimum eigenvalue of β.
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From (3.97) and (3.105), it is clear that χ(t) ∈ L∞. Based on the assump-
tion that kinematic singularities are avoided, J(t) is always defined and

bounded. Hence, the control input q̇(t) is bounded since J+(q) is bounded

for all possible q(t), and g(t) is bounded by assumption. We make the as-

sumption that if χ(t) ∈ L∞, then q(t) ∈ L∞. From (3.98), ė(t), χ̇(t) ∈ L∞.

3.4.4 Simulations and Discussion

The primary contribution in this section is the development of a vision-

based technique for the measurement of shape of a continuum robot, given

the expressions for the forward kinematics. For the sake of demonstration,

a simple task-space kinematic controller is formulated as

q̇ = −JTβe. (3.106)

Substituting (3.106) into the error dynamics of (3.98) results in the same

exponential stability result as (3.105), except that λ is now the minimum

eigenvalue of JJTβ. The desired task-space position of the end-effector was

selected as

χd =
£
0.30 0.01 0.769 0.0 0.4 0.0

¤T
. (3.107)

The initial configuration of the manipulator, denoted by q(t0)was selected

as

q(t0) =
£
0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1

¤T
, (3.108)

which is close to the relaxed configuration of the manipulator where all

sections lie extended along the principal axis. The diagonal elements of

feedback gain matrix β were set to 30. Based on calibration parameters

from an actual camera, the internal camera calibration matrix A was set

to

A =

⎡⎣ 1268.16 0 257.49

0 1267.51 253.10

0 0 1

⎤⎦ . (3.109)

The reference image of the robot was constructed from a configuration

where the robot is fully extended along its backbone. The position error

and joint variable trajectories from the resulting simulations are shown in

Figures 3.23 and 3.24.

In a physical implementation, multiple cameras at known positions rel-

ative to the base frame of the robot will be required to successfully track

all visual markers on the robot and avoid problems of occlusion. Utilizing

the technique in this section, it is possible to accomplish more than just
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FIGURE 3.23. End Effector Position Error.
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FIGURE 3.24. Time Evolution of Joint Trajectories.
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end-effector regulation. Since all joint variables are recovered from process-

ing the images, a joint level controller may also be implemented which will

enable complete shape control of the robot (i.e., the manipulator may be

servoed to any desired shape given an image of the manipulator at that

configuration). The result may be further extended to shape tracking, if a

video sequence of the desired trajectory of the robot body is available.

3.5 Mobile Robot Regulation and Tracking

A monocular camera-based vision system attached to a mobile robot (i.e.,

the camera-in-hand configuration) is considered in this section. By compar-

ing corresponding target points of an object from two different camera im-

ages, geometric relationships are exploited to derive a transformation that

relates the actual position and orientation of the mobile robot to a reference

position and orientation for the regulation problem. For the tracking prob-

lem, a prerecorded image sequence (e.g., a video) of three target points is

used to define a desired trajectory for the mobile robot. By comparing the

target points from a stationary reference image with the corresponding tar-

get points in the live image (for the regulation problem) and also with the

prerecorded sequence of images (for the tracking problem), projective ge-

ometric relationships are exploited to construct Euclidean homographies.

The information obtained by decomposing the Euclidean homography is

used to develop kinematic controllers. A Lyapunov-based analysis is used

to develop an adaptive update law to actively compensate for the lack of

depth information required for the translation error system. Experimental

results are provided to illustrate the performance of the controller.

y*

x*

Reference Position 
& Orientation

F∗
z*

Current Position 
& Orientation

x

y

Fz

FIGURE 3.25. Mobile Robot Coordinate Systems.
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3.5.1 Regulation Control

The objective of this section is to regulate the position/orientation of a

mobile robot based on image-feedback of a fixed target. As illustrated in

Figure 3.25, the origin of the orthogonal coordinate system F attached to

the camera is coincident with the center of mass of the mobile robot. As also

illustrated in Figure 3.25, the xy-axes of F define the mobile robot plane of
motion where the x-axis of F is aligned with the front of the mobile robot,
and the y-axis is parallel to the wheel axis. The z-axis of F is perpendicular
to the mobile robot plane of motion and is located at the center of the wheel

axis. The linear velocity of the mobile robot along the x-axis is denoted by

vc(t), and the angular velocity ωc(t) is about the z-axis. In addition to F ,
another fixed orthogonal coordinate system, denoted by F∗, is defined to
represent the desired fixed position and orientation of the camera relative

to a target. Hence, the goal is to develop a controller that will regulate the

position and orientation of F to F∗.

Camera Model

A target viewed by a camera attached to the mobile robot is assumed to be

distinguished by three points Oi, i = 1, 2, 3 that compose a plane, denoted

by π. The Euclidean position of point Oi expressed in the coordinate frames

F and F∗ is denoted by m̄i(t), m̄
∗
i ∈ R3, respectively, and is defined as in

(3.1) (see Figure 3.26). The normalized position vectors are defined as

mi(t) ,
£
1 miy(t) miz(t)

¤T
=

m̄i(t)

xi(t)
,
∙
1

yi(t)

xi(t)

zi(t)

xi(t)

¸T
m∗i ,

£
1 m∗iy m∗iz

¤T
=

m̄∗i
x∗i

,
∙
1

y∗i
x∗i

z∗i
x∗i

¸T
,

(3.110)

where the standard assumption is made that xi (t) and x
∗
i are positive [85]

(i.e., the target is always in front of the camera). In addition to the nor-

malized Euclidean position, each point has an image-space representation,

denoted by pi(t), p
∗
i ∈ R3

pi(t) ,
£
1 ui(t) vi(t)

¤T
p∗i ,

£
1 u∗i v∗i

¤T
(3.111)

where ui(t), vi(t) ∈ R denote the pixel coordinates of the point Oi. The

image-space coordinates given in (3.111) are related to the normalized co-

ordinates given in (3.110) by the pinhole camera model given in (3.14).

Since the camera is assumed to be calibrated (i.e., the matrix A is assumed

to be known), mi(t) and m
∗
i can be calculated using (3.14) from the known

camera pixel-space vectors pi(t) and p∗i .
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FIGURE 3.26. Geometric Relationship of the Mobile Robot System

In Figure 3.26, θ(t) ∈ R is the angle between the axes x∗ and x, the unit
vectors n(t), n∗ ∈ R3 are normal to the plane π expressed in F and F∗,
respectively, and d(t), d∗ ∈ R are the unknown, positive distances from the
origin of F and F∗ to the plane π along n and n∗, respectively. Based on
Figure 3.26, the following relationship can be determined

m̄i = Rm̄∗i + q . (3.112)

In (3.112), R(t) ∈ SO(3) denotes the rotation matrix from F∗ to F as

R ,

⎡⎣ cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1

⎤⎦ , (3.113)

and q(t) ∈ R3 is the translation vector from F to F∗ given by

q(t) ,
£
qx(t) qy(t) 0

¤T
. (3.114)

Since d∗ is the projection of m̄∗i along n∗, the relationship given in (3.2)
can be used to write (3.112) as

m̄i = Hm̄∗i (3.115)

where the Euclidean homography H (t) ∈ R3×3 is defined as

H , R+
qn∗

T

d∗
. (3.116)



© 2010 by Taylor and Francis Group, LLC

3.5 Mobile Robot Regulation and Tracking 81

By using (3.113)-(3.116), the Euclidean homography can be rewritten as

H = [Hjk] =

⎡⎢⎢⎢⎣
cos θ +

qxn
∗
x

d∗
− sin θ + qxn

∗
y

d∗
qxn
∗
z

d∗

sin θ +
qyn
∗
x

d∗
cos θ +

qyn
∗
y

d∗
qyn
∗
z

d∗
0 0 1

⎤⎥⎥⎥⎦ , (3.117)

where n∗ =
£
n∗x n∗y n∗z

¤T
. By examining the terms in (3.117), it is clear

that H(t) contains signals that are not directly obtained from the vision

system (e.g., θ(t), q(t), and d∗ are not directly available from the camera

image). However, the six unknown elements of Hjk(t) ∀j = 1, 2, k = 1, 2, 3
can be determined indirectly from the image coordinates by solving a set of

linear equations. Specifically, by using the definition given in (3.110), the

expression given in (3.115) can be rewritten as

mi =

µ
x∗i
xi

¶
| {z }Hm∗i ,

αi

(3.118)

where αi(t) ∈ R denotes a depth ratio. By expanding (3.118), the following
expressions can be obtained

1 = αi
¡
H11 +H12m

∗
iy +H13m

∗
iz

¢
(3.119)

miy = αi
¡
H21 +H22m

∗
iy +H23m

∗
iz

¢
(3.120)

miz = αim
∗
iz. (3.121)

Given that (3.119)—(3.121) will be generated for each of the three target

points, a total of nine independent equations will result. Given the nine

independent equations, the nine unknown parameters (i.e., Hjk(t) ∀j =
1, 2, k = 1, 2, 3 and αi(t) ∀i = 1, 2, 3) can be determined. Based on the fact
that the elements of the homography matrix and the depth ratio can be

determined, the methods described in Section 3.2 (see also [47, 116]) can be

used to decompose H(t) to obtain R(t), αi(t), and
q(t)n∗

d∗
; hence, θ(t) and

αi(t) can be calculated and used in the subsequent control development.

To compute θ(t) from R(t) the following expression can be utilized [105]

θ = cos−1
µ
1

2
(tr (R)− 1)

¶
,

where

0 ≤ θ (t) ≤ π.
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In practice, caution has to be given to determine a unique solution for θ(t)

from the homography decomposition. To determine the unique solution

for θ(t) from the set of possible solutions generated by the homography

decomposition, a best-guess estimate of the constant normal n∗ can be
selected from the physical relationship between the camera and the plane

defined by the object feature points. Of the possible solutions generated for

n∗ by the decomposition algorithm, the solution that yields the minimum
norm difference with the initial best-guess can be determined as the correct

solution. The solution that most closely matches the best-guess estimate

can then be used to determine the correct solutions for θ(t). The robustness

of the system is not affected by the a priori best-guess estimate of n∗ since
the estimate is only used to resolve the ambiguity in the solutions generated

by the decomposition algorithm.

Problem Formulation

The control objective is to ensure that the coordinate frame attached to the

mobile robot is regulated to the fixed coordinate frame F∗. This objective
is naturally defined in terms of the Euclidean position/orientation of the

mobile robot. Yet, the position and orientation of the mobile robot is not

required to be known; rather, only relative translation and orientation in-

formation between two corresponding images is required to be computed as

previously described. The two required images consist of the current image

and an a priori acquired image (i.e., the desired image). The requirement

for an a priori desired image of a target is mild. For example, a mobile

robot could be guided (e.g., via a teach pendent) to a desired relative posi-

tion and orientation with respect to a (indoor or outdoor) target where the

desired image is then taken. For future tasks, the mobile robot can compare

the current image to the previously acquired image to autonomously return

to the desired relative position and orientation, based on the subsequent

control development.

To quantify the control objective in terms of the Euclidean position and

orientation, the translation error between F and F∗, denoted by et(t) ∈ R2,
can be written for any target point Oi, i = 1, 2, 3 as

et ,
∙
etx
ety

¸
=

∙
qx
qy

¸
=

∙
xi
yi

¸
−
∙
cos (θ) − sin (θ)
sin (θ) cos (θ)

¸ ∙
x∗i
y∗i

¸
, (3.122)

where (3.112)—(3.114) have been used. The orientation error between F
and F∗, denoted by eo (t) ∈ R, can be written as

eo(t) , θ(t), (3.123)
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where θ was defined in (3.113). Based on the definitions of (3.122) and

(3.123), the control objective is to regulate et(t) and eo(t) to zero. The

open-loop error system for et(t) and eo(t) can be determined by taking the

time derivative of (3.122) and (3.123) and then utilizing the fact that the

time derivative of the Euclidean position given in (3.1) can be determined

as [34, 85]
·
m̄i = −v − ω × m̄i, (3.124)

where v(t), ω(t) ∈ R denote the linear and angular velocity of the mobile
robot expressed in F as

v(t) ,
£
vc(t) 0 0

¤T
ω(t) ,

£
0 0 ωc(t)

¤T
=
£
0 0 −θ̇(t) ¤T ,

(3.125)

respectively. From the expression given in (3.1), (3.124) and (3.125), the

Euclidean mobile robot velocity can be written in terms of the linear and

angular velocity as
ẋi = −vc + yiωc
ẏi = −xiωc. (3.126)

After utilizing (3.122), (3.125), and (3.126) the open-loop error system can

be obtained as
ėtx = −vc + ωcety
ėty = −ωcetx
ėo = −ωc.

(3.127)

Control Development

The structure of the resulting open-loop error system developed in (3.127)

has been extensively examined in mobile robot control literature. However,

unlike the typical mobile robot control problem, the Euclidean translation

error signals etx(t) and ety(t) are unmeasurable, and hence, new analytical

development is required. To address this issue, an adaptive controller is

developed in this section that actively compensates for the unknown depth

information through a gradient-based adaptive update law.

To facilitate the subsequent control design, a composite translation and

rotation error signal, denoted by r(t) ∈ R3, is defined as

r ,
£
r1(t) r2(t) r3(t)

¤
=

∙
−eo −etx

x∗i

ety
x∗i

¸
. (3.128)

By utilizing the relationship introduced in (3.122), the following expressions

can be developed for r2(t) and r3(t)

r2 = −
∙
1

αi
− cos (θ) +m∗iy sin (θ)

¸
(3.129)
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r3 =

∙
1

αi
miy − sin (θ)−m∗iy cos (θ)

¸
. (3.130)

From the expressions given in (3.128)-(3.130), it is clear that r1(t), r2(t),

and r3(t) can be computed from (3.119)-(3.121) and the decomposition of

the homography matrix. After taking the time derivative of (3.128) and

utilizing (3.127), the resulting simplified open-loop dynamics for r(t) can

be determined as

ṙ1 = ωc (3.131)

γṙ2 = vc − γωcr3

ṙ3 = ωcr2,

where (3.128) has been utilized, and γ ∈ R denotes the following positive
constant

γ , x∗i . (3.132)

To further facilitate the subsequent control design and analysis, an auxiliary

signal η(t) ∈ R is designed as

η , r2 − r3 sin(t), (3.133)

where the following open-loop dynamics for η(t) can be determined by using

(3.131)

γη̇ = vc − γr3ωc − γ sin (t)ωcr2 − γr3 cos (t) . (3.134)

Based on the open-loop dynamics of (3.131), (3.134), and the subse-

quently stability analysis, an adaptive kinematic controller can be designed

as

vc = −k2η + γ̂r3 cos (t) + γ̂ωcr3 (3.135)

ωc = −k1(r1 + χ), (3.136)

where k1, k2 ∈ R denote positive control gains, and χ(t) ∈ R is an auxiliary
signal defined as

χ = (η + r3 sin (t)) (r3 − η sin (t)) . (3.137)

In (3.135), γ̂(t) ∈ R denotes a dynamic estimate of γ generated by the

following differential expression

.

γ̂ = Γ (−r3η cos (t)− ωcηr3) , (3.138)
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where Γ ∈ R denotes a positive adaptation gain. After substituting the

control inputs given in (3.135) and (3.136) into (3.131) and (3.134), respec-

tively, the following closed-loop error system is obtained

ṙ1 = −k1 (r1 + χ) (3.139)

γη̇ = −k2η − γ̃ (r3 cos (t) + wcr3) + γk1r2 sin (t) (r1 + χ)

ṙ3 = −k1r2 (r1 + χ) ,

where γ̃(t) ∈ R denotes the following parameter estimation error
γ̃ = γ − γ̂. (3.140)

Stability Analysis

Theorem 3.2 The control law given in (3.135) and (3.136) ensures that

the position and orientation of the mobile robot coordinate frame F is reg-

ulated to the desired position/orientation described by F∗ in the sense that
lim
t→∞ et(t), eo(t) = 0. (3.141)

Proof. To prove (3.141), a non-negative function V (t) is defined as

V , 1

2
γ
¡
r21 + η2 + r23

¢
+
1

2
Γ−1γ̃2. (3.142)

After taking the time derivative of (3.142) and substituting for the closed-

loop system of (3.139), the following expression is obtained

V̇ = −k1γr1 (r1 + χ)− k1γr2r3 (r1 + χ)− Γ−1γ̃
.

γ̂ (3.143)

+η[−k2η − γ̃ (r3 cos (t) + ωcr3) + γk1r2 sin (t) (r1 + χ)].

Substituting (3.138) into (3.143) and cancelling common terms yields

V̇ = −k2η2 − γk1 (r1 + χ)2 , (3.144)

where (3.133) and (3.137) have been used. From (3.142) and (3.144), r1(t),

r3(t), η(t), α̃(t) ∈ L∞ and η(t), [r1(t) + χ(t)] ∈ L2. Based on the previous
facts, (3.133)—(3.137), (3.139), and (3.140) can be used to determine that

χ(t), α̂(t), ωc(t), vc(t), r2(t), ṙ1(t), ṙ3(t), η̇(t) ∈ L∞. Based on the facts
that r1(t), r2(t), r3(t) ∈ L∞ and that x∗i is a positive constant, (3.128)
can be used to prove that eo (t), etx (t), ety (t) ∈ L∞. The expressions in
(3.138) and (3.140) can be used to prove that

·
γ̃(t),

·
γ̂(t) ∈ L∞. Since ṙ3(t)

and
·
γ̃(t) ∈ L∞, then r3(t), γ̃(t) are uniformly continuous (UC). After tak-

ing the time derivative of (3.137), the following expression can be obtained

χ̇ = (η̇ + ṙ3 sin (t) + r3 cos(t)) (r3 − η sin (t)) (3.145)

+ (η + r3 sin (t)) (ṙ3 − η̇ sin (t)− η cos (t)) .



© 2010 by Taylor and Francis Group, LLC

86 3. Vision-Based Systems

From the previous facts and (3.145), χ̇(t) ∈ L∞. Based on the facts that
η(t), η̇(t), [ r1(t) + χ(t)], [ṙ1(t) + χ̇(t)] ∈ L∞ and that η(t), [r1(t) + χ(t)] ∈
L2, Barbalat’s lemma [102] can be employed to conclude that

lim
t→∞ η(t), [r1(t) + χ(t)] = 0. (3.146)

The result in (3.146) can be used in conjunction with the closed-loop dy-

namics for r1(t) and r3(t) given in (3.139) and the control input of (3.136),

to determine that

lim
t→∞ ṙ1(t), ωc(t), ṙ3(t) = 0. (3.147)

By utilizing (3.136), the second equation of (3.139) can be rewritten as

γη̇ = [−k2η − γ̃ωcr3 − γr2 sin (t)ωc]− γ̃r3 cos (t) . (3.148)

The results in (3.146) and (3.147) can be used to determine that the brack-

eted term of (3.148) goes to zero as t→∞; therefore, since α̃(t), r3(t) are
UC and η(t) has a finite limit as t→∞, the Extended Barbalat’s Lemma
(see Lemma A.2 of Appendix A) can be invoked to prove that

lim
t→∞ η̇(t) = 0. (3.149)

After taking the time derivative of [r1(t) + χ(t)], substituting (3.139) and

(3.145) for ṙ1(t) and χ̇(t), respectively, the following resulting expression

can be obtained

d

dt
[r1(t) + χ(t)] = [−k1 (r1 + χ) + ϑ(t)] + r23 cos(t), (3.150)

where the auxiliary signal ϑ(t) ∈ R is defined as

ϑ(t) , (η + r3 sin (t)) (ṙ3 − η̇ sin (t)− η cos (t)) + r3 (ṙ3 sin (t)

+η̇)− η sin (t) (η̇ + ṙ3 sin (t) + r3 cos (t)) .
(3.151)

Based on (3.146), (3.147), and (3.149), it can be shown that

lim
t→∞ϑ(t) = 0. (3.152)

From (3.146) and (3.152), the bracketed term of (3.150) also goes to zero

as t→∞. Since r3(t) is UC and [r1(t) + χ(t)] has a finite limit as t→∞,
the Extended Barbalat’s Lemma (see Lemma A.2 of Appendix A) can be

utilized to conclude that

lim
t→∞ r23 cos(t) = 0. (3.153)
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The result in (3.153) implies that

lim
t→∞ r3(t) = 0. (3.154)

Based on the previous facts, (3.137) and (3.146) can now be utilized to

prove that

lim
t→∞ r1(t) = 0. (3.155)

By utilizing (3.146), (3.154), (3.155) and the definitions introduced in

(3.128) and (3.133), the result in (3.141) can be obtained. Specifically, given

that

lim
t→∞ r1(t), r3(t), η(t) = 0,

then it can be determined that

lim
t→∞ et(t), eo(t) = 0.

Experimental Verification

FIGURE 3.27. Mobile Robot Testbed.

The testbed depicted in Figure 3.27 was constructed to implement the

adaptive regulation controller given by (3.135), (3.136), and (3.138). The

mobile robot testbed consists of the following components: a modified K2A

mobile robot (with an inclusive Pentium 133 MHz personal computer (PC))

manufactured by Cybermotion Inc., a Dalsa CAD-6 camera that captures

955 frames per second with 8-bit gray scale at a 260×260 resolution, a

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420006278-c3&iName=master.img-001.jpg&w=182&h=188


© 2010 by Taylor and Francis Group, LLC

88 3. Vision-Based Systems

Road Runner Model 24 video capture board, and two Pentium-based PCs.

In addition to the mobile robot modifications described in detail in [38],

additional modifications particular to this experiment included mounting

a camera and the associated image processing Pentium IV 800 MHz PC

(operating under QNX, a real-time micro-kernel based operating system) on

the top of the mobile robot as depicted in Figure 3.27. The internal mobile

robot computer (also operating under QNX) hosts the control algorithm

that was written in “C/C++,” and implemented using Qmotor 3.0 [76]. In

addition to the image processing PC, a second PC (operating under the

MS Windows 2000 operating system) was used to remotely log in to the

internal mobile robot PC via the QNX Phindows application. The remote

PC was used to access the graphical user interface of Qmotor for execution

of the control program, gain adjustment, and data management, plotting,

and storage. Light-emitting diodes (LEDs) were rigidly attached to a rigid

structure that was used as the target, where the intensity of the LEDs

contrasted sharply with the background. Due to the contrast in intensity,

a simple thresholding algorithm was used to determine the coordinates of

each LED.

The mobile robot is controlled by a torque input applied to the drive and

steer motors. As subsequently described, to facilitate a torque controller the

actual linear and angular velocity of the mobile robot is required. To ac-

quire these signals a backwards difference algorithm was applied to the

drive and steering motor encoders. Encoder data acquisition and the con-

trol implementation were performed at a frequency of 1.0kHz using the

Quanser MultiQ I/O board. For simplicity the electrical and mechanical

dynamics of the system were not incorporated in the control design (i.e.,

the emphasis of this experiment is to illustrate the visual servo controller).

However, since the developed kinematic controller is differentiable, stan-

dard backstepping techniques could be used to incorporate the mechanical

and electrical dynamics. See [37] and [38] for several examples that incor-

porate the mechanical dynamics. Permanent magnet DC motors provide

steering and drive actuation through a 106:1 and a 96:1 gear coupling, re-

spectively. The dynamics for the modified K2A mobile robot are given as

follows

1
ro

∙
1 0

0 Lo
2

¸ ∙
τ1
τ2

¸
=

∙
mo 0

0 Io

¸ ∙
v̇1
v̇2

¸
(3.156)

where τ1(t), τ2(t) ∈ R denote the drive and steering motor torques, re-

spectively, mo = 165 [kg] denotes the mass of the robot, Io = 4.643 [kg·m2]
denotes the inertia of the robot, ro = 0.010 [m] denotes the radius of the

wheels, and Lo = 0.667 [m] denotes the length of the axis between the
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wheels. Using the Camera Calibration Toolbox for MATLAB (Zhengyou

Zhang’s data) [5] the intrinsic calibration parameters of the camera were

determined. The pixel coordinates of the principal point (i.e., the image

center that is defined as the frame buffer coordinates of the intersection of

the optical axis with the image plane) were determined to be u0 = v0 = 130

[pixels], the focal length and camera scaling factors were determined to be

fku = 1229.72 [pixels] and fkv = 1235.29 [pixels].

Based on (3.128)—(3.130), (3.133), (3.135), (3.136), and (3.138), the sig-

nals required to implement the controller include m∗1y, α1(t), θ(t), and
m1y(t). As previously described, to obtain these signals, an image is re-

quired to be obtained at the desired relative position and orientation of the

camera with respect to a target. As also previously described, the subscript

i = 1, is used to indicate that the signal corresponds to the first target point

(without loss of generality). The mobile robot was driven by a joystick to

a desired position and orientation relative to the target, the desired im-

age was acquired, and the coordinates of the target features were saved on

the image processing PC. From the coordinates of the target features and

knowledge of the intrinsic calibration parameters, (3.15) was used to de-

termine m∗1y. The constant value for m
∗
1y was included in the control code

hosted by the internal mobile robot PC.

After obtaining the desired image, the mobile robot was driven away from

the target by a joystick approximately 6 [m] along the x-axis, with some

small offset along the y-axis, and with approximately 34 [deg] of orientation

error. Before the control program was executed, the image processing PC

was set to acquire the live camera images at 955 frames/sec, to determine

the pixel coordinates of the target points, to construct and decompose the

homography, and to transmit the signals α1(t), θ(t), and m1y(t) that are

computed from the homography decomposition via a server program over

a dedicated 100Mb/sec network connection to the internal mobile robot

computer. A camera with an image capture rate of 955 frames/sec is not

required for the experiment. The high speed camera was utilized to enable

a higher closed-loop control frequency.

A client program was executed on the internal mobile robot computer

to receive α1(t), θ(t), and m1y(t) from the server program and write the

information into a shared memory location. When the control program

was executed, the values for α1(t), θ(t), and m1y(t) were acquired from the

shared memory location (rather than directly from the network connection

to maintain a near deterministic response and for program stability). The

values for m∗1y, α1(t), θ(t), and m1y(t) were utilized to determine r(t) and
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η(t) as described by (3.128)—(3.130) and (3.133), and to compute the control

signals.

To execute a torque level controller, a feedback loop was implemented as

τ = Khη̄, (3.157)

where τ =[τ1(t), τ2(t)]
T ∈ R2 denotes a vector of the drive and steering

motor torques, respectively, Kh ∈ R2×2 is a diagonal scaling term, and
η̄(t) ∈ R2 is a velocity mismatch signal defined as

η̄ =
£
vc ωc

¤T − £ va ωa
¤T

, (3.158)

where vc(t) and ωc(t) denote the linear and angular velocity inputs com-

puted in (3.135) and (3.136), and va(t) and ωa(t) denote actual linear and

angular velocity of the mobile robot computed from the time derivative of

the motor encoders.

The control and adaptation gains were adjusted to reduce the posi-

tion/orientation error with the initial adaptive estimate set to zero. In

practice, the adaptive estimate would be initialized to a best-guess value.

In this experiment, the adaptive estimate was initialized to zero to illus-

trate the ability of the estimate to converge in the presence of a large initial

error. The final feedback and adaptation gain values were recorded as

k1 = 55.35, k2 = 21.25, Γ = 0.15, Kh = diag{8, 0.185}.

The resulting orientation error is provided in Figure 3.28, and the unitless

planar position regulation errors r2 (t) and r3 (t), are depicted in Figure

3.29. Figure 3.30 illustrates that the adaptive estimate for the depth pa-

rameter d∗ approaches a constant. From Figures 3.28 and 3.29, it is clear

that some steady state errors exist in the orientation and the translation

along the lateral mobile robot axis, previously defined as eo(t) and ety(t),

respectively. The steady-state error in eo(t) is due, in large part, to the fact

that as the mobile robot approaches the target, changes in the image-space

orientation are magnified (i.e., a one pixel difference from a far distance

has less orientation error than a one pixel difference at a close distance).

The steady-state error in eo(t) is propagated in ety(t). That is, the lateral

position of the mobile robot is directly influenced by the orientation error.

The computed unitless depth ratio γ1 (t)  is provided in Figure 3.31.  The

control torque inputs at the wheels of the mobile robot (i.e., after the 106:1

and 96:1 gear coupling) that is applied by the steer and drive motors is

depicted in Figure 3.32.
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FIGURE 3.28. Orientation Error, eo(t) = r1(t).
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FIGURE 3.29. Position Error, r2(t) and r3(t).
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FIGURE 3.30. Adaptive Estimate.

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[u
ni

tle
ss

]

Time [sec]

FIGURE 3.31. Computed Depth Ratio.
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FIGURE 3.32. Computed Torque Inputs.

3.5.2 Tracking Control

The tracking problem can be described as in Figure 3.25 with the addition

of a desired “phantom” robot as illustrated in Figure 3.33. The phantom

robot is used to generate a prerecorded desired time-varying trajectory of

Fd that is assumed to be second-order differentiable. The desired trajec-
tory is obtained from a prerecorded set of images of a stationary target

viewed by the on-board camera as the mobile robot moves. For example,

the desired mobile robot motion could be obtained as an operator drives

the robot via a teach pendant, with the on-board camera capturing and

storing the sequence of images of the stationary target. For this scenario,

the fixed orthogonal coordinate system, denoted by F∗, enables the current
and desired image trajectories to be compared to a constant reference im-

age. The use of a constant reference image also facilitates the development

of a constant parameter that can be related to the time-varying depth from

the mobile robot to the target. Relating the time-varying depth information

to a depth related parameter facilitates adaptive control methods. Based

on the definition of these coordinate frames, the goal in this section is to

develop a homography-based visual servo controller that will force F to

track the position and orientation trajectory provided by Fd.
From a practical standpoint, numerous applications can be represented

by the described problem formulation. For example, the mobile robot could
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FIGURE 3.33. Mobile Robot Coordinate Systems.

be navigated via a teach pendant, while the camera records a desired set

of images that represent the trajectory of the mobile robot relative to the

target. Then in subsequent tasks, the mobile robot will be able to track

the same relative trajectory independent of the possibility that the target

has moved between the time the image sequence was recorded and the

autonomous task execution. A simple practical example is if the mobile

robot is taught a path (via the set of images) to a docking station to

recharge the batteries. The mobile robot will be able to track this path to

achieve successful docking with the charging station even if the station has

been moved from the original location (or likewise, if the initial position

and orientation of the mobile robot is different), provided obstacles have

not been placed in the path of the mobile robot that would inhibit the

mobile robot trajectory. See [101] for further discussion and motivation for

the problem formulation.

Geometric Model

In this section, geometric relationships are developed between the coordi-

nate systems F , Fd, and F∗, and a reference plane π that is defined by
three target points Oi ∀i = 1, 2, 3 that are not collinear. The 3D Euclidean
coordinates of Oi expressed in terms of F , Fd, and F∗ as m̄i (t), m̄di (t),

m̄∗i ∈ R3, respectively, are defined as in (3.1). The rotation from F∗ to F
is denoted by R (t) ∈ SO(3), and the translation from F to F∗ is denoted
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by xf (t) ∈ R3 where xf (t) is expressed in F . Similarly, Rd(t) ∈ SO(3)

denotes the desired time-varying rotation from F∗ to Fd, and xfd(t) ∈ R3
denotes the desired translation from Fd to F∗ where xfd (t) is expressed
in Fd. Since the motion of the mobile robot is constrained to the xy-plane,
xf (t) and xfd(t) are defined as

xf (t) ,
£
xf1 xf2 0

¤T
(3.159)

xfd (t) ,
£
xfd1 xfd2 0

¤T
.

From the geometry between the coordinate frames depicted in Figure 3.34,

m̄∗i can be related to m̄i(t) and m̄di(t) as

m̄i = xf +Rm̄∗i m̄di = xfd +Rdm̄
∗
i . (3.160)

In (3.160), R (t) and Rd(t) are defined as in (3.113), where θ(t) ∈ R denotes
the right-handed rotation angle about zi(t) that aligns the rotation of F
with F∗, and θd(t) ∈ R denotes the right-handed rotation angle about

zdi(t) that aligns the rotation of Fd with F∗. From the definition of the

coordinate systems

θ̇ = −ωc θ̇d = −ωcd (3.161)

where ωcd(t) ∈ R denotes the desired angular velocity of the mobile robot
expressed in Fd. The rotation angles are assumed to be confined to the
following regions

−π < θ (t) < π − π < θd (t) < π . (3.162)

Based on the definition of d∗ in (3.2) and the fact that n∗ and m̄∗ do not
change, it is clear that d∗ is a constant. From (3.2), the relationships in

(3.160) can be expressed as

m̄i =
³
R+

xf
d∗

n∗T
´
m̄∗i (3.163)

m̄di =
³
Rd +

xfd
d∗

n∗T
´
m̄∗i .

Euclidean Reconstruction

The relationship given in (3.160) provides a means to quantify the trans-

lational and rotational error between F and F∗ and between Fd and F∗.
Since the position of F , Fd, and F∗ cannot be directly measured, this
section illustrates how the normalized Euclidean coordinates of the target
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points can be reconstructed by relating multiple images. Specifically, com-

parisons are made between an image acquired from the camera attached to

F , the reference image, and the prerecorded sequence of images that define
the trajectory of Fd. To facilitate the subsequent development, the normal-
ized Euclidean coordinates of Oi expressed in terms of F , Fd, and F∗ are
denoted by mi (t), mdi (t), m

∗
i ∈ R3, respectively, and are explicitly defined

in (3.110). In addition to having a Euclidean coordinate, each target point

Oi will also have a projected pixel coordinate denoted by ui (t) , vi (t) ∈ R
for F , u∗i , v∗i ∈ R for F∗, and udi (t) , vdi (t) ∈ R for Fd, that are defined
as elements of pi (t) ∈ R3 (i.e., the actual time-varying image points),
pdi (t) ∈ R3 (i.e., the desired image point trajectory), and p∗i ∈ R3 (i.e.,
the constant reference image points), respectively, as in (3.111). The nor-

malized Euclidean coordinates of the target points are related to the image

data through the pinhole model as in (3.14).

Given that mi (t), mdi (t), and m∗i can be obtained from (3.14), the

rotation and translation between the coordinate systems can be related in

terms of the normalized Euclidean coordinates as

mi =
x∗i
xi|{z}

¡
R+ xhn

∗T ¢| {z }m∗i
αi H

(3.164)

mdi =
x∗i
xdi|{z}

¡
Rd + xhdn

∗T ¢| {z }m∗i ,
αdi Hd

(3.165)
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where αi (t) , αdi (t) ∈ R denote the depth ratios, H (t) , Hd(t) ∈ R3×3
denote Euclidean homographies, and xh (t) , xhd (t) ∈ R3 denote scaled
translation vectors that are defined as

xh ,
£
xh1 xh2 0

¤T
=

xf
d∗

(3.166)

xhd ,
£
xhd1 xhd2 0

¤T
=

xfd
d∗

.

By using (3.113) and (3.12), the Euclidean homography in (3.164) can be

rewritten as

H = [Hjk] (3.167)

=

⎡⎣ cos θ + xh1n
∗
x − sin θ + xh1n

∗
y xh1n

∗
z

sin θ + xh2n
∗
x cos θ + xh2n

∗
y xh2n

∗
z

0 0 1

⎤⎦ .

By examining the terms in (3.167), it is clear thatH(t) contains signals that

are not directly measurable (e.g., θ(t), xh(t), and n
∗). By expanding Hjk(t)

∀j = 1, 2, k = 1, 2, 3, the expressions given in (3.119)—(3.121). Following the
development for the regulation problem, R(t), Rd(t), xh(t), and xhd(t) can

all be computed from (3.119)—(3.121) and used for the subsequent control

synthesis. Since R(t) and Rd(t) are known matrices, then (3.113) can be

used to determine θ(t) and θd(t).

Control Development

The control objective is to ensure that the coordinate frame F tracks the

time-varying trajectory of Fd (i.e., m̄i(t) tracks m̄di(t)). This objective is

naturally defined in terms of the Euclidean position/orientation of the mo-

bile robot. Specifically, based on the previous development, the translation

and rotation tracking error, denoted by e(t) ,
£
e1 e2 e3

¤T ∈ R3, is
defined as

e1 , xh1 − xhd1
e2 , xh2 − xhd2
e3 , θ − θd,

(3.168)

where xh1(t), xh2(t), xhd1(t), and xhd2(t) are introduced in (3.166), and

θ(t) and θd(t) are introduced in (3.113). Based on the definition in (3.168),

it can be shown that the control objective is achieved if the tracking error

e(t)→ 0. Specifically, it is clear from (3.12) that if e1(t)→ 0 and e2(t)→ 0,

then xf (t) → xfd(t). If e3 → 0, then it is clear from (3.113) and (3.168)

that R(t) → Rd(t). If xf (t) → xfd(t) and R(t) → Rd(t), then (3.160) can

be used to prove that m̄i(t)→ m̄di(t).
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As described in Section 3.3.1, it is typical that the desired trajectory is

used as a feedforward component in tracking control designs. As described

previously, the functions αdi(t), Hd(t), Rd(t), and xhd(t) can be obtained

from a sufficiently smooth function derived from the prerecorded sequence

of images. Given θd(t) and the time derivative of Rd(t), θ̇d(t) can be deter-

mined. In the subsequent tracking control development, ẋhd1(t) and θ̇d(t)

will be used in feedforward control terms.

Open-loop Error System

As a means to develop the open-loop tracking error system, the time deriva-

tive of the Euclidean position xf (t) is determined as [85]

ẋf = −v + [xf ]×ω, (3.169)

where v(t), ω(t) ∈ R3 denote the respective linear and angular velocity of
the mobile robot expressed in F as

v ,
£
vc 0 0

¤T
ω ,

£
0 0 ωc

¤T
, (3.170)

and [xf ]× denotes the 3×3 skew-symmetric form of xf (t). After substituting
(3.166) into (3.169), the time derivative of the translation vector xh (t) can

be written in terms of the linear and angular velocity of the mobile robot

as

ẋh = − v

d∗
+ [xh]×ω . (3.171)

After incorporating (3.170) into (3.171), the following expression can be

obtained
ẋh1 = − vc

d∗
+ xh2ωc

ẋh2 = −xh1ωc,
(3.172)

where (3.166) was utilized. Given that the desired trajectory is generated

from a prerecorded set of images taken by the on-board camera as the

mobile robot was moving, an expression similar to (3.169) can be developed

as

ẋfd = −
£
vcd 0 0

¤T
+ [xfd]×

£
0 0 ωcd

¤T
, (3.173)

where vcd(t) ∈ R denotes the desired linear1 velocity of the mobile robot
expressed in Fd. After substituting (3.166) into (3.173), the time derivative
of the translation vector xhd (t) can be written as

ẋhd1 = −vcd
d∗
+ xhd2ωcd

ẋhd2 = −xhd1ωcd.
(3.174)

1Note that vcd(t) is not measurable.
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After taking the time derivative of (3.168) and utilizing (3.161) and (3.172),

the following open-loop error system can be obtained

d∗ė1 = −vc + d∗(xh2ωc − ẋhd1)

ė2 = −
³
xh1ωc + xhd1θ̇d

´
ė3 = −

³
ωc + θ̇d

´
,

(3.175)

where the definition of e2(t) given in (3.168), and the second equation of

(3.174) was utilized. To facilitate the subsequent development, the auxiliary

variable ē2 (t) ∈ R is defined as

ē2 , e2 − xhd1e3. (3.176)

After taking the time derivative of (3.176) and utilizing (3.175), the follow-

ing expression is obtained

.
ē2 = − (e1ωc + ẋhd1e3) . (3.177)

Based on (3.176), it is clear that if ē2(t), e3(t) → 0, then e2(t) → 0.

Based on this observation and the open-loop dynamics given in (3.177),

the following control development is based on the desire to prove that

e1 (t) , ē2 (t) , e3 (t) are asymptotically driven to zero.

Closed-Loop Error System

Based on the open-loop error systems in (3.175) and (3.177), the linear and

angular velocity kinematic control inputs for the mobile robot are designed

as

vc , kve1 − ē2ωc + d̂∗(xh2ωc − ẋhd1) (3.178)

ωc , kωe3 − θ̇d − ẋhd1ē2, (3.179)

where kv, kω ∈ R denote positive, constant control gains. In (3.178), the
parameter update law d̂∗(t) ∈ R is generated by the following differential
equation

.

d̂∗ = γ1e1(xh2ωc − ẋhd1), (3.180)

where γ1 ∈ R is a positive, constant adaptation gain. After substituting

the kinematic control signals designed in (3.178) and (3.179) into (3.175),

the following closed-loop error systems are obtained

d∗ė1 = −kve1 + ē2ωc + d̃∗(xh2ωc − ẋhd1)
.
ē2 = − (e1ωc + ẋhd1e3)

ė3 = −kωe3 + ẋhd1ē2,

(3.181)
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where (3.177) was utilized, and the depth-related parameter estimation

error d̃∗(t) ∈ R is defined as

d̃∗ , d∗ − d̂∗ . (3.182)

Stability Analysis

Theorem 3.3 The adaptive update law defined in (3.180) along with the

control input designed in (3.178) and (3.179) ensure that the mobile robot

tracking error e (t) is asymptotically driven to zero in the sense that

lim
t→∞ e (t) = 0 (3.183)

provided the time derivative of the desired trajectory satisfies the condition

lim
t→∞ ẋhd1 6= 0. (3.184)

Proof: To prove Theorem 3.3, the non-negative function V (t) ∈ R is

defined as

V , 1

2
d∗e21 +

1

2
ē22 +

1

2
e23 +

1

2γ1
d̃∗2 . (3.185)

The following simplified expression can be obtained by taking the time

derivative of (3.185), substituting the closed-loop dynamics in (3.181) into

the resulting expression, and then cancelling common terms

V̇ = −kve21 + e1d̃
∗(xh2ωc − ẋhd1)− kωe

2
3 −

1

γ1
d̃∗

.

d̂∗. (3.186)

Substituting (3.180) into (3.186) yields

V̇ = −kve21 − kωe
2
3 . (3.187)

From (3.185) and (3.187), it is clear that e1(t), ē2 (t), e3 (t), d̃
∗(t) ∈ L∞ and

that e1(t), e3 (t) ∈ L2. Since d̃∗(t) ∈ L∞ and d∗ is a constant, the expression
in (3.182) can be used to determine that d̂∗(t) ∈ L∞. From the assumption
that xhd1(t), ẋhd1(t), xhd2(t), θd(t), and θ̇d(t) are constructed as bounded

functions, and the fact that ē2 (t), e3 (t) ∈ L∞, the expressions in (3.168),
(3.176), and (3.179) can be used to prove that e2 (t), xh1(t), xh2(t), θ(t),

ωc(t) ∈ L∞. Based on the previous development, the expressions in (3.178),
(3.180), and (3.181) can be used to conclude that vc(t),

.

d̂∗(t), ė1(t),
.
ē2 (t),

ė3(t) ∈ L∞. Based on the fact that e1(t), e3 (t), ė1(t), ė3(t) ∈ L∞ and that

e1(t), e3 (t) ∈ L2, Barbalat’s lemma [102] can be employed to prove that

lim
t→∞ e1(t), e3(t) = 0 . (3.188)
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From (3.188) and the fact that the signal ẋhd1(t)ē2(t) is uniformly continu-

ous (i.e., ẋhd1(t), ẍhd1(t), ē2(t),
.
ē2 (t) ∈ L∞), Extended Barbalat’s Lemma

(see Lemma A.2 of Appendix A) can be applied to the last equation in

(3.181) to prove that

lim
t→∞ ė3(t) = 0 (3.189)

and that

lim
t→∞ ẋhd1(t)ē2(t) = 0 . (3.190)

If the desired trajectory satisfies (3.184), then (3.190) can be used to prove

that

lim
t→∞ ē2(t) = 0 . (3.191)

Based on the definition of ē2(t) given in (3.176), the results in (3.188) and

(3.191) can be used to conclude that

lim
t→∞ e2(t) = 0 (3.192)

provided the condition in (3.184) is satisfied.

Remark 3.2 The condition given in (3.184) is in terms of the time deriva-

tive of the desired translation vector. Typically, for WMR tracking prob-

lems, this assumption is expressed in terms of the desired linear and an-

gular velocity of the WMR. To this end, (3.174) can be substituted into

(3.184) to obtain the following condition

lim
t→∞

vcd(t)

d∗
6= xhd2(t)ωcd(t). (3.193)

The condition in (3.193) is comparable to typical WMR tracking results that

restrict the desired linear and angular velocity. For an in-depth discussion

of this type of restriction including related previous results see [38].

Experimental Results

The adaptive tracking controller given by (3.178)—(3.180) was implemented

on the same mobile robot testbed as described for the regulation problem.

To acquire the desired image trajectory, the mobile robot was driven by

a joystick while the image processing PC acquired the camera images at

955 frames/sec, determined the pixel coordinates of the feature points, and

saved the pixel data to a file. The last image was also saved as the refer-

ence image. The desired image file and the reference image were read into a

stand-alone program that computed xhd(t) and θd(t) offline. To determine

the unique solution for xhd(t) and θd(t) (and likewise for xh(t) and θ(t))
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from the set of possible solutions generated by the homography decom-

position, a best-guess estimate of the constant normal n∗ was selected as
n∗ =

£
1 0 0

¤T
(i.e., from the physical relationship between the cam-

era and the plane defined by the object feature points, the focal axis of the

camera mounted on the mobile robot was assumed to be roughly perpendic-

ular to π). Of the possible solutions generated for n∗ by the decomposition
algorithm, the solution that yielded the minimum norm difference with the

initial best-guess was determined as the correct solution. The solution that

most closely matched the best-guess estimate was then used to determine

the correct solutions for xhd(t) and θd(t) (or xh(t) and θ(t)). The robust-

ness of the system is not affected by the a priori estimate of n∗ since the
estimate is only used to resolve the ambiguity in the solutions generated by

the decomposition algorithm, and the n∗ generated by the decomposition
algorithm is used to further decompose the homography. A Butterworth

filter was applied to xhd(t) and θd(t) to reduce noise effects. A filtered

backwards difference algorithm was used to compute ẋhd(t) and θ̇d(t). Fig-

ure 3.35 and Figure 3.36 depict the desired translation and rotation signals,

respectively.
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FIGURE 3.35. Desired Translation.

The desired trajectory signals xhd(t), ẋhd1(t), θd(t), and θ̇d(t) were stored

in a file that was opened by the control algorithm and loaded into memory

when the control algorithm was loaded in Qmotor. After determining xh(t)
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and θ(t) from the homography decomposition, comparisons with xhd(t)

and θd(t) were made at each time instant to compute the error signal e1(t),

ē2(t), and e3(t), which were subsequently used to compute vc(t), ωc(t), and
.

d̂∗(t) given in (3.178)—(3.180). The torque level controller given in (3.157)
was implemented as described in the regulation experimental section.

The control gains were adjusted to reduce the position/orientation track-

ing error with the adaptation gains set to zero and the initial adaptive

estimate set to zero. After some tuning, the position/orientation tracking

error response could not be significantly improved by further adjustments

of the feedback gains. The adaptation gains were then adjusted to allow

the parameter estimation to reduce the position/orientation tracking error.

After the tuning process was completed, the final adaptation and feedback

gain values were recorded as

kv = 4.15, kω = 0.68, γ = 40.1, Kh = diag{99.7, 23.27}.

The unitless position/orientation tracking errors e1 (t) and e2 (t), are de-

picted in Figure 3.37 and Figure 3.38, respectively. Figure 3.39 illustrates

that the adaptive estimate for the depth parameter d∗ approaches a con-
stant. Figure 3.40 illustrates the linear and angular velocity of the mobile

robot. The control torque inputs are presented in Figure 3.41 and represent

the torques applied after the gearing mechanism.
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From Figure 3.37 and Figure 3.38, it is clear that e2(t) is relatively un-

changing in the first 8 seconds, whereas e1(t) and e3(t) are changing signif-

icantly. This phenomena is due to the nonholonomic nature of the vehicle.

Specifically, since there is an initial position and orientation error, the con-

troller moves the vehicle to minimize the error and align the mobile robot

with the desired image trajectory. Since the mobile robot can not move

along both axes of the Cartesian plane simultaneously while also rotating

(i.e., due to the nonholonomic motion constraints), the mobile robot ini-

tially moves to minimize e1(t) and e3(t). Likewise, when e2(t) undergoes

change between 8 and 10 seconds, e1(t) remains relatively unchanged. While

performing the experiment, slightly different responses were obtained each

run due to variations in the initial position and orientation of the mobile

robot and variations in the control parameters as the gains were adjusted.

With a constant set of control gains, the transient response still exhibited

some variations due to differences in the initial conditions; however, the

steady state response remained constant for each trial.

Note that e1(t) and e2(t) depicted in Figure 3.37 are unitless. From

(3.12) and (3.168), it is clear that e1(t) and e2(t) are unitless because both

the translation xf (t) and the depth related constant d
∗ have units of me-

ters. That is, xh(t) and xhd(t) are unitless translation terms computed

from the homography decomposition (note that no units are provided in

Figure 3.35). In practice, the mobile robot traversed an arc than approx-
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imately spanned a 6 × 1 meter space, with an approximate speed of 0.22
meters/second (i.e., approximately the same speed as the numerous mobile

robot experiments presented in [38]).

Based on the outcome of this experiment, several issues for future re-

search and technology integration are evident. For example, the problem

formulation has a number of practical applications in environments where

the reference object may not be stationary between each task execution.

However, the result does not address cases where an obstacle enters the

task-space and inhibits the mobile robot from tracking the prerecorded tra-

jectory. To address this issue, there is a clear need for continued research

that targets incorporating image-space path planning with the control de-

sign as in [28], [29], [50], and [87]. Additionally, the result does not address

a method to automatically reselect feature points. For example, methods to

automatically determine new feature points if they become nearly aligned,

or if a feature point leaves the field-of-view (e.g., becomes occluded), could

add robustness to the implemented control system. Of course, an ad hoc

approach of simply continuously tracking multiple redundant feature points

could be utilized, but this approach may excessively restrict the image pro-

cessing bandwidth.

3.6 Structure from Motion

In this section, an adaptive nonlinear estimator is developed to identify

the Euclidean coordinates of feature points on a moving object using a

single fixed camera. No explicit model is used to describe the movement of

the object. Homography-based techniques are used in the development of

the object kinematics, while Lyapunov design methods are utilized in the

synthesis of the adaptive estimator. An extension of this development to

the dual case of camera-in-hand is also presented. The performance of the

estimator is demonstrated by simulation and experimental results.

3.6.1 Object Kinematics

The development in this section is based on the image geometry for a

fixed camera viewing a moving target as described in Section 3.2.1. To

quantify the translation of F relative to the fixed coordinate system F∗
(see Figure 3.1), a translation error ev(t) ∈ R3 is defined in terms of the
image coordinates of the feature point O1 as

ev ,
£
u1 − u∗1 v1 − v∗1 − ln(α1)

¤T
, (3.194)
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where ln(·) ∈ R denotes the natural logarithm. As stated in previous sec-
tions, any point Oi on π could have been utilized; however, O1 is used to

reduce the notational complexity. The signal ev(t) is measurable, since the

first two elements of the vector are obtained from the images and the last

element is available from known signals. The translational kinematics for

the fixed-camera problem can be expressed as

ėv =
α1
z∗1

AeR
£
ve − [s1]× ωe

¤
, (3.195)

where the notation [s1]× denotes the 3× 3 skew symmetric form of s1, the

unknown linear and angular velocity of the object expressed in the local

coordinate frame F are defined as ve(t), ωe(t) ∈ R3, respectively, and Ae(t)

is introduced in (3.50). The rotation error eω(t) ∈ R3 is defined to quantify
the rotation of F relative to F∗, using the axis-angle representation [105],
where the open-loop error system can be developed as in (3.46) as

ėω = LωRωe . (3.196)

From (3.195) and (3.196), the kinematics of the object under motion can

be expressed as

ė = Jv (3.197)

where e(t) ,
£
eTv eTω

¤T ∈ R6, v(t) , £
vTe ωTe

¤T ∈ R6, and J(t) ∈
R6×6 is a Jacobian-like matrix defined as

J =

⎡⎣ α1
z∗1

AeR −α1
z∗1

AeR [s1]×

03 LωR

⎤⎦ (3.198)

where 03 ∈ R3×3 denotes a zero matrix. In the subsequent analysis, it is
assumed that a single geometric length s1 ∈ R3 between two feature points
is known. With this assumption, each element of J(t) is known with the

possible exception of the constant z∗1 ∈ R; however, z∗1 can also be computed
given s1. In the subsequent development, it is assumed that the object

never leaves the field of view of the camera; hence, e(t) ∈ L∞. It is also
assumed that the object velocity, acceleration, and jerk are bounded, i.e.,

v(t), v̇(t), v̈(t) ∈ L∞; hence the structure of (3.197) indicates that ė(t), ë(t),
...
e (t) ∈ L∞.

3.6.2 Identification of Velocity

In [22], an estimator was developed for online asymptotic identification of

the signal ė(t). Designating ê(t) as the estimate for e(t), the estimator was
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designed as

.

ê ,
Z t

t0

(K + I6)ẽ(τ)dτ +

Z t

t0

ρsgn (ẽ(τ)) dτ

+(K + I6)ẽ(t) (3.199)

where ẽ(t) , e(t) − ê(t) ∈ R6 is the estimation error for the signal e(t),
K, ρ ∈ R6×6 are positive definite constant diagonal gain matrices, I6 ∈ R6×6
is the 6× 6 identity matrix, t0 is the initial time, and sgn(ẽ(t)) denotes the
standard signum function applied to each element of the vector ẽ(t). The

reader is referred to [22] and the references therein for analysis pertaining

to the development of the above estimator. In essence, it was shown in [22]

that the above estimator asymptotically identifies the signal ė(t) provided

the following inequality is satisfied for each diagonal element ρi of the gain

matrix ρ,

ρi ≥
¯̄..
ei
¯̄
+
¯̄...
e i
¯̄ ∀i = 1, 2, ...6. (3.200)

Hence,
.

êi(t) → ėi(t) as t → ∞,∀i = 1, 2, ...6. Since J(t) is known and

invertible, the six degree-of-freedom velocity of the moving object can be

identified as

v̂(t) = J−1(t)
.

ê(t), and hence v̂(t)→ v(t) as t→∞. (3.201)

Euclidean Reconstruction of Feature Points

This Section is focused on the identification of Euclidean coordinates of the

feature points on a moving object (i.e., the vector si relative to the object

frame F , m̄i(t) and m̄∗i relative to the camera frame I for all i feature
points on the object). To facilitate the development of the estimator, the

time derivative of the extended image coordinates introduced in (3.37) are

expressed as

ṗei =
αi
z∗i

AeR
£
ve + [ωe]× si

¤
= WiVvwθi (3.202)

where Wi(.) ∈ R3×3, Vvw(t) ∈ R3×4 and θi ∈ R4 are defined as
Wi , αiAeiR (3.203)

Vvw ,
£
ve [ωe]×

¤
(3.204)

θi ,
∙
1

z∗i

si
z∗i

T
¸T

. (3.205)

The elements of Wi(.) are known and bounded, and an estimate of Vvw(t),

denoted by V̂vw(t), is available by appropriately re-ordering the vector v̂(t)

given in (3.201).



© 2010 by Taylor and Francis Group, LLC

110 3. Vision-Based Systems

The objective is to identify the unknown constant θi in (3.202). To fa-

cilitate this objective, a parameter estimation error signal, denoted by

θ̃i(t) ∈ R4, is defined as
θ̃i(t) , θi − θ̂i(t), (3.206)

where θ̂i(t) ∈ R4 is a subsequently designed parameter update signal. A
measurable filter signal Wfi(t) ∈ R3×4, and a non-measurable filter signal
ηi(t) ∈ R3 are also introduced as

Ẇfi = −βiWfi +WiV̂vw (3.207)

η̇i = −βiηi +WiṼvwθi, (3.208)

where βi ∈ R is a scalar positive gain, and Ṽvw(t) , Vvw(t)−V̂vw(t) ∈ R3×4
is an estimation error signal.

Motivated by the subsequent stability analysis, an estimator, denoted by

p̂ei(t) ∈ R3, is designed for the extended image coordinates as
.

p̂ei = βip̃ei +Wfi

.

θ̂i +WiV̂vwθ̂i, (3.209)

where p̃ei(t) , pei(t)− p̂ei(t) ∈ R3 denotes the measurable estimation error
signal for the extended image coordinates of the feature points. The time

derivative of this estimation error signal is computed from (3.202) and

(3.209) as
.
p̃ei = −βip̃ei −Wfi

.

θ̂i +WiṼvwθi +WiV̂vwθ̃i. (3.210)

From (3.208) and (3.210), it can be shown that

p̃ei =Wfiθ̃i + ηi. (3.211)

Based on the subsequent analysis, the following least-squares update law

[102] is developed for θ̂i(t)

.

θ̂i = LiW
T
fip̃ei, (3.212)

where Li(t) ∈ R4×4 is an estimation gain that is recursively computed as

d

dt
(L−1i ) =WT

fiWfi. (3.213)

The subsequent analysis requires that L−1i (0) in (3.213) be positive definite.

This requirement can be easily satisfied by selecting the appropriate non-

zero initial values.
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Analysis

Theorem 3.4 The update law defined in (3.212) ensures that θ̃i(t) → 0

as t → ∞ provided that the following persistent excitation condition [102]

holds

γ1I4 ≤
Z t0+T

t0

WT
fi(τ)Wfi(τ)dτ ≤ γ2I4 (3.214)

and provided that the gains βi satisfy the following inequality

βi > k1i + k2i kWik2∞ (3.215)

where t0, γ1, γ2, T, k1i, k2i ∈ R are positive constants, I4 ∈ R4×4 is the 4×4
identity matrix, and k1i is selected such that

k1i > 2. (3.216)

Proof: Let V (t) ∈ R denote a non-negative scalar function defined as

V , 1

2
θ̃
T

i L
−1
i θ̃i +

1

2
ηTi ηi. (3.217)

After taking the time derivative of (3.217), the following expression can be

obtained

V̇ = −1
2

°°°Wfiθ̃i

°°°2 − θ̃
T

i W
T
fiηi − βi kηik2 + ηTi WiṼvwθi

≤ −1
2

°°°Wfiθ̃i

°°°2 − βi kηik2 + kθik kWik∞
°°°Ṽvw°°°∞ kηik

+
°°°Wfiθ̃i

°°° kηik− k1i kηik2 + k1i kηik2

+k2i kWik2∞ kηik2 − k2i kWik2∞ kηik2 . (3.218)

After using the nonlinear damping argument [75], the expression in (3.218)

can be further simplified as

V̇ ≤ −
µ
1

2
− 1

k1i

¶°°°Wfiθ̃i

°°°2 − ³βi − k1i − k2i kWik2∞
´
kηik2

+
1

k2i
kθik2

°°°Ṽvw°°°2∞ , (3.219)

where k1i, k2i ∈ R are positive constants as previously mentioned. The

gains k1i, k2i, and βi must be selected to ensure that

1

2
− 1

k1i
≥ μ1i > 0 (3.220)

βi − k1i − k2i kWik2∞ ≥ μ2i > 0 (3.221)
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where μ1i, μ2i ∈ R are positive constants. The gain conditions given by

(3.220) and (3.221) allow us to formulate the conditions given by (3.215)

and (3.216), as well as allowing us to further upper bound the time deriva-

tive of (3.217) as

V̇ ≤ −μ1i
°°°Wfiθ̃i

°°°2 − μ2i kηik2 +
1

k2i
kθik2

°°°Ṽvw°°°2∞ . (3.222)

In the analysis provided in [22], it was shown that a filter signal r(t) ∈ R6
defined as r(t) = ẽ(t)+

.
ẽ(t) ∈ L∞ ∩L2. From this result it is easy to show

that ẽ(t),
.
ẽ(t) ∈ L2 [35]. Since J(t) ∈ L∞ and invertible, it follows that

J−1(t)
.
ẽ(t) ∈ L2. Hence ṽ(t) , v(t)− v̂(t) ∈ L2, and it is easy to show that°°°Ṽvw(t)°°°2∞ ∈ L1 [71]. Therefore, the last term in (3.222) is L1, andZ ∞

0

1

k2i
kθi(τ)k2

°°°Ṽvw(τ)°°°2∞ dτ ≤ ε, (3.223)

where ε ∈ R is a positive constant. The expressions in (3.217), (3.222), and
(3.223) can be used to conclude thatZ ∞

0

µ
μ1i

°°°Wfi(τ)θ̃i(τ)
°°°2 + μ2i kηi(τ)k2

¶
dτ ≤ V (0)−V (∞)+ ε. (3.224)

The inequality in (3.224) can be used to determine thatWfi(t)θ̃i(t), ηi(t) ∈
L2. From (3.224) and the fact that V (t) is non-negative, it can be concluded

that V (t) ≤ V (0) + ε for any t, and hence V (t) ∈ L∞. Therefore, from
(3.217), ηi(t) ∈ L∞ and θ̃

T

i (t)L
−1
i (t)θ̃i(t) ∈ L∞. Since L−1i (0) is positive

definite, and the persistent excitation condition in (3.214) is assumed to be

satisfied, (3.213) can be used to show that L−1i (t) is always positive definite.

It must follow that θ̃i(t) ∈ L∞. Since v̂(t) ∈ L∞ as shown in [22], it follows

from (3.204) that V̂vw(t) ∈ L∞. From (3.207), and the fact that Wi(.)

defined in (3.203) are composed of bounded terms, Wfi(t), Ẇfi(t) ∈ L∞
[35], and consequently, Wfi(t)θ̃i(t) ∈ L∞. Therefore, (3.211) can be used

to conclude that p̃ei(t) ∈ L∞. It follows from (3.212) that
.

θ̂i(t) ∈ L∞, and

hence,
.

θ̃i(t) ∈ L∞. From the fact that Ẇfi(t),
.

θ̃i(t) ∈ L∞, it is easy to show

that d
dt

³
Wfi(t)θ̃i(t)

´
∈ L∞. Hence, Wfi(t)θ̃i(t) is uniformly continuous.

Since Wfi(t)θ̃i(t) ∈ L2, then

Wfi(t)θ̃i(t)→ 0 as t→∞. (3.225)

It can be shown that the output Wfi(t) of the filter defined in (3.207)

is persistently exciting if the input Wi(t)V̂
T
vw(t) to the filter is persistently
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exciting [96]. Hence, the condition in (3.214) is satisfied if

γ3I4 ≤
R t0+T
t0

V̂ T
vw(τ)W

T
i (τ)Wi(τ)V̂vw(τ)| {z } dτ ≤ γ4I4,

W
(3.226)

where γ3, γ4 ∈ R are positive constants. It can be shown upon expansion of
the integrand W (t) ∈ R4×4 of (3.226) that even if only one of the compo-
nents of translational velocity is non-zero, the first element of θ̂i(t) (i.e.

1
z∗i
),

will converge to the correct value. It should be noted that the translational

velocity of the object has no bearing on the convergence of the remaining

three elements of θ̂i(t), and unfortunately, it seems that no inference can

be made about the relationship between convergence of the three remain-

ing elements of θ̂i(t) and the rotational velocity of the object. If the signal

Wfi(t) satisfies the persistent excitation condition [102] given in (3.214),

then it can be concluded from (3.225) that (see Lemma B.3 in Appendix

B)

θ̃i(t)→ 0 as t→∞. (3.227)

As previously stated, the estimation of object velocity requires the knowl-

edge of the constant rotation matrix R∗ ∈ R3×3 and a single geometric
length s1 ∈ R3 on the object. After utilizing (3.110), (3.14), (3.205) and
(3.212), the estimates for m̄∗i , denoted by ˆ̄m

∗
i (t)∈ R3, can be obtained as

ˆ̄m∗i (t) =
1h

θ̂i(t)
i
1

A−1p∗i , (3.228)

where the term in the denominator denotes the first element of the vector

θ̂i(t). Similarly, the estimates for the time varying Euclidean position of

the feature points on the object relative to the camera frame, denoted by
ˆ̄mi(t)∈ R3, can be calculated as

ˆ̄mi(t) =
1

αi(t)
h
θ̂i(t)

i
1

A−1pi(t). (3.229)

3.6.3 Camera-in-Hand Extension

The fixed camera problem can be extended to the case where the camera

can move relative to the object (i.e., the camera-in-hand problem). For

example, as shown in Figure 3.42, a camera could be mounted on the end-

effector of a robot and used to scan an object in its workspace to determine

its structure, as well as determine the robot’s position. Let three feature

points on the object, denoted byO1, O2 andO3 define the plane π
∗ in Figure
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3.42. The time derivative of e(t) introduced in (3.197) can be expressed as

follows for the camera-in-hand problem [16]

ė = Jcv (3.230)

where Jc(t) ∈ R6×6 is given by

Jc =

⎡⎣ −α1z∗1 Ae1 Ae1 [m1]×

03 −Lω

⎤⎦ (3.231)

where 03 ∈ R3×3 is a zero matrix, Lω(t) ∈ R3×3 has exactly the same form
as for the fixed camera case in (3.47), and v(t) ,

£
vTc ωTc

¤T ∈ R6 now
denotes the velocity of the camera expressed relative to I. Terms from the

rotation matrix R(t) are not present in (3.231), and therefore, unlike the

fixed camera case, the estimate of the velocity of the camera, denoted by

v̂(t), can be computed without knowledge of the constant rotation matrix

R∗.
With the exception of the term z∗1 ∈ R, all other terms in (3.231) are

either measurable or known a priori. If the camera can be moved away from

its reference position by a known translation vector x̄fk ∈ R3, then z∗1 can
be computed offline. Decomposition of the Euclidean homography between

the normalized Euclidean coordinates of the feature points obtained at the

reference position, and at x̄fk away from the reference position, respectively,

can be used to calculate the scaled translation vector
x̄fk
d∗
∈ R3, where

d∗ ∈ R is the distance from the initial camera position, denoted by I∗, to
the plane π∗. Then, it can be seen that

z∗1 =
d∗

n∗Tm∗1
=

d∗

n∗TA−1p∗1
. (3.232)

From (3.230) and (3.231), any feature point Oi can be shown to satisfy

ṗei = −αi
z∗i

Aeivc +Aei [mi]× ωc

= W1ivcθi +W2iωc, (3.233)

where pei(t) ∈ R3 is defined in (3.37), and W1i(.) ∈ R3×3, W2i(t) ∈ R3×3
and θi ∈ R are given as

W1i = −αiAei (3.234)

W2i = Aei [mi]× (3.235)

θi =
1

z∗i
. (3.236)
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The matricesW1i(.) andW2i(t) are measurable and bounded. The objective

is to identify the unknown constant θi in (3.236). With the knowledge of z
∗
i

for all feature points on the object, their Euclidean coordinates m̄∗i relative
to the camera reference position, denoted by I∗, can be computed from
(3.110)—(3.14). As before, the mismatch between the actual signal θi and

the estimated signal θ̂i(t) is defined as θ̃(t) ∈ R where θ̃(t) , θ − θ̂(t).
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FIGURE 3.42. Coordinate Frame Relationships for the Camera-in-Hand Case.

To facilitate the subsequent development, a measurable filter signal ζi(t) ∈
R3 and two non-measurable filter signals κi(t), ηi(t) ∈ R3 are introduced
as

ζ̇i = −βiζi +W1iv̂c, (3.237)

κ̇i = −βiκi +W1iṽcθi, (3.238)

η̇i = −βiηi +W2iω̃c, (3.239)

where βi ∈ R is a scalar positive gain, v̂c(t), ω̂c(t) ∈ R3 are the estimates
for the translational and rotational velocity, respectively, obtained from the

velocity observer in Section 3.6.2, ṽc(t) , vc(t) − v̂c(t) is the mismatch in

estimated translational velocity, and ω̃c(t) , ωc(t)− ω̂c(t) is the mismatch

in estimated rotational velocity. The structure of the velocity observer and

the proof of its convergence are exactly identical to the fixed camera case.

Likewise, an estimator for the pei(t) can be designed as

.

p̂ei = βip̃ei + ζi

.

θ̂i +W1iv̂cθ̂i +W2iω̂c. (3.240)
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The following expression can then be developed from (3.233) and (3.240)

as
.
p̃ei = −βip̃ei − ζi

.

θ̂i +W1iṽcθi +W1iv̂cθ̃i +W2iω̃c. (3.241)

From (3.238), (3.239), and (3.241), it can be shown that

p̃ei = ζiθ̃i + κi + ηi. (3.242)

Based on the subsequent analysis, a least-squares update law for θ̂i(t) can

be designed as
.

θ̂i = Liζ
T
i p̃ei, (3.243)

where Li(t) ∈ R is an estimation gain that is determined as
d

dt
(L−1i ) = ζTi ζi (3.244)

and initialized such that L−1i (0) > 0.

Theorem 3.5 The update law defined in (3.243) ensures that θ̃i → 0 as

t → ∞ provided that the following persistent excitation condition [102]

holds

γ5 ≤
Z t0+T

t0

ζTi (τ)ζi(τ)dτ ≤ γ6 (3.245)

and provided that the gains βi satisfy the following inequalities

βi > k3i + k4i kW1ik2∞ (3.246)

βi > k5i + k6i kW2ik2∞ (3.247)

where t0,γ5, γ6, T, k3i, k4i, k5i, k6i ∈ R are positive constants, and k3i, k5i
are selected such that

1

k3i
+
1

k5i
<
1

2
. (3.248)

Proof : Similar to the analysis for the fixed camera case, a non-negative

function denoted by V (t) ∈ R is defined as

V , 1

2
θ̃
T

i L
−1
i θ̃i +

1

2
κTi κi +

1

2
ηTi ηi. (3.249)

After taking the time derivative of (3.249), the following expression can be

obtained

V̇ = −1
2

°°°θ̃i°°°2 kζik2 − βi kκik2 − βi kηik2

−θ̃Ti ζTi κi − θ̃
T

i ζ
T
i ηi + κTi W1iṽcθi + ηTi W2iω̃c, (3.250)
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where (3.238), (3.239), and (3.243)—(3.242) were used. After some simplifi-

cation and expansion of some terms, (3.250) can be upper bounded as

V̇ ≤ −1
2

°°°θ̃i°°°2 kζik2 − ³βi − k3i − k4i kW1ik2∞
´
kκik2

−
³
βi − k5i − k6i kW2ik2∞

´
kηik2 +

°°°θ̃i°°° kζik kκik− k3i kκik2

+ kθik kṽck kW1ik∞ kκik− k4i kW1ik2∞ kκik2

+ kζik
°°°θ̃i°°° kηik− k5i kηik2

+ kω̃ck kW2ik∞ kηik− k6i kW2ik2∞ kηik2

≤ −
µ
1

2
− 1

k3i
− 1

k5i

¶°°°θ̃i°°°2 kζik2 − ³βi − k3i − k4i kW1ik2∞
´
kκik2

−
³
βi − k5i − k6i kW2ik2∞

´
kηik2 +

1

k4i
kθik2 kṽck2

+
1

k6i
kω̃ck2 , (3.251)

where k3i, k4i, k5i, k6i ∈ R are positive constants. The gain constants are
selected to ensure that

1

2
− 1

k3i
− 1

k5i
≥ μ3i > 0 (3.252)

βi − k3i − k4i kW1ik2∞ ≥ μ4i > 0 (3.253)

βi − k5i − k6i kW2ik2∞ ≥ μ5i > 0, (3.254)

where μ3i, μ4i, μ5i ∈ R are positive constants. The gain conditions given by
(3.252)—(3.254) allow for (3.249) to be further upper bounded as

V̇ ≤ −μ3i
¯̄̄
θ̃i

¯̄̄2
kζik2 − μ4i kκik2 − μ5i kηik2 +

1

k4i
|θi|2 kṽck2 + 1

k6i
kω̃ck2

≤ −μ3i
¯̄̄
θ̃i

¯̄̄2
kζik2 − μ4i kκik2 − μ5i kηik2 + μ6i kṽk2 , (3.255)

where μ6i = max
n
|θi|2
k4i

, 1
k6i

o
∈ R. Following the argument in the fixed

camera case, ṽ(t) ∈ L2; hence,Z t

t0

μ6i kṽ(τ)k2 dτ ≤ ε, (3.256)

where ε ∈ R is a positive constant. From (3.249), (3.255) and (3.256), the

following inequality can be developedZ t

t0

μ3i

¯̄̄
θ̃i(τ)

¯̄̄2
kζi(τ)k2+μ4i kκi(τ)k2+μ5i kηi(τ)k2 dτ ≤ V (0)−V (∞)+ε.

(3.257)
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From (3.257), it is clear that ζi(t)θ̃i(t), κi(t), ηi(t) ∈ L2.Applying the same

signal chasing arguments as in the fixed camera case, it can be shown that

θ̃i(t), κi(t), ηi(t) ∈ L∞. It can also be shown that
.

θ̃i(t), ζi(t), ζ̇i(t) ∈ L∞
and therefore d

dtζi(t)θ̃i(t) ∈ L∞. Hence ζi(t)θ̃i(t) is uniformly continuous
[39], and since ζi(t)θ̃i(t) ∈ L∞, then [39]

ζi(t)θ̃i(t)→ 0 as t→∞. (3.258)

Applying the same argument as in the fixed camera case, convergence of

θ̂i(t) to true parameters is guaranteed (i.e., θ̃i(t) → 0 as t → ∞), if the
signal ζi(t) satisfies the persistent excitation condition in (3.245). As in

the case of the fixed camera, the persistent excitation condition of (3.245)

is satisfied if the translational velocity of the camera is non-zero.

Utilizing (3.110), (3.14) and the update law in (3.243), the estimates for

Euclidean coordinates of all i feature points on the object relative to the

camera at the reference position, denoted by ˆ̄m∗i (t)∈ R3, can be determined
as

ˆ̄m∗i (t) =
1

θ̂i(t)
A−1p∗i . (3.259)

The knowledge of z∗1 allows us to resolve the scale factor ambiguity inherent
in the Euclidean reconstruction algorithm. However, z∗1 may not always be
available, or may not be measurable using the technique described previ-

ously in (3.232) due to practical considerations (e.g., a video sequence may

be the only available input). With a minor modification to the estimator

design, the scale ambiguity can be resolved, and Euclidean coordinates of

feature points recovered, if the Euclidean distance between two of the many

feature points in the scene is available. Assuming z∗1 is not directly mea-
surable, terms in the velocity kinematics of (3.230) can be re-arranged in

the following manner

ė = J̄cv̄, (3.260)

where the Jacobian J̄c(t) ∈ R6×6 and a scaled velocity vector v̄(t) ∈ R6 are
defined as

J̄c =

∙ −α1Ae1 Ae1 [m1]×
03 −Lω

¸
(3.261)

v̄ =
£
v̄Tc ωTc

¤T
, and v̄c =

vTc
z∗1

. (3.262)

The velocity observer of Section 3.6.2 can now be utilized to identify the

scaled velocity v̄(t). Likewise, the time derivative of the extended image

coordinates presented in (3.233) can be re-written in terms of the scaled
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velocity as

ṗei = W1iv̄cθ̄i +W2iωc (3.263)

where θ̄i =
z∗1
z∗i

. (3.264)

The rest of the development is identical. Hence, it is clear from (3.264) that

the adaptive estimator of (3.243) now identifies the depth of all feature

points scaled by a constant scalar z∗1 . If the Euclidean distance between
any two features i and j (i 6= j) are known, then from (3.243), (3.259) and

(3.264) it is clear that

lim
t→∞

°° ˆ̄m∗i (t)− ˆ̄m∗j (t)°° = z∗i
°°m̄∗i − m̄∗j

°° . (3.265)

Hence, the unknown scalar z∗1 can be recovered and the Euclidean coor-
dinates of all feature points obtained. Hence, the six degrees-of-freedom

position of the moving camera relative to its reference position can be

computed online.

3.6.4 Simulations and Experimental Results

A practical implementation of the estimator consists of at least four sub-

components: (a) hardware for image acquisition, (b) implementation of

an algorithm to extract and track feature points between image frames,

(c) the implementation of the depth estimation algorithm itself, and (d)

a method to display the reconstructed scene (3D models, depth maps,

etc.). This section presents simulation results for the fixed camera case,

and the camera-in-hand camera case. Experimental results are provided

for the camera-in-hand system.

Experimental testbed: As shown in Figure 3.43, the camera-in-hand

system consists of a calibrated monochrome CCD camera (Sony XC-ST50)

mounted on the end-effector of a Puma 560 industrial robotic manipula-

tor whose end-effector was commanded via a PC to move along a smooth

trajectory. The camera was interfaced to a second PC dedicated to image

processing, and equipped with an Imagenation PXC200AF framegrabber

board capable of acquiring images in real time (30 fps) over the PCI bus.

A 20 Hz digital signal from the robot control PC triggered the framegrab-

ber to acquire images. The same trigger signal also recorded the actual

robot end-effector velocity (which is same as the camera velocity) into a

file, which was utilized as ground truth to validate the performance of the

estimator in identifying the camera velocity. The computational complex-

ity of feature tracking and depth estimator algorithms made it unfeasible



© 2010 by Taylor and Francis Group, LLC

120 3. Vision-Based Systems

FIGURE 3.43. The Experimental Testbed.

to acquire and process images at the frame rate of the camera. Hence the

sequence of images acquired from the camera were encoded into a video file

(AVI format, utilizing the lossless Huffman codec for compression, where

possible) to be processed offline later.

Feature tracking: The image sequences were at least a minute long,

and due to thousands of images that must be processed in every sequence,

an automatic feature detector and tracker was necessary. We utilized an im-

plementation of the Kanade-Lucas-Tomasi feature tracking algorithm [77]

available at [3] for detection and tracking of feature points from one frame

to the next. The libavformat and libavcodec libraries from the FFmpeg

project [49] were utilized to extract individual frames from the video files.

The output of the feature point tracking stage was a data file contain-

ing image space trajectories of all successfully tracked feature points from

the video sequence. This data served as the input to the depth estimation

algorithm.

Depth Estimator: The adaptive estimation algorithm described in Sec-

tion 3.6.2 was implemented in C++ and ran at a sampling frequency of 1

kHz to guarantee sufficient accuracy from the numerical integrators in the

estimator. A linear interpolator, followed by 2nd order low pass filtering

was used to interpolate 20 Hz image data to 1 kHz required as input to the

estimator.

Display: A 3D graphical display based on the OpenGL API was devel-

oped in order to render the reconstructed scene. A surface model of objects

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420006278-c3&iName=master.img-002.jpg&w=253&h=191
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in the scene can be created by generating a “mesh” from the reconstructed

feature points. Using OpenGL libraries, it is easy to develop a display that

allows the user to view the objects in the scene from any vantage point by

virtually navigating around the objects in a scene using an input device

such as a computer mouse pointer.

Simulation Results: For simulations, the image acquisition hardware

and the image processing step were both replaced with a software compo-

nent that generates feature trajectories utilizing object kinematics. For the

fixed camera simulation, a planar object was selected to be the body un-

dergoing motion — four feature points initially 2 meters away along the axis

of the camera were selected to visually track the object. The velocity of the

object along each of the six degrees of freedom were set to 0.2 sin(t). The

coordinates of the object feature points in the object’s coordinate frame F
were arbitrarily chosen as

s1 = [ 1.0 0.5 0.1 ]T

s2 = [ 1.2 −0.75 0.1 ]T

s3 = [ 0.0 −1.0 0.1 ]T

s4 = [ −1.0 0.5 0.1 ]T . (3.266)

The object’s reference orientation R∗ relative to the camera was selected as
diag(1,−1,−1), where diag(.) denotes a diagonal matrix with arguments
as the diagonal entries. The estimator gain βi was set to 20 for all i feature

points. As an example, Figure 3.44 depicts the convergence of θ̂2(t) from

which the Euclidean coordinates of the second feature point s2 could be

computed as shown in (3.205). Similar graphs were obtained for conver-

gence of the estimates for the remaining feature points. In the simulation

for the camera-in-hand system, a non-planar stationary object was selected

that could be identified by 12 feature points. Figure 3.45 shows the conver-

gence of the inverse depth estimates, and Figure 3.46 shows the estimation

errors.

Experimental Results: An experimental scene with a dollhouse as

shown in Figure 3.47 was utilized to verify the practical performance of the

camera-in-hand Euclidean estimator. Figure 3.48 shows the reconstructed

wire-frame view of the dollhouse in the scene, displayed using the OpenGL-

based viewer. Table 3.1 shows a comparison between the actual and the

estimated lengths in the scene. The time evolution of the inverse depth

estimates is shown in Figure 3.49.

Discussion: The simulation and experimental results in Figures 3.44,

3.45, 3.46, and Table 3.1 clearly demonstrate good performance of the es-

timator. All estimates converge to their expected values in a span of a few
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FIGURE 3.44. The Estimated Parameters for the Second Feature Point on the

Moving Object (Fixed Camera Simulation).
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Object (Camera-in-Hand Simulation).
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FIGURE 3.46. Error in Depth Estimation Reduce to Zero with Time (Cam-

era-in-Hand Simulation).

FIGURE 3.47. One of the Frames from the Dollhouse Video Sequence. The White

Dots Overlayed on the Image are the Tracked Feature Points.

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420006278-c3&iName=master.img-003.jpg&w=251&h=190
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FIGURE 3.48. A Wire-Frame Reconstruction of the Doll-House Scene (Cam-

era-in-Hand Experiment).
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FIGURE 3.49. The Time Evolution of Inverse Depth Estimates from the Cam-

era-in-Hand Experiment.
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Object Actual (cm.) Estimated (cm.)

Length I 23.6 23.0

Length II 39.7 39.7

Length III 1.0 1.04

Length IV 13.0 13.2

Length V 100.0 99.0

Length VI 19.8 19.6

Length VII 30.3 30.0

TABLE 3.1. Estimated Dimensions from the Scene (Camera-in-Hand Experi-

ment).

seconds. The only difference between the simulations and the experiment

is the source of input pixel data. As mentioned previously, the image space

feature point trajectories for the simulations were generated based on rigid

body kinematics and known dimensions of the object. In the case of exper-

iments, the image space trajectories were obtained from the feature tracker

that was run on the image sequence previously recorded from the cam-

era. One of the most challenging aspects in a real-world implementation

of the estimator is accurate feature tracking. Features that can be tracked

well by a tracking algorithm may not adequately describe the geometri-

cal structure of the object, and vice versa. Quality of feature tracking also

depends on factors such as lighting, shadows, magnitude of inter-frame mo-

tion, and texturedness, to name a few. Additionally, any compression (such

as MPEG) employed in the input video sequence will introduce additional

artifacts that can potentially degrade performance of the estimator. There

is no one common solution to this problem, and the parameters of the

tracker must be tuned to the specific image dataset in hand to obtain best

results. See [99] for a discussion of issues related to feature selection and

tracking. Apart from the accuracy in feature tracking that directly affects

the accuracy in online estimation of the homography matrix relating cor-

responding feature points, the performance of the estimator also depends

on accurate camera calibration. Since the implementation is the same for

simulations and the experiment, the errors in estimation (Table 3.1) can

mostly be attributed to the jitter in the output of the feature tracker.

3.7 Notes

Two mainstream visual servo control methods include image-based and

position-based approaches. Overviews of these methods are provided in
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[66, 61, 11]. A third mainstream class of visual servo controllers uses some

image-space information combined with some reconstructed information as

a means to combine the advantages of image and position-based approaches

while avoiding their disadvantages (e.g., [12, 17, 15, 26, 34, 44, 51, 64, 84,

83, 85]). A particular subset of this approach was coined 2.5D visual servo

control in [12, 84, 83, 85] because this class of controllers exploits some two

dimensional image feedback and reconstructed three-dimensional feedback.

This class of controllers is also called homography-based visual servo con-

trol in [17, 15, 44, 64] because of the underlying reliance of the construction

and decomposition of a homography. As stated in [85], some advantages of

this methodology over the aforementioned approaches are that an accu-

rate Euclidean model of the environment (or target image) is not required

and potential singularities in the image-Jacobian are eliminated (i.e., the

image-Jacobian for homography-based visual servo controllers is typically

triangular). Based on the observation that interaction between the trans-

lation and rotation of images can result in slower transient performance

due to inefficient camera motions, Deguchi proposed two algorithms in [34]

for a robot manipulator application that decouple the rotation and trans-

lation components using a homography and an epipolar condition. More

recently, Corke and Hutchinson [26] also developed a method for decou-

pling the rotation and translation components from the remaining degrees

of freedom.

Motivated by the desire to compensate for the uncertain depth infor-

mation, homography-based control methods have been developed that can

actively adapt for the unknown depth parameter (cf. [17, 15, 24, 25, 43,

44, 63, 64]) along with methods based on direct estimation and approxima-

tion (cf. [42, 66]). For example, [24] developed an adaptive kinematic con-

troller for a robot manipulator application to ensure uniformly ultimately

bounded (UUB) set-point regulation of the image point errors while com-

pensating for the unknown depth information, provided conditions on the

translational velocity and the bounds on uncertain depth parameters are

satisfied. In [43] and [44], Fang et al. developed homography-based visual

servo controllers to asymptotically regulate a manipulator end-effector and

a mobile robot, respectively, by developing an adaptive update law that

actively compensates for an unknown depth parameter. In [45], Fang et al.

also developed a camera-in-hand regulation controller that incorporated a

robust control structure to compensate for uncertainty in the extrinsic cal-

ibration parameters. Adaptive homography-based visual servo controllers

have been developed in [17, 15] to achieve asymptotic tracking control

of a manipulator end-effector and a mobile robot, respectively. Adaptive
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homography-based visual servo controllers based on the quaternion rota-

tion parameterization were developed in [63, 64] to achieve asymptotic

regulation and tracking control of a manipulator end-effector, respectively.

Motivated by the need for new advancements to meet visual servo track-

ing applications, previous research has concentrated on developing different

types of path planning techniques in the image-space (e.g., see [27], [91],

[100]). More recently, Mezouar and Chaumette developed a path-following

image-based visual servo algorithm in [87] where the path to a goal point

is generated via a potential function that incorporates motion constraints.

In [29], Cowan et al. develop a hybrid position/image-space controller that

forces a manipulator to a desired setpoint while avoiding obstacles and

ensuring the object remains in the field-of-view by avoiding pitfalls such

as self-occlusion. Related research that focuses on vision-based controllers

that focus on tracking a prerecorded sequence of images or reference path

is provided in [86], [101], and [114].

Wheeled mobile robots (mobile robots) are often required to execute

tasks in environments that are unstructured. Due to the uncertainty in

the environment, numerous researchers have investigated different sensing

modalities as a means to enable improved autonomous response by the sys-

tem. Given this motivation, researchers initially targeted the use of a variety

of sonar and laser-based sensors. Some initial work also targeted the use of

a fusion of various sensors to build a map of the environment for mobile

robot navigation (see [62], [74], [108], [111], [113], and the references within;

other early innovative mobile robot control research is given in [70]). While

this is still an active area of research, various shortcomings associated with

these technologies and recent advances in image extraction/interpretation

technology and advances in control theory have motivated researchers to

investigate the sole use of camera-based vision systems for autonomous

navigation. For example, using consecutive image frames and an object

database, the authors of [72] recently proposed a monocular visual servo

tracking controller for mobile robots based on a linearized system of equa-

tions and Extended Kalman Filtering (EKF) techniques. Also using EKF

techniques on the linearized kinematic model, the authors of [30] used feed-

back from a monocular omnidirectional camera system (similar to [2]) to

enable wall following, follow-the-leader, and position regulation tasks. In

[55], Hager et al. used a monocular vision system mounted on a pan-tilt-

unit to generate image-Jacobian and geometry-based controllers by using

different snapshots of the target and an epipolar constraint. As stated in

[10], a drawback of the method developed in [55] is that the system equa-

tions became numerically ill-conditioned for large pan angles. Given this
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shortcoming, Burschka and Hager [10] used a spherical image projection

of a monocular vision system that relied on teaching and replay phases to

facilitate the estimation of the unknown object height parameter in the

image-Jacobian by solving a least-squares problem. Spatiotemporal appar-

ent velocities obtained from an optical flow of successive images of an object

were used in [104] to estimate the depth and time-to-contact to develop a

monocular vision “guide robot” that is used as a guide for blind users. A

similar optical flow technique was also used in [78]. In [40], Dixon et al. used

feedback from an uncalibrated, fixed (ceiling-mounted) camera to develop

an adaptive tracking controller for a mobile robot that compensated for

the parametric uncertainty in the camera and the mobile robot dynamics.

An image-based visual servo controller that exploits an object model was

proposed in [112] to solve the mobile robot tracking controller (the regula-

tion problem was not solved due to restrictions on the reference trajectory)

that adapted for the constant, unknown height of an object moving in a

plane through Lyapunov-based techniques. In [110], an image-based visual

servo controller was proposed for a mobile manipulator application; how-

ever, the result requires geometric distances associated with the object to

be known, and relies on an image-Jacobian that contains singularities for

some configurations. Moreover, the result in [110] requires the additional

degrees-of-freedom from the manipulator to regulate the orientation of the

camera. In [81] and [117], visual servo controllers were recently developed

for systems with similar underactuated kinematics as mobile robots. Specif-

ically, Mahony and Hamel [81] developed a semi-global asymptotic visual

servoing result for unmanned aerial vehicles that tracked parallel coplanar

linear visual features while Zhang and Ostrowski [117] used a vision system

to navigate a blimp.

In addition to the visual servo control problem, image-feedback can also

be used for state estimation (e.g., the structure-from-motion problem). Al-

though the problem is inherently nonlinear, typical structure-from-motion

results use linearization-based methods such as extended Kalman filtering

(EKF) [8, 23, 89]. Some of these approaches combine epipolar geometry

with the EKF to refine the estimate of an Essential Matrix to determine

the position and orientation (pose) and/or velocity [103]. Other methods

use external pose estimation schemes and use image features as inputs to

the Kalman filter with pose and/or velocity as an output [1, 9, 23]. Some

researchers have recast the problem as the state estimation of a continuous-

time perspective dynamic system, and have employed nonlinear system

analysis tools in the development of state observers that identify motion

and structure parameters [65, 67]. These papers show that if the velocity
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of the moving object (or camera) is known, and satisfies certain observ-

ability conditions, an estimator for the unknown Euclidean position of the

feature points can be developed. In [19], an observer for the estimation of

camera motion was presented based on perspective observations of a single

feature point from the (single) moving camera. The observer development

was based on sliding mode and adaptive control techniques, and it was

shown that upon satisfaction of a persistent excitation condition [102], the

rotational velocity could be fully recovered; furthermore, the translational

velocity could be recovered up to a scale factor. Other nonlinear estima-

tors/observers have been developed in [18, 22, 41, 67, 79]. Several researches

have developed nonlinear observers for state estimation with such omnidi-

rectional cameras (e.g., [54] and [80]).
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4

Path Planning and Control

4.1 Introduction

In this chapter, we discuss the important problems of path planning and

control for manipulator arms and wheeled mobile robots (WMRs). In the

context of the path planning problem for robots, the basic challenge relates

to the issue of finding a solution around obstacles in the robot’s workspace

whose locations are known a priori. The next obvious problem that one

is naturally drawn to relates to determining and following a path (possi-

bly to a setpoint) in an unstructured environment that may be cluttered

with obstacles whose a priori locations are unknown. Furthermore, the

introduction of a dynamic environment leads to a more challenging prob-

lem that may impose a time constraint on the path being followed. This

chapter deals with integrated path planning and control design when the

obstacle locations are known, as well as the more interesting case of an un-

structured environment where fixed or in-hand/onboard vision is used as

an active feedback element in addition to standard feedback sensors such

as encoders and tachometers.

Traditionally, robot control research has focused on the position tracking

problem where the objective is to force the robot’s end-effector to follow

an a priori known desired time-varying trajectory. Since the objective is

encoded in terms of a time dependent trajectory, the robot may be forced

to follow an unknown course to catch up with the desired trajectory in the
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presence of a large initial error. As an example, a radial reduction phe-

nomenon has been reported by several researchers [47], [48] in which the

actual path followed has a smaller radius than the specified trajectory. In

light of this phenomenon, the control objective for many robotic tasks are

more appropriately encoded as a contour following problem in which the

objective is to force the robot to follow a state-dependent function that

describes the contour – these are problems where strict time parameteri-

zation of the contour is not a critical factor. One example of a control strat-

egy aimed at the contour following problem is velocity field control (VFC)

where the desired contour is described by a velocity tangent vector [49].

The advantages of the VFC approach are: (a) more effective penalization

of the robot for leaving the desired contour through the velocity field error,

(b) specification of the control task invariant of the task execution speed,

and (c) more explicit task coordination and synchronization. In the first

part of this chapter, we illustrate how an example adaptive controller (e.g.,

the benchmark adaptive tracking controller presented in [67]) for a robot

manipulator can be modified to incorporate trajectory planning techniques

with the controller. Specifically, the benchmark adaptive controller given

in [67] is modified to yield VFC in the presence of parametric uncertainty.

Velocity field tracking is achieved by incorporating a norm squared gradi-

ent term in the control design that is used to prove that the link positions

are bounded through the use of a Lyapunov-analysis. In addition to VFC,

some task objectives are motivated by the need to follow a trajectory to a

desired goal configuration while avoiding known obstacles in the configu-

ration space. For this class of problems, it is more important for the robot

to follow an obstacle free path to the desired goal point than it is to either

follow a contour or meet a time-based requirement. In the second part of

Section 4.2, this class of problems is addressed via the use of a navigation

function (NF) which is a special kind of potential function with a refined

mathematical structure guaranteeing the existence of a unique minimum

[39, 64]. The NF is then used to modify the benchmark adaptive controller

in [67] to track a reference trajectory that yields a collision free path to

a constant goal point in an obstacle cluttered environment with known

obstacles. In Section 4.3, we address the obstacle avoidance problem for

WMRs using both VFC and NF based methods. The focus in this part

is to demonstrate how these techniques can be applied in a nonholonomic

setting such as the one provided by a WMR.

After discussing path planning and control in a priori mapped environ-

ments, the chapter will then shift focus to problems where the robot finds

itself in an unstructured environment but has the ability to see and rec-
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ognize features in its environment – these features are exploited for path

planning as well as for real-time execution of the planned trajectory, thereby

allowing the robot the twin benefits of being able to work in multiple set-

tings as well as being robust to modeling errors and uncertainties, i.e., the

robot has reliably autonomous functionality. The need for improved robot

autonomy has led researchers to investigate the basic science challenges

leading to the development of visual servo controllers. In general, visual

servo controllers can be divided into position-based visual servo (PBVS)

control, image-based visual servo (IBVS), and hybrid approaches. PBVS is

based on the idea of using a vision system to reconstruct the Euclidean-

space and then developing the servo controller on the reconstructed infor-

mation. An issue with this strategy is that the target object may exit the

camera field-of-view (FOV). Another issue is that a 3D model of the ob-

ject is generally required for its implementation. IBVS control is based on

the idea of directly servoing on the image-space information, with reported

advantages of increased robustness to camera calibration and improved ca-

pabilities to ensure the target remains visible. Even for IBVS controllers

that are formulated as regulation controllers, excessive control action and

transient response resulting from a large initial error can cause the target to

leave the FOV, and may lead to trajectories that are not physically valid or

optimal due to the nonlinearities and potential singularities associated with

the transformation between the image space and the Euclidean-space [6].

In light of the characteristics of IBVS and PBVS, several researchers have

recently explored hybrid approaches. Homography-based visual servo con-

trol techniques (coined 2.5D controllers) have been recently developed that

exploit a robust combination of reconstructed Euclidean information and

image-space information in the control design. The Euclidean information

is reconstructed by decoupling the interaction between translational and

rotational components of a homography matrix. Some advantages of this

methodology over the aforementioned IBVS and PBVS approaches are that

an accurate Euclidean model of the environment (or target object) is not

required, and potential singularities in the image-Jacobian are eliminated

(i.e., the image-Jacobian for homography-based visual servo controllers is

typically triangular) [55].

While homography-based approaches exploit the advantages of IBVS

and PBVS, a common problem with all the aforementioned approaches

is the inability to achieve the control objective while ensuring the target

features remain visible. Section 4.4 of this chapter presents a solution to

the problem of navigating the position and orientation of a camera held by

the end-effector of a robot manipulator to a goal position and orientation
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along the desired image-space trajectory while ensuring the target points

remain visible (i.e., the target points avoid self-occlusion and remain in

the field-of-view (FOV)) under certain technical restrictions. The desired

trajectory is generated in the image space based on a measurable image

Jacobian-like matrix and an image space NF while satisfying rigid body

constraints. The final part of this chapter (Section 4.5) deals with the design

of a PBVS controller that does not require a 3D object model and is able to

tackle nonlinear radial distortion and uncertainty in the camera calibration.

This strategy is motivated by the need to circumvent the singularity issues

associated with IBVS due to the use of the non-square image Jacobian.

The idea is to utilize an image-based optimization algorithm that searches

for the unknown desired task-space setpoint. The control strategy designed

leads to exponential stability of the desired setpoint.

4.2 Velocity Field and Navigation Function
Control for Manipulators

Motivated by manipulator task objectives that are more effectively de-

scribed by on-line, state-dependent trajectories, two adaptive tracking con-

trollers that accommodate on-line path planning objectives are developed

in this section. First, an example adaptive controller is modified to achieve

velocity field tracking in the presence of parametric uncertainty in the robot

dynamics. From a review of VFC literature, it can be determined that pre-

vious research efforts have focused on ensuring the robot tracks the velocity

field, but no development has been provided to ensure the link position re-

mains bounded. A proportional-integral controller developed in [4] achieves

semiglobal practical stabilization of the velocity field tracking errors despite

uncertainty in the robot dynamics; however, the link position boundedness

issue is addressed by an assumption that the boundedness of the norm°°°°q(0) + Z t

0

ϑ(q(σ))dσ

°°°° (4.1)

yields globally bounded trajectories, where q(t) denotes the position, and

ϑ(·) denotes the velocity field. In lieu of the assumption in (4.1), the VFC
development described here is based on the selection of a velocity field that

is first order differentiable, and the existence of a first order differentiable,

nonnegative function V (q) ∈ R such that the following inequality holds
∂V (q)

∂q
ϑ(q) ≤ −γ3(kqk) + ζ0 (4.2)
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where ∂V (q)
∂q denotes the partial derivative of V (q) with respect to q(t),

γ3(·) ∈ R is a class K function1, and ζ0 ∈ R is a nonnegative constant.

That is, the assumption in (4.1) is replaced by a stability-based condition

on the velocity field. It is interesting to note that the velocity field de-

scribed in the experimental results provided in [4] can be shown to satisfy

the stability-based condition in (4.2) (see Section B.2.1 in Appendix B for

proof). A two part stability analysis is provided to demonstrate the global

uniform boundedness (GUB) of the link position as well as the convergence

of the velocity field tracking error to zero despite parametric uncertainty in

the dynamic model. Experimental results based on the velocity field pre-

sented in [4] are provided to demonstrate validation of the VFC approach.

An extension is then provided that targets the trajectory planning problem

where the task objective is to move to a goal configuration while avoiding

known obstacles. Specifically, an adaptive navigation function based con-

troller is designed to provide a path from an initial condition inside the

free configuration space of the robot manipulator to the goal configuration.

This analysis proves that all the system states are bounded, and that the

robot manipulator will track an obstacle-free path to a goal point despite

parametric uncertainty in the dynamic model. Experimental results for the

adaptive navigation function controller are provided to demonstrate the

validity of the approach.

4.2.1 System Model

The mathematical model for an n-DOF robotic manipulator is assumed to

have the following form

M(q)q̈ + Vm(q, q̇)q̇ +G(q) = τ . (4.3)

In (4.3), q(t), q̇(t), q̈(t) ∈ Rn denote the link position, velocity, and accelera-
tion, respectively,M(q) ∈ Rn×n represents the positive-definite, symmetric
inertia matrix, Vm(q, q̇) ∈ Rn×n represents the centripetal-Coriolis terms,
G(q) ∈ Rn represents the known gravitational vector, and τ(t) ∈ Rn repre-
sents the torque input vector. The system states, q(t) and q̇(t) are assumed

to be measurable. It is also assumed that M (q), Vm (q, q̇), and G (q) ∈ L∞
provided q(t), q̇(t) ∈ L∞. The dynamic model in (4.3) exhibits the follow-
ing properties that are utilized in the subsequent control development and

stability analysis.

1A continuous function α : [0, α)→ [0,∞) is said to belong to class K if it is strictly

increasing and α(0) = 0 [35].
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Property 4.2.1: The inertia matrix can be upper and lower bounded by

the following inequalities [45]

m1 kξk2 ≤ ξTM(q)ξ ≤ m2(q) kξk2 ∀ ξ ∈ Rn (4.4)

where m1 is a positive constant, m2(·) is a positive function, and k·k
denotes the Euclidean norm.

Property 4.2.2: The inertia and the centripetal-Coriolis matrices satisfy

the following relationship [45]

ξT
µ
1

2
Ṁ(q)− Vm(q, q̇)

¶
ξ = 0 ∀ ξ ∈ Rn (4.5)

where Ṁ(q) represents the time derivative of the inertia matrix.

Property 4.2.3: The robot dynamics given in (4.3) can be linearly pa-

rameterized as follows [45]

Y (q, q̇, q̈)θ ,M(q)q̈ + Vm(q, q̇)q̇ +G(q) (4.6)

where θ ∈ Rp contains constant system parameters, and Y (q, q̇, q̈) ∈
Rn×p denotes a regression matrix composed of q(t), q̇(t), and q̈(t).

4.2.2 Adaptive VFC Control Objective

As described previously, many robotic tasks can be effectively encapsu-

lated as a velocity field. That is, the velocity field control objective can be

described as commanding the robot manipulator to track a velocity field

which is defined as a function of the current link position. To quantify this

objective, a velocity field tracking error, denoted by η1(t) ∈ Rn, is defined
as follows

η1(t) , q̇(t)− ϑ(q) (4.7)

where ϑ(·) ∈ Rn denotes the velocity field. To achieve the control objective,
the subsequent development is based on the assumption that q(t) and q̇(t)

are measurable, and that ϑ(q) and its partial derivative
∂ϑ(q)

∂q
∈ Rn are

assumed to be bounded provided q(t) ∈ L∞.

Benchmark Control Modification

To develop the open-loop error dynamics for η1(t), we take the time deriva-

tive of (4.7) and pre-multiply the resulting expression by the inertia matrix
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as follows

M(q)η̇1 = −Vm(q, q̇)q̇ −G(q) + τ + Vm(q, q̇)ϑ(q) (4.8)

−Vm(q, q̇)ϑ(q)−M(q)
∂ϑ(q)

∂q
q̇

where (4.3) was utilized. From (4.7), the expression in (4.8) can be rewritten

as follows

M(q)η̇1 = −Vm(q, q̇)η1 − Y1(q, q̇)θ + τ (4.9)

where θ was introduced in (4.6) and Y1(q, q̇) ∈ Rn×p denotes a measurable
regression matrix that is defined as follows

Y1(q, q̇)θ ,M(q)
∂ϑ(q)

∂q
q̇ + Vm(q, q̇)ϑ(q) +G(q). (4.10)

Based on the open-loop error system in (4.9), a number of control designs

could be utilized to ensure velocity field tracking (i.e., kη1(t)k → 0) given

the assumption in (4.1). Motivated by the desire to eliminate the assump-

tion in (4.1), a norm squared gradient term is incorporated in an adaptive

controller introduced in [67] as follows

τ(t) , −
Ã
K +

°°°°∂V (q)∂q

°°°°2 In
!
η1 + Y1(q, q̇)θ̂1 (4.11)

whereK ∈ Rn×n is a constant, positive definite diagonal matrix, In ∈ Rn×n
is the standard n×n identity matrix, and ∂V (q)

∂q was introduced in (4.2). In

(4.11), θ̂1(t) ∈ Rp denotes a parameter estimate that is generated by the
following gradient update law

.

θ̂1(t) = −Γ1Y T
1 (q, q̇)η1 (4.12)

where Γ1 ∈ Rp×p is a constant, positive definite diagonal matrix. After
substituting (4.11) into (4.9), the following closed-loop error system can be

obtained

M(q)η̇1 = −Vm(q, q̇)η1 − Y1(q, q̇)θ̃1 −
Ã
K +

°°°°∂V (q)∂q

°°°°2 In
!
η1 (4.13)

where the parameter estimation error signal θ̃1(t) ∈ Rp is defined as follows
θ̃1(t) , θ − θ̂1. (4.14)

Remark 4.1 It is required for the selection of a particular ϑ (q) and V (q)

that the inequality as defined in (4.2) must hold. In the event that this

condition does not hold, the tracking objective is not guaranteed as described

by the subsequent stability analysis.
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Remark 4.2 While the control development is based on a modification of

the adaptive controller introduced in [67], the norm squared gradient term

could also be incorporated in other benchmark controllers to yield similar

results (e.g., sliding mode controllers).

Stability Analysis

To facilitate the subsequent stability analysis, the following preliminary

theorem is utilized.

Theorem 4.1 Let V̄ (t) ∈ R denote the following nonnegative, continuous
differentiable function

V̄ (t) , V (q) + P (t)

where V (q) ∈ R denotes a nonnegative, continuous differentiable function
that satisfies (4.2) and the following inequalities

0 ≤ γ1(kqk) ≤ V (q) ≤ γ2(kqk)

where γ1(·), γ2(·) are class K functions, and P (t) ∈ R denotes the following
nonnegative, continuous differentiable function

P (t) , γ −
Z t

t0

ε2(σ)dσ (4.15)

where γ ∈ R is a positive constant, and ε(t) ∈ R is defined as follows

ε ,
°°°°∂V (q)∂q

°°°° kη1k . (4.16)

If ε(t) is a square integrable function, whereZ t

t0

ε2(σ)dσ ≤ γ,

and if after utilizing (4.7), the time derivative of V̄ (t) satisfies the following

inequality
.

V̄ (t) ≤ −γ3(kqk) + ξ0 (4.17)

where γ3(q) is the class K function introduced in (4.2), and ξ0 ∈ R denotes
a positive constant, then q(t) is globally uniformly bounded (GUB).

Proof: The time derivative of V̄ (t) can be expressed as follows

.

V̄ (t) =
∂V (q)

∂q
ϑ(q) +

∂V (q)

∂q
η1 − ε2(t)
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where (4.7) and (4.15) were utilized. By exploiting the inequality intro-

duced in (4.2) and the definition for ε(t) provided in (4.16), the following

inequality can be obtained

.

V̄ (t) ≤ −γ3(kqk) + ζ0 +
£
ε(t)− ε2(t)

¤
. (4.18)

After completing the squares on the bracketed terms in (4.18), the inequal-

ity introduced in (4.17) is obtained where ξ0 , ζ0+
1
4 . Hence, if ε(t) ∈ L2,

Section B.2.2 in Appendix B can be used to prove that q(t) is GUUB.

In the following analysis, we first prove that ε(t) ∈ L2. Based on the
conclusion that ε(t) ∈ L2, the result from Theorem 4.1 is utilized to ensure
that q(t) is bounded under the proposed adaptive controller given in (4.11)

and (4.12).

Theorem 4.2 The adaptive VFC given in (4.11) and (4.12) yields global

velocity field tracking in the sense that

kη1(t)k→ 0 as t→∞. (4.19)

Proof: Let V1(t) ∈ R denote the following nonnegative function

V1 ,
1

2
ηT1Mη1 +

1

2
θ̃
T

1 Γ
−1
1 θ̃1. (4.20)

After taking the time derivative of (4.20) the following expression can be

obtained

V̇1 = −ηT1
Ã
Y1(q, q̇)θ̃1 +

Ã
K +

°°°°∂V (q)∂q

°°°°2 In
!
η1

!
− θ̃

T

1 Γ
−1
1

.

θ̂1 (4.21)

where (4.5) and (4.13) were utilized. After utilizing the parameter update

law given in (4.12), the expression given in (4.21) can be rewritten as follows

V̇1 = −ηT1
Ã
K +

°°°°∂V (q)∂q

°°°°2 In
!
η1. (4.22)

The expressions given in (4.16), (4.20), and (4.22) can be used to conclude

that η1(t), θ̃1(t) ∈ L∞ and η1(t), ε(t) ∈ L2. Based on the fact that ε(t) ∈
L2, the results from Theorem 4.1 can be used to prove that q(t) ∈ L∞.
Since q(t) ∈ L∞, the assumption that ϑ(q) and ∂ϑ(q)

∂q
∈ L∞ can be used

to conclude that q̇ (t) ∈ L∞, where the expression in (4.7) was utilized.
Based on the fact that θ̃1(t) ∈ L∞, the expression in (4.14) can be used
to prove that θ̂1(t) ∈ L∞. Based on the fact that q (t) , q̇ (t) ∈ L∞ as
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well as the fact that ϑ(q),
∂ϑ(q)

∂q
,M (q) , Vm (q, q̇) , G (q) ∈ L∞ when their

arguments are bounded, (4.10) can be used to prove that Y1(q, q̇) ∈ L∞.
Since Y1(q, q̇), θ̂1(t), η1(t),

∂V (q)

∂q
∈ L∞, (4.11) can be used to prove that

τ(t) ∈ L∞. Based on the previous bounding statements, the expression
given in (4.13) can be used to prove that η̇1(t) ∈ L∞. Given that η1(t),
η̇1(t) ∈ L∞ and η1(t) ∈ L2, Barbalat’s Lemma [67] can be utilized to prove
(4.19).

4.2.3 Navigation Function Control Extension

Control Objective

The objective in this extension is to navigate a robot’s end-effector along

a collision-free path to a constant goal point, denoted by q∗ ∈ D, where
the set D denotes a free configuration space that is a subset of the whole

configuration space with all configurations removed that involve a collision

with an obstacle, and q∗ ∈ Rn denotes the constant goal point in the
interior of D. Mathematically, the primary control objective can be stated
as the desire to ensure that

q(t)→ q∗ as t→∞ (4.23)

where the secondary control is to ensure that q(t) ∈ D. To achieve these
two control objectives, we define ϕ (q) ∈ R as a function ϕ (q) : D →[0, 1]
that is assumed to satisfy the following properties: [39]

Property 4.2.4: The function ϕ (q) is first order and second order dif-

ferentiable Morse function (i.e.,
∂

∂q
ϕ (q) and

∂

∂q

µ
∂

∂q
ϕ (q)

¶
exist on

D).
Property 4.2.5: The function ϕ (q) obtains its maximum value on the

boundary of D.
Property 4.2.6: The function ϕ (q) has a unique global minimum at q (t) =

q∗.

Property 4.2.7: If
∂

∂q
ϕ (q) = 0, then q (t) = q∗.

Based on (4.23) and the above definition, an auxiliary tracking error

signal, denoted by η2(t) ∈ Rn, can be defined as follows to quantify the
control objective

η2(t) , q̇(t) +5ϕ(q) (4.24)
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where 5ϕ (q) =
∂

∂q
ϕ (q) denotes the gradient vector of ϕ (q) defined as

follows

5ϕ(q) ,
∙

∂ϕ

∂q1

∂ϕ

∂q2
...

∂ϕ

∂qn

¸T
. (4.25)

Remark 4.3 As discussed in [64], the construction of the navigation func-

tion ϕ (q) that satisfies all of the above properties for a general obstacle

avoidance problem is nontrivial. Indeed, for a typical obstacle avoidance,

it does not seem possible to construct ϕ (q) such that
∂

∂q
ϕ (q) = 0 only at

q (t) = q∗. That is, as discussed in [64], the appearance of interior saddle
points seems to be unavoidable; however, since the set of saddle points has

measure zero, the practical impact is minimal and consequently, ϕ (q) can

be constructed as shown in [64] such that only a minuscule set of initial

conditions will result in convergence to the unstable equilibria.

Remark 4.4 The two control developments presented in the preceding sec-

tions appear to be mathematically similar (i.e., (4.7) and (4.24)), but the

control objectives are very different. The VFC objective is to achieve robot

end-effector velocity tracking with a desired trajectory generated by a veloc-

ity field, ϑ (q), hence, there is no explicit goal point. The navigation func-

tion control development utilizes a special function ϕ (q) , that has specific

properties such that the robot’s end-effector finds a collision free path to a

known goal point, q∗ and stops. Each signal, ϑ (q) for the VFC develop-

ment, and ϕ (q) for the navigation function control development must meet

a set of qualifying conditions (i.e. the inequality of (4.2) for the VFC and

Properties 4.2.4 — 4.2.7 for the NF control), but these conditions are not

the same, therefore the two objectives are very different.

Benchmark Control Modification

To develop the open-loop error dynamics for η2(t), we take the time deriva-

tive of (4.24) and premultiply the resulting expression by the inertia matrix

as follows

Mη̇2 = −Vm(q, q̇)η2 + Y2(q, q̇)θ + τ . (4.26)

where (4.3) and (4.24) were utilized. In (4.26), the linear parameterization

Y2(q, q̇)θ is defined as follows

Y2(q, q̇)θ ,M(q)f(q, q̇) + Vm(q, q̇)5 ϕ(q)−G(q) (4.27)
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where Y2(q, q̇) ∈ Rn×m denotes a measurable regression matrix, θ ∈ Rm
was introduced in (4.6), and the auxiliary signal f(q, q̇) ∈ Rn is defined as

f(q, q̇) , d

dt
(5ϕ(q))

= H(q)q̇ (4.28)

where the Hessian matrix H(q) ∈ Rn×n is defined as follows

H(q) ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2ϕ

∂q21

∂2ϕ

∂q1∂q2
· · · ∂2ϕ

∂q1∂qn
∂2ϕ

∂q2∂q1

∂2ϕ

∂q22
· · · ∂2ϕ

∂q2∂qn
· · · · · · · · · · · ·
∂2ϕ

∂qn∂q1
· · · · · · ∂2ϕ

∂q2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Based on (4.26) and the subsequent stability analysis, the following adap-

tive controller introduced in [67] can be utilized

τ , −kη2 − Y2(q, q̇)θ̂2 (4.29)

where k ∈ R is a positive constant gain, and θ̂2(t) ∈ Rm denotes a param-

eter update law that is generated from the following expression

.

θ̂2(t) , Γ2Y T
2 (q, q̇)η2 (4.30)

where Γ2 ∈ Rm×m is a positive definite, diagonal gain matrix. Note that the
trajectory planning is incorporated in the controller through the gradient

terms included in (4.27) and (4.28). After substituting (4.29) into (4.26),

the following closed loop error systems can be obtained

Mη̇2 = −Vm(q, q̇)η2 − kη2 + Y2(q, q̇)θ̃2 (4.31)

where θ̃2(t) ∈ Rp is defined as follows
θ̃2(t) , θ − θ̂2. (4.32)

Stability Analysis

Theorem 4.3 The adaptive controller given in (4.29) and (4.30) ensures

that the robot manipulator tracks an obstacle free path to the unique goal

configuration in sense that

q(t)→ q∗ as t→∞
provided the control gain k introduced in (4.29) is selected sufficiently large.
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Proof: Let V2(q, η2, θ̃2) ∈ R denote the following nonnegative function

V2 , ϕ(q) + γ

∙
1

2
ηT2Mη2 + θ̃

T

2 Γ
−1
2 θ̃2

¸
. (4.33)

where γ ∈ R is an adjustable, positive constant. After taking the time

derivative of (4.33) the following expression can be obtained

V̇2 = [5ϕ(q)]T q̇ + γηT2

³
−kη2 + Y2(q, q̇)θ̃2

´
− γθ̃

T

2 Γ
−1
2

.

θ̂2

where (4.5), (4.25), (4.31), and (4.32) were utilized. By utilizing (4.24),

(4.30), the following expression can be obtained

V̇2 = − k5ϕ(q)k2 − γk kη2k2 + [5ϕ(q)]
T
η2.

The expression above can be further simplified as follows

V̇2 ≤ −1
2
k5ϕ(q)k2 − (γk − 2) kη2k2 (4.34)

where the following upper bound was utilized

[5ϕ(q)]
T
η2 ≤

1

2
k5ϕ(q)k2 + 2 kη2k2 .

Provided k is selected sufficiently large to satisfy

k >
2

γ
, (4.35)

it is clear from (4.4), (4.33), and (4.34) that

0 ≤ ϕ(q(t)) + γζ(q, t) ≤ ϕ(q(0)) + γζ(q(0), 0) (4.36)

where ζ(q, t) ∈ R is defined as

ζ(q, t) ,
∙
m2(q)

2
kη2(t)k2 + λmax{Γ−12 }

°°°θ̃2(t)°°°2¸ . (4.37)

From (4.32), (4.36), and (4.37) it is clear that η2(t), ϕ(q), θ̃2(t), θ̂2(t) ∈ L∞.
Let the region D0 be defined as follows

D0 , {q(t)| 0 ≤ ϕ(q(t)) ≤ ϕ(q(0)) + γζ(q(0), 0)} . (4.38)

Hence, (4.33), (4.34), and (4.36) can be utilized to show that q(t) ∈ D0
provided q(0) ∈ D0 (i.e., q(t) ∈ D0 ∀q(0) ∈ D0). Hereafter, we restrict the
remainder of the analysis to be valid in the region D0. Based on Property
4.2.4 given above, we know that 5ϕ(q) ∈ L∞. Since η2(t),5ϕ(q) ∈ L∞,
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(4.24) can be used to conclude that q̇(t) ∈ L∞; hence, Property 4.2.4
and (4.28) can be used to conclude that f(q, q̇) ∈ L∞. Based on the fact
that M (q), Vm (q, q̇), G (q) ,5ϕ(q), f(q, q̇) ∈ L∞, (4.27) can be used to
prove that Y2(q, q̇) ∈ L∞. Since η2(t), Y2(q, q̇), θ̂2(t) ∈ L∞, (4.29) can
be used to prove that τ(t) ∈ L∞. Based on the previous boundedness
statements, (4.31) can be used to show that η̇2(t) ∈ L∞; hence, 5ϕ(q),

η2(t) are uniformly continuous. From (4.34), it can also be determined

that 5ϕ(q), η2(t) ∈ L2. From these facts, Barbalat’s Lemma [67] can be

used to show that5ϕ(q), η2(t)→ 0 as t→∞. Since5ϕ(q)→ 0 , Property

4.2.7 can be used to prove that q(t) → q∗ as t → ∞. To ensure that q(t)
will remain in a collision-free region, we must account for the effects of

the γζ(q(0), 0) term introduced in the definition of the region D0 given in
(4.38). To this end, we first define the region D1 as follows

D1 , {q(t)| 0 ≤ ϕ(q(t)) < 1} (4.39)

where D1 denotes the largest collision-free region, which is based on the
definition of the function ϕ (q) : D →[0, 1]. It is now clear from (4.38)

and (4.39) that if the weighting constant γ is selected sufficiently small to

satisfy

ϕ(q(0)) + γζ(q(0), 0) < 1, (4.40)

this would make the upper bound of D1 greater than the upper bound of
D0; then D0 ⊂ D1, and therefore, the robot manipulator tracks an obstacle-
free path.

4.2.4 Experimental Verification

Experimental results were obtained by implementing the adaptive VFC

and the navigation function controller on a Barrett Whole Arm Manipula-

tor (WAM). The experimental testbed and results from implementing the

controllers are provided in the following sections.

Experimental Setup

The WAM testbed depicted in Figure 4.1 was utilized to implement the

VFC and the navigation function controller. For simplicity, 5 links of the

robot were locked at a fixed, specified angle during the experiment, and the

remaining links of the manipulator were used to enable the manipulator

to move along a planar trajectory. Specifically, a joint-space proportional

derivative (PD) controller was utilized to servo the WMR to the following

initial joint configuration for the adaptive VFC experiment (in [deg])

q(0) =
£
0 90 −90 60 90 20 0

¤T
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and to the following joint configuration for the navigation function experi-

ment (in [deg])

q(0) =
£ −58.84 90 90 140.72 11.5 84.5 0

¤T
.

Once the WAM was servoed to the initial joint configuration, links 2, 3,

5, 6 and 7 were locked, resulting in a planar configuration with links 1

and 4 (see Figure 4.1). The resulting forward kinematics and manipulator

Jacobian for the planar-WAM are given as follows∙
x1
x2

¸
=

∙
c1 cos(q1) + c4 cos(q1 + q4)

c1 sin(q1) + c4 sin(q1 + q4)

¸

J(q) =

∙ −c1 sin(q1)− c4 sin(q1 + q4) −c4 sin(q1 + q4)

c1 cos(q1) + c4 cos(q1 + q4) c4 cos(q1 + q4)

¸
(4.41)

where c1 = 0.558 [m] and c4 = 0.291 [m]. The dynamics of the planar-WAM

can be expressed in the following form [68]

τ =

∙
M11 M12

M21 M22

¸ ∙
q̈1
q̈4

¸
+

∙
Vm11

Vm12

Vm21 Vm22

¸ ∙
q̇1
q̇4

¸
+

∙
fd1 0

0 fd4

¸ ∙
q̇1
q̇4

¸
.

(4.42)

In (4.42), the elements of the inertia and centripetal-Coriolis matrices are

given as
M11 = p1 + 2p2cos(q4)

M12 = p3 + p2cos(q4)

M21 = p3 + p2cos(q4)

M22 = p3

Vm11 = −p2sin(q4)q̇4
Vm12 = −p2sin(q4)q̇1 − p2sin(q4)q̇4
Vm21 = p2sin(q4)q̇1
Vm22

= 0

where p1, p2, p3 denote unknown constant inertial parameters, and fd1 =

6.8 [Nm·s] and fd4 = 3.8 [Nm·s]. The gravitational effects are not included
in (4.42) due to the plane of motion of the manipulator.

The links of the WAM are driven by brushless motors supplied with sinu-

soidal electronic commutation. Each axis has encoders located at the motor

shaft for link position measurements. Since no tachometers are present for

velocity measurements, link velocity signals are calculated via a filtered

backwards difference algorithm. An AMD Athlon 1.2GHz PC operating
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QNX 6.2.1 RTP (Real Time Platform), a real-time micro-kernel based op-

erating system, hosts the control, detection, and identification algorithms

which were written in C++. Qmotor 3.0 [51] was used to facilitate real time

graphing, data logging and on-line gain adjustment. Data acquisition and

control implementation were performed at a frequency of 1.0 [kHz] using

the ServoToGo I/O board.

FIGURE 4.1. Front View of the Experimental Setup

Adaptive VFC Experiment

The following task-space velocity field for a planar, circular contour was

utilized for the experiment [4]

ϑ(x) = −2K(x)f(x)
∙
(x1 − xc1)

(x2 − xc2)

¸
+ 2c(x)

∙ −(x2 − xc2)

(x1 − xc1)

¸
(4.43)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420006278-c4&iName=master.img-000.jpg&w=269&h=218
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where xc1 = 0.54 [m] and xc2 = 0.04 [m] denote the circle center, and the

functions f(x), K(x), and c(x) ∈ R are defined as follows [4]

f(x) = (x1 − xc1)
2 + (x2 − xc2)

2 − r2o (4.44)

K(x) =
k∗0p

f2(x)
°°°∂f(x)∂x

°°°+ �

c(x) =
c0 exp

³
−μpf2(x)

´
°°°∂f(x)∂x

°°° .

In (4.44), ro = 0.2 [m] denotes the circle diameter, and the parameters

� = 0.005 [m3], μ = 20 [m−1], k∗0 = 0.25 [ms−1], and c0 = 0.25 [ms
−1] were

selected according to [4]. The task-space velocity field is depicted in Figure

4.2. The development in Section B.2.1 of Appendix B indicates that the

velocity field in (4.43) satisfies the condition given in (4.2). To implement

the adaptive VFC given in (4.11) and (4.12), the task-space velocity field is

transformed into a joint-space velocity field as follows ϑ(q) = J−1(q)ϑ(x).
The controller parameters were recorded as follows

K = diag(25, 15) Γ1 = diag(3, 1, 5)

where diag(·) denotes a diagonal matrix. The resulting velocity field track-
ing errors are given in Figure 4.3. Figure 4.4 depicts the parameter esti-

mates, and Figure 4.5 depicts the control torque inputs.

Adaptive Navigation Function Control Experiment

For the navigation function control experiment, four circular obstacles with

known dimensions were placed in known locations in the task-space (see

Figure 4.1). The actual size of the obstacles and task-space was then mod-

ified in the algorithm to accommodate for the term γζ(q(0), 0) given in

(4.36) and (4.37) (i.e., the configuration-space was reduced to ensure ob-

stacle avoidance). To modify the configuration-space according to (4.36)

and (4.37), exact knowledge of the inertial parameters is required. Since

these parameters are unknown, an upper bound for ζ(q(0), 0) was utilized

based on known upper bounds for the inertial parameters. The modifica-

tions to the configuration-space are depicted in Figure 4.6. A task-space

navigation function was developed to encapsulate the obstacles and the

task-space boundary as follows

ϕ(x) =
kx− x∗k2³

kx− x∗k2κ + β0β1β2β3β4

´1/κ (4.45)
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FIGURE 4.2. Desired Trajectory
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where x(t) , [x1(t), x2(t)]T ∈ R2 denote the actual task-space position of
the WAM end-effector, x∗ , [x∗1, x

∗
2]
T ∈ R2 denotes the task-space goal

position, and κ is a parameter. In [39], Koditschek proved that ϕ (x) in

(4.45) is a navigation function satisfying Properties 4.2.4 — 4.2.7, provided

that κ is big enough; for this simulation, κ is chosen to be 14. In (4.45),

the boundary function β0(x) ∈ R and the obstacle functions β1(x), β2(x),
β3(x), β4(x) ∈ R are defined as follows

β0 = r20 − (x1 − x1r0)
2 − (x2 − x2r0)

2 (4.46)

β1 = (x1 − xr1)
2 + (x2 − x2r1)

2 − r21

β2 = (x1 − xr2)
2 + (x2 − x2r2)

2 − r22

β3 = (x1 − xr3)
2 + (x2 − x2r3)

2 − r23

β4 = (x1 − xr4)
2 + (x2 − x2r4)

2 − r24.

In (4.46), (x1 − x1ri) and (x2 − x2ri) where i = 0, 1, 2, 3, 4 are the respec-

tive centers of the boundary and obstacles, and r0, r1, r2, r3, r4 ∈ R are
the respective radii of the boundary and obstacles. From (4.45) and (4.46),

it is clear that the model-space is a circle that excludes four smaller cir-

cles described by the obstacle functions β1(x), β2(x), β3(x), β4(x). If more

obstacles are present, the corresponding obstacle functions can be easily

incorporated into the navigation function [39]. Based on the known loca-

tion and size of the obstacles and task-space boundary, the model-space

configuration parameters were selected as follows (in [m])

x1r0 = 0.5064 x2r0 = −0.0275 r0 = 0.28

x1r1 = 0.63703 x2r1 = 0.11342 r1 = 0.03

x1r2 = 0.4011 x2r2 = 0.0735 r2 = 0.03

x1r3 = 0.3788 x2r3 = −0.1529 r3 = 0.03

x1r4 = 0.6336 x2r4 = −0.12689 r4 = 0.03.

To implement the navigation function based controller given in (4.29) and

(4.30) the joint-space dynamic model given in (4.42) was transformed to

the task-space as follows [19]

τ∗ =M∗(x)ẍ+ V ∗m(x, ẋ)ẋ+ F ∗d ẋ

where

τ∗ = J−T τ , M∗ = J−T
∙
M11 M12

M21 M22

¸
J−1

V ∗m = J−T
µ∙

Vm11 Vm12

Vm21 Vm22

¸
−
∙
M11 M12

M21 M22

¸
J−1J̇

¶
J−1

F ∗d = J−T
∙
fd1 0

0 fd4

¸
J−1
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where J−1(q) can be determined from (4.41) as follows

J−1(q) =

⎡⎢⎣
cos (q1 + q4)

c1 sin q4

sin (q1 + q4)

c1 sin q4

−c1 cos q1 + c4 cos (q1 + q4)

c1c4 sin q4
−c1 sin q1 + c4 sin (q1 + q4)

c1c4 sin q4

⎤⎥⎦ .
After adjusting the control gains to ensure the gain conditions (4.35) and

(4.40) are satisfied, the following values were recorded

k = 45 Γ2 = diag (0.02, 0.01, 0.01) ;

the resulting actual trajectory of the WAM end-effector is provided in Fig-

ure 4.6. Figure 4.6 illustrates that the WAM end-effector avoids the actual

obstacles as it moves to the goal point. The parameter estimates and control

torque inputs are provided in Figures 4.7 and 4.8, respectively.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.3

−0.2

−0.1

0

0.1

0.2

x
1
 [m]

x 2 [m
]

Goal 

Start 

Actual obstacle     
size (0.036 m)      

Actual               
task−space (0.27017m)

Physical task−space
 (0.28 m)          

Physical obstacle  (0.03 m)

FIGURE 4.6. Actual Trajectory of the WAM Robot

Remark 4.5 The adaptive control results achieved in Sections 4.2.2 and

4.2.3 prove only that
.

θ̂1 (t) and
.

θ̂2 (t)→ 0 as t→∞; therefore, the unknown
parameters are not guaranteed to be identified. The values of the estimates

that are reached could be different from one experimental run to another. In

practice, the parameter estimates may not become constant due to steady-

state tracking errors.
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4.3 Velocity Field and Navigation Function
Control for WMRs

This part describes in detail the integration of control techniques for WMRs

with the path planning algorithms presented in the preceding section. Ve-

locity Field Control is tackled first. Specifically, a velocity field is developed

for the constrained WMR trajectory, and a differentiable controller is for-

mulated to prove global asymptotic velocity field tracking. Motivated by

the desire to improve the robustness of the system, the developed differ-

entiable kinematic controller is embedded inside of an adaptive controller

that fosters global asymptotic tracking despite parametric uncertainty as-

sociated with the dynamic model. In the latter half of this section, several

approaches for incorporating navigation functions into different controllers

are developed for task execution by a WMR in the presence of known ob-

stacles. The first approach is based on the use of a 3-dimensional (position

and orientation) navigation function that is based on desired trajectory

information. The navigation function yields a path from an initial con-

dition inside the free configuration space of the mobile robot to a stable

equilibrium point. A differentiable, oscillator-based controller is then used

to enable the mobile robot to follow the path and stop at the goal posi-

tion. A second approach is developed for a 2-dimensional (position-based)

navigation function that is constructed using sensor feedback. A differen-

tiable controller is proposed based on this navigation function that yields

asymptotic convergence. Simulation results are provided to illustrate the

performance of the controller.

4.3.1 Kinematic Model

The kinematic model for a WMR subject to the nonholonomic constraints

of pure rolling and nonslipping can be expressed as follows (See Figure 4.9)

q̇ = S(q)v (4.47)

where q(t), q̇(t) ∈ R3 are defined as

q = [xc yc θ]
T

q̇ =
h
ẋc ẏc θ̇

iT
. (4.48)

In (4.47) and (4.48), xc(t), yc(t), and θ(t) ∈ R denote the Cartesian position
and orientation of the WMR, ẋc(t), ẏc(t) denote the Cartesian components

of the linear velocity of the COM, θ̇(t) ∈ R denotes the angular velocity,
the velocity vector is defined as v(t) = [vc ωc]

T ∈ R2 with vc(t), ωc(t) ∈ R
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denoting the linear and angular velocity of the system, while the matrix

S(q) ∈ R3×2 is defined as follows

S(q) =

⎡⎣ cos θ 0

sin θ 0

0 1

⎤⎦ . (4.49)

x

y

!c

vc

µ

xc

yc

FIGURE 4.9. Mobile Robot Coordinate Frames

4.3.2 WMR Velocity Field Control

As described previously, many robotic tasks can be effectively encapsulated

as a velocity field where the control objective can be described as the desire

for the trajectory of a system to track a state-dependent desired trajectory.

To quantify this objective for the WMR, a velocity field tracking error,

denoted by ηv(t) ∈ R3, is defined as follows
ηv(t) , q̇(t)− ϑ(q) (4.50)

where ϑ(·) ∈ R3 denotes the desired WMR velocity field that is defined as
follows

ϑ(q) =

⎡⎣ ẋcd
ẏcd
θ̇d

⎤⎦ =
⎡⎣ cos θd(q) 0

sin θd(q) 0

0 1

⎤⎦ vd(q). (4.51)
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In (4.51), vd(q) = [vcd ωcd]
T ∈ R2 denotes the desired heading and ro-

tational velocity of the center of mass (COM) of the WMR, while xcd(t),

ycd(t), and θd(t) ∈ R denote the desired Cartesian position and orienta-

tion of the WMR, respectively. The velocity field is assumed to be de-

signed so that ϑ(q),
∂ϑ(q)

∂q
, xcd(q), and ycd(q) remain bounded provided q

remains bounded. The velocity field is also assumed to be designed such

that lim
t→∞ kvd(t)k 6= 0. As an example, a velocity field that leads to a de-

sired WMR circular contour centered about the origin with radius R can

be chosen as follows

vcd(q) =
q
ρ21(q) + ρ22(q) (4.52)

ωcd(q) = θ̇d (q) =

⎧⎨⎩
d

dt
arctan 2 (ρ2(q), ρ1(q)) ∀ − π < θd < π

1 ∀ θd = π

where arctan 2 (·) is the four quadrant inverse tangent function that is con-
fined to the region −π < θd 6 π while the auxiliary functions ρ1(q),

ρ2(q) ∈ R are defined as follows

ρ1(q) = (R2 − x2c − y2c )xc + yc (4.53)

ρ2(q) = (R2 − x2c − y2c )yc − xc. (4.54)

Although the arctan 2 (·) function exhibits a discontinuity between periods,
ad hoc adjustments can be used to implement the function. For R = 1, the

velocity field depicted in Figure 4.10 is produced.

Kinematic Transformation

To express the WMR model in a form that is more amenable to the

subsequent control design and stability analysis, the new state variables

z(t) =
£
z1(t) z2(t)

¤T ∈ R2 and w(t) ∈ R are defined in terms of the

original states through the following global diffeomorphism [19]⎡⎣ z1
z2
w

⎤⎦ = G

⎡⎣ x̃

ỹ

θ̃

⎤⎦ (4.55)

where G(q) ∈ R3×3 is defined as follows

G(q) =

⎡⎣ 0 0 1

cos θ sin θ 0

−θ̃ cos θ + 2 sin θ −θ̃ sin θ − 2 cos θ 0

⎤⎦ . (4.56)
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FIGURE 4.10. Example Circular Velocity Field for a WMR

In (4.55), x̃ (t) , ỹ (t) , θ̃ (t) ∈ R denote the difference between the actual and
desired Cartesian position and orientation of the WMR as follows

x̃ = xc − xcd ỹ = yc − ycd θ̃ = θ − θd. (4.57)

By using (4.47)—(4.57), the time derivative of (4.55) can be expressed as

follows

ẇ = uTJT z +Az (4.58)

ż = u

where J ∈ R2×2 is an auxiliary skew-symmetric matrix defined as

J =

∙
0 −1
1 0

¸
, (4.59)

and the auxiliary row vector A(q) ∈ R1×2 is defined as

A =

∙
−2vcd sin(z1)

z1
2ωcd

¸
. (4.60)

The auxiliary control variable u(t) =
£
u1(t) u2(t)

¤T ∈ R2 introduced
in (4.58) is used to simplify the transformed dynamics and is explicitly
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defined in terms of the WMR position and orientation, the WMR linear

velocities, and the velocity field as follows

u = T−1v −
∙
ωcd
vcd cos θ̃

¸
v = Tu+Π (4.61)

where the auxiliary variables T (q) ∈ R2×2 and Π(q) ∈ R2 are defined as
follows

T =

∙
(x̃ sin θ − ỹ cos θ) 1

1 0

¸
(4.62)

and

Π =

∙
vcd cos θ̃ + ωcd (x̃ sin θ − ỹ cos θ)

ωcd

¸
. (4.63)

Dynamic Model

The dynamic model for the kinematic wheel can be expressed in the fol-

lowing form

Mv̇ + F (v) = Bτ (4.64)

where M ∈ R2×2 represents the constant inertia matrix, F (v) ∈ R2 repre-
sents the friction effects, τ(t) ∈ R2 represents the torque input vector, and
B ∈ R2×2 represents an input matrix that governs torque transmission.
After premultiplying (4.64) by TT (q) defined in (4.62), and substituting

(4.61) for v(t), the following convenient dynamic model can be obtained

[19]

M̄u̇+ V̄mu+ N̄ = B̄τ (4.65)

where

M̄ = TTMT, V̄m = TTMṪ, (4.66)

B̄ = TTB, N̄ = TT
³
F (Tu+Π) +MΠ̇

´
.

The dynamic model in (4.65) exhibits the following properties which will be

employed during the subsequent control development and stability analysis.

Property 4.3.1: The transformed inertia matrix M̄(q) is symmetric, pos-

itive definite, and satisfies the following inequalities

m1 kξk2 ≤ ξT M̄ξ ≤ m2(z,w) kξk2 ∀ξ ∈ <2 (4.67)

where m1 is a known positive constant, m2(z,w) ∈ R is a known,

positive bounding function which is assumed to be bounded provided

its arguments are bounded, and k·k is the standard Euclidean norm.
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Property 4.3.2: A skew-symmetric relationship exists between the trans-

formed inertia matrix and the auxiliary matrix V̄m(q, q̇) as follows

ξT
µ
1

2

.

M̄ − V̄m

¶
ξ = 0 ∀ξ ∈ R2 (4.68)

where
.

M̄(q, q̇) represents the time derivative of the transformed in-

ertia matrix.

Property 4.3.3: The robot dynamics given in (4.65) can be linearly pa-

rameterized as follows

Yoψ = M̄u̇+ V̄mu+ N̄ (4.69)

where ψ ∈ Rp contains the unknown constant mechanical parameters
(i.e., inertia, mass, and friction effects), and Yo(u̇, u) ∈ R2×p denotes
a regression matrix.

Property 4.3.4: The transformed torque transmission matrix B̄(q) is glob-

ally invertible.

Control Development

Control Objective

The velocity field tracking control objective is to ensure that

ηv(t)→ 0 as t→∞ (4.70)

despite parametric uncertainty in the WMR dynamic model. To achieve

this objective, the subsequent control development will focus on proving

that the auxiliary states w(t) and z(t) and the respective time derivatives

asymptotically approach zero. The auxiliary error signal z̃(t) ∈ R2 is in-
troduced to facilitate the control development, where z̃(t) is defined as the

difference between the subsequently designed auxiliary signal zd(t) ∈ R2
and the transformed variable z(t), defined in (4.55), as follows

z̃ = zd − z. (4.71)

Given the nonholonomic motion constraints, the control development for

a WMR is facilitated by designing a velocity control input (e.g., the con-

trol input to the kinematic system in (4.58) is given by u(t)). Since the

actual control input to the WMR can be expressed as a force/torque, a

backstepping error, denoted by η(t) ∈ R2, is introduced as follows

η = ud − u (4.72)
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where ud(t) ∈ R2 denotes the desired kinematic control signal. Given that
uncertainty exists in the WMR dynamic model, the subsequent control

development will include the design of an adaptive estimate, denoted by

ψ̂(t) ∈ Rp. To quantify the performance of the adaptive estimate, a param-
eter estimation error signal, denoted by ψ̃(t) ∈ Rp, is defined as follows

ψ̃ = ψ − ψ̂. (4.73)

Control Formulation

Given the transformed dynamic model of (4.65), the subsequent stability

analysis, and the assumption that q(t) and q̇(t) are measurable, the control

torque input τ(t) is designed as follows

τ = B̄−1
³
Y ψ̂ +Kaη + Jzw + z̃

´
. (4.74)

Here, Ka ∈ R2×2 is a positive definite, diagonal control gain matrix, ψ̂(t)
is dynamically generated by the following gradient update law

.

ψ̂ = ΓY T η (4.75)

and the regression matrix Y (u̇d, ud, u) ∈ Rn×p is defined as follows

Y ψ = M̄u̇d + V̄mud + N̄ (4.76)

where ud(t) is introduced in (4.72). From the kinematic equations given in

(4.58) and the subsequent stability analysis, the desired kinematic control

signal ud(t) given in (4.76) is designed as follows

ud = ua − k3z + uc. (4.77)

In (4.77), the auxiliary control terms ua(t) ∈ R2 and uc(t) ∈ R2 are defined
as

ua = k1wJzd +Ω1zd (4.78)

and

uc = −(I2 + 2wJ)−1(2wAT ) (4.79)

respectively, the auxiliary signal zd(t) is defined by the following dynamic

oscillator-like relationship

żd =
¡
k1
¡
w2 − zTd zd

¢− k2
¢
zd + JΩ2zd +

1

2
uc (4.80)

β = zTd (0)zd(0),
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and the auxiliary terms Ω1(t) ∈ R and Ω2(t) ∈ R are defined as

Ω1 = k1w
2 + k1

¡
w2 − zTd zd

¢− k2 + k3 (4.81)

and

Ω2 = k1w + wΩ1 (4.82)

respectively. In (4.77)—(4.82), k1, k2, k3 ∈ R are positive, constant control
gains, I2 represents the standard 2× 2 identity matrix, β ∈ R is a positive
constant, and A(q) was defined in (4.60). Note that it is straightforward to

show that the matrix I2+2wJ
T used in (4.79) is always invertible provided

w(t) remains bounded.

Closed-Loop Error System

The closed-loop error system for η(t) is obtained by taking the time deriva-

tive of (4.72), premultiplying the resulting expression by the transformed

inertia matrix, substituting (4.65) for M̄(q)u̇(t), and utilizing (4.76) to ob-

tain the following expression

M̄η̇ = −V̄mη + Y ψ − B̄τ (4.83)

After substituting (4.74) into (4.83) and utilizing (4.73), the following ex-

pression for the closed-loop error system can be obtained

M̄η̇ = −Kaη − V̄mη + Y ψ̃ − Jzw − z̃. (4.84)

The first term in (4.84) is a stabilizing feedback term, and the second term

in (4.84) can be canceled through a Lyapunov-analysis by virtue of Property

2. The design for the adaptive update law given in (4.75) is motivated by

the desire to cancel the third term in (4.84) through a Lyapunov-based

analysis. The remaining two terms represent coupling terms that must be

canceled through the closed-loop error systems developed for w(t) and z̃(t);

hence, the control development given in (4.77)—(4.82) is motivated by the

need to cancel these terms.

To facilitate the closed-loop error system development for w(t), the de-

sired kinematic control input ud(t) is injected into the open-loop dynamics

of w(t) given by (4.58) by adding and subtracting the term uTd Jz to the

right side of (4.58) and utilizing (4.72) to obtain the following expression

ẇ = ηTJz − uTd Jz +Az. (4.85)

After substituting (4.77) for ud(t), adding and subtracting uTa Jzd to the

resulting expression, utilizing (4.71), and exploiting the skew symmetry of
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J defined in (4.59), we can rewrite the closed-loop dynamics for w(t) as

follows

ẇ = ηTJz + uTa Jz̃ − uTa Jzd +Az − uTc Jz. (4.86)

After substituting (4.78) for only the second occurrence of ua(t) in (4.86),

substituting (4.79) for uc(t), utilizing the skew symmetry of J defined in

(4.59), and the fact that JTJ = I2, we can obtain the final expression for

the closed-loop error system as follows

ẇ = ηTJz + uTa Jz̃ − k1wz
T
d zd +Az (4.87)

+2wA(I2 + 2wJ
T )−1Jz.

The closed-loop error system for z̃(t) can be obtained by taking the time

derivative of (4.71), substituting (4.80) for żd(t), and then substituting

(4.58) for ż(t) to obtain

.
z̃ =

¡
k1
¡
w2 − zTd zd

¢− k2
¢
zd (4.88)

+JΩ2zd +
1

2
uc + η − ud

where (4.72) was utilized. The following expression can be obtained by

substituting (4.77) for ud(t) and then substituting (4.78) in the resulting

expression

.
z̃ =

¡
k1
¡
w2 − zTd zd

¢− k2
¢
zd + JΩ2zd (4.89)

−1
2
uc − k1wJzd − Ω1zd + k3z + η.

After substituting (4.81) and (4.82) for Ω1(t) and Ω2(t) into (4.89), respec-

tively, and then using the fact that JJ = −I2, the following expression is
obtained

.
z̃ = −k3z̃ + wJ [Ω1zd + k1wJzd]− 1

2
uc + η (4.90)

where (4.71) has been utilized. Substituting (4.79) for uc(t) yields the final

expression for the closed-loop error system as follows

.
z̃ = −k3z̃ + (I2 + 2wJ)−1wAT + wJua + η (4.91)

since the bracketed term in (4.90) is equal to ua(t) defined in (4.78).

Stability Analysis

Theorem 4.4 The controller introduced in (4.74)—(4.82) ensures global

asymptotic tracking of the velocity field in the sense that

ηv(t)→ 0 as t→∞ (4.92)
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provided the reference trajectory is selected such that

lim
t→∞ kvd(t)k 6= 0. (4.93)

Proof : Consider the following non-negative function denoted by V (w,

zd, z̃, η, ψ̃) ∈ R as follows

V (t) =
1

2
w2 +

1

2
zTd zd +

1

2
z̃T z̃ +

1

2
ηT M̄η +

1

2
ψ̃
T
Γ−1ψ̃. (4.94)

The following expression can be obtained after taking the time derivative of

(4.94) and making the appropriate substitutions from (4.75), (4.79), (4.80),

(4.84), (4.87), (4.91), and utilizing the fact that
.

ψ̃(t) = −
.

ψ̂(t)

V̇ = w
£
ηTJz + uTa Jz̃ − k1wz

T
d zd

¤
(4.95)

+w
£
Az + 2wA(I2 + 2wJ

T )−1Jz
¤

+zTd
£¡
k1
¡
w2 − zTd zd

¢− k2
¢
zd
¤

+zTd
£
JΩ2zd − (I2 + 2wJ)−1wAT

¤
+z̃T

£−k3z̃ + (I2 + 2wJ)−1wAT
¤

+z̃T [wJua + η] +
1

2
ηT

.

M̄η − ψ̃
T £

Y T η
¤

+ηT
h
Y ψ̃ − Jzw − z̃ −Kaη − V̄mη

i
.

After utilizing (4.68), the skew symmetry property of J , and cancelling

common terms, (4.95) can be rewritten as

V̇ = −k1 kzdk4 − k2z
T
d zd − k3z̃

T z̃ − ηTKaη (4.96)

+
£
wAz +

¡
wA(I2 + 2wJ

T )−1 (2wJ)
¢
z

− ¡wA(I2 + 2wJT )−1¢ z¤
where (4.71) has been utilized. Furthermore, after combining the bracketed

terms in (4.96) and making algebraic simplifications, one can obtain the

following simplified expression for V̇ (t)

V̇ = −k1 kzdk4 − k2z
T
d zd − k3z̃

T z̃ − ηTKaη. (4.97)

Based on (4.94) and (4.97), it can be concluded that V (t) ∈ L∞; thus,
w(t), zd(t), z̃(t), η(t), ψ̃(t) ∈ L∞. Since w(t), zd(t), z̃(t), η(t) ∈ L∞, one
can utilize (4.60), (4.71), (4.77)—(4.82), (4.87), and (4.91) to conclude that

A(q), z(t), ud(t), u(t), ua(t), uc(t), Ω1(t), Ω2(t), żd(t), ẇ(t),
.
z̃(t) ∈ L∞.

Since żd(t),
.
z̃(t) ∈ L∞, (4.71) can be utilized to show that ż(t) ∈ L∞

(since ẇ(t), żd(t),
.
z̃(t), ż(t) ∈ L∞, it follows that w(t), zd(t), z̃(t), and z(t)
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are uniformly continuous). To illustrate that the Cartesian position and

orientation tracking signals are bounded, we calculate the inverse transfor-

mation of (4.55) as follows⎡⎣ x̃

ỹ

θ̃

⎤⎦ = G−1

⎡⎣ z1
z2
w

⎤⎦ . (4.98)

Since z(t) ∈ L∞, it is clear from (4.57) and (4.98) that θ̃(t) ∈ L∞. Fur-
thermore, from (4.57), (4.98), and the fact that w(t), z(t), θ̃(t) ∈ L∞, we
can conclude that x̃(t), ỹ(t) ∈ L∞. Since xcd(q) and ycd(q) are assumed to

be bounded, we can conclude that xc(t) and yc(t) ∈ L∞. We can utilize
(4.61), the assumption that vd(q) is bounded, and the fact that u(t), x̃(t),

ỹ(t) ∈ L∞, to show that v(t) ∈ L∞; therefore, it follows from (4.47)—(4.49)

that θ̇(t), ẋc(t), ẏc(t) ∈ L∞. Based on the boundedness of the aforemen-
tioned signals, we can take the time derivative of (4.80) and show that

z̈d(t) ∈ L∞. The expressions in (4.62)—(4.66) can then be used to prove
that M̄(q), V̄m(q, q̇), N̄(q, q̇) ∈ L∞. The time derivative of (4.77)—(4.82)
can be used to prove that u̇d(t) ∈ L∞; hence, (4.74)—(4.76) and (4.84) can
be used to prove that Y (t), η̇(t),

.

ψ̂(t), τ(t) ∈ L∞. Based on the bound-
edness of the closed-loop signals, standard signal chasing arguments can

now be used to show that all remaining signals remain bounded during

closed-loop operation.

From (4.94) and (4.97), it is easy to show that zd(t), z̃(t), η(t) ∈ L2; hence,
since zd(t), z̃(t), η(t) are uniformly continuous, a corollary to Barbalat’s

Lemma [66] can be used to show that lim
t→∞zd(t), z̃(t), z(t), η(t) = 0. Next,

since z̈d(t) ∈ L∞, we know that żd(t) is uniformly continuous. Since we

know that lim
t→∞zd(t) = 0 and żd(t) is uniformly continuous, we can use the

following equality

lim
t→∞

Z t

0

d

dτ
(zd(τ)) dτ = lim

t→∞zd(t) + constant (4.99)

and Barbalat’s Lemma [66] to conclude that lim
t→∞żd(t) = 0. Based on the

fact that lim
t→∞zd(t), żd(t) = 0, it is straightforward from (4.79) and (4.80) to

see that lim
t→∞wA

T = 0. Finally, based on (4.60) and (4.93) we can conclude

that lim
t→∞w(t) = 0. From (4.98), we can now conclude that lim

t→∞x̃(t), ỹ(t),

θ̃(t) = 0. Given that lim
t→∞z(t), η(t), w(t) = 0, (4.72) and (4.77)—(4.79) can

be used to prove that lim
t→∞u(t) = 0. Hence, from (4.58) and (4.85), limt→∞ż(t),

ẇ(t) = 0. To prove that ηv(t)→ 0, one can take the time derivative of (4.55)
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as follows

d

dt

⎡⎣ z1
z2
w

⎤⎦ = Ġ

⎡⎣ x̃

ỹ

θ̃

⎤⎦+G
d

dt

⎡⎣ x̃

ỹ

θ̃

⎤⎦ . (4.100)

Since lim
t→∞ż(t), ẇ(t), x̃(t), ỹ(t), θ̃(t) = 0, the fact that the G(q) is a global

diffeomorphism can be used along with (4.100) to conclude that lim
t→∞

.
x̃(t),

.
ỹ(t),

.

θ̃(t) = 0. From (4.50), (4.51), and (4.57), the velocity field tracking

result given in (4.92) is now obtained.

4.3.3 WMR Navigation Function Control Objective

Given the kinematic model described in Section 4.3.1, the objective here is

to navigate the wheeled mobile robot along a collision-free path to a con-

stant goal position and orientation, denoted by q∗ , [x∗c y∗c θ∗]T ∈ R3,
in a cluttered environment with known obstacles. Specifically, the objective

is to control the nonholonomic system along a path from the initial posi-

tion and orientation to q∗ ∈ D, where D denotes a free configuration space.
The free configuration space D is a subset of the whole configuration space
with all configurations removed that involve a collision with an obstacle.

The navigation control objective is to drive the errors x̃ (t) , ỹ (t) , θ̃ (t) (as

defined in 4.57) to zero in the limit. Here, the desired position and orienta-

tion of the WMR, denoted by qd(t) ,[xcd(t) ycd(t) θd(t)]
T , is designed

such that qd(t) → q∗. As previously elaborated in Section 4.2.3, the navi-
gation function used here to generate qd(t) is assumed to satisfy Properties

4.2.4—4.2.7.

Off-line 3D Navigation

Trajectory Planning

The off-line 3D desired trajectory can be generated as follows

q̇d = −5 ϕ (qd) , −
∙

∂ϕ

∂xcd

∂ϕ

∂ycd

∂ϕ

∂θd

¸T
(4.101)

where ϕ (qd) ∈ R denotes a navigation function defined in D with a mini-

mum at qd = q∗ (see Properties 4.2.4—4.2.7 for details), and xcd(t), ycd(t),

θd(t) were introduced in (4.51).

Lemma 4.5 Provided qd (0) ∈ D, the desired trajectory generated by (4.101)
ensures that qd(t) ∈ D and (4.101) has the asymptotically stable equilibrium
point q∗.
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Proof: Let V1 (qd) : D → R denote a non-negative function defined as

follows

V1 (qd) , ϕ (qd) . (4.102)

After taking the time derivative of (4.102) and utilizing (4.101), the follow-

ing expression can be obtained

V̇1 (qd) = (5ϕ (qd))
T q̇d = − k5ϕ (qd)k2 . (4.103)

From (4.103), it is clear that V1 (qd(t)) is a non-increasing function in the

sense that

V1 (qd(t)) ≤ V1 (qd(0)) . (4.104)

From (4.104), it is clear that for any initial condition qd (0) ∈ D, that
qd (t) ∈ D ∀t > 0; therefore, D is a positively invariant set. Let E1 ⊂ D
denote a set defined as follows E1 ,{qd (t)| V̇1 (qd) = 0}. Based on (4.103),
it is clear that 5ϕ (qd) = 0 in E1; hence, from (4.101) it can be determined

that q̇d (t) = 0 in E1, and that E1 is the largest invariant set. By invoking

LaSalle’s Theorem [35], it can be determined that every solution qd (t) ∈ D
approaches E1 as t → ∞, and hence, 5ϕ (qd) → 0. Based on Property

4.2.7, it can be determined that if 5ϕ (qd)→ 0 then qd(t)→ q∗.

Model Transformation

To achieve the navigation control objective, a controller must be designed

to track the desired trajectory developed in (4.101) and stop at the goal

position q∗. To this end, the unified tracking and regulation controller pre-
sented in [18] can be used. To develop the controller in [18], the open-loop

error system defined in (4.57) must be transformed into a suitable form.

Specifically, the position and orientation tracking error signals defined in

(4.57) are related to the auxiliary tracking error variables w(t) ∈ R and

z(t) ,
£
z1(t) z2(t)

¤T ∈ R2 through the global invertible transforma-
tion of (4.55). As similarly done in Section 4.3.2, one can take the time

derivative of (4.55) to obtain the following transformed kinematic system

ẇ = uTJT z + f (4.105)

ż = u

where we have utilized (4.101) as well as the robot kinematics of (4.47),

J ∈ R2×2 has been previously defined in (4.59), and f(θ, z2, q̇d) ∈ R is

defined as

f , 2
£ − sin θ cos θ z2

¤
q̇d. (4.106)
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The auxiliary control input u(t) ,
£
u1(t) u2(t)

¤T ∈ R2 introduced in
(4.105) is defined in terms of the position and orientation, the linear and

angular velocities, and the gradient of the navigation function as follows

u =

∙
0 1

1 −x̃ sin θ + ỹ cos θ

¸
v

+

⎡⎢⎣
∂ϕ

∂θd
∂ϕ

∂xcd
cos θ +

∂ϕ

∂ycd
sin θ

⎤⎥⎦ . (4.107)

Control Development

Based on the form of the open-loop error system in (4.105)—(4.107), u(t)

can be designed as follows [18]

u , ua − k2z (4.108)

where k2 ∈ R is a positive, constant control gain. The auxiliary control

term ua(t) ∈ R2 introduced in (4.108) is defined as

ua ,
µ
k1w + f

δ2d

¶
Jzd +Ω1zd . (4.109)

In (4.109), zd(t) is defined by the following differential equation and initial

condition

żd =
δ̇d
δd
zd +

µ
k1w + f

δ2d
+ wΩ1

¶
Jzd

zTd (0)zd(0) = δ2d(0) ,

(4.110)

the auxiliary terms Ω1(w, f, t) ∈ R and δd(t) ∈ R are defined as

Ω1 , k2 +
δ̇d
δd
+ w

µ
k1w + f

δ2d

¶
, (4.111)

δd , α0 exp(−α1t) + ε1, (4.112)

while k1, α0, α1, ε1 ∈ R are positive, constant control gains, and f(θ, z2, q̇d)
was defined in (4.106).

Based on the control design given in (4.108)—(4.112), the following sta-

bility result can be obtained.

Theorem 4.6 The kinematic control law given in (4.108)—(4.112) ensures

uniformly ultimately bounded (UUB) position and orientation tracking in

the sense that

|x̃ (t)| , |ỹ (t)| ,
¯̄̄
θ̃ (t)

¯̄̄
6 β0 exp (−γ0t) + β1ε1 (4.113)



© 2010 by Taylor and Francis Group, LLC

4.3 Velocity Field and Navigation Function Control for WMRs 177

where ε1 was given in (4.112), β0 ,
p
w2(0) + z21(0) + z22(0), and β1 and

γ0 are known positive constants.

Proof: See [18].

Remark 4.6 Although qd (t) is a collision-free path, the stability result in

Theorem 4.6 only ensures practical tracking of the path in the sense that

the actual WMR trajectory is only guaranteed to remain in a neighborhood

of the desired path. From (4.57) and (4.113), the following bound can be

developed

kqk ≤ kqdk+
√
3β0 exp (−γ0t) +

√
3β1ε1 (4.114)

where qd (t) ∈ D based on the proof for Lemma 4.5. To ensure that q (t) ∈ D,
the free configuration space needs to be reduced to incorporate the effects of

the second and third terms on the right-hand side of (4.114). To this end,

the size of the obstacles needs to be increased by
√
3 (β0 + β1ε1), where

β1ε1 can be made arbitrarily small by adjusting the control gains. To min-

imize the effects of β0, the initial errors w(0) and z(0) need to be chosen

sufficiently small to yield a feasible path to the goal.

On-Line 2D Navigation

In the previous approach, the size of the obstacles is required to be increased

due to the fact that the navigation function is formulated in terms of the

desired trajectory. In the following approach, the navigation function is

formulated based on current position feedback, and hence, q (t) can be

proven to be a member of D without placing restrictions on the initial

conditions. However, it is important to note that the orientation control

for this approach requires additional development in order to align the

WMR with a desired orientation. The reader is referred to the simulation

results (Section 4.3.3) as well as the notes at the end of the chapter for

more details on this aspect.

Trajectory Planning

Let ϕ (xc, yc) ∈ R denote a 2D position-based navigation function defined
in D that is generated on-line, where the gradient vector of ϕ (xc, yc) is

defined as follows

5ϕ (xc, yc) ,
∙

∂ϕ

∂xc

∂ϕ

∂yc

¸T
. (4.115)

Let θd (xc, yc) ∈ R denote a desired orientation that is defined as a function
of the negated gradient of the 2D navigation function as follows

θd , arctan 2
µ
− ∂ϕ

∂yc
, − ∂ϕ

∂xc

¶
(4.116)
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where arctan 2 (·) : R2 → R denotes the four quadrant inverse tangent

function [72], where θd (t) is confined to the following region

−π < θd 6 π.

By defining θd|(x∗c ,y∗c ) = arctan 2 (0, 0) = θ|(x∗c ,y∗c ), θd(t) remains continuous
along any approaching direction to the goal position [16].

Control Development

Based on the open-loop system introduced in (4.47)—(4.49) and the subse-

quent stability analysis, the linear velocity control input vc (t) is designed

as follows

vc , kv k5ϕk cos θ̃ (4.117)

where kv ∈ R denotes a positive, constant control gain, and θ̃(t) was in-

troduced in (4.57). After substituting (4.117) into (4.47), the following

closed-loop system can be obtained∙
ẋc
ẏc

¸
= kv

∙
cos θ

sin θ

¸
k5ϕk cos θ̃. (4.118)

The open-loop orientation tracking error system can be obtained by taking

the time derivative of θ̃(t) in (4.57) as follows
.

θ̃ = ωc − θ̇d (4.119)

where (4.47) was utilized. Based on (4.119), the angular velocity control

input ωc (t) is designed as follows

ωc , −kω θ̃ + θ̇d (4.120)

where kω ∈ R denotes a positive, constant control gain, and θ̇d(t) denotes

the time derivative of the desired orientation. See Section B.2.3 of Appendix

B for an explicit expression for θ̇d (t) based on the previous continuous

definition for θd (t). After substituting (4.120) into (4.119), the closed-loop

orientation tracking error system is given by the following differential equa-

tion .

θ̃ = −kω θ̃. (4.121)

the solution for which can be obtained as

θ̃(t) = θ̃(0) exp(−kωt). (4.122)

After substituting (4.122) into (4.118), the following closed-loop error sys-

tem can be determined∙
ẋc
ẏc

¸
= kv

∙
cos θ

sin θ

¸
k5ϕk cos

³
θ̃(0) exp(−kωt)

´
. (4.123)
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Stability Analysis

Theorem 4.7 The control input designed in (4.117) and (4.120) along

with the navigation function ϕ (xc (t) , yc (t)) ensure asymptotic navigation

in the sense that

|x (t)− x∗| , |y (t)− y∗| ,
¯̄̄
θ̃ (t)

¯̄̄
→ 0. (4.124)

Proof: Let V2 (xc, yc) : D → R denote the following non-negative function

V2 (xc, yc) , ϕ (xc, yc) . (4.125)

After taking the time derivative of (4.125) and utilizing (4.115) and (4.118),

the following expression can be obtained

V̇2 = kv (5ϕ)
T

∙
cos θ

sin θ

¸
k5ϕk cos θ̃. (4.126)

Based on the development provided in Section B.2.3 of Appendix B (see

(B.42) and (B.45)), the gradient of the navigation function can be expressed

as follows

5ϕ = − k5ϕk £ cos θd sin θd
¤T

. (4.127)

After substituting (4.127) into (4.126), the following expression can be ob-

tained

V̇2 = −kv k5ϕk2 (cos θ cos θd + sin θ sin θd) cos θ̃. (4.128)

After utilizing a trigonometric identity, (4.128) can be rewritten as follows

V̇2 = −g(t) , −kv k5ϕk2 cos2 θ̃ (4.129)

Hereafter, the ensuing analysis is valid on the free configuration space

defined by the set D. Based on (4.115) and Property 4.2.4, it is clear
that k5ϕ (xc, yc)k ∈ L∞ ; hence, (4.117) can be used to conclude that

vc (t) ∈ L∞. Furthermore, it can be seen from Section B.2.3 of Appendix

B (see (B.50)) that θ̇d (t) ∈ L∞. Thus, (4.120) can be used to show that
ωc (t) ∈ L∞. Based on the fact that vc (t) ∈ L∞, (4.47)—(4.49) can be used
to prove that ẋc (t), ẏc (t) ∈ L∞. After taking the time derivative of (4.115),
the following expression can be obtained

d

dt
(5ϕ (xc, yc)) =

⎡⎢⎢⎣
∂2ϕ

∂x2c

∂2ϕ

∂yc∂xc
∂2ϕ

∂xc∂yc

∂2ϕ

∂y2c

⎤⎥⎥⎦∙ ẋc
ẏc

¸
. (4.130)
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Since ẋc (t), ẏc (t) ∈ L∞, and since each element of the Hessian matrix in
(4.130) is bounded by virtue of Property 4.2.4, it is clear that ġ(t) ∈ L∞.
Based on (4.125), (4.129), and the fact that ġ(t) ∈ L∞, Lemma A.6 of [17]
can be invoked to prove that

k5ϕ (xc, yc)k2 cos2 θ̃ → 0. (4.131)

Based on the fact that cos2 θ̃(t) → 1, (4.131) can be used to prove that

k5ϕ (xc, yc)k → 0. Finally, Property 4.2.7 and (4.122) can be used to

obtain the result in (4.124).

Remark 4.7 The control development in this section is based on a 2D

position navigation function. To achieve the objective, a desired orienta-

tion θd (t) was defined as a function of the negated gradient of the 2D

navigation function. The previous development can be used to prove the

result in (4.124). If a navigation function ϕ (xc, yc) can be found such that

θd|(x∗c ,y∗c ) = θ∗, then asymptotic navigation can be achieved by the con-
troller in (4.117) and (4.120); otherwise, a standard regulation controller

(e.g., see [19] for several candidates) could be implemented to regulate the

orientation of the WMR from θd|(x∗c ,y∗c ) → θ∗. Alternatively, a dipolar po-
tential field approach [69, 70], or a virtual obstacle [29] could be utilized to

align the gradient field of the navigation function to the goal orientation of

the WMR.

Simulation Results

To illustrate the performance of the controller given in (4.117) and (4.120),

a numerical simulation was performed to navigate the mobile robot from

q (xc (0) , yc (0) , θ (0)) to q
∗ (x∗c , y∗c , θ

∗). Since the properties of a navigation
function are invariant under a diffeomorphism, a diffeomorphism is devel-

oped to map the WMR free configuration space to a model space [39]. As

similarly done in Section 4.2.4, a positive function ϕ (xc, yc) was chosen as

follows

ϕ (xc, yc) =
(xc − x∗c)

2 + (yc − y∗c )
2³³

(xc − x∗c)
2
+ (yc − y∗c )

2
´κ
+ ρ0ρ1

´1/κ . (4.132)

where κ is positive integer, and the boundary function ρ0 (xc, yc) ∈ R and
the obstacle function ρ1 (xc, yc) ∈ R are defined as follows

ρ0 , r20 − (xc − xr0)
2 − (yc − yr0)

2 (4.133)

ρ1 , (xc − xr1)
2 + (yc − yr1)

2 − r21.



© 2010 by Taylor and Francis Group, LLC

4.4 Vision Navigation 181

In (4.133), (xr0 , yr0) and (xr1 , yr1) are the centers of the boundary and

the obstacle respectively, r0, r1 ∈ R are the radii of the boundary and

the obstacle respectively. From (4.132) and (4.133), it is clear that the

model space is a unit circle that excludes a circle described by the obstacle

function ρ1 (xc, yc). For the simulation, the model space configuration is

selected as follows

xr0 = 0 yr0 = 0 r0 = 1

xr1 = 0 yr1 = 0.1 r1 = 0.15

where the initial and goal configuration were selected as

q (0) =
£
0.1 0.6 51.6

¤T
q∗ =

£ −0.2 −0.4 −40.1 ¤T .

The control inputs defined in (4.117) and (4.120) were utilized to drive

the WMR to the goal point along the negated gradient angle. The control

gains kv and kω were chosen to be 0.3 and 17, respectively, in order to

yield the best performance. Once the WMR reached the goal position, the

regulation controller in [19] was implemented to regulate the WMR from

θd|(x∗c ,y∗c ) → θ∗. The actual Cartesian trajectory of the WMR is shown in
Figure 4.11. The outer circle in Figure 4.11 depicts the outer boundary

of the obstacle free space and the inner circle represents the boundary

around an obstacle. The resulting position and orientation errors for the

WMR are depicted in Figure 4.12, where the rotational error shown in

Figure 4.12 is the error between the actual orientation and goal orientation.

The control input velocities vc(t) and ωc(t) defined in (4.117) and (4.120),

respectively, are depicted in Figure 4.13. Note that the angular velocity

input was artificially saturated between ±90 [deg ·s−1].

4.4 Vision Navigation

In the introduction to the chapter, we noted the need for visual servo-

ing controllers for robots negotiating unstructured environments. As previ-

ously stated, three approaches, namely, position-based visual servo (PBVS)

control, image-based visual servo (IBVS) control, and hybrid control, are

commonly employed to perform vision based servoing. A common problem

with these approaches is the inability to achieve the control objective while

ensuring the target features remain visible. In this section, we present a

solution to this problem of a limited field-of-view (FOV) – this solution

is motivated by the image space navigation function developed in [13]. To
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FIGURE 4.11. Actual Cartesian Space Trajectory of the WMR
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FIGURE 4.13. Linear and Angular Velocity Inputs

begin with, the mapping between the desired camera feature vector and the

desired camera pose (i.e., the position and orientation) is investigated to

develop a measurable image Jacobian-like matrix. An off-line image-space

path planner is then proposed to generate a desired image trajectory based

on this measurable image Jacobian-like matrix and an image space navi-

gation function (NF) while satisfying rigid body constraints. An adaptive,

homography-based visual servo tracking controller is then developed to

navigate the position and orientation of a camera held by the end-effector

of a robot manipulator to a goal position and orientation along the desired

image-space trajectory, while ensuring the target points remain visible (i.e.,

the target points avoid self-occlusion and remain in the FOV) under certain

technical restrictions. Due to the inherent nonlinear nature of the problem,

and the lack of depth information from a monocular system, a Lyapunov-

based analysis is used to analyze the path planner and the adaptive con-

troller. Simulation results are provided to illustrate the performance of the

proposed approach.



© 2010 by Taylor and Francis Group, LLC

184 4. Path Planning and Control

4.4.1 Geometric Modeling

Euclidean Homography

Four feature points, denoted by Oi ∀i = 1, 2, 3, 4, are assumed to be

located on a reference plane π (see Figure 4.14), and are considered to be

coplanar2 with no three being colinear. The reference plane can be related

to the coordinate frames F , Fd, and F∗ depicted in Fig. 4.14 that denote
the actual, desired, and goal pose of the camera, respectively. Specifically,

π

n *

F

O i

d*

(xf , R)

F*

mi

m*i

Fd

mdi

(xfd , Rd)

d

π

n *n *

F

O iO i

d*d*

(xf , R)

F*

mimi

m*i

Fd

mdi

(xfd , Rd)

d

FIGURE 4.14. Coordinate Frame Relationships

the following relationships can be developed from the geometry between

the coordinate frames and the feature points located on π

m̄i = xf +Rm̄∗i
m̄di = xfd +Rdm̄

∗
i

(4.134)

where m̄i(t), m̄di(t), and m̄∗i denote the Euclidean coordinates of Oi ex-

pressed in F , Fd, and F∗, respectively. In (4.134), R (t), Rd (t) ∈ SO(3)

denote the rotation between F and F∗ and between Fd and F∗, respec-
tively, and xf (t), xfd (t) ∈ R3 denote translation vectors from F to F∗

2It should be noted that if four coplanar target points are not available, then the

subsequent development can exploit the classic eight-point algorithm [56] with no four

of the eight target points being coplanar.
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and Fd to F∗ expressed in the coordinates of F and Fd, respectively. Since
the Euclidean position of F , Fd, and F∗ cannot be directly measured, the
expressions in (4.134) need to be related to the measurable image-space co-

ordinates. To this end, mi (t), mdi (t), m
∗
i denote the normalized Euclidean

coordinates of Oi expressed, respectively, in coordinate frames F , Fd, and
F∗ as follows

mi ,
m̄i

zi
mdi ,

m̄di

zdi
m∗i ,

m̄∗i
z∗i

(4.135)

under the standard assumption that zi (t) , zdi(t), z
∗
i > ε where ε denotes

an arbitrarily small positive constant. Based on (4.135), the expression in

(4.134) can be rewritten as follows

mi =
z∗i
zi|{z}

³
R+

xf
d∗

n∗T
´

| {z }m∗i
αi H

(4.136)

mdi =
z∗i
zdi|{z}

³
Rd +

xfd
d∗

n∗T
´

| {z }m∗i .
αdi Hd

(4.137)

In (4.136) and (4.137), αi (t), αdi (t) ∈ R denote invertible depth ratios,

H (t) , Hd(t) ∈ R3×3 denote Euclidean homographies [23], and d∗ ∈ R
denotes the constant, unknown distance from the origin of F∗ to π. The

following projective relationship can also be developed from Fig. 4.14

d∗ = n∗T m̄∗i . (4.138)

Also from Fig. 4.14, the unknown, time varying distance from the origin of

Fd to π, denoted by d (t) ∈ R, can be expressed as follows

d = n∗TRT
d m̄di. (4.139)

Projective Homography

Each feature point on π has projected pixel coordinates denoted by ui (t),

vi (t) ∈ R in F , udi (t), vdi (t) ∈ R in Fd, and u∗i , v
∗
i ∈ R in F∗, that are

defined as follows

pi ,
£
ui vi 1

¤T
pdi ,

£
udi vdi 1

¤T
p∗i ,

£
u∗i v∗i 1

¤T
.

(4.140)

In (4.140), pi (t), pdi (t), p
∗
i ∈ R3 represent the image-space coordinates

of the time-varying feature points, the desired time-varying feature point
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trajectory, and the constant reference feature points, respectively. To cal-

culate the Euclidean homography given in (4.136) and (4.137) from pixel

information, the projected pixel coordinates of the target points are related

to mi (t), mdi (t), and m∗i by the following pin-hole lens models [23]

pi = Ami pdi = Amdi p∗i = Am∗i (4.141)

where A ∈ R3×3 is a known, constant, and invertible intrinsic camera cali-
bration matrix with the following form

A =

⎡⎣ a1 a2 a4
0 a3 a5
0 0 1

⎤⎦ (4.142)

where ai ∈ R ∀i = 1, 2, ..., 5, denote known, constant calibration parameters
(see [23]). After substituting (4.141) into (4.136) and (4.137), the following

relationships can be developed

pi = αi
¡
AHA−1

¢| {z } p∗i pdi = αdi
¡
AHdA

−1¢| {z } p∗i
G Gd

(4.143)

where G (t), Gd (t) ∈ R3×3 denote projective homographies. Given the im-
ages of the 4 feature points on π expressed in F , Fd, and F∗, a linear
system of equations can be developed from (4.143). From the linear system

of equations, a decomposition algorithm (e.g., the Faugeras decomposition

algorithm in [23]) can be used to compute αi (t), αdi (t), n
∗, R (t), and

Rd (t) (see [9] for details)
3. Hence, αi (t), αdi (t), n

∗, R (t), and Rd (t) are

known signals that can be used in the subsequent development.

Kinematic Model of Vision System

The camera pose, denoted by Υ (t) ∈ R6, can be expressed in terms of a
hybrid of pixel and reconstructed Euclidean information as follows

Υ (t) ,
£
pTe1 ΘT

¤T
(4.144)

where the extended pixel coordinate pe1 (t) ∈ R3 is defined as follows

pe1 =
£
u1 v1 − ln (α1)

¤T
, (4.145)

and Θ(t) ∈ R3 denotes the following axis-angle representation of R(t) (see
[9] for details)

Θ = μ(t)θ(t). (4.146)

3The initial best-guess of n∗ can be utilized to resolve the decomposition ambiguity.
See [10] for details.
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In (4.146), μ (t) ∈ R3 represents the unit axis of rotation, and θ (t) denotes
the rotation angle about that axis. Based on the development in Section

B.2.4 of Appendix B, the open-loop dynamics for Υ (t) can be expressed as

follows

Υ̇ =

∙
ṗe1
Θ̇

¸
=

⎡⎣ − 1z1Ae1 Ae1 [m1]×
0 −Lω

⎤⎦∙ vc
ωc

¸
(4.147)

where vc(t) ∈ R3 and ωc(t) ∈ R3 denote the linear and angular velocity
of the camera expressed in terms of F , Aei (ui, vi) ∈ R3×3 is a known,
invertible matrix defined as follows

Aei = A−
⎡⎣ 0 0 ui
0 0 vi
0 0 0

⎤⎦ i = 1, 2, 3, 4, (4.148)

and the invertible Jacobian-like matrix Lω(θ, μ) ∈ R3×3 is defined as

Lω = I3 − θ

2
[μ]× +

⎛⎜⎜⎝1− sinc (θ)

sinc2
µ
θ

2

¶
⎞⎟⎟⎠ [μ]2× (4.149)

where

sinc (θ (t)) , sin θ (t)

θ (t)
.

Remark 4.8 As stated in [68], the axis-angle representation of (4.146) is

not unique, in the sense that a rotation of −θ (t) about −μ(t) is equal to a
rotation of θ (t) about μ(t). A particular solution4 for θ (t) and μ(t) can be

determined as follows [68]

θp = cos
−1
µ
1

2
(tr (R)− 1)

¶ £
μp
¤
× =

R−RT

2 sin(θp)
(4.150)

where the notation tr (·) denotes the trace of a matrix, and £μp¤× denotes
the 3×3 skew-symmetric expansion of μp(t). From (4.150), it is clear that

0 ≤ θp (t) ≤ π. (4.151)

4.4.2 Image-Based Path Planning

The path planning objective involves regulating the pose of a camera held

by the end-effector of a robot manipulator to a desired camera pose along

4See [8] for further details.
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an image-space trajectory while ensuring the target points remain visi-

ble. To achieve this objective, a desired camera pose trajectory is con-

structed in this section so that the desired image feature vector, denoted

by p̄d (t) ,
£
ud1 (t) vd1 (t) ... ud4 (t) vd4 (t)

¤T ∈ R8, remains in a
set, denoted by D ⊂R8, where all four feature points of the target remain
visible for a valid camera pose. The constant, goal image feature vector

p̄∗ ,
£
u∗1 v∗1 ... u∗4 v∗4

¤T ∈ R8 is assumed be in the interior of D. To
generate the desired camera pose trajectory such that p̄d(t) ∈ D, we will
use the navigation function [39] as previously defined in Properties 4.2.4 —

4.2.7.

Pose Space to Image Space Relationship

To develop a desired camera pose trajectory that ensures p̄d (t) ∈ D, the
desired image feature vector is related to the desired camera pose, denoted

by Υd (t) ∈ R6, through the following relationship

p̄d = Π (Υd) (4.152)

where Π (·) : R6 → D denotes a known function that maps the camera pose
to the image feature vector5. In (4.152), the desired camera pose is defined

as follows

Υd (t) ,
£
pTed1 ΘTd

¤T
(4.153)

where ped1 (t) ∈ R3 denotes the desired extended pixel coordinates defined
as follows

ped1 =
£
ud1 vd1 − ln (αd1)

¤T
(4.154)

where αd1(t) is introduced in (4.137), andΘd(t) ∈ R3 denotes the axis-angle
representation of Rd(t) as follows

Θd = μd(t)θd(t) (4.155)

where μd(t) ∈ R3 and θd(t) ∈ R are defined with respect to Rd(t) in the

same manner as μ(t) and θ(t) in (4.146) with respect to R(t).

5The reason we choose four feature points to construct the image feature vector is that

the same image of three points can be seen from four different camera poses [33]. A unique

camera pose can theoretically be obtained by using at least four points [6]. Therefore,

the map Π (·) is a unique mapping with the image feature vector corresponding to a
valid camera pose.
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Desired Image Trajectory Planning

After taking the time derivative of (4.152), the following expression can be

obtained
.
p̄d = LΥdΥ̇d (4.156)

where LΥd (p̄d) ,
∂p̄d
∂Υd

∈ R8×6 denotes an image Jacobian-like matrix.
Based on the development in Section (B.2.5) of Appendix B, a measurable

expression for LΥd (t) can be developed as follows

LΥd = ĪT (4.157)

where Ī ∈ R8×12 denotes a constant, row-delete matrix defined as follows

Ī =

⎡⎢⎢⎣
I2 02 02 02 02 02 02 02

02 02 I2 02 02 02 02 02

02 02 02 02 I2 02 02 02

02 02 02 02 02 02 I2 02

⎤⎥⎥⎦
where In ∈ Rn×n denotes the n × n identity matrix, 0n ∈ Rn×n denotes
an n × n matrix of zeros, 0n ∈ Rn denotes an n× 1 column of zeros, and
T (t) ∈ R12×6 is a measurable auxiliary matrix defined as follows

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3 03
β1
β2

Aed2A
−1
ed1 Aed2

∙
β1
β2

md1 −md2

¸
×
L−1ωd

β1
β3

Aed3A
−1
ed1 Aed3

∙
β1
β3

md1 −md3

¸
×
L−1ωd

β1
β4

Aed4A
−1
ed1 Aed4

∙
β1
β4

md1 −md4

¸
×
L−1ωd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.158)

In (4.158),Aedi (udi, vdi) ∈ R3×3 and the Jacobian-like matrix Lωd(θd, μd) ∈
R3×3 are defined with respect to udi (t) , vdi (t) , μd (t), and θd (t) in the

same manner as Aei (·) and Lω (·) in (4.148) and (4.149) with respect to
ui (t) , vi (t) , μ (t), and θ (t) . The auxiliary variable βi (t) ∈ R is defined as
follows

βi ,
zdi
d

i = 1, 2, 3, 4. (4.159)

Based on (4.135), (4.139), and (4.141), βi (t) can be rewritten in terms of

computed and measurable terms as follows

βi =
1

n∗TRT
dA
−1pdi

. (4.160)
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Motivated by (4.156) and the definition of the navigation function in Prop-

erties 4.2.4 — 4.2.7, the desired camera pose trajectory is designed as follows

Υ̇d = −k1LTΥd 5 ϕ (4.161)

where k1 ∈ R denotes a positive constant, and 5ϕ(p̄d) ,
³
∂ϕ(p̄d)
∂p̄d

´T
∈ R8

denotes the gradient vector of ϕ(p̄d). The development of a particular image

space NF and its gradient are provided in Section (B.2.6) of Appendix B.

After substituting (4.161) into (4.156), the desired image trajectory can be

expressed as follows
.
p̄d = −k1LΥdLTΥd 5 ϕ (4.162)

where it is assumed that 5ϕ(p̄d) is not a member of the null space of

LTΥd (p̄d). Based on (4.156) and (4.161), it is clear that the desired image

trajectory generated by (4.162) will satisfy rigid body constraints.

Remark 4.9 Based on comments in [6] and the current development, it

seems that a remaining open problem is to develop a rigorous, theoretical

and general approach to ensure that 5ϕ(p̄d) is not a member of the null

space of LTΥd (p̄d) (i.e., 5ϕ(p̄d) /∈ NS(LTΥd (p̄d)) where NS(·) denotes the
null space operator). However, since the approach described here is devel-

oped in terms of the desired image-space trajectory (and hence, is an off-line

approach), a particular desired image trajectory can be chosen (e.g., by trial

and error) a priori to ensure that 5ϕ(p̄d) /∈ NS(LTΥd (p̄d)). Similar com-

ments are provided in [6] and [59] that indicate that this assumption can

be readily satisfied in practice for particular cases. Likewise, a particular

desired image trajectory is also assumed to be a priori selected to ensure

that Υd(t), Υ̇d(t) ∈ L∞ if p̄d(t) ∈ D. Based on the structure of (4.153) and
(4.154), the assumption that Υd(t), Υ̇d(t) ∈ L∞ if p̄d(t) ∈ D is considered

mild in the sense that the only possible alternative case is if the camera

could somehow be positioned at an infinite distance from the target while

all four feature points remain visible.

Path Planner Analysis

Lemma 4.8 Provided the desired feature points can be a priori selected to

ensure that p̄d (0) ∈ D and that 5ϕ(p̄d) /∈ NS(LTΥd (p̄d)), then the desired

image trajectory generated by (4.162) ensures that p̄d(t) ∈ D and (4.162)

has the asymptotically stable equilibrium point p̄∗.

Proof: Let V1 (p̄d) : D → R denote a non-negative function defined as
follows

V1 (p̄d) , ϕ (p̄d) . (4.163)
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After taking the time derivative of (4.163), the following expression can be

obtained

V̇1 (p̄d (t)) = (5ϕ)
T .
p̄d. (4.164)

After substituting (4.162) into (4.164) to obtain the following expression

V̇1 (p̄d (t)) = −k1
°°LTΥd 5 ϕ

°°2 , (4.165)

it is clear that V1 (p̄d (t)) is a non-increasing function in the sense that

V1 (p̄d (t)) ≤ V1 (p̄d(0)) . (4.166)

From (4.163), (4.166), and the development in Section (B.2.6) of Appendix

B, it is clear that for any initial condition p̄d (0) ∈ D, that p̄d (t) ∈ D
∀t > 0; therefore, D is a positively invariant set [35]. Let E1 ⊂ D de-

note the following set E1 ,{p̄d (t)| V̇1 (p̄d) = 0}. Based on (4.165), it is
clear that

°°LTΥd(p̄d)5 ϕ (p̄d)
°° = 0 in E1; hence, from (4.161) and (4.162)

it can be determined that
°°°Υ̇d (t)°°° = °°° .p̄d (t)°°° = 0 in E1, and that E1

is the largest invariant set. By invoking LaSalle’s Theorem [35], it can be

determined that every solution p̄d (t) ∈ D approaches E1 as t → ∞, and
hence,

°°LTΥd(p̄d)5 ϕ (p̄d)
°° → 0. Since p̄d (t) are chosen a priori via the

off-line path planning routine in (4.162), the four feature points can be a

priori selected to ensure that 5ϕ(p̄d) /∈ NS(LTΥd (p̄d)). Provided 5ϕ(p̄d) /∈
NS(LTΥd (p̄d)), then

°°LTΥd(p̄d)5 ϕ(p̄d)
°° = 0 implies that k5ϕ(p̄d)k =

0. Based on development given in Section (B.2.6) of Appendix B, since

5ϕ(p̄d (t))→ 0 then p̄d(t)→ p̄∗.

4.4.3 Tracking Control Development

Based on Lemma 4.8, the desired camera pose trajectory can be generated

from (4.161) to ensure that the camera moves along a path generated in

the image space such that the desired object features remain visible (i.e.,

p̄d(t) ∈ D). The objective in this section is to develop a controller so that
the actual camera pose Υ (t) tracks the desired camera pose Υd (t) gener-

ated by (4.161), while also ensuring that the object features remain visible

(i.e., p̄(t) ,
£
u1 (t) v1 (t) ... u4 (t) v4 (t)

¤T ∈ D). To quantify this
objective, a rotational tracking error, denoted by eω(t) ∈ R3, is defined as

eω , Θ−Θd, (4.167)

and a translational tracking error, denoted by ev (t) ∈ R3, is defined as
follows

ev = pe1 − ped1. (4.168)
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Control Development

After taking the time derivative of (4.167) and (4.168), the open-loop dy-

namics for eω (t) and ev (t) can be obtained as follows

ėω = −Lωωc − Θ̇d (4.169)

ėv = − 1
z1
Ae1vc +Ae1 [m1]× ωc − ṗed1 (4.170)

where (4.147) was utilized. Based on the open-loop error systems in (4.169)

and (4.170), vc(t) and ωc(t) are designed as follows

ωc , L−1ω
³
Kωeω − Θ̇d

´
(4.171)

vc ,
1

α1
A−1e1 (Kvev − ẑ∗1 ṗed1) +

1

α1
[m1]× ωcẑ

∗
1 (4.172)

whereKω,Kv ∈ R3×3 denote diagonal matrices of positive constant control
gains, and ẑ∗1(t) ∈ R denotes a parameter estimate for z∗1 that is designed
as follows

.

ẑ
∗
1 , k2e

T
v

¡
Ae1 [m1]× ωc − ṗed1

¢
(4.173)

where k2 ∈ R denotes a positive constant adaptation gain. After substitut-
ing (4.171) and (4.172) into (4.169) and (4.170), the following closed-loop

error systems can be developed

ėω = −Kωeω (4.174)

z∗1 ėv = −Kvev +
¡
Ae1 [m1]× ωc − ṗed1

¢
z̃∗1 (4.175)

where the parameter estimation error signal z̃∗1(t) ∈ R is defined as follows

z̃∗1 = z∗1 − ẑ∗1 . (4.176)

Controller Analysis

Theorem 4.9 The control inputs introduced in (4.171) and (4.172), along

with the adaptive update law defined in (4.173), ensure that the actual cam-

era pose tracks the desired camera pose trajectory in the sense that

keω(t)k→ 0 kev(t)k→ 0 as t→∞. (4.177)

Proof: Let V2(t) ∈ R denote a non-negative function defined as follows

V2 ,
1

2
eTωeω +

z∗1
2
eTv ev +

1

2k2
z̃∗21 . (4.178)
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After taking the time derivative of (4.178) and then substituting for the

closed-loop error systems developed in (4.174) and (4.175), the following

expression can be obtained

V̇2 = −eTωKωeω − eTvKvev

+ eTv
¡
Ae1 [m1]× ωc − ṗed1

¢
z̃∗1 − 1

k2
z̃∗1

.

ẑ∗1
(4.179)

where the time derivative of (4.176) was utilized. After substituting the

adaptive update law designed in (4.173) into (4.179), the following expres-

sion can be obtained

V̇2 = −eTωKωeω − eTvKvev. (4.180)

Based on (4.176), (4.178), and (4.180), it can be determined that eω(t),

ev(t), z̃
∗
1(t), ẑ

∗
1(t) ∈ L∞ and that eω(t), ev(t) ∈ L2. Based on the as-

sumption that Θ̇d(t) is bounded (see Remark 4.9), the expressions given

in (4.167), (4.171), and Lω (t) in (4.149) can be used to conclude that

ωc(t) ∈ L∞. Since ev(t) ∈ L∞, (4.168), (4.145), (4.141), and Ae1(t) in

(4.148) can be used to prove that u1(t), v1(t), α1(t), m1(t), Ae1(t) ∈ L∞.
Based on the assumption that ṗed1(t) is bounded (see Remark 4.9), the

expressions in (4.172), (4.173), and (4.175) can be used to conclude that

vc(t),
.

ẑ
∗
1(t), ėv(t) ∈ L∞. Since eω(t) ∈ L∞, it is clear from (4.174) that

ėω(t) ∈ L∞. Since eω(t), ev(t) ∈ L2 and eω(t), ėω(t), ev(t), ėv(t) ∈ L∞,
Barbalat’s Lemma [67] can be used to prove the result given in (4.177).

Remark 4.10 Based on the result provided in (4.177), it can be proven

from the Euclidean reconstruction given in (4.136) and (4.137) that R(t)→
Rd(t), m1(t) → md1(t), and z1(t) → zd1(t) (and hence, xf (t) → xfd(t)).

Based on these results, (4.134) can be used to also prove that m̄i(t) →
m̄di(t). Since Π (·) is a unique mapping, we can conclude that the desired
camera pose converges to the goal camera pose based on the previous result

p̄d(t)→ p̄∗ from Lemma 4.8. Based on the above analysis, m̄i(t)→ m̄∗.

Remark 4.11 Based on (4.21) and (4.180), the following inequality can

be obtained

eTωeω + eTv ev 6 2max

½
1,
1

z∗1

¾
V2 (t) (4.181)

6 2max

½
1,
1

z∗1

¾
V2 (0)

where

V2 (0) =
1

2
eTω (0)eω(0) +

z∗1
2
eTv (0)ev(0) +

1

2k2
z̃∗21 (0).
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From (4.144), (4.153), (4.167), (4.168), and the inequality in (4.181), the

following inequality can be developed

kΥ−Υdk 6
s
2max

½
1,
1

z∗1

¾
V2 (0). (4.182)

Based on (4.152), the following expression can be developed

p̄ = Π (Υ)−Π (Υd) + p̄d. (4.183)

After applying the mean-value theorem to (4.183), the following inequality

can be obtained

kp̄k 6 kLΥdk kΥ−Υdk+ kp̄dk . (4.184)

Since all signals are bounded, it can be shown that LTΥd(p̄d) ∈ L∞; hence,
the following inequality can be developed from (4.182) and (4.184)

kp̄k 6 ζb
p
V2 (0) + kp̄dk (4.185)

for some positive constant ζb ∈ R, where p̄d (t) ∈ D based on Lemma 4.8.

To ensure that p̄ (t) ∈ D, the image space needs to be sized to account for
the effects of ζb

p
V2 (0). Based on (4.178), V2 (0) can be made arbitrarily

small by increasing k2 and initializing p̄d (0) close or equal to p̄ (0).

4.4.4 Simulation Results

From a practical point of view, we choose a state-related time varying

control gain matrix k3
¡
LTΥLΥ

¢−1
instead of a constant k1 in (4.161) for

the image path planner as follows

Υ̇d = −k3
¡
LTΥLΥ

¢−1
LTΥd 5 ϕ (4.186)

where k3 ∈ R is a constant control gain. Through many simulation trials,
we conclude that the path planner in (4.186) works better than the path

planner in (4.161). Using the path planner in (4.186) instead of the path

planner in (4.161) will not affect the proof for Theorem 4.8 as long as LTΥLΥ
is positive definite along the desired image trajectory p̄d (t) (It is clear that

LTΥLΥ is positive definite if LΥd (p̄d) is full rank). Similar to the statement

in Remark 4.9, this assumption is readily satisfied for this off-line path

planner approach.

To solve the self-occlusion problem (the terminology, self-occlusion, is

utilized here to denote the case when the center of the camera is in the
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plane determined by the feature points) from a practical point of view, we

define a distance ratio γ (t) ∈ R as follows

γ (t) =
d

d∗
. (4.187)

From [55], γ (t) is measurable. The idea here is to begin by planning a

desired image trajectory without self-occlusion. Based on (4.185), we can

assume that the actual trajectory is close enough to the desired trajectory

such that no self-occlusion occurs for the actual trajectory.

To illustrate the performance of the path planner given in (4.186) and the

controller given in (4.171)—(4.173), numerical simulations will performed for

four standard visual servo tasks, which are believed to represent the most

interesting tasks encountered by a visual servo system [28]:

• Task 1: Optical axis rotation, a pure rotation about the optic axis
• Task 2: Optical axis translation, a pure translation along the optic
axis

• Task 3: Camera y-axis rotation, a pure rotation of the camera about
the y-axis of the camera coordinate frame.

• Task 4: General camera motion, a transformation that includes a
translation and rotation about an arbitrary axis.

For the simulation, the intrinsic camera calibration matrix is given as

follows

A =

⎡⎢⎢⎣
fku −fku cotφ u0

0
fkv
sinφ

v0

0 0 1

⎤⎥⎥⎦ (4.188)

where u0 = 257 [pixels], v0 = 253 [pixels] represent the pixel coordinates of

the principal point, ku = 101.4 [pixels·mm−1] and kv = 101.4 [pixels·mm−1]
represent camera scaling factors, φ = 90 [degrees] is the angle between the

camera axes, and f = 12.5 [mm] denotes the camera focal length.

Simulation Results: Optical axis rotation

The initial image-space coordinates and the initial desired image-space co-

ordinates of the 4 target points were selected as follows (in pixels)

pT1 (0) = pTd1 (0) =
£
434 445 1

¤
pT2 (0) = pTd2 (0) =

£
56 443 1

¤
pT3 (0) = pTd3 (0) =

£
69 49 1

¤
pT4 (0) = pTd4 (0) =

£
449 71 1

¤
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while the image-space coordinates of the 4 constant reference target points

were selected as follows (in pixels)

p∗1 =
£
416 46 1

¤T
p∗2 =

£
479 418 1

¤T
p∗3 =

£
88 473 1

¤T
p∗4 =

£
45 96 1

¤T
.

The control parameters were selected as follows

Kv = diag {1, 1, 1} Kω = diag {0.3, 0.3, 0.3}
k2 = 0.04 k3 = 400000 κ = 8

K = diag {10, 10, 10, 18, 13, 15, 10, 10} .
The desired and actual image trajectories of the feature points are de-

picted in Figures 4.15 and 4.16, respectively. The translational and rota-

tional tracking errors of the target are depicted in Figures 4.17 and 4.18,

r esp ective ly, and the parameter estimate signal is depicted in Figure 4.19.

The control input velocities ωc(t) and vc(t) defined in (4.171) and (4.172)

are depicted in Figures 4.20 and 4.21. From Figures 4.15 and 4.16, it is

clear that the desired feature points and actual feature points remain in

the camera field of view and converge to the goal feature points. Figures

4.17 and 4.18 show that the tracking errors go to zero as t→∞.
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FIGURE 4.15. Task 1: Desired Image Trajectory
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FIGURE 4.16. Task 1: Actual Image Trajectory
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Simulation Results: Optical axis translation

The initial image-space coordinates and the initial desired image-space co-

ordinates of the 4 target points were selected as follows (in pixels)

p1 (0) = pd1 (0) =
£
363 115 1

¤T
p2 (0) = pd2 (0) =

£
402 361 1

¤T
p3 (0) = pd3 (0) =

£
147 397 1

¤T
p4 (0) = pd4 (0) =

£
116 148 1

¤T
while the image-space coordinates of the 4 constant reference target points

were selected as follows (in pixels)

p∗1 =
£
416 46 1

¤T
p∗2 =

£
479 418 1

¤T
p∗3 =

£
88 473 1

¤T
p∗4 =

£
45 96 1

¤T
.

The control parameters were selected as follows

Kv = diag {1, 1, 1} Kω = diag {0.3, 0.3, 0.3}

k2 = 0.0004 k3 = 10000 κ = 8

K = diag {30, 20, 10, 28, 33, 25, 10, 40} .
The desired and actual image trajectories of the feature points are de-

picted in Figures 4.22 and 4.23, respectively. The translational and rota-

tional tracking errors of the target are depicted in Figures 4.24 and 4.25,

r esp ective ly, and the parameter estimate signal is depicted in Figure 4.26.

The control input velocities ωc(t) and vc(t) defined in (4.171) and (4.172)

are depicted in Figures 4.27 and 4.28. From Figures 4.22 and 4.23, it is

clear that the desired feature points and actual feature points remain in

the camera field of view and converge to the goal feature points. Figures

4.24 and 4.25 show that the tracking errors go to zero as t→∞.

Simulation Results: Camera y-axis rotation

The initial image-space coordinates and the initial desired image-space co-

ordinates of the 4 target points were selected as follows (in pixels)

pT1 (0) = pTd1 (0) =
£
98 207 1

¤
pT2 (0) = pTd2 (0) =

£
112 288 1

¤
pT3 (0) = pTd3 (0) =

£
29 301 1

¤
pT4 (0) = pTd4 (0) =

£
15 217 1

¤
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FIGURE 4.22. Task 2: Desired Image Trajectory
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FIGURE 4.23. Task 2: Actual Image Trajectory
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FIGURE 4.25. Task 2: Rotational Tracking Error
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FIGURE 4.28. Task 2: Linear Velocity Input

while the image-space coordinates of the 4 constant reference target points

were selected as follows (in pixels)

p∗1 =
£
478 206 1

¤T
p∗2 =

£
492 289 1

¤T
p∗3 =

£
408 300 1

¤T
p∗4 =

£
395 218 1

¤T
.

The control parameters were selected as follows

Kv = diag {5, 5, 5} Kω = diag {0.3, 0.3, 0.3}

k2 = 0.04 k3 = 1000000 κ = 8

K = diag {30, 20, 10, 28, 33, 25, 10, 40} .
The desired and actual image trajectories of the feature points are de-

picted in Figures 4.29 and 4.30, respectively. The translational and rota-

tional tracking errors of the target are depicted in Figures 4.31 and 4.32,

respectively, and the parameter estimate signal is depicted in Figure 4.33.

The control input velocities ωc(t) and vc(t) defined in (4.171) and (4.172)

are depicted in Figures 4.34 and 4.35. From Figures 4.29 and 4.30, it is

clear that the desired feature points and actual feature points remain in

the camera field of view and converge to the goal feature points. Figures

4.31 and 4.32 show that the tracking errors go to zero as t→∞.
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FIGURE 4.29. Task 3: Desired Image Trajectory
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FIGURE 4.30. Task 3: Actual Image Trajectory



© 2010 by Taylor and Francis Group, LLC

206 4. Path Planning and Control

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4
e v1

 [p
ix

el
]

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

e v2
 [p

ix
el

]

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4
x 10

−4

e v3

Time [s]

FIGURE 4.31. Task 3: Translational Tracking Error
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FIGURE 4.32. Task 3: Rotational Tracking Error



© 2010 by Taylor and Francis Group, LLC

4.4 Vision Navigation 207

0 1 2 3 4 5 6 7 8 9 10
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
[m

]

Time [s]

FIGURE 4.33. Task 3: Estimate of z∗1
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FIGURE 4.34. Task 3: Angular Velocity Input
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FIGURE 4.35. Task 3: Linear Velocity Input

Simulation Results: General Camera Motion

The initial desired image-space coordinates and the initial desired image-

space coordinates of the 4 target points were selected as follows (in pixels)

p1 (0) = pd1 (0) =
£
267 428 1

¤T
p2 (0) = pd2 (0) =

£
295 257 1

¤T
p3 (0) = pd3 (0) =

£
446 285 1

¤T
p4 (0) = pd4 (0) =

£
420 449 1

¤T
while the image-space coordinates of the 4 constant reference target points

were selected as follows (in pixels)

p∗1 =
£
416 46 1

¤T
p∗2 =

£
479 418 1

¤T
p∗3 =

£
88 473 1

¤T
p∗4 =

£
45 96 1

¤T
.

The control parameters were selected as follows

Kv = diag {1, 1, 1} Kω = diag {0.3, 0.3, 0.3}

k2 = 0.004 k3 = 200000 κ = 8

K = diag {10, 10, 10, 18, 13, 15, 10, 10} .
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The desired and actual image trajectories of the feature points are depicted

in Figures 4.36 and 4.37, respectively. The translational and rotational

errors of the target are depicted in Figures 4.38 and 4.39, respectively,

and the parameter estimate signal is depicted in Figure 4.40. The control

input velocities ωc(t) and vc(t) defined in (4.171) and (4.172) are depicted

i n Fi gures 4. 41 and 4.42. From Figures 4.36 and 4.37, it is clear t hat the

desired feature points and actual feature points remain in the camera field

of view and c onve rge t o the goal feature p oint s. Figures 4.38 and 4.39 show

that the tracking errors go to zero as t→∞.
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FIGURE 4.36. Task 4: Desired Image Trajectory

4.5 Optimal Navigation and Obstacle Avoidance

As stated in the introduction to this chapter, image-based visual servoing

has been a widely used control method owing to the potential for improving

robustness of the controller to camera calibration effects. However, some

inherent technical problems associated with the use of a non-square image-

Jacobian have been the subject of much discussion. In an effort to address

these problems, a novel position-based visual servo controller is designed

here that works effectively in the presence of uncertain camera calibration
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FIGURE 4.37. Task 4: Actual Image Trajectory
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FIGURE 4.38. Task 4: Translational Tracking Error
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FIGURE 4.39. Task 4: Rotational Tracking Error
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FIGURE 4.41. Task 4: Angular Velocity Input
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and nonlinear radial distortion effects. Specifically, an optimization-based,

on-line trajectory generator for the image features is fused with a position-

based controller to move the kinematic system to a desired setpoint. A

planar example based on a fixed camera configuration is used to illustrate

the approach. The approach is then extended to the 6-degrees-of-freedom

case for the camera-in-hand configuration.

4.5.1 Illustrative Example: Planar PBVS

Manipulator Kinematic Model

The following kinematic equations relate the task-space coordinates, de-

noted by x(t) ,
£
x1(t) x2(t)

¤T ∈ R2, of a target point affixed to the
tip of a rigid, two-link, revolute, planar robot manipulator to the joint

displacements, denoted by q(t) ,
£
q1(t) q2(t)

¤T ∈ R2
x = Ω(q) (4.189)

where Ω(q) ∈ C2 is a known function. After taking the time derivative of

(4.189), the following expression can be obtained

ẋ = J(q)q̇ (4.190)

where the manipulator Jacobian J(q) ∈ R2×2 is defined as

J(q) =

∙
∂Ω(q)

∂q1

∂Ω(q)

∂q2

¸
(4.191)

and J(q) is assumed to have a bounded first order partial derivative (i.e.,

J(q) ∈ C1). The inverse of the manipulator Jacobian, denoted by J−1(q),
is assumed to always exist, and all kinematic singularities associated with

J(q) are assumed to be always avoided.

Camera Model

As illustrated in Figure 4.43, the visual servo system in this example con-

sists of a planar robot and a single camera mounted in a fixed configuration

above the robot workspace with the camera optical axis perpendicular to

the robot’s plane of motion where the target point on the robot manipu-

lator is assumed to remain in the camera field-of-view throughout the en-

tire range of the manipulator. The task-space position of the target point

can be related to the corresponding image-space coordinate, denoted by
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p̄ (t) ,
£
u(t) v(t)

¤T ∈ R2, based on the camera model as follows
p̄(t) , Π1 (x) (4.192)

=
1

d
fr(x)ARr

µ
x−

∙
O01
O02

¸¶
+

∙
u0
v0

¸
where it is assumed that the mapping Π1 (·) : R2 → R2 is a unique mapping
(the terminology, unique mapping, is utilized here to denote a one-to-one

and invertible mapping). In (4.192), d ∈ R denotes a constant unknown

distance from the manipulator target point to the camera along the optical

axis, fr (x) ∈ R denotes radial distortion effects, A ∈ R2×2 is a constant and
invertible intrinsic camera calibration matrix, Rr (θr) ∈ SO(2) is a constant

rotation offset matrix,
£
O01 O02

¤T ∈ R2 denotes the projection of the
camera’s optical center on the task-space plane, and

£
u0 v0

¤T ∈ R2
denotes the pixel coordinates of the principal point (i.e., the image center

that is defined as the frame buffer coordinates of the intersection of the

optical axis with the image plane). In (4.192), the camera calibration matrix

has the following form

A =

⎡⎣ fku −fku cotφ
0

fkv
sinφ

⎤⎦ (4.193)

where ku, kv ∈ R represent constant camera scaling factors, φ ∈ R repre-
sents the constant angle between the camera axes (i.e., skew angle), and

f ∈ R denotes the constant camera focal length. The constant offset rota-
tion matrix in (4.192), is defined as follows

Rr ,
∙
cos θr − sin θr
sin θr cos θr

¸
where θr ∈ R represents the constant right-handed rotation angle of the

image-space coordinate system with respect to the task-space coordinate

system that is assumed to be confined to the following regions

−π < θr < π. (4.194)

The radial distortion effects in (4.192) are assumed to be modeled by the

following nondecreasing polynomial [52], [75]

fr(x) = 1 + c1r
2(x) + c2r

4(x) (4.195)

where c1 and c2 are radial distortion coefficients, and the undistorted radial

distance r (x) ∈ R is defined as follows

r =

°°°°1dRr

µ
x−

∙
O01
O02

¸¶°°°° . (4.196)
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FIGURE 4.43. Planar Visual Servo Control System

Control Objective

The PBVS control objective is to ensure that the task-space position of

the manipulator target point is regulated to a desired task-space setpoint,

denoted by x∗ ∈ R2, that corresponds to a given, desired image-space set-
point, denoted by p̄∗ ∈ R2 (according to (4.192)). The challenging aspect
of this problem is that the image-space to task-space relationship is cor-

rupted by uncertainty in the camera calibration, radial distortion effects,

and unknown depth information (i.e., x∗ is unknown while p̄∗ is known). To
quantify the control objective, a task-space tracking error signal, denoted

by e(t) ∈ R2, is defined as follows

e(t) , x(t)− xd(t) (4.197)

where xd(t) ∈ R2 denotes a subsequently designed desired task-space tra-
jectory that is assumed to be designed such that xd(t), ẋd(t) ∈ L∞ and

that xd(t)→ x∗ as t→∞.

Closed-Loop Error System Development

By taking the time derivative of (4.197) and utilizing (4.190), the following

open-loop error system can be obtained

ė(t) = J(q)q̇ − ẋd(t). (4.198)
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Based on the previously stated assumption about the existence of the in-

verse of the manipulator Jacobian, the following kinematic velocity control

input is designed

q̇ = J−1(q) (−k1e(t) + ẋd(t)) (4.199)

where k1 ∈ R denotes an adjustable positive constant. After substituting
(4.199) into (4.198), the following closed-loop error system can be obtained

ė(t) = −k1e(t). (4.200)

Using standard linear analysis techniques, the solution of (4.200) is given

by

e(t) = e(0) exp(−k1t). (4.201)

Image-Based Extremum Seeking Path Planner

As previously described, the simple planar example presents a significant

control design challenge because the mapping between the task-space and

the image-space is unknown; hence, the unknown setpoint x∗ can not be
reconstructed from the desired image-space setpoint p̄∗. To address this
challenge, a numeric optimization routine is utilized to produce a desired

trajectory that seeks the unknown setpoint x∗ online. Specifically, an ob-
jective function, denoted by an ϕ (p̄(t)) ∈ R, is defined as follows

ϕ (p̄) , 1

2
(p̄− p̄∗)T (p̄− p̄∗) . (4.202)

Clearly, we can see from (4.202) that ϕ (p̄) has a unique minimum at p̄(t) =

p̄∗. By using the mapping defined in (4.192), we can rewrite (4.202) as
follows

ϕ (x) =
1

2
(Π1 (x)−Π1 (x∗))T (Π1 (x)−Π1 (x∗)) . (4.203)

From (4.203), it is easy to show that a unique minimum at p̄(t) = p̄∗ corre-
sponds to a unique minimum at x(t) = x∗ (see Section B.2.7 of Appendix
B for the 6 DOF case). If x(t) could be directly manipulated, a standard

optimization routine could be utilized to locate the minimum of ϕ (x) 6.

That is, optimization routines (e.g., Brent’s Method [62]) provide a mech-

anism for numerically searching for the minimum of an objective function

whose structure is unknown (i.e., the right-hand side of (4.203) is uncertain

because of the presence of Π1 (·)) provided that the output of the function

6There are numerous optimization routines that only require measurement of the

objective function; hence, gradient and/or Hessian related information is not required.
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can be measured (i.e., ϕ (x) can be measured by using the right-hand side

of (4.202)).

While the above optimization procedure is simple to understand con-

ceptually, it can not be used as described above because x(t) can not be

directly manipulated; rather, we must indirectly manipulate x(t) through

the controller given in (4.199). To illustrate how the optimization routine

can be fused with the controller, we utilize (4.197) to rewrite (4.203) as

follows

ϕ (xd, e) =
1

2
(Π1 (xd + e)−Π1 (x∗))T (4.204)

· (Π1 (xd + e)−Π1 (x∗)) .
If e(t) = 0 in (4.204), an optimization routine can be used to minimize

ϕ (xd, e) by directly manipulating xd(t) as explained above. As illustrated

by (4.201), e(t) goes to zero very quickly. In fact, e(t) can actually be set

to zero for all time by designing xd(0) = x(0) such that e(0) = 0, and

hence, e(t) = 0 for all time (i.e., at least theoretically). However, it should

be noted that we can not utilize an optimization routine for xd(t) unless

we slow down the optimization routine because the kinematic system will

not be able to track a desired trajectory that exhibits large desired velocity

values (i.e., large values of ẋd(t)). To slow down the desired trajectory

generated by the optimization routine, we can utilize a set of low pass

filters and some thresholding functions. To illustrate how an optimization

routine can be used to generate xd(t), the following step-by-step procedure

is given:

• Step 1. Initialize the optimization routine as follows x̄d(k)
¯̄
k=0

=

x (t)|t=0 where x̄d(k) ∈ R2 denotes the k-th output of the numeric
optimization which is held constant during the k-th iteration. The

output of the optimization function, denoted by x̄d (t), is a discrete

signal with the value x̄d(k) at the k-th iteration.

• Step 2. Set the iteration number k = 1. Invoke one iteration of an

optimization algorithm for the objective function ϕ (xd(0), e(0)).

• Step 3. x̄d (t) is passed through a set of second order stable and proper
low pass filters to generate continuous bounded signals for xd(t) and

ẋd(t). For example, the following filters could be utilized

xd =
ς1

s2 + ς2s+ ς3
x̄d

ẋd =
ς1s

s2 + ς2s+ ς3
x̄d

(4.205)
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where ς1, ς2, and ς3 denote positive filter constants.

• Step 4. Wait for T seconds (or wait until °°x (t)− x̄d(k)
°° 6 ε1 where

ε1 is some pre-defined threshold value). Generally, a fixed time delay

T can be utilized based on the assumption that
°°x (t)− x̄d(k)

°° 6 ε1
after T seconds.

• Step 5. k = k + 1. Invoke one iteration of an optimization algorithm

for the objective function ϕ (xd(t), e(t)).

• Step 6. If the optimization algorithm has converged (i.e., given a

threshold value ε2, then
°°x̄d(k) − x̄d(k−1)

°° 6 ε2), then stop.

• Step 7. Go to Step 3.

Remark 4.12 The above method does not depend on a specific optimiza-

tion routine; however, to facilitate real-time implementation, the optimiza-

tion routine must be capable of running single iterations as indicated in

Step 2 and Step 5.

Remark 4.13 The unknown mapping from the task-space to the image-

space in this example includes unknown camera calibration effects, radial

distortion, and unknown constant depth information. The mapping could

be further corrupted by additional effects or even the optical axis of the

camera need not be perpendicular to the robot motion plan, provided the

resulting mapping remains unique. If the mapping is not unique, then it is

heuristically evident that it would be nearly impossible to design a visual

servo control algorithm to achieve the control objective.

4.5.2 6D Visual Servoing: Camera-in-Hand

In this section, the basic idea illustrated by the planar example is extended

to the full 6-DOF case for the camera-in-hand configuration.

Geometric Model

For the 6-DOF case, four target points, denoted by Oi ∀i = 1, 2, 3, 4,

are assumed to be located on a reference plane π (see Figure 4.44), and

are considered to be coplanar and not colinear. Let I denote a coordi-
nate axis whose x − y axes define the reference plane π. Let F , F∗, and
F0 denote coordinate frames attached to the camera, the goal pose of the
camera, and the base frame of the manipulator as depicted in Figure 4.44.

To relate the coordinate systems, let Rt (t) ∈ R3×3 and xt (t) ∈ R3 denote
the known, constant rotation and translation from F0 to I; Re (t) ∈ R3×3
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and xe (t) ∈ R3 denote the measurable rotation and translation from F0
to F ; R∗e (t) ∈ R3×3 and x∗e (t) ∈ R3 denote the unknown constant ro-
tation and translation from F0 to F∗; R (t) ∈ R3×3 and xf (t) ∈ R3 de-
note the rotation and translation from F to I; and R∗ (t) ∈ R3×3 and
x∗f (t) ∈ R3 denote the rotation and translation from F∗ to I, respectively.
The task-space coordinates of Oi expressed in F and F∗ are denoted by
m̄i(t) ,

£
xi(t) yi(t) zi(t)

¤T
and m̄∗i ,

£
x∗i y∗i z∗i

¤T
, respectively.

Furthermore, the homogeneous coordinates are denoted by mi(t) and m∗i
and are generated in the manner of (4.135). Here, it is assumed that the

distance from the camera to the target along the focal axis remains positive

(i.e., zi(t), z
∗
i > 0 ∀i = 1, 2, 3, 4). From the geometry indicated in Figure

4.44, the following expressions can be obtained

R(t) = RT
e (t)Rt(t) R∗(t) = R∗Te Rt(t) (4.206)

xf (t) = RT
e (t) (xt(t)− xe(t)) (4.207)

x∗f (t) = R∗Te (xt(t)− x∗e(t)) .

Based on (4.206) and (4.207) and the geometry between the coordinate

frames and the feature points located on π, the following relationships can

be developed

m̄i(t) = xf +Rsi m̄∗i (t) = x∗f +R∗si (4.208)

∀i = 1, 2, 3, 4, where si ∈ R denotes the constant coordinates of the target
points Oi expressed in I. Based on Figure 4.44, it is easy to show that xe (t)
and Re (t) can be obtained by measuring the manipulator joint angles and

utilizing the manipulator Jacobian.

Camera Model

The camera model for the planar manipulator example is based on the

assumptions that the camera is fixed and that the depth is constant from

the camera to the plane of motion of the target point along the focal axis.

Since the camera in this section is mounted in the camera-in-hand configu-

ration and moves with 6-DOF motion, some modifications to the previous

model are required. Specifically, the relationship between the image-space

coordinates of the ith target point, denoted by
£
ui (t) vi (t)

¤T
, and the

corresponding task-space coordinates expressed in F is given as follows

∙
ui
vi

¸
= friA

⎡⎣ xi
ziyi
zi

⎤⎦+ ∙ u0
v0

¸
. (4.209)
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FIGURE 4.44. Coordinate Frame Relationships

In (4.209), u0, v0, A, have the same meaning as in Section 4.5.1; fri (mi) ∈
R denotes the same radial distortion model as given in (4.195), but in

this case, the undistorted radial distance for each target point needs to be

separately defined as follows

ri(mi) =

sµ
xi(t)

zi(t)

¶2
+

µ
yi(t)

zi(t)

¶2
.

Similar to (4.209), the relationship between the image-space coordinates

of the desired position of the ith target point, denoted by
£
u∗i v∗i

¤T
,

and the corresponding task-space coordinates expressed in F∗ is given as
follows ∙

u∗i
v∗i

¸
= f∗riA

⎡⎣ x∗i
z∗i
y∗i
z∗i

⎤⎦+ ∙ u0
v0

¸
where f∗ri is defined similar to fri with respect to m

∗
i .

A composite image feature vector comprising four feature point loca-

tions, denoted by p̄(t) ,
£
u1 (t) v1 (t) ... u4 (t) v4 (t)

¤T ∈ R8, can
be related to the camera pose, denoted by Υ (t) ∈ R6, through the following
relationship

p̄ = Π (Υ) (4.210)

where Π (·) : R6 → D denotes an unknown mapping based on (4.206)—

(4.209) and D denotes the space spanned by the image feature vector p̄ (t).
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In (4.210), the camera pose is defined as

Υ (t) ,
£
xTe (t) ΘT (t)

¤T
(4.211)

where xe(t) is introduced in Section (4.5.2), and Θ(t) = μ(t)θ(t) ∈ R3
denotes the axis-angle representation of Re(t) in the sense of (4.146).

Remark 4.14 It is well-known that a unique transformation (R, xf ) can

be determined from at least four coplanar but not colinear target points [6],

and a unique image of four coplanar but not colinear target points can be

obtained by a unique transformation (R,xf ). We assume that the radial

distortion will not affect the uniqueness of above mappings. From (4.206),

(4.207), and (4.211)—(4.150), it is clear that a unique Υ(t) corresponds to a

unique (R, xf ). Therefore a unique Υ(t) corresponds to a unique p̄(t). Simi-

larly, a unique p̄(t) can be shown to correspond to a unique Υ(t). Therefore,

it is clear that p̄(t) is constrained to lie on a six-dimensional subspace of

the eight-dimensional image feature vector; hence, the rank of D, the span
space of p̄(t), is six, and the mapping defined in (4.210) is a unique map-

ping, where the terminology, unique mapping, is utilized here to denote the

one-to-one and invertible mapping between the camera pose and the image

feature vector in D.

Control Objective

In a similar manner as in the planar example, the 6-DOF PBVS control

objective is to ensure the task-space pose of the camera is regulated to an

unknown desired task-space pose, denoted by Υ∗ ∈ R6, that corresponds to
the known, desired image-space setpoint, denoted by p̄∗ ∈ R8. To quantify
the control objective, a camera pose tracking error signal, denoted by e(t) ∈
R6, is defined as follows

e(t) , Υ(t)−Υd(t) (4.212)

where Υd(t) ∈ R6 denotes a desired camera pose trajectory that is designed
based on an optimization routine such that Υd(t), Υ̇d(t) ∈ L∞ and that

Υd(t)→ Υ∗.

Closed-Loop Error System Development

Similar to (4.190), the 6-DOF robot kinematics can be expressed as follows

[46]

Υ̇(t) = J(q)q̇(t) (4.213)

where q (t), q̇ (t) ∈ R6 denote the joint displacements and velocities, respec-
tively, and J(q) ∈ R6×6 denotes the manipulator Jacobian. After taking the
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time derivative of (4.212) and utilizing (4.213), the following open-loop er-

ror system can be obtained

ė = J(q)q̇ − Υ̇d. (4.214)

Based on the assumption that the inverse of the manipulator Jacobian,

denoted by J−1(q), is assumed to always exist and that all kinematic sin-
gularities are always avoided, the kinematic control input is designed as

follows

q̇(t) = J−1(q)
³
−k2e(t) + Υ̇d(t)

´
(4.215)

where k2 ∈ R denotes a positive constant. After substituting (4.215) into
(4.214), the following closed-loop error can be obtained

ė(t) = −k2e(t). (4.216)

Using standard linear analysis techniques, (4.216) can be solved as follows

e(t) = e(0) exp(−k2t). (4.217)

Image-Based Extremum Seeking Path Planner

To develop the extremum seeking desired trajectory for the 6-DOF case,

an objective function, denoted by ϕ (p̄) ∈ R, is defined as follows

ϕ (p̄) , 1

2
(p̄ (t)− p̄∗)T (p̄ (t)− p̄∗) (4.218)

where p̄∗ ∈ R8 denotes the given image-space coordinates that correspond
to the desired camera pose. Based on the previous development given for

the planar robot example, Υd(t) can be generated with an optimization

routine that is modified by using the same steps described for the planar

manipulator case. The reader is referred to Section B.2.7 of Appendix B

for a discussion related to the global minimum for the 6-DOF case.

4.6 Background and Notes

Researchers have targeted a variety of applications that exploit the ability

of a velocity field controller to encode certain contour following tasks. For

example, Li and Horowitz [49] utilized a passive VFC approach to control

robot manipulators for contour following applications, and more recently,

Dee and Li [43] used VFC to achieve passive bilateral teleoperation of robot
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manipulators. The authors of [47] utilized a passive VFC approach to de-

velop a force controller for robot manipulator contour following applica-

tions. Other relevant work utilizing VFC approaches by Li and co-workers

can be found in [48] and [50]. Yamakita et al. investigated the application

of passive VFC to cooperative mobile robots and cooperative robot manip-

ulators in [73] and [74], respectively. Typically, VFC is based on a nonlinear

control approach where exact model knowledge of the system dynamics is

required. Motivated by the desire to account for uncertainty in the robot

dynamics, Cervantes et al. developed a robust VFC in [4]. Specifically, in [4]

a proportional-integral controller was developed that achieved semiglobal

practical stabilization of the velocity field tracking errors despite uncer-

tainty in the robot dynamics. From a review of VFC literature, it can be

determined that research efforts have focused on ensuring that the robot

tracks the velocity field but no development has been provided to ensure

that the link position remains bounded. The result in [4] acknowledged the

issue of boundedness of the robot position – the issue was addressed by

making an assumption that the following norm°°°°q(0) + Z t

0

ϑ(q(σ))dσ

°°°°
yields globally bounded trajectories, where q(t) denotes the position, and

ϑ(·) denotes the velocity field. For a more thorough discussion of the advan-
tages and differences of VFC with respect to traditional trajectory tracking

control, the reader is referred to [4], [47], and [49].

Numerous researchers have investigated algorithms to address the path

planning and motion control problem when the configuration space of the

robot is cluttered with obstacles. A comprehensive summary of techniques

that address the classic geometric problem of constructing a collision-free

path is provided in Section 9, “Literature Landmarks,” of Chapter 1 of

[41]. Since the pioneering work by Khatib in [36], it is clear that the con-

struction and use of potential functions has continued to be one of the

mainstream approaches to robotic task execution among known obstacles.

In short, potential functions produce a repulsive potential field around the

boundary of the robot task-space and obstacles and an attractive poten-

tial field at the goal configuration. A comprehensive overview of research

directed at potential functions is provided in [41]. One criticism of the po-

tential function approach is that local minima can occur that can cause the

robot to “get stuck” without reaching the goal position. Several researchers

have proposed approaches to address the local minima issue (e.g., see [1],

[2], [11], [37], and [71]). Koditschek [38] (see also [39] and [64]) introduced

the navigation function (NF) which is a special kind of potential function
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with a refined mathematical structure which guarantees the existence of a

unique minimum.

By leveraging from previous results directed at classic (holonomic) sys-

tems, more recent research has focused on the development of potential

function-based approaches for nonholonomic systems (e.g., wheeled mobile

robots (WMRs)). For example, Laumond et al. [42] used a geometric path

planner to generate a collision-free path that ignores the nonholonomic

constraints of a WMR, then divided the geometric path into smaller paths

that satisfy the nonholonomic constraints, and then applied an optimiza-

tion routine to reduce the path length. In [30] and [31], Guldner et al. use

discontinuous, sliding mode controllers to force the position of a WMR to

track the negative gradient of a potential function and to force the orien-

tation to align with the negative gradient. In [3], [40], and [16], continuous

potential field-based controllers are developed to also ensure position track-

ing of the negative gradient of a potential function, and orientation tracking

of the negative gradient. More recently, Ge and Cui present a new repul-

sive potential function approach in [29] to address the case when the goal is

nonreachable with obstacles nearby (GNRON). In [69] and [70], Tanner et

al. exploit the navigation function research of [64] along with a dipolar po-

tential field concept to develop a navigation function-based controller for a

nonholonomic mobile manipulator. Specifically, the results in [69] and [70]

use a discontinuous controller to track the negative gradient of the naviga-

tion function, where a nonsmooth dipolar potential field causes the WMR

to turn in place at the goal position to align with a desired orientation.

Vision based controllers allow the robot to navigate in unstructured en-

vironments. IBVS and PBVS controllers have typically been employed by

researchers to address the visual servoing problem. For a review of IBVS

and PBVS controllers, the user is referred to [32]. To avoid the pitfalls

associated with IBVS and PBVS approaches, hybrid approaches such as

homography-based visual servoing control techniques (coined 2.5D con-

trollers) have been recently developed in a series of papers by Malis and

Chaumette (e.g., see [5], [55], [56]). Motivated by the advantages of the

homography-based strategy, several researchers have recently developed

various regulation controllers for robot manipulators (see [9], [12], and [15]).

A common problem with all the aforementioned approaches is the inabil-

ity to achieve the control objective while ensuring the visibility of target

features. To address this issue, Mezouar and Chaumette developed a path-

following IBVS algorithm in [59] where the path to a goal point is generated

via a potential function that incorporates motion constraints; however, as

stated in [59], local minima associated with traditional potential functions
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may exist. Using a navigation function, Cowan et al. developed a hybrid

position/image-space controller that forces a manipulator to a desired set-

point while ensuring the object remains visible (i.e., the NF ensures no

local minima) and by avoiding pitfalls such as self-occlusion [13]. However,

as stated in [59], this approach requires a complete knowledge of the space

topology and requires an object model. In [27], Gans and Hutchinson de-

veloped a strategy that switches between an IBVS and a PBVS controller

to ensure asymptotic stability of the position and orientation (i.e., pose)

in the Euclidean and image-space. An image-space based follow-the-leader

application for mobile robots was developed in [14] that exploits an image-

space NF. Specifically, an input/output feedback linearization technique

is applied to the mobile robot kinematic model to yield a controller that

yields “string stability” [25]. Without a feedforward component, the con-

troller in [14] yields an approximate “input-to-formation” stability (i.e., a

local, linear exponential system with a bounded disturbance). A NF based

approach to the follow-the-leader problem for a group of fully actuated

holonomic mobile robots is considered in [61] where configuration based

constraints are developed to ensure the robot edges remain in the sight of

an omnidirectional camera. A Lyapunov-based analysis is provided in [61]

to ensure that the NF decreases to the goal position, however, the stability

of the overall system is not examined.
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[18] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and F. Zhang, “Robust

Tracking and Regulation Control for Mobile Robots,” International

Journal of Robust and Nonlinear Control, Vol. 10, pp. 199—216, 2000.

[19] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, Nonlinear

Control of Wheeled Mobile Robots, Springer-Verlag London Limited,

2001.

[20] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti, Nonlin-

ear Control of Engineering Systems: A Lyapunov-Based Approach,
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5

Human Machine Interaction

5.1 Introduction

Typically, machines are used for simple, repetitive tasks in structured envi-

ronments isolated from humans. However, the last decade has seen a surge

in active research in the area of human machine interaction. Smart exercise

machines [37, 38], steer-by-wire applications [58, 59], bilateral teleoperated

robots [15, 30, 34, 65], rehabilitation robots [11, 28, 40, 41], and human

assist gantry cranes [63] are among the multitude of application areas that

drive this research. As a specific example, the teleoperation or remote con-

trol of robotic manipulators is of considerable interest as it permits the

introduction of human intelligence and decision making capabilities into a

possibly hostile remote environment. Even though the primary control ob-

jective varies from one application to the next, a common thread that runs

through all application areas is the need to rigorously ensure user safety.

Approaches based on passivity ensure that the net flow of energy during

the human robot interaction is from the user to the machine [2, 37].

The first application area that will be addressed in this chapter con-

cerns smart exercise machines. Generally, exercise machines are classified

according to characteristics such as the source of exercise resistance, exer-

cise motions, and exercise objectives [3], [37]. Traditional exercise machines

(e.g., [24]) do not incorporate user specific information in the machine

functionality. Typically, traditional exercise machines either rely on man-
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ual adjustment of the machine parameters (e.g., altering resistance levels)

or automatic adjustment based on an open-loop approach. Exercise based

on manual adjustments by the user are affected by the psychological state

of the user, resulting in suboptimal performance (e.g., quantified by the

power output by the user). Motivated by the desire to maximize the user’s

power output, recent research has focused on closed-loop, actuated exercise

equipment that incorporates feedback from the user. That is, next gener-

ation exercise machines will incorporate user performance information to

actively change the resistance. In addition to maximizing the user’s power

output, an additional challenge for actuated exercise machines is to main-

tain passivity with respect to the user.

The second application area that will be addressed in this chapter is the

steer-by-wire control of vehicles. In recent years, engineers and scientists

from specialized fields such as information technology, advanced materials,

defense systems, and aerospace have collaborated with the automotive in-

dustry to introduce advanced technologies for large vehicle production vol-

umes. Examples such as hybrid electric vehicles (HEV) featuring hydrogen,

fuel cells, electric motors, solar cells, and/or internal combustion engines

are common. Although the concepts of electric and specifically steer-by-

wire steering systems have been explored in vehicular research, attention

must be focused on the haptic interface. The concept of force feedback fol-

lows directly and its advantage in drive-by-wire vehicles is very evident.

An operator functioning within a remote driving environment primarily

depends on visual feedback to make meaningful maneuvers. The “feel” of

the road, due to both the vehicle acceleration forces (i.e., G forces) and

the tire/road forces, plays a very prominent role in recreating the driving

experience [39]. The physiological and psychological effect of these forces

has been documented [13]. An appropriate magnitude is important for force

feedback to be valuable to the driver. For instance, excessive feedback re-

sults in the need for large driver forces to steer the system, which defeats

the purpose of easing the driving experience. Hence, it is essential for the

control strategy to ensure that the road “feel” provided by the force feed-

back can be adjusted. The control design pursued here rigorously ensures

global asymptotic regulation of the “locked tracking error” and the “driver

experience tracking error.”

Another fascinating area which involves human-machine interaction is

teleoperator systems. A teleoperator system consists of a user interacting

with some type of input device (i.e., a master manipulator) with the inten-

tion of imparting a predictable response by an output system (i.e., a slave

manipulator). Practical applications of teleoperation are motivated by the
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need for task execution in hazardous environments (e.g., contaminated fa-

cilities, space, underwater), the need for remote manipulation due to the

characteristics of the object (e.g., size and mass of an object, hazardous na-

ture of the object), or the need for precision beyond human capacity (e.g.,

robotic assisted medical procedures). In the past few years, significant re-

search has been aimed at the development and control of teleoperator sys-

tems due to both the practical importance and the challenging theoretical

nature of the human-robot interaction problem. The teleoperator problem

is theoretically challenging due to issues that impact the user’s ability to

impart a desired motion and a desired force on the remote environment

through the coupled master-slave system. Some difficult issues include the

presence of uncertainty in the master and slave dynamics, the ability to

accurately model or measure environmental and user inputs to the system,

the ability to safely reflect desired forces back to the user while mitigating

other forces, and the stability of the overall system (e.g., as stated in [34],

a stable teleoperator system may be destabilized when interacting with a

stable environment due to coupling between the systems).

The final topic that would be addressed in this chapter deals with a

rehabilitation robot. The framework created here is inspired by the desire

to provide passive resistance therapy to patients affected by dystrophies

in the muscles of the upper extremities – these patients need to target

specific groups of muscles in order to regain muscle tone [4]. As stated in [4],

moderate (submaximal) resistance weight lifting, among other treatments,

may improve strength in slowly progressive NMDs such as Lou Gehrig’s

Disease (ALS), Spinal Muscular Atrophy, etc. The idea being pursued here

attempts to cast the robot as a reconfigurable passive exercise machine –

along any desired curve of motion in 3D space that satisfies a criterion

of merit, motion is permitted against a programmable apparent inertia

[29] when the user “pushes” at the end-effector; force applied in all other

directions is penalized. As with any other application of human-machine

interaction, safety of the user is a prime consideration and is rigorously

ensured by maintaining the net flow of energy during the interaction from

the user toward the manipulator.

5.2 Exercise Machine

While a variety of machine configurations are available to facilitate differ-

ent exercises, many configurations can be reduced to a user torque input

to an actuated motor. With that in mind, the specific problem that will be

addressed here is the design of a next generation exercise machine controller
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for a single degree of freedom system. As previously stated, one goal of the

exercise machine controller is to maximize the user’s power expenditure.

To attain this goal, a desired trajectory signal is designed at first to seek

the optimal velocity setpoint that will maximize the user’s power output.

A controller is then designed to ensure that the exercise machine tracks

the resulting desired trajectory. To generate the desired trajectory, two

different algorithms are presented (e.g., [27], [50]) to seek the optimal ve-

locity while ensuring that the trajectory remains sufficiently differentiable.

In contrast to the linear approximation of the user force input required

in previous research (e.g., [37] and [60]), the development being presented

here is based on a general form of the user torque input. As previously

stated, another goal of the controller is to ensure that the exercise machine

remains passive with respect to the user’s power input. To ensure this while

also achieving trajectory tracking, two different controllers are developed.

The first controller is developed based on the assumption that the user’s

torque input can be measured. Based on the desire to eliminate the need

for force/torque sensors, a second controller is designed that estimates the

user’s torque input. Both controllers are proven to remain passive with re-

spect to the user’s power output and yield semi-global tracking through

Lyapunov-based analyses provided that mild assumptions are satisfied for

the machine dynamics and the user input. Proof-of-concept experimental

results are provided that illustrate the performance of the torque estimation

controller.

5.2.1 Exercise Machine Dynamics

The model for a one-degree-of-freedom (DOF) exercise machine is assumed

to be as follows1

Jq̈(t) = τ(q̇) + u(t) (5.1)

where J ∈ R denotes the constant inertia of the machine, q(t), q̇(t), q̈(t) ∈
Rdenote the angular position, velocity, and acceleration of the machine,
respectively, τ(q̇) ∈ R denotes a velocity dependent user torque input, and
u(t) ∈ R denotes the motor control input. The user input is assumed to
exhibit the following characteristics that are exploited in the subsequent

development.

1Additional dynamic effects (e.g., friction) can be incorporated in the exercise ma-

chine model and subsequent control design. These terms have been neglected in the

control development for simplicity.
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• Assumption 5.1.1: The user input is a function of the machine velocity
(i.e., τ(q̇))

• Assumption 5.1.2: The user input is a second order differentiable
function (i.e., τ(q̇) ∈ C2).

• Assumption 5.1.3: The user input is unidirectional (i.e., assumed to
be positive w.l.o.g.) and satisfies the following inequalities

0 ≤ τ(q̇) ≤ τmax (5.2)

where τmax ∈ R is a positive constant that denotes the maximum

possible torque applied by the user.

• Assumption 5.1.4: The desired trajectory is assumed to be designed
such that q̇d(t), q̈d(t),

...
q d(t) ∈ L∞, where the desired velocity, de-

noted by q̇d(t) ∈ R, is assumed to be in the same direction as the
user input (i.e., assumed positive w.l.o.g.).2

Remark 5.1 In biomechanics literature, a user’s joint torque is typically

expressed as a function of position, velocity, and time (i.e., τ(q, q̇, t)). The

position dependence is related to the configuration of the limbs attached

to the joint. As in [37], the user is assumed to be able to exert the same

amount of torque throughout the required range-of-motion for the exercise,

and hence, the position dependence can be neglected. The time dependence

of the user’s joint torque is due to the effects of fatigue (i.e., the amount

of maximum torque diminishes as the user fatigues). As also described in

[37], the user is assumed to maintain a constant level of fatigue during the

exercise session, and hence, the time dependence can be neglected.

5.2.2 Control Design with Measurable User Input

Control Objectives

One objective of the exercise machine controller is to ensure that the exer-

cise machine tracks a desired velocity. To quantify this objective, a velocity

tracking error, denoted by e(t) ∈ R, is defined as follows

e(t) , q̇(t)− q̇d(t) (5.3)

2The assumption that q̇d(t) is assumed to be positive is a similar assumption that is

exploited in [37] and [38]. The assumption is considered to be mild since the trajectory

generation algorithm can easily be restricted (e.g., a projection algorithm) to produce a

positive value.
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where q̇d(t) ∈ R denotes a desired velocity that is assumed to be designed
such that q̇d(t), q̈d(t),

...
q d(t) ∈ L∞. Another objective is to maximize the

modified user power output, denoted by p(q̇), that is defined as follows [37]

p(q̇) = τ(q̇)q̇ρ(t) (5.4)

where ρ ∈ R is a positive constant3. To achieve this objective, the desired
trajectory must also be designed to ensure that q̇d(t)→ q̇∗d as t→∞ where

q̇∗d ∈ R is a positive constant that denotes an unknown, user-dependent op-
timal velocity setpoint. A final objective for the exercise machine controller

is to ensure the safety of the user by guaranteeing that the machine remains

passive with respect to the user’s power input. The exercise machine is pas-

sive with respect to the user’s power input provided the following integral

inequality is satisfied [37] Z t

t0

τ(σ)q̇(σ)dσ ≥ −c2 (5.5)

where c is a bounded positive constant.

Remark 5.2 In contrast to the linear approximation of the user force input

required in [60] and [37], the subsequent development is based on a general

form of the user torque input. Specifically, Assumptions 5.1.1—5.1.3 should

be satisfied and p(q̇) of (5.4) should have a global maximum for some value

of q̇(t) (i.e., q̇∗d).

Control Development and Analysis

The open-loop error system is determined by taking the time derivative of

(5.3) and multiplying the result by J as follows

Jė(t) = τ(q̇) + u(t)− Jq̈d(t) (5.6)

where (5.1) has been utilized. In this section, the user torque input is

assumed to be measurable. Based on this assumption, the structure of (5.6),

and the subsequent stability analysis, the following controller is developed

u(t) = −ke(t) + Jq̈d(t)− τ(q̇) (5.7)

where k ∈ R is a positive constant control gain. After substituting (5.7)

into (5.6), the following closed-loop error system can be determined

Jė(t) = −ke(t). (5.8)

3A discussion of the physical interpretation of ρ is provided in [37].
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The linear differential equation in (5.8) can be directly solved to obtain the

following solution

e(t) = e(0) exp(− k

J
t). (5.9)

Based on (5.9), it is clear that e(t) ∈ L∞ ∩L1. The expression in (5.3) and
the assumption that q̇d(t) ∈ L∞ can be used to conclude that q̇(t) ∈ L∞;
hence, (5.2), (5.7), and the assumption that q̈d(t) ∈ L∞ can be used to

determine that u(t) ∈ L∞. Thus, it can be stated that the exercise machine
controller in (5.7) ensures that all system signals are bounded under closed-

loop operation, and the velocity tracking error is exponentially stable in the

sense of (5.9). Furthermore, one can substitute (5.3) into (5.5) to obtain

the following expressionZ t

t0

τ(σ)q̇(σ)dσ =

Z t

t0

τ(σ)e(σ)dσ +

Z t

t0

τ(σ)q̇d(σ)dσ. (5.10)

Based on Assumptions 5.1.3 and 5.1.4, it is clear that the right-most term

in (5.10) is always positive; hence, since e(t) ∈ L1, (5.10) can be lower
bounded as followsZ t

t0

τ(σ)e(σ)dσ ≥ −τmax
Z t

t0

|e(σ)| dσ = −c2. (5.11)

Based on (5.11), it is clear that the passivity condition given in (5.5) is

satisfied. Thus, one can conclude that the controller in (5.7) ensures that

the exercise machine is passive with respect to the user’s power input.

5.2.3 Desired Trajectory Generator

In the previous development, it is assumed that a desired trajectory can be

generated such that q̇d(t), q̈d(t),
...
q d(t) ∈ L∞ and that q̇d(t)→ q̇∗d where q̇

∗
d

is an unknown constant that maximizes the user power output. From (5.3)

and (5.4), the user power output can be expressed as follows (where ρ = 1

w.l.o.g.)

p(e, t) = τ(q̇d(t) + e(t))(q̇d(t) + e(t)). (5.12)

Since e(t)→ 0 exponentially fast, (5.12) can be approximated as follows

p(t) ∼= τ(q̇d)q̇d(t). (5.13)

From (5.13), it is clear that if q̇d(t)→ q̇∗d then p(t)→ τ(q̇∗d)q̇
∗
d, and hence,

the user power output will be maximized. To generate a desired trajec-

tory that ensures q̇d(t), q̈d(t),
...
q d(t) ∈ L∞ and that q̇d(t) → q̇∗d, several

extremum seeking algorithms can be utilized. Two algorithms that can be

used to generate the trajectory are described in the following sections.
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Perturbation-Based Extremum Generation

For brevity, the extremum seeking algorithm is simply presented along with

a heuristic commentary on the internal workings of the algorithm as op-

posed to extensive mathematical efforts to prove convergence of the scheme.

Specifically, following the work presented in [27], a saturated extremum al-

gorithm for generating q̇d(t) can be designed as follows

q̇d(t) = ae sin(ωt) + θ̂(t)
.

θ̂(t) = −αf θ̂(t) + κ(t)

κ̇(t) = −α0κ(t) + α0(kf1(sat(p)− η(t))ae sin(ωt))

η̇(t) = −kf2η(t) + kf2sat(p)

(5.14)

where ae, ω, α0, αf , kf1 and kf2 ∈ R are constant design parameters,

θ̂(t), κ(t) and η(t) are filtered signals, and sat(·) denotes a continuous sat-
uration function. The algorithm given in (5.14) reduces to the algorithm

presented in [27] when the saturation functions are removed and αf = 0.

These modifications to the algorithm are incorporated to ensure that q̇d(t),

q̈d(t),
...
q d(t) ∈ L∞. The design parameters ae, ω, α0, αf , kf1, and kf2

must be selected sufficiently small because the convergence analysis associ-

ated with (5.14) utilizes averaging techniques. Specifically, the convergence

analysis requires that the cut-off frequency of the η(t) filter used in (5.14)

be lower than the frequency of the perturbation signal (i.e., ω). In fact,

the convergence analysis requires that the closed-loop system exhibit three

distinct time scales: i) high speed – the convergence of e(t), ii) medium

speed – the periodic perturbation parameter ω, and iii) slow speed – the

filter parameter kf2 in the η(t) dynamics. As presented in [27], the con-

vergence analysis illustrates that an extremum algorithm similar to (5.14)

finds a near-optimum solution (i.e., q̇d(t) goes to some value very close to

q̇∗d). With regard to the periodic terms in (5.14) (i.e., sin(ωt) and cos(ωt)),
an extremum-seeking scheme must “investigate” the neighborhood on both

sides of the maximum. This “investigation” motivates the use of slow pe-

riodic terms in the algorithm.

Numerically-Based Extremum Generation

As previously described, (5.13) can be used to show that if q̇d(t) → q̇∗d
then the user power output will be maximized. An extremum algorithm

for generating q̇d(t) was presented in (5.14); however, this algorithm can

be slow to find q̇∗d. As an alternative to the approach given by (5.14), sev-
eral numerically-based extremum search algorithms (e.g., Brent’s Method

[50], Simplex Method [50], etc.) can be utilized for the online computa-

tion of q̇d(t). For example, Brent’s Method only requires measurement of
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the output function (i.e., p(t) in (5.4)) and two initial guesses that enclose

the unknown value for q̇∗d (the two initial guesses are not required to be
close to the value of q̇∗d). Brent’s Method then uses an inverse parabolic
interpolation algorithm and measurements of p(t) to generate estimates for

q̇∗d until the estimates converge. Specifically, the filter-based algorithm for

computing q̇d(t) is described in Section B.3.1 of Appendix B.

5.2.4 Control Design without Measurable User Input

The control development in the previous section requires that the user

torque input be measurable. To measure the user input, an additional sen-

sor (i.e., a force/torque sensor) has to be included in the exercise machine

design. Inclusion of the additional sensor results in additional cost and com-

plexity of the system. Motivated by the desire to eliminate the additional

sensor, the controller in this section is crafted by developing a nonlinear

integral feedback term that produces a user torque input estimate.

Open-Loop Error System

To facilitate the subsequent development, a filtered tracking error, denoted

by r(t) ∈ R, is defined as follows

r(t) , ė(t) + αre(t) (5.15)

where αr ∈ R denotes a positive constant parameter. After differentiat-

ing (5.15) and multiplying both sides of the resulting equation by J , the

following expression can be obtained

Jṙ(t) = −e(t) +N(q̇, q̈) + u̇(t)− J
...
q d(t) (5.16)

where the time derivative of (5.1) and (5.3) have been utilized, and the

auxiliary function N(q̇, q̈) ∈ R is defined as follows

N(q̇, q̈) , d

dt
[τ(q̇)] + e(t) + Jαr ė(t). (5.17)

To further facilitate the subsequent analysis, an auxiliary signal Nd(t) ∈ R
is defined as follows

Nd(t) , N(q̇, q̈)|q̇(t)=q̇d(t), q̈(t)=q̈d(t) (5.18)

where (5.17) can be utilized to prove that Nd(t), Ṅd(t) ∈ L∞ based on the

assumptions that q̇d(t), q̈d(t),
...
q d(t) ∈ L∞ and τ(q̇) ∈ C2. After adding and
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subtracting Nd(t) to the right side of (5.16) the following expression can

be obtained

Jṙ(t) = −e(t) + u̇(t)− J
...
q d(t) + Ñ(q̇, q̈) +Nd(t) (5.19)

where Ñ(q̇, q̈) ∈ R is defined as follows

Ñ(q̇, q̈) , N(q̇, q̈)−Nd(t). (5.20)

Remark 5.3 Since N(q̇, q̈) defined in (5.17) is continuously differentiable,

Ñ(q̇, q̈) introduced in (5.20) can be upper bounded as indicated by the fol-

lowing inequality [64] ¯̄̄
Ñ(q̇, q̈, t)

¯̄̄
≤ ρ(kz(t)k) kz(t)k (5.21)

where z(t) ∈ R2 is defined as

z(t) , [e(t) r(t)]T (5.22)

and ρ(kz(t)k) ∈ R is a positive bounding function that is non-decreasing in
kz(t)k.

Closed-Loop Error System

Based on the structure of (5.19) and the subsequent stability analysis, the

following controller is developed

u(t) = Jq̈d(t)− [Jq̈d(t0)− (ks + 1)e(t0)] (5.23)

−(ks + 1)e(t)−
Z t

t0

(ks + 1)αre(σ)dσ

−
Z t

t0

(β1 + β2)sgn(e(σ))dσ

where sgn(·) represents the standard signum function, ks, β1, β2 ∈ R are
positive control gains, and the bracketed terms in (5.23) ensure that u(0) =

0. The time derivative of (5.23) is given by the following expression

u̇(t) = J
...
q d(t)− (ks + 1)r(t)− (β1 + β2)sgn(e). (5.24)

After substituting (5.24) into (5.19), the closed-loop dynamics for r(t) can

be determined as follows

Jṙ(t) = −e(t)− (ks + 1)r(t) (5.25)

−(β1 + β2)sgn(e) + Ñ(q̇, q̈) +Nd(t).



© 2010 by Taylor and Francis Group, LLC

5.2 Exercise Machine 243

Stability Analysis

Before we proceed with the statement and proof of the main result, two

preliminary Lemmas are presented.

Lemma 5.1 Let L1(t), L2(t) ∈ R be defined as follows

L1(t) , r(t) (Nd(t)− β1sgn(e)) (5.26)

L2(t) , −β2ė(t)sgn(e).

If β1 and β2 introduced in (5.23) are selected to satisfy the following suffi-

cient conditions

β1 > |Nd(t)|+ 1

αr

¯̄̄
Ṅd(t)

¯̄̄
β2 > 0 (5.27)

then R t
t0
L1(σ)dσ ≤ ζb1

R t
t0
L2(σ)dσ ≤ ζb2 (5.28)

where the positive constants ζb1, ζb2 ∈ R are defined as

ζb1 , β1 |e(t0)|− e(t0)Nd(t0) ζb2 , β2|e(t0)|. (5.29)

Proof. See Section B.3.2 of Appendix B.

Lemma 5.2 Consider the system ξ̇ = f(ξ, t) where f : Rm × R→ Rm for

which a solution exists. Let D := {ξ ∈ Rm | kξk < ε} where ε is some posi-
tive constant, and let V : D×R→ R be a continuously differentiable function
such that

W1(ξ) ≤ V (ξ, t) ≤W2(ξ) and V̇ (ξ, t) ≤ −W (ξ) (5.30)

∀t ≥ 0 and ∀ξ ∈ D where W1(ξ),W2(ξ) are continuous positive definite

functions, and W (ξ) is a uniformly continuous positive semi-definite func-

tion. Provided (5.30) is satisfied and ξ(0) ∈ S, we have

W (ξ(t))→ 0 as t→∞ (5.31)

where the region denoted by S is defined as follows

S := {ξ ∈ D |W2(ξ) ≤ δ} where δ < min
kξk=ε

W1(ξ) (5.32)

where δ denotes some positive constant.

Proof. Direct application of Theorem 8.4 in [22].

The stability of the exercise machine controller can now be proven by

the following Theorem.
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Theorem 5.3 The exercise machine controller introduced in (5.23) en-

sures all signals are bounded under closed-loop operation and that

e(t), ė(t)→ 0 as t→∞ (5.33)

provided the control gains β1 and β2 are selected according to the sufficient

conditions given in (5.27), and the control gain ks is selected sufficiently

large with respect to the initial conditions of the system.

Proof. Let P1(t), P2(t) ∈ R denote the following auxiliary functions
P1(t) = ζb1 −

R t
t0
L1(σ)dσ

P2(t) = ζb2 −
R t
t0
L2(σ)dσ

(5.34)

where ζb1, ζb2, L1(t), and L2(t) are defined in Lemma 5.1. The results from

Lemma 5.1 can be used to show that P1(t) and P2(t) are non-negative. Let

V (y, t): R2 ×R×R×R denote the following non-negative function

V (y, t) , 1

2
e2(t) +

1

2
Jr2(t) + P1(t) + P2(t) (5.35)

where y(t) ∈ R2 ×R×R is defined as

y(t) ,
£
zT (t)

p
P1(t)

p
P2(t)

¤T
(5.36)

and z(t) was defined in (5.21). Since J is a positive constant, (5.35) can be

lower and upper bounded by the following inequalities

W1(y) ≤ V (y, t) ≤W2(y) (5.37)

where

W1(y) = λ1 ky(t)k2 W2(y) = λ2 ky(t)k2 (5.38)

where λ1 ,
1

2
min{1, J} and λ2 , max{1, 1

2
J}.

After differentiating (5.35) and utilizing (5.15), (5.25), (5.26), and the

time derivative of (5.34), the following expression can be obtained

V̇ (y, t) = −αre2(t)− r2(t)− ksr
2(t) + r(t)Ñ(·) (5.39)

−β2(ė(t) + αre(t))sgn(e) + β2ė(t)sgn(e)

≤ −λ3 kz(t)k2 − ksr
2(t) + r(t)Ñ(·)− αrβ2 |e(t)|

where λ3 , min{1, αr}. By utilizing (5.21), the following inequality can be
developed

V̇ (y, t) ≤ −λ3 kz(t)k2 − αrβ2 |e(t)| (5.40)

+
£|r(t)| ρ(kz(t)k) kz(t)k− ksr

2(t)
¤
.



© 2010 by Taylor and Francis Group, LLC

5.2 Exercise Machine 245

Completing the squares on the bracketed term in (5.40) yields the following

inequality

V̇ (y, t) ≤ −(λ3 − ρ2(kz(t)k)
4ks

) kz(t)k2 − αrβ2 |e(t)| . (5.41)

Based on (5.41), the following inequality can be developed

V̇ (y, t) ≤W (y)− αrβ2 |e(t)| for ks >
ρ2(kz(t)k)
4λ3

or kz(t)k < ρ−1(2
√
λ3ks)

(5.42)

where

W (y) = −γ kzk2 (5.43)

and γ ∈ R is some positive constant. From (5.42) and (5.43), the regions

D and S can be defined as follows

D , {y ∈ R2 ×R×R
¯̄̄
kyk ≤ ρ−1(2

p
λ3ks)} (5.44)

S , {y ∈ D
¯̄̄
W2(y) < λ1(ρ

−1(2
p
λ3ks))

2 }. (5.45)

The region of attraction in (5.45) can be made arbitrarily large to include

any initial conditions by increasing the control gain ks (i.e., a semi-global

stability result). Specifically, (5.38) and the region defined in (5.45) can be

used to calculate the region of attraction as follows

W2(y(t0)) < λ1(ρ
−1(2
√
λ3ks))

2

=⇒ ky(t0)k <
r

λ1
λ2

ρ−1(2
√
λ3ks)

(5.46)

which can be rearranged as

ks >
1

4λ3
ρ2(

r
λ2
λ1
ky(t0)k). (5.47)

By using (5.15) and (5.36), the following explicit expression for ky(t0)k can
be obtained

ky(t0)k =
p
e2(t0) + (ė(t0) + αre(t0))2 + P1(t0) + P2(t0) (5.48)

where (5.1), (5.3), and the fact that u(t0) = 0 can be used to determine

that

ė(0) = J−1τ(t0)− q̈d(t0).

Hereafter, we restrict the analysis to be valid for all initial conditions

y(t0) ∈ S. From (5.35), (5.41), (5.42), and (5.45), it is clear that V (y, t) ∈
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L∞; hence, e(t), r(t), z(t), y(t) ∈ L∞. From (5.42), it is also clear that

e(t) ∈ L1. From (5.15), it can be shown that ė(t) ∈ L∞. Since q̈d(t) is

assumed to be bounded, (5.23) can be used to prove that u(t) ∈ L∞.
The previous boundedness statements can also be used along with (5.21),

(5.25) and (5.43) to prove that Ẇ (y(t)) ∈ L∞; hence, W (y(t)) is uniformly

continuous. Lemma 5.2 can now be invoked to prove that kz(t)k → 0 as

t → ∞ ∀y(t0) ∈ S. Hence, (5.15) can be used to show that e(t), ė(t),

r(t)→ 0 as t→∞.

Remark 5.4 Since e(t) ∈ L1, similar arguments as provided in Equations
5.10 and 5.11 can be utilized to conclude that the exercise machine con-

troller in (5.23) is passive with respect the user power input.

5.2.5 Desired Trajectory Generator

The perturbation and numeric trajectory generators described previously

could be used to generate a reference trajectory that ensures that q̇d(t),

q̈d(t),
...
q d(t) ∈ L∞ with the exception that both methods depend on mea-

surement of the user’s power input p(t). As indicated by (5.4), p(t) is com-

puted based on the assumption that the user torque input is measurable.

Since the development in this section is based on the assumption that

the user torque input is not measurable, a torque estimator, denoted by

τ̂(t) ∈ R, is constructed as follows

τ̂(t) = −u(t) + Jq̈d(t) (5.49)

where u(t) is introduced in (5.23). Based on (5.49) the following Lemma

can be stated.

Lemma 5.4 The torque observer in (5.49) ensures that τ̂(t) ∈ L∞ and

τ(t) − τ̂(t) → 0 as t → ∞ provided the control gains ks, β1 and β2 are

selected according to Theorem 5.3.

Proof. Theorem 5.3 indicates that u(t), e(t), ė(t) ∈ L∞ and ė(t) → 0 as

t→∞. The assumption that q̈d(t) ∈ L∞ and the facts that u(t), ė(t) ∈ L∞
can be used along with (5.49) to show that τ̂(t) ∈ L∞. After taking the time
derivative of (5.3) and multiplying the result by J , the following expression

is obtained

Jė(t) = Jq̈(t)− Jq̈d(t) (5.50)

= τ(t)− τ̂(t)
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where (5.1) and (5.49) have been utilized. By integrating both sides of

(5.50) as follows Z t

0

(τ(σ)− τ̂(σ))dσ = J(e(t)− e(0)), (5.51)

the facts that e(t0), e(t) ∈ L∞ can be used to show that τ(t)− τ̂(t) ∈ L1.
Based on the fact that ė(t) → 0 as t → ∞, (5.50) can also be used to
conclude that τ(t)− τ̂(t)→ 0 as t→∞.
Based on Lemma 5.4, the perturbation and numerically-based extremum

seeking algorithms can be rewritten where p(t) is replaced by τ̂(t)q̇d(t).

5.2.6 Experimental Results and Discussion

The exercise machine testbed illustrated in Figure 5.1 was constructed and

used to complete experiments that illustrate the feasibility of using the pro-

posed control strategy for maximizing the power expenditure of the user.

As illustrated in Figure 5.1, the exercise machine consisted of a handle that

a user grasps that is connected to a rotating assembly that is mounted on

the rotor of a switched reluctance motor. The exercise machine testbed can

be modeled by the single-input single-output nonlinear system introduced

in (5.1). The inertia of the motor assembly was experimentally determined

to be J = 0.1 kg ·m2. A resolver mounted on the motor is used to mea-

sure the rotor position while rotor velocity was calculated using a standard

backward difference algorithm. The motor was interfaced with a Pentium

IV personal computer (PC) operating under Microsoft Windows 2000. The

control algorithm given in (5.23) was implemented in SIMULINK and con-

verted to an executable file via the Real-Time Workshop and the dSPACE

Target. The executable file was loaded in the dSPACE ControlDesk user

interface for control parameter tuning and data logging and plotting.

To demonstrate the performance of the control algorithm given in (5.23),

two experiments were conducted. For each experiment, a user held the han-

dle of the exercise machine shown in Figure 5.1 and rotated the motor shaft.

Based on the desired angular velocity generated by the numerical-based

extremum generation (Brent’s Method) algorithm, the controller given in

(5.23) modifies the resistive torque output of the motor to maximize the

user’s power expenditure. Quantifying the ability of the exercise machine to

find the maximum power expenditure of a user requires that the maximum

be known. Since the maximum power output for some user is unknown, the

first experiment exploits an artificial power function with a known max-

imum. Specifically, the following surrogate parabolic power function was
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utilized in the first experiment to generate q̇d(t)

p(t) = 3− 1
3
(q̇d(t)− 3)2 (5.52)

where it is clear that (5.52) is maximized at q̇∗d = 3 rad/ sec. That is, by

using the surrogate input described in (5.52) to generate q̇d(t), the ability

of the extremum seeking trajectory generator to accurately determine the

maximum can be quantitatively tested.

To generate q̇d(t) via Brent’s Method (see Section B.3.1 of Appendix

B), an initial estimate of the maximum q̇d(t) is required (i.e., γ2) along

with lower and upper bounds (i.e., γ1 and γ3, respectively). For the first

experiment, γ1, γ2, and γ3 were selected as follows

γ1 = 1 γ2 = 2.5 γ3 = 4.

To generate continuous bounded signals for q
(i)
d (t) ∀i = 1, 2, 3, the following

stable and proper fourth order filters were utilized

q
(i)
d =

81si−1

s4 + 12s3 + 54s2 + 108s+ 81
. (5.53)

A 1.5 second time delay was utilized to allow for the torque estimate τ̂(t)

to converge to τ(t) before Brent’s Method is invoked. Figure 5.2 illustrates

that the desired exercise machine velocity converges to the optimal velocity

setpoint (i.e., q̇∗d = 3 rad/ sec).
The control gains in (5.23) were adjusted to the following values

ks = 1 β1 + β2 = 0.05 αr = 0.05.

Figure 5.3 depicts the tracking error e(t). Figure 5.4 depicts the control

torque input u(t).

In the first experiment, the desired exercise machine trajectory was gen-

erated via Brent’s Method where τ(q̇d) was provided by a surrogate signal

with a known maximum as a means to illustrate the ability of the extremum

seeking trajectory generator to converge to the desired maximum. In the

second experiment, the surrogate signal was eliminated from the trajec-

tory generator, allowing the desired trajectory to seek the maximum power

expenditure of the user. For the second experiment, γ1, γ2, and γ3 were

selected as follows

γ1 = 1 γ2 = 3.5 γ3 = 6.

The desired trajectory was constructed using the same filters given in

(5.53), and a 1.5 second time delay was utilized to allow for the torque

estimate τ̂(t) to converge to τ(t). Figure 5.5 depicts q̇d(t).
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The control gains in (5.23) were adjusted to the following values

ks = 2 β1 + β2 = 0.1 αr = 0.1 .

Figure 5.6 depicts the tracking error e(t). Figure 5.7 depicts the control

torque input u(t).

In [67], the control algorithm given in (5.23) has been simulated for cases

where the desired trajectory was generated by the perturbation-based ex-

tremum seeking algorithm and Brent’s Method. The results shown in that

work indicate the controller’s performance in the ideal case. However, as

can be seen in Figures 5.3 and 5.6, the tracking error signals contain high

frequency components in practice and exhibit steady state tracking errors

of ±0.5 [rad/sec] and 1.0 to −0.5 [rad/sec], respectively. The magnitude of
the tracking errors may not be acceptable for typical tracking applications;

however, this application is atypical since a human is directly interact-

ing with the system in real-time. That is, the human input, denoted by

τ(q̇) in (5.1), can be viewed as an additive bounded disturbance that cor-

rupts the tracking performance. While the high-frequency estimator given

in (5.49) should theoretically compensate for this additive bounded distur-

bance, measurement noise as well as the limited bandwidth of the actuator

used in the experimental hardware resulted in some degradation in tracking

performance.

5.3 Steer-by-Wire

The general concept of the proposed steer-by-wire haptic-interface control

architecture is presented in Figure 5.8. Signal flow for a typical hybrid ve-

hicle is shown in this figure. It can be seen that the flow of information in a

steering system is bidirectional. The input to the Primary System from the

operator/driver has to be translated to the Secondary System. At the same

time, reaction forces at the Secondary System have to be fed back to the

Primary System even though no mechanical linkage exists between these

two systems. Hence, providing force feedback only handles one of the two

issues that arise out of decoupling the driver interface and the directional

control assembly. The other equally important piece of this system involves

the actuation of the directional control assembly to translate the driver’s

intentions into actions. In this section, a full state feedback controller is de-

signed to provide the desired force feedback on the steering wheel to reflect

the tire/road interface forces and simultaneously synchronize the motion of

the directional control assembly with the motion of the steering wheel. For
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FIGURE 5.1. Exercise Machine Testbed (Side View)
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FIGURE 5.7. Computed Motor Torque

the force feedback control design, a target system is used to generate the

reference signal for the displacement of the primary system. This type of

approach is motivated by the impedance control concept detailed in [35].

The controller adapts for parametric uncertainties in the system while en-

suring global asymptotic tracking for the “driver experience error” and the

“locked error”; however, torque measurements are required.

To make this concept economically feasible, it is essential to avoid the

use of sensors and actuators that are either expensive or require frequent

maintenance. Traditionally force/torque sensors have been used to measure

the forces that need to be fed back to the driver. However, sensors that can

provide the quality of signals necessary for satisfactory performance are

both expensive and unreliable. To eliminate torque measurements, a re-

cent idea found in [51] has been modified to develop torque observers for

the design of an exact model knowledge tracking controller. This controller

ensures that the torque observation error converges asymptotically to zero

while also ensuring global asymptotic tracking for the driver experience

error and the locked tracking error. Roughly speaking, the torque observer

design borrows concepts from robust control techniques that only impose

boundedness and smoothness restrictions on the unmeasurable torque sig-

nals.



© 2010 by Taylor and Francis Group, LLC

254 5. Human Machine Interaction

The design of the adaptive, nonlinear tracking controller being presented

here ensures that: i) the directional control assembly follows the driver

commanded input, and ii) the dynamics of the driver input device follows

that of a target system. As previously stated in the introduction, a com-

plete stability analysis, using Lyapunov-based techniques, will be used to

demonstrate that the proposed control law guarantees global asymptotic

regulation of the locked tracking and the driver experience tracking errors.

Furthermore, an extension is presented to study the controller design under

elimination of torque measurements. Representative numerical simulation

results are presented to validate the performance of the proposed control

law. Finally, a detailed description of an experimental test setup is provided

along with experimental verification of the control algorithm.
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FIGURE 5.8. Steer-by-Wire Interface System Architecture

5.3.1 Control Problem Statement

The steer-by-wire haptic interface control objective is twofold. First, the

driver’s steering angle commands must be accurately followed; this requires

the torque control input provided by the drive motor to be designed so that

the angular position of the directional control assembly accurately tracks

the input. Second, the driver must be given a realistic “virtual driving ex-

perience.” To this end, a reference model, or target dynamics for the driver
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input device, should be designed to generate the desired angular position

of the driver input device. The control torque provided by the feedback

motor must then be designed to ensure that the response of the driver in-

put device follows that of the reference system. The reader is referred to

Figure 5.9 for definition of the driver interface and the directional control

assembly. The figure depicts the essential components present in a steer-

by-wire system. The reader is referred to the nomenclature included in the

figure as an introduction to the various signals considered in the ensuing

development.

FIGURE 5.9. Driver Interface and Directional Control Subsystems in a

Steer-by-Wire Assembly

5.3.2 Dynamic Model Development

Detailed models for conventional and power assisted steering systems can

be found in many works in this research area (e.g., [44], [45]). The steer-

by-wire system involves the removal of the steering column present in a

conventional steering system and the introduction of two servo motors.

The steering system is separated into two subsystems: the primary and

the secondary subsystems. The primary system consists of the driver input

device (e.g., steering wheel or joystick) and a servo motor to provide the
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driver with force feedback. The secondary subsystem is composed of the

directional control assembly (e.g., rack and pinion system) and a servo

motor that provides the necessary torque input to drive the assembly and

steer the vehicle.

Steering System Model Formulation

In general, the steering system dynamics may be expressed in a simplified

form as

I1θ̈1 +N1

³
θ1, θ̇1

´
= α1τ1 + T1 (5.54)

I2θ̈2 +N2

³
θ2, θ̇2

´
= α2τ2 + T2 (5.55)

where θ1(t), θ̇1(t), θ̈1(t) ∈ R denote the angular position, velocity, and

acceleration, respectively, of the driver input device, I1, I2 ∈ R represent
the inertias of the driver input device and the vehicle directional control

assembly, respectively. N1

³
θ1, θ̇1

´
∈ R is an auxiliary nonlinear function

that describes the dynamics on the driver side, τ1(t) ∈ R denotes the driver
input torque, T1(t) ∈ R represents a control input torque applied to the

driver input device, θ2(t), θ̇2(t), θ̈2(t) ∈ R denote the angular position,

velocity, and acceleration, respectively, of the vehicle directional control

assembly, N2

³
θ2, θ̇2

´
∈ R is an auxiliary nonlinear function that is used to

describe the dynamics of the vehicle directional control assembly, τ2(t) ∈
R represents the reaction torque between the actuator on the directional
control assembly and mechanical subsystem actuated by the directional

control assembly, and T2(t) ∈ R denotes a control input torque applied

to the directional control assembly. The constants α1, α2 ∈ R are scaling
factors that could arise due to gearing in the system.

Remark 5.5 The damping and friction effects modeled by N1 (·) and N2 (·)
are assumed to be linearly parameterizable as

N1

³
θ1, θ̇1

´
= YN1

³
θ1, θ̇1

´
φN1 (5.56)

N2

³
θ2, θ̇2

´
= YN2

³
θ2, θ̇2

´
φN2 (5.57)

where YN1 (·) ∈ R1×p, YN2 (·) ∈ R1×qare regression matrices containing the
measurable signals, and φN1 ∈ Rp×1, φN2 ∈ Rq×1 are constant matrices
containing the unknown parameters in the model N1 (·) and N2 (·). Further,
it is also assumed that if θ1 (t) , θ̇1 (t) ∈ L∞ then N1

³
θ1, θ̇1

´
∈ L∞ and if

θ2 (t) , θ̇2 (t) ∈ L∞ then N2

³
θ2, θ̇2

´
∈ L∞.
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Reference Model Development

The second control objective is the provision of road “feel” to the driver.

To satisfy this goal, impedance control concepts [35] used for robot manip-

ulator position/force control problems have been applied to the problem.

Specifically, a reference model is designed as

IT θ̈d1 +NT

³
θd1, θ̇d1

´
= αT1τ1 + αT2τ2 (5.58)

where θd1(t), θ̇d1(t), θ̈d1(t) ∈ R denote the desired angular position, veloc-
ity, and acceleration, respectively, of the driver input device,NT

³
θd1, θ̇d1

´
∈

R represents an auxiliary target dynamic function for the driver input de-
vice, and αT1, αT2 ∈ R are scaling constants. The structure for (5.58) is
motivated by the following philosophy: If T1(t) was exactly equal to α2τ2(t)

in (5.54), then the dynamics given by (5.54) would give the driver a realistic

experience provided the auxiliary term N1 (·) in (5.54) could be designed
or constructed according to some desirable mechanical response. Thus, the

NT (·) term in (5.58) is designed to simulate the desired driving experi-

ence, and hence, the dynamics given by (5.58) serve as a desired trajectory

generator for control design purposes for (5.54).

Remark 5.6 The target dynamic function NT (·) must be selected to en-
sure that the desired driver input device trajectory and its first two deriva-

tives remain bounded at all times (i.e., θd1 (t), θ̇d1 (t), θ̈d1 (t) ∈ L∞). Sup-
pose NT (·) is selected as

NT = BT θ̇d1 +KT θd1 (5.59)

where BT , KT ∈ R are some positive design constants. If NT (·) is se-
lected according to (5.59), then standard linear arguments show that θd1 (t),

θ̇d1 (t), θ̈d1 (t) ∈ L∞. Furthermore, NT (·) can be constructed as a nonlinear
damping function by utilizing Lyapunov-type arguments.

Open-Loop Error System Development

To quantify the mismatches between the target system and the primary

system or driver experience tracking error, as well as the primary and

the secondary system or locked tracking error, filtered error signals, r1 (t),

r2 (t) ∈ R are defined as
r1 = ė1 + μ1e1 (5.60)

r2 = ė2 + μ2e2 (5.61)
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where μ1, μ2 ∈ R represent positive control gains, and the target following
error signal e1 (t) and the locked tracking error signal e2 (t) ∈ R are defined
as

e1 = θd1 − θ1 (5.62)

e2 = θ1 − θ2. (5.63)

After taking the first time derivative of (5.60) and (5.61), and substituting

the dynamics in (5.54), (5.55) and (5.58), the open loop error systems are

I1ṙ1 = Y1φ1 − T1 (5.64)

I2ṙ2 = Y2φ2 − T2 (5.65)

where Y1 (·) ∈ R1×r, Y2 (·) ∈ R1×s are regression matrices consisting of
measurable quantities, and φ1 ∈ Rr×1, φ2 ∈ Rs×1 are constant unknown
vectors. The reader is referred to Section B.3.3 of Appendix B for explicit

definitions of Y1 (·) , Y2 (·) , φ1 and φ2.

Remark 5.7 Based on the definition of r1 (t) and r2 (t) given in (5.60)

and (5.61), standard arguments [9] can be used to prove that: (i) if r1 (t),

r2 (t) ∈ L∞, then e1 (t), e2 (t), ė1 (t), ė2 (t) ∈ L∞, and (ii) if r1 (t) and
r2 (t) are asymptotically regulated, then e1 (t) and e2 (t) are asymptotically

regulated.

5.3.3 Control Development

The first control objective requires the target following and the locked

tracking error signals to approach zero asymptotically, while adapting for

the system parameters that are assumed to be unknown. Further, the sig-

nals θ1 (t), θ2 (t), θ̇1 (t), θ̇2 (t), τ1 (t), and τ2 (t) ∈ L∞ must be available for
measurement.

Control Formulation

Based on the subsequent stability analysis in Section 5.3.4 and the structure

of the open-loop error system given in (5.64) and (5.65), the control inputs

T1 (t) and T2 (t) are designed as

T1 = k1r1 + Y1φ̂1 (5.66)

T2 = k2r2 + Y2φ̂2 (5.67)

where k1, k2 ∈ R are constant positive control gains, and φ̂1 (t) ∈ Rr×1,
φ̂2 (t) ∈ Rs×1 are adaptive estimates for the unknown parameter matrices.
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The adaptive update laws are designed based on the subsequent stability

analysis as
·
φ̂1 = Γ1Y

T
1 r1 (5.68)

·
φ̂2 = Γ2Y

T
2 r2 (5.69)

where Γ1 ∈ Rr×r,Γ2 ∈ Rs×s are positive constant diagonal gain matrices.

Closed-Loop Error System Development

After substituting the control torques in (5.66) and (5.67) into the open-

loop dynamics in (5.64) and (5.65), the closed-loop error system becomes

I1ṙ1 = −k1r1 + Y1φ̃1 (5.70)

I2ṙ2 = −k2r2 + Y2φ̃2 (5.71)

where the parameter estimation error signals, φ̃1 (t) ∈ Rr×1, φ̃2 (t) ∈ Rs×1
are defined as

φ̃1 = φ1 − φ̂1 (5.72)

φ̃2 = φ2 − φ̂2. (5.73)

5.3.4 Stability Analysis

Theorem 5.5 Given the closed-loop system of (5.70) and (5.71), the track-

ing error signals defined in (5.62) and (5.63) are globally asymptotically

regulated in the sense that

lim
t→∞ e1 (t) , e2 (t) = 0. (5.74)

Proof : A non-negative, scalar function, denoted by V (t) ∈ R, is defined
as

V =
1

2
I1r

2
1 +

1

2
I2r

2
2 +

1

2
φ̃
T

1 Γ
−1
1 φ̃1 +

1

2
φ̃
T

2 Γ
−1
2 φ̃2. (5.75)

After taking the time derivative of (5.75) and making the appropriate sub-

stitutions from (5.70), (5.71), (5.72), and (5.73), the following expression

is obtained

V̇ = r1

h
−k1r1 + Y1φ̃1

i
+ r2

h
−k2r2 + Y2φ̃2

i
(5.76)

−φ̃T1
£
Y T
1 r1

¤− φ̃
T

2

£
Y T
2 r2

¤
where the fact that Γ1,Γ2 are constant diagonal gain matrices has been

utilized along with the following equalities:
·
φ̃1 = −

·
φ̂1 and

·
φ̃2 = −

·
φ̂2.
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After cancelling common terms, it is easy to see that we can upper bound

V̇ (t) as follows

V̇ ≤ −k1r21 − k2r
2
2. (5.77)

From (5.77) and (5.75), it is straightforward to see that r1 (t), r2 (t), φ̃1 (t),

φ̃2 (t) ∈ L∞. After utilizing (5.72), (5.73), and Remark 5.7, we can conclude
that e1 (t), ė1 (t), e2 (t), ė2 (t), φ̂1 (t), φ̂2 (t) ∈ L∞. Using Remark 5.6, (5.62),
(5.63) and their first derivatives, it is clear that θ1 (t), θ2 (t), θ̇1 (t) θ̇2 (t) ∈
L∞. This implies (using 5.56 and 5.57) that N1 (·) and N2 (·) are bounded.
From the explicit definition for Y1 (·) given in Section B.3.3 of Appendix B
and using the fact that τ1 (t), τ2 (t) ∈ L∞, it is easy to see that Y1 (·) ∈ L∞.
From (5.66), it is clear that the control torque T1 (t) ∈ L∞. Again, from
the definition of Y2 (·) in Section B.3.3 of Appendix B and from the above

facts, Y2 (·) ∈ L∞. From (5.67), it is clear that T2 (t) ∈ L∞. Using standard
signal chasing arguments, it can be shown that all the signals in the closed-

loop system remain bounded. In particular, from (5.70) and (5.71), ṙ1 (t),

ṙ2 (t) ∈ L∞. After employing a corollary to Barbalat’s Lemma [61], it is
easy to show that

lim
t→∞ r1 (t) , r2 (t) = 0.

Finally, Remark 5.7 can be used to prove the result stated in (5.74).

5.3.5 Elimination of Torque Measurements: Extension

For the steering system in (5.54) and (5.55), a controller can be designed to

eliminate the need for torque sensors. Here the assumption is that the driver

input torque, denoted by τ1 (t), and the reaction torque between the actua-

tor on the directional control assembly and mechanical subsystem actuated

by the directional control assembly, denoted by τ2 (t), are not available for

measurement. It is further assumed that the driver input torque τ1 (t) and

the reaction torque τ2 (t) and their first two derivatives remain bounded at

all times. Another assumption is that the dynamics are exactly known with

the exception of the torque signals τ1 (t) and τ2 (t), and that the signals

θ1 (t), θ2 (t), θ̇1 (t), and θ̇2 (t) are available for measurement. To account

for the lack of torque measurements, the torque observation errors, denoted

by τ̃1 (t), τ̃2 (t) ∈ R, are defined as

τ̃1 = τ1 − τ̂1 (5.78)

τ̃2 = τ2 − τ̂2 (5.79)

where τ̂1 (t), τ̂2 (t) ∈ R denote the driver input and the reaction observer
torques, respectively. The observer torques are subsequently designed in
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Section 5.3.5. The target dynamics are now generated as

IT θ̈d1 +NT

³
θd1, θ̇d1

´
= αT1τ̂1 + αT2τ̂2. (5.80)

Open-Loop Error System Development

After taking two time derivatives of (5.62) and (5.63), and substituting the

dynamics given in (5.54), (5.55), and the target dynamics given in (5.80),

the open loop error systems for the two systems can be written as

ë1 =

µ
1

IT

¶
(−NT (·) + αT1τ̂1 + αT2τ̂2)−

µ
1

I1

¶
(−N1 (·) + α1τ1 + T1)

(5.81)

ë2 =

µ
1

I1

¶
(−N1 (·) + α1τ1 + T1)−

µ
1

I2

¶
(−N2 (·) + α2τ2 + T2) . (5.82)

To simplify further analysis, two auxiliary signals p1 (t), p2 (t) ∈ R are

defined as

p1 = ė1 + β1e1 (5.83)

p2 = ė2 + β1e2 (5.84)

where β1 ∈ R is a constant positive control gain. Furthermore, two filtered
tracking error signals, denoted by s1 (t), s2 (t) ∈ R, are defined as

s1 = ṗ1 + p1 (5.85)

s2 = ṗ2 + p2. (5.86)

Control Development

Based on the subsequent control design/stability analysis and the structure

of the open-loop error system given by (5.81) and (5.82), the driver input

torque observer and the reaction torque observer are

·
τ̂1 = − (β1 +Ks + 1) τ̂1− I1

α1
[(β1 +Ks (β1 + 1)) ė1 +Ksβ1e1 + ρ1sgn (p1)]

(5.87)
·
τ̂2 = − (β1 +Ks + 1) τ̂2 − I2

α2
[(β1 +Ks (β1 + 1)) ė2 +Ksβ1e2]

− I2
α2

∙
α1
I1

µ ·
τ̂1 + (β1 +Ks + 1) τ̂1

¶
+ ρ2sgn (p2)

¸
(5.88)

where sgn (·) denotes the standard signum function, Ks, ρ1, ρ2 ∈ R are

positive control gains while p1, p2, and β were introduced in (5.83) and
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(5.84). Based on the subsequent stability analysis, the control inputs T1 (t)

and T2 (t) are designed as

T1 = N1 (·) +
µ
I1
IT

¶
(−NT (·) + αT1τ̂1 + αT2τ̂2)− α1τ̂1 (5.89)

T2 = N2 (·) +
µ
I2
I1

¶
(−N1 (·) + T1 + α1τ̂1)− α2τ̂2. (5.90)

To facilitate the subsequent stability analysis, two auxiliary “disturbance

signals,” denoted by η1 (t), η2 (t) ∈ R, are defined as

η1 =

µ
α1
I1

¶
(τ̇1 + (β1 +Ks + 1) τ1) (5.91)

η2 =

µ
α2
I2

¶
(τ̇2 + (β2 +Ks + 1) τ2) . (5.92)

Based on the fact that τ1 (t) , τ2 (t) and its derivatives are bounded, η1 (t),

η2 (t), η̇1 (t), η̇2 (t) ∈ L∞. To facilitate the subsequent closed-loop error
system development and the stability analysis, one is required to select the

control gains ρ1 and ρ2, introduced in (5.87) and (5.88), as follows

ρ1 ≥ |η1|+
¯̄̄̄
dη1
dt

¯̄̄̄
(5.93)

ρ2 ≥ |η2|+
¯̄̄̄
dη2
dt

¯̄̄̄
+ ρ1. (5.94)

Closed-Loop Error System Development

The control torques in (5.89) and (5.90) can be substituted into the open-

loop dynamics in (5.81) and (5.82), so that the closed-loop error system

becomes

ë1 = −
µ
α1
I1

¶
(τ1 − τ̂1) (5.95)

ë2 =

µ
α1
I1

¶
(τ1 − τ̂1)−

µ
α2
I2

¶
(τ2 − τ̂2) . (5.96)

After taking the first time derivative of (5.85) and (5.86), and using (5.95),

(5.96), and their first derivatives, the closed-loop error system can be writ-

ten as

ṡ1 = −Kss1 − η1 − ρ1sgn (p1) (5.97)

ṡ2 = −Kss2 + η1 − η2 − ρ2sgn (p2) (5.98)

where (5.91), (5.92), (5.87), and (5.88) have been utilized.
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Remark 5.8 Based on the definition of s1 (t) and s2 (t) given in (5.85) and

(5.86), extensions of the arguments made in [9] can be used to prove that:

(i) if s1 (t), s2 (t) ∈ L∞, then e1 (t), e2 (t), ė1 (t), ė2 (t), ë1 (t), ë2 (t) ∈ L∞,
and (ii) if s1 (t) and s2 (t) are asymptotically regulated, then e1 (t), e2 (t),

ė1 (t), ė2 (t), ë1 (t), ë2 (t) are also asymptotically regulated [10].

Stability Proof

Theorem 5.6 Given the closed-loop system of (5.97) and (5.98), the track-

ing error signals defined in (5.62) and (5.63) along with the torque observa-

tion errors defined in (5.78) and (5.79) are globally asymptotically regulated

in the sense that

lim
t→∞ e1 (t) , e2 (t) , τ̃1 (t) , τ̃2 (t) = 0. (5.99)

Proof : A non-negative, scalar function, denoted by Va1(t) ∈ R, is defined
as

Va1 =
1

2
s21. (5.100)

After taking the time derivative of (5.100) and making appropriate substi-

tutions from (5.97), then V̇a1 (t) maybe expressed as

V̇a1 = −Kss
2
1 + (ṗ1 + p1) (−η1 − ρ1sgn (p1)) (5.101)

where the definitions of s1 (t) and p1 (t) given in (5.85) and (5.83) have

been utilized. After integrating both sides of (5.101), and performing some

mathematical operations (refer to Section B.3.4 of Appendix B), the fol-

lowing inequality can be obtained

Va1 (t)− Va1 (t0) ≤ −Ks

tZ
t0

s21 (σ) dσ

+

⎡⎣ tZ
t0

|p1 (σ)|
µ
|η1|+

¯̄̄̄
dη1 (σ)

dσ

¯̄̄̄
− ρ1

¶
dσ

⎤⎦
+ [|p1| (|η1|− ρ1)] + η1 (t0) p1 (t0) + ρ1 |p1 (t0)|

(5.102)

After applying (5.93) to the bracketed terms in (5.102), Va1 (t) can be upper

bounded as

Va1 (t) ≤ Va1 (t0)−Ks

tZ
t0

s21 (σ) dσ + ζ01 (5.103)

where ζ01 ∈ R is a positive constant defined as
ζ01 = η1 (t0) p1 (t0) + ρ1 |p1 (t0)| . (5.104)
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For the error system given in (5.98), a second non-negative, scalar function,

denoted by Va2(t) ∈ R, is
Va2 =

1

2
s22. (5.105)

Following a similar analysis to that presented above, the upper bound for

Va2(t) becomes

Va2 (t) ≤ Va2 (t0)−Ks

tZ
t0

s22 (σ) dσ + ζ02 (5.106)

where ζ02 ∈ R is a positive constant defined as

ζ02 = η2 (t0) p2 (t0)− η1 (t0) p2 (t0) + ρ2 |p2 (t0)| . (5.107)

To complete the analysis, the following composite non-negative, scalar

function, Va(t) ∈ R, is selected

Va = Va1 + Va2 =
1

2
s21 +

1

2
s22. (5.108)

After using the bounds for Va1(t) and Va2(t) obtained in (5.103) and (5.106),

the upper bound for Va(t) becomes

Va (t) ≤ Va (t0)−Ks

tZ
t0

s21 (σ) dσ −Ks

tZ
t0

s22 (σ) dσ + ζ0 (5.109)

where ζ0 = ζ01 + ζ02. Clearly, from the inequality in (5.109), Va (t) ∈ L∞.
From the definition of Va (t) in (5.108), s1 (t), s2 (t) ∈ L∞. From Remark

5.8, e1 (t), e2 (t), ė1 (t), ė2 (t), ë1 (t), ë2 (t) ∈ L∞. From (5.97), (5.98), (5.83)
and (5.84) and the boundedness of η1 (t) and η2 (t), it is easy to see that

ṡ1 (t), ṡ2 (t), p1 (t), p2 (t) ∈ L∞. From (5.95) and (5.96), it is now clear that
τ̂1 (t), τ̂2 (t) ∈ L∞. From equation (5.89), it can be shown that T1 (t) ∈ L∞.
Using this fact, it is easy to see from (5.90) that T2 (t) ∈ L∞. Standard
signal chasing arguments can now be employed to show that all signals in

the system remain bounded. If (5.109) is rewritten as

Ks

tZ
t0

s21 (σ) dσ +Ks

tZ
t0

s22 (σ) dσ ≤ Va (t)− Va (t0) + ζ0, (5.110)

then it is clear that s1 (t), s2 (t) ∈ L2. Further, Barbalat’s Lemma [61] can
be applied to show that

lim
t→∞ s1 (t) , s2 (t) = 0, (5.111)
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and hence, from Remark 5.8,

lim
t→∞ e1 (t) , e2 (t) , ė1 (t) , ė2 (t) , ë1 (t) , ë2 (t) = 0. (5.112)

Since ë1 (t) and ë2 (t) are regulated to zero as indicated by (5.112), then

(5.95) and (5.96) and the definitions provided in (5.78) and (5.79) show

that

lim
t→∞ τ̃1 (t) , τ̃2 (t) = 0. (5.113)

Remark 5.9 The structure of the torque observers given by (5.87) and

(5.88) contain discontinuous terms; however, the control inputs that are

applied to the plant are not discontinuous. That is, after a close exami-

nation of (5.87) and (5.88), it clear that signals τ̂1 (t) and τ̂2 (t) are low

pass filtered outputs of a discontinuous control signal. Therefore, the control

strategy only utilizes the signals τ̂1 (t) and τ̂2 (t), so that the control signals

applied to the plant will not be discontinuous.

5.3.6 Numerical Simulation Results

Two sets of simulations were performed to study the performance of the

control algorithms: (i) System with an adaptive controller as developed

in Section 5.3.3, and (ii) System with a exact model knowledge controller

(EMK controller) presented in Section 5.3.5. The simulated vehicle steering

system was assumed to have the dynamics described by (5.54) and (5.55).

The nonlinear damping and friction functions were chosen as [44]

Ni

³
θi, θ̇i

´
= Biθ̇i +Kiθi i = 1, 2 (5.114)

The system parameters were chosen to be the same as that of the actual

experimental setup described in Section 5.3.7. These values are listed in

Table 5.1.

The reference trajectory was generated according to (5.58). The user

defined function NT

³
θd1, θ̇d1

´
was chosen to have the same form as in

(5.114). The reaction torque applied on the directional control assembly

(due to the tire-road interface forces), was assumed to be related to the an-

gular deflection of the directional control assembly in the following manner

[58]

τ2 = −Cd tanh (γθ2) (5.115)

where Cd, γ ∈ R are constant tire-dependent parameters listed in Table 5.1.
Each set of simulations were performed for two driver input torque profiles:

Case 1 : τ1 (t) = 0.8 sin(5t)(1−exp(−3t)) which represents the input to per-
form a standard slalom maneuver; and Case 2 : τ1 (t) = 0.9 (1− exp(−3t))
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Symbol Value Units Symbol Value Units

I1 1.16e− 2 kg.m2 IT 1.5e− 2 kg.m2

B1 1.9e− 2 kg.m2/s BT 2e− 2 kg.m2/s

K1 0 N.m KT 0 N.m

α1 1 − αT1 1 −
I2 2.35e− 2 kg.m2 αT2 0.15 −
B2 0.6 kg.m2/s Cd 150 N.m

K2 0 N.m γ 0.02 −
α2 1 −

TABLE 5.1. List of Simulation Parameters and Corresponding Values

which is the input that the driver would apply to follow a circular trajectory

(refer to Figure 5.10).

For the first set of simulations, the torque measurements are directly

available for use in the control algorithm as opposed to torque observer

estimation. All adaptive estimates were initialized to zero in this simula-

tion. The driver experience and locked tracking errors, e1(t) and e2(t), are

presented in Figure 5.11. The driver experience tracking error corresponds

to the differences between the target and the primary subsystem of the

haptic interface steer-by-wire system. As shown, the error e1(t) approaches

zero after t = 5s for both inputs, which implies that the driver experiences

the desired “feel” as specified by the target parameters (which corresponds

to a conventional steering system with the target parameters). The locked

tracking error, e2(t), also approaches zero for both inputs. This demon-

strates that the driver’s steering commands are followed by the directional

control assembly. These two facts prove that the control algorithm achieves

the two goals outlined in the control objective (refer to Section 5.3.1 for

details). Selected gains can be increased for faster convergence rates at the

cost of larger control effort. All the parameter estimates were observed to

settle down at constant values. The plots for adaptive estimates have been

left out for brevity. The corresponding motor control torques are displayed

in Figure 5.12. Due to the significantly higher dynamic friction parameter,

B2, of the secondary subsystem (refer to Table 5.1), the directional con-

trol assembly requires a larger magnitude of control effort as compared to

the primary subsystem for both steering profiles. The performance of the

control algorithm is further evaluated in terms of three performance mea-

sures: (i) Peak error (in %), (ii) Steady-state error (in %), and (iii) Settling
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FIGURE 5.10. Driver Input Torque Profiles for Steering Input for a Slalom Ma-

neuver and a Circular Trajectory

time (in seconds). These are tabulated as shown in the Table 5.2. Here, 5%

settling time is considered for Case 2 only.

For the second set of simulations, the control algorithm proposed in Sec-

tion 5.3.5 was simulated on the same system as described in (5.54) and

(5.55) having the same parameters as given in Table 5.1. However, the es-

timated torques are used to generate the target dynamics per (5.80) as

opposed to “measured” torques that were available in the previous set of

simulations. The driver experience and locked tracking errors, e1(t) and

e2(t), are shown in Figure 5.13. The errors e1(t) and e2(t) are within ±0.01
rad for both cases. The corresponding control torques, T1 (t) and T2 (t), are

Performance Case 1 Case 2

Measure e1 e2 e1 e2

Peak Error (%) 0.0577 0.9755 0.9351 2.4913

Steady-State Error (%) 0 0.001 0.0002 0.0025

Settling time (s) − − 2.297 2.285

TABLE 5.2. Summary of Results for Adaptive Controller Simulation
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FIGURE 5.11. Adaptive Control Simulation Results: Tracking Errors (a) e1 (t) ,

and (b) e2 (t)
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FIGURE 5.12. Adaptive Control Simulation Results: Control Torques, (a) T1 (t) ,

and (b) T2 (t)
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Performance Case 1 Case 2

Measure e1 e2 e1 e2

Peak Error (%) 0.0222 0.0644 0.1521 0.0698

Steady-state Error (%) 0.0222 0.0444 0.1521 0.0698

TABLE 5.3. Summary of Results for EMK Controller Simulation

shown in Figure 5.14. The torque estimate values τ̂1 and τ̂2 are shown in

Figure 5.15. Here it is observed that the driver input torque, τ1 (t) shown in

Figure 5.10 is accurately observed by the signal τ̂1 (t) shown in Figure 5.15.

These numerical results indicate the feasibility of using torque observation

values in the control algorithm thus eliminating the need for the introduc-

tion of torque transducers in the steering system hardware. As with the

previous set of simulations, the performance is evaluated using peak error

and steady-state error performance measures, and the results are tabulated

in Table 5.3
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FIGURE 5.13. EMK Controller Simulation Results: Tracking Errors (a) e1 (t) ,

and (b) e2 (t).

To evaluate the steering system behavior, a standard steering mechanism

has been simulated whose dynamics have the form as (5.58). Furthermore,
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FIGURE 5.14. EMK Controller Simulation Results: Control Torques (a) T1 (t) ,

and (b) T2 (t)
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the lumped model parameters are assumed to be the sum of the primary

and secondary system parameters given in Table 5.1 so that

(I1 + I2) θ̈a +Na

³
θa, θ̇a

´
= α1τ1 + α2τ2

Na

³
θa, θ̇a

´
= (B1 +B2) θ̇a + (K1 +K2) θa.

(5.116)

To demonstrate that the driver can be provided with a tunable force

feedback, the simulation was executed with a different set of target param-

eters. In this case, the parameter BT was increased an order of magnitude

to 0.2 kg − m2/s while all other parameters and inputs were unchanged

for Case 1. The results are shown in Figure (5.16) which shows the target

system displacement, θd (t) for the original system and the system with

increased damping along with the response of a standard steering system,

θa (t). As can be observed, the magnitude of θd (t) for the system with the

original parameters is greater than θa (t) showing that the values αT1 and

αT2 can be used to provide variable power assist. Further, the magnitude of

θd (t) for the system with the original parameters is greater than that with

increased damping, showing that the nature of the system response can

also be varied by adjusting the target system parameters IT , BT , and KT .

Thus, the driver can be provided with a customized “feel” at the steering

wheel (i.e., the steering wheel can be made lighter or heavier depending

on the operator’s need and comfort) by appropriately changing the target

parameters for a given steer-by-wire system.

5.3.7 Experimental Results

To address some of the practical issues involved in the implementation of

the control algorithm on a prototype steer-by-wire system, the proposed

control laws were tested on an experimental testbench.

Experimental Setup

The experimental configuration is shown in Figure 5.17. It consisted of two

switched-reluctance motors (SRMs) controlled using NSK drives, a steer-

ing wheel, a rack and pinion system, a hydraulic damper, and a spring.

One of the SRMs provided the road feedback to the operator by means of

the steering wheel, while the second motor actuated the directional control

assembly. The SRMs had inbuilt resolvers that provided high resolution an-

gular displacement measurements. Additionally, a Linear Variable Differen-

tial Transformer (LVDT) was also used to measure the rack displacement.

Optionally, the hydraulic damper and/or the spring could be connected to
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the rack to simulate road reaction forces. This setup created a steer-by-

wire steering system similar to one that can be used in a ground vehicle

to experimentally validate the proposed control algorithm. Notice that the

essential components are quite the same as shown in Figure 5.9. Precision

torque sensors that are required for the accurate implementation of the

adaptive control algorithm were prohibitively expensive to incorporate in

this study, while attempts with low quality sensors were unsuccessful due

to the inherent drift and noise in the sensor signals. Hence, in this exper-

imental section, the algorithms presented in Section 5.3.5 (which do not

require the measurement of torque) are implemented.

An AMD Athlon 1.2 GHz PC running QNX 6.2 RTP (Real Time Plat-

form), a real-time micro-kernel based operating system, provided the com-

putational power to implement the control algorithms. An in-house graph-

ical user interface program, Qmotor 3.0, ensured real-time execution of the

control algorithms written in C++. This also facilitated real time graphing,

data logging and on-line gain tuning. Data acquisition and control imple-

mentation were performed at a frequency of 1.0 kHz using the ServoToGo

I/O board.

To study and evaluate the effect of this haptic interface feedback system,

the system was also equipped with a virtual reality environment. This con-

sisted of a 6000 × 8000 screen along with a high capacity projector which
provided the visual feedback for driver-in-loop experiments. A MATLAB-

based system was built, both to simulate the vehicle chassis dynamics as

well as to render a VRML scene in real-time. Alternate input devices such

as a joystick incorporating force feedback were also considered to provide

assistance to handicapped drivers.

Tests and Results

Preliminary tests were performed to determine the system parameters listed

in Table 5.1. The target dynamics were generated as shown in (5.80). Again,

experiments were performed for the two cases as specified in the previous

section. For each case, the gains were tuned until the best system perfor-

mance was obtained. The values of the target system parameters, IT , BT ,

and KT were chosen in the previous section and listed in Table 5.1. The

experimental results for driver experience error e1 (t), and locked tracking

error e2 (t) are shown in Figure 5.18. As with the simulations, the perfor-

mance of the control algorithm in an experimental test is evaluated using

the same performance indices as the EMK controller simulation. The results

are shown in Table 5.4.
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Performance Case 1 Case 2

Measure e1 e2 e1 e2

Peak Error (%) 1.5 3.2 5.2 2.5

Steady-state Error (%) 1.5 2.0 5.2 2.39

TABLE 5.4. Summary of Results for Experimental Evaluation

As can be viewed from Figure 5.18, the errors e1 (t) and e2 (t), have small

magnitudes for both the maximum and steady-state values in each case.

The steady-state errors for the case of the step input (case 2) are mainly

due to the large static friction present in the physical system, which was

very hard to compensate for. As in the simulations, these error values show

that θ1 (t) tracks the reference trajectory θd (t) and that θ2 (t) follows θ1 (t)

(and hence achieves the two control objectives outlined). The values for the

control torques T1 (t) and T2 (t) are shown in Figure 5.19. It can be seen

that the control input torques follow a similar pattern as in the simulations.

One of the differences, though is, the inherent noise in the experimental

system. The actual driver input torques, τ1 (t), for both cases, and their

estimates, τ̂1 (t), are shown in Figure 5.20. The estimated values shown

here and small magnitude of error values in Figure 5.18 prove the efficacy

of the controller and the ability of torque observers to accurately estimate

input torque values.

The target system response for all the simulation and experimental tests

has been plotted in Figure 5.21. During the experiment, the operator could

feel the steering wheel become lighter or heavier and the system response

differ for different sets of target parameters. Since e1 (t) and e2 (t) are small

in magnitude in comparison to the target trajectories, in effect, the target

system response is indeed the actual response of the system.

5.4 Robot Teleoperation

As stated in the introduction to the chapter, the practical importance as

well as the challenging theoretical nature of the teleoperator problem has

spurred a significant amount of research activity in the past few years. The

teleoperation problem that is being solved here comprises of two parts: (a)

ensuring the coordination of a master and a slave manipulator, and (b) en-

suring passivity of the overall system. Through the use of transformations,

dynamic trajectory generations, and continuous nonlinear integral feedback
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terms, two controllers are proven through Lyapunov-based techniques to

passively coordinate the master and slave manipulators with respect to the

scaled user and environmental power despite incomplete system knowledge.

Implementing either controller would provide the user of the closed loop

teleoperator system with a power scalable, coordinated master-slave tool

that provides safe and stable user feedback. The first controller is proven to

yield a semi-global asymptotic result in the presence of parametric uncer-

tainty in the master and slave manipulator dynamic models provided the

user and environmental input forces are measurable; henceforth, referred

to as the MIF (Measurable Input Force) controller. The second controller

yields a global asymptotic result despite unmeasurable user and environ-

mental input forces (UMIF) provided the dynamic models of the respective

manipulators are known. The development of each controller consists of the

following three steps. In the first step, a transformation is utilized which en-

codes both the coordination and passivity objectives within the closed loop

system. Next, a dynamic trajectory generating system is designed which

assists in achieving overall system passivity as well as keeping all signals

bounded in the closed loop system. Finally, a continuous nonlinear integral

feedback observer (see [51] and [64]) is exploited to compensate for the lack

of system dynamics information or user and environmental force measure-

ments. Simulation results provided at the end of the section demonstrate

for both controllers that the coordination and tracking control objectives

are met.

5.4.1 System Model

The dynamic model for a 2n-DOF nonlinear teleoperator consisting of a

revolute n-DOF master and a revolute n-DOF slave revolute robot are

described by the following expressions [32]

γ {M1(q1(t))q̈1(t) + C1(q1(t), q̇1(t))q̇1(t) +B1q̇1(t) = T1(t) + F1(t)}
(5.117)

M2(q2(t))q̈2(t) + C2(q2(t), q̇2(t))q̇2(t) +B2q̇2(t) = T2(t) + F2(t). (5.118)

In (5.117) and (5.118), γ ∈ R denotes a positive adjustable power scaling
term, qi(t), q̇i(t), q̈i(t) ∈ Rn denote the link position, velocity, and accelera-
tion, respectively, ∀i = 1, 2 where i = 1 denotes the master manipulator and
i = 2 denotes the slave manipulator, Mi(qi) ∈ Rn×n represents the inertia
effects, Ci(qi, q̇i) ∈ Rn×n represents centripetal-Coriolis effects, Bi ∈ Rn×n
represents the constant positive definite, diagonal dynamic frictional ef-

fects, Ti(t) ∈ Rn represents the torque input control vector, F1(t) ∈ Rn
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represents the user input force, and F2(t) ∈ Rn represents the input force
from the environment. The subsequent development is based on the prop-

erty that the master and slave inertia matrices are positive definite and

symmetric in the sense that [36]

m1i kξk2 ≤ ξTMi(qi)ξ ≤ m2i kξk2 (5.119)

∀ξ ∈ Rn and i = 1, 2 where m1i, m2i ∈ R are positive constants, and k·k
denotes the Euclidean norm. The subsequent development is also based on

the assumption that qi(t), q̇i(t) are measurable, and that the inertia and

centripetal-Coriolis matrices are second order differentiable.

5.4.2 MIF Control Development

For the MIF controller development, the subsequent analysis will prove a

semi-global asymptotic result in the presence of parametric uncertainty in

the master and slave manipulator dynamic models provided the user and

environmental input forces are measurable. This development requires the

assumption that Fi(t), Ḟi(t), F̈i(t) ∈ L∞ ∀i = 1, 2 (precedence for this type
of assumption is provided in [32] and [34]).

Objective and Model Transformation

One of the two primary objectives for the bilateral teleoperator system is

to ensure coordination between the master and the slave manipulators in

the following sense

q2(t)→ q1(t) as t→∞. (5.120)

The other primary objective is to ensure that the system remains passive

with respect to the scaled user and environmental power in the following

sense [32] Z t

t0

(γq̇T1 (τ)F1(τ) + q̇T2 (τ)F2(τ))dτ ≥ −c21 (5.121)

where c1 is a bounded positive constant, and γ was introduced in (5.117).

The passivity objective is included in this section to ensure that the hu-

man can interact with the robotic system in a stable and safe manner,

and that the robot can also interact with the environment in a stable and

safe manner. To facilitate the passivity objective in (5.121), an auxiliary

control objective is utilized. Specifically, the coordinated master and slave

manipulators are forced to track a desired bounded trajectory, denoted by

qd(t) ∈ Rn, in the sense that [33]

q1(t) + q2(t)→ qd(t). (5.122)
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An additional objective is that all signals are required to remain bounded

within the closed loop system.

To facilitate the subsequent development, a globally invertible transfor-

mation is defined that encodes both the coordination and passivity objec-

tives as follows

x , Sq (5.123)

where x(t) ,[xT1 (t) xT2 (t)]T ∈ R2n, q(t) ,[qT1 (t) qT2 (t)]
T ∈ R2n, and S ∈

R2n×2n is defined as follows

S ,
∙
I −I
I I

¸
S−1 =

1

2

∙
I I

−I I

¸
(5.124)

where I ∈ Rn×n denotes the identity matrix. Based on (5.123), the dynamic
models given in (5.117) and (5.118) can be expressed as follows

M̄(x)ẍ+ C̄(x, ẋ)ẋ+ B̄ẋ = T̄ (t) + F̄ (t) (5.125)

where

M̄(x) = S−T
∙
γM1 02n
02n M2

¸
S−1 ∈ R2n×2n (5.126)

C̄(x, ẋ) = S−T
∙
γC1 02n
02n C2

¸
S−1 ∈ R2n×2n (5.127)

B̄ = S−T
∙
γB1 02n
02n B2

¸
S−1 ∈ R2n×2n (5.128)

T̄ (t) = S−T
£
γTT

1 TT
2

¤T ∈ R2n (5.129)

F̄ (t) ,
∙
F̄1(t)

F̄2(t)

¸
= S−T

∙
γF1
F2

¸
∈ R2n (5.130)

and 02n ∈ Rn×n denotes an n × n matrix of zeros. The subsequent de-

velopment is based on the property that M̄(x), as defined in (5.126), is a

positive definite and symmetric matrix in the sense that [36]

m̄1 kξk2 ≤ ξT M̄(x)ξ ≤ m̄2 kξk2 (5.131)

∀ξ ∈ R2n where m̄1, m̄2 ∈ R are positive constants. It is also noted that
M̄(x) is second order differentiable by assumption.

To facilitate the subsequent development and analysis, the control ob-

jectives can be combined through a filtered tracking error signal, denoted

by r(t) ∈ R2n, that is defined as follows

r , ė2 + α1e2 (5.132)
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where e2(t) ∈ R2n is defined as follows

e2 , ė1 + α2e1 (5.133)

where α1, α2 ∈ R are positive control gains, and e1(t) ∈ R2n is defined as
follows

e1 , xd − x (5.134)

where xd(t) ∈ R2n is defined as follows

xd ,
£
0Tn qTd (t)

¤T
(5.135)

where 0n ∈ Rn denotes an n× 1 vector of zeros. Based on the definition of
x(t) in (5.123) and e1(t) in (5.134), it is clear that if ke1(t)k→ 0 as t→∞
then q2(t)→ q1(t) and that q1(t) + q2(t)→ qd(t) as t→∞.

The desired trajectory qd(t) introduced in (5.122) and (5.135) is gener-

ated by the following expression

MT q̈d +BT q̇d +KT qd = F̄2. (5.136)

In (5.136),MT , BT , KT ∈ Rn×n represent constant positive definite, diago-
nal matrices, and F̄2(t) was introduced in (5.130). Based on the assumption

that F̄2(t) ∈ L∞, standard linear analysis techniques can be used to prove
that qd(t), q̇d(t), q̈d(t) ∈ L∞. The time derivative of (5.136) is given by the
following expression

MT
...
q d +BT q̈d +KT q̇d =

·
F̄ 2. (5.137)

From (5.137), the fact that q̇d(t), q̈d(t) ∈ L∞, and the assumption that
·
F̄ 2(t) ∈ L∞, it is clear that ...q d(t) ∈ L∞. By taking the time derivative of
(5.137), and utilizing the assumption that

··
F̄ 2(t) ∈ L∞, we can also show

that
....
q d(t) ∈ L∞.

Closed-Loop Error System

Based on the assumption that the user and environmental forces are mea-

surable, the control input T̄ (t) of (5.129) is designed as follows

T̄ , ū− F̄ (5.138)

where ū(t) ∈ R2n is an auxiliary control input. Substituting (5.138) into
(5.125) yields the following simplified system

M̄ẍ+ C̄ẋ+ B̄ẋ = ū. (5.139)
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After taking the time derivative of (5.132) and premultiplying by M̄(x),

the following expression can be obtained

M̄ṙ = M̄
...
xd +

.

M̄
..
x+

d

dt

£
C̄ẋ+ B̄ẋ

¤− .
ū+ α2M̄ë1 + α1M̄ ė2 (5.140)

where (5.132)—(5.134), and the time derivative of (5.139) were utilized. To

facilitate the subsequent analysis, the expression in (5.140) is rewritten as

follows

M̄ṙ = Ñ +Nd − e2 −
.
ū− 1

2

.

M̄r (5.141)

where the auxiliary signal Ñ(x, ẋ, ẍ, t) ∈ R2n is defined as
Ñ , N −Nd (5.142)

where N(x, ẋ, ẍ, t) ∈ R2n is defined as

N , M̄
...
xd+

.

M̄ẍ+α2M̄ë1+α1M̄ ė2+ e2+
d

dt

£
C̄ẋ+ B̄ẋ

¤
+
1

2

.

M̄r (5.143)

and Nd(t) ∈ R2n is defined as
Nd , N |x=xd, ẋ=ẋd, ẍ=ẍd (5.144)

= M̄(xd)
...
xd +

.

M̄(xd, ẋd)ẍd +
d

dt

£
C̄(xd, ẋd)ẋd + B̄ẋd

¤
.

After defining an augmented error vector z (t) as follows

z ,
£
eT1 eT2 rT

¤T
, (5.145)

the subsequent analysis can be facilitated by developing the following upper

bound °°°Ñ°°° ≤ ρ (kzk) kzk (5.146)

where the positive function ρ (kzk) is non-decreasing in kzk (see Section
B.3.5 of Appendix B for further details).

Based on (5.141), the auxiliary control input ū(t) introduced in (5.138)

is designed as follows

ū , (ks + 1)
∙
e2(t)− e2(t0) + α1

Z t

t0

e2(τ)dτ

¸
+ (β1 + β2)

Z t

t0

sgn(e2(τ))dτ

(5.147)

where ks, β1, β2 ∈ R are positive control gains, and sgn(·) denotes the
vector signum function. The term e2(t0) in (5.147) is included so that

ū(t0) = 0. The time derivative of (5.147) is given by the following ex-

pression
.
ū = (ks + 1)r + (β1 + β2) sgn(e2). (5.148)
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Substituting (5.148) into (5.141) yields the following closed-loop error sys-

tem

M̄ṙ = −(ks + 1)r − (β1 + β2) sgn(e2) + Ñ +Nd − e2 − 1
2

.

M̄r. (5.149)

Remark 5.10 Based on the expressions in (5.135), (5.144) and the fact

that qd(t), q̇d(t), q̈d(t),
...
q d(t), and

....
q d(t) ∈ L∞, then kNd(t)k and

°°°Ṅd(t)
°°°

can be upper bounded by known positive constants ς1, ς2 ∈ R as follows
kNd(t)k ≤ ς1

°°°Ṅd(t)
°°° ≤ ς2. (5.150)

Stability Analysis

Theorem 5.7 The controller given in (5.138) and (5.147), ensures that all

closed-loop signals are bounded and that coordination between the master

and slave manipulators is achieved in the sense that

q2(t)→ q1(t) as t→∞ (5.151)

provided the control gain β1 introduced in (5.147) is selected to satisfy the

following sufficient condition

β1 > ς1 +
1

α1
ς2 (5.152)

where ς1 and ς2 are given in (5.150), the control gains α1 and α2 are

selected greater than 2, and ks is selected sufficiently large with respect to

the initial conditions of the system.

Proof. See Section B.3.6 of Appendix B.

Theorem 5.8 The controller given in (5.138) and (5.147) ensures that

the teleoperator system is passive with respect to the scaled user and envi-

ronmental power.

Proof. See Section B.3.7 of Appendix B.

Simulation Results

A numerical simulation was performed to demonstrate the performance of

the controller given in (5.138) and (5.147). The following 2-link, revolute

robot dynamic model was utilized for both the master and slave manipu-

lators [61]∙
τ i1
τ i2

¸
+

∙
Fi1
Fi2

¸
= A (qi1 , qi2)

∙
q̈i1
q̈i2

¸
++

∙
fd1i 0

0 fd2i

¸ ∙
q̇i1
q̇i2

¸
+B (qi1 , qi2 , q̇i1 , q̇i2)

∙
q̇i1
q̇i2

¸
(5.153)
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where

A (·) ,
∙
p1i + 2p3ic(qi2) + 2p4is(qi2) p2i + p3ic(qi2) + p4is(qi2)

p2i + p3ic(qi2) + p4is(qi2) p2i

¸

B (·) ,
∙ − (p3is(qi2)− p4ic(qi2)) q̇i2 − (p3is(qi2)− p4ic(qi2)) (q̇i1 + q̇i2)

(p3is(qi2)− p4ic(qi2)) q̇i1 0

¸
s(·) and c(·) denote the sin(·) and cos(·) functions. For the master ma-
nipulator, i = 1 and p11 = 3.34 [kg·m2], p21 = 0.97 [kg·m2], p31 = 1.0392
[kg·m2], p41 = 0.6 [kg·m2], fd11 = 1.3 [Nm·sec], and fd21 = 0.88 [Nm·sec].
For the slave manipulator, i = 2 and p12 = 2.67 [kg·m2], p22 = 1.455

[kg·m2], p32 = 0.929 [kg·m2], p42 = 0.537 [kg·m2], fd12 = 1.3 [Nm·sec], and
fd22 = 0.88 [Nm·sec], where the parameters are based on [61]. For this sim-
ulation, the positive adjustable power scaling term was selected as γ = 1.

The user input force vector was set equal to the following arbitrary periodic

time-varying signals ∙
F11
F12

¸
=

∙
25 sin(1.1t)

35 sin(t)

¸
. (5.154)

To emulate contact with the environment, a spring-like input force vector

was selected as follows∙
F21
F22

¸
=

∙ −0.6q̇12 − q12
−0.6q̇22 − q22

¸
. (5.155)

To assist in meeting the passivity control objective, the coordinated teleop-

erated system must follow a desired trajectory which was generated by the

system described by (5.136) and for this simulation was selected as follows

F̄2(t) =

∙
5 0

0 5

¸ ∙
q̈d1
q̈d2

¸
+

∙
3 0

0 3

¸ ∙
q̇d1
q̇d2

¸
+

∙
1 0

0 1

¸ ∙
qd1
qd2

¸
(5.156)

where qd1(t) and qd2(t) denote the desired link positions, and F̄2(t) is equal

to the following expression

F̄2(t) =
1

2
(γF1(t) + F2(t))

where F̄2(t) was defined in (5.130).

The actual trajectory for the master and slave manipulators are demon-

strated in Figure 5.22 for controller gains selected as ks = 100 and β1+β2 =

25. The link position tracking error between the master and slave manipu-

lators can be seen in Figure 5.23. From Figures 5.22 and 5.23, it is clear that
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the coordination control objective is achieved. The actual trajectory for the

coordinated system (q1(t) + q2(t)) and the desired trajectory as defined by

(5.156), are demonstrated in Figure 5.24. The coordinated system versus

the desired trajectory tracking error as defined by q1(t) + q2(t) − qd(t), is

given in Figure 5.25. From Figures 5.24 and 5.25, it is clear that the coor-

dinated system tracks the desired trajectory. The control torque inputs for

the master and slave manipulator are provided in Figures 5.26 and 5.27,

respectively.
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FIGURE 5.22. Actual trajectory for master (i.e., q1(t)) (–) and slave (i.e., q2(t))

(- -) manipulators for Link 1 and Link 2.

5.4.3 UMIF Control Development

For the UMIF controller development, the subsequent analysis will prove

a global asymptotic result despite unmeasurable user and environmental

input forces (UMIF) provided the dynamic models of the respective ma-

nipulators are known. This development also requires the assumption that

Fi(t), Ḟi(t), F̈i(t) ∈ L∞ ∀i = 1, 2.



© 2010 by Taylor and Francis Group, LLC

5.4 Robot Teleoperation 285

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

[r
a

d
s
]

Link 1

0 5 10 15 20 25 30
−0.05

0

0.05

0.1

0.15

0.2
Link 2

Time [sec]

[r
a

d
s
]

FIGURE 5.23. Link position tracking error between the master and slave manip-

ulators (i.e., q1(t)− q2(t)).
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FIGURE 5.24. Actual coordinated (i.e., q1(t)+ q2(t)) trajectory (–) and desired

(i.e., qd(t)) trajectory (- -) for Link 1 and Link 2.
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FIGURE 5.25. The coordinated system versus the desired trajectory tracking

error (i.e., q1(t) + q2(t)− qd(t)).
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FIGURE 5.26. Master manipulator control input torque (i.e., τ1(t)).
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FIGURE 5.27. Slave manipulator control input torque (i.e., τ2(t)).

Objective and Model Transformation

One of the two primary objectives for the bilateral teleoperator system is

to ensure coordination between the master and the slave manipulators as

in (5.120). The other objective is to ensure that the system remains passive

with respect to the scaled user and environmental power as in (5.121). To

assist in meeting the passivity objective the following desired trajectory,

defined as xd(t) ∈ R2n, is generated by the following dynamic system

M̄ẍd +BT ẋd +KTxd +
1

2

.

M̄ẋd = F̂ . (5.157)

In (5.157), M̄ (x) was defined in (5.126), BT and KT ∈ R2n×2n repre-
sent constant positive definite, diagonal matrices, and F̂ (t) ∈ R2n is a
subsequently designed nonlinear force observer, and xd(t) ∈ R2n can be
decomposed as follows

xd =
£
xTd1(t) xTd2(t)

¤T
(5.158)

where xd1(t), xd2(t) ∈ Rn. Subsequent development will prove that F̂ (t) ∈
L∞. Based on this fact, the development in Section B.3.8 of Appendix B
can be used to prove that xd(t), ẋd(t) ∈ L∞, then (5.157) can be used to
prove that ẍd(t) ∈ L∞ as shown later, the passivity objective is facilitated
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by ensuring that the coordinated master and slave manipulators are forced

to track a desired bounded trajectory xd2(t) in the sense that

q1(t) + q2(t)→ xd2(t) (5.159)

where xd2(t) was defined in (5.158). An additional objective is that all

signals are required to remain bounded within the closed loop system.

To facilitate the subsequent development, a globally invertible transfor-

mation is defined that encodes both the coordination and passivity objec-

tives as follows

x , Sq +

∙
xd1
0n

¸
(5.160)

where x(t) ,[xT1 (t) xT2 (t)]T ∈ R2n, q(t) ,[qT1 (t) qT2 (t)]
T ∈ R2n, xd1(t) ∈ Rn

was defined in (5.158), the zero vector 0n ∈ Rn and S ∈ R2n×2n was
defined in (5.124). Based on (5.160), the dynamic models given in (5.117)

and (5.118) can be expressed as follows

T̄ (t) + F̄ (t) = M̄(x)ẍ− M̄(x)

∙
ẍd1
0n

¸
+ C̄(x, ẋ)ẋ

−C̄(x, ẋ)
∙
ẋd1
0n

¸
+ B̄ẋ− B̄

∙
ẋd1
0n

¸ (5.161)

where M̄(x), C̄(x, ẋ), B̄, T̄ (t), and F̄ (t) were defined in (5.126)—(5.130).

To facilitate the subsequent UMIF development and analysis, the control

objectives can be combined through a filtered tracking error signal denoted

by r(t) ∈ R2n, that is defined as follows

r , ė2 + e2 (5.162)

where e2(t) ∈ R2n is now defined as follows

e2 , M̄ (ė1 + α2e1) (5.163)

where α2 ∈ R is a positive control gain, and e1(t) ∈ R2n was defined in
(5.134) as follows

e1 , xd − x

where xd(t) was defined in (5.158).

Closed Loop Error System

To facilitate the development of the closed-loop error system for r(t), we

first examine the error system dynamics for e1(t) and e2(t). To this end,
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we take the second time derivative of e1(t) and premultiply by M̄(x) to

obtain the following expression

M̄ë1 = F̂ −BT ẋd −KTxd − 1
2

.

M̄ẋd − T̄ − F̄ (5.164)

−M̄
∙
ẍd1
0n

¸
+ C̄ẋ− C̄

∙
ẋd1
0n

¸
+ B̄ẋ− B̄

∙
ẋd1
0n

¸
where (5.161) and (5.157) were utilized. Based on the assumption of exact

model knowledge, the control input T̄ (t) is designed as follows

T̄ , T̄1 −BT ẋd −KTxd − 1
2

.

M̄ẋd (5.165)

−M̄
∙
ẍd1
0n

¸
+ C̄ẋ− C̄

∙
ẋd1
0n

¸
+ B̄ẋ− B̄

∙
ẋd1
0n

¸
where T̄1(t) ∈ R2n is an auxiliary control input. Substituting (5.165) into
(5.164) yields the following simplified expression

M̄ë1 = F̂ − F̄ − T̄1. (5.166)

Based on (5.166), the time derivative of e2(t) in (5.163) can be obtained as

follows

ė2 =
.

M̄ė1 + α2
.

M̄e1 + α2M̄ė1 + F̂ − F̄ − T̄1. (5.167)

Based on the expression in (5.167), the auxiliary control input T̄1(t) is

designed as follows

T̄1 ,
.

M̄ė1 + α2
.

M̄e1 + α2M̄ė1. (5.168)

After substituting (5.168) into (5.167), the following can be written

ė2 = F̂ − F̄ . (5.169)

Taking the time derivative of (5.169) yields the resulting expression

ë2 =
.

F̂ −
.

F̄ . (5.170)

The following error system dynamics can now be obtained for r(t) by taking

the time derivative of (5.162)

ṙ = r − e2 +
.

F̂ −
.

F̄ (5.171)

where (5.162) and (5.170) were both utilized. Based on (5.171) and the

subsequent stability analysis, the proportional-integral like nonlinear force



© 2010 by Taylor and Francis Group, LLC

290 5. Human Machine Interaction

observer F̂ (t) introduced in (5.157) is designed as follows

F̂ , −(ks + 1)
∙
e2(t)− e2(t0) +

Z t

t0

e2(τ)dτ

¸
− (β1 + β2)

Z t

t0

sgn (e2(τ)) dτ

(5.172)

where ks, β1, and β2 ∈ R are positive control gains, and sgn(·) denotes the
vector signum function. The expression given in (5.172) is designed such

that F̂ (t0) = 0. The time derivative of (5.172) is given by the following

expression
.

F̂ = −(ks + 1)r − (β1 + β2) sgn (e2) . (5.173)

Substituting (5.173) into (5.171) yields the following closed loop error sys-

tem

ṙ = −e2 −
.

F̄ − ksr − (β1 + β2) sgn (e2) . (5.174)

Remark 5.11 Based on (5.130) and the assumption that Fi(t), Ḟi(t),

F̈i(t) ∈ L∞ ∀i = 1, 2, upper bounds can be developed for
°°° .

F̄ (t)
°°° and °°° ..F̄ (t)°°°

as follows °°° .

F̄ (t)
°°° ≤ ς3

°°° ..F̄ (t)°°° ≤ ς4 (5.175)

where ς3, ς4 ∈ R denote positive constants.

Stability Analysis

Theorem 5.3 The controller given in (5.165) and (5.168) ensures that all

closed-loop signals are bounded and that coordination between the master

and slave manipulators is achieved in the sense that

q2(t)→ q1(t) as t→∞ (5.176)

provided the control gain β1, introduced in (5.172) is selected to satisfy the

sufficient condition

β1 > ς3 + ς4, (5.177)

where ς3 and ς4 were introduced in (5.175).

Proof. See Section B.3.9 of Appendix B.

Theorem 5.4 The controller given in (5.165) and (5.168), ensures that

the teleoperator system is passive with respect to the scaled user and envi-

ronmental power.

Proof. See Section B.3.10 of Appendix B.
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Remark 5.12 Both the teleoperation controllers developed here exploit the

nonlinear dynamic model which offers a clear advantage over past results

for linear teleoperator systems ([7], [15], [30], and [57]). The MIF con-

troller developed in Section 5.4.2 compensates for unknown system parame-

ters, which offers an improvement over past works that require exact model

knowledge (i.e. [7] and [15]). The UMIF controller developed in Section

5.4.3 compensates for unavailable force measurement, which offers an im-

provement over works that requires force measurements (e.g., [32] and [33]).

Simulation Results

A numerical simulation was performed for the controller given in (5.165)

and (5.168). The 2-link, revolute robot dynamic model utilized in (5.153)

was utilized for both the master and slave manipulators. The user input

force vector in (5.154) and the environmental input force vector in (5.155)

were also utilized.

To meet the passivity-based control objective, the coordinated teleop-

erated system must follow a desired trajectory, which is generated from

(5.157) using the same parameter values for the transformed inertia ma-

trix. The values for BT , KT ∈ R4×4 were set to the following values

BT = diag{5, 5, 5, 5}
KT = diag{25, 25, 25, 25}

where BT and KT are both diagonal matrices.

The actual trajectory for the master and slave manipulators are demon-

strated in Figure 5.28 where the control gains were selected as ks = 100,

β1+β2 = 100, and α2 = 200. The link position tracking error between the

master and slave manipulators can be seen in Figure 5.29. From Figures

5.28 and 5.29, it is clear that the coordination control objective is achieved.

The actual trajectory for the coordinated system (q1(t)+q2(t)) and the de-

sired trajectory as defined in (5.157), are demonstrated in Figure 5.30. The

coordinated system versus the desired trajectory tracking error as defined

by q1(t)+q2(t)−xd2(t), is given in Figure 5.31. From Figures 5.30 and 5.31,
it is clear that the coordinated system tracks the desired trajectory. The

output of the nonlinear force observer is provided in Figure 5.32. The con-

trol torque inputs for both the master and slave manipulators are provided

in Figures 5.33 and 5.34, respectively.
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FIGURE 5.28. Actual Trajectory for Master (i.e., q1(t)) (–) and Slave (i.e., q2(t))

(- -) Manipulators for Link 1 and Link 2.
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FIGURE 5.29. Link Position Tracking Error between the Master and Slave Ma-

nipulators (i.e., q1(t)− q2(t)).
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FIGURE 5.30. Actual Coordinated (i.e., q1(t)+q2(t)) Trajectory (–) and Desired

(i.e., qd(t)) Trajectory (- -) for Link 1 and Link 2.
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FIGURE 5.31. The Coordinated System versus the Desired Trajectory Tracking

Error (i.e., q1(t) + q2(t)− xd2(t)).
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FIGURE 5.32. The Output of the Nonlinear Force Observer (i.e. F̂ (t)) .
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FIGURE 5.33. Master Manipulator Control Input Torque (i.e., τ1(t)).
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FIGURE 5.34. Slave Manipulator Control Input Torque (i.e., τ2(t)).

5.5 Rehabilitation Robot

Currently, most rehabilitation robots employ an active assist strategy uti-

lizing in various forms the force control strategy derived from Hogan’s

seminal work [16] on impedance control. In its simplest form, the patient’s

arm is strapped to a robot end-effector with low intrinsic impedance and

he/she is required to guide the robot end-effector in order to reach and

connect a sequence of setpoints in the robot task-space that are mapped

onto a display. A proportional-derivative (PD) controller is implemented

on the robot’s task space position, i.e., the robot actively assists the pa-

tient toward minimizing the end-effector position error. For safety, an ad

hoc windowing technique is employed that turns on the robot’s active func-

tionality after the patient initiates movement [1]. However, such a scheme

is suspect in patients with severe muscle contractures where an active as-

sist robot could lead to torn ligaments or severe muscle damage unless the

therapy is conducted under the supervision of an experienced therapist.

In contrast, the strategy presented here utilizes a passive approach.

Specifically, given a desired curve of motion that optimizes therapist estab-

lished merit criteria, a path generator is designed based on an anisotropic

force-velocity relationship that generates a bounded desired trajectory in

the robot workspace. The inputs into the generator are the patient’s inter-
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action force applied at the end-effector as well as the desired impedance

parameters. The reference trajectory generator is carefully designed in or-

der to ensure that the relationship between the patient applied interaction

force and the desired end-effector velocity satisfies a passivity constraint.

Next, a control strategy is crafted using a Lyapunov based argument in

order to obtain the companion objectives of driving the robot end-effector

tracking error to zero and ensuring that a filtered error signal nulls out

rapidly. This convergence of the filtered error signal allows one to ensure

that the interaction of the user with the robot is passive, i.e., energy always

flows from the user to the robot manipulator. Additionally, a readily satis-

fiable mild assumption on the differentiability of the robot dynamics allows

the generation of a control strategy that is continuous; this has significant

implications in terms of implementability of the control algorithm. As an

aside, the control mechanism has the interesting feature of being able learn

the unknown robot dynamics.

5.5.1 Robot Dynamics

The end-effector position of a 3-link, revolute direct drive robot manipula-

tor in an inertial frame I, denoted by x(t) ∈ R3, is defined as follows

x = f(q) (5.178)

where q(t) ∈ R3 denotes the link position, and f(q) ∈ R3 denotes the robot
forward kinematics. Based on (5.178), the differential relationships between

the end-effector position and the link position variables can be calculated

as follows

ẋ = J(q) q̇

ẍ = J̇(q)q̇ + J(q)q̈
(5.179)

where q̇(t), q̈(t) ∈ R3 denote the link velocity and acceleration vectors,
respectively, and J(q) =

∂f(q)

∂q
∈ R3×3 denotes the manipulator Jacobian.

The dynamic model for the 3-link robot manipulator is assumed to be in

the following form [62]

M(q)q̈ + Vm(q, q̇)q̇ +G(q) = τ q + JT F̄ (5.180)

where M(q) ∈ R3×3 represents the inertia matrix, Vm(q, q̇) ∈ R3×3 repre-
sents the centripetal-Coriolis matrix, G(q) ∈ R3 represents the gravity ef-
fects, F̄ (t) represents the user applied force expressed in I, and τ q(t) ∈ R3
represents the torque input vector.
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After utilizing (5.178) and (5.179), one can transform the joint space

dynamics into the task-space as follows

M̄ (x) ẍ+ V̄m (x, ẋ) ẋ+ Ḡ (x) = τ̄ + F̄ (5.181)

where M̄ =
¡
JT
¢−1

MJ−1 denotes the transformed inertia matrix, V̄m =

− ¡JT ¢−1MJ−1J̇J−1 +
¡
JT
¢−1

VmJ
−1 ∈ R3×3 denotes the transformed

centripetal-Coriolis matrix, Ḡ =
¡
JT
¢−1

G ∈ R3 represents gravity effects
while τ̄ =

¡
JT
¢−1

τq ∈ R3 represents the torque input vector expressed in
I. Motivated by the subsequent stability analysis and control design, we
state the following property:

The inertia matrix M̄(·) is symmetric and positive-definite, and satisfies
the following inequalities

m kξk2 6 ξT M̄ (·) ξ 6 m(x) kξk2 ∀ξ ∈ R3 (5.182)

where m ∈ R denotes a positive constant, m(x) ∈ R denotes a positive

nondecreasing function, while k·k denotes the standard Euclidean norm.

5.5.2 Path Planning and Desired Trajectory Generator

It is well known that stretching, range of motion, and timely surgical cor-

rection of spinal deformities may enhance functional use of the extremi-

ties for patients with neuromuscular disorders (NMDs). In slowly progres-

sive NMDs, moderate resistance weight lifting is known to improve muscle

strength and cardiovascular performance [4]. Motivated by this, we present

a 3-tier path generation and control strategy that is readily implementable

on a real robot. The objective is the generation of robot end-effector motion

(when pushed by a patient) along a therapist specified path while ensur-

ing that the device behaves as a passive and programmable impedance.

The model generator satisfies the desired properties of (a) guiding the user

along contours that provide optimal4 rehabilitation, (b) generation of con-

tours that stay away from kinematic singularities, physical joint limits, and

obstacles, and (c) time parameterization of the contours in a fashion that

conforms to passivity requirements.

Path Planning: Tier 1

4Optimum in the sense specified by a therapist, e.g., maximizing range of motion or

power output for a target muscle set.
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Here, we assume that a physical therapist has specified a desired curve of

motion r̄d (s) ∈ R3 given as follows
r̄d (s) =

£
r̄dx (s) r̄dy (s) r̄dz (s)

¤T
(5.183)

where s ∈ R is the length of the curve, while r̄dx (s), r̄dy (s), and r̄dz (s) ∈ R
represent the respective coordinates in an inertial frame I (say fixed to
the base of the robot). However, this therapist specified contour may not

be practicable with a real robot because of joint limits, singularities, and

obstacles – one would then like to ensure that the therapist specified path

is followed with fidelity until a singularity/joint limit/obstacle is nearby at

which instance the robot smoothly veers away from that path and rejoins

the original path away from the singularity/joint limit/obstacle.

To that end, one could utilize the virtual potential field concept of Khatib

[23] that suggested generation of repulsion functions that grow larger as the

robot nears an obstacle and becomes singular at the obstacles. However,

a real robot actuator can generate only bounded torques [53]; hence, we

are motivated to design bounded repellers to take care of obstacles. In

order to avoid kinematic singularities, we choose to maximize the Yoshikawa

manipulability measure [66]

Ψ1 (qd) = det
³
J (qd) J (qd)

T
´
≥ 0 (5.184)

where qd (s) ∈ R3 is a vector of desired robot joint variables, J (·) has been
previously introduced in (5.179). For dealing with joint limits, we choose

the measure

Ψ2 (qd) =
3Y

i=1

αi

µ
1− qdi

qdimax

¶µ
qdi

qdimin
− 1
¶
≥ 0 (5.185)

where qdi (s) , qdimax, qdimin ∈ R denote, respectively, the desired joint angle
variable, joint upper, and joint lower limits for the ith joint while αi ∈ R
is a positive constant. In order to avoid obstacles, we choose the measure

Ψ3(qd) =

noY
i=1

3Y
j=1

³
kfj(qd)−Oik2 −R2i

´
≥ 0 (5.186)

where Oi ∈ R3, Ri ∈ R denote the position and the radius of the ith

obstacle, no ∈ R denotes the number of the obstacles, and rdj = fj(qd)

where rdj (s) ∈ R3, j = 1, 2, 3 denote the position of the end point of the

jth link, and fj(·) ∈ R3 denote the corresponding forward kinematics5. We

5Although only the end of every link is considered for obstacle avoidance, any other

point of the robot can be included in Ψ3(·) for obstacle avoidance.
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are now in a position to define the potential function

Ψ (qd) = γ1 exp

Ã
−

3Y
i=1

γ2iΨi (qd)

!
(5.187)

where γ1, γ21, γ22, γ23 > 0 are adjustable constants that, respectively, char-

acterize the size and radius of influence of the potential function. This func-

tion satisfies the properties of boundedness as well as maximality at the

obstacles. By utilizing the virtual field generated by the potential function

above, one can dynamically generate a modified contour rd (s)
6∈ R3 as

follows

r0d (s) = −γ3 [rd (s)− r̄d (s)]− γ4∇Ψ
¡
f−1 (rd)

¢
+ r̄0d (s) (5.188)

where the notation (·)0 denotes a derivative with respect to s, γ3, γ4 are tun-
able parameters, and 5Ψ (·) ∈ R3 denotes the gradient vector of Ψ (·). The
dynamic equation above acts like a filter that smoothly drives rd (s) away

from the nominal contour r̄d (s) near obstacles/singularities/joint limits.

In the above equation, γ3 provides the rate along s at which the mod-

ified contour veers away from (or toward) the original contour when it

encounters a change in potential field. The constant γ4 is a steady-state

constant that amplifies or diminishes the impact of the potential function

on changes in the desired contour. The result of this algorithm is a desired

contour that avoids singularities, joint limits, and obstacles. We note here

that the filtering process of (5.188) renders s an arbitrary parameter that

does not necessarily represent the length of the contour rd (s). We also

remark here that the steps involved in Tier 1 are completed offline. The

therapist specified path will only be modified by the system when it is close

to obstacles, joint limits, and robot kinematic singularities. For these cases,

a sub-optimal desired contour may result instead of an optimal therapist

specified desired contour. Design iterations for choosing a therapist spec-

ified path can be applied such that the eventual optimal desired contour

is also feasible, given the constraints associated with the robot and the

environment.

Time Parameterization of Contour rd (s): Tier 2

In this section, we time parameterize the modified desired contour rd (s)

such that a passivity relation holds between the desired velocity and the

6To simplify the notation, rd and f (·) are utilized in the rest of the paper to denote
the desired end-effector position and end-effector forward kinematics instead of rd3 and

f3 (·).
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applied user interaction force at the robot end-effector. To begin, we define

F , (u (s) , p (s) , b (s)) to be a rotating frame associated with the curve

rd (s) such that

u (s) =
r0d (s)
|r0d (s)|

p (s) =
u0 (s)
|u0 (s)| b (s) = u (s)× p (s) (5.189)

such that Γ (s) =
£
u (s) p (s) b (s)

¤ ∈ SO (3). The relationship be-

tween the coordinate frames F and I is depicted in Figure 5.36. We also
define the curvature κ (s) and torsion τ (s) associated with the curve rd (s)

as follows [14]

κ (s) =

¯̄̄
r0d (s)× r

00
d (s)

¯̄̄
|r0 (s)|3 τ (s) =

r
0
d (s) ·

³
r
00
d (s)× r

000
d (s)

´
|κ (s)|2

(5.190)

Furthermore, we define the vector ω (s) ,
£ −τ (s) 0 −κ (s) ¤T ∈ R3

and [ω (s)]× as the skew-symmetric matrix associated with that vector.

Since (u, p, b) define a basis, we define a general desired velocity vector v̄d ,
vd1u+vd2p+vd3b = Γvd and an applied user force F̄ , Fuu+Fpp+Fbb = ΓF

in the inertial frame I where vd, F ∈ R3 are obviously defined. Since the
robot acts as an anisotropic impedance, the direction of which continuously

varies as the desired curve of motion rd (s), we define md to be a scalar

mass parameter and consider damping coefficients Bu, Bp, Bb along the

directions u, p, b such that the damping force F̄d expressed in I is given as

F̄d , −Buvd1u−Bpvd2p−Bbvd3b = −ΓBvd (5.191)

where B , diag{Bu, Bp, Bb} . By applying Newton’s second law to this

mass-damper system, we obtain

md

.
v̄d = F̄ + F̄d

which can be written out as follows

mdv̇d +mdṡ [ω]× vd +Bvd = F (5.192)

where we have utilized the formulae of Frenet [26] and ṡ (t) is yet to be

defined. Additionally, the kinematics of the problem can be expressed as

follows

ẋd (t) = vd1u+ vd2p+ vd3b (5.193)

where xd (t) denotes the time parameterized representation of our desired

contour (expressed in the coordinates of I) traced by the robot end-effector.
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Since our intention is for motion to occur along the curve rd (s) , we des-

ignate low tangential damping Bu and very large normal and binormal

damping Bp and Bb such that the kinematic constraint vd2 ∼= vd3 ∼= 0 is

imposed. Under such conditions, the effective motion is governed via the

following set of equations

ẋd (t) = vd1 (t)u (s (t))

mdv̇d1 (t) +Buvd1 (t) = F̄ (t) .u (s (t))

ṡ (t) =
|vd1 (t)|¯̄
r
0
d (s (t))

¯̄ (5.194)

where the first two equations in (5.194) are obtained by applying the kine-

matic constraint on (5.192) and (5.193) while the last equation expresses

the relationship between the time rate of change of the arbitrary parameter

s (t) in terms of a known velocity (vd1) along the curve (rd).

Proof of Passivity

In order for a user to exercise safely in conjunction with the robot, the robot

must act as a passive device, i.e., the work done by the user force is always

positive (minus finite stored initial energy if any). With that objective in

mind, we first demonstrate that there is a passive relationship between the

interaction force F̄ (t) and the desired end-effector velocity ẋd (t), i.e., we

show that Z t

t0

F̄T ẋddt ≥ −c1 (5.195)

where c1 is a positive constant. To prove (5.195), we define a Lyapunov

function

V =
1

2
mdv

T
d vd ≥ 0. (5.196)

After taking the time derivative of (5.196) along the desired dynamics of

(5.192), we obtain

V̇ = −vTd Bvd + vTd F (5.197)

where we have utilized the fact that
¡
[ω]× vd

¢⊥vd. After rearranging terms
in the above equation and integrating both sides, one can obtainZ t

t0

F̄T ẋddt = V (t)− V (t0) +

Z t

t0

vTd Bvddt. (5.198)

After utilizing the fact that V (t) ,
R t
t0
vTd Bvddt ≥ 0, we can obtain a lower-

bound for the left-hand side of the above equation as followsZ t

t0

F̄T ẋddt ≥ −V (t0) = −c1 (5.199)
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which proves (5.195). Based on (5.199), the passivity constraint states that

the energy transferred from the system to the user is always less than c1
which is finite stored initial energy. In the sequel, we will show passivity of

the robot by utilizing (5.199) and the yet to be proved L1 stability property
of the end-effector velocity tracking error.

5.5.3 Control Problem Formulation

Given the desired robot end-effector trajectory xd (t) (obtained via on-line

solution of (5.194)), our primary control objective is to asymptotically drive

the end-effector trajectory tracking error

e1 , xd − x (5.200)

to zero while compensating for uncertainties in the system dynamics. Mo-

tivated by the subsequent control design strategy, we introduce additional

tracking error variables e2 (t) , e3 (t) ∈ R3 as follows
e2 , ė1 + e1 (5.201)

e3 , ė2 + e2. (5.202)

Our secondary control objective is to preserve the passivity of the robot

for safety of user operation in the sense thatZ t

t0

F̄T ẋdt ≥ −c2 (5.203)

where ẋ(t) is the velocity of the robot and F̄ (t) is the interaction force

with both variables expressed in I while c2 is a positive constant. The con-
trol challenge is to obtain the companion objectives mentioned above while

utilizing only measurements of the end-effector position, velocity, and the

interaction force. Given these measurements, e1 (t) , e2 (t) are measurable

variables while e3 (t) is unmeasurable. Motivated by the ensuing control

development and stability analysis, we make the following set of assump-

tions:

Assumption 5.4.1: The transformed inertia and gravity matrices denoted,

respectively, by M̄ (x), and Ḡ(x) are uncertain but known to be sec-

ond order differentiable with respect to x while the unknown centripetal-

Coriolis matrix V̄m (x, ẋ) is known to be second order differentiable

with respect to x and ẋ.

Assumption 5.4.2: F̄ (t) ∈ L∞ is a measurable interaction force exerted

by the human operator at the end-effector.
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Assumption 5.4.3: The reference trajectory xd(t) is continuously differ-

entiable up to its fourth derivative such that x
(i)
d (t) ∈ L∞, i =

0, 1, 2, 3, 4.

Assumption 5.4.4: The desired curve rd (s) is analytic along the param-

eter s (at least the first three partial derivatives along s exist and are

bounded such that rd (s) , r
0
d (s) , r

00
d (s) , r

000
d (s) ∈ L∞).

Assumption 5.4.5: The skew-symmetric matrix [ω]× is continuously dif-
ferentiable up to its second derivative such that [ω]

(i)
× ∈ L∞, i =

0, 1, 2.

Assumption 5.4.6: The minimum singular value of the manipulator Ja-

cobian, denoted by σm is greater than a known small positive con-

stant δ > 0, such that max
©°°J−1(q)°°ª is known a priori and all

kinematic singularities are always avoided — this is easily ensured by

the algorithm introduced in Section 5.5.2. We also note that since

we are only concerned with revolute robot manipulators, we know

that kinematic and dynamic terms denoted by M(q), Vm(q, q̇), G(q),

x(q), J(q), and J−1(q) are bounded for all possible q(t) (i.e., these
kinematic and dynamic terms only depend on q(t) as arguments of

trigonometric functions). From the preceding considerations, it is easy

to argue that M̄ (x) , V̄m (x, ẋ) , Ḡ (x) ∈ L∞ for all possible x (t).

Control Design: Tier 3

As a primary step, we partially feedback linearize the system by designing

the control signal τ̄ (t) as follows

τ̄ = −F̄ + τ̄a (5.204)

where τ̄a (t) ∈ R3 is a yet to be designed auxiliary control signal and
we have taken advantage of Assumption 5.4.2. Additionally, we simplify

the system representation of (5.181) by defining a generalized variable

B̄(x, ẋ) ∈ R3 as follows
B̄ = V̄m (x, ẋ) ẋ+ Ḡ (x) . (5.205)

The utilization of (5.204) and (5.205) allows us to succinctly rewrite (5.181)

as follows

M̄ẍ+ B̄ = τ̄a. (5.206)

Given (5.200—5.202) and (5.206), we can obtain the open-loop tracking error

dynamics as follows

M̄ė3 = −1
2

.

M̄e3 − e2 −
.
τ̄a +N (5.207)
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where N (·) ∈ R3 is an aggregation of unknown dynamic terms that is
explicitly defined as follows

N , M̄(
...
xd + ë1 + ė2) +

.

M̄(ẍd +
1

2
e3 − ë1) + e2 +

.

B̄. (5.208)

N (·) can be rewritten as a sum of two auxiliary signals N1(t, x, ẋ, ẍ) and

N2 (z) as follows

N =
M̄(x)

...
xd +

.

M̄(x, ẋ)ẍd +
.

B̄(x, ẋ, ẍ)| {z }
N1 (·)

+

M̄(x)(ë1 + ė2) +
.

M̄(x, ẋ)(
1

2
e3 − ë1) + e2| {z }

N2 (·)

(5.209)

where z (t) =
£
eT1 (t) eT2 (t) eT3 (t)

¤T
defines a composite error vector.

Motivated by the structure of N1 (·) in (5.209), we define a desired variable
N1d (t) as follows

N1d(t) , N(xd, ẋd, ẍd,
...
xd) = M̄(xd)

...
xd +

.

M̄(xd, ẋd)ẍd +
.

B̄(xd, ẋd, ẍd).
(5.210)

From Assumptions 5.4.1, 5.4.3, and 5.4.6, one sees that N1d (t) , Ṅ1d (t) ∈
L∞. After adding and subtracting N1d(t) to the right-hand side of (5.207),

we have

M̄ė3 = −1
2

.

M̄e3 − e2 −
.
τ̄a + Ñ +N1d (5.211)

where Ñ , N1 + N2 − N1d is an unmeasurable error signal. After exten-

sive algebraic manipulations (see Section B.3.11 of Appendix B), it can be

shown that Ñ (·) can be upper bounded as follows

Ñ 6 ρ(kzk) kzk (5.212)

where the notation k · k denotes the standard Euclidean norm, ρ(kzk) ∈ R
is a positive non-decreasing function while z(t) ∈ R9 has been previously
defined below (5.209). Based on the structure of (5.211), (5.212) as well as

the subsequent stability analysis, the following implementable continuous

control law can be utilized to achieve the stated control objectives

τ̄a = (ks + 1) e2(t)− (ks + 1) e2(t0)
+
R t
t0
[(ks + 1) e2(τ) + (β1 + β2)sgn(e2(τ))] dτ

(5.213)

where ks, β1, β2 are constant positive control gains, and sgn(·) denotes the
standard signum function. After taking the time derivative of (5.213) and
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substituting for
.
τ̄a (t) into (5.211), we obtain the following closed-loop sys-

tem

M̄ ė3 = −12
.

M̄e3 − e2 − (ks + 1)e3 − (β1 + β2)sgn(e2) + Ñ +N1d.
(5.214)

Stability Analysis

Before presenting the main result of this section, we state the following two

lemmas which will be invoked later.

Lemma 5.5 Let the auxiliary function L1(t) ∈ R be defined as follows
L1 , eT3 (N1d − β1sgn(e2)) . (5.215)

If the control gain β1 is selected to satisfy the sufficient condition

β1 > kN1d(t)k+ kṄ1d(t)k, (5.216)

then Z t

t0

L1(τ)dτ 6 ζb1 (5.217)

where the positive constant ζb1 ∈ R is defined as
ζb1 , β1ke2(t0)k1 − eT2 (t0)N1d(t0). (5.218)

where the notation kηk1 ,
nP

r=1
|ηr| ∀ η ∈ Rn denotes the 1-norm.

Proof: See proof of Lemma B.5 in Section B.3.6 of Appendix B.

Lemma 5.6 Let the auxiliary function L2(t) ∈ R be defined as follows
L2 , ėT2 (−β2sgn(e2)) . (5.219)

It is then easy to show thatR t
t0
L2(τ)dτ =

R t
t0
ėT2 (−β2sgn(e2)) dτ

= β2ke2(t0)k1 − β2ke2(t)k1 6 β2ke2(t0)k1 , ζb2.
(5.220)

Proof: See proof of Lemma B.5 in Section B.3.6 of Appendix B.

Theorem 5.7 The control law of (5.213) ensures that all system signals

are bounded under closed-loop operation and we obtain asymptotic tracking

in the sense that

e
(j)
i (t)→ 0 as t→∞ ∀ i = 1, 2; j = 0, 1. (5.221)
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Proof: Let us define two auxiliary functions Pi(t) ∈ R as follows

Pi(t) , ζbi −
Z t

t0

Li(τ)dτ > 0 ∀ i = 1, 2 (5.222)

where ζbi, Li(t) have been previously defined in Lemmas 5.5 and 5.6. Based

on the non-negativity of Pi (t) above, one can define a nonnegative function

V1(t) as follows

V1 ,
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
eT3 M̄e3 + P1 + P2. (5.223)

After taking the time derivative of (5.223) and utilizing the definitions

of (5.200—5.202) as well as the closed-loop dynamics of (5.214), we can

conveniently rearrange the terms to obtain the following expression for

V̇1 (t)

V̇1 = −ke1k2 − ke2k2 − (ks + 1) ke3k2 + eT1 e2 + eT3 Ñ − β2e
T
2 sgn(e2)

+
£
eT3 (N1d − β1sgn(e2))− L1

¤− £ėT2 β2sgn(e2) + L2
¤

(5.224)

where we have utilized the definition of (5.222). After utilizing the defini-

tions of (5.215) and (5.219) to eliminate the bracketed terms in the above

equality, we can utilize simple algebraic manipulations to obtain the fol-

lowing upper-bound for V̇1 (t)

V̇1 ≤ −1
2
kzk2 + £ke3kρ(kzk) kzk− kske3k2

¤− β2ke2k1

where z (t) is a composite error vector that has been defined previously in

(5.209). Applying the nonlinear damping argument [25] to the bracketed

term above, we obtain the following upper-bound for V̇1 (t)

V̇1 6 −1
2

µ
1− ρ2(kzk)

2ks

¶
kzk2 − β2ke2k1. (5.225)

From (5.225), it is possible to state that

V̇1 6 −α kzk2
V̇1 6 −β2 ke2k1

)
for ks >

1

2
ρ2(kzk) (5.226)

where α ∈ R is some positive constant of analysis. We note here that it is
possible to express the lower-bound on ks in terms of the initial conditions

of the problem which has been referred to in literature as a semi-global

stability result. We refer the interested reader to Section B.3.12 of Appendix

B for the details of such a procedure. Here onward, our analysis is valid in
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the region of attraction denoted by Ωc in Section B.3.12 of Appendix B.

From (5.222), (5.223), and (5.226), it is easy to see that z (t) ∈ L∞∩L2 and
lim
t→∞ kzk

2
= 0. From the previous assertions and the definitions of (5.201),

(5.202), and (5.209), one readily obtains the result of (5.221).

We now turn our attention to proving the passivity of the robot ma-

nipulator. Integrating both sides of the bottom expression of (5.226), we

obtain Z t

t0

ke2 (τ)k1 dτ 6
V1(t0)

β2
⇒ e2(t) ∈ L1.

Since e1 (t) is related to e2 (t) through a transfer function that is strictly

proper and stable, one can use Lemma A.8 of [52] to conclude that e1(t) ∈
L1. Now, utilizing (5.201), we can also state that ė1 (t) ∈ L1. The work
done by the interaction force on the robot is denoted by W (t) and given

by

W =

Z t

t0

F̄T ẋdτ =

Z t

t0

F̄T ẋddτ −
Z t

t0

F̄T ė1dτ (5.227)

where (5.200) has been utilized. Since the first term on the right-hand side

of (5.227) has been lower-bounded as in (5.199), we focus our attention on

the second term. The second term can now be upper-bounded as follows

R t
t0
F̄T ė1dτ ≤ supt

©°°F̄ (t)°°ª supt nR tt0 kė1 (t)k1 dτo ≤ c3 (5.228)

where we have utilized the fact that ė1(t) ∈ L1 as well as Assumption
5.4.2 to justify the existence of the supremum functions defined above, and

c3 is a positive constant. One can now utilize the lower-bound of (5.199)

and the upper-bound of (5.228) in order to lower-bound W (t) as W (t) ≥
−c1 − c3 = −c2; this satisfies the passivity control objective of (5.203).

5.5.4 Simulation Results

Numerical simulations were performed to illustrate the performance of the

proposed reference generator and control law of (5.194), (5.204), and (5.213)

(See Figure 5.35 for a block diagram) with a two-link planar elbow arm

whose inertia matrix M(q) can be expressed in terms of its elements as

follows

m11 = (m1 +m2) l
2
1 +m2l

2
2 + 2m2l1l2 cos q2

m12 = m21 = m2l
2
2 +m2l1l2 cos q2

m22 = m2l
2
2

, (5.229)
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while the centripetal Coriolis vector can be expressed in the following man-

ner

Vm(q, q̇)q̇ =

∙ −m2l1l2
¡
2q̇1q̇2 + q̇22

¢
sin q2

m2l1l2q̇
2
1 sin q2

¸
. (5.230)

The mass and length parameters of the manipulator are specified as follows

m1 = 2.08 [kg] m2 = 0.168 [kg] l1 = 1.2 [m] l2 = 1.2 [m].

Two simulation studies were conducted. In the first study, the performance

of the overall system was studied in the presence of obstacles, singularities,

and joint limits. The initial configuration of the two-link robot is chosen as

q1 (0) = 0.334 [rad], q2 (0) = 0.7 [rad]. The desired contour is specified by a

unit circular path r̄d (s) =
£
cos (s) sin (s)

¤T
. The initial conditions and

parameters for the reference generator are chosen as follows

xd(0) =
£
1.6 1.5

¤T
[m] s (0) = 0

md = 0.1 [kg] B = diag {2.5, 10} [Ns−1].
The parameters for the obstacle are chosen as follows

O1 (0) =
£ −0.5 1.65

¤T
[m] R1 = 0.5 [m] .

The interaction force applied at the end-effector by a user was chosen to be

F =
£
2 2

¤T
[N]. The joint limit for all joints are set as qdimax = 180

◦

and qdimin = −180◦. The parameters in (5.185), (5.187) and (5.188) are
chosen as follows

α1 = 1 α2 = 1 γ1 = 0.1

γ21 = γ22 = γ23 = 0.79 γ3 = 10 γ4 = 25

For best transient performance, the control gains specified in (5.213) are

chosen to be ks = 99, β1 + β2 = 10. The pre-planned path rd defined in

(5.188) is depicted in Figure 5.37. The measure Ψ1 defined in (5.184) is

depicted in Figure 5. 38 as one c losed c ontour is tr aced. Corresp onding to

the first dip in Ψ1 in Figure 5.38, Figure 5.39 depicts a snapshot of the

2-link manipulator veering away from the dashed circular contour r̄d in

order to avoid the kinematic singularity (q2 = 0). Next, the measure Ψ3
defined in (5.186) is shown in Figure 5.40 – by employing the dip in Ψ3, the

algorithm is able to steer the robot away from the physical obstacle marked

by the solid circle in the robot workspace, as can be seen in the snapshot

of Figure 5.41. In Figure 5.42, one can see the evolution of the measure Ψ2
– correspondingly, the snapshot in Figure 5.43 shows how the algorithm

utilizes the dip in the measure Ψ2 in order to avoid the q2 = −180 [deg]
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joint limit. Figure 5.44 shows the robot end-effector tracing the modified

desired contour rd as the user applies interaction force at the end-effector.

The tracking error e1 (t) is depicted in Figure 5.45 and the control torque

input τ̄ (t) is depicted in Figure 5.46. We note here that in Figures 5.39,

5.41, 5.43, and 5.44, the solid circle denotes an obstacle, the dashed circle

denotes the nominal contour r̄d (s), the dashdot curve denotes the modified

contour rd (s), and the solid curve denotes the actual trajectory of the robot

end-effector x (t). The obstacle in the simulation can be real, such as the

body of the patient or the body of the robot folding back on itself. It can

also be a virtual obstacle which is utilized to modify the therapist specified

path because of the reconfiguration of the robot system or changes specific

to a particular patient or class of patients. The simulation results show

that the control algorithm, along with the design of virtual obstacles, can

reconfigure the therapy based on different conditions and requirements.

For comparison purposes, a second simulation study is conducted where

the therapist suggested path is carefully constructed in order to avoid joint

limits, singularities, and obstacles. The desired contour is specified by a unit

circular path r̄d (s) =
£
0.6 cos (s) 0.6 sin (s)

¤T
. The initial configuration

of the two-link robot is chosen as x(0) = 1.540 [m], y(0) = 1.586 [m].

The initial condition for the reference generator is chosen as xd(0) = 1.2

[m], yd(0) = 1.5 [m]. All other parameters are unchanged from the first

simulation study. Figures 5.47, 5.48, and 5.49 show, respectively, the robot

end-effector tracking the desired path, the tracking errors in the task space,

and the commanded torque inputs.

FIGURE 5.35. Graphical Representation of Path Planning and Control Algo-

rithm
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FIGURE 5.37. Offline Pre-Planned Path (Solid Curve) is Different from Therapist

Suggested Path (Dotted Circle) due to Joint Limits, Kinematic Singularities, and

an Obstacle (Solid Circle)
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FIGURE 5.38. Manipulability Measure Ψ1 for Avoiding Kinematic Singularities
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FIGURE 5.39. An Instance of a 2-link Robotic Manipulator Using theΨ1Measure

to Avoid a Kinematic Singularity
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FIGURE 5.40. Measure Ψ3 for Avoiding Obstacles in the Robot Workspace
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FIGURE 5.41. An Instance of a 2-link Robotic Manipulator Using theΨ3Measure

to Avoid an Obstacle
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FIGURE 5.42. Measure Ψ2 for Avoiding Joint Limit Singularities
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FIGURE 5.43. An Instance of a 2-link Robotic Manipulator Using theΨ2Measure

to Avoid a Joint Limit for the Second Joint
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FIGURE 5.44. A Plot of a 2-link Manipulator Tracking the Desired Trajectory
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FIGURE 5.45. Error between the Desired and Actual End Effector Trajectories
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FIGURE 5.46. Control Input τ̄ (t)
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FIGURE 5.47. A 2-link Manipulator Tracking a Desired Trajectory Free of Sin-

gularities, Joint Limits, and Obstacles
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FIGURE 5.48. Error between the Desired and Actual End Effector Trajectories
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5.6 Background and Notes

In the last two decades, researchers have been active in developing next

generation exercise machines. In [20], a state-feedback controller is devel-

oped for a human arm exercise machine. The machine described in [20]

uses an actuated mechanism to give the user the sensation of moving “vir-

tual” dynamic systems such as a mass, spring, or damper. Unfortunately,

the control design in this preliminary research does not address the pas-

sivity problem or the self-optimizing problem. In [37] and [38], a passive

exercise machine controller is developed. By utilizing the assumption that

muscle force decreases linearly with the velocity of motion, the controller

ensures tracking of an arbitrary desired velocity field and system passivity.

The strategy in [37] and [38] employs a combination of an adaptive track-

ing controller and a reference trajectory generator. To compensate for the

uncertainty in the user’s biomechanics, the reference generator requires a

training phase where the algorithm learns user specific parameters. Once

the user’s parameters are acquired for a specific exercise session, an optimal

reference trajectory is generated. In [60], an adaptive resistance controller

is designed under the restriction that the resistance mechanism has only a

braking capability. The static damping control design in [60] ensures the

passivity of the closed-loop system to an external input force and bounded

tracking errors. An optimal exercise protocol is proposed in [60] based on

an assumed linear velocity dependence of human force. Identification of the

nonlinear system dynamics of the exercise motions and torque output of

the resistance mechanisms is utilized in [60] to deal with unknown human

biomechanical behavior.

For steer-by-wire control of vehicles, many researchers have worked on

establishing dynamic models and performing experiments to identify sys-

tem parameters with the intention of providing simulated force feedback

(e.g., see [12], [39], [55]). Detailed modeling of the conventional, electric,

and steer-by-wire steering systems is presented in [44]. After making appro-

priate simplifying assumptions, these models have been utilized to provide

the system model. In [17], the authors design a fuzzy logic controller for

an active steering system that prevents vehicle spin in wet road condi-

tions. In [31], a novel robot control strategy is designed to force locking

between the primary and secondary system while ensuring passivity. Con-

cepts introduced in this paper may be easily extended to add simulated

forces on the steering wheel to either ensure safe operation of the vehicle

or to communicate the occurrence of certain events (warnings). Theoretical

and experimental work [54] ongoing has produced various interesting ideas

and results in this area. Present day simulators already use the virtual en-
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vironment concept to provide safe and realistic learning environments to

beginners.

The emphasis of some previous robot teleoperation related research is to

achieve ideal transparency by exactly transferring the slave robot impedance

to the user. Typically, approaches that aim for ideal transparency either

require a priori knowledge of the environmental inputs to the slave ma-

nipulator, as in [7], or estimate the impedance of the slave manipulator

as in [15]. Some exceptions include the teleoperator controllers aimed at

low-frequency transparency developed in [30] and [57] that do not require

knowledge of the impedance of the user or environment. However, the ap-

proaches in [7], [15], [30], and [57] are based on linear teleoperator systems

with frequency-based control designs. A review of other frequency-based

approaches applied to linear teleoperator systems is given in [2], [20], [21],

[56], and [65]. In [18], an adaptive nonlinear control design is presented that

achieves transparency in the sense of motion and force tracking.

Other research has emphasized the stability and safe operation of the

teleoperator system through passivity concepts (e.g., [2]—[6], [32]—[34], and

[43]—[48]). In [2], Anderson and Spong used passivity and scattering crite-

rion to propose a bilateral control law for a linear time-invariant teleoper-

ator system in any environment and in the presence of time delay. These

results were then extended in [47] and [48], where wave-variables were used

to define a new configuration for force-reflecting teleoperators. In [48], and

more recently in [5] and [6], these methods where extended to solve the

position tracking problem. In [34], a passivity-based approach was used to

develop a controller that renders a linear teleoperator system as a passive

rigid mechanical tool with desired kinematic and power scaling capabilities.

The development in [34] was extended to nonlinear teleoperator systems in

[32] and [33]. The controllers in [32] and [33] are dependent on knowledge of

the dynamics of the master and slave manipulator and force measurements.
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Appendix A

Mathematical Background

In this appendix, several fundamental mathematical tools are presented

in the form of definitions and lemmas that aid the control development

and closed-loop stability analyses presented in the previous chapters. The

proofs of most of the following lemmas are omitted, but can be found in

the cited references.

Lemma A.1 [9]

Consider a function f(t) : R+ → R. If f(t) ∈ L∞, ḟ(t) ∈ L∞, and
f(t) ∈ L2, then

lim
t→∞ f(t) = 0. (A.1)

This lemma is often referred to as Barbalat’s Lemma.

Lemma A.2 [2]

If a given differentiable function f(t) : R+ → R has a finite limit as

t→∞ and if f(t) has a time derivative, defined as ḟ(t), that can be written

as the sum of two functions, denoted by g1(t) and g2(t), as follows

ḟ(t) = g1 + g2 (A.2)

where g1(t) is a uniformly continuous function and

lim
t→∞ g2(t) = 0 (A.3)
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then

lim
t→∞ ḟ(t) = 0 lim

t→∞ g1(t) = 0. (A.4)

This lemma is often referred to as the Extended Barbalat’s Lemma.

Lemma A.3 [6]

If f(t) is a uniformly continuous function, then lim
t→∞f(t) = 0 if and only

if

lim
t→∞

Z t+t0

t

f(τ)dτ = 0 (A.5)

for any positive constant t0 ∈ R. This lemma is often referred to as the
integral form of Barbalat’s Lemma.

Definition 1 [9]

Consider a function f(t) : R+ → R. Let the 2-norm (denoted by k·k2) of
a scalar function f(t) be defined as

kf(t)k2 =
sZ ∞

0

f2(τ) dτ . (A.6)

If kf(t)k2 <∞, then we say that the function f(t) belongs to the subspace
L2 of the space of all possible functions (i.e., f(t) ∈ L2). Let the ∞-norm
(denoted by k·k∞) of f(t) be defined as

kf(t)k∞ = sup
t
|f(t)| . (A.7)

If kf(t)k∞ <∞, then we say that the function f(t) belongs to the subspace
L∞ of the space of all possible functions (i.e., f(t) ∈ L∞).
Definition 2 [9]

The induced 2-norm of matrix A (t) ∈ Rn×n is defined as follows

kA(t)ki2 =
q
λmax {AT (t)A (t)}. (A.8)

Lemma A.4 [4]

Given a function f : Rn→ R that is continuously differentiable on an

open set S ⊂ Rn and given points (x10, ..., xn0) and (x1, ..., xn) in S that

are joined by a straight line that lies entirely in Rn, then there exists a
point (ξ1, ..., ξn) on the line between the endpoints, such that

f(x1, ..., xn) = f(x10, ..., xn0) +
nX
j=1

∂

∂xj
f(ξ1, ..., ξn) (xj − xj0) . (A.9)

This Lemma is often referred to as the Mean Value Theorem.
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Lemma A.5 [6]

Given a function f : Rn×Rm→ Rn that is continuously differentiable at
every point (x, y) on an open set S ⊂ Rn×Rm, if there is a point (x0, y0)
on S where

f (x0, y0) = 0 (A.10)

and
∂f

∂x
(x0, y0) 6= 0, (A.11)

then there are neighborhoods U ⊂ Rn and V ⊂ Rm of x0 and y0, respec-

tively, such that for all y ∈ V the expression in (A.10) has a unique solution

x ∈ U . This unique solution can be written as x = g(y) where g is con-

tinuously differentiable at y = y0. This Lemma is often referred to as the

Implicit Function Theorem.

Lemma A.6 [3]

Given a, b, c ∈ Rn, any of the following cyclic permutations leaves the
scalar triple product invariant

a · (b× c) = b · (c× a) = c · (a× b) (A.12)

and the following interchange of the inner and vector product

a · (b× c) = (a× b) · c (A.13)

leaves the scalar triple product invariant where the notation a · b represents
the dot product of a and b and the notation a × b represents the cross

product of a and b.

Lemma A.7 [3]

Given a, b, c ∈ Rn, the vector triple products satisfy the following expres-
sions

a× (b× c) = (a · c) b− (a · b) c (A.14)

(a× b)× c (a · c) b− (b · c) a (A.15)

where the notation a · b represents the dot product of a and b and the

notation a× b represents the cross product of a and b.

Lemma A.8 [3]

Given a, b ∈ Rn, the vector product satisfies the following skew-symmetric
property

a× b = −b× a (A.16)

where the notation a× b represents the cross product of a and b.
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Lemma A.9 [3]

Given a =
£
a1 a2 a3

¤T ∈ R3 and a× ∈ R3×3 which is defined as
follows

a× =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ (A.17)

then the product aTa× satisfies the following property

aTa× =
£
0 0 0

¤T
. (A.18)

Lemma A.10 [8] (Thm 9-11)

Given the symmetric matrix A ∈ Rn×n and the diagonal matrix D ∈
Rn×n, then A is orthogonally similar to D and the diagonal elements of D

are necessarily the eigenvalues of A.

Lemma A.11 [9]

If w(t) : R+ → R is persistently exciting and w(t), ẇ(t) ∈ L∞, then the
stable, minimum phase, rational transfer function Ĥ (w) is also persistently

exciting.

Lemma A.12 [10]

If ḟ(t)
4
= d

dtf(t) is bounded for t ∈ [0,∞), then f(t) is uniformly contin-

uous for t ∈ [0,∞).
Lemma A.13 [1]

Let V (t) be a non-negative scalar function of time on [0,∞) which sat-
isfies the differential inequality

V̇ (t) ≤ −γV (t) (A.19)

where γ is a positive constant. Given (A.19), then

V (t) ≤ V (0) exp (−γt) ∀t ∈ [0,∞) (A.20)

where exp (·) denotes the base of the natural logarithm.
Lemma A.14

Given a non-negative function denoted by V (t) ∈ R as follows

V =
1

2
x2 (A.21)



© 2010 by Taylor and Francis Group, LLC

Appendix A. Mathematical Background 331

with the following time derivative

V̇ = −k1x2, (A.22)

then x(t) ∈ R is square integrable (i.e., x(t) ∈ L2).
Proof: To prove Lemma A.14, we integrate both sides of (A.22) as follows

−
Z ∞
0

V̇ (t)dt = k1

Z ∞
0

x2(t)dt. (A.23)

After evaluating the left side of (A.23), we can conclude that

k1

Z ∞
0

x2(t)dt = V (0)− V (∞) ≤ V (0) <∞ (A.24)

where we utilized the fact that V (0) ≥ V (∞) ≥ 0 (see (A.21) and (A.22)).
Since the inequality given in (A.24) can be rewritten as followssZ ∞

0

x2(t)dt ≤
s

V (0)

k1
<∞ (A.25)

we can utilize Definition 1 to conclude that x(t) ∈ L2.

Lemma A.15 [5]

Let A ∈ Rn×n be a real, symmetric, positive-definite matrix; therefore,
all of the eigenvalues of A are real and positive. Let λmin{A} and λmax{A}
denote the minimum and maximum eigenvalues of A, respectively, then for

∀x ∈ Rn
λmin{A} kxk2 ≤ xTAx ≤ λmax{A} kxk2 (A.26)

where k·k denotes the standard Euclidean norm. This lemma is often re-
ferred to as the Rayleigh-Ritz Theorem.

Lemma A.16 [1]

Given a scalar function r(t) and the following differential equation

r = ė+ αe (A.27)

where ė(t) ∈ R represents the time derivative e(t) ∈ R and α ∈ R is a

positive constant, if r(t) ∈ L∞, then e(t) and ė(t) ∈ L∞.

Lemma A.17 [1]
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Given the differential equation in (A.27), if r(t) is exponentially stable

in the sense that

|r(t)| ≤ β0 exp(−β1t) (A.28)

where β0 and β1 ∈ R are positive constants, then e(t) and ė(t) are expo-

nentially stable in the sense that

|e(t)| ≤ |e(0)| exp(−αt) + β0
α− β1

(exp(−β1t)− exp(−αt)) (A.29)

and

|ė(t)| ≤ α |e(0)| exp(−αt) + αβ0
α− β1

(exp(−β1t) (A.30)

− exp(−αt)) + β0 exp(−β1t)

where α was defined in (A.27).

Lemma A.18 [1]

Given the differential equation in (A.27), if r(t) ∈ L∞, r(t) ∈ L2, and
r(t) converges asymptotically in the sense that

lim
t→∞ r(t) = 0 (A.31)

then e(t) and ė(t) converge asymptotically in the sense that

lim
t→∞ e(t), ė(t) = 0. (A.32)

Lemma A.19 [1, 7]

If a scalar function Nd(x, y) is given by

Nd = Ω(x)xy − knΩ
2(x)x2 (A.33)

where x, y ∈ R, Ω(x) ∈ R is a function dependent only on x, and kn is a

positive constant, then Nd(x, y) can be upper bounded as follows

Nd ≤ y2

kn
. (A.34)

The bounding of Nd(x, y) in the above manner is often referred to as non-

linear damping [7] since a nonlinear control function (e.g., knΩ
2(x)x2) can

be used to “damp-out” an unmeasurable quantity (e.g., y) multiplied by a

known, measurable nonlinear function, (e.g., Ω(x)).

Lemma A.20 [1]
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Let V (t) be a non-negative scalar function of time on [0,∞) which sat-
isfies the differential inequality

V̇ ≤ −γV + ε (A.35)

where γ and ε are positive constants. Given (A.35), then

V (t) ≤ V (0) exp (−γt) + ε

γ
(1− exp (−γt)) ∀t ∈ [0,∞). (A.36)

Lemma A.21 [1]

If the differential equation in (A.27) can be bounded as follows

|r(t)| ≤
p
A+B exp(−kt) (A.37)

where k, A, and B ∈ R and A + B ≥ 0, then e(t) given in (A.27) can be

bounded as follows

|e(t)| ≤ |e(0)| exp(−αt) + a

α
(1− exp(−αt)) (A.38)

+
2b

2α− k

µ
exp(−1

2
kt)− exp(−αt)

¶
where

a =
√
A and b =

√
B. (A.39)

Lemma A.22 [6]

Let the origin of the following autonomous system

ẋ = f(x) (A.40)

be an equilibrium point x(t) = 0 where f(·) : D → Rn is a map from the

domain D ⊂ Rn into Rn. Consider a continuously differentiable positive
definite function V (·) : D→ Rn containing the origin x(t) = 0 where

V̇ (x) ≤ 0 in D. (A.41)

Let Γ be defined as the set of all points where
n
x ∈ D|V̇ (x) = 0

o
and

suppose that no solution can stay identically in Γ other than the trivial

solution x(t) = 0. Then the origin is globally asymptotically stable. This

Lemma is a corollary to LaSalle’s Invariance Theorem.
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Appendix B

Supplementary Lemmas and
Expressions

B.1 Chapter 3 Lemmas

B.1.1 Open-Loop Rotation Error System

Lemma B.1 The time derivative of (3.38) can be expressed as

ėω = LωRωe − Θ̇d. (B.1)

Proof: Based on the definitions for ωe(t) and R(t) in Chapter 3, the

following property can be determined [13]

[Rωe]× = ṘRT . (B.2)

Given (B.2), the following definition (see 3.5)

R̄ = R (R∗)T

can be used to develop the following relationship

[Rωe]× =
.

R̄R̄T . (B.3)

While several parameterizations can be used to express R̄(t) in terms of

u(t) and θ(t), the open-loop error system for eω (t) is derived based on the

following exponential parameterization [13]

R̄ = exp([Θ]×) = I3 + sin θ [u]× + 2 sin
2 θ

2
[u]2× (B.4)
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where the notation Ii denotes an i × i identity matrix, and the notation

[u]× denotes the skew-symmetric matrix form of u(t). The parameterization
Θd(t) can be related to R̄d (t) as follows

R̄d = exp([Θd]×) = I3 + sin θd [ud]× + 2 sin
2 θd
2
[ud]

2
× , (B.5)

where R̄d (t) is defined in (3.5) of Chapter 3 as

R̄d = Rd (R
∗)T .

To facilitate the development of the open-loop dynamics for eω (t), the

expression developed in (B.3) can be used along with (B.4) and the time

derivative of (B.4), to obtain the following expression

[Rωe]× = sin θ [u̇]× + [u]× θ̇ + (1− cos θ) £[u]× u̇
¤
× (B.6)

where the following properties were utilized [5], [11]

[u]× ζ = − [ζ]× u (B.7)

[u]
2
× = uuT − I3 (B.8)

[u]× uuT = 0 (B.9)

[u]× [u̇]× [u]× = 0 (B.10)£
[u]× u̇

¤
× = [u]× [u̇]× − [u̇]× [u]× . (B.11)

To facilitate further development, the time derivative of (3.39) is deter-

mined as follows

Θ̇ = u̇θ + uθ̇. (B.12)

After multiplying (B.12) by
³
I3 + [u]

2
×
´
, the following expression can be

obtained ³
I3 + [u]

2
×
´
Θ̇ = uθ̇ (B.13)

where (B.8) and the following properties were utilized

uTu = 1 uT u̇ = 0 . (B.14)

Likewise, by multiplying (B.12) by − [u]2× and then utilizing (B.14) the

following expression is obtained

− [u]2× Θ̇ = u̇θ. (B.15)

From the expression in (B.6), the properties given in (B.7), (B.12), (B.13),

(B.15), and the fact that

sin2 θ =
1

2
(1− cos 2θ)
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can be used to obtain the following expression

Rωe = L−1ω Θ̇ (B.16)

where Lω (t) is defined in (3.47) as

Lω = I3 − θ

2
[u]× +

⎛⎜⎜⎝1− sinc (θ)

sinc2
µ
θ

2

¶
⎞⎟⎟⎠ [u]2× .

After multiplying both sides of (B.16) by Lω(t), the open-loop dynamics

for Θ̇ can be obtained. After substituting (B.16) into the time derivative of

(3.38), the open-loop dynamics for eω(t) given by (B.1) can be obtained.

B.1.2 Open-Loop Translation Error System

Lemma B.2 The time derivative of (3.36) can be expressed as

z∗1 ėv = α1AeLvR
£
ve + [ωe]× s1

¤− z∗1 ṗed. (B.17)

Proof: To develop the open-loop error system for ev(t), the time deriva-

tive of (3.36) can be expressed as

ėv = ṗe − ṗed =
1

z1
AeLv

.
m̄1 − ṗed (B.18)

where (3.1), (3.7), (3.14), (3.37), and the definition of αi(t) in (3.10) were

utilized. After taking the time derivative of the first equation in (3.160),
.
m̄1(t) can be determined as

.
m̄1 = Rve +R [ωe]× s1 (B.19)

where (B.2) and the following property have been utilized [5]

[Rωe]× = R [ωe]×RT . (B.20)

After substituting (B.19) into (B.18), multiplying the resulting expression

by z∗1 , and utilizing the definition of αi(t) in (3.10), the open-loop error
system given in (B.17) is obtained.

B.1.3 Persistence of Excitation Proof

Lemma B.3 If Ωi(t0, t) ≥ γ1I4 from (3.214) for any t0, then

θ̃i(t)→ 0 as t→∞. (B.21)
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Proof: Let Ωi(t0, t) ∈ R4×4 be defined as

Ωi(t0, t) =

Z t

t0

WT
fi(τ)Wfi(τ)dτ (B.22)

where Wfi(t) ∈ R3×4 was previously defined in (3.207). Consider the fol-
lowing expressionZ t

t0

θ̃
T

i (τ)Ωi(t0, τ)
dθ̃i(τ)

dτ
dτ = θ̃

T

i (τ)Ωi(t0, τ)θi(τ)
¯̄̄t
t0

−
Z t

t0

d
dτ

³
θ̃
T

i (τ)Ωi(t0, τ)
´
θ̃i(τ)dτ

= θ̃
T

i (t)Ωi(t0, t)θ̃i(t)

−
Z t

t0

θ̃
T

i (τ)Ωi(t0, τ)
dθ̃i(τ)

dτ
dτ

−
Z t

t0

θ̃
T

i (τ)W
T
fi(τ)Wfi(τ)θ̃i(τ)dτ,

(B.23)

where (B.22) and the fact that Ω(t0, t0) = 0 were used. Re-arranging (B.23)

yields

θ̃
T

i (t)Ωi(t0, t)θ̃i(t) = 2
R t
t0
θ̃
T

i (τ)Ωi(t0, τ)
dθ̃i(τ)
dτ dτ

+
R t
t0
θ̃
T

i (τ)W
T
fi(τ)Wfi(τ)θ̃i(τ)dτ

(B.24)

Substituting for t = t0 + T in (B.24), where T ∈ R is a positive constant,
and applying the limit on both sides of the equation yields

lim
t0→∞

θ̃
T

i (t0 + T )Ωi(t0, t0 + T )θ̃i(t0 + T ) =

lim
t0→∞

Ã
2

Z t0+T

t0

θ̃
T

i (τ)Ωi(t0, τ)
dθ̃i(τ)
dτ dτ

+

Z t0+T

t0

θ̃
T

i (τ)W
T
fi(τ)Wfi(τ)θ̃i(τ)dτ

!
.

(B.25)

From the proof of Theorem 3.4, θ̃i(t) ∈ L∞, and from (3.214) and (B.22),

Ωi(t0, t0 + T ) ∈ L∞. It was also proven that Wfi(t)θ̃i(t), ηi(t) ∈ L∞ ∩L2.
Hence, from (3.211)

lim
t→∞p̃ei(t) = 0

and consequently from (3.206) and (3.212)

lim
t→∞

.

θ̃i(t) = 0.
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Hence, after utilizing Lemma A.3 in Appendix A, the first integral in (B.25)

vanishes upon evaluation. From (3.225) and Lemma A.3 in Appendix A,

the second integral in (B.25) also vanishes, and hence

lim
t0→∞

θ̃
T

i (t0 + T )Ωi(t0, t0 + T )θ̃i(t0 + T ) = 0. (B.26)

Since Ωi(t0, t) ≥ γ1I4 from (3.214) for any t0, (B.26) indicates that

θ̃i(t)→ 0 as t→∞.

B.2 Chapter 4 Lemmas and Auxiliary Expressions

B.2.1 Experimental Velocity Field Selection

This VFC development is based on the selection of a velocity field that is

first order differentiable, and that a first order differentiable, nonnegative

function V (q) ∈ R exists such that the following inequality holds

∂V (x)

∂x
ϑ(x) ≤ −γ3(kxk) + ζ0 (B.27)

where ∂V (q)
∂q denotes the partial derivative of V (q) with respect to q(t),

γ3(·) ∈ R is a class K function1, and ζ0 ∈ R is a nonnegative constant.

To prove that the velocity field in (4.43) and (4.44) satisfies the condi-

tion in (B.27), let V (x) ∈ R denote the following nonnegative, continuous
differentiable function

V (x) , 1

2
xTx. (B.28)

After taking the time derivative of (B.28) and substituting (4.43) for ẋ(t),

the following inequality can be developed

V̇ = xTϑ(x) ≤ −γ3(x) + ζ0 (B.29)

where γ3(x) and ζ0 were defined in (B.27).

To prove the inequality given in (B.29), we must find γ3(x) and ζ0. To

this end, we rewrite xTϑ(x) as follows

xTϑ(x) = −2K(x)f(x)xTx (B.30)

1A continuous function α : [0, α)→ [0,∞) is said to belong to class K if it is strictly

increasing and α(0) = 0. [7]
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where (4.43) has been utilized, and xc1 and xc2 of (4.43) and (4.44) are set

to zero for simplicity and without loss of generality. By substituting (4.44)

into (B.30) for K(x) and f(x), the following expression can be obtained

xTϑ(x) =
−k∗0 kxk4 + k∗0r2o kxk2¯̄̄³
kxk2 − r2o

´¯̄̄
kxk+ �

2

. (B.31)

After utilizing the following inequality

kxk2 ≤ δ kxk4 + 1
δ

where δ ∈ R is a positive constant, the inequality given in (B.29) can be
determined from (B.31) where

γ3(x) =
k∗0
¡
1− r2oδ

¢ kxk4³
kxk2 + r2o

´
kxk+ �

2

and

ζ0 =
2k∗0r

2
o

δ�
.

Provided δ is selected according to the following inequality

δ <
1

r2o
,

then γ3(x) can be shown to be a class K function.

B.2.2 GUB Lemma

Lemma B.4 Given a continuously differentiable function, denoted by V (q),

that satisfies the following inequalities

0 < γ1(kqk) ≤ V (q) ≤ γ2(kqk) + ξb (B.32)

with a time derivative that satisfies the following inequality

V̇ (q) ≤ −γ3(kqk) + ξ0, (B.33)

then q(t) is GUB, where γ1(·), γ2(·), γ3(·) are class K functions, and ξ0,

ξb ∈ R denote positive constants.
Proof:2 Let Ω ∈ R be a positive function defined as follows

Ω , γ−13 (ξ0) > 0 (B.34)

2This proof is based on the proof for Theorem 2.14 in [12].
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where γ−13 (·) denotes the inverse of γ3(·), and let B(0,Ω) denote a ball
centered about the origin with a radius of Ω. Consider the following 2

possible cases.

The initial condition q(t0) lies outside the ball B(0,Ω) as follows

Ω < kq(t0)k ≤ Ω1 (B.35)

where Ω1 ∈ R is a positive constant. To facilitate further analysis, we define
the operator d(·) as follows

d(Ω1) , (γ−11 ◦ γ2)(Ω1) + γ−11 (ξb) > 0 (B.36)

where (γ−11 ◦γ2) denotes the composition of the inverse of γ1 (·) with γ2 (·)
(i.e., the inverse of the function γ1 (·) is applied to the function γ2 (·)).
After substituting the constant d(Ω1) into γ1(·), the following inequalities
can be determined

γ1(d (Ω1)) = γ2(Ω1) + ξb ≥ γ2(kq(t0)k) + ξb ≥ V (q(t0)) (B.37)

where the inequalities provided in (B.32) and (B.35) were utilized.

Assume that q (τ) ∈ R for t0 ≤ τ ≤ t < ∞ lies outside the ball B(0,Ω)

as follows

Ω < kq (τ)k . (B.38)

From (B.33) and (B.38), the following inequality can be determined

V̇ (q (τ)) ≤ −γ3(Ω) + ξ0,

and hence, from the definition for Ω in (B.34), it is clear that

V̇ (q (τ)) ≤ 0. (B.39)

By utilizing (B.37) and the result in (B.39), the following inequalities can

be developed for some constant ∆τ

γ1(d (Ω1)) ≥ V (q(t0)) ≥ V (q(τ)) ≥ V (q(τ +∆τ)) ≥ γ1 (kq(τ +∆τ)k) .
(B.40)

Since γ1(·) is a class K function, (B.36) and (B.40) can be used to develop
the following inequality

kq(t)k ≤ d(Ω1) = (γ
−1
1 ◦ γ2)(Ω1) + γ−11 (ξb) ∀t ≥ t0

provided the assumption in (B.38) is satisfied. If the assumption in (B.38)

is not satisfied, then

kq(t)k ≤ Ω = γ−13 (ξ0) ∀t ≥ t0. (B.41)
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Hence, q(t) is GUB for Case A.

The initial condition q(t0) lies inside the ball B(0,Ω) as follows

kq(t0)k ≤ Ω ≤ Ω1.

If q(t) remains in the ball, then the inequality developed in (B.41) will be

satisfied. If q(t) leaves the ball, then the results from Case A can be applied.

Hence, q(t) is GUB for Case B.

B.2.3 Boundedness of θ̇d (t)

Based on the definition of θd (t) in (4.116), θd (t) can be expressed in terms

of the natural logarithm as follows [16]

θd = −i ln

⎛⎜⎜⎜⎜⎝
− ∂ϕ

∂xc
− i

∂ϕ

∂ycsµ
∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2
⎞⎟⎟⎟⎟⎠ (B.42)

where i=
√−1. After exploiting the following identities [16]

cos (θd) =
1

2

¡
eiθd + e−iθd

¢
sin (θd) =

1

2i

¡
eiθd − e−iθd

¢
and then utilizing (B.42) the following expressions can be obtained

cos (θd)= −
∂ϕ

∂xcsµ
∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2 (B.43)

sin (θd) = −
∂ϕ

∂ycsµ
∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2 . (B.44)

After utilizing (B.43) and (B.44), the following expression can be obtained⎡⎢⎣
∂ϕ

∂xc
∂ϕ

∂yc

⎤⎥⎦ = −
sµ

∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2 ∙
cos (θd)

sin (θd)

¸
. (B.45)
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Based on the expression in (B.42), the time derivative of θd (t) can be

written as follows

θ̇d =

∙
∂θd
∂xc

∂θd
∂yc

¸ ∙
ẋc
ẏc

¸
(B.46)

where

∂θd
∂xc

=

⎡⎢⎢⎣ −
∂ϕ

∂yc⎛⎝ ∂ϕ

∂xc

⎞⎠2

+

⎛⎝ ∂ϕ

∂yc

⎞⎠2

∂ϕ

∂xc⎛⎝ ∂ϕ

∂xc

⎞⎠2

+

⎛⎝ ∂ϕ

∂yc

⎞⎠2

⎤⎥⎥⎦ (B.47)

·
∙

∂2ϕ

∂x2c

∂2ϕ

∂xc∂yc

¸T

∂θd
∂yc

=

⎡⎢⎢⎣ −
∂ϕ

∂yc⎛⎝ ∂ϕ

∂xc

⎞⎠2

+

⎛⎝ ∂ϕ

∂yc

⎞⎠2

∂ϕ

∂xc⎛⎝ ∂ϕ

∂xc

⎞⎠2

+

⎛⎝ ∂ϕ

∂yc

⎞⎠2

⎤⎥⎥⎦ (B.48)

·
∙

∂2ϕ

∂yc∂xc

∂2ϕ

∂y2c

¸T
.

After substituting (4.47), (B.47), and (B.48) into (B.46), the following ex-

pression can be obtained

θ̇d =

⎡⎢⎢⎣ −
∂ϕ

∂yc⎛⎝ ∂ϕ

∂xc

⎞⎠2

+

⎛⎝ ∂ϕ

∂yc

⎞⎠2

∂ϕ

∂xc⎛⎝ ∂ϕ

∂xc

⎞⎠2

+

⎛⎝ ∂ϕ

∂yc

⎞⎠2

⎤⎥⎥⎦ (B.49)

·

⎡⎢⎢⎣
∂2ϕ

∂x2c

∂2ϕ

∂yc∂xc
∂2ϕ

∂xc∂yc

∂2ϕ

∂y2c

⎤⎥⎥⎦∙ cos θsin θ

¸
vc.

After substituting (4.117) and (B.45) into (B.49), the following expression

can be obtained

θ̇d = kv cos
³
θ̃
´ £

sin (θd) − cos (θd)
¤

(B.50)

·

⎡⎢⎢⎣
∂2ϕ

∂x2c

∂2ϕ

∂yc∂xc
∂2ϕ

∂xc∂yc

∂2ϕ

∂y2c

⎤⎥⎥⎦∙ cos θsin θ

¸
.

By Property 4.2.4 of Chapter 4, each element of the Hessian matrix is

bounded; hence, from (B.50), it is straightforward that θ̇d (t) ∈ L∞.
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B.2.4 Open-Loop Dynamics for Υ (t)

The extended image coordinates pe1 (t) of (4.145) can be written as follows

pe1 =

⎡⎣ a1 a2 0

0 a3 0

0 0 1

⎤⎦
⎡⎢⎢⎣

x1
z1y1
z1
ln (z1)

⎤⎥⎥⎦+
⎡⎣ a4

a5
− ln (z∗1)

⎤⎦ (B.51)

where (4.140), (4.141), and (4.142) were utilized. After taking the time

derivative of (B.51), the following expression can be obtained

ṗe1 =
1

z1
Ae1

.
m̄1.

By exploiting the fact that
.
m̄1(t) can be expressed as follows

.
m̄1 = −vc + [m̄1]× ωc,

the open-loop dynamics for pe1(t) can be rewritten as follows

ṗe1 = − 1
z1
Ae1vc +Ae1 [m1]× ωc.

The open-loop dynamics for Θ(t) can be expressed as follows [4]

Θ̇ = −Lωωc.

B.2.5 Measurable Expression for LΥd
(t)

Similar to (4.47), the dynamics for Υd (t) can be expressed as

Υ̇d =

∙
ṗed1
Θ̇d

¸
=

"
− 1

zd1
Aed1 Aed1 [md1]×

03 −Lωd

# ∙
vcd
ωcd

¸
(B.52)

whereΘd(t) is defined in (4.155), zdi(t) is introduced in (4.135),Aedi (udi, vdi)

is defined in the same manner as in (4.148) with respect to the desired pixel

coordinates udi(t), vdi(t), mdi(t) is given in (4.134), Lωd(θd, μd) is defined

in the same manner as in (4.149) with respect to θd(t) and μd(t), and

vcd(t), ωcd(t) ∈ R3 denote the desired linear and angular velocity signals
that ensure compatibility with (B.52). The signals vcd(t) and ωcd(t) are not

actually used in the trajectory generation scheme presented in this paper

as similarly done in [1]; rather, these signals are simply used to clearly illus-

trate how
.
p̄d(t) can be expressed in terms of Υ̇d(t) as required in (4.156).
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Specifically, we first note that the top block row in (B.52) can be used to

write the time derivative of ped2(t) in terms of vcd(t) and ωcd(t) with i = 2

ṗed2 =
h
− 1

zd2
Aed2 Aed2 [md2]×

i ∙ vcd
ωcd

¸
(B.53)

where pedi(t) is defined in the same manner as (4.154) ∀i = 1, 2, 3, 4. After
inverting the relationship given by (B.52), we can also express vcd(t) and

ωcd(t) as a function of Υ̇d(t) as follows∙
vcd
ωcd

¸
=

∙ −zd1A−1ed1 −zd1 [md1]× L−1ωd
0 −L−1ωd

¸
Υ̇d. (B.54)

After substituting (B.54) into (B.53), ṗed2(t) can be expressed in terms of

Υ̇d(t) as follows

ṗed2 =
h

zd1
zd2

Aed2A
−1
ed1 Aed2

h
zd1
zd2

md1 −md2

i
×
L−1ωd

i
Υ̇d. (B.55)

After formulating similar expressions for ṗed3(t) and ṗed4(t) as the one

given by (B.55) for ṗed2(t), we can compute the expression for LΥd (p̄d) in

(4.157) by utilizing the definitions of pdi (t) and pedi (t) given in (4.140)

and (4.154), respectively (i.e., we must eliminate the bottom row of the

expression given by (B.55)).

B.2.6 Development of an Image Space NF and Its Gradient

Inspired by the framework developed in [3], an image space NF is con-

structed by developing a diffeomorphism3 between the image space and a

model space, developing a model space NF, and transforming the model

space NF into an image space NF through the diffeomorphism (since NFs

are invariant under diffeomorphism [8]). To this end, a diffeomorphism is

defined that maps the desired image feature vector p̄d to the auxiliary

model space signal ζ (p̄d) ,[ζ1 (p̄d) ζ2 (p̄d) ... ζ8 (p̄d)]T : [−1, 1]8 → R8 as
follows

ζ = diag{ 2

umax − umin
,

2

vmax − vmin
, ...,

2

vmax − vmin
}p̄d (B.56)

−
∙

umax + umin
umax − umin

vmax + vmin
vmax − vmin

...
vmax + vmin
vmax − vmin

¸T
.

3A diffeomorphism is a map between manifolds which is differentiable and has a

differentiable inverse.
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In (B.56), umax, umin, vmax, and vmin ∈ R denote the maximum and min-

imum pixel values along the u and v axes, respectively. The model space

NF, denoted by ϕ̃ (ζ) ∈ R8 → R, is defined as follows [3]

ϕ̃ (ζ) , ϕ̄

1 + ϕ̄
. (B.57)

In (B.57), ϕ̄ (ζ) ∈ R8 → R is defined as

ϕ̄ (ζ) , 1

2
f (ζ)

T
Kf (ζ) (B.58)

where the auxiliary function f (ζ) : (−1, 1)8 → R8 is defined similar to [3]
as follows

f (ζ) =

"
ζ1 − ζ∗1¡

1− ζ2κ1
¢1/2κ ...

ζ8 − ζ∗8¡
1− ζ2κ8

¢1/2κ
#T

(B.59)

whereK ∈ R8×8 is a positive definite, symmetric matrix, and κ is a positive
parameter. The reason we use κ instead of 1 as in [3] is to get an additional

parameter to change the potential field formed by f (ζ). See [3] for a proof

that (B.57) satisfies the properties of a NF as described in Properties 4.2.4

— 4.2.7 in Chapter 4. The image space NF, denoted by ϕ (p̄d) ∈ D → R,
can then be developed as follows

ϕ (p̄d) , ϕ̃ ◦ ζ (p̄d) (B.60)

where ◦ denotes the composition operator. The gradient vector 5ϕ (pd)

can be expressed as follows

5ϕ ,
µ
∂ϕ

∂p̄d

¶T
=

µ
∂ϕ̃

∂ζ

∂ζ

∂p̄d

¶T
. (B.61)

In (B.61), the partial derivative expressions ∂ζ(p̄d)
∂p̄d

, ∂ϕ̃(ζ)∂ζ , and ∂f(ζ)
∂ζ can be

expressed as follows

∂ζ

∂p̄d
= diag{ 2

umax − umin
,

2

vmax − vmin
, ...,

2

vmax − vmin
} (B.62)

∂ϕ̃

∂ζ
=

1

(1 + ϕ̄)
2 f

TK
∂f

∂ζ
(B.63)

∂f

∂ζ
= diag

⎧⎨⎩ 1− ζ2κ−11 ζ∗1¡
1− ζ2κ1

¢(2κ+1)/2κ , ..., 1− ζ2κ−18 ζ∗8¡
1− ζ2κ8

¢(2κ+1)/2κ
⎫⎬⎭ . (B.64)

It is clear from (B.56)—(B.64) that p̄d(t)→ p̄∗ when 5ϕ (p̄d)→ 0.
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B.2.7 Global Minimum

The objective function introduced in (4.218) can be solved by the Lagrange

multiplier approach with constraints [9]. To find the critical points of the

objective function in (4.218) subject to the constraint that

ψ (Υ, p̄) =
¡
Υ−Π† (p̄)¢ = 0,

where Π†(p̄) : D → R6 denotes a “pseudo-inverse” or “triangulation func-
tion” [14], which is a unique mapping that can be considered as a virtual

constraint for the image feature vector (See Remark 4.14), one can define

the Hamiltonian function H (p̄,Υ, λ) ∈ R as follows [9]

H (p̄,Υ, λ) =
1

2
(p̄− p̄∗)T (p̄− p̄∗) + λTψ (Υ, p̄)

where λ ∈ R6 is a Lagrange multiplier. The necessary conditions for the crit-
ical points of ϕ (p̄) of (4.218) which also satisfies the constraint ψ (Υ, p̄) = 0

are
∂H

∂p̄
= (p̄− p̄∗)T − λT

∂Π†

∂p̄
= 0 (B.65)

∂H

∂λ
=
¡
Υ−Π† (p̄)¢ = 0 (B.66)

∂H

∂Υ
= λT = 0. (B.67)

From (B.65)—(B.67), it is clear that the only critical point occurs at p̄(t) =

p̄∗. Since Π†(p̄) is a unique mapping, it is clear that Υ(t) = Υ∗ is the global
minimum of the objective function ϕ defined in (4.218).

B.3 Chapter 5 Lemmas and Auxiliary Expressions

B.3.1 Numerical Extremum Generation

The numerically-based extremum generation formula for computing the

optimal velocity setpoint that maximizes the user output power can be

described as follows.

• Step 1. Three initial best-guess estimates, denoted by γ1, γ2, γ3 ∈ R,
are selected where γ1 is the best-guess estimate for a lower bound

on the optimal velocity, γ3 is the best-guess estimate for an upper

bound on the optimal velocity, and γ2 is the best-guess estimate for

the optimal velocity, where γ2 ∈ (γ1, γ3).
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• Step 2. The lower bound estimate γ1 is then passed through a set of
third order stable and proper low pass filters to generate continuous

bounded signals for q̇d(t), q̈d(t),
...
q d(t). For example, the following

filters could be utilized

q̇d =
ς1

s3 + ς2s2 + ς3s+ ς4
γ1

q̈d =
ς1s

s3 + ς2s2 + ς3s+ ς4
γ1

...
q d =

ς1s
2

s3 + ς2s2 + ς3s+ ς4
γ1

(B.68)

where ς1, ς2, ς3, ς4 denote positive filter constants.

• Step 3. Based on the result in (5.9), and the expressions for the user
power output given in (5.12) and the structure in (B.68), the algo-

rithm waits until |e(t)| ≤ ē1 and |q̇d − γ1| ≤ ē2 before evaluating

p(γ1), where ē1 and ē2 are some pre-defined threshold values.

• Step 4. Steps 2 and 3 are repeated to obtain p(γ2) and p(γ3).

• Step 5. The next desired trajectory point is determined from the

following expression

γ4 = γ2 −
1

2

g1
g2

(B.69)

where g1, g2 ∈ R are constants defined as follows
g1 = (γ2 − γ1)

2[p(γ2)− p(γ3)] (B.70)

−(γ2 − γ3)
2[p(γ2)− p(γ1)]

g2 = (γ2 − γ1)[p(γ2)− p(γ3)] (B.71)

−(γ2 − γ3)[p(γ2)− p(γ1)]

where γi and p(γi) ∀i = 1, 2, 3 are determined from Steps 1—4. Specifi-
cally, γi and p(γi) are substituted into (B.69)—(B.71) and the resulting

expression yields the next best-guess for q̇∗d denoted by γ4 ∈ R.
• Step 6. Steps 2 and 3 are repeated to obtain q̇d(t), q̈d(t),

...
q d(t) and

p(γ4). Note that each successive estimate for q̇
∗
d produced by (B.69)—

(B.71) will always be bounded by (γ1, γ3), and hence, q̇d(t), q̈d(t),...
q d(t) ∈ L∞.

• Step 7. The value for p(γ4) is compared to p(γ2). If p(γ4) ≥ p(γ2) and

γ2 > γ4 or if p(γ2) ≥ p(γ4) and γ4 > γ2, then the three new estimates

used to construct a new parabola are γ2, γ3, γ4. If p(γ4) ≥ p(γ2) and

γ4 > γ2 or if p(γ2) ≥ p(γ4) and γ2 > γ4, then the three new estimates

used to construct a new parabola are γ1, γ2, γ4.
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• Step 8. Repeat Steps 5—7 for successive γi ∀i = 5, 6, ..., where the

three estimates determined from Step 7 are used to construct a new

parabola. Steps 5—7 are repeated until the difference between the new

upper and lower estimates is below some predefined, arbitrarily small

threshold.

B.3.2 Proof of Lemma 5.1

After substituting (5.15) into (5.26) and then integrating, the following

expression is obtainedZ t

t0

L1(σ)dσ =

Z t

t0

αre(σ)[Nd(σ)− β1sgn(e(σ))]dσ (B.72)

+

Z t

t0

de(σ)

dτ
Nd(σ)dσ − β1

Z t

t0

de(σ)

dτ
sgn(e(σ))dσ.

Integrating the second integral on the right side of (B.72) by parts yieldsZ t

t0

L1(σ)dτ =

Z t

t0

αre(σ) (Nd(σ)− β1sgn(e(σ))) dσ (B.73)

+ e(σ)Nd(σ)|tt0 −
Z t

t0

e(σ)
dNd(σ)

dτ
dσ − β1 |e(σ)||tt0

=

Z t

t0

e(σ)

µ
αrNd(σ)− dNd(σ)

dτ
− αrβ1sgn(e(σ))

¶
dσ

+e(t)Nd(t)− e(t0)Nd(t0)− β1 |e(t)|+ β1 |e(t0)| .

The expression in (B.73) can be upper bounded as follows

R t
t0
L1(σ)dσ ≤

R t
t0
|e(σ)|

³
αr |Nd(σ)|+

¯̄̄
dNd(σ)
dτ

¯̄̄
− αrβ1

´
dσ

+ |e(t)| (|Nd(t)|− β1)

+β1 |e(t0)|− e(t0)Nd(t0).

(B.74)

If β1 is chosen according to (5.27), then the first inequality in (5.28) can

be proven from (B.74). The second inequality in (5.28) can be obtained by

integrating the expression for L2(t), introduced in (5.26), as followsZ t

t0

L2(σ)dσ =

Z t

t0

(−β2ėsgn(e)) dσ (B.75)

= β2|e(t0)|− β2|e(t)| ≤ β2|e(t0)|.
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B.3.3 Definitions from Section 5.3.2

The explicit definitions for Y1 (·), Y2 (·), φ1, and φ2 are given as follows

Y1

³
θ1, θ̇1, τ1, θ̈d1, θ̇d1

´
=
£
YN1 −τ1 θ̈d1 + μ1ė1

¤

φ1 =
£
φN1 α1 I1

¤T
Y2

³
θ1, θ̇1, θ2, θ̇2, τ1, τ2, T1

´
=
£ −YN1 τ1 T1 YN2 −τ2 μ2ė2

¤

φ2 =

∙
I2
I1
φN1

I2
I1
α1

I2
I1

φN2 α2 I2

¸T
where Remark 5.5 from Chapter 5 has been utilized.

B.3.4 Upperbound for Va1 (t)

Equation (5.101) can be integrated and rewritten as

Va1 (t)− Va1 (t0) = −Ks

tZ
t0

s21 (σ) dσ

+

tZ
t0

p1 (σ) (−η1 (σ)− ρ1sgn (p1 (σ))) dσ

+

⎡⎣ tZ
t0

dp1 (σ)

dσ
(−η1 (σ)− ρ1sgn (p1 (σ))) dσ

⎤⎦ .
(B.76)

The bracketed term in this expression is further evaluated as follows

tZ
t0

dp1 (σ)

dσ
(−η1 (σ)− ρ1sgn (p1 (σ))) dσ =

⎡⎣− tZ
t0

dp1 (σ)

dσ
η1 (σ) dσ

⎤⎦
−ρ1

tZ
t0

dp1 (σ)

dσ
sgn (p1 (σ)) dσ.

(B.77)
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After integrating the bracketed term in (B.77) by parts, we have

tZ
t0

dp1 (σ)

dσ
(−η1 (σ)− ρ1sgn (p1 (σ))) dσ = −

h
η1 (σ) p1 (σ)|tt0

−
tZ

t0

p1 (σ)
dη1 (σ)

dσ
dσ

⎤⎦
−ρ1 |p1 (σ)||tt0 .

(B.78)

After substituting (B.78) into (B.76), the following expression is obtained

Va1 (t)− Va1 (t0) = −Ks

tZ
t0

s21 (σ) dσ

+

tZ
t0

p1 (σ)

µ
−η1 (σ) +

dη1 (σ)

dσ
− ρ1sgn (p1 (σ))

¶
dσ

−η1 (t) p1 (t)− ρ1 |p1 (t)|+ η1 (t0) p1 (t0) + ρ1 |p1 (t0)|
(B.79)

which can be simplified as follows

Va1 (t)− Va1 (t0) ≤ −Ks

tZ
t0

s21 (σ) dσ

+

tZ
t0

|p1 (σ)|
µ
|η1 (σ)|+

¯̄̄̄
dη1 (σ)

dσ

¯̄̄̄
− ρ1

¶
dσ

+ |p1 (t)| (|η1 (t)|− ρ1) + η1 (t0) p1 (t0) + ρ1 |p1 (t0)|
(B.80)

where the following equality has been used

p1 (σ) sgn (p1 (σ)) = |p1 (σ)| . (B.81)

B.3.5 Upper Bound Development for MIF Analysis

To simplify the following derivations, (5.143) can be rewritten as follows

N , N(x, ẋ, ẍ, e1, e2, r,
...
x d) = M̄

...
x d

+
.

M̄ẍ+ d
dt

£
C̄ẋ+ B̄ẋ

¤
+ e2

+M̄ (α1 + α2) r − M̄
¡
α21 + α1α2 + α22

¢
e2

+M̄α32e1 +
1
2

.

M̄r

(B.82)

where (5.132) and (5.133) were utilized. To further facilitate the subse-

quent analysis, the terms N(x, ẋd, ẍd, 0, 0, 0,
...
x d), N(x, ẋ, ẍd, 0, 0, 0,

...
xd),
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N(x, ẋ, ẍ, 0, 0, 0,
...
xd), N(x, ẋ, ẍ, e1, 0, 0,

...
x d) and N(x, ẋ, ẍ, e1, e2, 0,

...
x d) are

added and subtracted to the right-hand side of (5.142) as follows

Ñ = [N(x, ẋd, ẍd, 0, 0, 0,
...
xd)−Nd(xd, ẋd, ẍd, 0, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍd, 0, 0, 0,
...
x d)−N(x, ẋd, ẍd, 0, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍ, 0, 0, 0,
...
xd)−N(x, ẋ, ẍd, 0, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍ, e1, 0, 0,
...
xd)−N(x, ẋ, ẍ, 0, 0, 0,

...
xd)]

+ [N(x, ẋ, ẍ, e1, e2, 0,
...
x d)−N(x, ẋ, ẍ, e1, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍ, e1, e2, r,
...
xd)−N(x, ẋ, ẍ, e1, e2, 0,

...
x d)]

(B.83)

After applying the Mean Value Theorem to each bracketed term of (B.83),

the following expression can be obtained

Ñ =
∂N(σ1, ẋd, ẍd, 0, 0, 0,

...
xd)

∂σ1

¯̄̄̄
σ1=v1

(x− xd)

+
∂N(x, σ2, ẍd, 0, 0, 0,

...
x d)

∂σ2

¯̄̄̄
σ2=v2

(ẋ− ẋd)

+
∂N(x, ẋ, σ3, 0, 0, 0,

...
xd)

∂σ3

¯̄̄̄
σ3=v3

(ẍ− ẍd)

+
∂N(x, ẋ, ẍ, σ4, 0, 0,

...
xd)

∂σ4

¯̄̄̄
σ4=v4

(e1 − 0)

+
∂N(x, ẋ, ẍ, e1, σ5, 0,

...
x d)

∂σ5

¯̄̄̄
σ5=v5

(e2 − 0)

+
∂N(x, ẋ, ẍ, e1, e2, σ6,

...
xd)

∂σ6

¯̄̄̄
σ6=v6

(r − 0)

(B.84)

where v1 ∈ (xd, x), v2 ∈ (ẋd, ẋ), v3 ∈ (ẍd, ẍ), v4 ∈ (0, e1), v5 ∈ (0, e2), and
v6 ∈ (0, r). The right-hand side of (B.84) can be upper bounded as follows

Ñ ≤
°°°°° ∂N(σ1, ẋd, ẍd, 0, 0, 0,

...
x d)

∂σ1

¯̄̄̄
σ1=v1

°°°°° ke1k
+

°°°°° ∂N(x, σ2, ẍd, 0, 0, 0,
...
x d)

∂σ2

¯̄̄̄
σ2=v2

°°°°° kė1k
+

°°°°° ∂N(x, ẋ, σ3, 0, 0, 0,
...
x d)

∂σ3

¯̄̄̄
σ3=v3

°°°°° kë1k
+

°°°°° ∂N(x, ẋ, ẍ, σ4, 0, 0,
...
x d)

∂σ4

¯̄̄̄
σ4=v4

°°°°° ke1k
+

°°°°° ∂N(x, ẋ, ẍ, e1, σ5, 0,
...
xd)

∂σ5

¯̄̄̄
σ5=v5

°°°°° ke2k
+

°°°°° ∂N(x, ẋ, ẍ, e1, e2, σ6,
...
x d)

∂σ6

¯̄̄̄
σ6=v6

°°°°° krk .

(B.85)
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The partial derivatives in (B.85) can be calculated from (B.82) as

∂N(σ1, ẋd, ẍd, 0, 0, 0,
...
x d)

∂σ1
=

∂M̄(σ1)

∂σ1

...
x d

+
∂

.

M̄(σ1, ẋd)

∂σ1
ẍd

+
∂
.

C̄(σ1, ẋd, ẍd)

∂σ1
ẋd

+
∂C̄(σ1, ẋd)

∂σ1
ẍd

(B.86)

∂N(x, σ2, ẍd, 0, 0, 0,
...
x d)

∂σ2
=

∂
.

M̄(x, σ2)

∂σ2
ẍd

+
∂
.

C̄(x, σ2, ẍd)

∂σ2
σ2

+
.

C̄(x, σ2, ẍd)

+
∂C̄(x, σ2)

∂σ2
ẍd

(B.87)

∂N(x, ẋ, σ3, 0, 0, 0,
...
x d)

∂σ3
=

.

M̄(x, ẋ) +
∂
.

C̄(x, ẋ, σ3)

∂σ3
ẋ

+C̄(x, ẋ) + B̄

(B.88)

∂N(x, ẋ, ẍ, σ4, 0, 0,
...
x d)

∂σ4
= α32M̄(x) (B.89)

∂N(x, ẋ, ẍ, e1, σ5, 0,
...
xd)

∂σ5
= 1− α21M̄(x)− α1α2M̄(x)

−α22M̄(x)
(B.90)

∂N(x,ẋ,ẍ,e1,e2,σ6,
...
x d)

∂σ6
= (α1 + α2) M̄(x)

+1
2

.

M̄(x, ẋ).
(B.91)

By noting that

v1 = x− c1 (x− xd) v2 = ẋ− c2 (ẋ− ẋd)

v3 = ẍ− c3 (ẍ− ẍd) v4 = e1 − c4 (e1 − 0)
v5 = e2 − c5 (e2 − 0) v6 = r − c6 (r − 0)

where ci ∈ (0, 1) ∀i = 1, 2, ..., 6, if the assumptions stated for the system

model and the desired trajectory are met, an upper bound for the right-
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hand side of (B.86)—(B.91) can be written as follows°°°°° ∂N(σ1, ẋd, ẍd, 0, 0, 0,
...
xd)

∂σ1

¯̄̄̄
σ1=v1

°°°°° 6 ρ1(x, ẋ, ẍ) (B.92)°°°°° ∂N(x, σ2, ẍd, 0, 0, 0,
...
xd)

∂σ2

¯̄̄̄
σ2=v2

°°°°° 6 ρ2(x, ẋ, ẍ)°°°°° ∂N(x, ẋ, σ3, 0, 0, 0,
...
xd)

∂σ3

¯̄̄̄
σ3=v3

°°°°° 6 ρ3(x, ẋ)°°°°° ∂N(x, ẋ, ẍ, σ4, 0, 0,
...
xd)

∂σ4

¯̄̄̄
σ4=v4

°°°°° 6 ρ4(x)°°°°° ∂N(x, ẋ, ẍ, e1, σ5, 0,
...
xd)

∂σ5

¯̄̄̄
σ5=v5

°°°°° 6 ρ5(x)°°°°° ∂N(x, ẋ, ẍ, e1, e2, σ6,
...
x d)

∂σ6

¯̄̄̄
σ6=v6

°°°°° 6 ρ6(x, ẋ)

where ρi(·) ∀i = 1, 2, ..., 6, are positive nondecreasing functions of x(t),

ẋ(t), and ẍ(t). After substituting (B.92) into (B.85), Ñ(·) can be expressed
as

Ñ ≤ (ρ1(ke1k , ke2k , krk) + ρ4(ke1k)) ke1k (B.93)

+ (ρ2(ke1k , ke2k , krk)) kė1k
+(ρ3(ke1k , ke2k)) kë1k
+(ρ5(ke1k)) ke2k
+(ρ6(ke1k , ke2k)) krk .

where (5.132)—(5.134) were utilized. The expressions in (5.132) and (5.145)

can now be used to upper bound the right-hand side of (B.93) as in (5.146).

B.3.6 Teleoperator — Proof of MIF Controller Stability

Before we present the proof of the main result, we state and prove a pre-

liminary Lemma.

Lemma B.5 Let the auxiliary functions L1(t), L2(t) ∈ R be defined as

follows

L1 , rT (Nd − β1sgn(e2)) (B.94)

L2 , −β2ėT2 sgn(e2)
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where β1 and β2 were introduced in (5.147). Provided β1 is selected accord-

ing to the following sufficient condition

β1 > ς1 +
1

α1
ς2 (B.95)

where ς1 and ς2 are given in (5.150), and α1 is introduced in (5.61), thenR t
t0
L1(τ)dτ ≤ ξb1

R t
t0
L2(τ)dτ ≤ ξb2 (B.96)

where the positive constants ξb1, ξb2 ∈ R are defined as

ξb1 , β1

2nX
i=1

|e2i(t0)|− eT2 (t0)Nd(t0) (B.97)

ξb2 , β2

2nX
i=1

|e2i(t0)| .

Proof. After substituting (5.61) into (B.94) and then integrating, the

following expression can be obtainedZ t

t0

L1(τ)dτ = α1

Z t

t0

eT2 (τ) [Nd(τ)− β1sgn(e2(τ))] dτ (B.98)

+

Z t

t0

deT2 (τ)

dτ
Nd(τ)dτ − β1

Z t

t0

deT2 (τ)

dτ
sgn(e2(τ))dτ .

After evaluating the second integral on the right side of (B.98) by parts

and evaluating the third integral, the following expression is obtainedZ t

t0

L1dτ = α1

Z t

t0

eT2

µ
Nd − 1

α1

dNd

dτ
− β1sgn(e2)

¶
dτ

+eT2 (t)Nd(t)− β1

2nX
i=1

|e2i(t)|+ ξb1. (B.99)

The expression in (B.99) can be upper bounded as followsZ t

t0

L1dτ 6 α1

Z t

t0

2nX
i=1

|e2i(τ)|
µ
|Ndi(τ)|+

1

α1

¯̄̄̄
dNdi(τ)

dτ

¯̄̄̄
(B.100)

− β1

´
dτ +

2nX
i=1

|e2i(t)| (|Ndi(t)|− β1) + ξb1.

If β1 is chosen according to (B.95), then the first inequality in (B.96) can

be proven from (B.100). The second inequality in (B.99) can be obtained
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by integrating the expression for L2(t) introduced in (B.94) as followsZ t

t0

L2(τ)dσ = −β2
Z t

t0

ėT2 (τ)sgn(e2(τ))dτ (B.101)

= ξb2 − β2

2nX
i=1

|e2i(t)| ≤ ξb2.

We now proceed to present the proof for the main result.

Proof. Let the auxiliary functions P1(t), P2(t) ∈ R be defined as follows

P1(t) , ξb1 −
Z t

t0

L1(τ)dτ ≥ 0 (B.102)

P2(t) , ξb2 −
Z t

t0

L2(τ)dτ ≥ 0 (B.103)

where ξb1, L1(t), ξb2, and L2(t) were defined in (B.94) and (B.97). The

results from Lemma B.5 can be used to show that P1(t) and P2(t) are

non-negative. Let V (y, t) ∈ R denote the following nonnegative function

V , 1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rT M̄r + P1 + P2 (B.104)

where y(t) ∈ R6n+2

y(t) ,
£
zT

√
P1

√
P2

¤T
(B.105)

where the composite vector z(·) ∈ R6n has been defined in (5.145). Note

that (B.104) is bounded by

W1(y) ≤ V (y, t) ≤W2(y) (B.106)

where

W1(y) = λ1 ky(t)k2 W2(y) = λ2 ky(t)k2 (B.107)

where λ1 , 1
2 min {1, m̄1} and λ2 , max

©
1, 12m̄2

ª
where m̄1 and m̄2 were

introduced in (5.131).

After taking the time derivative of (B.104), the following expression can

be obtained

V̇ = −α2eT1 e1 − α1e
T
2 e2 − rT (ks + 1) r (B.108)

+eT1 e2 + rT Ñ − rTβ2sgn(e2) + β2ė
T
2 sgn(e2)

where (5.132), (5.133), (5.149), (B.102), and (B.103) were utilized. By uti-

lizing the inequality of (5.61), 5.146, and the triangle inequality, V̇ (t) can

be upper bounded as follows

V̇ ≤ −α2eT1 e1 − α1e
T
2 e2 − rT (ks + 1) r (B.109)

+eT1 e1 + eT2 e2 + ρ (kzk) krk kzk− α1e
T
2 β2sgn(e2).
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By utilizing (5.145), V̇ (t) of (B.109) can be upper bounded as follows

V̇ ≤ −λ3 kzk2 − ks krk2 + ρ(kzk) krk kzk− α1β2

2nX
i=1

|e2i| (B.110)

where λ3, min {α1 − 1, α2 − 1, 1}. After completing the squares for the
second and third term on the right side of (B.110), the following expression

can be obtained

V̇ ≤ −
µ
λ3 − ρ2(kzk)

4ks

¶
kzk2 − α1β2

2nX
i=1

|e2i| . (B.111)

Provided α1 and α2 are selected to be greater than 2 and ks is selected

according to the following sufficient condition

ks ≥ ρ2(kzk)
4λ3

or kzk ≤ ρ−1
³
2
p
ksλ3

´
, (B.112)

the following inequality can be developed

V̇ ≤W (y)− α1β2

2nX
i=1

|e2i| (B.113)

where W (y) ∈ R denotes the following nonpositive function

W (y) , −β0 kzk2 (B.114)

with β0 ∈ R being a positive constant. From (B.104)—(B.107) and (B.111)—

(B.114), the regions D and S can be defined as follows

D ,
n
y ∈ R6n+2 | kyk < ρ−1

³
2
p
ksλ3

´o
(B.115)

S ,
½
y ∈ D |W2(y) < λ1

³
ρ−1

³
2
p
ksλ3

´´2¾
. (B.116)

The region of attraction in (B.116) can be made arbitrarily large to include

any initial conditions by increasing the control gain ks (i.e., a semi-global

stability result). Specifically, (B.107) and the region defined in (B.116) can

be used to calculate the region of attraction as follows

W2(y(t0)) < λ1

³
ρ−1

³
2
p
ksλ3

´´2
(B.117)

=⇒ ky(t0)k <
r

λ1
λ2

ρ−1
³
2
p
ksλ3

´
,
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which can be rearranged as

ks ≥ 1

4λ3
ρ2(

r
λ2
λ1
ky(t0)k). (B.118)

By using (5.145), (B.97), and (B.105) an explicit expression for ky(t0)k can
be written as

ky(t0)k2 = ke1(t0)k2 + ke2(t0)k2 (B.119)

+ kr(t0)k2 + ξb1 + ξb2.

Hereafter, we restrict the analysis to be valid for all initial conditions

y(t0) ∈ S. From (B.104), (B.113), and (B.116)—(B.118), it is clear that

V (y, t) ∈ L∞; hence e1(t), e2(t), r(t), z(t), y(t) ∈ L∞ ∀y(t0). From (B.113)
it is easy to show that e2(t) ∈ L1. The fact that e2(t) ∈ L1 can be used

along with (5.133) to determine that e1(t), ė1(t) ∈ L1. From (5.123), (5.134)

and the assumption that qd(t) ∈ L∞, it is clear that x(t), q(t) ∈ L∞. From
(5.132) and (5.133) it is also clear that ė2(t), ė1(t) ∈ L∞. Using these
boundedness statements, it is clear that both

.
ū(t) ∈ L∞. From the time

derivative of (5.133), and using the assumption that q̈d(t) ∈ L∞ along with
(5.139), it is clear that ū(t) ∈ L∞. The previous boundedness statements
can be used along with (5.149), (5.146), and Remark 5.10 to prove that

ṙ(t) ∈ L∞. These bounding statements can be used along with the time
derivative of (B.114) to prove that Ẇ (y(t)) ∈ L∞; hence, W (y(t)) is uni-

formly continuous. Standard signal chasing arguments can be used to prove

all remaining signals are bounded. A direct application of Theorem 8.4 in

[7] can now be used to prove that kz(t)k → 0 as t → ∞. From (5.145), it

is also clear that kr(t)k → 0 as t → ∞. Based on the definitions given in
(5.132)—(5.134), standard linear analysis tools can be used to prove that if

kr(t)k → 0 then kė2(t)k , ke2(t)k , kė1(t)k, ke1(t)k → 0 as t → ∞ . Based

on the definition of x(t) in (5.123) and e1(t) in (5.134), it is clear that if

ke1(t)k→ 0 then kq1 (t)− q2 (t)k → 0 and q1 (t) + q2 (t) → qd (t) .

B.3.7 Teleoperator — Proof of MIF Passivity

Proof. Let Vp(t) ∈ R denote the following nonnegative, bounded function

Vp ,
1

2
q̇TdMT q̇d +

1

2
qTd KT qd. (B.120)

After taking the time derivative of (B.120), the following simplified expres-

sion can be obtained

V̇p = q̇Td F̄2 − q̇Td BT q̇d (B.121)
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where (5.136) was utilized. Based on the fact that BT is a constant positive

definite, diagonal matrix, the following inequality can be developed

V̇p ≤ q̇Td F̄2. (B.122)

After integrating both sides of (B.122), the following inequality can be

developed

−c2 ≤ Vp(t)− Vp(t0) ≤
Z t

t0

q̇Td (σ)F̄2(σ)dσ (B.123)

where c2 ∈ R is a positive constant (since Vp(t) is bounded from the tra-

jectory generation system in (5.136)).

By using the transformation in (5.123), the left side of (5.121) can be

expressed as Z t

t0

q̇T (τ)

∙
γF1(τ)

F2(τ)

¸
dτ =

Z t

t0

ẋT F̄ dτ . (B.124)

By substituting the time derivative of (5.134) into (B.124), the following

expression can be obtainedZ t

t0

ẋT (τ)F̄ (τ)dτ =

Z t

t0

q̇Td (τ)F̄2(τ)dτ −
Z t

t0

ėT1 (τ)F̄ (τ)dτ (B.125)

where (5.135) was utilized. Based on (B.123), it is clear that
R t
t0
q̇Td (τ)F̄2(τ)dτ

is lower bounded by −c2, where c2 was defined as a positive constant. The
fact that ė1(t) ∈ L1 from the proof for Theorem 5.7 and the assumption

that F̄ (t) ∈ L∞ can be used to show that the second integral of (B.125)

is bounded. Hence, these facts can be applied to (B.124) and (B.125) to

prove that Z t

t0

q̇T (τ)

∙
γF1(τ)

F2(τ)

¸
dτ ≥ −c23 (B.126)

where c3∈ R is a positive constant. This proves that the teleoperator system

is passive with respect to the scaled user and environmental power.

B.3.8 Teleoperator — Proof of UMIF Desired Trajectory

Boundedness

Proof. Let V1(t) ∈ R denote the following nonnegative function

V1 ,
1

2
eT2 e2 +

1

2
rT r + P1 + P2. (B.127)

Based on (B.127) and the closed loop error systems in (5.174), the proof of

Theorem 5.3 can be followed directly to prove that e1(t), e2(t), r(t), F̂ (t),
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.

F̂ (t) ∈ L∞ as well as that e1(t), e2(t), and r(t) → 0 as t → ∞ regardless

of whether or not xd (t) , ẋd (t) , ẍd (t) ∈ L∞. Therefore, the fact that
F̂ (t) ∈ L∞ can be used in the subsequent analysis. As a means to prove that
xd(t), ẋd(t), ẍd(t) ∈ L∞, let V2(t) ∈ R denote the following nonnegative

function

V2 , V3 + L (B.128)

where V3(t)∈ R denotes the following nonnegative function

V3 ,
1

2
ẋTd M̄ẋd +

1

2
xTdKTxd (B.129)

where xd(t), ẋd(t) were defined in (5.158), where KT was defined in (5.157),

and M̄ (x) was defined in (5.126). The expression given in (B.129) can be

lower bounded by the auxiliary function, L(x̄) ∈ R, defined as follows

L , 2εẋTd M̄xd
1 + 2xTd xd

≤ V3(t) (B.130)

where ε ∈ R is a positive bounding constant selected according to the

following inequality

0 < ε <
min {m̄1, λmin{KT }}

2mL∞
(B.131)

where λmin{KT }∈ R denotes the minimum eigenvalue of KT , m̄1 was de-

fined in (5.131) and mL∞∈ R denotes the induced infinity norm of the

bounded matrix M̄(x). >From (B.130) it is clear that V2(t) is a non-

negative function. Also, x̄(t)∈ R4n is defined as

x̄ , [ xTd ẋTd ]T . (B.132)

The expression in (B.128) satisfies the following inequalities

λ̄1 kx̄k2 ≤ V2(x̄) ≤ λ̄2 kx̄k2 (B.133)

where λ̄1, λ̄2 ∈ R are positive constants defined as follows, provided ε is

selected sufficiently small

λ̄1 , 1

2
min {m̄1, λmin{KT }}− εξc (B.134)

λ̄2 , 1

2
max {m̄2, λmax{KT }}+ εξc

where m̄1 and m̄2 were introduced in (5.131), and λmax{KT }∈ R denotes

the maximum eigenvalue of KT . In (B.134), ξc∈ R is a positive constant

defined as follows

ξc = max

½
2mL∞
δa

, 2mL∞δa

¾
(B.135)
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where δa ∈ R is some positive constant, and mL∞ was introduced in

(B.131).

To facilitate the subsequent analysis, the time derivative of (B.130) can

be determined as follows

L̇ =
2εẍTd M̄xd + 2εẋ

T
d

.

M̄xd + 2εẋ
T
d M̄ẋd

1 + 2xTd xd

−2ε
¡
ẋTd M̄xd

¢
4xTd ẋd

(1 + 2xTd xd)
2

. (B.136)

After utilizing (5.157), the expression in (B.136) can be written as

L̇ = −2εx
T
dKTxd

1 + 2xTd xd
− 2εx

T
dBT ẋd

1 + 2xTd xd
+

2εxTd F̂

1 + 2xTd xd
(B.137)

+
εxTd

.

M̄ẋd
1 + 2xTd xd

+
2εẋTd M̄ẋd
1 + 2xTd xd

− 2ε
¡
ẋTd M̄xd

¢
4xTd ẋd¡

1 + 2xTd xd
¢2 .

The signal in (B.137) can be upper bounded as follows

L̇ ≤ −2ελmin{KT }
1 + 2xTd xd

kxdk2 + 2ελmax{BT }
1 + 2xTd xd

h
kxdk2 + kẋdk2

i
+

2ε

1 + 2xTd xd

∙
δ2 kxdk2 + 1

δ2

°°°F̂°°°2¸+ εξ3ξm̄ kẋdk2 (B.138)

+εξm̄ξė +
εξm̄ξė

1 + 2xTd xd
kẋdk2 + 2εm̄2

1 + 2xTd xd
kẋdk2

+8εm̄2 kẋdk2

where the following properties were utilized

−2εx
T
dKTxd

1 + 2xTd xd
≤ −2ελmin{KT }

1 + 2xTd xd
kxdk2 (B.139)

−2εx
T
dBT ẋd

1 + 2xTd xd
≤ 2ελmax{BT }

1 + 2xTd xd

h
kxdk2 + kẋdk2

i
(B.140)

2εxTd F̂

1 + 2xTd xd
≤ 2ε

1 + 2xTd xd

∙
δ2 kxdk2 + 1

δ2

°°°F̂°°°2¸ (B.141)

εxTd

.

M̄ẋd
1 + 2xTd xd

≤ εξ3ξm̄ kẋdk2 + εξm̄ξė

+
εξm̄ξė

1 + 2xTd xd
kẋdk2

(B.142)



© 2010 by Taylor and Francis Group, LLC

362 Appendix B. Supplementary Lemmas and Expressions

2εẋTd M̄ẋd
1 + 2xTd xd

≤ 2εm̄2

1 + 2xTd xd
kẋdk2 (B.143)

−2ε
¡
ẋTd M̄xd

¢
4xTd ẋd¡

1 + 2xTd xd
¢2 ≤ 8εm̄2 kẋdk2 (B.144)

kxdk2
1 + 2xTd xd

≤ 1 (B.145)

kxdk2¡
1 + 2xTd xd

¢2 ≤ 1. (B.146)

In (B.141), δ2∈ R denotes a positive bounding constant. In (B.142), ξ3∈ R

denotes a positive bounding constant defined as

kxdk
1 + 2xTd xd

≤ ξ3 (B.147)

and ξm̄, ξė∈ R denote positive bounding constants defined as°°° .

M̄
°°° ≤ ξm̄ (kẋdk+ ξė) . (B.148)

The inequality in (B.148) is obtained by using the facts that the inertia

matrix is second order differentiable and that e1(t)∈ L∞, (see proof of
Theorem 5.3). In (B.143) and (B.144), m̄2∈ R is a positive constant defined

in (5.131).

Based on the development in (B.136)—(B.146), the time derivative of

(B.128) can be upper bounded as follows

V̇2 ≤ −λmin{BT } kẋdk2 − 2ελmin{KT }
1 + 2xTd xd

kxdk2 (B.149)

+
2ελmax{BT }
1 + 2xTd xd

h
kxdk2 + kẋdk2

i
+δ1 kẋdk2 + 1

δ1

°°°F̂°°°2 + 2ε

1 + 2xTd xd

∙
δ2 kxdk2 + 1

δ2

°°°F̂°°°2¸
+εξ3ξm̄ kẋdk2 + εξm̄ξė +

εξm̄ξė
1 + 2xTd xd

kẋdk2

+
2εm̄2

1 + 2xTd xd
kẋdk2 + 8εm̄2 kẋdk2

where (5.157), (B.138), and the following inequalities were utilized

−ẋTdBT ẋd ≤ −λmin{BT } kẋdk2

ẋTd F̂ ≤ δ1 kẋdk2 + 1

δ1

°°°F̂°°°2
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where δ1∈ R denotes a positive bounding constant. The expression in

(B.149) can be simplified as follows

V̇2 ≤ − kẋdk
∙
2λmin{BT }− δ1 − 2ελmax{BT }

1 + 2xTd xd
− εξ3ξm̄

− εξm̄ξė
1 + 2xTd xd

− 2εm̄2

1 + 2xTd xd
− 8εm̄2

¸
(B.150)

− kxdk2
∙
2ελmin{KT }
1 + 2xTd xd

− 2ελmax{BT }
1 + 2xTd xd

− 2εδ2
1 + 2xTd xd

¸
+

∙
1

δ1

°°°F̂°°°2 + ∙ 2ε

1 + 2xTd xd

¸ ∙
1

δ2

°°°F̂°°°2¸+ εξm̄ξė

¸
. (B.151)

Provided BT , δ1, δ2, ε, andKT are selected to satisfy the following sufficient

conditions

λmin{BT } > δ1 + ε (2λmax{BT }+ ξ3ξm̄ + ξm̄ξė + 10m̄2)

λmin{KT } > λmax{BT }+ δ2

the expression in (B.151) can be upper bounded as follows

V̇2 ≤ −min {γa, γb}
λ̄2

V3 + �2 (B.152)

where (B.132) was utilized, and γa, γb, �2∈ R denote positive bounding

constants.

From B.128)—(B.130), and (B.133), and that F̂ (t)∈ L∞, the expression
in (B.152) can be used with the result from [2] to prove that x̄(t),xd(t),

ẋd(t) ∈ L∞. Based on (5.157), and the fact that M̄(x),
.

M̄(x, ẋ),and F̂ (t)∈
L∞ then ẍd(t) ∈ L∞.

B.3.9 Teleoperator — Proof of UMIF Controller Stability

Before we present the proof of the main result, we state and prove a pre-

liminary Lemma.

Lemma B.6 Let the auxiliary functions L1(t), L2(t) ∈ R be defined as

follows

L1 , −rT
³ .

F̄ + β1sgn(e2)
´

(B.153)

L2 , −β2ėT2 sgn(e2)
where β1 and β2 are defined in (5.172). Provided β1 is selected according

to the following sufficient condition

β1 > ς3 + ς4, (B.154)
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where ς3 and ς4 were introduced in (5.175), thenR t
t0
L1(τ)dτ ≤ ξb1

R t
t0
L2(τ)dτ ≤ ξb2 (B.155)

where the positive constants ξb1, ξb2 ∈ R are defined as

ξb1 , β1
P2n

i=1 |e2i(t0)|− eT2 (t0)
³
−

.

F̄ (t0)
´

ξb2 , β2
P2n

i=1 |e2i(t0)| .
(B.156)

Proof. After substituting (5.162) into (B.153) and then integrating, the

following expression can be obtainedZ t

t0

L1(τ)dτ =

Z t

t0

eT2 (τ)
h
−

.

F̄ (τ)− β1sgn(e2(τ))
i
dτ (B.157)

+

Z t

t0

deT2 (τ)

dτ

³
−

.

F̄ (τ)
´
dτ − β1

Z t

t0

deT2 (τ)

dτ
sgn(e2(τ))dτ .

After evaluating the second integral on the right side of (B.157) by parts

and evaluating the third integral, the following expression is obtainedZ t

t0

L1dτ =

Z t

t0

eT2 (τ)
³
−

.

F̄ (τ) +
..

F̄ (τ)− β1sgn(e2(τ))
´
dτ

−eT2 (t)
.

F̄ (t)− β1

2nX
i=1

|e2i(t)|+ ξb1. (B.158)

The expression in (B.158) can be upper bounded as followsZ t

t0

L1dτ 6
Z t

t0

2nX
i=1

|e2i(τ)|
³¯̄̄ .
F̄ i(τ)

¯̄̄
+
¯̄̄ ..
F̄ i(τ)

¯̄̄
− β1

´
dτ (B.159)

+
2nX
i=1

|e2i(t)|
³¯̄̄ .
F̄ i(t)

¯̄̄
− β1

´
+ ξb1.

If β1 is chosen according to (B.154), then the first inequality in (B.155) can

be proven from (B.159). The second inequality in (B.155) can be obtained

by integrating the expression for L2(t) introduced in (B.153) as followsZ t

t0

L2(τ)dσ = −β2
Z t

t0

ėT2 (τ)sgn(e2(τ))dτ (B.160)

= ξb2 − β2

2nX
i=1

|e2i(t)| ≤ ξb2.

We now proceed to present the proof for the main result.
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Proof. Let the auxiliary functions P1(t), P2(t) ∈ R be defined as follows

P1(t) , ξb1 −
Z t

t0

L1(τ)dτ ≥ 0 (B.161)

P2(t) , ξb2 −
Z t

t0

L2(τ)dτ ≥ 0 (B.162)

where ξb1, L1(t), ξb2, and L2(t) were defined in (B.153) and (B.156). The

results from Lemma B.6 can be used to show that P1(t) and P2(t) are

non-negative. Let V1(y, t) ∈ R denote the following nonnegative function

V1 ,
1

2
eT2 e2 +

1

2
rT r + P1 + P2 (B.163)

where y(t)∈ R4n+2 is defined as

y(t) ,
£
eT2 rT

√
P1

√
P2

¤T
. (B.164)

Note that (B.163) is bounded according to the following inequalities

W3(y) ≤ V1(y, t) ≤W4(y) (B.165)

where

W3(y) = λ4 ky(t)k2 W4(y) = λ5 ky(t)k2 (B.166)

where λ4, λ5 ∈ R are positive bounding constants.

After taking the time derivative of (B.163), the following expression can

be obtained

V̇1 = −eT2 e2 − ksr
T r − β2e

T
2 sgn(e2) (B.167)

where (5.162), (5.174), (B.161), and (B.162) were utilized. The expression

in (B.167) can be rewritten as

V̇1 = − ke2k2 − ks krk2 − β2

2nX
i=1

|e2i| . (B.168)

From (B.163) and (B.168), it is clear that V1(y, t) ∈ L∞; hence, e2(t) ∈
L∞ ∩ L2 ∩ L1, r(t) ∈ L∞ ∩ L2, and y(t) ∈ L∞ . Since e2(t), r(t) ∈ L∞,

(5.162) and (5.173) can be used to prove that ė2(t),
.

F̂ (t) ∈ L∞. Given that

e2(t), r(t),
.

F̂ (t) ∈ L∞ and the assumption that
.

F̄ ∈ L∞, (5.171) can be
used to prove that ṙ(t) ∈ L∞. Barbalat’s Lemma can be utilized to prove

ke2(t)k , kr(t)k→ 0 as t→∞. (B.169)
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From (5.162), (5.163), (B.169) and the fact that M̄(x) ∈ L∞, standard
linear analysis arguments can be used to prove that e1(t), ė1(t), and ė2(t) ∈
L∞, likewise that e1(t), ė1(t) ∈ L1, and that

ke1(t)k , kė1(t)k , kė2(t)k→ 0 as t→∞. (B.170)

From the fact that ė2(t) ∈ L∞ and the assumption that F̄ ∈ L∞ it is clear

from (5.169) that F̂ (t) ∈ L∞. Since F̂ (t) ∈ L∞, (5.157) and the proof in
Section B.3.8 can be used to show that xd(t), ẋd(t), ẍd(t) ∈ L∞. Using
these facts along with (5.134) and its first time derivative, it is clear that

x(t) and ẋ(t) ∈ L∞. Since e1(t), ė1(t), M̄(x),
.

M̄(x) ∈ L∞, it is clear from
(5.168) that T̄1(t) ∈ L∞, and using previously stated bounding properties,
T̄ (t) ∈ L∞. It is also possible to state that T̄1(t) ∈ L1, where (5.168)

was utilized. Based on the definition of x(t) in (5.160) and the previously

stated bounding properties, it is clear that kq1(t)− q2(t)k → 0 and q1(t)+

q2(t)→ qd(t). From these bounding statements and standard signal chasing

arguments, all signals can be shown to be bounded.

B.3.10 Teleoperator — Proof of UMIF Passivity

Proof. Let Vp2(t) ∈ R denote the following nonnegative, bounded function

Vp2 ,
1

2
ẋTd M̄ẋd +

1

2
xTdKTxd. (B.171)

After taking the time derivative of (B.171), the following simplified expres-

sion can be obtained

V̇p2 = ẋTd F̂ − ẋTdBT ẋd (B.172)

where (5.157) was utilized. Based on the fact that BT is a constant positive

definite, diagonal matrix, the following inequality can be developed

V̇p2 ≤ ẋTd F̂ . (B.173)

The following inequality can be developed after integrating (B.173)

−c4 ≤ Vp2(t)− Vp2(t0) ≤
Z t

t0

ẋTd (σ)F̂ (σ)dσ (B.174)

where c4 ∈ R is a positive constant (since Vp2(t) is bounded from the

trajectory generation system in (5.157)).

To facilitate the subsequent analysis, the following expression can be

obtained from integration by partsZ t

t0

M̄ë1(τ)dτ = M̄ė1(t)− M̄ė1(t0)−
Z t

t0

.

M̄ė1(τ)dτ . (B.175)
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Since M̄(x),
.

M̄ (x, ẋ) , ė1(t) ∈ L∞, and ė1(t) ∈ L1, then
R t
t0
M̄ë1(τ)dτ ∈

L∞. After integrating (5.166) as followsZ t

t0

F̃ (τ)dτ = −
Z t

t0

M̄ë1(τ)dτ −
Z t

t0

T̄1(τ)dτ (B.176)

and using the fact that T̄1(t) ∈ L1 (see proof of Theorem 5.3) and the fact

that
R t
t0
M̄ë1(τ)dτ ∈ L∞, it is clear that F̃ ∈ L1, where F̃ (t) , F̄ (t)− F̂ (t).

By using the transformation in (5.160), the expression in (5.121) can be

rewritten as followsZ t

t0

q̇T (τ)

∙
γF1(τ)

F2(τ)

¸
dτ =

Z t

t0

ẋT F̄ dτ −
Z t

t0

£
ẋTd1 0Tn

¤
F̄ dτ . (B.177)

After substituting for the definition of F̃ (t) and the time derivative of

(5.134) into (B.177) for F̄ (t) and ẋ(t), respectively, the following expression

can be obtainedR t
t0
ẋT F̄ dτ− R t

t0

£
ẋTd1 0Tn

¤
F̄ dτ =

R t
t0
ẋTd2(τ)F̃2(τ)dτ

+
R t
t0
ẋTd2(τ)F̂2(τ)dτ −

R t
t0
ėT1 (τ)F̃ (τ)dτ −

R t
t0
ėT1 (τ)F̂ (τ)dτ .

(B.178)

Since ẋd(t) =
£
ẋTd1(t) ẋTd2(t)

¤T ∈ L∞ and F̃ (t) =
£
F̃T
1 (t) F̃T

2 (t)
¤T ∈

L1, it is clear that the first integral expression in (B.178) is bounded and

from (B.176) a lower negative bound exists. Based on (B.174), it is clear

that the second integral expression in (B.178) is bounded and a lower neg-

ative bound exists. Since ė1(t) ∈ L∞ and F̃ (t) ∈ L1, it is possible to show

that the third integral in (B.178) is also bounded and a lower negative

bound exists. Finally, because ė1(t) ∈ L1 and F̂ (t) ∈ L∞, it is possible
to show that the fourth integral in (B.178) is also bounded and a lower

negative bound exists. Hence, these facts can be applied to (B.177) and

(B.178) to prove thatZ t

t0

q̇T (τ)

∙
γF1(τ)

F2(τ)

¸
dτ ≥ −c25 (B.179)

where c5∈ R is a positive constant.

B.3.11 Proof of Bound on Ñ

We start by writing Ñ(t) from (5.208) and (5.210) as follows

Ñ =
£
M̄(x)− M̄(xd)

¤ ...
xd +

h .

M̄(x, ẋ)−
.

M̄(xd, ẋd)
i
ẍd

+
h .

B̄(x, ẋ, ẍ)−
.

B̄(xd, ẋd, ẍd)
i
+ M̄(x)(ë1 + ė2)

+
.

M̄(x, ẋ)(
1

2
e3 − ë1) + e2.

(B.180)



© 2010 by Taylor and Francis Group, LLC

368 Appendix B. Supplementary Lemmas and Expressions

To simplify the notation, we define the following auxiliary functions

Φbf (x, ẋ, ẍ) ,
.

B̄(x, ẋ, ẍ)

Φmf (x, ẋ, ẍd) ,
.

M̄(x, ẋ)ẍd
(B.181)

E = M̄(·)ë1 + M̄(·)ė2 + e2 +
.

M̄(·)1
2
e3 −

.

M̄(·)ë1. (B.182)

From (5.200)—(5.202), it is possible to write

ė1 = e2 − e1 ė2 = e3 − e2 ë1 = e3 − 2e2 + e1.

Given the definitions of (B.181) and (B.182), we can rewrite (B.180) by

adding and subtracting a bevy of terms as follows

Ñ =
£
M̄(x)− M̄(xd)

¤ ...
xd + [Φmf (x, ẋ, ẍd)− Φmf (xd, ẋ, ẍd)]

+ [Φmf (xd, ẋ, ẍd)− Φmf (xd, ẋd, ẍd)] + [Φbf (x, ẋ, ẍ)− Φbf (xd, ẋ, ẍ)]
+ [Φbf (xd, ẋ, ẍ)− Φbf (xd, ẋd, ẍ)]
+ [Φbf (xd, ẋd, ẍ)− Φbf (xd, ẋd, ẍd)] +E.

(B.183)

Given Assumption 5.4.1, we can apply the Mean Value Theorem [6] to each

bracketed term of (B.180) as follows

Ñ =
∂M̄(σ1)

∂σ1

¯̄̄̄
σ1=ς1

e1
...
xd +

∂Φmf (σ5, ẋ, ẍd)

∂σ2

¯̄̄̄
σ2=ς2

e1

+
∂Φmf (xd, σ3, ẍd)

∂σ3

¯̄̄̄
σ3=ς3

ė1 +
∂Φbf (σ4, ẋ, ẍ)

∂σ4

¯̄̄̄
σ4=ς4

e1

+
∂Φbf (xd, σ5, ẍ)

∂σ5

¯̄̄̄
σ5=ς5

ė1 +
∂Φbf (xd, ẋd, σ6)

∂σ6

¯̄̄̄
σ6=ς6

ë1 +E

(B.184)

where ς1(t), ς2(t), ς4(t) ∈ (x, xd), ς3(t), ς5(t) ∈ (ẋ, ẋd) while ς6(t) ∈ (ẍ, ẍd).
From the preceding analysis, the right-hand side of (B.184) can be suc-

cinctly expressed as

Ñ = Φz (B.185)

where z(t) ∈ R9×1 is the composite error vector that has previously been de-
fined and Φ (x, ẋ, ẍ, t) ∈ R3×9 is the first-order differentiable system regres-
sor. By virtue of its first-order differentiability, Φ (·) can be upper-bounded
as follows

Φ (x, ẋ, ẍ, t) ≤ ρ̄ (x, ẋ, ẍ) (B.186)

where ρ̄ (·) is a positive function nondecreasing in x(t), ẋ (t) , and ẍ (t).

Given Assumption 3, we can utilize (B.186) and the facts that

x = xd − e1
ẋ = ẋd − e2 + e1
ẍ = ẍd − e3 + 2e2 − e1
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in order to upper-bound Ñ (·) as follows

Ñ 6 ρ(kzk) kzk

where ρ(kzk) is some positive function nondecreasing in kzk .

B.3.12 Calculation of Region of Attraction

Following [17], we now define the region of attraction for the system. From

(5.226), we obtain the following sufficient condition for the negative defi-

niteness of V̇ (t)

kzk < ρ−1(
p
2ks). (B.187)

Next, we define η (t) = [ zT (t)
p
P1 (t)

p
P2 (t) ]

T ∈ <11 and a
region Ω in state space as follows

Ω =
©
η ∈ R11 ¯̄kηk < ρ−1(

√
2ks)

ª
(B.188)

where the definition of η (t) indicates that Ω is a subset of the space defined

by (B.187). Based on Assumption 5.4.3, we define δ1 ,
1

2
min {1,m} and

δ2(x) , max
½
1

2
m(x), 1

¾
; thereby, (5.223) can be upper and lower bounded

as

ξ1(η) ≤ V1 ≤ ξ2(η) (B.189)

where ξ1(η) , δ1 kηk2 ∈ < and ξ2(η) , δ2(x) kηk2 ∈ <. From the bound-

edness conditions above, we can further find an estimate for the region of

attraction of the system as

Ωc =
n
η ∈ Ω

¯̄̄
ξ2(η) < δ1(ρ

−1(
p
2ks))

2
o
. (B.190)

Given (B.189) and (5.226), we can invoke Lemma 2 of [17] to state that

kzk2 → 0 as t→∞ ∀ η(t0) ∈ Ωc. (B.191)

From (B.190), we require

ξ2(η (t)) < δ1(ρ
−1(
p
2ks))

2 (B.192)

which implies that we can write (B.192) in terms of system initial conditions

as follows

kη(t0)k <
s

δ1
δ2(x(t0))

ρ−1(
p
2ks), (B.193)
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where we have taken advantage of the fact that V1 (t) is either decreasing

or constant for all time. We can rewrite (B.193) in terms of an lower-bound

on ks as follows

ks >
1

2
ρ2(

s
δ2(x(t0))

δ1
kη(t0)k). (B.194)

Given the definition of η(t), we can write

kη(t0)k =
¡
eT1 (t0)e1(t0) + eT2 (t0)e2(t0) + [ė2(t0) + e2(t0)]

T [ė2(t0)

+e2(t0)] + P1(t0) + P2(t0))
1
2

(B.195)

where we have utilized the definitions of z (t) and e3 (t) from (5.209) and

(5.202). From (5.218), (5.220), (5.200), and (5.206), we can obtain the fol-

lowing expression

ė2(t0) = ẍd(t0) + ẋd(t0)− ẋ(t0) + M̄−1(x(t0))B̄(x(t0), ẋ(t0)).

After substituting the above expression into (B.195), we can finally express

kη(t0)k in terms of system initial conditions as follows

kη(t0)k =
¡
eT1 (t0)e1(t0) + eT2 (t0)e2(t0)

+
°°ẍd(t0) + M̄−1(x(t0))B̄(x(t0), ẋ(t0))

+ẋd(t0)− ẋ(t0) + e2(t0)k2
+β1ke2(t0)k1 − eT2 (t0)N1d(t0) + β2ke2(t0)k1

¢1/2
.

(B.196)

Finally, substitution of the expression of (B.196) into (B.194) provides a

lowerbound for ks in terms of the initial conditions of the system.
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