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Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has pro-
duced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among others.
In return, the challenges of the new emerging areas are proving an abundant source
of stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical re-
search developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

The monograph written by David Ribas, Pere Ridao and Jose Neira is based on
the first author’s doctoral thesis under the supervision of his co-authors. Different
approaches aimed at solving the localization problem for Autonomous Underwa-
ter Vehicles (AUVs) are proposed. Technology aspects concerned with the vehicle’s
mechanics, actuators, sensors and modes of operation are also discussed and, re-
markably, all the theoretical results have been implemented and validated on real
environments.

The second contribution to the series on underwater vehicles in the face of several
ones devoted to SLAM, this volume constitutes a fine addition to STAR!

Naples, Italy Bruno Siciliano
March 2010 STAR Editor



Preface

This book is a revised version of the doctoral dissertation presented by D. Ribas
of the Department of Computer Engineering at the University of Girona. The main
purpose of this work is to present different techniques developed with the objective
of providing a solution to the localization problem for Autonomous Underwater Ve-
hicles (AUVs) operating in structured environments. It describes different methods
for map based localization as well as a novel approach for Simultaneous Localiza-
tion And Mapping (SLAM) which may be relevant for researchers and students in
the field of underwater robotics. This work is structured in seven chapters. Chapter
1, which presents the goals and objectives of the thesis, is followed by three intro-
ductory chapters. Chapter 2 reviews the state of the art in SLAM focusing on those
approaches developed for underwater environments, and Chapters 3 and 4 introduce
the underwater vehicle and the sonar used throughout the elaboration of this work.
The main contributions of this thesis are developed in Chapters 5 and 6, which pro-
gressively introduce different approaches for map based localization leading to the
development of a full SLAM solution. All the techniques presented here are en-
dorsed with results from real environments. Finally, Chapter 7 concludes the work
by summarizing the contributions and describing possible future research.

Girona, Spain, David Ribas
December 2008 Author
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Chapter 1
Introduction

More than 70% of the earth’s surface is covered by water. Oceans and seas host an
incredibly rich biodiversity, influence short and long term climate and have a high
impact not only on the economy, but on the life and evolution of human society as
a whole. Exploring this large body of water is a matter of the utmost importance,
not only because it represents a vast source of natural resources, but also because its
study may help us understand how this complex ecosystem works.

Remotely Operated Vehicles (ROVs) are among the best tools used to undertake
this mission, making possible the exploration of the deepest regions while avoid-
ing risk to human lives. The first ROVs were developed in the 1960s to perform
rescue and recovery operations. The technology, however, was soon extended to
other uses. Many applications of ROV technology can be found in the oil and gas
industries, where it is not uncommon to find tasks exceeding the reach of human
divers. In fact, ROVs have become an essential tool without which the exploitation
of offshore oil fields would not have been possible. Their missions range from the
surveying of operation areas to the deployment, inspection and maintenance of un-
dersea structures such as oil rigs or pipelines [60]. These vehicles have also played
an important role in the scientific community, enabling the ocean to be studied in
many different ways. Now the sea floor can be mapped with bathymetric sensors
while image mosaicking techniques make the generation of large visual maps pos-
sible [38]. Moreover, zones of geological or biological interest can be explored and
sampled, from oceanic ridges to the deepest trenches. Archeologists and historians
now have access to sunken remains and shipwrecks [35]. ROVs can also be found in
military missions, cleaning the path of ships in mine hunting operations or assisting
in inspection or salvage tasks.

Missions involving the use of ROVs are complex. These vehicles are generally
linked to a ship on the surface by means of an umbilical cable or tether which pro-
vides power and communications. In this way, operators on the ship can control the
vehicle and receive feedback from the onboard sensors. Although this link enables
ROVs to be operated over a long time period, the infrastructure requirements are
high as are the costs. Campaigns may take place far from the coast, involving a ship
of considerable dimensions with its corresponding crew and specialized ROV oper-
ators for many weeks. Furthermore, the ship has to be equipped with a crane for the

D. Ribas et al.: Underwater SLAM for Structured Environments, STAR 65, pp. 1–6.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

deployment and recovery operation, as well as with other elements including suffi-
cient tether for the desired operational depth and even a Tether Management System
(TMS) for those operations at greater depths.

In recent years, efforts have been made to provide these vehicles with a greater
degree of autonomy. The objective is to remove the link with the surface ship to
expand the vehicle’s capabilities and, at the same time, reduce the operational costs.
This is achieved by equipping the submersible with its own power source, generally
batteries, and giving it the capacity to determine its actions based on inputs from
its own sensors and a pre-defined mission plan. The result of this research is the
so called Autonomous Underwater Vehicles (AUVs) which nowadays have already
succeeded in performing different types of tasks, in particular those related with
the collection of sensor data or the production of detailed maps of portions of the
seafloor [103]. There are also a few designs for AUVs capable of performing un-
dersea intervention operations. However, this research is still in its early stage and
these vehicles cannot be considered as operational.

The development of AUVs has offered numerous advantages but has also pre-
sented new challenges. One of the most significant examples is the problem of
underwater navigation or, in other words, how to determine the vehicle’s position
within the environment so it can take the correct actions to successfully accomplish
the mission. Traditionally, the problem has been addressed in various ways, none of
which are totally adequate. The positional error growth associated with dead reck-
oning based on Inertial Navigation Systems (INS) and/or Doppler Velocity Logs
(DVL) make their use impractical for long term navigation [67, 99]. In order to avoid
this problem, data from a Global Positioning System (GPS) receiver can be used to
provide navigation resets but, due to the null coverage in underwater environments,
this can only be done when on the surface. Alternatively, artificial beacons may be
employed for long term underwater positioning. Many configurations are available
for these beacon systems, such as Long Base Line (LBL), Short Base Line (SBL) or
Ultra Short Baseline (USBL) (see Figure 1.1) [54, 56, 86]. Unfortunately, there are
numerous missions in which these solutions are unfeasible. The need for prior bea-
con deployment, the high cost and the constraints in the working volume of the AUV
are the principal disadvantages. However, there are other ways to achieve localiza-
tion of an AUV without the need of external hardware. Map matching techniques
use information from onboard sensors to provide ground-fixed, feature-relative lo-
calization given an a priori map of the environment [79]. Variants of the method can
be found for gravitational anomaly and magnetic field maps [84, 127]. Even so, its
main drawback is that an up-to-date map of sufficient resolution will not be available
for many operating areas. So, again, a self-contained system would be preferable ,
with no need for previous knowledge of the terrain or external devices to obtain a
reliable localization of the vehicle.

Simultaneous Mapping and Localization (SLAM), a research topic which has at-
tracted a great deal of attention in the research community for almost two decades,
may be the solution to the navigation problem. This is a method by which au-
tonomous vehicles can build a map within an unknown environment while keeping
track of their current position. This process is carried out using only the vehicle’s
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Fig. 1.1 Typical configurations for AUV localization using LBL, SBL and USBL.

sensors for the perception of the surrounding environment and/or its own state and
hence can be considered as a self-contained system. This thesis is concerned with
the application of SLAM techniques to the field of autonomous underwater naviga-
tion. Next, some background on motivation and applicability will be provided, as
well as a description of the outline and objectives of the thesis .

1.1 Antecedents

The research presented in this thesis has been carried out in the Underwater Robotics
Laboratory of the Computer Vision and Robotics Group of the University of Girona.
This group has been doing research in underwater robotics since 1992. The main
contribution over the past few years is the development of three Unmanned Under-
water Vehicles (UUV). The first prototype, called GARBI, was developed in col-
laboration with the Polytechnic University of Catalonia. This vehicle was initially
conceived as a ROV, but after successive modifications over the years, the vehi-
cle evolved into its final configuration as an AUV in 2005. The second prototype,
URIS (1999), was fully developed at the University of Girona and was designed as
an small AUV for testing in laboratory conditions. The most recent vehicle is the
Ictineu (2006), an AUV which brings together the broad sensorial capabilities of the
GARBI and the small form factor of the URIS, which make this vehicle a perfect
research platform for testing in both laboratory and real application environments.

The research efforts in the Underwater Robotics Laboratory have been oriented to
the development of the diverse disciplines related with the operation of autonomous
vehicles. An example can be found in the work done in control architectures, which
has led to the creation of the O2CA2 control architecture [15], but also in the recent
advances that we have made towards a control mission system [13]. Parallel work
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has also been done in the identification of the dynamic/kinematic models of the ve-
hicles [112] which has made the development of research tools such as the Neptune
simulator possible [111]. With respect to the application domain, preliminary work
was carried out on the use of ROV technology for inspection of hydroelectric dams
using image mosaics [5]. Later, the topic was readdressed using AUVs in the context
of a research project supported by the Spanish commission MYCT, made in collab-
oration with the University of the Balearic Islands and the Polytechnic University of
Catalonia. The objective of the project was to develop the capacity of AUVs for their
use in industrial applications such as the inspection of hydroelectric dams, harbours
and underwater cables and pipes.

The achievements in these research lines and application domains have resulted
in an increase in the capabilities of our vehicles as well as further demands in terms
of navigation requirements. The work done during the elaboration of this thesis has
contributed to the beginning of a new research line whose objective is to improve
the navigation capabilities of our vehicles. Our knowledge of this new topic has
been complemented by collaboration with the Robotics and Real Time Group of
the University of Zaragoza. This group has long experience in sensor perception
and navigation systems and has been a referent in SLAM research since its origins,
having made numerous relevant contributions to the field. One consequence of this
relationship has been the co-tutoring of this thesis.

1.2 Goal of the Thesis

As mentioned in the antecedents, the goal of this thesis is the study and development
of navigation systems for AUVs, with special attention to the application of SLAM
techniques as a self-contained system which requires neither previous knowledge
of the scenario nor the use of absolute positioning systems such as GPS, LBL or
USBL. Moreover, and consistent with the application domains presented, the system
is designed for use in structured environments found in many industrial scenarios,
specifically those containing manmade structures in the form of rectilinear walls as,
for example, in harbours, breakwaters, marinas, canal systems, etc. Although most
previous work done in this field has focused on open sea and coastal applications,
obtaining an accurate positioning in other scenarios would notably increase AUV
capabilities. For instance, an AUV could use a harbour as an outpost for oceanog-
raphy research if it is able to localize itself and navigate with sufficient accuracy to
safely perform the leaving and returning operations [49]. Maintenance and inspec-
tion of underwater structures [65, 83] and even surveillance of marine installations
are examples of other applications that can benefit from such a system.

Focusing on such scenarios will offer several advantages. For instance, one of
the most critical issues when operating in underwater environments is the short-
age of reliable landmarks to use in the map. Although the quantity of landmarks
will depend on each application scenario, walls usually produce strong sonar re-
turns which are much more constant and reliable than natural targets. Moreover,
walls are usually vertical structures and therefore a planar map will be sufficient in
most cases.
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1.2.1 Objectives

After reviewing the research antecedents and describing the problem, the goal of
this thesis is stated. The general purpose is summarized as:

“The development of a SLAM approach for an AUV to achieve localization in
man-made structured underwater environments using a mechanically scanned
imaging sonar as principal sensor”

The term “man-made structured environment” should be understood as an en-
vironment containing artificial, previously existing structures characteristic of the
scenarios for the applications at hand and where no additional elements have been
introduced to serve as landmarks for the SLAM framework. This goal was selected
in order to start a new research line on autonomous navigation, but also as the next
logical step given the antecedents of the group and the research projects in which it
is involved. Moreover, SLAM is one of the most active topics in robotics research
and, although a large number of works have already been presented, there are still
very few approaches applied to the field of underwater robotics. The application of
SLAM algorithms in AUVs was certainly the most important purpose of this dis-
sertation. For this reason, it was a priority to perform the experimentation with real
data from a robot in the objective scenario as a premise to demonstrate the research
advances achieved.

The goal of this thesis can be divided into the following more specific objectives:

Underwater localization with an a priori map. Exploring and designing different
approaches to perform underwater localization for an AUV equipped with me-
chanically scanned imaging sonar operating in a structured scenario whose map
is previously known. The interest in this topic is focused on exploring the use of
Kalman filters and data association algorithms for underwater localization.

Feature extraction. Development of a feature extraction method capable of deal-
ing with the particular complexities of a mechanically scanned sonar. This
method should be able to detect the presence of walls in the environment as
line features in the acoustic data, as well as to estimate the uncertainty of this
observation. The detection of the features will rely on the use of a robust data
association algorithm, while the estimate of the observed feature will be based
on the imprint left by the landmark in the acoustic data.

Underwater SLAM. Developing a SLAM framework based on the stochastic map
approach [115] using the above-mentioned feature extraction method and the ex-
perience gained during the development of the localization techniques. The pur-
pose of this SLAM system is to localize a vehicle within a structured environment
typical in previously commented applications.

Experimentation with an AUV. Evaluation of the proposed localization and SLAM
systems with real experiments using an AUV. The feasibility and limitations of
these approaches must be experimentally tested with the available systems and
resources.
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1.3 Outline of the Thesis

The contents of this thesis can be divided into three parts. The first part overviews
the SLAM problem (Chapter 2), paying special attention to its application in un-
derwater environments; introduces the Ictineu AUV (Chapter 3), a research vehicle
developed during the elaboration of this thesis; and describes the operating prin-
ciples of a mechanically scanned imaging sonar as well as the issues related with
their application to the problem (Chapter 4). The second part presents three differ-
ent localization algorithms (Chapter 5) as an introduction to some of the techniques
and solutions employed later in the proposed SLAM algorithm (Chapter 6). Experi-
mental results endorse the different proposals. Finally, the last part of the document
summarizes the contributions and comments on further work (Chapter 7). A brief
description of each chapter is presented below.

Chapter 2: State of the Art. This chapter presents the field of “Simultaneous Lo-
calization and Mapping”, relates the history and development of the problem and
overviews the most remarkable works performed on underwater environments.
A discussion and the aims of this work can be found at the end of the chapter.

Chapter 3: The Ictineu Autonomous Underwater Vehicle. This chapter introduces
the Ictineu AUV, the research platform developed during the elaboration of this
thesis which was used to test the proposed SLAM framework. The main features
of the vehicle are described, including many mechanical aspects, the equipped
sensors and its software architecture.

Chaper 4: Understanding Mechanically Scanned Imaging Sonars. This chapter
describes the basic operating principles of the sonar sensor which was chosen
to perform SLAM. Some hints are provided about the interpretation of sonar
images. Moreover, many issues that need to be addressed before using the sensor
are identified.

Chapter 5: Localization with an a priori Map. This chapter describes three differ-
ent approaches for localization with previous knowledge of the scenario. This
chapter should be understood as an exploration of some of the techniques that
will then be developed in the SLAM approach. Experimental results are included
for each of the methods presented.

Chapter 6: Simultaneous Localization and Mapping. This chapter proposes a
SLAM algorithm for AUVs equipped with a mechanically scanned imaging
sonar operating in manmade environments. Details are provided about a novel
method for extracting line features and their uncertainty from acoustic images as
well as about the implemented Kalman filter framework. At the end of the chap-
ter, experimental results including a SLAM executed with real data obtained in
an application scenario with the Ictineu AUV are presented.

Chapter 7: Conclusion. This chapter concludes the thesis by summarizing the
work and points out contributions and future work. It also comments on the re-
search evolution and the publications accomplished during this research project.

Appendices: These chapters incorporate additional information on some of the
topics introduced in the thesis.



Chapter 2
State of the Art

2.1 The SLAM Problem

Simultaneous Localization and Mapping (SLAM), also referred to as Concurrent
Mapping and Localization (CML), is a fundamental problem in mobile robotics that
has been the focus of substantial amount of research work in recent years [30, 2].
The objective of SLAM is to make it possible for a moving robot starting at an
unknown location without previous knowledge of the environment to build a map
using its onboard sensors while, at the same time, using this same map to com-
pute the robot’s location. Although performing these two tasks simultaneously may
seem complex, the essentials behind SLAM are indeed quite simple. Figure 2.1 il-
lustrates the basics of the process. A moving vehicle will inherently accumulate
errors in its position estimate as a consequence of the noise introduced in the dead-
reckoning and/or the inaccuracies in the use of a prediction model. Moreover, errors
will also affect the map building process. The sensor that perceives the environment
is mounted in the vehicle and therefore its position uncertainty will be incorporated
when new information is added to the map. As a result, the vehicle will eventually
get lost and the map will become unusable (Figure 2.1(a)). A system performing
SLAM, however, is able to attenuate and even contain this uncertainty growth by
means of the reiterated observation of the elements stored in the map. Figure 2.1(b)
represents the situation where a new measurement from the robot is likely to corre-
spond to an entity already incorporated in the map. Then, a data association process
should be carried out to determine the correct matching. When this process is pos-
itive, this information is used to update the estimates of both the vehicle’s position
and the map. Adding more information results in a better estimate and hence a re-
duction of the uncertainty in the problem (Figure 2.1(c)).

2.2 History

In the 1980s and early 1990s, navigation and mapping were treated as separate prob-
lems. The work done in the field of mapping was broadly divided into topological

D. Ribas et al.: Underwater SLAM for Structured Environments, STAR 65, pp. 7–21.
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(a) Uncertainty growth in the map landmarks and vehicle loca-
tions.

(b) The new measurement (blue) is a re-observation of a land-
mark in the map.

(c) Incorporating the new information results in a better estimate
(green) of both map and vehicle positions.

Fig. 2.1 The SLAM problem.
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[66, 20] and metric approaches, using either occupancy grids [32, 88] or a geometric
description of the environment [19]. On the other hand, the work done on localiza-
tion explored map/scan matching techniques [77, 22] and the use of geometrical
landmarks in Kalman filters [69]. The success in these research strands created the
proper environment for the birth and development of the SLAM problem. Accord-
ing to Durrant-Whyte and Bailey [30], its origins can be dated back to 1986 when
many discussions about the application of estimation theories to mapping and local-
ization problems took place during the IEEE Robotics and Automation Conference
held in San Francisco, California. Over the subsequent few years, the seminal works
by Smith and Cheeseman [116] and Durrant-Whyte [29] were presented, setting the
statistical basis for the description of spatial relationships between landmarks and
the manipulation of geometric uncertainty. It was not, however, until some years
later that the developments in this new research line culminated in the publication
of the notable paper by Smith et al. [115]. This paper showed that a consistent full
solution of the SLAM problem would require a joint state containing the position
of the vehicle and the features in the map to represent all the correlations that ap-
pear as a consequence of vehicle error which is common to all the relative landmark
measurements obtained during the creation of the map. This implies that a map con-
taining a large number of landmarks would require a huge state vector and hence a
considerable computational cost to perform the estimation. This work, however, did
not analyze the convergence properties of the problem. In fact, at the time, it was
generally assumed that the map errors would not converge but would grow without
bound. These two reasons, the computational complexity and the lack of knowledge
about convergence, caused SLAM research to come to a standstill and, as a result,
efforts were again focused on dealing with mapping and localization as separate
problems.

It was not until the later 1990s when the convergence properties where finally
elucidated [31, 23]. The correlations between landmark estimates increase mono-
tonically with the number of observations made, which means that the knowledge
of their relative positions improves and never diverges and, hence, a better map is
obtained regardless of the vehicle’s errors [26]. This breakthrough revived interest
in the SLAM problem. In fact, over the last decade this field has experienced a sub-
stantial expansion and researchers have focused on many different lines of research
from dealing with computational complexity [52, 72] to data association techniques
[90]. Different solutions to the probabilistic SLAM problem have also been pro-
posed as alternatives to the traditional implementations of the stochastic map with
extended Kalman filters (EKF) [125]. Some other efficient strategies using Gaus-
sian uncertainty models include postponement [64], decoupled stochastic mapping
[71], the compressed filter [52], sequential map joining [117] and the constrained
local submap filter [131]. Alternatively, other implementations such as Information
Filters and particularly, its non-linear version, the extended information filter (EIF),
have been used recently in order to reduce the computational cost [126]. Like the
EKF, the EIF represents the uncertainty with a Gaussian. However, its main differ-
ence is the use of an alternative parametric representation to characterize the belief,
which leads to slightly different equations and approximately sparse matrices that
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offer better computational efficiency. In spite of their popularity, the convergence of
systems modeled under a Gaussianity assumption have only been demonstrated for
the linear case, while non-linear systems have been shown to be inconsistent as a
consequence of linearization errors [17].

The issues related with the representation of non-Gaussian probability distribu-
tions have been addressed with the use of particle filters [124, 87]. This technique
uses a finite number of sample states drawn from the estimate, called particles, to
represent the uncertainty distribution. The greater the number of particles, the better
the description of the uncertainty. Luckily, the number of particles can be adapted
to the suspected complexity of the estimate in order to obtain computationally effi-
cient algorithms. The FastSLAM, introduced in [87], is one of the most remarkable
implementations of this typology of probabilistic filters. In contrast to feature based
techniques, the Constant Pose Estimation (CPE) SLAM [77, 53] is a method that
makes use of dense sensor data, maintaining a network of local constraints between
the robot’s positions and producing the map through optimization. Its main advan-
tage is that such a representation scales well with the map area because it generally
represents only the local constraints. In parallel to the evolution of the probabilis-
tic methodologies, the domains of application have also experienced a significant
expansion. They have not been limited to dealing only with indoor environments
of increasing complexity [16, 92, 6, 25]. SLAM systems have also been success-
fully deployed to work in challenging outdoor scenarios [52, 21], in the air [62]
and even at sea [94, 132, 123]. These achievements evidence how intensive research
has led to the definition and understanding of the main working principles of the
SLAM problem. However, although it can be considered solved for small/medium
environments, there are still some open issues. The optimization of computational
burdens, consistency, data association, the definition of better map representations
or the deployment of SLAM systems in new and challenging application domains
are examples of problems that will probably be intensively studied in the near future.

2.3 The Use of Sonars for SLAM

Even though laser scanners are expensive, they are probably one of the most popular
sensorial choices in either indoor or outdoor applications [124, 92]. This is mainly
because they provide high quality dense data with good angular precision. Another
popular alternative is the use of one or more cameras to obtain visual information
(e.g. color, shape or texture) from the environment [25, 41, 21]. On the other hand,
acoustic sensors have usually been considered one of the cheapest but less reliable
sensorial options for performing SLAM. Even when operating in highly structured
environments, sonars produce measurements with poor angular resolution and ghost
returns appear as a result of specular reflections [70]. Many remarkable works have
dealt with these limitations. For instance, in [74, 75], the indetermination in bear-
ing measurements from an air sonar were addressed by using batches of range-only
data acquired from multiple vantage points. The work presented in [117] went even
further with the implementation of a voting procedure which made it possible to
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discriminate different types of features and reject spurious measurements. Works
like these demonstrate that, despite their poor precision, air sonars can be used in
SLAM, but the fact is that there are still few examples of air sonar systems perform-
ing SLAM in large areas. In underwater environments, however, the situation is the
opposite. Laser based sensors are impractical because of the attenuation and disper-
sion of the light in water, while, for similar reasons the use of cameras is limited to
applications where the vehicle navigates in clear water and very near to the seafloor.
This leaves acoustic devices as one of the best options for underwater sensing. The
excellent propagation of sound in water makes it possible for an acoustic wave to
travel many thousands of meters without the signal losing significant energy. So it
is not unusual to find sonars capable of measuring at long ranges even in turbid
water conditions. Generally, the sonars equipping underwater vehicles are devices
technologically more advanced than those equipping their indoor/outdoor counter-
parts. Sophisticated designs of the transducer heads and the use of beam forming
techniques enable narrow beams to be obtained which can produce really precise
bearing measurements. Moreover, in contrast with the confined spaces found in in-
door applications, the open spaces in underwater scenarios usually produce more
reliable data. Active sonars (i.e. sonars which can both transmit an acoustic signal
and receive its reflected echo) are the most appropiate for SLAM because of their
capacity to extract information from the environment. They can be classified into
two categories depending on whether they produce only a set of range and bearing
measurements or an acoustic image of the scene. Among those in the first category,
the most commonly used are (Figure 2.2):

Echo sounder: This is one of the simplest and least expensive systems for mea-
suring range. The echo sounder operates by emitting a pulse from its transducer.
When this pulse reflects off a surface, it returns to the sensor head and the time
of flight can be measured and therefore the distance estimated. These kinds of
devices are usually mounted in a down-looking position to find the altitude of the
vehicle with respect to the seabed.

Mechanically scanned profiler: This sensor is composed of a mechanically actu-
ated transducer which can be sequentially oriented at different angles and pro-
duces a series of range measurements. Usually, the size of the scan sector can be
selected from a few degrees to a complete 360◦ scan around the sensor, which
is particularly interesting for obstacle detection tasks. When mounted in a down-
looking position, they can also be employed to collect bathymetric data.

Multibeam echo sounder: This sensor is specifically designed to produce bathy-
metric maps of large areas of the seabed. It is composed of an array of hy-
drophones which can emit fan shaped beams towards the bottom and measure the
range of a strip of points placed perpendicularly to the direction of the vehicle
movement. These measurements can be produced at a high rate and resolution.

The sonars in the second category are capable of measuring the returning echo
intensity values from particular places within the insonified area. These measure-
ments can then be recomposed into an acoustic representation of the environment
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generally referred to as an acoustic image. The most common types of imaging
sonars are (Figure 2.3):

Mechanically scanned imaging sonar: Similar to the mechanically scanned pro-
filer, this device also has an actuated rotatory transducer which can emit fan-
shaped beams at different orientations. It is usually placed in a vertical position
so it can perform the scanning on the horizontal plane. These devices generally
have a configurable scan sector and it is not unusual to find models which can
perform full 360◦ scans, making them perfect for detecting objects around the
vehicle. The main drawback is the slow refresh rate. The operation of this type of
sonar has been of major importance during the elaboration of this thesis. A further
description of mechanically scanned imaging sonars can be found in Chapter 4.

Electronically scanned imaging sonar: Also known as multibeam imaging sonar
and forward-looking imaging sonar, this sonar is equipped with an array of hy-
drophones which allows, with the emission of a single pulse, the production of a
complete acoustic image of the insonified area. This area is usually limited to a
small sector in front of the sensor, but can be scanned at very high rates. Its main
drawback is the cost which can be around ten times the price of a mechanically
scanned unit.

Sidescan sonar: This sonar is designed for imaging large seabed areas. Its mode
of operation is analogous to that of multibeam echo sounders, but oriented to
imaging tasks. While the sonar is moved along a survey path (either mounted on
a vehicle or towed by a ship), it emits fan shaped pulses down toward the seabed
across a wide angle perpendicular to the direction of the movement, producing a
strip of echo intensity measurements.

2.4 Underwater SLAM

This section presents an overview of the most relevant contributions to the applica-
tion of SLAM techniques in underwater environments. This overview does not seek
to be an exhaustive enumeration of all the publications in the field but will serve
to identify the main protagonists, their approaches and, particularly, those projects
involving the implementation of SLAM systems in realistic operating conditions.
Later in this chapter, Table 2.1 provides a summary of the different aspects of the
works discussed.

The first implementations of SLAM frameworks using real sensor data can be
dated to the late 1990s. In September 1997, a test rig mounted on the side of a
converted U.S. navy freighter was used to acquire a data set as part of a collabora-
tive project between the Naval Undersea Warfare Center (NUWC) and the Groupe
d’Etudes Sous-Marines de l’Atlantique (GESMA). The test rig was equipped with
a complete sensor suite which included a custom developed sonar, the High Reso-
lution Array (HRA) forward looking imaging sonar, as well as other typical AUV
systems such as an INS, a DVL, a Differential GPS (DGPS) receiver and a sidescan
sonar. The acquired data set was later used to test two SLAM approaches. The first
one [11] presented a simplified EKF implementation in which independent filters
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(a) Echo sounder.

(b) Mechanically scanned profiler.

(c) Multibeam echo sounder.

Fig. 2.2 Range sonar typology.

(a) Mechanically scanned imaging sonar.

(b) Electronically scanned imaging sonar.

(c) Sidescan sonar.

Fig. 2.3 Image sonar typology.

were initialized with every new landmark extracted from the HRA acoustic images.
The state vector of each of these filters contains the estimate of the vehicle and the
corresponding landmark. Although an improved vehicle estimate can be periodi-
cally obtained by fusing the estimates from all the independent filters, the landmark
estimates remain decoupled and hence the correlations are ignored. A key aspect
of this work is the procedure to obtain the landmarks. First, the acoustic image is
segmented to extract the different objects. Then, a set of characteristics (perime-
ter, area, area-to-perimeter ratio and radial signature) is obtained for each object
to produce a description that, in conjunction with a pre-defined similarity metric,
makes the data association process possible. In the results section, the estimated tra-
jectories were represented together with the DGPS measurements as ground truth.
There were, however, no uncertainty bounds represented. The second work using
this same data set was made in collaboration with MIT researchers [68]. They pre-
sented an EKF based framework which produced a full stochastic map and hence
correlations were taken into account. In this approach, the measurements from the
dead-reckoning sensors were included in the process to improve the quality of the
estimation. Moreover, point landmarks corresponding to the centroids of the objects
were extracted from the acoustic data and used to build the map. The data associ-
ation process was carried out by applying a Nearest Neighbor (NN) gating among
compatible landmarks. Unlike the previously presented work, the error plots were
represented within uncertainty bounds, demonstrating the correct operation of the
system. Among these introductory works, it is also worth mentioning [71], where
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the Decoupled Stochastic Mapping (DSM), a computationally efficient approxima-
tion to large-scale SLAM, was presented. This proposal reduces the computational
burden by dividing the environment into multiple overlapping submap regions, each
with its own stochastic map. To assess the performance of the approach, experiments
were carried out in simulation, but also with real data obtained in a water tank using
a mechanically scanned sonar mounted on a robotic positioning system.

During the same period in which these works were carried out, the first steps
towards underwater SLAM were also taken at the University of Sydney. This time,
the chosen test platform was Oberon, a small research underwater vehicle equipped
with a Tritech SeaKing mechanically scanned imaging sonar as its principal sensor
for the perception of map features. Initial experiments took place in a swimming
pool with many artificial landmarks placed at known positions [93]. Again, point
features were selected to represent the observation of these objects in the resulting
map. This setup provided the means to test a SLAM framework called the Geometri-
cal Projection Filter or GPF, an approach which estimates the relationships between
individual landmarks rather than estimating the location of landmarks in global co-
ordinates. Later, new experiments took place in real natural terrain along the coast of
Sydney, Australia [132].This time, a classical EKF implementation of the stochas-
tic map was the core of the SLAM system. Once more, artificial landmarks were
deployed in the area to produce a set of reliable point features and although a few
natural landmarks were detected, many of them were found too unstable to be in-
corporated into the map.

A third focus of research on underwater SLAM appeared soon afterwards at
Heriot-Watt University [121, 118]. Following the path opened by [11], part of the
efforts in this case revolved around the study and development of techniques to char-
acterize the landmarks from acoustic images. In addition to the point coordinates,
a vector of landmark characteristics (including size, perimeter, compactness, max-
imum dimension, centroid and invariant moments) was introduced to improve the
data association process [118]. To validate the proposal, experiments were carried
out in three distinct environments. First, a data set was obtained in a water tank at
the Ocean System Laboratory with a Tritech SeaKing sonar mounted on a planar
Cartesian robot using two cylinders as targets. Second, a Seabat 6012 multibeam
imaging sonar carried by two divers was operated among the legs of a pier at the
Northern Lighthouse Board in Oban, Scotland. And third, a data set was acquired
during an open sea trial with a concept electronically scanned sonar mounted on
the Ocean Explorer AUV from the Florida Atlantic University. These experiments
demonstrated that landmark descriptors are especially useful with real non-artificial
data, but that they are much less reliable in situations where landmarks have similar
descriptors (e.g. the pier legs). It is worth noting that in this work, SLAM was per-
formed using only an appropriate vehicle model and the sonar data without control
inputs or dead-reckoning information.

During the following years, works of the above mentioned groups alternated with
contributions from new researchers. In [94], a SLAM framework was proposed to
simplify the operation of LBLs by enabling on-the-fly calibration of submerged
transponders using range-only measurements. The input of the system is the time of
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flight between a transceiver mounted on the vehicle and a transponder lying on the
seabed whose location is undetermined. Assuming that the altitude of the vehicle
is known, the range measurement constrains the possible transponder location to a
2D circle on the seabed. When measurements are obtained from different vehicle
positions, the intersection of their circles makes it possible to determe the position
of the transponder. Of course, solving this problem involves finding the location of
many transponders as well as a sequence of position states. This is done by using
a non-linear least-squares optimization algorithm. The data set used to test the ap-
proach was produced during the 2002 GOATS experiments, a collaboration between
MIT and the NATO SACLANT Underwater Research Center which took place near
the coast of Italy. A network of four small LBL transponders was deployed and
surveyed with a high precision DGPS system to establish the ground truth. Then,
the Caribou AUV, an Odyssey III class vehicle equipped with a transceiver, was
operated within the area using an EKF based system for navigation. The EKF in-
tegrated compass, Doppler velocity and LBL data with a priori knowledge of the
transponder locations. To validate the proposal, a comparison between the EKF esti-
mated trajectory and that obtained with the range-only SLAM is shown. Moreover,
the estimated transponder positions are placed within reasonable error bounds when
compared with the surveyed ones.

A different approach to solve the range-only problem is taken in [98] where the
authors, using the same 2002 GOATS data set, present an algorithm that imposes
geometric constraints on the acoustic measurements to reject outliers. Then, a vot-
ing scheme implemented with a two-dimensional accumulator similar to that used
in a Hough transform [58] is responsible for estimating the initial LBL beacon po-
sitions. Once their approximate location is obtained, a conventional EKF refines the
estimates of both vehicle and beacon positions as new measurements arrive. When
represented against the ground truth, the final estimation of the vehicle’s path and
the position of the transponders show a significant improvement with respect to the
results presented in [94]. The data collected during the 2002 GOATS experiment
is used again in [95]. This time, the MIT Synthetic Aperture Sonar (SAS) carried
in the nose of the Caribou AUV during the trials acted as the primary sensor for
landmark detection. The paper presents an implementation of the method previ-
ously described in [73], the Constant Time SLAM (CTS). The CTS algorithm is
a consistent and convergent method for updating and creating a set of local maps
while determining their best global location estimate. This offers computation inde-
pendent of the workspace size at the cost of producing a suboptimal solution. The
detection and tracking of features from the SAS data was performed automatically
using the technique described in [113]. Data association was performed manually.
To evaluate the method, the estimated trajectory resulting from the CTS algorithm
is compared with the solution from a full covariance SLAM along with the ground
truth from the AUV’s navigation system.

In another line of research, imagery from sidescan sonar was used to deal with the
underwater SLAM problem [120]. Again, the data set employed in this work was the
result of a GOATS campaign, in particular from its year 2000 edition. The method
relies on a classical EKF implementation of the stochastic map whose estimated
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trajectory is then smoothed with a Rauch-Tung-Striebel (RTS) filter. In [122], the
same approach was tested in simulation and with real data obtained during the BP
2002 experiments carried out by the SACLANT in La Spezia, Italy, with a Remus
AUV. In both works, the stochastic map stores the location of landmarks extracted
from the sidescan sonar images. This landmark extraction is performed manually
along with the data association process. In [123], the work was extended by address-
ing the problem of automatic extraction and association of landmark observations.
The automatic extraction technique uses a Markov Random Field (MRF) model to
detect candidates [106]. After removing those candidates with dimensions outside
an acceptable range, a Co-operating Statistical Snake (CSS) is employed to extract
the object highlighting and shadow regions. For the data association task, the Joint
Compatibility (JC) test [90] is improved using the height of the landmark as an addi-
tional descriptor. Since no ground truth is available for validation, the performance
of the proposal can only be appreciated by comparing the sidescan mosaics cre-
ated using the navigation data with those generated using the estimated trajectory
from the SLAM system. In the different tests, the resulting mosaic from the SLAM
system generally offers a higher visual quality and the trajectories are smoother.

The estimation of the vehicle’s motion using image mosaicking techniques has
many points in common with the problem of underwater SLAM [89, 45, 48]. Among
the first approaches which applied such techniques in the form of a SLAM system
we can find work done at Stanford University [40], where a mosaic based navigation
framework based on an augmented-state Kalman filter using trajectory states was
demonstrated. A few years later, similar work was done here by the Computer Vi-
sion and Robotics Group at the University of Girona [46]. The number of published
works presenting underwater visual SLAM systems with real data is still limited. In
2004, researchers from the University of Sydney presented a SLAM system capable
of fusing information from sonar and vision systems to provide estimates of the ve-
hicle’s motion and generate image mosaics containing a gross tridimensional model
of the scenario [130]. The data set for this work was acquired with the Oberon ve-
hicle during a trial on the Great Barrier Reef in Australia. A camera mounted in
a down-looking position was able to capture clear images of the coral reefs over
which the vehicle travelled. Simultaneously, a pencil beam scanning sonar mounted
above the camera produced a set of range measurements which were used to gener-
ate profiles of the terrain directly below the vehicle. The landmarks to be initialized
in the stochastic map were extracted from the sonar measurements. For each range
measurement, a high contrast visual feature was identified in the image within the
area insonified by the sonar. The 3D position of the feature was then incorporated
in a EKF framework and tracked using the Lucas and Kanade feature tracking tech-
nique [78] to provide the SLAM algorithm bearing only observations of the feature
positions. Again, no positioning systems were available for ground truth validation.
Therefore, the performance of the system could only be examined by studying the
fidelity of the tridimensional mosaic. Despite the reduced dimensions of the result-
ing terrain model, a significant correspondence between the bumps in the model and
the coral structures could be appreciated.
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This same year (2004), a second proposal for visual underwater SLAM was pre-
sented as the result of a joint work between researchers at MIT and the Woods Hole
Oceanographic Institution [34]. This proposal consisted of an augmented state EKF
which stored the history of the vehicle’s positions where a set of camera images
were obtained. Then, pairwise image based registration was carried out to deter-
mine the correspondences between consecutive images and hence provided relative
measurements between positions. In addition, the measurements from other sen-
sors (heading, depth, velocity, etc.) were also incorporated as observations of the
current state of the vehicle. It is worth noting that the system is only capable of
detecting correspondences between consecutive images and that correspondences
between cross-track images are established manually. The experimental results en-
dorsing the proposal were produced from a data set collected at the Stellwagen Bank
National Marine Sanctuary by the SeaBED scientific AUV. Although the experi-
ment was much longer, only a sequence of 100 images taken along a 100 meter
trail was used. The resulting vehicle trajectory was compared with the one obtained
with dead-reckoning. As expected, the error increased at a lower rate in the SLAM
solution, being bounded in those places were cross-track image links occur. Soon
afterwards, in 2005, the same research group presented an evolution of the algorithm
for visual underwater SLAM [35]. A data set obtained during a survey of the RMS
Titanic wreck by the Hercules deep-sea ROV served as the testbed for a SLAM
framework based on the use of the EIF instead of the traditional EKF approach. The
sparsity of the solutions from an EIF led to computationally efficient SLAM algo-
rithms and made storing a larger number of elements in the state possible. This is
demonstrated in the work at hand with a state vector containing 866 robot states,
each corresponding to the acquisition of one of the images from the data-set. A
second enhancement of the proposal is that the search for correspondences is no
longer restricted to consecutive images, since the system is capable of determining
the regions where correspondences with other images can occur.

This same year, [114] proposed a method to improve bathymetric mapping using
SLAM. The solution consisted of generating a set of submaps from small bathy-
metric patches created over short periods of time. In a similar way to that of the
visual underwater SLAM algorithms presented, estimates of previously visited ve-
hicle positions are retained in the state of an EKF to serve as anchor points for these
submaps. Then, these patches are registered to generate relative position measure-
ments between delayed states. It is worth mentioning that during the creation of the
submaps, an accumulation of navigation errors occurs which affects the position of
the range measurements. To minimize their effect, the authors propose a method to
identify the quantity of internal errors in the submap to determine the point at which
to break the current map and start a new one. Similar criteria are applied to ensure
that the submap contains enough 3D information to make the registration process
possible. In the experimental part of the work, the Jason ROV, equipped with an
SM2000 multibeam echo sounder from Kongsberg-Mesotech Ltd. and many other
typical navigation sensors, performed a 12 hour survey over a hydrothermal vent
site. The resulting data set was used to generate a bathymetric map of the zone
using both dead-reckoning and SLAM estimated trajectories. Using measurements
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from an LBL system as ground truth, it is possible to observe a better alignement of
the SLAM estimated positions than those estimated by dead-reckoning. Moreover,
the bathymetric map resulting from SLAM presents significantly fewer registration
errors and greater detail.

In 2006, a SLAM system running on the Tri-Dog 1 AUV was successfully de-
ployed during sea experiments carried out at the Tagari vent area of Kagoshima
Bay in Japan [82]. The system took advantage of bubble plumes present in the area
as well as two sonar reflectors specifically deployed to serve as landmarks. A me-
chanically scanned profiling sonar was the primary sensor for landmark detection.
The sonar was set to scan horizontally around the vehicle to map the positions of
the plumes and reflectors in the form of point landmarks. Moreover, other dead-
reckoning sensors were also used. The SLAM framework, whose description and
preliminary water tank tests were presented in [81], runs a particle filter which es-
timates the vehicle state while simultaneously a map builder is responsible for in-
corporating newly detected landmarks into the map. A third element, the motion
controller, generates the control signals necessary to drive the vehicle through a se-
quence of waypoints which define the autonomous mission. Although the system ef-
fectively builds a map and simultaneously uses its information to localize the AUV,
it is not able to update the map nor does it take into account the uncertainty of the
vehicle’s position while initializing the features in the map. The experimental part
of the work presents several trajectories obtained during various dives as well as an
example of an image mosaic composed using only the SLAM estimated positions.
There is, however, no ground truth to validate the results.

During 2007, one more approach on underwater SLAM has appeared. [36]
presents the DepthX, an AUV specially designed for exploring cenotes (i.e. sink-
holes) in Mexico. Equipped with an array of 56 narrow beam sonar transducers, the
vehicle is capable of acquiring a constellation of range measurements all around it
and therefore perceive tridimensional structures from the environment. In additon,
dead-reckoning sensors assist the navigation. In this work, the core of the SLAM
system is a Rao-Blackwellized particle filter in which each particle represents the
vehicle’s position and the map [51]. The map is stored within a 3D evidence grid
which uses the Deferred Reference Counting Octree (DCRO) data structure to re-
duce the memory requirements [37]. This paper presents two experiments in which
the SLAM system has been tested. The first was performed in a large cylindrical
water tank (11.6 meters deep and 16.8 meters in diameter) using the dead-reckoning
sensors for real time navigation. Then, the same data-set was used in a localization
algorithm together with a previous map of the tank to produce a ground truth tra-
jectory. This trajectory serves to validate the SLAM system when, finally, an offline
version is executed. The second experiment consisted of a dive performed in the La
Pilita cenote with a real time version of the SLAM algorithm running on the DepthX
vehicle. Due to the lack of ground truth, it was not possible to make strong asser-
tions about the accuracy of the system. However, the vehicle succeeded in creating
a map of the cenote and its navigation was accurate enough to return the vehicle to
the starting location after the test.
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2.5 Discussion

This chapter has introduced the SLAM problem, its history and, in particular, a se-
lection of the most representative works carried out so far towards a solution for un-
derwater environments. Autonomous navigation of underwater vehicles has been a
subject of great interest for years with an abundant published bibliography on many
different topics, from dead-reckoning to terrain aided navigation. However, under-
water SLAM is still in its initial phase and a relatively limited number of approaches
have been presented. As has been shown in Section 2.4, the majority of underwater
SLAM approaches have some points in common. For instance, among the different
sensorial options, imaging sonars seem to be the most common choice, probably be-
cause of their high capability to explore large areas in search of features. Although
cameras can produce rich information, their use is restricted to a more local domain
and, in some situations, they may suffer visibility problems. Profilers and range sen-
sors in general are less suitable for feature extraction and using their raw data (e.g.
for scan matching) usually requires accumulating measurements in order to pro-
duce a sufficient representation of the scenario. The use of imaging sonars seems to
be evenly distributed between those scanned mechanically and those scanned elec-
tronically. However, a direct relationship between electronically scanned sonars and
those SLAM examples performed with AUVs in real environments can be observed
. On the other hand, mechanically scanned devices are usually employed during tests
performed under lab conditions. Independently of cost considerations, this may be
related to the different scanning rates of the devices. Electronically scanned sonars
can produce images almost instantaneously and the distortions due to the vehicle’s
motion usually fall within the range resolution of the sonar and so their effect can
be ignored. The use of mechanically scanned sonars, with a much slower scanning
rate, is usually limited to platforms which are static or moving at low velocities or
in those situations where a suitable dynamics model and sufficient dead-reckoning
sensors are available.

Another remarkable aspect of the SLAM approaches studied is the predominance
of Kalman filters over other estimation techniques such as information filters or par-
ticle filters. Although the latter have gained importance during recent years, the
number of implementations is still low. Moreover, the majority of the proposed sys-
tems implement variants of the classical stochastic map in which point features are
used as landmarks. These features generally correspond to the centroids of objects
which appear as high echo-intensity zones in the acoustic images. Extracting these
kinds of features from the seabed is difficult for many reasons. For instance, they
have variable sizes and their shapes can change depending on the sensor’s vantage
point. Of course, this makes the landmarks less reliable and could induce errors in
the estimation of their centroids. Another typical problem of the underwater SLAM
is the landmark shortage. The sea bottom is generally flat and it can be quite diffi-
cult to find landmarks capable of producing distinguishable features in the images.
For this reason, it is not uncommon to find applications in which reliable artificial
features are deployed to improve the performance of the system. Among alternative
map representations, we can find maps composed of camera images. These maps
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contain rich visual data and in some cases tridimensional information is also incor-
porated. Although at this point there are still few published works, the interest in
image mosaicking techniques and their possible applications will probably foster
future works. On the other hand, two approaches using dense range data have also
been presented. These systems produce very detailed maps. However, their main
drawback is that their use remains restricted to areas where it is possible to extract
sufficient 3D information to ensure the success of the registration process.

With respect to the validation of the SLAM proposals, it is worth mentioning
that in half of the reported SLAM examples ground truth is not available, while
an important part of the remaining half corresponds to those tests carried out in
lab conditions. Obtaining reliable ground truth in real scenario operations is very
complex. It usually requires the deployment and calibration of additional acoustic
localization systems such as LBL or USBL. Nevertheless, these systems can only
provide ground truth for the vehicle trajectory and validating mapping results is even
more difficult, since previous maps of the area rarely exist.

2.6 Aims of This Work

As pointed out in the previous chapter, the work carried out for this thesis has pur-
sued the goal of developing a SLAM system for AUVs operating in manmade envi-
ronments. Among the sensorial options available, the mechanical scanned imaging
sonar has been chosen because of its versatility but also for its relative low cost,
particularly, when compared with electronically scanned ones. This approach has
both advantages and disadvantages. For example, navigating through this kind of
environment guarantees the presence of underwater structures from which it is pos-
sible to extract reliable features. An advantage of mechanical over electronically
scanned sonars is that their perception area is not limited to the front of the vehi-
cle. In fact, they can continuously rotate 360◦ around the vehicle, which is perfect
for those situations where a limited number of landmarks exist. On the other hand,
using a mechanically scanned sonar mounted on a moving vehicle requires dealing
with motion induced distortions in the acoustic data. The effect is particularly prob-
lematical because the structures found in the application at hand are generally walls
which appear as linear shapes in the acoustic images. In the presence of distortions,
lines can experience significant deformations that may preclude their correct identi-
fication, contrary to what occurs when working with point landmarks, which in the
worst case will simply be incorrectly located.



Chapter 3
Design and Development of the Ictineu AUV

This chapter describes the Ictineu AUV (Figure 3.1), the research vehicle of the
Computer Vision and Robotics Research group at the University of Girona that con-
stitutes the experimental platform of this thesis.

In 2006, the Defence Science and Technology Lab (DSTL), the Heriot-Watt Uni-
versity and the National Oceanographic Centre of Southampton organized the first
Student Autonomous Underwater Challenge - Europe (SAUC-E) [27], European-
wide competition for students to foster research and development in underwater
technology. Ictineu AUV was originally conceived as an entry for the SAUC-E com-
petition by a team of students collaborating with the Underwater Robotics Labora-
tory [129, 109]. This author, who was team leader during the competition, became
involved in the hardware design and construction phase as well as in the develop-
ment of the sonar based localization system (described in Section 5.2). Although
the competition determined many of the vehicle’s specifications, Ictineu was also
designed taking into account its posterior use as an experimental platform for var-
ious research projects in our laboratory. The experience gained by the group in the
previous development of vehicles such as the Garbi AUV, made it possible to build
a low-cost vehicle of reduced weight (52 Kg) and dimensions (74 x 46.5 x 52.4 cm)
with remarkable sensorial capabilities and easy maintenance.

3.1 Mechanical Aspects

The Ictineu AUV was conceived around a typical open frame design. This config-
uration has been widely adopted by commercial ROVs because of its simplicity,
robustness and reduced cost. Although the hydrodynamics of open frame vehicles is
known to be less efficient than that of closed hull type vehicles, the former are suit-
able for applications not requiring movements at high velocities or traveling long
distances. The robot chassis is made of Delrin, a plastic engineering material that
is lightweight, durable and resistant to liquids. Another aspect of the design is the
modular conception of its components which simplifies the upgrading of the vehi-
cle and makes it easier to carry out maintenance tasks. Some of the modules (the

D. Ribas et al.: Underwater SLAM for Structured Environments, STAR 65, pp. 23–35.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 3.1 The Ictineu AUV,
a research vehicle of the
Underwater Robotics Lab-
oratory of the University of
Girona.

thrusters and the majority of the sensors) are watertight and are therefore mounted
directly onto the vehicle chassis. In addition, two cylindrical pressure vessels made
of aluminum house the power and computer modules while a smaller one made of
Delrin contains the Motion Reference Unit (MRU). Their end caps are sealed with
conventional O-ring closures while the electrical connections with other hulls or
external sensors are made with plastic cable glands sealed with epoxy resin. Four
thrusters propel the Ictineu. Two of them, mounted horizontally, can propel the ve-
hicle in the surge Degree Of Freedom (DOF), as well as change the heading (yaw
DOF). The two vertical thrusters are positioned in a particular slanted distribution
that makes it possible not only to control the movement in the heave DOF but also
to produce small lateral movements in the sway DOF. Therefore, the prototype is
a fully actuated vehicle in four DOF (surge, sway, heave and yaw), while being
passively stable in roll and pitch as its meta-centre is above the centre of gravity.
This stability is the result of an accurate distribution of the heavier elements at the
lower part of the chassis combined with the effect of technical foam placed in the
top which, with its 10.5 liters volume and a weight of 0.6 Kg, provides the Ictineu
with a slightly positive buoyancy.

3.2 Tethered/Untethered Modes of Operation

The Ictineu can operate either as a ROV (tethered mode) or as an AUV (untethered
mode). An optional 30 meter umbilical cable can be connected to the two principal
hulls to supply power and communications to the vehicle. This mode of operation is
very useful not only to operate the Ictineu as a ROV but also while working under
laboratory conditions as it allows testing/developing the vehicle’s software over long
time periods. An external 1200 VA power supply, derived from 230 V AC mains
or a power generator, feeds about 24 V DC to the vehicle. Moreover, a standard
Ethernet connection is embedded in the umbilical allowing direct data transmission
with the onboard computers. This 100 Mbps connection makes it possible not only
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(a) Untethered mode. (b) Equipped with a buoy.

Fig. 3.2 Different configurations of the Ictineu AUV.

to remotely operate the vehicle but also to transmit real time video streams from the
vehicle’s cameras. When working in full AUV mode, the umbilical cable is removed
and the connectors in the hulls are sealed with plugs. Being untethered, the vehicle
relies on batteries to power all the systems and therefore has a limited running time
but a longer range of operation. Unfortunately, communications with the vehicle are
not possible in this setup. Recently, a third mode of operation has been developed. A
buoy, connected to the Ictineu through a 25 meter Ethernet cable and equipped with
a 802.11g Wi-Fi access point, enables communication with the vehicle while still
providing a high level of autonomy. In addition, the buoy is also equipped with its
own batteries for power supply and a DGPS receiver which provides the position of
the buoy and hence the approximate location of the vehicle in the global reference
frame.

3.3 Power Module

The power module (see Figure 3.3) contains the four power drivers for the thrusters
as well as a pack of 2 cheap, sealed 12V 12Ah lead acid batteries that can provide
the Ictineu with over 1 hour of running time. A DC-DC converter is included to
provide stabilized voltage to the rest of the components. Finally, a simple relay
circuit commutes between the internal and the external power supplies when the
umbilical cable is connected. If necessary, it is also possible to recharge the batteries
with the external power from the umbilical cable.

3.4 Computer Module

Two PCs, one for control and one for image and sonar processing connected through
a 100 MBs switch, form the core of the robot’s hardware. An image of the complete
power module can be seen in Figure 3.4. The control PC is an AMD GEODE-
300MHz powered by a 50 W power supply module. The PC104 stack also incorpo-
rates an A/D and digital I/O card with 8 analogue input channels, 4 analogue output
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Fig. 3.3 Power module Fig. 3.4 Computer module

channels and 24 digital I/O. The mini-ITX computer is a Via C3 1 GHz Pentium
clone and is used to process the data from the imaging sonar and the cameras. A
cheap PCTV110 from Pinnacle is used for image processing.

3.5 Actuators

Since the Ictineu AUV is not an intervention robot, the actuator suite is basically
limited to the 4 thrusters necessary to operate the vehicle. However, with the ob-
jective of taking part in the SAUC-E competition, an additional actuator, a marker
dropper, was incorporated.

3.5.1 Thrusters

Each one of the thrusters mounted in the Ictineu vehicle (Figure 3.5) is able to
produce around 14.7/14.2 N of forward/backward thrust. They were built with 250
W Maxon DC motors equipped with planetary gears and are enclosed in stainless
steel housings with O-ring sealed end caps. The rotation is transmitted to a three-
bladed brass propeller by means of a stainless steel shaft mounted through a rubber
lip seal. Although lip seals do not withstand high pressures, their simplicity and
reduced cost make them a good choice for vehicles operating in shallow waters.
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Fig. 3.5 One thruster from
the Ictineu.

3.5.2 Marker Dropper

One of the missions proposed for the SAUC-E competition consisted of locating a
circular target lying on the bottom of the tank and hitting it with a marker dropped
from the vehicle. An electromagnetically actuated release mechanism with a 3-shot
magazine was designed for this purpose and mounted in the rear part of the vehicle.

3.6 Sensor Suite

One of the main objectives the team had in mind while designing the Ictineu was
to provide the vehicle with a complete sensor suite. Taking the set-up in the Garbi
AUV as a starting point, the new suite was created by adding new sensors to correct
some limitations of the old prototype. Moreover, as the Ictineu was started from
scratch, it was possible to improve the distribution of the acoustic sensors within the
vehicle frame in order to avoid dead zones and improve their overall performance.

3.6.1 Miniking Imaging Sonar

The Tritech MiniKing is a small compact mechanically scanned imaging sonar
(MSIS) designed for use in underwater applications such as obstacle avoidance and
target recognition for both AUVs and ROVs. This sonar can perform scans in a 2D
plane by rotating a fan-shaped sonar beam through a series of small angle steps. It
can be programmed to cover variable length sectors from a few degrees to full 360◦
scans. A characteristic fan-shaped beam with a vertical aperture angle of 40◦ and
a narrow horizontal aperture of 3◦ allows a sonar image to be formed with enough
information about the surrounding environment to recognize sizes, shapes and sur-
face reflecting characteristics of a target at distances of up to 100 meters. The sen-
sor is mounted on the upper front part of the Ictineu AUV to provide a clear view
and avoid occlusions in the resulting data. Its capacity to sense the environment
in which the vehicle is operating makes the Miniking one of the most important
sensors aboard the Ictineu and represents a valuable potential for underwater local-
ization and SLAM. This has made the Miniking one of the principal objects of study
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Fig. 3.6 The Tritech
Miniking imaging sonar.

throughout the elaboration of this thesis. A more detailed description of the opera-
tion of MSISs in general and of the Miniking sensor in particular can be found in
Chapter 4.

3.6.2 Doppler Velocity Log

The SonTek Argonaut DVL is a sensor specially designed for ROV/AUV appli-
cations which measures ocean currents, vehicle speed over ground, and altimetry
using a precise 3-axis measurement system based on the Doppler shift effect (see
Figure 3.7). Moreover, it has the capacity to analyze the quality of the measurements
and produce a status value, which makes discarding erroneous data possible. This
system operates at a frequency of 1500 kHz and has a range of about 15 m. Its three
acoustic transducers are slanted 25◦ off the housing vertical axis and are equally
spaced at 120◦ relative azimuth angles. In our particular configuration, the device is
also equipped with additional sensors:

Compass: Outputs the sensor heading (angle with respect to magnetic north).
Tilt sensors: Measures the roll (rotation about the X axis) and pitch (rotation about

the Y axis) angles.
Pressure sensor: Provides depth data by means of water column pressure mea-

surements.
Temperature sensor: Provides water temperature for internal sound speed calcu-

lations, improving the measurements from the acoustic device.

Although some of these sensors could individually produce measurements at a
higher frequency, the resulting Argonaut DVL output rate is of about 1.5 Hz be-
cause of the limitations of the acoustic device. However, the inclusion of all this
equipment converts the Argonaut DVL into a very versatile sensor which, together
with its compact size, low power consumption and depth ratings of about 200 me-
ters, makes it especially suited for underwater vehicle navigation.
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Fig. 3.7 Sontek Argonaut DVL Fig. 3.8 Xsens MTi MRU

3.6.3 Motion Reference Unit

The Xsens MTi sensor (Figure 3.8) is a gyro-enhanced low cost miniature Motion
Reference Unit (MRU) which provides 3D orientation (attitude and heading), 3D
rate of turn (rate gyro) as well as 3D acceleration measurements. Although the sen-
sor is able to provide data at a higher rate, the system gathers measurements from
the MTi at a rate of 10 Hz. In order to produce drift-free angular measurements,
the sensor also measures the directions of gravity and magnetic north. Our particu-
lar device configuration has 17 m/s2 full scale in acceleration measurements, which
is far from the smaller accelerations that the Ictineu actually experiences. For this
reason we do not usually rely on its acceleration estimates. On the other hand, the
angular measurements are much more reliable and, as they are outputted at a higher
rate than the data from the DVL sensor, they have been chosen as the main source
for the vehicle’s attitude estimation.

3.6.4 Cameras

Ictineu is equipped with two cameras. The first is a forward-looking colour camera
mounted on the front of the vehicle and intended for target detection and tracking,
inspection of underwater structures and to provide visual feedback when the vehicle
is operated in ROV mode. The second camera is a downward-looking black and
white camera placed in the lower part of the vehicle. This camera is mainly used to
capture images of the seabed for research on image mosaicking.
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3.6.5 Hydrophone

The last task to be completed in the SAUC-E mission consisted of surfacing within
a designated zone marked by means of an active acoustic device. In order to detect
this acoustic signal, an external hydrophone was mounted on the front of the vehicle
while all the signal processing circuitry, which was specifically designed for the
task, was mounted inside one of the main pressure vessels.

3.6.6 Safety Sensors

There are several minor sensors whose purpose is to ensure the safety of the vehicle.
The majority of these sensors are mounted inside the different pressure vessels and
are designed to measure temperature and pressure, and to detect water leakage. The
activation of any of these sensors indicates that some problem is occurring inside
the pressure vessels and therefore an alarm is raised to prevent irreparable damage.
There is also an acoustic range finder mounted on the front part of the vehicle. The
purpose of this device is to provide a simple way to determine the presence of an
obstacle close to the vehicle and thus avoid collisions without having to analyze
complex data from the imaging sonar.

3.7 The O2CA2 Software Architecture

The software architecture has the task of guaranteeing the AUV’s functionality. The
real-time POSIX together with the ACE/TAO CORBA-RT ORB have been exten-
sively used to develop the architecture as a set of distributed objects with soft real
time capabilities. These objects are distributed between the two onboard PCs and,
when operating in tethered mode, the external PC. The architecture is composed
of a base system and a set of objects customized for each particular robot, which
makes it possible to share the same software architecture with all the vehicles in the
lab. There are classes providing soft real-time capabilities to allow for a periodic
execution of tasks such as the controllers or the sensors. Another important part of
the base systems are the loggers. A logger system is used to log data from sensors,
actuators or any other object component. Loggers do not execute in real time; they
are background processes which receive the data from real time objects. Their role
consists of packing the data and saving them in files. It is worth noting that, although
loggers do not run in real time, the data has a time-stamp corresponding to the gather
time. Moreover, all the computers in the network are synchronized by means of the
NTP (Network Time Protocol) and hence, all the data coming from different sensors
can be time related. The software architecture is divided between the three modules
as represented in Figure 3.9: the Robot interface module, perception module and
control module.
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Fig. 3.9 Schematic of the Ictineu AUV software architecture.

3.7.1 Robot Interface Module

This is the only module containing software objects that dialog with the hardware.
There are basically two types of objects: sensor objects responsible for reading data
from sensors and actuator objects responsible for sending commands to the actua-
tors. Sensor objects for the Ictineu AUV include a DVL, an imaging sonar, a MRU,
two cameras, a depth sensor, and an echo sounder. There are also objects for the
safety sensors such as water leakage detectors and internal temperature and pres-
sure sensors that allow for the monitoring of conditions within the pressure vessels.
Actuator objects for the Ictineu include the thrusters and the marker thrower.

3.7.2 Perception Module

This module contains two basic components, the Navigator and the Obstacle De-
tector. The Navigator object has the goal of estimating the position of the robot. To
accomplish this task, there is an interface called the Navigation Sensor from which
all the localization sensors (DVL, MRU, depth sensor) inherit. This interface pro-
vides all these sensors with a set of methods to return the position, velocity and
acceleration in the 6 DOF together with an estimation of the quality of these mea-
surements. The Navigator can be dynamically connected to any Navigation Sensor,
fusing the data to obtain more accurate position, velocity and acceleration estimates.
Furthermore, the Navigator can also access the imaging sonar to implement the
navigation method specifically designed for the SAUC-E competition described in
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Fig. 3.10 Schematic of the Ictineu AUV control architecture.

Section 5.2. The control module uses the navigation data provided by the Naviga-
tor keeping the behaviours independent of the physical sensors being used for the
localization. The Obstacle Detector uses the same philosophy to provide obstacle
positions in the world fixed frame. The Obstacle Detector is also used to detect the
distance between the vehicle and the bottom of the pool. Detecting frontal obsta-
cles is possible using the echo sounder or the imaging sonar and the pool bottom
obstacles can be detected with the DVL sensor.

3.7.3 Control Module

The control module receives sensor inputs from the perception module and sends
command outputs to the actuators residing in the robot’s interface module (Fig-
ure. 3.10) [13]. Since tasks and behaviours are words interpreted in different ways
by different authors in the literature, we describe how they are defined within our
project:

• A behaviour is a function that maps the sensor input space (stimuli) onto a ve-
locity set point (behaviour response) for the robot’s low level controller. The
behaviour response is chosen in a way that drives the robot towards its corre-
sponding goal. In this way, the goal corresponding to the KeepDepth behaviour
is considered to be achieved when the robot is within an interval around the de-
sired depth.

• A task is a set of behaviours that are enabled together to achieve a more complex
goal. For instance, KeepDepth and MoveTo2D can work together to allow for
planar navigation.
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The control module follows the principles of the hybrid control architecture orga-
nized in three layers: vehicle level, task level and mission level.

3.7.3.1 Vehicle Level

The vehicle level is composed of a MIMO PID velocity controller for each DOF.
This object reads the vehicle’s velocity from the Navigator object and receives the
velocity setpoints from the Coordinator object. This level also includes a simple
control allocator strategy based on the pseudo inverse of the thruster configuration
matrix [42].

3.7.3.2 Task Level

The Task level is a conventional behavioural layer [1] including a library of be-
haviours that can run alone or in parallel. Each behaviour has a particular goal. The
input of a behaviour can be taken from any object of the software architecture (sen-
sors, perception module...). The output, called behaviour response, contains:

• Velocity setpoints for every DOF normalized between -1 and 1.
• Activation level for every DOF normalized between 0 and 1 indicating how im-

portant it is for the behaviour to take control of the robot.
• Blocking term (boolean) stating if the behaviour must block the execution thread

of the mission level.

To initialize a behaviour, apart from setting its particular parameters it is necessary
to specify the following attributes:

Enable: Boolean variable that indicates if the behaviour is activated or not and if
its output will be considered by the Coordinator.

Priority: Priority stating the relative importance of each behaviour.
TimeOut: The time out indicates when the behaviour will block the execution

thread. If TimeOut< 0, the behaviour blocks the execution thread until its goal is
fulfilled. If TimeOut= 0, the behaviour does not block the execution thread at all.
If TimeOut> 0, the behaviour blocks the execution thread until TimeOut seconds
elapse or until its goal is fulfilled.

During the execution of a mission, more than one behaviour can be enabled simulta-
neously. Hence, a coordinator module is used to fuse all the responses corresponding
to the enabled behaviours into a single response to be sent to the velocity controller
(vehicle level).

Each degree of freedom is considered separately since not all the behaviours act
on all the DOF. To combine all the behaviour responses, the Coordinator sorts all
the responses by their priority combining them two by two for every DOF, from the
highest priority to the lowest. To combine the responses, the activation level and a k
factor are used as follows:
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s =
a1s1

a1 + a2(1 − a1)k
+

a2s2(1 − a1)k

a1 + a2(1 − a1)k
.

a1, a2 and s1, s2 correspond to the activation level and the desired setpoints for the
highest priority and the least priority behaviour respectively, while s corresponds to
the final coordinator response. The Coordinator output, after combining all active
behaviours, is a vector as large as the number of the robot’s DOFs where each value
corresponds to a normalized velocity [100]. This coordination mechanism can be
seen as a hybrid between the classical competition and cooperation methods. When
the activation level of the behaviour with highest priority is zero, the coordinated
response coincides with the output of the behaviour with the lowest priority. If the
behaviour with the highest priority requests the control of the vehicle using an acti-
vation level equal to one, then the response of the behaviour with lower priority (non
dominant behaviour) is totally subsumed and the coordinated response matches that
of the behaviour with the highest priority (dominant behaviour). If both behaviours
simultaneously request the vehicle control through an activation level greater than
zero then both of them are merged using a weighted average operation with the
weights depending on the specified activation levels. If equal activation levels are
used, the dominant behaviour always has a stronger weight regulated by means of
the exponent k. For details of this coordination mechanism the interested reader is
referred to [12].

3.7.3.3 Mission Level

Finally, the upper layer (mission level) is responsible for the sequencing of the mis-
sion tasks, selecting for each mission phase the set of behaviours that must be en-
abled as well as their parameters.

The mission controller was built with a Petri network in which the sequence of
tasks is defined. Since the vehicle can move in an unstructured environment, unex-
pected situations have to be taken into account by the mission designer. According
to the network, some nodes will become active. Each node represents a behaviour
that will be executed on the task controller. There is a library of behaviours that are
used to define a mission. Each one has a simple goal such as move to point, keep
depth, search a target, etc. Therefore, the mission controller has the job of defining
the task the robot is accomplishing at each moment by activating or deactivating be-
haviours with the final goal of fulfilling the mission. The mission controller does not
determine the actions that guide the robot, it only determines the active behaviours
and their configuration which, through the task controller, will be coordinated to
guide the robot.

In our Petri net, every place corresponds to one behaviour with a particular con-
figuration. When a place has a token, this behaviour is enabled. When all places that
go towards a transition are enabled, and their behaviours do not block the execution
thread, the transition is ready to be fired. When a transition is fired, a token is re-
moved from each of the input places of the transition and another token is generated
in each output place of the same transition. The control mission algorithm starts on
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the initial state, checks fired transitions, applies the previously explained procedure,
and repeats this process until it reaches the final state [100].

3.8 Summary and Further Work

As a research platform, the Ictineu AUV is subject to constant upgrades. These
upgrades have the goal of either correcting and improving detected deficiencies or
of extending the capabilities of the vehicle. Some of the imminent modifications are
briefly described below.

Thruster upgrade: The thrusters currently mounted in the Ictineu AUV were de-
veloped in our lab years ago for a smaller vehicle. Although they are sufficient
for operation under lab conditions, missions taking place in natural scenarios
may require more thrusting power, especially in the presence of water currents,
as well as a better capacity to withstand higher pressures for operations at greater
depths. Recently, six new SeaBotix SBT150 thrusters have been acquired. Their
reduced dimensions and weight together with a thrust of about 22 N make them
a good choice for a small vehicle such as the Ictineu. At the time of writing this
thesis, four of the thrusters have been mounted horizontally in a slanted distribu-
tion which makes performing movements in the surge and sway DOFs possible.
Moreover, this particular distribution also provides redundancy to the system and
therefore the vehicle is now able to operate even with a damaged thruster. The
two remaining thrusters have been mounted vertically and actuate the heave DOF.

Absolute positioning: Recently, an Ultra Short Baseline (USBL) has been ac-
quired by the lab. An USBL is a method of underwater acoustic positioning.
This device consists of a transceiver, which is usually placed on the surface, on
a pole under the ship, and a transponder/responder mounted on the AUV (see
Figure 1.1). The device determines the position of the vehicle by calculating the
range and angles obtained after the transmission and reply of an acoustic pulse
between the transceiver and the transponder/responder. Our particular model can
also provide communications by means of an acoustic modem incorporated in
the package itself. Having a USBL opens the door to many applications where
the availability of robot positioning is crucial. Moreover, the output of this device
is precise enough (0.2 meters for the range and 0.25 degree for the angle) to be
used as the ground truth to test SLAM algorithms. At the present time, software
drivers have been developed and integrated into the vehicle’s architecture, and a
navigation filter is under development.

In this chapter the hardware and software elements which compose the Ictineu
AUV have been described. In the short period of time since its creation, the vehi-
cle has undergone extensive usage in many different research fields. Also, it has
proved to be a very reliable platform, requiring only minor maintenance tasks. We
expect this AUV to become a reference for all future prototypes developed in our
laboratory.



Chapter 4
Understanding Mechanically Scanned Imaging
Sonars

The purpose of this chapter is to give a brief introduction to the operational prin-
ciples of MSISs by explaining the basics behind the acquisition of acoustic images
as well as providing tools to understand and interpret the information they contain.
Moreover, some hints about the principal issues associated with managing MSIS
data are given at the end of the Chapter. Some of the figures and examples described
here are adapted from the introductory document in [59]. A deeper study on sonars
and their techniques can be found in [128].

4.1 Principles of Operation

An MSIS performs scans in a horizontal 2D plane by rotating a mechanically ac-
tuated transducer head at pre-set angular increments. For each one of the resulting
angular positions, an acoustic fan shaped beam with a narrow horizontal and a wide
vertical beamwidth is produced (Figure 4.1). When this emitted acoustic signal trav-
els through the environment and collides with any object in its path, part of the en-
ergy transmitted as a mechanical wave returns to the transducer. Measuring the time
of flight of the returning wave and assuming a known value for the speed of sound
in water, it is possible to determine the range at which the signal was originated. In
contrast with range-only sensors, imaging sonars also provide information regard-
ing the intensity of the acoustic signal backscattered from the environment. During
the measurement, the sonar transducer detects the water pressure changes produced
by the acoustic wave and transforms them into an electrical current. If the signal
returning to the transducer head is analyzed for a period of time it is possible to
produce not one, but a series of echo intensity vs. range measurements. Generally,
transducers are resonant, which means that they are designed to be sensitive at a par-
ticular frequency at which the sensor operates. For instance, the Tritech Miniking
(see Section 3.6.1) has an operating frequency of 675 kHz, and will accept a return
signal in the region of 0 to 80 dB (referenced at 1μPa). During the processing of
a pulse, the signal is divided into small parts whose mean intensity value is deter-
mined and mapped into 8 bit values (0 will correspond to 0 dB and 255 to 80 dB).

D. Ribas et al.: Underwater SLAM for Structured Environments, STAR 65, pp. 37–46.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 4.1 Representation of the scanning process of an MSIS.

From now on, each one of these measured values will be referred to individually as
a bin, while the set of bins obtained from a single emitted wave will be generally
denominated as a beam. Therefore, when a transducer head oriented in a particular
direction emits a pulse, a beam is produced. This beam is composed of a set of bins,
each one representing the echo intensity returning from a specific place along the
transducer axis.

Figure 4.2 shows an example of real data obtained by a Tritech’s Miniking imag-
ing sonar in a shallow water trial. The image has been generated by placing the polar
measurements (set of bins) in a cartesian space and assigning colors to the measured
intensities. In order to improve the visualization of the data, a sampling window can
be defined between two fixed intensity values and then the colors remapped. In this
way, it is possible to increase or decrease the contrast of the image, set the repre-
sentation to be above low level noises, etc. The colors that fill the spaces between
bins have been assigned through interpolation. It is worth noting that, although this
kind of image appears in many sections of this document, its use is intended solely
to simplify the interpretation of the sonar data and it is not used in any way in
the methodologies to be presented. Likewise, the use of the term “acoustic image”
generally refers to the set of acquired measurements and not to this particular rep-
resentation.

4.2 Interpreting Sonar Images

In many cases, an acoustic image obtained in a particular scenario will closely re-
semble an optical image of the same place. In other cases, it may be substantially
different and hence more difficult to analyze. To interpret the information contained
in an acoustic image it is necessary to understand the process behind the genera-
tion of a beam. The diagram in Figure 4.3 will serve as a guide for the following
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Fig. 4.2 Scan obtained in a shallow water scenario.

description. The process begins with the emission of a pulse from the transducer.
During the first meters, the pulse travels through the water volume without impact-
ing with any object. Therefore, no noticeable echo is produced and only some noise
is returned to the sensor head. The first significant echo return is obtained when the
arc-shaped pulse reaches the bottom. Because of the large incidence angle, only a
small fraction of the mechanical energy is returned and hence the measured inten-
sity value is small. However, as the acoustic signal advances and finds a protruding
object, an increase in the measured intensity can be observed. Notice that behind
the object there is a zone where the sound can not be reflected, thus no signal is
returned. This is an acoustic shadow, usually identifiable as a leak of echo inten-
sity after an object detection. Shadows are very useful when interpreting acoustic
images, since their length provides information from which the height of insonified
objects can be inferred. Figure 4.4 illustrates the scanning process for an IS op-
erating in a scenario where two objects lie on the seabed. The image on the right
represents the zones with different measured echo intensities that one would ex-
pect from an image obtained in such scenario. The largest area, in gray, corresponds
to the low intensity returns from the bottom. The objects appear as high intensity
zones and are represented in white. On the other hand, the absence of significant
returning echoes is represented in a dark color. It is worth noting how the two ob-
jects cast shadows in a similar way to what one could expect from a light source
placed in the sensor head. However, the interpretation of real acoustic data is not so
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Fig. 4.3 Generation of an acoustic beam.

Fig. 4.4 Scanning a sector to produce a sonar image.

straightforward. First, a sonar image will always have a poor resolution due to the
nature of the acoustic signals used to generate it. In addition, the materials compos-
ing the seabed will be a determining factor in obtaining information from a sonar.
Generally, rough objects are better sonar targets because they return echoes in many
different directions, whereas smooth surfaces may give a very strong reflection in
one particular direction but almost none in any other. These characteristics become
clear when examining the example image in Figure 4.2. Colour is assigned depend-
ing on the reception intensity level, so the zones in red represent high return areas,
such as reefs or rocks; yellows and cyans represent medium/low return areas, such
as the flat seabed and finally those in blue represent zones from which no echo
is returned. Notice that, as previously stated, shadows are found behind the high
intensity zones.
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Fig. 4.5 Indetermination in the vertical position of the target.

It is also important to make clear that, although the sensor will reproduce in the
acoustic image any tridimensional object present in the scene, it is not possible to
determine its position in the vertical plane and therefore only a 2D representation
of the environment is produced. This concept is illustrated in Figure 4.5, where two
objects placed at the same distance from the transducer head, but at different heights
above the seabed, produce the same acoustic return. This effect is a consequence of
a wide vertical beamwidth. On the one hand, it increases the capacity of the sensor
to detect objects, which is useful for some applications such as obstacle avoidance.
However, it comes at the cost of introducing the indetermination in the vertical po-
sition. Moreover, errors can also affect the range measurements as a result of a wide
beamwidth. As can be seen in the figure, although both objects are placed at the
same radial distance from the sensor head, their linear distance along the horizontal
is not the same. The resulting measured beam, however, suggests the contrary.

Another particular case is the presence of walls or other large objects in the tra-
jectory of the emitted acoustic wave. Figure 4.6 represents this situation. Its main
characteristic is that if the obstacle is large enough, the advance of the acoustic
pulse is blocked and, depending on the nature of the obstacle, part of the mechani-
cal energy is reflected back in the opposite direction. Likewise, as the reflected pulse
moves across the environment and finds other objects, part of its energy is also re-
turned, ricochetting again with the wall and returning to the sensor head where it
is interpreted as if the reflection has never taken place. In other words, the wall
acts as a mirror for the acoustic pulse and, as a result, phantoms and reflections
not corresponding with real objects can appear. In the example figure, the reflected
pulse impacts the sensor head and produces phantom measurements in the result-
ing beam. This effect is usually observed when operating in confined places (for
instance, a water tank); however, it is less common in larger scenarios where the re-
flected wave can disperse more easily. The image in Figure 4.7, which corresponds
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Fig. 4.6 Acoustic beam reflected by a wall.

to data obtained in a small water tank, illustrates this. Reflections are easily distin-
guishable as vertical lines at about 12 meters from the center of the image, while
the real tank boundaries are placed at about 4 meters. Note also that the small high
intensity shapes placed in between actually correspond to reflections produced by
the vehicle carrying the MSIS.

4.3 Measurement Perturbations

Besides the phantoms, reflections and other acoustic artifacts present in the acous-
tic images, the measurements from the imaging sonar are also affected by noise.
On the one hand, the background (or ambient) noise perturbing the sonar measure-
ments is a result of the combined action of multiple sources which may exist in
underwater environments: hydrostatic effects of waves or currents, seismic activity,
non-homogeneous pressure distributions, ship traffic and even marine animals are
only some examples. On the other hand, the perturbations may also come from the
underwater vehicle itself, for instance in the form of vibrations from the thrusters
or as a result of currents generated into the transducer. Noise can also be originated
within the sensor itself. A clear example of this is the transient ringing which occurs
at the transducer head as a result of the pulse being emitted through the housing
(see the high intensity spot in the center of the scan in Figure 4.2). In addition, there
are other effects, such as the attenuation suffered by the acoustic signal while trav-
elling through the medium or the imprecision in the position of the measurements
caused by the beam form which contribute to the degradation of the resulting data
and complicate its interpretation.

It is worth noting that some of these perturbations are attenuated by the sen-
sor itself. The transducer is generally designed to offer maximum sensitivity at a
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Fig. 4.7 Reflections on a scan obtained in a water tank.

particular frequency, which means that it has a lower sensitivity for noises outside
this frequency. Moreover, most hardware performs some kind of signal extraction
through filtering and thresholding to separate the signal from any noise. However,
despite signal processing, it is impossible to completely remove the effect of noise in
the measurements. In fact, according to the Central Limit Theorem, which states that
the sum of a large number of independent random variables will be approximately
normally distributed [110], we can assume that the resulting measurements will be
perturbed by a Gaussian noise.

Therefore, a feature extraction algorithm will have to deal not only with these
noisy measurements but also with the presence of phantoms, reflections and other
sonar artifacts. This makes it necessary to establish an explicit representation model
of the measurement precision, as well as robust mechanisms to deal with spurious
data. Both aspects are considered in the following chapters.

4.4 Peculiarities of the MSISs

The basics for acoustic image interpretation have already been introduced. There
are, however, some particular characteristics of the MSISs which, although habitu-
ally overlooked, should be taken into account to obtain optimal results.
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(a) Raw data represented in polar. (b) The same data in cartesian.

Fig. 4.8 Different representations of MSIS data obtained in a marina.

4.4.1 Polar Sensor Representing a Cartesian Space

The acoustic data from an MSIS is usually represented as an image generated in a
cartesian coordinate system because it is easier for a human observer to interpret the
information it contains in this form. However, given the nature of the measurement
process, the sensor is, in fact, a polar sensor. Figure 4.8 shows the raw polar data
as it is obtained from the sensor and its corresponding representation in a cartesian
space. One important consequence is that, with the increment of range, a loss in the
measurement resolution occurs because the bins are more dispersed as a result of
the angular aperture between consecutive beams. This effect, which is inherently
represented in polar, will produce gaps between the beams in the cartesian image.
To avoid this, different strategies can be carried out to fill the discontinuities in the
image. However, it is recommended whenever possible to work with the raw polar
measurements instead of using a cartesian image, since the change of representation
may alter the original data.

4.4.2 Continuous Dataflow

The majority of the sensors typically used in localization and SLAM produce
discrete amounts of information which can be treated as independent entities (e.g.,
images from cameras, scans from laser range finders or scans from sonar rings).
This is possible because the measuring process of these sensors is very fast or even
instantaneous. In the case of MSISs, the information is not gathered instantaneously
but by means of a rotatory transducer head that needs a considerable amount of
time to complete a turn. Since this rotation is continuous, the resulting data is not
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naturally split into separate subsets and hence is also continuous. A naive approach
when working with MSIS data is to divide it into a sequence of independent 360◦
scan sectors. This is not an optimal procedure for many reasons. First, the division
is totally arbitrary and serves no other purpose than providing a way to indepen-
dently operate chunks of data. Second, the 360◦ scan sectors are produced at a very
low rate. Finally, the first and the last beams in the scan are usually placed near
each other but a considerable time lapse separates the instants in which they were
obtained. As a result, when either the environment or the vehicle’s position change,
the generated acoustic image can eventually present a discontinuity. Better alterna-
tives to manage continuous data include using data buffers, analyzing smaller scan
sectors or even using the data beam to beam as soon as they are measured. Some ex-
amples of operating with data from MSISs will be the subject of further discussion
in Chapters 5 and 6.

(a) Image generated from raw sensor data. (b) Image after undistorting the data.

(c) Zenithal view of the real scenario.

Fig. 4.9 Effect of the vehicle motion on the acoustic images.
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4.4.3 Motion Induced Distortions

As stated previously, an MSIS transducer head usually needs a considerable period
of time to perform a 360◦ rotation. In the case of the Tritech Miniking imaging sonar,
the minimum time necessary to complete a scan is about 6 seconds (mechanical
limit); although, depending on the settings (in particular, the range), it can increase
drastically (e.g., a 50 meter range setting requires about 15 seconds to complete a
scan). This is an important issue that has to be taken into account when operating
with an MSIS mounted on a submersible, since the resulting acoustic images can
become distorted as a consequence of the vehicle’s motion. Generally, this effect
can be ignored for low velocities. For higher velocities, however, it is vital to have
a suitable localization method (a dynamics model, dead-reckoning sensors, SLAM,
etc.) to provide the necessary position feedback to un-distort the data. It is impor-
tant to note that distortions are the consequence of the combined action of both
translational and rotatory movements and that their influence may vary depending
on the typology of the vehicle. For instance, survey vehicles (torpedoes, flat-fish
vehicles, etc.), which generally move along straight paths at considerable speeds,
will be more prone to suffer translational distortions. On the other hand, hovering
vehicles, like the Ictineu, generally move at lower speeds but have the capability to
perform quick rotations, being more sensitive to angular distortions. The image in
Figure 4.9(a) shows a cartesian representation of the acoustic data obtained with the
Ictineu vehicle during a test in a marina environment. Since the motion has been
ignored during the generation of the image, an important distortion appears. Fig-
ure 4.9(b) presents the same dataset represented along the trajectory performed by
the vehicle during the acquisition. As can be observed, when comparing it with the
aerial image of the test scenario in Figure 4.9(c), the distortion in the second image
is almost completely cancelled, obtaining a more accurate representation.



Chapter 5
Localization with an a priori Map

This chapter concerns the use of MSIS to solve the localization problem for an
underwater vehicle navigating in a structured environment when an a priori map is
available. The initial objective of this work was to develop a system to locate the
Ictineu AUV within the square water tank which served as the theatre of operation
during the SAUC-E competition. The availability of such a localization system made
it possible to pre-define a series of waypoints to be followed by the vehicle and
therefore optimize the exploration of the scenario in search of the various necessary
targets to accomplish the proposed tasks. However, solving the navigation problem
for an AUV moving in a water tank was not only useful for the SAUC-E competition.
Further work has been undertaken to develop improved localization algorithms to
work under laboratory conditions, since we believe that such a system opens the
door to further advanced control experiments.

Section 5.1 reviews different strategies to perform data association in localization
problems, while Sections 5.2 and 5.3 present two map-based localization methods
developed for the competition. The first is a simple algorithm which determines the
vehicle’s position by means of a voting strategy, while the second relies on an EKF
to merge the information from several sensors and the tank map. A third method,
which combines several aspects of the two other algorithms to improve the estima-
tion process, is presented in Section 5.4. The chapter concludes with a summary of
the advantages of the different methods and some guidelines for further work.

5.1 Data Association and Localization

A key aspect of a localization system is solving the data association, i.e. finding the
correspondences between the sensor measurements and the elements contained in
the map. Many authors have studied this problem with the objective of improving
localization systems, but also as a necessary step to obtain a robust SLAM solution
capable of relocalizing the vehicle when it gets lost or suffers large odometry er-
rors. A particularly difficult situation is the global localization problem, also known
as the “kidnapped” robot problem, where no previous estimate of the vehicle’s po-
sition is available and only the information from the onboard sensors can be used

D. Ribas et al.: Underwater SLAM for Structured Environments, STAR 65, pp. 47–75.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



48 5 Localization with an a priori Map

to determine its position [22]. The techniques to perform this data association can
be divided between those that analyze the pose space and those that analyze the
correspondences between the measurements and the map.

In the first approach, a set of candidate vehicle positions is considered and rated
according to the evidence presented by the sensor measurements. The hypothesis
presenting a better consistency between the measurements and the map is the one
that corresponds most closely to the vehicle’s real position. Different methods are
used to represent the space of possible vehicle positions. One example is the Monte
Carlo localization [43, 126], which addresses the problem by sampling a set of ran-
dom vehicle locations covering the entire area and computing the likelihood of each
position. An alternative is using grid sampling, such as Markov localization [44, 9],
where the map is represented as an occupancy grid in which each cell represents a
particular vehicle position. The cost of this kind of algorithm is proportional to the
size of the map (number of particles or cells in the grid).

In the second approach to the data association problem, the process consists
of defining a set of hypotheses for the pairings between the sensor measurements
and the features in the map. The hypothesis with the largest number of consistent
matches should define the correct vehicle position. The cost of this method depends
on the size of the correspondence tree. To limit the complexity of the search, differ-
ent approaches have been developed such as the use of simple geometric constraints
[50], the hypothesize and test technique [76], branch and bound algorithms [18],
graph theory [3], random sampling [91] and voting [102].

In the context of the present work, different examples can be found for the lo-
calization of underwater vehicles operating in structured environments. In the Au-
tonomous System Laboratory of the University of Hawaii, range measurements
gathered with a set of fixed-bearing sonar beams were used to update a Kalman
filter and estimate the position of the vehicle in a water tank [97]. Using this system,
and thanks to its omni-directionality, Odin AUV can navigate keeping its relative
orientation with respect to the walls of the water tank. A more elaborate system is
described in [10] where a profiling sonar is used to track the walls of the water tank
and hence the robot is allowed to change its heading freely. In a previous work, our
team solved this problem using a coded pattern lying on the bottom of a water tank
together with a real-time vision system able to provide accurate absolute position es-
timates at 12 Hz [14]. An example of a real application can be found in [65], where
a localization system makes the autonomous inspection of a breakwater possible.

5.2 Voting-Based Localization Method

The localization system described here, was initially conceived as a method to de-
termine the position of the Ictineu AUV within the SAUC-E water tank during the
initialization phase of the Kalman filter-based localization algorithm presented in
Section 5.3. However, preliminary tests showed its potential and we soon realized
that it could become a localization system on its own. Moreover, the fact that this
method was already required as part of the alternative algorithm together with the
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strict time constraints set by the competition prompted the team to finally implement
it in the vehicle’s software architecture while making the necessary minor changes
to convert the method into a full localization algorithm. Due to its simplicity of op-
eration and proven reliability, it became our final choice for positioning the vehicle
during the competition.

5.2.1 Voting Algorithm

The method presented here determines the vehicle’s position by exploring the cor-
respondence between the measurements and the elements of the scenario using a
voting-based strategy. This algorithm only requires an a priori map and the measure-
ments from an MSIS, a compass and a pressure sensor to locate the vehicle within a
particular environment. The map, the MSIS and the compass are used to determine
the vehicle’s heading and position in the horizontal plane while the pressure sensor
is sufficient to estimate its vertical position, as the measurements provided by the
sensor are directly related with the depth at which the vehicle is operating. For the
purpose of this work, only square-shaped scenarios were taken into account to test
the algorithm. However, there are no particular restrictions limiting the use of this
algorithm to such scenarios and it is assumed that the algorithm would be able to
work in more complex environments.

The acoustic image in Figure 5.1(a) illustrates the type of data we can expect
when working in a water tank. Note that the range of the sensor has been set to ap-
proximately half of the longest tank dimension, which makes it possible to observe
a great part of the tank from most of the vehicle’s positions while avoiding the ap-
pearance of reflections in the image. The objects (walls) present in the vicinity of the
sensor appear in the image as elongated zones populated with high intensity echo

(a) Acoustic image obtained in the SAUC-E wa-
ter tank during the competition.

(b) Resulting set of bins after select-
ing those with the highest intensity (tank
walls in red).

Fig. 5.1 Selection of the most representative bins.
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returns (shapes in red). In order to reduce the number of bins involved in the process
and consequently, to improve the overall computational efficiency, only those bins
which are the global maximum of each beam are selected. Moreover, a threshold is
applied to select those with an intensity value high enough to correspond with the
detection of a real object, discarding the less significant ones. In Figure 5.1(b) the
selected bins appear as small black dots. For reference, the real water tank bound-
aries are represented by a rectangle in red. The majority of the selected bins are
expected to match the real position of the water tank walls. Therefore, it is possible
for a set of bins, regardless of ghosts and reflections in the acoustic data, to reach a
consensus and determine the true position of the tank limits, and reciprocally local-
ize the vehicle. In the present algorithm, this consensus is determined by means of
an adapted version of the Hough transform [28, 4]. The classical implementation of
the Hough transform is a voting algorithm for line feature extraction used in digital
image processing. However, for this particular application, it has been modified to
identify the position of the vehicle inside the water tank area.

The first step of the procedure is using the information from the a priori map
to define a discretized space representing the environment (tessellation of the water
tank area). The goal of this grid model of the water tank is to accumulate evidence
regarding the actual vehicle position in the form of votes. At the end of the voting
process, the cell with the highest number of votes will be chosen as the most likely
to correspond with the current vehicle position. The set of high intensity bins previ-
ously selected are responsible for determining where the votes should be assigned
in the voting space. Assuming that the orientation of the water tank is known and
that the vehicle is equipped with a compass, it is possible to obtain the angle be-
tween the vehicle and the tank. Furthermore, the position of any bin with respect
to the vehicle’s frame is totally determined by the range and bearing measurements
provided by the sensor. Therefore, for each single bin and given all this informa-
tion, a search for compatible vehicle locations is carried out. Every candidate po-
sition should accomplish two conditions. First, the bin associated with the position
must overlap the boundaries of the tank at some point. Second, the vehicle must be
placed within the limits of the tank. The compatible vehicle positions that meet the
two conditions describe a particular L-shaped zone which can be easily determined.
Figure 5.2(a) depicts a schematic representation of this process. In the voting space,
each one of the cells corresponding to the described locus will receive one vote. If
this is repeated for all the selected high intensity bins from a complete scan, the
accumulation of votes will result in a voting space such as the one represented in
Figure 5.2(b). In the example, the cell with the highest number of votes appears in
dark red and matches the real vehicle position, as can be observed by comparing the
result with the central point on the original scan in Figure 5.1(a).

5.2.2 Dealing with Continuous Acoustic Images

In order to determine the position of the vehicle, this algorithm needs to have a suf-
ficient amount of information available. It is not unusual to find situations in which
the vehicle’s vantage point results in limited observation of the scenario. For this
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(a) Locus of all the possible vehicle posi-
tions assuming that the measured bin cor-
responds with a tank wall.
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(b) Resulting voting space after assigning
all the votes produced by a set of bins from
a complete 360◦ scan.

Fig. 5.2 Voting process for vehicle localization.

reason, extracting high intensity bins from a 360◦ scan sector is usually a good ap-
proach. Another important aspect is the frequency at which these scan sectors are
obtained. As stated in Chapter 4, the range setting of the sensor is one of the fac-
tors directly related with the amount of time necessary to produce a complete scan.
A good option is to choose the shortest range possible (about half of the longest
dimension of the tank). However, even when working at their shortest range config-
uration, MSISs usually need a considerable period of time to obtain a scan (e.g. the
Miniking has a lower time limit of about 6 seconds). To summarize, using 360◦ scan
sectors for the voting process is desirable but usually obtaining such scans takes a
lot of time and, as a result, the vehicle position estimates can only be produced at
a low frequency. In order to overcome this disadvantage, a simple modification has
been implemented in the algorithm: the new beams produced by the sensor are ac-
cumulated by means of a data buffer so, at any moment, the information from the
most recent 360◦ scan can be recalled to produce a new voting and determine the
actual position of the vehicle. As new areas are explored with each beam arrival,
new bins are added to the data buffer. Simultaneously, older bins falling outside
the considered scan sector are removed. In other words, instead of interpreting the
sonar measurements as a discrete sequence of consecutive“acoustic images”, they
are treated as a continuous dataflow from which it is possible to instantaneously, and
at any desired frequency, recover the most recent “snapshot” of the environment.
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5.2.3 Managing Compass Errors

Another important modification of the present algorithm is a method to adapt the
voting process to possible angular errors. As mentioned before, a compass is used
to determine the current vehicle orientation with respect to the water tank. How-
ever, one should expect magnetic disturbances to affect the sensor when the vehicle
navigates through scenarios where the presence of ferro-magnetic elements is not
uncommon (e.g. wire meshes inside the concrete walls of a water tank). An error
in the estimation of this angle will be transmitted to the localization process as an
incorrect allocation of the votes in the voting space. The example in Figure 5.3(a)
represents a set of bins affected by this error (black dots), that are misaligned with
respect to the real water tank position (red rectangle). The relative positions of three
particular bins and the vehicle have been represented with dashed lines of different
colors. In the scheme in Figure 5.3(b), the places that will receive the votes for each
one of these three bins are represented with solid lines. Note that since all three bins
correspond to the same wall on the right, the three vertical sections should overlap.
However, instead of overlapping, the votes are spread over three parallel vertical
zones as a result of the misalignment caused by the angular error. Figure 5.3(c)
shows the resulting voting space after using all the selected bins, with the major-
ity of the votes spread over a wide area. Of course, such a space cannot produce a
reliable position estimate.

The strategy to address this issue is simple and effective. First, it is assumed that
some angular error is affecting the entire set of voting bins. The exact value of this
error is unknown but is assumed to be bounded. Then, instead of performing the
voting in a single space, several spaces are taken into account. These spaces are
identical except for the fact that different error values are used to correct the relative
vehicle-map angular measurements employed during the voting in each space. As
a result, a set of voting spaces with different error assumptions is obtained (those
in Figures 5.2(b) and 5.3(c) can be taken as examples of the kind of spaces that
are obtained). Next, a search for the vehicle position estimate is carried out, first
by selecting the candidate with the maximum number of votes from each one of the
different spaces and then choosing the overall most voted candidate (see Figure 5.4).
The reason behind this process is simple. A great accumulation of votes implies that
the bins are perfectly aligned with the boundaries of the water tank. Therefore, the
voting space that contains the candidate position with the maximum number of votes
has to be the one with the angular error assumption that best matches the discrep-
ancy in the real system. For instance, the winning candidate position in Figure 5.3(c)
has only 31 votes as a result of a bad angular error assumption that is not able to
correct the misalignment in the voting bins. This contrasts with the space obtained
in Figure 5.2(b), where a correct assumption in the error is able to produce a winner
with 79 votes. It is worth noting that working with multiple voting spaces is com-
putationally less efficient than performing the voting for all the error hypotheses in
a single space. However, using a single space would offer a more dispersed solu-
tion as a consequence of placing votes with wrong hypotheses. Moreover, without
the possibility of discriminating the effect of combined false assumptions from the
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(a) The angular error causes a misalignment between the measured
bins and the expected position of the tank.

(b) The effect of voting with
misaligned bins.
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(c) Resulting voting space after voting
with misaligned data.

Fig. 5.3 Voting with an angular error.
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Fig. 5.4 Voting in multiple spaces with different angular error hypotheses.

accumulation of votes due to the correct hypothesis, this method would present a
considerable risk of producing false position estimates.

5.2.4 Discretization of the Voting Space

One of the key issues while implementing the voting algorithm is to select a correct
grid resolution when defining the discretized voting space. Choosing a large cell
size will reduce the resolution of the space and hence the precision of the measured
positions. On the other hand, choosing a smaller cell size increases the computa-
tional cost of the algorithm, especially when dealing with angular errors, as several
voting spaces are used simultaneously. A good initial assumption is choosing a grid
resolution comparable to the actual resolution of the acoustic images generated by
the MSIS (distance between consecutive bins). However, there are situations where
taking a smaller resolution will have some benefits. One of these situations is when
the vehicle is moving at a high speed and the bins gathered during a 360◦ scan
are obtained from significantly different positions. Consequently, when a voting is
performed with those bins, their votes are placed according to the position of the
vehicle at the moment when the measurement takes place. This is reflected in the
voting space as a dispersion of the votes along the vehicle’s path and produces an un-
predictable outcome in the final position estimate. It is worth noting that the present
algorithm cannot estimate the vehicle’s motion during the acquisition of the bins
and thus it is not possible to correct this issue in the voting process. However, if the
resolution of the voting space is reduced, the uncertainty produced by this effect can
be confined in a bigger cell size. Of course, position measurements will also have a
lower resolution but will benefit from a steadier behavior.
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Fig. 5.5 CIRS water tank at the Unversity of Girona.

5.2.5 Experimental Results

In this section, two examples of the algorithm running in real environments are pre-
sented. The first corresponds to an experiment executed under laboratory conditions
that will be used throughout this chapter as a benchmark to compare the different
localization methods. The second corresponds to real data obtained during the final
run of the SAUC-E competition.

5.2.5.1 CIRS Water Tank Test

This experiment took place in the water tank at the Centre d’Investigació en
Robòtica Submarina (CIRS) at the University of Girona (Figure 5.5). Although the
Garbi vehicle was used to obtain the dataset, it can be considered as equivalent to a
set obtained with the Ictineu vehicle since both share compatible sensor suites. The
dataset is formed by measurements from the MSIS and the DVL (which includes a
compass and a pressure sensor, as explained in Section 3.6.2). The MSIS was set to
a range of 10 m and a resolution of 0.1 m (100 bins per beam) and was able to pro-
duce a complete 360◦ scan sector in about 6.6 s (0.15 Hz). During the experiment,
the vehicle was operated to perform a trajectory in the deepest part of the water
tank. Starting from the center, it went to one side near to the water tank wall and
then described a roughly square-shaped loop. The algorithm was set to perform vot-
ings with 360◦ scan sectors at a frequency of about 0.3 Hz (i.e. each time a new 180◦
scan sector was obtained). The chosen resolution of the discretized space was 0.1
m. Figure 5.6 shows the measured positions (red dots) and the resulting estimated
trajectory (line in black). No ground truth was available to validate the results; how-
ever, they seem consistent with the actual path followed by the vehicle. Although the
algorithm exhibits a high level of reliability, a single erroneous position measure-
ment was obtained during the execution of the algorithm. This was mainly because
of the sonar readings produced by the slanted walls limiting the deepest zone of the
water tank. During the voting, the algorithm expects the selected bins to correspond
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Fig. 5.6 Trajectory obtained with the voting-based localization algorithm for the experiment
performed in the CIRS water tank.

with the outer limits of the water tank and, as no alternative strategy was defined
for such measurements, they are erroneously assigned producing a false position
estimate. Typically, the bins corresponding with the slanted walls represent a small
portion of the total, so the correctly placed votes prevail and generally a correct po-
sition is produced. Nevertheless, erroneous position measurements are not an issue
as they are infrequent and easily detected as outliers when their distance to previous
position estimates is compared.

5.2.5.2 SAUC-E Final Run

The results presented in this section were produced with sensor data gathered by
the Ictineu AUV during its performance in the SAUC-E 2006 competition final.
The run took place in the water tank of the Underwater Stage at Pinewood Studios
in Buckinghamshire (United Kingdom) and consisted of a sequence of tasks to be
accomplished autonomously by the vehicle (Figure 5.7). First, the vehicle started
from the release point and had to submerge and pass through a validation gate. Then,
a cross target lying on the bottom of the tank had to be found and a marker dropped
over it. A second target, an orange buoy, had to be located and impacted with
the frame of the vehicle. Finally, the vehicle had to end the mission by surfacing
at a designated recovery zone marked by an acoustic device. During the final run, the
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Fig. 5.7 Water tank at the Underwater Stage of Pinewood Studios with all the elements com-
prising the setup for the SAUCE competition.

Ictineu AUV attempted all four tasks. With two of them partially achieved and two
more successfully completed, our team gained the final victory.

A version of the voting-based localization algorithm was implemented in the
Ictineu AUV in order to provide position feedback to the software architecture dur-
ing the competition. To reduce the cost of the algorithm and free resources for other
tasks that were running simultaneously, the voting space grid resolution was set to
0.5 m. This decrease in precision did not represent any problem as the purpose of
the localization system was to drive the vehicle to particular zones of the water tank
rather than to position it in a precise spot. Moreover, the reduction in cost made it
possible to increase the system’s output rate to a frequency of 2 Hz. Unfortunately,
it was not possible to record the trajectory estimation obtained by the algorithm dur-
ing the execution of the mission. In spite of this, the data loggers were able to record
the measurements from all the sensors and thus the estimated path could be post-
processed. Figure 5.8 represents the resulting trajectory. It is worth noting that a
voting space resolution of 20 cm had been used during the generation of this trajec-
tory in order to represent more accurately the path actually followed by the vehicle
during the run. In fact, it is sufficiently accurate to be able to observe how the vehicle
moves through the validation gate, hovers over the cross target to release a marker,
attempts to impact with the buoy and finally moves towards the recovery zone. For
reference, the estimated trajectory can be compared with the one appearing in the
video in [57], which corresponds to the actual run performed by the Ictineu during
the final.



58 5 Localization with an a priori Map

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Y (m)

X
(m

) Launch

Validation
Gate

Cross
Target

Buoy
Target

Fig. 5.8 Trajectory performed by the Ictineu AUV during the final run of the SAUC-E 2006.

5.3 EKF-Based Localization Method

This second proposal relies on an EKF to estimate a state vector containing the
position and velocity of the vehicle. A simple kinematic model allows the state to
be predicted at any moment while the information from different sensors is used
to update it. In addition to the compass and the pressure sensor, a DVL sensor is
incorporated to provide direct measurements of the vehicle’s velocities. The MSIS
together with an a priori map produce information regarding the absolute position
of the vehicle within the environment. This approach defines the a priori map as
a set of line features representing the planar objects present in the scenario (in the
application at hand, the four vertical walls delimiting the water tank). Then, the
readings from the MSIS are analyzed beam to beam in order to determine the bin
with the highest echo-intensity return. Again, the assumption is made that this bin
should correspond to a feature in the map. Therefore, after determining the bin-line
feature correspondence, the discrepancy between their positions in the space is used
to update the current vehicle position estimate.

5.3.1 Defining the Map

The a priori map of the environment M is defined as a set of n line features:

M = {l1, l2, . . . , ln}.

Each line describes the horizontal cross section of a vertical planar structure (e.g.
walls of the water tank as seen from a zenithal point of view) and is represented by
its rho-theta pair as:
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ln = [ρn θn]
T

which represents the perpendicular distance from a line feature to a common base
reference B. The position of this base reference is arbitrary. However, placing it in
one of the corners of the water tank – aligned with the direction of the walls– is usu-
ally a good choice, as the definition of line parameters would be straightforward. The
origin is placed at the water level and the Z axis points downwards. In other words,
anything placed below the water surface receives a positive value on its Z coordinate.
It is worth noting that the β angle representing the orientation of the base reference
B (i.e. orientation of the water tank) with respect to an earth fixed reference frame
E must be known when working with a compass in order to integrate its measure-
ments. This issue will be discussed in Sections 5.3.3 and 5.3.5. A representation of
the map and the different reference frames can be seen in Figure 5.9

5.3.2 State Vector

The state vector contains information regarding the position and velocity of the
vehicle at time k:

x(k) = [x y z ψ u v w r]T

Fig. 5.9 Representation of the different elements involved in the localization method.
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where, following the nomenclature proposed in [42], the vector [x y z ψ ] represents
the position and heading of the vehicle in the local base reference B, while [u v w r]
are the corresponding linear and angular velocities represented on the vehicle’s co-
ordinate frame V.

Our vehicles are passively stable in roll and pitch. Although small angles (< 2◦)
can occur, their effect on the sonar readings can be ignored since the large vertical
beamwidth (see Figure 4.5) makes it possible to detect objects which are not aligned
with the axis of the beam. For this reason, their corresponding angles and velocites
have not been included in the state vector.

5.3.3 Initializing the Filter

The initial value of the state vector x(0) should be estimated before starting the
Kalman filter. As mentioned previously, the voting algorithm described in Sec-
tion 5.2 was originally designed for this task. The process begisn with the obtention
of a complete 360◦ scan with the MSIS and the corresponding angular measure-
ments from the compass. After defining a voting space according to the a priori
information of the scenario, this set of measurements is used to perform a vote. The
winning candidate will determine the situation of the vehicle within the tank. There-
fore, it can be used to initialize the estimated XY vehicle position in the state vector.
As this value represents a measurement relative to a fixed base reference, some level
of uncertainty has to be considered. One alternative for assigning this initial value
is using a filter to estimate the position of the vehicle with the measurements that
have been previously associated in the vote. However, the results obtained with this
method tend to be optimistic. Here, a simpler alternative is chosen.

The uncertainty is set according to the precision of the voting process by taking
into account the grid resolution used during the estimation of the initial position.
Although taking this resolution to set the standard deviation of the position is a
good approach, adopting a slightly larger value is usually recommended in order
to cope with unexpected errors. Obtaining the initial values for the depth and the
heading of the vehicle is much easier as these values can be directly measured with
the outputs from the pressure sensor and compass. This time, the variance of this
initial estimate will be determined by the sensor’s accuracy. It should be noted that
the vehicle heading ψ is referenced to the base reference B, while the angle mea-
sured from the compass is obtained with respect to magnetic north. Thus, the angle
between the earth-fixed reference E and the base reference B must be taken into
account when using the compass measurement to initialize the vehicle’s heading.
During the initialization phase, the vehicle is presumed to be static, as this makes
the voting process for determining the vehicle position more reliable. Therefore,
the velocities can be set to zero, along with their uncertainty, as a perfect knowl-
edge of the variables can be assumed. The resulting estimate for the state vector at
time 0 is:
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x̂(0) =
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where the subindex V stands for the voting algorithm, P for pressure sensor, C for
compass and β corresponds to the angle between north and the base reference B as
represented in Figure 5.9.

5.3.4 System Model

A simple 4 DOF constant velocity kinematics model is used to predict how the state
will evolve from time k − 1 to time k:

x(k) = f (x(k − 1),n(k − 1)),⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z
ψ
u
v
w
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x +(uT + nu
T 2

2 )cos(ψ)− (vT + nv
T 2

2 )sin(ψ)
y +(uT + nu

T 2

2 )sin(ψ)+ (vT + nv
T 2

2 )cos(ψ)
z+ wT + nw

T 2

2

ψ + rT + nr
T 2

2
u + nuT
v + nvT
w+ nwT
r + nrT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k−1)

(5.1)

where n = [nu nv nw nr]
T represents a vector of white Gaussian acceleration noises

with zero mean. They are additive in the velocity terms and propagate through inte-
gration to the position. The covariance of the n vector is represented by the system
noise matrix Q:

E [n(k)] = 0, E
[
n(k)n( j)T ]

= δk jQ(k),

Q =

⎡
⎢⎢⎣

σ2
nv

0 0 0
0 σ2

nu
0 0

0 0 σ2
nw

0
0 0 0 σ2

nr

⎤
⎥⎥⎦ .

The model described in (5.1) is non-linear and therefore the prediction should
be performed with the EKF equations (see Appendix A). This version of the filter
linearizes the system model around the current estimate with the Jacobian matrices
F and W:
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F(k) =
∂ f
∂x

(x̂(k),0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −ûT sin ψ̂ − v̂T cos ψ̂ T cos ψ̂ −T sin ψ̂ 0 0
0 1 0 ûT cos ψ̂ − v̂T sin ψ̂ T sin ψ̂ T cos ψ̂ 0 0
0 0 1 0 0 0 T 0
0 0 0 1 0 0 0 T
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W(k) =
∂ f
∂n

(x̂(k),0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 cos ψ̂ −T 2

2 sin ψ̂ 0 0
T 2

2 sin ψ̂ T 2

2 cos ψ̂ 0 0

0 0 T 2

2 0

0 0 0 T 2

2
T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5.3.5 Measurement Model

The vehicle is equipped with a number of sensors providing direct observations of
particular elements of the state vector and hence a linear observation model can be
used (see Appendix A). The general model for such measurements is written in the
form:

z(k) = Hx(k|k − 1)+ m(k)

where z is the measurement vector and m represents a vector of white Gaussian
noises with zero mean affecting the observation process. The covariance of the m
vector is represented by the measurement noise matrix R:

E [m(k)] = 0, E
[
m(k)m( j)T ]

= δk jR(k).

The form of the observation matrix H changes according to the measurements ob-
tained from the sensors. Different forms of the H matrix are presented below for
each of the cases that can occur in our particular system:

Velocity: A DVL sensor produces velocity measurements in the 3DOF. Assuming
a sensor coordinate frame coincident with the vehicle reference V, or at least a
known transformation relating them, the velocity measurements can be taken as
direct observations of the vehicle’s velocities. Thus, the observation matrix H
can be written as:

HD =

⎡
⎣0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤
⎦ , (5.2)

and the covariance matrix of the measurement noise as:
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RD =

⎡
⎣ σ2

Du σDuv σDuw

σDvu σ2
Dv σDvw

σDwu σDwv σ2
Dw

⎤
⎦ .

Note that the covariance matrix is not diagonal. The reason behind these correla-
tions is that the measurements provided by the DVL are not directly observed, but
calculated from the projection of the vehicle’s velocity onto the multiple beam
axes of the sensor. More details on how to determine the measurement correlation
can be found in Appendix B.

Depth: The measurements from a calibrated pressure sensor can be easily oper-
ated to obtain an estimation of the vehicle’s depth (position in the Z axis). The
resulting H matrix is:

HP =
[
0 0 1 0 0 0 0 0

]
. (5.3)

The variance of the depth measurement will be represented by:

RP = σ2
P.

Heading: The compass measures the angle of the vehicle with respect to magnetic
north. As the vehicle heading ψ in the state vector is referenced to the base frame
B, the angle β (angle of the frame with respect to north) has to be subtracted from
the compass reading to produce the measurement zC. The resulting angle can be
used to update the state vector with the following H matrix:

HC =
[
0 0 0 1 0 0 0 0

]
. (5.4)

As the β angle is perfectly known as part of the a priori map, subtracting it
from the compass measurement has no effect on the uncertainty. Therefore, the
measurement noise RC is represented by the variance of the compass:

RC = σ2
C.

It is worth noting that, depending on the configuration of the system, different
readings could happen simultaneously. For instance, the DVL sensor in the Ictineu
vehicle (see description in Section 3.6.2) is also equipped with a compass and a pres-
sure sensor. Therefore, each time a new output is produced by the device, not only
should the velocities be updated but also the depth and heading estimates in the
state vector. In order to deal with multiple measurements simultaneously, a com-
posed form of the H matrix can be obtained by adding different rows from (5.2),
(5.3) and (5.4):

H =

⎡
⎣HD

HP

HC

⎤
⎦ , R =

⎡
⎣RD 0 0

0 RP 0
0 0 RC

⎤
⎦ .

Another particularity of the system is that the DVL sensor is able to measure the
velocity with respect to the ground as well as the relative velocity between the sen-
sor and the water volume below. The first set of measurements is worthwhile as it
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represent a direct estimation of the movement of the vehicle with respect to a fixed
reference. Unfortunately, some scenarios are particularly difficult (those in shallow
water or where reverberations take place) and such velocity measurements are in-
correct. On the other hand, water volume velocities do not seem to be so dependent
on the environment as ground velocities. For this reason, although they are less ac-
curate, they can be used to estimate the vehicle’s motion. However, this can only be
done in those situations where the water volume is static or, in other words, when
no water currents are present. The Argonaut DVL has the capacity to determine the
quality of the received signals automatically and provides a status value for the ve-
locities. Accordingly, the measurements with a bad status are discarded before the
update by removing the corresponding rows in (5.2).

5.3.6 Updating the Position Estimate

The process of estimating the vehicle’s position from the integration of velocity
measurements suffers from an inherent drift. To deal with this, the MSIS is used
together with the a priori map M to correct the absolute vehicle position in the
state estimate. This process is carried out each time a new single beam is obtained
from the imaging sonar and begins with the selection of the bin with the maximum
intensity value. This measurement represents a point in the space which is the most
likely to evidence the presence of an object in the scene and, as a consequence, to
correspond with a line feature in the a priori map. The information regarding the
point-line pairing will be used to perform an update in the state estimate from the
filter (see Figure 5.9).

The selected high intensity bin from the MSIS is produced in polar coordinates:

pp(k) = [ρp(k),θp(k)]T , pp(k) = p̂p(k)+ u(k)

where u is a zero mean white Gaussian noise affecting the sensor during measure-
ment:

E [u(k)] = 0, E
[
u(k)u( j)T ]

= δk jPp(k), Pp(k) =

[
σ2

ρp
0

0 σ2
θp

]
.

To determine its correspondence with the line features composing the map, the first
step is transforming the bin parametrization from polar to cartesian coordinates.

p̂c(k) = q(p̂p(k))[
x̂c(k)
ŷc(k)

]
=

[
ρ̂p(k)cos θ̂p(k)
ρ̂p(k)sin θ̂p(k)

]
.

The Jacobian of the non-linear q function is also obtained for further calculations
concerning the measurement uncertainty.
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Jq =
∂q

∂pp
(p̂p(k)) =

[
cos θ̂p(k) −ρ̂p(k)sin θ̂p(k)
sin θ̂p(k) ρ̂p(k)cos θ̂p(k)

]
.

For the sake of simplicity, the sensor reference frame has been taken as coincident
with the vehicle’s reference frame V. Otherwise, the appropriate transformations
(see Appendix C) should be carried out to represent the bin in cartesian coordinates
in the V reference frame. The next step is to represent each one of the line features
{l1, l2, . . . , ln} stored in the M map in the same V frame so they can be compared
with the selected bin. The g function obtains the parameters for a line feature ln,
originally defined in B, with respect to the position of the vehicle’s frame stored in
the current state estimate x̂(k|k − 1):

l̂Vn (k) = g(ln, x̂(k|k − 1)) ,[
ρ̂V

n

θ̂V
n

]
=

[
ρn − x̂cosθn − ŷsinθn

θn − ψ̂

]
.

As the map is assumed to be perfectly known, the uncertainty depends only on the
vehicle state estimate x̂. Therefore, only the Jacobian of the g function with respect
to the state is necessary:

Jg =
∂g
∂x

(x̂(k|k − 1)) =
[−cosθn −sinθn 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

]
.

With both the sonar return and the map in the same reference frame, an implicit
non-linear measurement function h stating that the distance between them is zero
and thus that the point belongs to the line can be defined (see Figure 5.9) [18]:

h(pc(k), lVn (k)) = ρV
n − xc cosθV

n − yc sin θV
n ,

= 0,

with:

H1 =
∂h
∂ lVn

(p̂c(k), l̂Vn (k)) = [1 x̂c sin θ̂V
n −ŷc cos θ̂V

n ],

H2 =
∂h
∂pc

(p̂c(k), l̂Vn (k)) = [−cos θ̂V
n sin θ̂V

n ],

where H1 and H2 are the Jacobians of the implicit measurement function h with
respect to the selected bin and a particular line of the map.

Multiple hypotheses can be made relating the bin with the different n line fea-
tures. To produce the update, one of them has to be chosen as valid. For this purpose,
an Individual Compatibility (IC) test is performed for each hypothesis by means of
the measurement equation presented as:

S = H1JgP(k|k − 1)JT
g HT

1 + H2JqPp(k)JT
q HT

2 ,

D2 = h(p̂c(k), l̂Vn (k))T S−1h(p̂c(k), l̂Vn (k)) < χ2

d,α
. (5.5)
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Distance D2 is the Mahalanobis distance [80]. The correspondence is accepted if
the distance is less than χ2

d,α
, with α defined as the confidence level and d = dim(h).

The Nearest Neighbor (NN) selection criterion determines that, among the pairings
that satisfy (5.5), the one with the smallest Mahalanobis distance is chosen and the
association hypothesis is accepted. If none of the pairings pass the test, the bin is
considered as spurious and rejected. This association process ensures not only the
correct association of the measurement but also allows the rejection of spurious data
from the sonar image, such as those produced by multipath propagation or by the
presence of other objects not represented in the map.

Having solved the data association, an update of the vehicle state estimate can be
performed using the EKF equations for an implicit measurement function [18]:

K = P(k|k − 1)JT
g HT

1 S−1

x̂(k) = x̂(k|k − 1)− K h(p̂c(k), l̂Vn (k))
P(k) = (I− KH1Jg)P(k|k − 1)

5.3.7 Experimental Results

This section presents results obtained with the EKF-based localization method for
the CIRS water tank test previously presented in Section 5.2.5. In addition to the
MSIS, compass and pressure sensor measurements already used in the previous
method, the velocity measurements from the DVL were also employed. As men-
tioned in Section 3.6.2, the DVL can produce velocity measurements with respect to
the ground and to the water. The reduced dimensions and the reflectivity of the con-
crete walls in the CIRS water tank make it a complex scenario in which to operate
the DVL sensor. In consequence, a considerable number of measurements receive
bad quality status and are rejected. Although bottom tracking velocities are gen-
erally more precise, water velocities are more reliable and the number of rejected
measurements is lower. During this test, both velocity measurements were used to
update the filter in order to obtain a better estimate. It is worth noting that using
the water velocity measurements to estimate the vehicle movement is only possible
when operating in scenarios were no currents exist and the water volume can be
assumed as static. Otherwise, the system model should be adapted to account for
the effect of water currents.

Figure 5.10 represents the trajectory obtained with the present EKF-based local-
ization method (line in black). It can be observed that this trajectory is consistent
with the one obtained with the previous method (line in red). For comparison pur-
poses, the dead reckoning trajectory obtained by running the filter without perform-
ing the position updates with the MSIS measurements is also represented (dashed
line in blue). As the position in the dead reckoning estimate is obtained only by
integrating the velocity measurements, the process is inherently affected by drift.
This effect is even more noticeable as a result of the important perturbations affect-
ing the velocity measurements when operating in such an adverse scenario. On the
other hand, when the MSIS measurements are contrasted with the a priori map and
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Fig. 5.10 Trajectory obtained with the EKF-based localization algorithm compared with tra-
jectories obtained with other methods.

Fig. 5.11 Uncertainty of the estimated position in the B reference frame represented by its
2σ bounds.
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used to update the estimate, information regarding the absolute position within the
tank is incorporated and, as a result, the drift disappears. As shown in Figure 5.11,
the effects of these updates are also reflected in the error plots of the position
estimate. The represented 2σ bounds grow without limit in the dead reckoning es-
timate (dashed line in blue) as a result of the velocity error integration, while they
remain constant when updated with the map (black line).

5.4 Hybrid Approach

This third approach to the localization problem is an attempt to merge the best from
the two methods already presented. The main advantage of the voting-based lo-
calization is the capability of producing independent absolute measurements. This
means that even when a position estimation fails, posterior votings can relocalize
the vehicle since this is a global localization method that does not rely on position
tracking. In contrast, the above mentioned EKF-based method corrects the position
estimate in the filter by means of relative measurements between the vehicle and a
wall from the a priori map and, since this correction relies on the current position
estimate, errors can eventually cause the vehicle to get lost and force the system to
re-initialize. This second method however, has its strongest point in the use of an
EKF which allows the position estimate to be improved by integrating information
from additional sensors and, at the same time, makes it possible to obtain position
estimates at a higher rate with a fraction of the computational cost required for the
voting algorithm.

The proposed hybrid method includes an EKF update with the measurements
from a DVL, a compass and an adapted version of the presented voting algorithm.
The benefits are twofold. First, the position estimate will now be corrected with
absolute measurements, making it more reliable and avoiding eventual track losses.
Second, the position estimates from the filter can be included in the voting process
to avoid the dispersion of votes along the vehicle’s trajectory while moving.

5.4.1 The Filter

The EKF used in this hybrid approach is equivalent to the one presented in Sec-
tions 5.3.2 to 5.3.5 and only differs in the process of updating the position estimate.
Instead of using the procedure described in Section 5.3.6, this method uses the out-
put from the adapted voting algorithm that will be presented in Section 5.4.2. The
measurement zV provided by this voting algorithm corresponds to the coordinates of
the vehicle’s position within the 2D map of the water tank. Since the measurements
are obtained in the B reference frame, they can be directly integrated by means of
the following linear measurement equation:

zV (k) = HV x(k|k − 1)+ m(k),

HV =
[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]
,
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where m represents a vector of white Gaussian noises with zero mean affecting the
measurement process. The covariance of the measurement is represented by RV :

E [m(k)] = 0, E
[
m(k)m( j)T ]

= δk jRV (k).

Although the voting algorithm has proved to be quite reliable, there are still sit-
uations where reduced visibility, phantoms or reflections in the acoustic data can
affect the process and cause errors in the resulting measurement. Since these values
are direct observations of components in the state vector, integrating these erroneous
measurements strongly affects the correctness of the estimate. To avoid this, we can
determine if a given position measurement from the voting algorithm is consistent
with the current predicted vehicle position estimate by means of the innovation term
νV , which represents the discrepancy between them. Its value and covariance are:

νV = zV − HV x̂(k|k − 1),
SV = HV P(k|k − 1)HT

V + RV .

To determine the compatibility of the measurement, an IC test is performed. The
measurement can be considered as corresponding to the current position estimate if
the Mahalanobis distance D2 satisfies:

D2 = νT
V S−1

V νV < χ2
d,α ,

where d = dim(HV ) and α is the desired confidence level. All the measurements
passing the IC test are then used to update the filter. Since the measurement model
equation is linear, this can be done with the classic KF update equations that can be
found in Appendix A.

5.4.2 Adapted Voting Algorithm

As mentioned in Section 4.4.3, distortions affecting the acoustic data could be dif-
ferentiated between those resulting from rotations and displacements. In the method
presented in Section 5.2, using the information from the compass to determine the
relative orientation between the vehicle and the scenario implicitly takes into ac-
count rotations during the voting process and removes the effect of its distortion. On
the other hand, distortions due to the displacement of the vehicle are ignored since
it is assumed that the vehicle is stationary or moving very slowly. In the present
method, such an assumption can be removed by integrating the position estimate
from the EKF into the voting process. The process begins by tagging each new
beam arriving from the MSIS with the current vehicle position in the state vector
and storing them in the data buffer. Before producing a voting, a set of n selected
high echo intensity bins from a 360◦ scan sector is obtained together with its corre-
sponding set of vehicle positions {[x1,y1] , . . . [xn,yn]}. This concept is shown graph-
ically in Figure 5.12, where the position of the vehicle at the beginning of the scan
(acquisition of the n bin) is described by [xn,yn] and the current vehicle position (bin



70 5 Localization with an a priori Map

Fig. 5.12 Compensating the effect of motion during the voting process

number 1, the most recent) is represented by [x1,y1]. The voting method described
in Section 5.2 places the votes in accordance with the position of the vehicle at
the moment when the measurement of each particular bin took place. The vehicle’s
movement results in a dispersion of the votes along the performed trajectory which
can produce a loose estimation of the real vehicle position (see Figure 5.13(a)). In
the present method, this effect is compensated for by using the stored vehicle posi-
tions to determine the relative positions of the different bins and making them vote
for the current location of the vehicle instead of voting for all the different positions
along the trajectory (see Figure 5.13(b)). In the example in Figure 5.12, the differ-
ence between the current position and the position at which the n bin was obtained
is represented by [x1n,y1n]. Composing the vehicle’s referenced location of the n bin
with this relative measurement makes it possible to determine the position of that
same bin with respect to the current vehicle location (represented by a red arrow)
and therefore the votes can be assigned accordingly. Transforming all the votes from
the whole set of n bins so they can vote for a common vehicle position removes the
effect of motion-induced distortions. Moreover, the resulting voting space presents
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(a) Each bin places the votes according to
its corresponding vehicle position.

(b) All the bins vote for the current vehicle
position.

Fig. 5.13 Compensating the motion-induced dispersion of votes.

a better description of the real position because there is a more focused distribution
of votes. Figure 5.14 shows two voting spaces generated with the voting algorithm
from Section 5.2 (on the left) and the present one (on the right). Although both of
them were generated from the same set of sonar measurements, it can be seen how
the first one shows a sparse distribution of votes, making it difficult to discern the
winning position, while the second one has a small cluster with a high concentration
of votes which is easy to identify as the winner.

The winner is considered for the vehicle estimate and, as described in Sec-
tion 5.4.1, this requires defining the uncertainty of the measured position. In contrast
to the original method, this adapted voting does not suffer the effects of uncom-
pensated vehicle motions; the process is only affected by the noise in the sensor
measurements and their corresponding vehicle positions. Therefore, it is reasonable
to assume the resulting output as Gaussian. In this particular implementation, the
uncertainty value RV is assigned according to the grid resolution in the voting space
with the objective of reflecting the empirically observed precision of the method.

5.4.3 Experimental Results

Again, the CIRS water tank experiment is used to test this new proposal. Figure 5.15
represents the trajectory obtained with the current approach (black line), which
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Fig. 5.14 Comparison between the original voting algorithm (left) and the adapted version
(right).

strongly resembles the ones obtained with the previous methods: voting-based (line
with dots in red) and EKF-based (green line). For comparison purposes the dead-
reckoning trajectory (dashed line in blue) has also been included. The algorithm has
been set to perform updates with the information from the adapted voting algorithm,
which produces measurements at a frequency of about 0.3 Hz. These measurements
are also represented in the figure (black crosses) so they can be compared with those
obtained with the original voting algorithm (red dots). As can be seen, the measure-
ments are quite similar, which is reasonable since the experiment was performed
at a low velocity and the induced distortions were not important. In some parts of
the trajectory, the improvement in the voting spaces obtained with the new method
is considerable (see the example shown in Figure 5.14). However, in other zones,
where perturbances affect the measurements from the DVL, the improvement is
hardly appreciable. This is because the effect of the corrections performed during
the voting process is dependent on the quality of the estimated trajectory. The side
effects of performing absolute position updates are the elimination of the drift af-
fecting the estimate done with the dead-reckoning sensors and the bounding of the
vehicle position errors. Figure 5.16 represents the uncertainty of the estimated po-
sition error for the current method (in black) together with the uncertainty of the
dead-reckoning error obtained by running the filter without the absolute position
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Fig. 5.15 Trajectory obtained with the hybrid localization algorithm compared with trajecto-
ries obtained with the other methods.

Fig. 5.16 Uncertainty of the estimated position in the B reference frame represented by its
2σ bounds.
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updates (blue dashed line). As expected, the first one remains constant (except for
small peaks produced by the absence of reliable DVL measurements) while the sec-
ond shows the typical unbounded error growth.

5.5 Summary and Further Work

In this chapter, three different localization methods have been presented. The first,
the voting-based algorithm, provides absolute position measurements and combines
simplicity and reliability. Angular distortions affecting the acoustic data are reduced
by integrating compass measurements. Distortions caused by displacements are ig-
nored under the hypothesis that the vehicle is static or moving very slowly. Of
course, the reliability of the method is affected when this hypothesis does not hold.
One weak point of the method is that the computational cost is directly related to
the resolution and frequency at which the measurements are obtained. During the
SAUC-E competition, the version of the algorithm running in the vehicle was set to
work at a low resolution in order to increase the measurement rate and fulfill the real
time requirements. This is the only one of the three presented methods implemented
in real time in the Ictineu software architecture and tested under working conditions.

The second method relies on an EKF for position estimation. Its strong point is
the use of the filter itself, which makes it possible to constantly estimate the vehi-
cle’s state and merge information from different sensors. The MSIS data is treated
beam to beam to produce corrections with the a priori map. As the vehicle’s position
is taken into account for each individual beam, the effect of distortions is implicitly
corrected. The main disadvantage of this method is that using a single bin to per-
form the updates does not provide enough information to determine the absolute
vehicle position and, therefore, if something fails (incorrect association, absence of
measurements, etc), the vehicle can eventually get lost. In fact, this disadvantage is
corrected in the third presented method. Again, an EKF is used but this time the al-
gorithm relies on absolute position measurements obtained from a modified voting
algorithm to perform the updates. The modified voting procedure uses the estimated
position to remove the effect of motion in the acoustic data and thus to improve
the reliability of the whole algorithm even when the vehicle is moving fast. Further
work includes implementing this third method in the Ictineu software architecture
so that it can be tested under real working conditions in the CIRS water tank.

One limitation common to all the algorithms is that, although the vehicle can
move in 3D, only 2D maps are considered. This is not an issue if the elements
composing the map correspond to vertical planes in the real scenario. However,
the map will not be valid for a vehicle navigating at different depths since, in this
situation, the position of the sensed non-vertical objects could change considerably
with respect to their original description in the map. An illustrative example can
be found in the CIRS water tank (see Figure 5.5). The different methods take into
account only the outermost limits of the tank, composed of vertical walls, but ignore
the presence of the two slanted walls placed near the center. This is sufficient to
localize the vehicle because, as a consequence of the large vertical beamwidth of
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the MSIS, the limits are visible even when the vehicle is navigating at a few meters
under the water. Moreover, the slanted walls appear in the acoustic data as zones
with lower intensity values than those from the outer boundaries and therefore are
generally discarded in the high intensity bin selection step. Removing this limitation
in the description of the scenario, either by integrating 3D maps or by using a set
of 2D maps defined for different working depths, would make it possible to use
non-vertical structures to add more information to the system, thereby improving
the quality of the measured position. In the CIRS water tank, for instance, it is
not possible for the MSIS to detect the boundaries completely when the vehicle is
navigating close to the bottom in the deepest zone of the tank. The slanted walls,
however, appear in the acoustic data and, if a compatible map is defined, can be used
to determine the vehicle’s position.



Chapter 6
Simultaneous Localization and Mapping

In this chapter a SLAM framework for AUVs equipped with an MSIS operating in
manmade structured environments is proposed. In the previous chapter, the use of
techniques such as the Hough transform and the Kalman filter were studied in the
context of a localization problem. Here, these techniques are further explored for
their application in SLAM. The proposed approach is composed of two parts run-
ning simultaneously. The first is a line feature extraction algorithm which is respon-
sible for managing both the measurements arriving from the MSIS and the vehicle
position estimates from the SLAM system to search continuously for new features
by means of a voting scheme. Eventually, when a new feature is detected, the al-
gorithm also estimates its uncertainty parameters through an analysis of the imprint
left in the acoustic images. The second part is a Kalman filter implementation which
is the core of the proposed SLAM system. This filter merges the information from
various sensors (DVL, compass and pressure sensor) and the observations from the
feature extraction algorithm in order to estimate the vehicle’s motion and to build
and maintain a feature based map (see Figure 6.1 for a diagram of the complete
system). In addition, the problems associated with large scenarios have also been
addressed through the implementation of a local map building procedure. At the
end of the chapter, two tests performed with real sensor data endorse the proposed
SLAM approach. The first employs the dataset corresponding to the previously pre-
sented CIRS water tank test, while the second undertakes a more realistic application
scenario with a dataset obtained in an abandoned marina.

6.1 Line Feature Extraction

There is extensive published bibliography on segmentation, classification, registra-
tion and feature extraction from acoustic images [24, 119, 105]. Generally, these
works are focused on dealing with natural environments from which features corre-
sponding to compact regions with high intensity backscatter are extracted. In most
of the underwater SLAM approaches reviewed in Chapter 2, these regions are usu-
ally modeled as point landmarks. The process often requires dealing with significant
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Fig. 6.1 Diagram of the proposed SLAM approach.

background noise and extracting supplementary characteristics regarding their size
and shape [118] or even their associated shadows [105] to improve the discrim-
inability. Nevertheless, working with landmarks extracted from acoustic data is not
an easy task because their appearance may change substantially when observed from
different vantage points. The problem for structured scenarios like the ones handled
in this thesis is substantially different. As shown in Chapters 4 and 5, the cross-
section of a sonar scan with walls and other planar structures results in line-shaped
features in the acoustic images. The aspect of these features remains constant inde-
pendently of the sensor position, although their visibility may change depending on
the incidence angle of the emitted beam and many other factors such as water tur-
bidity or the structure and materials of the reflecting surface. The resulting acoustic
images rarely present shadows since the emitted wave cannot generally pass over
the walls and the main part ricochets back to the scenario. Of course, this can cause
phantom reflections, especially when operating in confined spaces. The sensorial
choice for this work, the MSIS, also presents many differences with respect to the
common approach based on electronically scanned sonars. As commented on pre-
viously, the MSIS produces scans at a much lower frequency, the data is continuous
and is affected by motion-induced distortions. On the other hand, its visibility is not
limited to a reduced scan sector, but can be extended to 360◦ around the vehicle.
This is important because landmarks can be tracked for a longer period of time,
being observable even when the vehicle has left them behind.

6.1.1 Classical Approaches for Line Feature Extraction

The use of line features has traditionally been related to the use of 2D laser scans in
indoor environments. The extensive research carried out in this type of scenario has
fostered the development of an abundance of methods for the estimation of lines
from a cloud of point measurements. The most popular approaches include algo-
rithms based on segmentation and grouping such as Split-and-Merge [101], itera-
tive methods such as the RANdom SAmple Consensus (RANSAC) [39] and voting
schemes such as the Hough transform [58] among others. It is also worth mention-
ing the methods based on the Least Squares (LS) minimization which, although not
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robust to spurious measurements, is an excellent option for refining lines previously
obtained with other methods such as Hough or RANSAC.

The approach presented in this thesis relies on the Hough transform, although it
has been substantially modified for the application at hand. This choice was moti-
vated by the simplicity of adapting the system to operate with continuous data from
the sensor as well as to integrate the necessary motion corrections. Moreover, the
Hough transform offers the possibility of detecting other types of features in addi-
tion to lines, on the condition that an adequate parametric representation exists [4].
The particular approach implemented here is based on the work presented in [117].
This work demonstrated a SLAM system running a Hough-based feature extrac-
tion algorithm using measurements from a sonar ring mounted on an indoor robot.
Although the algorithm proposed here has some similarities, the change in the appli-
cation domain and the use of an MSIS represent important differences with respect
to the original.

6.1.2 Hough-Based Feature Extraction Method for MSIS

This line feature extraction method has some points in common with the voting al-
gorithm for the hybrid localization system presented in Section 5.4. The operation
of this feature extraction algorithm is intimately related to the Kalman filter which,
simultaneously, executes the SLAM. This is not only because it provides the filter
with the landmark observations necessary to build and maintain the map, but also
because the voting algorithm requires position estimates to deal with the motion in-
duced distorions in the acoustic data. The segmentation of the acoustic data and the
use of a buffer to accumulate information are other similarities with the previously
introduced localization method. The different aspects of the algorithm are described
in detail below.

6.1.2.1 Beam Segmentation

Objects present in the environment appear as high echo-amplitude returns in acous-
tic images (see the yellow to red zones in Figure 6.2(a)). Thus, only part of the
information stored in each beam is useful for feature extraction. Therefore, a seg-
mentation process is required in order to obtain the most significant information.
This process consists of three steps performed beam to beam as the beams arrive
from the sonar. First, only those bins with an intensity value over a threshold are
selected and stored. This procedure separates the acoustic imprint left by an object
in the image from the noisy background data (Figure 6.2(b)). As will be explained in
Section 6.2, this imprint plays an important role in the estimation of the uncertainty
for the features detected with the voting algorithm.

The second step is to select from the segmented data above the threshold value,
those bins that are local maxima. These high intensity bins are the ones that most
likely correspond to objects present in the scene. It is worth noting that this process
is performed beam to beam and that as a result of the search for local maxima, one
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(a) (b) (c)

Fig. 6.2 Different phases of the acoustic data segmentation: (a) Raw polar sensor data.
(b) Thresholded data. (c) Local maxima bins.

or more high intensity bins can be obtained per beam. The purpose of selecting mul-
tiple bins is to make detecting features possible when more than one wall intersects
with a single beam. Structures composed of steps or ramps are examples of sce-
narios where this can happen (see Figure 6.12). Moreover, using this segmentation
technique, it is also possible to extract features from ghost reflections. Although it
has not been an object of study during this thesis, the invariance and persistence of
these reflections suggest that they could be suitable to act as landmarks in a SLAM
framework.

The last step of the segmentation process is to reject those bins which do not
satisfy a “minimum distance between them” criterion. This means that if two bins
which have been previously selected as local maxima are too close, they should cor-
respond to the same object and are hence redundant. Then, the one with the lowest
intensity value is discarded (see the resulting high intensity bins in Figure 6.2(c)).

6.1.2.2 Data Buffer

In order to deal with the stream of measurements produced by the continuous arrival
of beams, a data buffer similar to that introduced in Section 5.2.2 is set up. This time,
the buffer stores information on the beams for the most recent 180◦ scan sector.
The choice of this sector size is not arbitrary. The feature extraction algorithm is
constantly looking for new lines, which makes detecting a candidate as soon as
it is fully represented in the scan possible. Since a 180◦ sector is the maximum
sector that a single line can cover within a scan, there is no need to store more data.
Whenever new beams corresponding to an unexplored zone are acquired with the
MSIS, the stored information corresponding to old beams that fall outside the most
recent 180◦ scan sector is discarded. When the segmentation process determines
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that a newly measured beam contains one or more high intensity bins that must take
part in the voting, the following information is stored in the buffer:

1. The range and bearing for each of the selected bins (polar coordinates in the
sensor reference frame). This information will be used in the voting.

2. The segmented beam obtained after applying the threshold value in the first step
of the segmentation process. This will be used during the uncertainty estimation
phase (Section 6.2).

3. The vehicle position estimate at the moment the beam was acquired. This esti-
mate is obtained from the EKF-based SLAM which runs parallel to the feature
extraction algorithm. Taking into account these position estimates during the vot-
ing compensates for the motion-induced distortions in the acoustic data.

6.1.2.3 Defining the Voting Space

The information stored in the data buffer is used periodically in a voting to look
for possible candidate features. This is performed with a modified version of the
classical implementation of the Hough transform for line extraction. This algorithm
accumulates the information from the sensor data in a voting table which is a pa-
rameterized representation of all the possible feature locations. Those features that
receive a great number of votes are those with a relevant set of compatible sensor
measurements and thus the most likely to correspond to a real object in the envi-
ronment. In our application, line features are described by two parameters, ρB and
θ B (perpendicular distance and orientation with respect to a base frame B). Hence,
the resulting Hough space is a two-dimensional space where the voting process and
the search for maxima can be done efficiently. The base reference frame B can be
set arbitrarily. However, our choice for B is the current position of the sonar head
at the moment the voting is performed. Since in this implementation the voting is
triggered by the arrival of new beams from the sensor, the most recently stored po-
sition in the data buffer (corresponding to the last beam) defines the position of B.
An advantage of choosing this base is that, when a line feature is detected after the
voting, its parameters are already represented in the sensor coordinate frame and
hence it can be integrated directly into the SLAM framework as an observation of
one of the features already in the map, or incorporated as a new feature after being
compounded with the current vehicle position.

It is worth noting that B is not a fixed coordinate frame. As the parametrization in
the Hough space is performed in polar coordinates, setting the reference in a fixed
position would produce a resolution loss with an increase in range. To avoid this, we
need to re-situate B according to the vehicle’s motion. Unfortunately, this requires
recomputing the Hough space with each change in the position of B. Although it may
seem a great deal of computation, the fact is that the number of bins involved in the
voting is not large (less than 100 bins during the tests performed) and the calculations
can be executed quite fast. Moreover, as will be explained in the next section, there
are situations when recalculating the Hough space can be avoided. Another key issue
is the quantization of the Hough space. In our case, we have observed that selecting
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Fig. 6.3 Model of the sonar sensor for line features. B is the base reference frame and S is a
reference frame attached to a beam.

the quantization equal to the angular and linear resolutions of our sensor (typically,
1.8◦ and 0.1 m) works well. A higher resolution does not necessarily increase the
quality of the detection because the sonar resolution limits its precision. On the other
hand, a lower resolution would produce a rough observation.

The general execution of the feature extraction process consists of several steps.
First, with each beam arrival, the Hough space is referenced to the current sensor
position as the new base frame B. Next, all the bins stored in the buffer are ref-
erenced to B so they can be used to vote in the space. It is worth noting that the
stored beam positions are taken into account when transforming to B. Hence, the
data is undistorted. Then, the votes corresponding to each bin are assigned to the
candidate lines by means of a sonar model. Finally, a search for winning candidates
is performed.

6.1.2.4 Sonar Model and Voting

Each bin represents the strength of the echo intensity return in a particular place
within the insonified area. Due to the uncertainty produced by the horizontal
beamwidth, a measurement cannot be assigned to a single point in the space. A
common approach [70],[117], is to consider the measurement as an arc whose
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aperture represents the beamwidth uncertainty. Moreover, as a high intensity re-
turn is typically produced when the acoustic wave hits a surface perpendicularly,
we can infer that all the surfaces tangent to the arc can explain the high intensity
return. While this simple model is well suited for air sonar ranging systems, it is
not able to explain the acoustic images gathered with an MSIS. A careful analysis
of these images reveals that their object detection capability is not limited to the
arc-tangent surfaces, but that those beams intersecting the surface within the limits
defined by a certain maximum incidence angle also produce a discernible return. On
the other hand, those beams with a shallower angle are completely reflected and do
not perceive the surface. To obtain a better description of this situation, an extended
model to describe the imaging sonar has been adopted (Figure 6.3). Basically, given
a horizontal beamwidth angle α (in our sensor, α = 3◦) and an incidence angle β
(generally, not less than 60◦), the set of line features compatible with a particular
bin is composed not only of these lines tangent to the arc defined by α , but also of
all the lines which intersect the arc with an incidence angle smaller than ±β . Before
performing a voting, this set of lines must be determined for each bin stored in the
data buffer.

This process will now be described using as reference the illustration in Fig-
ure 6.3. Let the reference frame S define the position of the transducer head at the
moment a particular bin was obtained, with [xB

S ,yB
S ,θ B

S ] being the transformation
which defines the position of S with respect to the chosen base reference B, and ρS

the range at which the bin was measured from the sensor. Both the transformation
and the range values can be obtained from the information in the data buffer. To
emulate the effect of the horizontal beamwidth, a set of i values are taken at a given
resolution within an aperture of ±α/2 around the direction in which the transducer
is oriented, also referred to as θ B

S :

θ B
S − α

2
≤ θ B

i ≤ θ B
S +

α
2

.

Each value θ B
i represents the bearing parameter for a line tangent with the arc which

models the horizontal beamwidth. As stated earlier, not only are the lines tangent
to the arc candidates, but also those inside the maximum incidence angle limits of
±β . For this reason, k values are taken at a given resolution for each value of θ B

i
and within an aperture of ±β :

θ B
i − β ≤ θ B

i,k ≤ θ B
i + β .

The result of this operation are i× k different values of θ B
i,k. These are the bearings

for a set of lines which are a representation of all the possible candidates compatible
with the bin. The final step is to determine the range parameter ρB

i,k corresponding
to each one of the θ B

i,k bearings obtained. Given the geometry of the problem, they
are calculated as:

ρB
i,k = xB

S cos(θ B
i,k)+ yB

S sin(θ B
i,k)+ ρS cos(θi,k) .
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This set of lines can now be used to determine the cells in the voting space that
should receive a single vote from this particular bin. It is assumed that the resolu-
tions chosen during the generation of the i×k lines are sufficient to ensure a correct
exploration of the grid cells and hence that the zone in the discretized space cor-
responding to the compatible candidates is correctly determined. This process is
repeated for all the bins stored in the data buffer. Figure 6.4 shows what the set of
voters looks like when assigned to the Hough space. Note that each selected cell of
the space can only receive one vote from any particular bin and that those cells con-
taining multiple votes therefore represent lines compatible with different individual
bins.

Every time a new beam arrives, a new voting space is generated to look for win-
ning line candidates. A winning line must only be detected once it has been com-
pletely observed (i.e., further beams cannot provide more votes to the candidate).
In the voting space, the zone in which these winning lines can exist is completely
determined by the subset of all the candidate lines contained in the most recent 180◦
scan sector that do not intersect with the last beam (shaded zones in Figure 6.4). Any
line candidate with a sufficient number of votes found within this zone is declared
a winner. Performing the detection in this way can ensure that the algorithm detects
the lines as soon as they are completely visible. After a line detection, all the bins
involved in the election of the selected candidate are removed from the buffer so
that they do not interfere with the detection of further features.

It is worth mentioning that in order to reduce the computational cost of the pro-
cess, some votings can be skipped. After each voting, it is possible to determine
the cell with the largest number of votes and therefore to calculate the number of
supplementary votes required to produce a winner. Since additional votes can only
be obtained from newly measured bins, it is not necessary to perform more votings
before the minimum required number of bins has been measured and introduced in
the buffer.

6.2 Uncertainty Model for Line Features

At this point a method has been introduced to determine the position, in polar co-
ordinates, of a candidate line feature extracted from acoustic data acquired with an
MSIS. This information, however, is not sufficient for using the line as a landmark
for the SLAM system. Although an estimate for the feature parameters has been pro-
duced, their values are discrete and their precision depends on the grid resolution of
the Hough space. In addition, the line feature lacks an adequate uncertainty model,
which makes it impossible to integrate the observation in the stochastic map. This
section will introduce a novel method for producing estimates and their uncertainty
for line features extracted from rich acoustic data.

6.2.1 Classical Approach

The subset of high intensity bins compatible with the observation of a particular line
feature can be determined by analyzing the votes the line has received in the Hough
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(a) (b) (c)

Fig. 6.4 Sequence representing the voting process. The scan sector stored in the buffer (top)
is represented together with its corresponding voting space (bottom). The line with triangular
shapes marks the position of the most recent beam. The darker cells in the voting space
represent those candidates with a larger number of votes while the shaded zone represents
those candidates which have received all the possible votes. (a) Part of the target line is still
outside the sector scan and can receive more votes in the future. (b) The line can now be
detected because it has been fully observed and more votes cannot be added. (c) Those votes
corresponding to the detected line, as well as the old ones that fall outside the 180◦ scan
sector, are removed from the Hough space so they cannot interfere with future line detections.

space. A common approach for incorporating new features into the stochastic map
is to initialize the line feature using the parameters obtained in the Hough space and
assigning large covariance values to them (non-informative prior). Then the infor-
mation from the subset of bins associated with this line feature is used in the form
of sensor measurements with the objective of refining the estimate of the feature
[117, 108]. This method is well suited for laser scans and range measurements in
general. However, from the author’s point of view, this is not the most appropiate
method for the estimation of features from the rich data produced by an MSIS since
an important part of the information contained in the acoustic images is not taken
into account. To optimize the voting in the Hough space, only a small group of se-
lected high intensity bins are used, while neighboring bins with similar intensity
values are discarded. Moreover, when a winner is selected, those bins associated
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with the line candidate are biased into being perfectly aligned, leaving slightly mis-
aligned bins which may also correspond to the real feature outside the estimation
process. On the other hand, the noise model assigned to the bins during the estima-
tion of the line is generally based on assumptions regarding the sensor precision,
but it ignores the fact that other external factors such as water turbidity, incidence
angle or characteristics of the reflecting surface also determine the quality of the
measurement. For all these reasons, this process usually leads to overoptimistic line
estimates which may eventually result in inconsistent maps.

A variant of this method seeks to obtain less confident estimations by using only
the two bins placed at the endpoints of the line feature instead of using the complete
set of measurements. Although the desired effect is obtained, the resulting estimate
does not match with the real uncertainty of the feature because of the small num-
ber of measurements involved and the inadequacy of the noise model. The method
that will be presented in the next section takes a completely different approach.
For a human observer analyzing an acoustic image it is fairly simple to discern the
zone in which a particular feature will exist with high probability. This zone will
not be defined by a few aligned bins but by a large set of bins which look like a
blurry elongated shape. The aspect of this shape reflects the quality of the observa-
tion, not only depending on the sensor’s performance but also on the environment’s
characteristics. The basic idea for the proposed method is, therefore, focusing on
the appearance of the features in the acoustic images to determine their uncertainty
model rather than relying solely on some particular measurements.

6.2.2 Estimating Feature Uncertainties from Acoustic Images

The process to estimate a feature’s uncertainty is based on relating the probability
of an object existing in a particular place with the measured intensities in the acous-
tic image representing the same location. There is a high probability that there will
be an object in a zone where large intensity values have been measured (e.g. the
red-yellow shapes in Figure 6.2(a) ) while the probability in the zones with lower
intensity measurements gradually decreases to zero (the blue zones in the figure).
Given this situation, the process of applying a threshold to segment the acoustic
data can be considered analogous to defining a particular confidence interval for a
probability distribution. In other words, a line feature will fall inside the thresholded
zone in the acoustic image with a particular confidence level. To make the problem
tractable, the probability distribution of a line feature represented in the acoustic
image will be approximated to a bivariate Gaussian distribution on its ρ and θ pa-
rameters (see Figure 6.5. An additional example justifying that this approximation
is suitable can be found in Section 6.2.4). Therefore, the process to estimate the fea-
ture uncertainty consists of determining the Gaussian which best fits the segmented
data representing a probability distribution for a given confidence level.

A simple description of this process is shown in Algorithm 1. After the detection
of a line feature with the voting algorithm, the uncertainty estimation process be-
gins with the assignment of a feasible confidence coefficient to the imprint left after
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(a) Gaussian distribution representing an un-
certain ρ-θ line in a polar space.

(b) The same uncertain line represented
in a cartesian space.

(c) Elliptic section resulting from the defi-
nition of a particular confidence interval.

(d) The confidence interval defined in
the cartesian representation

(e) The intensities in a cartesian acoustic im-
age are related with the probability of the ex-
istence of a line feature.

(f) The segmented image resembles the zone
defined by the confidence interval in Fig-
ure 6.5(d)

Fig. 6.5 Relating a segmented acoustic image with a Gaussian probability distribution.



88 6 Simultaneous Localization and Mapping

the segmentation (for instance, it is realistic to assume that the segmented data in
Figure 6.2(b) will contain the real feature in 95% of cases). Since the winning can-
didate line has received a considerable number of votes, it must be one of the lines
contained within the confidence interval defined by the segmented imprint. The next
step of the process consists of finding a number of compatible lines belonging to the
neighborhood of the winning candidate which overlap the segmented data in the
same way. The objective of this is to obtain a set of line realizations representative
of the population contained within the defined confidence interval (i.e. a set of lines
that “fill” the segmented area).

Estimating the Gaussian distribution from a set of lines is not straightforward,
however. It is worth noting that lines described by its ρ and θ parameters can also
be represented as points in a polar ρ-θ space. Representing the set of lines in such a
space will result in a cloud of points (the lines are similar) with an elliptic form. This
particular elliptic disposition of the ρ-θ points suggests that the approximation of
the line feature to a Gaussian distribution is correct. Although the space has changed,
the set still represents a population of lines within the previously defined confidence
interval. This fact is used to estimate the uncertainty of the line feature. It is achieved
by approximating the area occupied by the set of points to the area enclosed inside
the ellipse that a bivariate Gaussian distribution would generate at the same given
confidence. By knowing the confidence coefficient, the major and minor axis of the
ellipse and its orientation, it is possible to recover the covariance matrix. Moreover,
the mean value of the ρ-θ pair defining the line feature can also be obtained from
the center of the ellipse.

Figure 6.6 illustrates the different steps involved in the process of estimating the
feature uncertainty. The image in Figure 6.6(a) reproduces a voting space which has
just obtained a winning candidate (marked with the small box). The corresponding
sonar measurements appear in Figure 6.6(b) and are represented in the same B-
based polar space as the Hough space. Since the data is represented in polar, the
line feature appears as an arc whose thickness is related to its uncertainty. Note
that the ρ-θ pair, representing the winning candidate line in the Hough space, can
also be represented in this space. In fact, to parametrize the line, its point with the
smallest distance to the origin is used (again, represented with the same small box
in the figure). Applying a threshold and assigning a confidence coefficient to the
segmented data results in the space represented in Figure 6.6(c). At this point, and
using the winning candidate line as a paradigm, the search for lines contained within
the segmented imprint is performed. The resulting set of lines is contained inside
the bounds represented as black arcs, while the representation of the place occupied
by their ρ and θ pairs is represented as a black shape at the apex of the arc. The
final step of the procedure consists of finding the ellipse containing this area and
extracting the covariance matrix given the predefined confidence coefficient. Finally,
Figure 6.6(d) represents the estimated feature over a cartesian representation of the
scan sector. The line in the center corresponds to the ρ-θ mean value while the lines
at the sides represent the uncertainty bounds at 95% confidence.
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(a) (b)

(c) (d)

Fig. 6.6 Process for uncertainty estimation. (a) Winning candidate in the Hough space.
(b) Polar representation of the sonar data. (c) Segmented data with the zone occupied by
line features inside the confidence level. (d) Resulting uncertainty estimate represented over
the scan sector.



90 6 Simultaneous Localization and Mapping

Algorithm 1. get measurements([ρc,θc] ,scan,confidence level)

/* Initialization of the polar grid space that will
contain the segmented sonar data */

boolean last180scan [ρresolution,θresolution];
[last180scan] = init scan(scan);

/* Set the paradigm with the candidate line from the
voting */

[ηc] = get overlap ratio([ρc,θc] , last180scan);

/* Search for compatible lines */
lines2check = {[ρc,θc]};
accepted = /0;
rejected = /0;
while lines2check �= /0 do

[ρi,θi] = get candidate(lines2check);
[ηi] = get overlap ratio([ρi,θi] , last180scan);
if accept line(ηc,ηi) then

accepted = accepted ∪{[ρi,θi]};
lines2check = lines2check\{[ρi,θi]};
lines2check =
lines2check ∪{neighbour8connectivity([ρi,θi])∩{rejected

⋃
accepted}})

else
rejected = rejected∪{[ρi,θi]};
lines2check = lines2check\{[ρi,θi]};

/* Given the set of lines, determine the ellipse that
contains the area where they exist */

[ma jor axis,minor axis,ρmean,θmean,α] = get ellipse(accepted);

/* Given the ellipse and the confidence level related to
the segmentation, find the mean and covariance */

zV = [ρmean,θmean];
R = get covariance(ma jor axis,minor axis,ρmean,θmean,con f level)

return
[
zV ,R

]
;

6.2.3 Correlations in the Extracted Features

The method presented for extracting line features relies on odometry motion to com-
pensate for the distortion affecting the sonar measurements. When motion estimates
from the EKF are introduced in the voting, correlations with past vehicle states are
introduced to any observed line. From a theoretical point of view, these correla-
tions should be taken into account when performing the update by, for example,
using an augmented state EKF to represent position data for the accumulated scan
sector. However, this approach has a substantial computational cost because of the
large number of vehicle states involved. On the other hand, these correlations have
been shown to have a small influence on the proposed SLAM algorithm. For this
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reason, we have chosen to deal with the problem by adopting a pessimistic uncer-
tainty model which assures that the possible correlations are included in the uncer-
tainty of the estimated measurement. Although this approach is sub-optimal, it has
been shown to work satisfactorily in the tested scenarios.

6.2.4 Validation of the Feature Extraction Algorithm

In order to validate the feature extraction algorithm, several tests with both syn-
thetic and real data have been carried out. By generating synthetic data we have two
objectives. The first is to justify the use of a bivariate ρ-θ Gaussian distribution to
represent the uncertain features present in the acoustic images. The second is to have
a way of comparing the output from the algorithm with the paradigm which makes
it possible to confirm the correctness of the estimation. To obtain the synthetic data,
a large population of ρ-θ pairs was generated following a given probability distri-
bution. Then, the lines represented by each pair were projected into a polar space
analogous to those produced by the measurements from an MSIS. Each cell from
this space represents a bin and its echo intensity value is assigned according to the
number of lines that cross its area. The resulting synthetic dataset is represented in
polar and cartesian coordinates in Figures 6.7(a) and 6.7(d). In spite of the large
uncertainty assigned in the example to make the estimation process more clear, the
synthetic data has sufficient points in common with the real acoustic images to con-
sider this model as valid. It can be observed how the high intensity zone in the center
corresponds with the major concentration of lines, while the dispersion at the sides,
caused by the angular uncertainty, produces an effect similar to the loss of inten-
sity and precision affecting the beams with large incidence angles. Figures 6.7(b)
and 6.7(c) illustrate the voting and the uncertainty estimation process. The elliptic
shaped zone representing the population of compatible lines reflects the Gaussian-
ity of the estimated feature. As can be observed in Figure 6.7(d), the estimated line
feature is a good representation of what appears in the synthetic data.

Additional verification of the method can be seen in Figure 6.8, where the cloud
of ρ-θ pairs initially used to generate the synthetic data is plotted together with
an ellipse representing the original Gaussian distribution (dashed line) and another
representing that estimated with the proposed method (solid line). When comparing
the two ellipses, it can be appreciated that they are almost coincident except for a
small angular misalignment. It is important to note that correlated data, like the one
in this example, has turned out to be the most difficult scenario for the proposed
uncertainty estimation method and therefore one could expect even better estimates
when working with less correlated data.

A second set of tests was carried out with real data acquired with the Ictineu
AUV. Under real working conditions, it is not possible to obtain reliable references
to test the performance of the method. Therefore, only the direct visualization of the
estimated line feature represented over the acoustic images can be used as an indi-
cator. The first example in Figure 6.9(a) shows the features extracted from a dataset
obtained in a real application scenario; in particular, in the same marina environ-
ment which served as the testbed for the SLAM algorithm. The second example is
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(a) (b)

(c) (d)

Fig. 6.7 Testing the algorithm with synthetic data. (a) Raw sensor data generated from ρ
and θ given a normally distributed uncertainty. Some correlation affects the two variables
increasing the difficulty of the test. (b) The voting space clearly identifies the line. (c) Uncer-
tainty estimation using the segmented data. The black elliptic shape corresponds to the lines
with compatible overlapping and represents the uncertainty of ρ and θ . (d) The estimated
line feature fits almost perfectly with the synthetic one.
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Fig. 6.8 Comparison between the bivariate Gaussian distribution used to produce the syn-
thetic data and the output from the algorithm. The ellipse with the dashed line represents the
Gaussian distribution at 95% confidence while the solid line is the output of the algorithm at
the same confidence level.

represented in Figure 6.9(b). It corresponds to an experiment performed in the wa-
ter tank of the Underwater Robotics Research Center at the University of Girona.
This confined environment with highly reflective concrete walls produces noisy data
with many reflections and phantoms. The results in both cases are consistent with
the representation of the walls in the acoustic images and, moreover, the method
shows reliable behavior when working with noisy data, filtering linear features from
shapeless phantoms.

6.3 Obtaining Segments

The last step in the process of acquiring features from acoustic images is to deter-
mine the line segments. This method takes advantage of the same segmented data
used during the uncertainty estimation process as well as the mean value of the es-
timated line parameters. The process consists basically of determining the overlap
of the estimated line over the thresholded data and finding the line segments which
are placed over high intensity areas. Then a process equivalent to the dilation and
erosion morphological operations for image processing is applied to the obtained
segments in order to group and remove short segments and to produce a more com-
pact representation. Finally, the resulting segment endpoints are referenced as dis-
tances, measured along the line, from the point represented by the ρ-θ parameters
(the point at which the line is closest to the coordinate reference frame) and stored
for their posterior use. It is worth noting that these segments are produced for rep-
resentation purposes only. The segment endpoints are not introduced in the state
vector and hence they are not estimated in any way.
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(a)

(b)

Fig. 6.9 Testing the algorithm with real data. (a) Line features extracted from acoustic data
gathered in a marina environment. (b) Line features obtained from acoustic data gathered in
a small water tank. The lines on the right side are not estimated as they are split between the
start and the end of the scan.
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6.4 EKF-Based SLAM

An EKF integrates the vehicle’s navigation sensors to provide an estimate of its
position and retain the estimates of the previously observed features in order to
build a map. This filter is an implementation of the stochastic map [115] in which
the estimate of the position of both the vehicle xV and the set of map features F =
{x1 . . .xn} are stored in the state vector x̂.

x̂(k) = [x̂V (k) x̂1(k) . . . x̂n(k)]T

The covariance matrix P describes the covariance of the vehicle and the features as
well as their respective cross correlations:

P(k) = E([x(k)− x̂(k)][x(k)− x̂(k)]T |Z(k))

The vehicle’s state x̂V has dimension 9, which defines the minimum size of the state
vector x̂ at the beginning of the execution. The features are represented in polar co-
ordinates and therefore the state will be increased by 2 with each new incorporation
in the map.

6.4.1 Map Initialization

When creating a new stochastic map at step 0, a base local reference frame L must
be selected (Figure 6.10). In this approach, the initial vehicle position is chosen to
set this base location and thus is initialized with perfect knowledge. The vehicle’s
state xV is represented as:

xV =
[
x y z ψ u v w r ψL0

]T

where [x y z ψ ] represent the position and heading of the vehicle in the local refer-
ence frame L while [u v w r] are their corresponding linear and angular velocities in
the vehicle’s coordinate frame V. As can be seen, the vehicle’s state vector is exactly
the same as that presented in Section 5.3, except for the term ψL0 which represents
the angle between the initial vehicle heading at step 0 (orientation of L) and mag-
netic north in the earth global frame E. This term works as a sensor bias and allows
us to initialize the vehicle heading ψ in the local frame L , making it possible to
use compass measurements (angle to the north in the E frame) for its estimation as
shown in Section 6.4.3. Assuming that the vehicle is not moving at step 0, the state
is initialized as:

x̂(0) = x̂V (0) =
[
0 0 0 0 0 0 0 0 ψ̂L0

]T
; P(0) = PV (0) =

[
08×8 08×1

01×8 σ2
ψL0

]

where ψ̂L0 takes its value from the first available compass measurement and σ2
ψL0

is
initialized according to the sensor’s precision. It is worth noting that at the beginning
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Fig. 6.10 Representation of the different reference coordinate frames.

of the execution, the map does not contain any feature and hence the state x̂ contains
only the vehicle’s state x̂V .

6.4.2 Prediction

Again, the previously introduced constant velocity kinematics model is used to pre-
dict the state of the vehicle (see Section 5.3.4). The new term ψL0 has been added
and modeled as constant since the original orientation of the local map does not
change with time:

xV (k) = f (xV (k − 1),n(k − 1)),⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z
ψ
u
v
w
r

ψL0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x+(uT+nu
T 2

2 )cos(ψ)−(vT +nv
T2

2 )sin(ψ)
y+(uT +nu

T 2

2 )sin(ψ)+(vT +nv
T 2

2 )cos(ψ)
z+ wT + nw

T 2

2

ψ + rT + nr
T 2

2
u + nuT
v + nvT
w+ nwT
r + nrT

ψL0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k−1)

.

The noise model is also the same, with n = [nu nv nw nr]
T representing an accelera-

tion white noise additive in the velocity terms which has a zero mean and covariance
Q. On the other hand, as features correspond to fixed objects from the environment,
we can assume they are stationary. Hence, the whole state can be predicted as:
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x̂(k|k − 1) = [ f (x̂V (k − 1)) x̂1(k − 1) . . . x̂n(k − 1)]T

and its covariance matrix updated as:

P(k|k − 1) =
[

FV (k) 09×2n

02n×9 I2n×2n

]
P(k − 1)

[
FV (k) 09×2n

02n×9 I2n×2n

]T

+
[

WV (k)
02n×4

]
Q

[
WV (k)
02n×4

]T

where FV and WV are the Jacobian matrices of partial derivatives of the non-linear
model function f with respect to the state xV and the noise n respectively:

FV =
∂ f

∂xV
(x̂V (k),0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −ûT sin ψ̂ − v̂T cos ψ̂ T cos ψ̂ −T sin ψ̂ 0 0 0
0 1 0 ûT cos ψ̂ − v̂T sin ψ̂ T sin ψ̂ T cos ψ̂ 0 0 0
0 0 1 0 0 0 T 0 0
0 0 0 1 0 0 0 T 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

WV =
∂ f
∂n

(x̂V (k),0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 cos ψ̂ −T 2

2 sin ψ̂ 0 0
T 2

2 sin ψ̂ T 2

2 cos ψ̂ 0 0

0 0 T 2

2 0

0 0 0 T 2

2
T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

6.4.3 Sensor Updates

The measurements from the DVL, the pressure sensor and the compass are treated
as described in Section 5.3.5. However, the measurement model equations should
be adapted to deal with the changes introduced in the state vector as follows:

Velocity: The velocity measurements provided by the DVL are integrated as direct
observations of the vehicle’s velocities in the state. The observation matrix H is
adapted to the dimension of the state vector as:

HD =
[
03×4 I3×3 03×2 03×2n

]
,

while the covariance matrix for the measurement noise (see Appendix B) remains
as:
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RD =

⎡
⎣ σ2

Du σDuv σDuw

σDvu σ2
Dv σDvw

σDwu σDwv σ2
Dw

⎤
⎦ .

Depth: The pressure sensor measurements are also integrated as a direct observa-
tion of the vehicle’s depth (position in the Z axis). The adapted H matrix is:

HP =
[
0 0 1 0 0 0 0 0 0 01×2n

]
.

The variance of the depth measurement will be represented by:

RP = σ2
P.

Heading: Working in a local map makes modifying the measurement model to
update the vehicle’s heading necessary. As can be observed in Figure 6.10, the
compass measurement zC corresponds to the addition of the heading of the vehi-
cle ψ with respect to the local reference frame L and the orientation of this frame
ψL0 . The resulting measurement model is:

HC =
[
0 0 0 1 0 0 0 0 1 01×2n

]
.

The measurement noise RC is represented by the variance of the compass:

RC = σ2
C.

Again, the measurements from the different sensors will be integrated as soon as
they are acquired using the classical Kalman filter update equations for linear mea-
surement models. In order to deal with simultaneously arriving measurements, a
reconfigurable composed form of the H matrix equivalent to the one presented in
Section 5.3.5 is used. The same is applicable in the case of the use of bottom and/or
water tracking velocities from the DVL.

6.4.4 About the Use of a Compass in SLAM

Working with compass data can be a difficult task in some situations. The effect of
electromagnetic fields like those produced by the thrusters, and the presence of large
structures with ferromagnetic materials can considerably distort compass measure-
ments and render them unusable. Nowadays, there are alternative technologies such
as Fiber Optic Gyro (FOG) and Ring Laser Gyro (RLG) which offer perturbation-
free high precision measurements [63]. However, these devices are very expensive
and their use is not viable for low-cost vehicles. Although it is almost impossible
to completely avoid the effect of perturbations on compasses, taking certain precau-
tions such as performing calibrations before each mission and avoiding operating
close to walls (generally, 1-2 m is sufficient) can provide measurements of suffi-
cient quality. Moreover, a compass is an especially useful sensor for SLAM because
it provides absolute orientation measurements, unlike the dead reckoning sensors
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Fig. 6.11 Estimated position covariance plots represented within 2σ bounds. This data cor-
responds to the first minutes of the abandoned marina experiment executing the EKF with the
updates from the dead-reckoning sensors. The results using a cheap inaccurate gyro sensor
are represented with a solid line, while those using absolute data from a compass are indicated
with a dashed line.

normally used in SLAM such as wheel encoders, gyros or, in our case, the DVL.
The effect of using a compass is threefold:

1. The error in vehicle orientation will not increase during the SLAM process.
2. Vehicle orientation introduces nonlinearity in the SLAM problem, so loss of pre-

cision because of linearization effects will also be limited.
3. Vehicle orientation errors in a certain step become position errors in future steps.

Bounding the errors in orientation will also result in a reduction in the rate of
increase of vehicle position errors.

Figure 6.11 shows the evolution of the vehicle’s position and orientation using the
DVL velocity data together with the rate of turn measurements from gyros (solid
line) and using absolute attitude information from the compass (dashed line). We
can see that the error in orientation remains constant. There is also a reduction in
the rate of increase of the error in the direction transverse to the vehicle’s direction
of motion.

6.4.5 Map Building Process

The Tritech Miniking imaging sonar produces beams at a 10-30Hz rate depending
on the settings of the sensor. Each new beam is stored together with the current vehi-
cle position estimate from the filter in the data buffer and fed to the feature extraction
algorithm as shown in Section 6.1. Eventually, the information added by a new beam
arrival is sufficient to produce a line feature detection. In this case, the ρ - θ pair
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obtained is represented in the B frame which is placed in the current position of the
sonar head. For the sake of simplicity, let us assume that the transformation between
B and the vehicle’s coordinate system is known. Hence, we could represent a new
measurement i with respect to the vehicle’s frame V as zV

i = [ρV
i θV

i ]T . Of course,
the same transformation should be applied to the covariance matrix obtained from
the uncertainty estimation method. This transformation will result in the covariance
matrix Ri. The next step is to solve the data association problem. Thit is to deter-
mine if the measured line zV

i corresponds to any of the features Fj, j = 1 . . .n already
existing in the map and should be used to update the system or, on the contrary, it
is new and has to be incorporated into the map. The result of the data association
process is a hypothesis H = ji associating the measurement zV

i with one of the
map features Fj (ji = 0 indicates that zV

i has no correspondence with the existing
features). Finding the correct hypothesis is a process involving the analysis of the
discrepancy between the actual line measurement and its prediction. This prediction
is obtained from the nonlinear measurement function h j, which relates the i mea-
surement with the state vector x(k) containing the locations of the vehicle and the j
feature:

zV
i (k) = h j(x(k),si),[
ρV

i
θV

i

]
=

[
ρ j − xcosθ j − ysinθ j

θ j − ψ

]
+ si,

where si, the noise affecting the line feature observation, is a zero-mean white noise
with covariance Ri. To calculate the discrepancy between the measurement and its
prediction, the innovation term νi j and its associate covariance matrix Si j are ob-
tained as:

ννν i j(k) = zV
i (k)− hj(x̂(k|k − 1)),

Si j(k) = H j(k)P(k|k − 1)H(k)T
j + Ri,

where H j represents the Jacobian matrix which linearizes the nonlinear measure-
ment function h j around the best available estimation of the state x̂(k|k − 1):

H j =
∂h j

∂x
(x̂(k|k − 1),0)

=
[−cosθ j −sinθ j 0 0 0 0 0 0 0 · · · 1 xsinθ j − ycosθ j · · · 0 0

0 0 0 −1 0 0 0 0 0 · · · 0 1 · · · 0 0

]
.

To determine if the correspondence is valid, an individual compatibility (IC) test
using the Mahalanobis distance is carried out:

D2
i j = ννν i j(k)T Si j(k)−1ννν i j(k) < χ2

d,α ,

where d = dim(h j) and α is the desired confidence level. It is possible for a multi-
ple hypothesis relating the measurement with different map features to satisfy the IC
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test. Then, in order to select the best candidate, the nearest neighbor (NN) criterion
is applied (in situations where clutter or vehicle uncertainty are high, more complex
data association algorithms such as JCBB [90] can be used). Finally, after the corre-
spondence has been decided, it is used to update the state estimate by means of the
EKF update equations.

Ki j(k) = P(k|k − 1)H j(k)T Si j(k)−1,

x̂(k) = x̂(k|k − 1)+ Ki j(k)ννν i j(k),
P(k) = (I− Ki j(k)H j(k))P(k).

In case there is no valid hypothesis relating the measured line with any of the fea-
tures from the map (i.e. H = 0), this measurement can be added to the current state
vector as a new feature. However, this cannot be done directly because this new fea-
ture needs to be represented in the map reference frame. The change of reference
is done by compounding (see Appendix C) the line feature with the current vehicle
position as follows:

x̂(k) =

⎡
⎢⎢⎢⎣

x̂V (k)
x̂1(k)

...
x̂n(k)

⎤
⎥⎥⎥⎦ ⇒ x̂(k)+ =

⎡
⎢⎢⎢⎢⎢⎣

x̂V (k)
x̂1(k)

...
x̂n(k)

x̂V (k)⊕ zV
i (k)

⎤
⎥⎥⎥⎥⎥⎦ .

Augmenting the state vector also requires updating the estimated error covariance
matrix as:

P(k) = D(k)P(k)D(k)T + G(k)RiG(k)T ,

D(k) =

⎡
⎢⎢⎢⎣

I 0 . . . 0
...

... . . .
...

0 0 . . . I
J1⊕ 0 . . . 0

⎤
⎥⎥⎥⎦ , G(k) =

⎡
⎢⎢⎢⎣

0
...
0

J2⊕

⎤
⎥⎥⎥⎦ ,

where J1⊕ and J2⊕ are the Jacobian matrices of the compounding transformation.

6.5 SLAM with Local Maps

In recent years, many different authors have proposed methods to carry out SLAM
by building sequences of local maps [71, 117, 131, 73, 6, 95, 7, 33, 21, 96]. The
main advantages of building sequences of local maps are the limitation of the cost
associated with the update of a full covariance matrix [52] and the improvement
of the system’s consistency [17, 55]. In the present case, an additional advantage
is obtained with using local maps. The parametrization of line features using polar
coordinates is the most suitable approach for our type of sensor (polar). However, it
is not the best choice for referencing the features in a large map. Some issues appear
when an observation of a new feature is translated from the sensor frame to the map
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base frame, particularly in those situations where the map base and the sensor base
are far from each other, since a small variation in the θ parameter of a feature with
a large ρ value translates into large changes in Cartesian coordinates. Using local
maps overcomes this issue as their area is smaller and hence the reference changes
are less critical.

An important restriction of such methods is that the local maps must be statisti-
cally independent (no information can be shared between them) to avoid introduc-
ing inconsistency when recovering the global map. As a consequence, vehicle states
such as velocities or estimated sensor biases cannot be transferred between maps.
Recently, [104] presented a technique which overcomes this limitation and makes
sharing information between local maps possible, while remaining conditionally in-
dependent. This is especially useful in our case because it allows information about
the vehicle’s state to be kept. This method has been chosen to implement the local
map sequencing in the present work. Although this section summarizes the main
characteristics of our particular implementation of the algorithm, a more detailed
presentation of the method can be found in the bibliographic reference mentioned.

6.5.1 Local Map Building

The local map building process relies on defining a set of state variables which are
common to two consecutive maps. This commonality serves as a link to transmit the
information from one map to the other while maintaining their conditional indepen-
dence. In the application at hand, this link makes it possible to use the estimates of
the vehicle’s velocities and the compass bias obtained at the end of a map to initial-
ize the next local map. Moreover, after new measurements modify the estimate of
these terms, it is also possible to update their estimated values in the previous map
through back-propagation.

The procedure to build the local maps begins by initializing the filter presented
in Section 6.4. Then, the vehicle moves through the scenario acquiring sensor infor-
mation regarding its own state and the position of existing features. After a certain
time period, the state vector x̂ will contain the current estimate of the states of the
vehicle x̂V as well as the position of several map features F = {x1 . . .xn}. At a given
instant k, the current local map is finished and a new one is initialized by defining a
new state x̂ containing only the current vehicle state x̂V as follows:

x̂(k) = [x̂V (k) Tx̂V (k)]T ,

where the first term is a clone of the vehicle’s state that will serve as a link between
the two local maps, and the second term represents the initialization of the vehicle’s
state in the new map after performing a change of the base reference defined by the
linear transformation function T:

Tx̂V (k) =
[
0 0 0 0 u v w r ψ+ψL0

]T
,
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T =

⎡
⎣ 04×4 04×4 04×1

04×4 I4×4 04×1

0 0 0 1 01×4 1

⎤
⎦ .

This transformation sets the current vehicle location as the base reference of the
new local map, while its velocity estimates (represented by the vehicle’s frame) are
preserved. It is important to note that the term of the compass bias is also updated to
make integrating compass measurements with respect to the new base possible. The
resulting state vector has a dimension of 18. To complete the initialization process,
the state covariance matrix P has to be set accordingly:

P(k) =
[

PV (k) PV (k)TT

TPV (k) TPV (k)TT

]
,

where PV is the submatrix corresponding to the vehicle’s state from the full covari-
ance matrix of the first map. At this point, the filter is ready to begin the estimation
of the new local map using the equations presented in Section 6.4. Of course, those
equations should be adapted to the presence of the common state variables repre-
senting the link between the maps.

6.5.2 Local Map Joining

The map building procedure will result in a sequence of local maps with the form:

Mi = (x̂i,Pi); with x̂i =
[
x̂i−1

V x̂i
1 . . . x̂i

n x̂i
V

]T
. (6.1)

Each local map Mi contains the term x̂i−1
V , a copy of the vehicle’s state at the end

of the previous map Mi−1 which represents the common part connecting the two
maps. It also contains a set of features {x̂i

1 . . . x̂i
n} which have been added to the state

vector during the generation of the map and, finally, the term x̂i
V , which represents

the estimate of the vehicle’s state throughout the creation of the map and whose final
value will serve to initialize the Mi+1 local map.

The process of joining local maps into a single global map is described here using
a notation similar to that presented in [104]. Consider two consecutive local maps
defined as:

MA =
([

x̂A

x̂Ca

]
,

[
PA PACa

PCaA PCa

])
,

MB =
([

x̂Cb

x̂B

]
,

[
PCb PCbB

PBCb PB

])
.

The part common to both maps is represented by x̂Ca, which corresponds to the
state of the vehicle at the end of MA, and x̂Cb, which is initialized as an exact
clone of x̂Ca during the creation of the MB map but evolves because of the updates
propagated through the correlation terms during the generation of MB. The rest
of the information stored in the maps is represented by x̂A and x̂B. According to
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the general form described in (6.1), x̂A will contain the common term representing
the link with a previous map and all the features in MA, while x̂B will contain the
features in MB and the estimate of the vehicle’s state at the end of the map.

The objective of the map joining process is to obtain a single global map con-
taining the information from all the local maps. In this example, the global map is
represented by:

MAB =

⎛
⎝

⎡
⎣ x̂′

A
x̂Cb

x̂B

⎤
⎦ ,

⎡
⎣ P′

A P′
ACb P′

AB
P′

CbA PCb PCbB

P′
BA PBCb PB

⎤
⎦
⎞
⎠

The last two blocks of the global map coincide exactly with MB (they are up to
date). Therefore, only the terms related to xA need to be updated (a tilde is used
to denote these terms). This is because the first map has only been updated with
its own measurements but does not contain any information obtained during the
generation of the second map. In order to transmit the effect of these measurements
to the estimates in the MA map, a back-propagation procedure is carried out:

K = PACaP−1
Ca

P′
ACb = KPCb

P′
A = PA + K(P′

CbA − PCaA)
x̂′

A = x̂A + K(x̂Cb − x̂Ca)

Moreover, in order to recover the full covariance matrix of the global map, it is
necessary to calculate the correlation term relating the two local maps:

P′
AB = P′

ACbP−1
Cb PCbB

= KPCbB

At this point, all the elements in MAB have been determined. It is important to note
that this map joining procedure is applicable to sequences of more than two local
maps. After each union, the resulting map still contains the common elements that
serve as a link with the adjacent ones, therefore the same procedure can be applied.

Each element from the resulting global map is still represented in the base frame
of its respective local maps. Moreover, it is possible that some features could have
been observed from different local maps and therefore they are repeated. The final
part of this procedure consists of transforming all the features to a common coor-
dinate frame (see the operators described in Appendix C). Data association can be
carried out and, after obtaining the correspondences, the global map can be updated
to produce a better estimate. In the context of this work, the Joint Compatibility
Branch and Bound (JCBB) data association algorithm has been used [90] to obtain
the hypothesis relating features from different local maps. Then, an implicit mea-
surement equation representing the equivalence between paired features is used to
perform the update [18].
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6.6 Experimental Results

This section presents two experiments used to test the proposed SLAM approach.
The first corresponds to the same CIRS water tank test previously used in Chapter 5
to test various localization algorithms, while the second is an experiment performed
in an abandoned marina environment.

6.6.1 Water Tank

The CIRS water tank is a difficult scenario in which to perform SLAM. The reduced
dimensions and the reflectivity of the surfaces make it difficult for the DVL to op-
erate correctly and, as a consequence, the sensor produced a substantial number of
erroneous velocity measurements. As mentioned in Section 5.3.7, both bottom and
water velocities are integrated in order to improve the estimate of the vehicle’s mo-
tion. The compass is also sensitive to the presence of nearby structures. Although
the vehicle was operated at a distance from the walls (about 1 meter) it is not possi-
ble to ensure that the heading measurements are free of perturbations. However, the
pessimistic uncertainty model for the vehicle’s heading seem to cope with this prob-
lem. The operation of the MSIS is not simple, either. The confined space produces
noisy measurements and, although the range of the sensor was set to avoid phantom
reflections from the boundary walls, there are still some sonar artifacts affecting the
data. Also, the tank has a particular geometry with two inclined planes (ramps) at
each side. As can be seen in Figure 6.12, those planes appear as wide stripes in the
acoustic image. The width of these zones is related with the slant angle of the sur-
faces. The more slanted the ramps are, the wider the stripes become. Moreover, this
increase in the inclination is usually associated to a decrease in the measured inten-
sity, especially when compared with the values produced by a vertical wall. Another
characteristic of these ramps is that the position of the stripes will change with the
depth of the vehicle, making them an unreliable landmark for a SLAM system. In
this test, however, the vehicle moved at a constant depth and the inclination of the
ramps produced sufficiently narrow stripes. For these reasons, they have been used
as landmarks. It is worth noting that, if necessary, these types of features can be
discarded by either selecting a higher threshold value or setting a larger value for
the “minimum distance between them” criterion that filters high intensity bins in the
sonar data segmentation process (see Section 6.1.2.1).

Figure 6.13 represents the resulting trajectory (red line) and the six line features
composing the map (black). Because of the reduced dimensions of the test scenario,
it was not necessary to create local maps. The dimensions match those of the real
water tank (8 by 16 meters) and, as can be seen, the features corresponding to the
ramps are correctly placed at each side of the tank, symmetrically and at equal dis-
tance from the center. It is important to note that the line segments are longer than
the actual dimensions of the walls. This is mainly because of the sonar reflections
that may occur at the corners of the water tank, which extend the high intensity
zones beyond the limits of the walls ( see the example in Figure 6.12(b)). It was not
possible to establish a ground truth for the vehicle’s location during the experiment.
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(a) (b)

Fig. 6.12 Acquisition of MSIS data in the CIRS water tank. (a) Schematic representation of
the scenario. The highlighted zones correspond to the places where high intensity bins are
expected. (b) The resulting acoustic image of the tank.

Fig. 6.13 The SLAM trajectory (red) and the resulting map (black) for the CIRS water tank
dataset.
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Fig. 6.14 Comparison between the SLAM trajectory and those obtained with the presented
localization methods .

However, we can compare the output of the SLAM algorithm with the trajectories
estimated with the different localization methods presented in Chapter 5. This is
shown in Figure 6.14. As expected, the resulting trajectory is very similar to the
reference ones and, again, the approach avoids the drift caused by the use of dead-
reckoning sensors.

6.6.2 Marina Environment

In order to test the reliability of the proposed algorithm in a real application sce-
nario, an experiment was carried out in an abandoned marina situated near St. Pere
Pescador on the Costa Brava (Spain) [47]. The Ictineu AUV gathered a data set
along a 600 m operated trajectory which included a small loop around the larger
water area and a 200 m straight path through an outgoing canal (see Figure 6.15).
The vehicle moved at about 0.2 m/s and the experiment lasted 50 min. The data set
included measurements from the DVL, the compass and the imaging sonar, which
was set to a range of 50 m, with a resolution of 0.1 m and 1.8◦. For validation pur-
poses, the vehicle was operated close to the surface attached to a GPS equipped buoy
used for registering the trajectory. In the test scenario, only the boundary walls con-
tain ferromagnetic elements, while the bottom is natural. The vehicle always moved
at a considerable distance from these walls and hence we can assume that there is
little distortion affecting the compass. However, this cannot be confirmed since no
ground truth is available for the angle measurements. On the other hand, the DVL
measurements were much more reliable than those obtained in the water tank. Only
3% of the bottom tracking velocities received a bad status indicator from the sensor.
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(a) (b)

Fig. 6.15 Experiment in the abandoned marina. (a) Ortophotomap of the test area. (b) The
Ictineu AUV equipped with a surface buoy during the experiment.

Therefore, it was not necessary to rely on water velocities during the execution. The
configuration parameters of the SLAM algorithm for this dataset are the same as
those used in the water tank test. Only the threshold value for the segmentation of
the sonar data has been adapted because the gain setting of the MSIS was different
in the two experiments. In the water tank, the gain was too high, which resulted
in more saturated images, while during the current experiment it was set to a more
suitable value.

Figure 6.16 represents the trajectory obtained during the generation of the differ-
ent submaps (solid black line), which is a good approximation to the one measured
with the GPS (dashed). As mentioned on before, one of the benefits of working
with small local maps is that it improves the behavior of line features represented in
polar coordinates. For this reason, a distance from the origin of 75 meters was set
as the condition to initialize a new local map (the limits are represented by circles
in the figure). It is worth noting the sudden position change that appears in the es-
timated trajectory at approximately [-40, 25]. This correction is a consequence of
re-observing, in the second local map and after performing a small loop, the features
at the beginning of the long canal. Given the shape and dimensions of the scenario
and the range setting of the sonar, the few places where a loop closure could oc-
cur are limited to the principal area. The path followed towards the top part of this
area is split between the two first local maps. Therefore, the only place where a
loop closure could occur is in the lower part of the area, when the features at each
side go out of sight. In these loop-closing situations, a discontinuity is introduced
in the trajectory stored in the sonar data buffer. It is, however, uncommon for such
strong position corrections to affect the feature extraction process. The update that
produces this discontinuity generally takes place just after the complete observation
of a feature and during the initial moments of the next one. Therefore, the majority
of the new bins introduced into the buffer will usually be obtained on the already
corrected track. It can also be observed how the discrepancy with the GPS data in-
creases when the vehicle moves through the canal. This is caused mainly by the



6.6 Experimental Results 109

Fig. 6.16 Sequence of local maps. The SLAM trajectory is represented with a solid line and
the DGPS with a dashed line. Different colors represent each one of the local maps, their
boundaries and base frames.

absence of features situated perpendicular to the direction of the canal axis, which
makes it difficult to correct the errors accumulating in this direction.

The global map and the estimated trajectory (solid line) obtained after the joining
are plotted in Figure 6.17 layered over a satellite image. For comparison, the GPS
trajectory (dashed line) and a dead-reckoning trajectory (dot-dashed line), obtained
by executing the filter with only the measurements from the DVL and the compass,
are also represented. As can be observed, the dead-reckoning data suffers from an
appreciable drift (even causing it to go outside the canal), while the SLAM esti-
mated trajectory follows the GPS track with considerable precision. The resulting
map is also a good approximation, matching almost perfectly with the real position
of the marina’s boundaries. A problem with the position of a feature is observed in
the upper-left part of the map. This effect is due to the similarity between the two
intersecting lines. The small intersection angle makes it difficult for the feature ex-
traction to discern between the two lines and, eventually, they are interpreted as a
single (slightly distorted) one. Of course, this also affects the measurement of the
segment endpoints, as it makes it difficult to determine the overlapping with the
thresholded data and tends to make longer segments. Some minor problems with
the measurement of the segment endpoints are also observed in the small channel
entrance in the lower-left part of the map. They mainly appear because of the po-
lar parametrization used in the line features which, in some particular situations,
produces a misplacement of the segment endpoints.
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Fig. 6.17 The resulting global map together with the dead-reckoning (dash-dotted line), GPS
(dashed line) and SLAM (solid line) trajectories represented over a satellite image of the
scenario.

Fig. 6.18 Error plots (2σ bounds) for the resulting estimated trajectory after the local map
joining. The DGPS data has been used as ground truth.

Figure 6.18 represents the error plots for the resulting estimated trajectory ob-
tained after producing the local map. The GPS data has been used as the ground
truth. As can be seen, the error is contained within the 2σ limits, confirming the
correct operation of the SLAM.

Additional results validating the algorithm are shown in Figure 6.19, which re-
produces two acoustic images generated by placing the sonar measurements from
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(a)

(b)

Fig. 6.19 Acoustic maps obtained after an averaged composition of the sonar readings along
different trajectories. (a) The filter executed with only the input from the dead-reckoning
sensors. (b) SLAM estimated trajectory.
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the complete dataset according to the dead-reckoning and the SLAM estimated tra-
jectories. An averaged representation of all the overlapping scans has been used;
therefore, one can expect the diffuse appearance shown in the dead-reckoning im-
age as a result of the dispersion induced by the erroneous trajectory. On the other
hand, using the SLAM trajectory provides a more accurate placement of the mea-
surements resulting in a sharper image.

Only the acquisition of the sensor data was performed in real time by the com-
puters onboard the Ictineu. This SLAM approach was implemented on Matlab and
executed off-line on an ordinary desktop computer. The execution time is shorter
than the duration of the real experiment. Therefore, it is not unrealistic to assume
that a more optimized implementation should be able to operate onboard.



Chapter 7
Conclusion

This concluding chapter summarizes the thesis by reviewing the contents described
in each chapter. The significant research contributions are then listed. The objectives
still to be accomplished and interesting future research issues are discussed in the
future work section. The research framework for the thesis is then described. Finally,
the publications related to this work are listed.

7.1 Summary

One of the most crucial problems that needs to be addressed to obtain truly au-
tonomous vehicles is that of navigation. The SLAM approach represents the ul-
timate navigation solution since it makes it possible to localize a vehicle and
simultaneously map its environment without the need of external devices or pre-
vious knowledge of the scenario.

Chapter 2 of the thesis presents the fundamental principles behind the SLAM so-
lution and briefly overviews its research history and recent developments. The chap-
ter focuses on the use of SLAM systems in underwater environments, introducing
the various sensorial options based on available acoustic devices, and then reviews
the most remarkable work done in the field. This review leads to interesting obser-
vations such as the tendency to use vehicles equipped with high cost systems such as
electronically scanned devices, or the fact that the majority of works revolve around
the possible application of SLAM systems in natural underwater environments. In
contrast, the work presented throughout this dissertation is centered on the use of
mechanically scanned sonars and the exploration of new application domains such
as those found in man-made environments. Chapter 3 presents the Ictineu AUV, the
research vehicle developed during the course of this thesis and employed for the
experimental work. The structure, the sensor suite and the software architecture are
described as well as plans for future upgrades. The introductory part of this docu-
ment ends with Chapter 4, where the principles of operation of the MSIS in relation
to the generation and interpretation of acoustic images are explained. The princi-
pal issues related with the use of this type of sensor are described and identified as
problems to be addressed by the proposed navigation algorithms.

D. Ribas et al.: Underwater SLAM for Structured Environments, STAR 65, pp. 113–119.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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The second part of this work presents different approaches for navigating in man-
made underwater environments endorsed by many experiments carried out with real
sensor data. Chapter 5 describes three localization methods of increasing complex-
ity relying on different sensors and an a priori map of the environment. The first
is based on the use of an adapted version of the Hough transform to vote for the
vehicle’s position using the measurements from an MSIS and the heading from a
compass. The second introduces a Kalman filter and the use of a DVL sensor to
estimate the vehicle’s velocities. The measurements from the MSIS are individually
contrasted with the map to perform position updates. Finally, the third method com-
bines the other two by setting up a Kalman filter which receives updates from an
improved version of the Hough-based voting scheme. The experimental demonstra-
tion includes a comparison of the methods with a test performed in the CIRS water
tank. An additional example is presented to show the performance of the first ap-
proach when used as the navigation system for the Ictineu AUV during the SAUC-E
competition. Chapter 6 culminates this work with the proposal of a SLAM system
for navigation in structured environments composed of rectilinear walls. This sys-
tem presents a line feature extraction algorithm capable of dealing with the issues
associated with the operation of MSISs. It uses a voting scheme to look for new
features and analyzes the imprint left in the acoustic images to determine its un-
certainty. The SLAM consists of an EKF-based implementation of the stochastic
map. A constant velocity kinematics model predicts the vehicle’s motion while the
measurements from a DVL, a compass and a pressure sensor update the estimate.
The observations from the line feature extraction algorithm are incorporated into
the map building process and, as a consequence, the vehicle’s position estimate is
improved. In addition, the problems associated with dealing with large scenarios
have been addressed and solved through the implementation of a local map building
procedure. The final part of the chapter proves the capacity of the proposal with two
different tests. The first evaluates the performance of the SLAM approach in com-
parison with the previously proposed localization methods by means of the CIRS
water tank experiment. The second experiment is more ambitious and realistic. A
long run performed in an abandoned marina serves as a test not only of the SLAM
approach but also the local map building method.

7.2 Contributions

This thesis work has accomplished the proposed goal of developing a SLAM ap-
proach for an AUV to achieve localization in man-made underwater environments
using an MSIS as the principal sensor. In the development of this goal, various re-
search contributions were achieved. These contributions are listed below.

Application domain: Most of the works published on underwater SLAM
present systems operating in natural environments and use point features to build
the map. To the best of the author’s knowledge, the approach presented here is the
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first work on underwater SLAM focused on operation in man-made structured
environments and the use of line features for the representation of underwater
scenarios. This contribution opens the door to the use of SLAM systems in new
application domains.

Localization with an a priori map: Three different methods for localization with
an a priori map have been developed and tested. Although the use of Kalman
filters and voting schemes in localization is not new, the particular treatment
given to the MSIS data and its application in man-made underwater environments
adds value to the approach and represents a contribution to the field.

Feature extraction from MSIS data: An important contribution of this work is the
development of a method to extract features from acoustic underwater images
acquired with an MSIS. The method deals with the continuous arrival of mea-
surements, undistorts the data affected by the vehicle’s motion and determines
the uncertainty of the observed features from the imprint left in the acoustic im-
ages. This method makes it possible to use MSIS for SLAM as a lower cost
alternative to electronically scanned sonars.

Simultaneous localization and mapping: The number of published SLAM ap-
proaches for submersibles operating in underwater environments is still small.
For this reason, developing a new algorithm for an unattempted application do-
main and demonstrating its operation with real sensor data constitutes an impor-
tant contribution of this thesis.

Dataset acquisition: Producing a dataset is not an easy task when operating with
underwater vehicles. The sensors and equipment are expensive and the work-
ing conditions are difficult. Moreover, obtaining ground truth data to validate the
navigation algorithms is not common. An additional contribution of this thesis is
making the abandoned marina dataset publicly available to the research commu-
nity. The dataset can be downloaded from [107].

7.3 Future Work

During the development of this research work, new problems and topics of interest
for future research have arisen. The following points have been identified as the
most logical lines for continuing this research.

Development of the localization systems: Although the proposed localization
techniques have shown promising results, further work needs to be done to ob-
tain a system reliable enough to be implemented in the real vehicle. The current
methods are suitable only for planar environments or those composed only of
vertical walls which have a constant section independent of the vehicle’s depth.
Producing a tridimensional a priori map of the scenario would make it possible
to define the characteristics of the voting space depending on a particular oper-
ational depth estimated through pressure sensor measurements. A second issue
to be addressed is to guarantee the safe operation of the vehicle in the absence
of reliable sensor measurements particularly while operating very close to walls
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(strong compass distortions) or near the bottom (DVL is unable to produce ve-
locity measurements). Of course, the integration of better (and more expensive)
sensors such as fiber optic gyros can solve most of these problems. However,
exploring alternatives based on the introduction of the vehicle’s dynamics in the
prediction part of the filter would be interesting and inexpensive.

Representation of line features: The line feature extraction algorithm for the pro-
posed SLAM system provides polar observations (ρ and θ parameters) which are
referenced to the sensor base frame. The author believes that this representation is
the most appropiate given the characteristics of the sensor and the measurement
estimation process. However, this is not so true when the features are introduced
into the map. Their base reference frame is changed from that of in the sensor to
that in which the map is represented. When the reference frame is placed far from
the current position of a particular line segment (large ρ value), even the smallest
correction in the angle (θ value) may produce large displacements in the seg-
ment position and hence an awkward representation of the map. Although this
is sufficient while operating in scenarios of reduced dimensions, at the present
time and having testing in larger environments in mind, this has become one of
the principal weak points of the proposed SLAM approach. Although the use
of a smaller local map has shown potential for mitigating this effect, it would
be preferable to implement a better method to represent the line features. The
plans to improve the SLAM algorithm shortly after the presentation of this work
include the implementation of the SP map [18] as a worthwhile candidate for
solving this problem.

Extended feature typology: Line features are characteristic of man-made environ-
ments. Although the use of lines has been shown to be sufficient for the test sce-
narios presented, introducing new types of features can offer a better and richer
representation of the environment. The proposed feature extraction algorithm can
be easily adapted to other types of features as long as a suitable parametrization
is possible. One of the simplest options is the detection of corners at the intersec-
tion of two walls. The detection of curves or planes are other candidates, although
their parametrization requirements would entail the use of higher-dimensional
voting spaces. This can even lead to obtaining tridimensional map representa-
tions of the explored spaces.

New scenarios: Better and improved algorithms should be tested in new and more
challenging scenarios. Operating in real scenarios populated with moored boats,
piers, breakwaters and other common elements may offer the possibility of pro-
ducing new types of features but may also generate new problems. For instance,
the presence of traffic in a harbor-like scenario would require more sophisticated
data association techniques to discriminate static elements from moving boats.

7.4 Research Framework

The results and conclusions presented in this thesis were made possible after the
carrying out of countless tests and experiments, which were the fruit of numerous
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efforts made in the development of the different research vehicles and the neces-
sary software and equipment. All the work done during the evolution of this thesis
is summarized here with references to the most relevant research publications pro-
duced by the author. The complete list of publications can be consulted in the next
section.

At the beginning of this thesis in the year 2003, there were two research plat-
forms in the Underwater Robotics laboratory at the University of Girona. The first
was the URIS AUV [AMI’04], a robot of reduced dimensions designed to operate
under laboratory conditions in a small tank. The second was the GARBI AUV, a
larger vehicle for operation in real environments which at the time was undergoing
an intense remodeling and upgrade process. One of the new systems to be installed
in the GARBI was the recently purchased Argonaut DVL sensor. In [WESIC’03],
it was presented with preliminary work towards the development of an EKF-based
navigation system to integrate the different DVL measurements with the predictions
of a dynamic model. In parallel to the long development period of the GARBI, many
works were carried out with the URIS vehicle and particularly with a localization
system developed for the small experimental tank [IBPRIA’03]. The system com-
prised a down-looking camera mounted on the robot and a coded pattern placed on
the bottom of the tank. The incorporation of an EKF to improve its position esti-
mates was also studied [MCMC’03]. A similar EKF was later implemented on an
image mosaicking approach tested with the same URIS vehicle over a staged under-
water scenario [IROS’03]. In mid-2004, many datasets were acquired on the Costa
Brava, near Colera (Spain), in the context of a new research line on underwater
SLAM. Unfortunately, the upgrading of the GARBI had still not been completed
at the time. For this reason, different sensors (including a GPS, the DVL and a
new sensor, the MSIS) had to be mounted on a metallic structure and attached to a
small boat to perform the experiments. The analysis of the resulting datasets and the
development of the first SLAM system relying on natural features was completed
during a research stay at the University of Zaragoza, under the supervision of Prof.
Jose Neira. The result of this work was presented in [MASTER’05]. In 2006, the
GARBI was operative and the new installations at the CIRS were completely func-
tional. This same year, a group of students entered the SAUCE 06 competition and,
in a short period of time, developed the Ictineu AUV [CCIA’06]. The author acted
as team leader and took part in the construction of the new prototype, as well as
in the design of different localization approaches for the competition [MCMC’06,
ICRA’07], which were later improved with a new proposal [CAMS’07]. Simultane-
ously, the work on SLAM continued with the development of a system for structured
environments which was tested in the CIRS water tank [IROS’06]. The following
year, a new approach for feature extraction was developed [IBPRIA’07, IAV’07]
and a new dataset was acquired in the abandoned marina scenario using the Ictineu
AUV. These results served to demonstrate an improved SLAM approach [IROS’07,
MARTECH’07]. Later, the introduction of a strategy for building sequences of local
maps improved the final results [JFR’08].
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Appendix A
The Kalman Filter

The Kalman filter is a recursive data processing algorithm which addresses the prob-
lem of estimating the state of a stochastic system. Generally, this state is composed
of some system variables of interest whose value is unknown and cannot be di-
rectly measured. The Kalman filter makes it possible to determine the value of these
parameters by combining knowledge of the system dynamics and its initial condi-
tions, a set of sensor measurements and their relation with system parameters, and
a statistical representation of the system noises, measurement errors and model un-
certainties.

An important advantage of the Kalman filter is its recursive nature which, un-
like other estimation strategies, does not require storing all previous data for repro-
cessing every time a new sensor measurement is obtained. It performs a sequential
processing by calculating, at time k, a new estimate of the state given the previous
estimate and a measurement obtained at the same time k.

In addition to this, the Kalman filter is also an optimal Bayesian estimator which
minimizes the quadratic error of the state x defined by the cost function:

C(x − x̂) = ‖x − x̂‖2.

The optimality of the filter is possible as long as some basic conditions are met:

• The system and measurement noises are white, which means that noise values are
not correlated in time and that the system has the same power at all frequencies.

• The noises are Gaussian.
• The system dynamics can be described through a linear model.

Although these conditions may seem restrictive, they can be accepted as rea-
sonable approximations for many real systems. For instance, white noise is only
a theoretical construction which makes the filter mathematics tractable. It cannot
physically exist because having power at all frequencies would require a signal
with infinite power. However, within the frequency bandpass in which a system
can respond, a wideband noise with constant power will look similar to a white
one and hence it can be taken as a good approximation. Moreover, applying a small
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“shaping” filter to a white noise input it is possible to generate time correlated noises
and even noises whose power level is not constant over all frequencies.

The second condition refers to the Gaussianity of the noises. Generally, the per-
turbations affecting a system are originated by multiple sources. It can be math-
ematically demonstrated that the sum of small noise sources, regardless of the
shape of their individual densities, can be approximated to a Gaussian probability
density [110].

With respect to the third condition, it is not always possible to represent the sys-
tem at hand by an adequate linear model. In such cases, a linearization of a nonlinear
model can be relied on to run the filter. Although suboptimal, this approach, known
as Extended Kalman filter, has been proven valid for most situations.

The objective of this appendix is to briefly introduce the equations for the linear
and non-linear formulations of the Kalman filter. Mathematical demonstrations and
a more detailed description on this topic can be found in [125, 85, 61].

A.1 The Linear Kalman Filter

A.1.1 Linear System Models

The state vector x to be estimated describes the state of a discrete-time controlled
process governed by a linear stochastic difference equation. This equation is gener-
ally denominated as the process model:

x(k) = Ax(k − 1)+ Bu(k − 1)+ n(k − 1),

where A is a matrix that relates the state at k − 1 to the actual state at time k, B
is a matrix determining the effect that the control input u produces on the evolu-
tion to the actual state and finally, n is a noise representing the process uncertainty
which is assumed independent, white, and with a Gaussian probability distribution
of covariance Q:

E [n(k)] = 0,

E
[
n(k)n( j)T ]

= δk jQ(k),

At discrete intervals, the sensors provide observations of the system’s state. This
process is described with the measurement model:

z(k) = Hx(k)+ m(k),

where H is a matrix relating measurement z to state x and m is an independent white
Gaussian noise with covariance R that represents the measurement’s uncertainty.

E [m(k)] = 0,

E
[
m(k)m( j)T ]

= δk jR(k).
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The initial state of the system x(0) will be a random Gaussian variable, independent
of the noises n and m (for any k), with known mean x̂(0) and covariance P(0).

A.1.2 The Discrete Kalman Filter Equations

The objective of the filter is to obtain an estimate of the system’s state represented
by the mean x̂ and the variance P of the state distribution. The state is estimated
recursively using the knowledge of the process dynamics, the measurement model
and a set of measurements.

The estimate of the state x at time k given all the observations obtained up to
time k −1 is represented as x̂(k|k −1). This estimate is equivalent to the conditional
mean of the state at time k − 1 and the sequence of observations Zk−1:

x̂(k|k − 1) = E[x(k)|Zk−1].

Consequently, the propagation of the estimated state covariance matrix is:

P(k|k − 1) = E[(x(k)− x̂(k|k − 1))(x(k)− x̂(k|k − 1))T |Zk−1].

The recursive estimation process of the Kalman filter is divided into two parts: the
prediction and the correction. The prediction step projects the estimates of the state
vector and its error covariances ahead in time by means of the stated process model.
The equations responsible for this are:

x̂(k|k − 1) = Ax(k − 1)+ Bu(k − 1),
P(k|k − 1) = AP(k − 1)AT + Q,

where [x̂(k|k − 1),P(k|k − 1)] is the estimated prediction of the current state x(k) ob-
tained from the estimate at time k, the control input u(k − 1) and the model defined
by A and B. The increment of the estimated uncertainty inherent in a prediction pro-
cess is reflected with the addition of the term Q that corresponds to the covariance
of the noise in the process model. The next step is to update this estimate by adding
the information provided by a sensor measurement z(k). This is achieved with the
measurement update equations of the Kalman filter:

x̂(k) = x̂(k|k − 1)+ Kννν,

P(k) = (I− KH)P(k|k − 1),

where

ννν = z(k)− Hx̂(k|k − 1),
S = HP(k|k − 1)HT + R,

K = P(k|k − 1)HT S−1.
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The term ννν represents the discrepancy between the actual sensor measurement z and
the prediction of this same measurement obtained with the measurement model Hx̂,
S being its corresponding covariance. This is necessary to calculate K, the Kalman
gain, which is chosen to correct the estimate and minimize the error covariance P
after the update.

A.2 The Extended Kalman Filter

A.2.1 Non-linear System Models

The extended Kalman filter is a version of the Kalman filter that can deal with
systems governed by non-linear stochastic difference equations. In this situation,
a non-linear process model is defined as:

x(k) = f (x(k − 1),u(k − 1),n(k − 1)),

while a non-linear measurement model is represented as:

z(k) = h(x(k),m(k)),

n and m being analogous to the process and measurement noises defined in the
linear version of the filter in Section A.1.1.

A.2.2 The Discrete Extended Kalman Filter Equations

The extended Kalman filter deals with the non-linearities of the system by perform-
ing linearizations for the current mean and covariance. The equations for the two-
step recursive estimation process are similar to those of the Kalman filter:

x̂(k|k − 1) = f (x̂(k − 1),u(k − 1),0),
P(k|k − 1) = F(k)P(k − 1)FT(k)+ W(k)QWT(k).

The F and W Jacobian matrices are responsible for the linearization. They contain
the partial derivatives of the f function with respect to the state x and the process
noise n:

F(k) =
∂ f
∂x

(x̂(k|k − 1),u(k − 1),0)

W(k) =
∂ f
∂n

(x̂(k|k − 1),u(k − 1),0)

The measurement update equations are also adapted to the use of non-linear mea-
surement equations:

x̂(k) = x̂(k|k − 1)+ Kννν,

P(k) = (I− KH(k))P(k|k − 1),
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where

ννν = z(k)− h(x̂(k|k − 1),0),
S = H(k)P(k|k − 1)HT(k)+ V(k)RVT(k),
K = P(k|k − 1)HT(k)S−1.

Again, the Jacobians H and V are necessary to linearize the measurement function h:

H(k) =
∂h
∂x

(x̂(k|k − 1),0),

V(k) =
∂h
∂m

(x̂(k|k − 1),0).



Appendix B
Correlations in DVL Measurements

To estimate the vehicle’s velocity, a DVL measures the projection of this velocity
onto the axis of each transducer. Generally, these axes do not form an orthogonal
frame and hence a transformation is necessary to represent this velocity in a Carte-
sian reference (see Figure B.1). As a result of the transformation, a correlation ap-
pears between the velocity components of this new representation which should be
taken into account when integrating the measurements into a Kalman filter. In [8] the
equations behind this transformation are described for a DVL with four transducers
(also known as the Janus configuration). Here, similar equations will be presented
for a DVL equipped with three transducers.

The speed measured by a transducer is the component of the vehicle’s ve-
locity that is parallel to the direction of the acoustic signal’s propagation. This

Fig. B.1 Different refer-
ence frames on a DVL with
three transducers. The XYZ
labels mark the Cartesian
body frame while the num-
bered axes correspond to the
transducer’s beam reference
frame.
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propagation is described by a unit vector referenced to the sensor body frame and
aligned with the transducer axis. The unit vector defines the relation between these
two velocities as:

vi = ei ·vxyz,

where vi is a scalar value representing the velocity measured by the i transducer,
ei is the unit vector corresponding to the same transducer and vxyz represents the
vehicle’s velocity in the sensor body frame:

vxyz =
[

vx vy vz
]
. (B.1)

In a three transducer configuration the unit vectors are defined as:

e1 =
[

cosθ 0 −sinθ
]

e2 =
[−cosθ sinβ cosθ cosβ −sinθ

]
(B.2)

e3 =
[−cosθ sinβ −cosθ cosβ −sinθ

]
.

Then, the velocities measured at each beam can be obtained by substituting the unit
vectors in B.2 into equation B.1:

v1 = vx cosθ − vz sin θ
v2 = −vx cosθ sinβ + vy cosθ cosβ − vz sinθ
v3 = −vx cosθ sinβ − vy cosθ cosβ − vz sinθ

Finally, these three equations can be used to determine the three unknown compo-
nents of the vehicle’s velocity:

vx =
v1

cosθ
+

v3 + v2 + 2v1 sinβ
−2cosθ − 2cosθ sinβ

vy =
v2 − v3

2cosθ cosβ

vz =
v3 + v2 + 2v1 sinβ

−2sinθ − 2sinθ sinβ

The Sontek Argonaut DVL (see Section3.6.2) has 3 transducers spaced at 120◦ ( β =
30◦) and depressed from the horizontal 65◦ (θ = 65◦). Therefore, these equations
can be solved for our particular device:

vx = 1.58v1 − 0.79v2 − 0.79v3

vy = 1.37v2 − 1.37v3

vz = −0.37v1 − 0.37v2 − 0.37v3
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Since this is a linear operation, it can be written in matrix form:

vxyz = TDV L

⎡
⎣ v1

v2

v3

⎤
⎦

TDV L =

⎡
⎣ 1.58 −0.79 −0.79

0 1.37 −1.37
−0.37 −0.37 −0.37

⎤
⎦

Given the transformation TDVL and assuming that the covariances of the velocities
measured in the beams are known, the correlations of the velocities represented in
the sensor frame can be calculated as:

RD = TDV L

⎡
⎣ σ2

v1
0 0

0 σ2
v2

0
0 0 σ2

v3

⎤
⎦TT

DV L

RD =

⎡
⎣ 2.49σ2

v1
+ 0.62(σ2

v2
+ σ2

v3
) 1.08(σ2

v3
− σ2

v2
) 0.29(σ2

v2
+ σ2

v3
)− 0.58σ2

v1

1.08(σ2
v3

− σ2
v2

) 1.87(σ2
v2

+ σ2
v3

) 0.50(σ2
v3

− σ2
v2

)
0.29(σ2

v2
+ σ2

v3
)− 0.58σ2

v1
0.50(σ2

v3
− σ2

v2
) 0.13(σ2

v2
+ σ2

v3
− σ2

v1
)

⎤
⎦



Appendix C
Transformations in 2D

In [115] two operations were presented representing the most frequently encoun-
tered spatial relationships in stochastic mapping applications. These are the inver-
sion and compounding transformations, represented by the operators � and ⊕:

xA

C
= xA

B
⊕ xB

C
,

xA

C
= �xC

A
.

Here, these operators will be described together with two additional compounding
operators for transforming the references of point and line features.

C.1 Inversion

Given a spatial transformation (location of a reference B relative to reference A):

xA

B
=

⎡
⎣ x1

y1

φ1

⎤
⎦ .

The location of A relative to B can be described by the inversion operation �:

xB

A
= �xA

B
=

⎡
⎣−x1 cosφ1 − y1 sinφ1

x1 sin φ1 − y1 cosφ1

−φ1

⎤
⎦ .

The Jacobian of the inversion operation is:

J� =

⎡
⎣−cosφ1 −sinφ1 x1 sinφ1 − y1 cosφ1

sinφ1 −cosφ1 x1 cosφ1 + y1 sinφ1

0 0 −1

⎤
⎦ .
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Therefore, given the estimated mean and covariance of the spatial transformation:

E
[
xA

B

]
= x̂A

B
,

E
[
(xA

B
− x̂A

B
)(xA

B
− x̂A

B
)T

]
= PA

B
.

The estimated location of A relative to B can be described as the inversion:

x̂B

A
= �x̂A

B
,

With associated covariance calculated as:

PB

A
� J� PA

B
JT

� .

C.2 Composition

Given two spatial transformations (reference B relative to reference A and reference
C relative to reference B):

xA
B

=

⎡
⎣ x1

y1

φ1

⎤
⎦ , xB

C
=

⎡
⎣ x2

y2

φ2

⎤
⎦ .

The location of C relative to A can be described by the composition operation as:

xA

C
= xA

B
⊕ xB

C
=

⎡
⎣ x1 + x2 cosφ1 − y2 sinφ1

y1 + x2 sin φ1 + y2 cosφ1

φ1 + φ2

⎤
⎦ .

Two Jacobian matrices are necessary to linearize the composition with respect to
each one of the two spatial transformations xA

B
and xB

C
:

J1⊕ =

⎡
⎣ 1 0 −x2 sinφ1 − y2 cosφ1

0 1 x2 cosφ1 − y2 sinφ1

0 0 1

⎤
⎦ ,

J2⊕ =

⎡
⎣ cosφ1 −sinφ1 0

sin φ1 cosφ1 0
0 0 1

⎤
⎦ .

So, given the estimated mean and covariance of the spatial transformations (x̂A

B
,PA

B
)

and (x̂B

C
,PB

C
), the estimated location of C relative to A can be described as the com-

position of:
x̂A

C
= x̂A

B
⊕ x̂B

C
.
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with associated covariance approximated as:

PA

C
� J

1⊕ PA

B
JT

1⊕ + J
2⊕ PB

C
JT

2⊕ .

C.3 Composition of Point Features

Given the location of point feature P relative to reference B:

xB

P
=

[
x2

y2

]
.

In a similar manner as mentioned before, the location of P relative to reference A
can be described by the composition operation for a point:

xA

P
= xA

B
⊕ xB

P
=

[
x1 + x2 cosφ1 − y2 sinφ1

y1 + x2 sinφ1 + y2 cosφ1

]
.

The Jacobians of this transformation are:

J1⊕ =
[

1 0 −x2 sinφ1 − y2 cosφ1

0 1 x2 cosφ1 − y2 sinφ1

]
,

J2⊕ =
[

cosφ1 −sinφ1

sin φ1 cosφ1

]
.

Again, given the estimated mean and covariance of the spatial transformation
(x̂A

B
,PA

B
) and the point (x̂B

P
,PB

P
), the estimated location of P relative to A can be

described as the composition:
x̂A

P
= x̂A

B
⊕ x̂B

P

and its associated covariance as:

PA

P
� J

1⊕ PA

B
JT

1⊕ + J
2⊕ PB

P
JT

2⊕

C.4 Composition of Line Features

Given the location of line feature L represented in polar coordinates with respect to
reference B:

xB

L
=

[
ρ2

θ2

]
.

In a similar manner, as mentioned before, the location of L in polar coordinates
relative to reference A can be described by the composition operation for a line:

xA

L
= xA

B
⊕ xB

L
=

[
x1 cos(φ1 + θ2 )+ y1 sin(φ1 + θ2 )+ ρ2

φ1 + θ2

]
.
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The Jacobians of this transformation are:

J1⊕ =
[

cos(φ1 + θ2 ) sin(φ1 + θ2 ) −x1 sin(φ1 + θ2 )+ y1 cos(φ1 + θ2 )
0 0 1

]
,

J2⊕ =
[

1 −x1 sin(φ1 + θ2 )+ y1 cos(φ1 + θ2 )
0 1

]
.

Again, given the estimated mean and covariance of the spatial transformation
(x̂A

B
,PA

B
) and the line (x̂B

L
,PB

L
), the estimated polar parameters of L relative to A

can be described as the composition transformation:

x̂A

L
= x̂A

B
⊕ x̂B

L
,

and its associated covariance as:

PA

L
� J

1⊕ PA

B
JT

1⊕ + J
2⊕ PB

L
JT

2⊕ .



References

1. Arkin, R.C.: Behavior-Based Robotics. The MIT Press, Cambridge (1998)
2. Bailey, T., Durrant-Whyte, H.F.: Simultaneous localization and mapping (SLAM): Part

II, state of the art. IEEE Robotics and Automation Magazine 13(3), 108–117 (2006)
3. Bailey, T., Nebot, E.M., Rosenblatt, J.K., Durrant-Whyte, H.F.: Data association for

mobile robot navigation: A graph theoretic approach. In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, San Francisco, CA, USA, pp.
2512–2517 (2000)

4. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Morgan
Kaufmann Publishers Inc., San Francisco (1987)

5. Batlle, J., Nico, T., Garcı́a, R., Carreras, M.: ROV-aided dam inspection: Practical re-
sults. In: Proceedings of the 6th IFAC Conference on Manoeuvring and Control of
Marine Crafts, Girona, Spain (2003)

6. Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S.: An Atlas frame-
work for scalable mapping. In: Proceedings of the IEEE International Conference on
Robotics and Automation, Taipei, Taiwan, pp. 1899–1906 (2003)

7. Bosse, M., Newman, P., Leonard, J.J., Teller, S.: SLAM in large-scale cyclic environ-
ments using the Atlas framework. International Journal of Robotics Research 23(12),
1113–1139 (2004)

8. Brokloff, N.A.: Matrix algorithm for doppler sonar navigation. In: Proceedings of the
Oceans MTS/IEEE, Brest, France, vol. 3, pp. 378–383 (1994)

9. Burgard, W., Fox, D., Hennig, D., Schmidt, T.: Estimating the absolute position of
a mobile robot using position probability grids. In: Proceedings of the 14th National
Conference on Artificial Intelligence (1996)

10. Caccia, M., Bruzzone, G., Veruggio, G.: Sonar-based guidance of unmanned underwa-
ter vehicles. Advanced Robotics 15(5), 551–573 (2001)

11. Carpenter, R.N.: Concurrent mapping and localization with FLS. In: Workshop on Au-
tonomous Underwater Vehicles, Cambridge, MA, USA, pp. 133–148 (1998)

12. Carreras, M., Batlle, J., Ridao, P.: Hybrid coordination of reinforcement learning-based
behaviors for AUV control. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Maui, Hawaii, USA (2001)

13. Carreras, M., Palomeras, N., Ridao, P., Ribas, D.: Design of a mission control system
for an AUV. International Journal of Control 80(7), 993–1007 (2007)

14. Carreras, M., Ridao, P., Garcia, R., Nicosevici, T.: Vision-based localization of an un-
derwater robot in a structured environment. In: Proceedings of the IEEE International
Conference on Robotics and Automation, Taipei, Taiwan (2003)



136 References

15. Carreras, M., Yuh, J., Batlle, J., Ridao, P.: A behavior-based scheme using reinforce-
ment learning for autonomous underwater vehicles. IEEE Journal of Oceanic Engineer-
ing 30(2), 416–427 (2005)

16. Castellanos, J., Montiel, J., Neira, J., Tardós, J.: The SPmap: a probabilistic framework
for simultaneous localization and map building. IEEE Transactions on Robotics and
Automation 15(5), 948–953 (1999)

17. Castellanos, J.A., Neira, J., Tardós, J.D.: Limits to the consistency of EKF-based
SLAM. In: Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Ve-
hicles, Lisbon, Portugal (2004)

18. Castellanos, J.A., Tardós, J.D.: Mobile Robot Localization and Map Building: A Mul-
tisensor Fusion Approach. Kluwer Academic Publishers, Boston (1999)

19. Chatila, R., Laumond, J.P.: Position referencing and consistent world modeling for mo-
bile robots. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pp. 138–143 (1985)

20. Choset, H.: Sensor based motion planning: The hierarchical generalized voronoi graph.
Ph.D. thesis, California Institute of Technology (1996)

21. Clemente, L., Davison, A.J., Reid, I.D., Neira, J., Tardós, J.D.: Mapping large loops
with a single hand-held camera. In: Proceedings of Robotics Science and Systems, At-
lanta, GA, USA (2007)

22. Cox, I.J.: Blanche - an experiment in guidance and navigation of an autonomous robot
vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–204 (1991)

23. Csorba, M.: Simultaneous localisation and map building. Ph.D. thesis, University of
Oxford (1997)

24. Daniel, S., Leannec, F.L., Roux, C., Soliman, B., Maillard, E.P.: Side-scan sonar image
matching. IEEE Journal of Oceanic Engineering 23(3), 245–259 (1998)

25. Davison, A.J., Cid, Y.G., Kita, N.: Real-time 3D SLAM with wide-angle vision. In:
Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon,
Portugal (2004)

26. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution
to the simultaneous localization and map building (SLAM) problem. IEEE Transactions
on Robotics and Automation 17(3), 229–241 (2001)

27. DSTL: Student Autonomous Underwater Challenge - Europe, SAUC-E (2006),
http://www.dstl.gov.uk/news events/competitions/sauce/
index.php (accessed July 12, 2007)

28. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in
pictures. Communications of the ACM 15(1), 11–15 (1972)

29. Durrant-Whyte, H.F.: Uncertain geometry in robotics. IEEE Journal of Robotics and
Automation 4(1), 23–31 (1988)

30. Durrant-Whyte, H.F., Bailey, T.: Simultaneous localization and mapping (SLAM): Part
I, the essential algorithms. IEEE Robotics and Automation Magazine 13(2), 99–108
(2006)

31. Durrant-Whyte, H.F., Rye, D., Nebot, E.: Localisation of automatic guided vehicles.
In: Proceedings of the 7th International Symposium on Robotics Research, pp. 613–
625 (1995)

32. Elfes, A.: Sonar-based real-world mapping and navigation. IEEE Journal of Robotics
and Automation 3(3), 249–265 (1987)

33. Estrada, C., Neira, J., Tardós, J.D.: Hierarchical SLAM: real-time accurate mapping of
large environments. IEEE Transactions on Robotics 21(4), 588–596 (2005)

34. Eustice, R., Pizarro, O., Singh, H.: Visually augmented navigation in an unstructured
environment using a delayed state history. In: Proceedings of the IEEE International
Conference on Robotics and Automation, New Orleans, USA (2004)



References 137

35. Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually navigating the
RMS titanic with SLAM information filters. In: Proceedings of Robotics Science and
Systems, Cambridge, MA, USA (2005)

36. Fairfield, N., Jonak, D., Kantor, G.A., Wettergreen, D.: Field results of the control,
navigation, and mapping systems of a hovering AUV. In: Proceedings of the 15th Inter-
national Symposium on Unmanned Untethered Submersible Technology, Durham, NH,
USA (2007)

37. Fairfield, N., Kantor, G., Wettergreen, D.: Real-time SLAM with octree evidence grids
for exploration in underwater tunnels. Journal of Field Robotics 24, 3–21 (2007b)

38. Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., Garcı́a, R.: Large-area photo-mosaics
using global alignment and navigation data. In: Proceedings of the Oceans MTS/IEEE,
Vancouber, Canada (2007)

39. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the
ACM 24(6), 381–395 (1981)

40. Fleischer, S.: Bounded-error vision-based navigation of autonomous underwater vehi-
cles. Ph.D. thesis, Stanford University (2000)

41. Folkesson, J., Jensfelt, P., Christensen, H.: Vision SLAM in the measurement subspace.
In: Proceedings of the IEEE International Conference on Robotics and Automation,
Barcelona, Spain, pp. 30–35 (2005)

42. Fossen, T.I.: Guidance and Control of Ocean Vehicles. John Wiley & Sons Ltd., Chich-
ester (1994)

43. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: Efficient posi-
tion estimation for mobile robots. In: Proceedings of the 16th National Conference on
Artificial Intelligence (1999)

44. Fox, D., Burgard, W., Thrun, S.: Active markov localization for mobile robots. Robotics
and Autonomous Systems 25(3-4), 195–207 (1998)

45. Garcı́a, R., Nicosevici, T., Ridao, P., Ribas, D.: Towards a real-time vision-based nav-
igation system for a small-class UUV. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Las Vegas, USA, vol. 1, pp. 818–823
(2003)

46. Garcı́a, R., Puig, J., Ridao, P., Cufı́, X.: Augmented state Kalman filtering for AUV
navigation. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation, Washington DC, USA, pp. 4010–4015 (2002)

47. Google Maps: Abandoned marina, St. Pere Pescador, Spain (2008),
http://maps.google.es/maps?hl=es&ie=UTF8&ll=42.202645,3.
10662&spn=0.005182,0.008862&t=h&z=17 (accessed May 3, 2008)

48. Gracias, N.R., van der Zwaan, S., Bernardino, A., Santos-Victor, J.: Mosaic-based
navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineer-
ing 28(4), 609–624 (2003)

49. Griffiths, G., McPhail, S., Rogers, R., Meldrum, D.: Leaving and returning to harbour
with an autonomous underwater vehicle. In: Proceedings of the Oceanology Interna-
tional, Brighton, UK (1998)

50. Grimson, W.E.L.: Object Recognition by Computer: The Role of Geometric Con-
straints. The MIT Press, Cambridge (1990)

51. Grisetti, G., Tipaldi, G.D., Stachniss, C., Burgard, W., Nardi, D.: Fast and accurate slam
with rao-blackwellized particle filters. Robotics and Autonomous Systems 55(1), 30–38
(2007)

52. Guivant, J.E., Nebot, E.M.: Optimization of the simultaneous localization and map-
building algorithm for real-time implementation. IEEE Transactions on Robotics and
Automation 17(3), 242–257 (2001)



138 References

53. Gutmann, J.S., Konolige, K.: Incremental mapping of large cyclic environments. In:
Proceedings of the International Symposium on Computational Intelligence in Robotics
and Automation, pp. 318–325 (1999)

54. Heckman, D.B., Abbot, R.C.: An acoustic navigation technique. In: Proceedings of the
Oceans MTS/IEEE, pp. 591–595 (1973)

55. Huang, S., Dissanayake, G.: Convergence and consistency analysis for extended
Kalman filter based SLAM. IEEE Transactions on Robotics 23(5), 1036–1049 (2007)

56. Hunt, M., Marquet, W., Moller, D., Peal, K., Smith, W., Spindel, R.: An acoustic navi-
gation system. Tech. Rep. WHOI-74-6, Woods Hole Oceanographic Institution (1974)

57. Ictineu: Ictineu AUV performance during the SAUC-E 06 final run. Video attachment
of [109] (2007),
http://ieeexplore.ieee.org/iel5/4209048/4209049/
1248.MM.zip (accessed August 8, 2007)

58. Illingworth, J., Kittler, J.: A survey of the Hough transform. Computer Vision, Graphics,
and Image Processing 44(1), 87–116 (1988)

59. Imagenex technology corp.: Sonar theory and applications (2002),
http://www.imagenex.com/sonar theory.pdf
(accessed September 12, 2007)

60. Iovenittl, L., Venturi, M., Albano, G., Touisi, E.: Submarine pipeline inspection: the
12 years experience of transmed and future developments. In: Proceedings of the 13th
International Conference on Offshore Mechanics and Arctic Engineering, Houston, TX,
USA, pp. 149–161 (1994)

61. Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions
of the ASME, Journal of Basic Engineering 82(Series D), 35–45 (1960)

62. Kim, J.H., Sukkarieh, S.: Airborne simultaneous localisation and map building. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, pp. 406–411 (2003)

63. Kinsey, J., Eustice, R., Whitcomb, L.: A survey of underwater vehicle navigation: Re-
cent advances and new challenges. In: Proceedings of the 7th IFAC Conference on
Manoeuvring and Control of Marine Crafts, Lisbon, Portugal (2006)

64. Knight, J., Davison, A.J., Reid, I.: Towards constant time SLAM using postponement.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Maui, Hawaii, USA, pp. 406–412 (2001)

65. Kondo, H., Maki, T., Ura, T., Sakamaki, T.: AUV navigation based on multi-sensor
fusion for breakwater observation. In: Proceedings of the 23rd International Symposium
on Autonomous Robotics in Construction, Tokyo, Japan, pp. 72–77 (2006)

66. Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic
hierarchy of spatial representations. Journal of Robotics and Autonomous Systems 8,
47–63 (1991)

67. Kuritsky, M.M., Goldstein, M.S.: Inertial navigation. In: Autonomous robot vehicles,
pp. 96–116. Springer, New York (1990)

68. Leonard, J.J., Carpenter, R.N., Feder, H.J.S.: Stochastic mapping using forward look
sonar. Robotica 19(5), 467–480 (2001)

69. Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric
beacons. IEEE Transactions on Robotics and Automation 7(3), 376–382 (1991)

70. Leonard, J.J., Durrant-Whyte, H.F.: Directed Sonar Sensing for Mobile Robot Naviga-
tion. Kluwer Academic Publishers, Norwell (1992)

71. Leonard, J.J., Feder, H.: Decoupled stochastic mapping. IEEE Journal of Oceanic En-
gineering 26(4), 561–571 (2001)



References 139

72. Leonard, J.J., Feder, H.J.S.: A computationally efficient method for large-scale concur-
rent mapping and localization. In: Koditschek, D., Hollerbach, J. (eds.) Proceedings of
the 9th International Symposium on Robotics Research, pp. 169–176. Springer, Snow-
bird (2000)

73. Leonard, J.J., Newman, P.M.: Consistent, convergent and constant-time SLAM. In:
Proceedings of the International Joint Conference on Artificial Intelligence, Acapulco,
Mexico (2003)

74. Leonard, J.J., Rikoski, R.J.: Incorporation of delayed decision making into stochastic
mapping. In: Proceedings of the International Symposium on Experimental Robotics,
vol. 271, pp. 533–542 (2000)

75. Leonard, J.J., Rikoski, R.J., Newman, P.M., Bosse, M.C.: Mapping partially observ-
able features from multiple uncertain vantage points. International Journal of Robotics
Research 21(10-11), 943–975 (2002)

76. Lim, J.H., Leonard, J.J.: Mobile robot relocation from echolocation constraints. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22(9), 1035–1041 (2000)

77. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping.
Autonomous Robots 4, 333–349 (1997)

78. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application
to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial
Intelligence, pp. 674–679 (1981)

79. Lucido, L., Opderbecke, J., Rigaud, V., Deriche, R., Zhang, Z.: A terrain referenced
underwater positioning using sonar bathymetric profiles and multiscale analysis. In:
Proceedings of the Oceans MTS/IEEE, Fort Lauderdale, FL, USA (1996)

80. Mahalanobis, P.C.: On the generalized distance in statistics. Proceedings of the National
Institute of Science of India 12, 49–55 (1936)

81. Maki, T., Kondo, H., Ura, T., Sakamaki, T.: Navigation of an autonomous underwater
vehicle for photo mosaicing of shallow vent areas. In: Proceedings of the Oceans Asia
Pacific, Singapore (2006)

82. Maki, T., Kondo, H., Ura, T., Sakamaki, T.: Photo mosaicing of Tagiri shallow vent area
by the AUV Tri-Dog 1 using SLAM based navigation scheme. In: Proceedings of the
Oceans MTS/IEEE, Boston, MA, USA (2006b)

83. Martins, A., Matos, A., Cruz, N., Pereira, F.L.: IES an open system for underwater
inspection. In: Proceedings of the Oceans MTS/IEEE, Seattle, USA, vol. 2, pp. 549–
554 (1999)

84. May, M.B.: Gravity navigation. In: Record of the 1978 Position Location and Naviga-
tion Symposium, San Diego, CA, USA, pp. 212–218 (1978)

85. Maybeck, P.: Stochastic models, estimation and control, vol. 1. Academic Press, Lon-
don (1982)

86. Milne, P.H.: Underwater Acoustic Positioning System. Gulf Publishing Company,
Houston (1983)

87. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution
to the simultaneous localization and mapping problem. In: Proceedings of the AAAI
National Conference on Artificial Intelligence, Edmonton, Canada (2002)

88. Moravec, H.: Sensor fusion in certainty grids for mobile robots. AI Magazine 9(2),
61–74 (1988)

89. Negahdaripour, S., Xun, X.: Mosaic-based positioning and improved motion-estimation
methods for automatic navigation of submersible vehicles. IEEE Journal of Oceanic
Engineering 27(1), 79–99 (2002)

90. Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint compati-
bility test. IEEE Transactions on Robotics and Automation 17(6), 890–897 (2001)



140 References

91. Neira, J., Tardós, J.D., Castellanos, J.A.: Linear time vehicle relocation in SLAM. In:
Proceedings of the IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, pp. 427–433 (2003)

92. Newman, P., Leonard, J., Tardós, J.D., Neira, J.: Explore and return: Experimental
validation of real-time concurrent mapping and localization. In: Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 1802–1809. IEEE,
Los Alamitos (2002)

93. Newman, P.M.: On the structure and solution of the simultaneous localisation and map
building problem. Ph.D. thesis, Australian Centre for Field Robotics. The University of
Sydney (1999)

94. Newman, P.M., Leonard, J.J.: Pure range-only sub-sea SLAM. In: Proceedings of the
IEEE International Conference on Robotics and Automation, Taipei, Taiwan, vol. 2, pp.
1921–1926 (2003)

95. Newman, P.M., Leonard, J.J., Rikoski, R.J.: Towards constant-time SLAM on an au-
tonomous underwater vehicle using synthetic aperture sonar. In: Proceedings of the
11th International Symposium on Robotics Research, Sienna, Italy (2003)

96. Ni, K., Steedly, D., Dellaert, F.: Tectonic SAM: Exact, out-of-core, submap-based
SLAM. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation, Rome, Italy (2007)

97. Nie, J., Yuh, J., Kardash, E., Fossen, T.: On-board sensor-based adaptative control of
small UUVs in very shallow water. In: Control Applications in Marina Systems (1998)

98. Olson, E., Leonard, J.J., Teller, S.: Robust range-only beacon localization. In: Au-
tonomous Underwater Vehicles, pp. 66–75 (2004)

99. Paglia, J.G., Wyman, W.F.: DARPA’s autonomous minehunting and mapping technolo-
gies (AMMT) program: An overview. In: Proceedings of the Oceans MTS/IEEE, Fort
Lauderdale, FL, USA, vol. 2, pp. 794–799 (1996)

100. Palomeras, N., Carreras, M., Ridao, P., Hernàndez, E.: Mission control system for dam
inspection with an AUV. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, pp. 2551–2556 (2006)

101. Pavlidis, T.: Algorithms for graphics and image processing. Computer Science Press
(1982)

102. Paz, L.M., Piniés, P., Neira, J., Tardós, J.D.: Global localization in SLAM in bilinear
time. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Edmonton, Canada, pp. 2820–2826 (2005)

103. Petillot, Y., Reed, S., Bell, J.: Real time AUV pipeline detection and tracking using side
scan sonar and multi-beam echo-sounder. In: Proceedings of the Oceans MTS/IEEE,
Biloxi, MS, USA, vol. 1, pp. 217–222 (2002)

104. Piniés, P., Tardós, J.: Scalable SLAM building conditionally independent local maps.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Diego, CA, USA, pp. 3466–3471 (2007)

105. Reed, S., Bell, J., Petillot, Y.: Unsupervised segmentation of object shadow and high-
light using statistical snakes. In: Proceedings of the Generic Oceanographic Array Tech-
nology Systems (GOATS) Conference, La Spezia, Italy (2001)

106. Reed, S., Petillot, Y., Bell, J.: Automated approach to classification of mine-like objects
in sidescan sonar using highlight and shadow information. In: Proceedings of the IEE
Radar, Sonar and Navigation, vol. 151, pp. 48–56 (2004)

107. Ribas, D.: Dataset obtained in an abandoned marina, St. Pere Pescador (Spain) (2006),
http://eia.udg.es/%7Edribas (accessed July 12, 2007)

108. Ribas, D., Neira, J., Ridao, P., Tardós, J.D.: SLAM using an imaging sonar for partially
structured environments. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, pp. 5040–5045 (2006)



References 141

109. Ribas, D., Palomer, N., Ridao, P., Carreras, M., Hernàndez, E.: Ictineu AUV wins the
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