
 ADVANCES
IN ROBOT NAVIGATION

Edited by Alejandra Barrera

Advances in Robot Navigation
Edited by Alejandra Barrera

Published by InTech
Janeza Trdine 9, 51000 Rijeka, Croatia

Copyright © 2011 InTech
All chapters are Open Access articles distributed under the Creative Commons
Non Commercial Share Alike Attribution 3.0 license, which permits to copy,
distribute, transmit, and adapt the work in any medium, so long as the original
work is properly cited. After this work has been published by InTech, authors
have the right to republish it, in whole or part, in any publication of which they
are the author, and to make other personal use of the work. Any republication,
referencing or personal use of the work must explicitly identify the original source.

Statements and opinions expressed in the chapters are these of the individual contributors
and not necessarily those of the editors or publisher. No responsibility is accepted
for the accuracy of information contained in the published articles. The publisher
assumes no responsibility for any damage or injury to persons or property arising out
of the use of any materials, instructions, methods or ideas contained in the book.

Publishing Process Manager Natalia Reinić
Technical Editor Teodora Smiljanic
Cover Designer Jan Hyrat
Image Copyright VikaSuh, 2010. Used under license from Shutterstock.com

First published June, 2011
Printed in Croatia

A free online edition of this book is available at www.intechopen.com
Additional hard copies can be obtained from orders@intechweb.org

Advances in Robot Navigation Edited by Alejandra Barrera
 p. cm.
ISBN 978-953-307-346-0

Ramon
Highlight

free online editions of InTech
Books and Journals can be found at
www.intechopen.com

Contents

Preface IX

Part 1 Robot Navigation Fundamentals 1

Chapter 1 Conceptual Bases of Robot Navigation Modeling,
Control and Applications 3
Silas F. R. Alves, João M. Rosário, Humberto Ferasoli Filho,
Liz K. A. Rincón and Rosana A. T. Yamasaki

Chapter 2 Vision-only Motion Controller for Omni-directional
Mobile Robot Navigation 29
Fairul Azni Jafar, Yuki Tateno, Toshitaka Tabata,
Kazutaka Yokota and Yasunori Suzuki

Chapter 3 Application of Streaming Algorithms and DFA Learning
for Approximating Solutions to Problems
 in Robot Navigation 55
Carlos Rodríguez Lucatero

Chapter 4 SLAM and Exploration using Differential Evolution
and Fast Marching 81
Santiago Garrido, Luis Moreno and Dolores Blanco

Part 2 Adaptive Navigation 99

Chapter 5 Adaptive Navigation Control for Swarms of
Autonomous Mobile Robots 101
Yasuhiro Nishimura, Geunho Lee, Nak Young Chong,
Sang Hoon Ji and Young-Jo Cho

Chapter 6 Hybrid Approach for Global Path Selection & Dynamic
Obstacle Avoidance for Mobile Robot Navigation 119
D. Tamilselvi, S. Mercy Shalinie, M. Hariharasudan and G. Kiruba

Chapter 7 Navigation Among Humans 133
Mikael Svenstrup

VI Contents

Part 3 Robot Navigation Inspired by Nature 159

Chapter 8 Brain-actuated Control of Robot Navigation 161
Francisco Sepulveda

Chapter 9 A Distributed Mobile Robot Navigation by
Snake Coordinated Vision Sensors 179
Yongqiang Cheng, Ping Jiang and Yim Fun Hu

Part 4 Social Robotics 205

Chapter 10 Knowledge Modelling in Two-Level Decision Making
for Robot Navigation 207
Rafael Guirado, Ramón González, Fernando Bienvenido and
Francisco Rodríguez

Chapter 11 Gait Training using Pneumatically Actuated
Robot System 223
Natasa Koceska, Saso Koceski, Pierluigi Beomonte Zobel and
Francesco Durante

.

Preface

Robot navigation includes different interrelated activities such as perception ‐

obtaining and interpreting sensory information; exploration ‐ the strategy that guides

the robot to select the next direction to go; mapping ‐ the construction of a spatial

representation by using the sensory information perceived; localization ‐ the strategy

to estimate the robot position within the spatial map; path planning ‐ the strategy to

find a path towards a goal location being optimal or not; and path execution, where

motor actions are determined and adapted to environmental changes.

The book integrates results from the research work of several authors all over the

world, addressing the abovementioned activities and analyzing the critical

implications of dealing with dynamic environments. Different solutions providing

adaptive navigation are taken from nature inspiration and diverse applications are

described in the context of an important field of study, social robotics.

The book includes 11 chapters organized within 4 parts as follows.

Robot Navigation Fundamentals

In order to contextualize the different approaches proposed by authors, this part

provides an overview of core concepts involved in robot navigation. Specifically,

Chapter 1 introduces the basics of a mobile robot physical structure, its dynamic and

kinematic modeling, the mechanisms for mapping, localization, and trajectory

planning and reviews the state of the art of navigation methods and control

architectures which enables high degree of autonomy. Chapter 2 describes a

navigational system providing vision‐based localization and topological mapping of

the environment. Chapter 3 depicts potential problems which might arise during robot

motion planning, while trying to define the appropriate sequence of movements to

achieve a goal within an uncertain environment.

Closing this part, Chapter 4 presents a robot navigation method combining an

exploratory strategy that drives the robot to the most unexplored region of the

environment, a SLAM algorithm to build a consistent map, and the Voronoi Fast

Marching technique to plan the trajectory towards the goal.

X Preface

Adaptive Navigation

Real scenarios involve uncertainty, thus robot navigation must deal with dynamic

environments. The chapters included within this part are concerned with

environmental uncertainty proposing novel approaches to this challenge. Particularly,

Chapter 5 presents a multilayered approach to wheeled mobile robot navigation

incorporating dynamic mapping, deliberative planning, path following, and two

distinct layers of point‐to‐point reactive control. Chapter 6 describes a robot path

planning strategy within an indoor environment employing the Distance Transform

methodology and the Gilbert–Johnson–Keerthi distance algorithm to avoid colliding

with dynamic obstacles. This hybrid method enables the robot to select the shortest

path to the goal during navigation. Finally, Chapter 7 proposes an adaptive system for

natural motion interaction between mobile robots and humans. The system finds the

position and orientation of people by using a laser range finder based method,

estimates human intentions in real time through a Case‐Based Reasoning approach,

allows the robot to navigate around a person by means of an adaptive potential field

that adjusts according to the person intentions, and plans a safe and comfortable

trajectory employing an adapted Rapidly‐exploring Random Tree algorithm. The

robot controlled by this system is endowed with the ability to see humans as dynamic

obstacles having social zones that must be respected.

Robot Navigation Inspired by Nature

In this part, authors focused on nature of proposing interesting approaches to robot

navigation. Specifically, Chapter 8 addresses brain interfaces ‐ systems aiming to ena‐

ble user control of a device based on brain activity‐related signals. The author is con‐

cerned with brain‐computer interfaces that use non‐invasive technology, discussing

their potential benefits to the field of robot navigation, especially in difficult scenarios

in which the robot cannot successfully perform all functions without human assis‐

tance, such as in dangerous areas where sensors or algorithms may fail.

On the other hand, Chapter 9 investigates the use of animal low level intelligence to

control robot navigation. Authors took inspiration from insect eyes with small nervous

systems mimicking a mosaic eye to propose a bio‐mimetic snake algorithm that di‐

vides the robot path into segments distributed among different vision sensors produc‐

ing collision free navigation.

Social Robotics

One of the most attractive applications of robotics is, without doubt, the human‐robot

interaction by providing useful services. This final part includes practical cases of ro‐

bots serving people in two important fields: guiding and rehabilitation.

In Chapter 10, authors present a social robot specifically designed and equipped for

human‐robot interaction, including all the basic components of sensorization and nav‐

igation within real indoor/outdoor environments, and a two‐level decision making

Preface XI

framework to determine the most appropriate localization strategy. The ultimate goal

of this approach is a robot acting as a guide for visitors at the authors’ university.

Finally, Chapter 11 describes the architecture design of an exoskeleton device for gait

rehabilitation. It allows free leg motion while the patient walks on a treadmill com‐

pletely or partially supported by a suspension system. During experimentation, the

patient movement is natural and smooth while the limb moves along the target trajec‐

tory.

The successful research cases included in this book demonstrate the progress of devic‐

es, systems, models and architectures in supporting the navigational behavior of mo‐

bile robots while performing tasks within several contexts. With a doubt, the overview

of the state of the art provided by this book may be a good starting point to acquire

knowledge of intelligent mobile robotics.

Alejandra Barrera
Mexico’s Autonomous Technological Institute (ITAM)

Mexico

Part 1

Robot Navigation Fundamentals

1

Conceptual Bases of Robot Navigation
Modeling, Control and Applications

Silas F. R. Alves1, João M. Rosário1, Humberto Ferasoli Filho2,
Liz K. A. Rincón1 and Rosana A. T. Yamasaki1

1State University of Campinas
2University of São Paulo State

Brazil

1. Introduction
The advancements of the research on Mobile Robots with high degree of autonomy is
possible, on one hand, due to its broad perspective of applications and, on other hand, due
to the development and reduction of costs on computer, electronic and mechanic systems.
Together with the research in Artificial Intelligence and Cognitive Science, this scenario
currently enables the proposition of ambitious and complex robotic projects. Most of the
applications were developed outside the structured environment of industry assembly lines
and have complex goals, such as planets exploration, transportation of parts in factories,
manufacturing, cleaning and monitoring of households, handling of radioactive materials in
nuclear power plants, inspection of volcanoes, and many other activities.
This chapter presents and discusses the main topics involved on the design or adoption of a
mobile robot system and focus on the control and navigation systems for autonomous
mobile robots. Thus, this chapter is organized as follows:
• The Section 2 introduces the main aspects of the Robot design, such as: the

conceptualization of the mobile robot physical structure and its relation to the world;
the state of art of navigation methods and systems; and the control architectures which
enables high degree of autonomy.

• The Section 3 presents the dynamic and control analysis for navigation robots with
kinematic and dynamic model of the differential and omnidirectional robots.

• And finally, Section 4 presents applications for a robotic platform of Automation,
Simulation, Control and Supervision of Navegation Robots, with studies of dynamic
and kinematic modeling, control algorithms, mechanisms for mapping and localization,
trajectory planning and the platform simulator.

2. Robot design and application
The robot body and its sensors and actuators are heavily influenced by both the application
and environment. Together, they determine the project and impose restrictions. The process
of developing the robot body is very creative and defies the designer to skip steps of a
natural evolutionary process and achieve the best solution. As such, the success of a robot

Advances in Robot Navigation

4

project depends on the development team, on the clear vision of the environment and its
restrictions, and on the existence purpose of the robot. Many are the aspects which
determine the robot structures. The body, the embedded electronics and the software
modules are the result of a creativity intensive process of a team composed by specialists
from different fields. On the majority of industrial applications, a mobile robot can be reused
several times before its disposal. However, there are applications where the achievement of
the objectives coincides with the robot end of life. Such applications may be the exploration
of planets or military missions such as bomb disposal.
The project of a robot body is initially submitted to a critical analysis of the environment and
its existence purposes. The environment must be studied and treated according to its
complexity and also to the previous knowledge about it. Thus, the environment provides
information that establishes the drive system in face of the obstacles it will find. Whether it
is an aerial, aquatic or terrestrial, it implies the study of the most efficient structure for the
robot locomotion trough the environment. It is important to note that the robot body project
may require the development of its aesthetics. This is particularly important to robots that
will subsist with humans.
The most common drive systems for terrestrial mobile robots are composed by wheels, legs
or continuous track. The aerial robots are robotic devices that can fly in different
environment; generally this robots use propellers to move. The aquatic robots can move
under or over water. Some examples for these applications are: the AirRobot UK®
(Figure 1a), an aerial quad rotor robot (AirRobot, 2011); the Protector Robot, (Figure 1b),
built by Republic of Singapore with BAE Systems, Lockheed Martin and Rafael Enterprises
(Protector, 2010); and the BigDog robot (Figure 1c), created by Boston Dynamics (Raibert et
al., 2011), a robot that walks, runs and climbs in different environment.

 a) b) c)

Fig. 1. Applications of Robot Navigation: a) Aerial Robot, b) Aquatic Robot, c)Terrestrial Robot

There are two development trends: one declares that the project of any autonomous
system must begin with an accurate definition of its task (Harmon, 1987), and the other
proclaims that a robot must be able to perform any task in different environments and
situations (Noreils & Chatila, 1995). The current trend on industry is the specialization of
robot systems, which is due by two factors: the production cost of general purpose robot
is high, as it requires complex mechanical, electronic and computational systems; and a
robot is generally created to execute a single task – or a task “class” – during its life cycle,
as seem in Automated Guidance Vehicles (AVG). For complex tasks that require different
sensors and actuators, the current trend is the creation of a robot group where each
member is specialist on a given sub-task, and their combined action will complete the
task.

Conceptual Bases of Robot Navigation Modeling, Control and Applications

5

2.1 Robot Navigation systems and methods
Navigation is the science or art of guiding of a mobile robot in the sense of how travel
through the environment (McKerrow, 1991). The problems related to the navigation can be
briefly defined in three questions: “Where am I”, “Where am I going” and “How do I get
there?” (Leonard & Durrant-White, 1991). The first two questions may be answered by an
adequate sensorial system, while the third question needs an effective planning system. The
navigation systems are directly related to the sensors available on the robot and the
environment structure. The definition of a navigation system, just like any aspect of the
robot we have seem so far, is influenced by the restrictions imposed by both the
environment and the robot very purpose. The navigation may be obtained by three systems:
a coordinates based system, a behavior based system and a hybrid system.
The coordinates based system, like the naval navigation, uses the knowledge of one’s position
inside a global coordinate system of the environment. It is based on models (or maps) of the
environment to generate paths to guide the robot. Some techniques are Mapping (Latombe,
1991), Occupancy Grid Navigation (Elfes, 1987), and Potential Fields (Arkin et al., 1987). The
behavior based system requires the robot to recognize environment features through its
sensors and use the gathered information to search for its goals. For example, the robot must
be able to recognize doors and corridors, and know the rules that will lead it to the desired
location. In this case, the coordinate system is local (Graefe & Wershofen, 1991).
Information about the statistical features of the environment is important to both cited
systems. The modeling of the environment refers to the representation of objects and the
data structure used to store the information (the maps). Two approaches for map building
are the geometric and phenomenological representation. Geometric representation has the
advantage of having a clear and intuitive relation to the real world. However, the geometric
representation has no satisfactory representation of uncertain geometries, as well as is not
clear if knowing the world shape is really useful (Borenstein et al., 1995). The
phenomenological representation is an attempt to overcome this problem. It uses a
topological representation of the map with relative positioning which is based on local
reference frames to avoid the accumulation of relative errors. Whenever the uncertainty
grows too high, the robot sets a new reference frame; on the other hand, if the uncertainty
decreases, the robot may merge frames. This policy keeps the uncertainty bound locally
(Borenstein et al., 1995, as cited in Engelson & McDermott, 1992).
Mobile robots can navigate using relative or absolute position measures (Everett, 1995).
Relative positioning uses odometry or inertial navigation. Odometry is a simple and
inexpensive navigation system; however it suffers from cumulative errors. The inertial
navigation (Barshan & Durrant-White, 1995) uses rotation and acceleration measures for
extracting positioning information. Barshan and Durrant-White (1995) presented an inertial
navigation system and discusses the challenges related to mobile robot movement based on
non-absolute sensors. The most concerning issue is the accumulation of error found in
relative sensors. The absolute positioning system can use different kinds of sensors which
are divided in four groups of techniques: magnetic compass, active beacons, landmark
recognition and model matching. Magnetic compasses are a common kind of sensor which
uses Earth’s natural electromagnetic field and does not require any change on the
environment to be able to navigate through the world. Nevertheless, magnetic compasses
readings are affected by power lines, metal structures, and even the robot movement, which
introduces error to the system (Ojeda & Borenstein, 2000).

Advances in Robot Navigation

6

Active beacons are devices which emits a signal that is recognized by the robot. Since the
active beacons are placed in known locations, the robot is able to estimate its position using
triangulation or trilateration methods. In a similar fashion, the landmark system uses
features of the environment to estimate its position. These landmarks may be naturally
available on the environment, such as doors, corridors and trees; or they can be artificially
developed and place on the environment, such as road signs. On one hand, natural
landmarks do not require any modification in the world, but may not be easily recognized
by the robot. On the other hand, artificial landmarks modifies the environment, but offer
best contrast and are generally easier to be recognized. Nonetheless, the main problem with
landmarks is detecting them accurately through sensorial data. Finally, the model matching
technique uses features of the environment for map building or to recognize an
environment within a previously known map. The main issues are related to finding the
correspondence between a local map, discovered with the robot sensors, and a known
global map (Borenstein et al., 1995).
Inside model matching techniques, we can point out the Simultaneous Localization and
Mapping (SLAM). The SLAM addresses to the problem of acquiring the map of the
environment where the robot is placed while simultaneously locating the robot in relation to
this map. For this purpose, it involves both relative and absolute positioning techniques.
Still, SLAM is a broad field and leaves many questions unanswered – mainly on SLAM in
non-structured and dynamic environments (Siciliano & Khatib, 2008).
Other approach for mobile robot navigation is the biomimetic navigation. Some argue that
the classic navigation methods developed on the last decades have not achieved the same
performance flexibility of the navigation mechanisms of ants or bees. This has led
researchers to study and implement navigation behaviors observed on biological agents,
mainly insects. Franz and Mallot (Franz & Mallot, 2000) surveyed the recent literature on
the phenomena of mobile robot navigation. The authors divide the techniques of
biomimetic navigation into two groups: local navigation and path discovery. The local
navigation deals with the basic problems of navigation, as the obstacle avoidance and
track following, to move a robot from a start point (previously know or not) to a known
destination inside the robot vision field. Most of recent researches objectives are to test the
implementation of biological mechanisms, not to discover an optimal solution for a
determined problem.
The navigation of mobile robots is a broad area which is currently the focus of many
researchers. The navigation system tries to find an optimal path based on the data acquired
by the robot sensors, which represents a local map that can be part, or not, of a global map
(Feng & Krogh, 1990). To date, there is still no ideal navigation system and is difficulty to
compare the results of researches, since there is a huge gap between the robots and the
environment of each research (Borenstein et al., 1995). When developing the navigation
system of a mobile robot, the designer must choose the best navigation methods for the
robot application. As said by Blaasvaer et al. (1994): “each navigation context imposes
different requirements about the navigation strategy in respect to precision, speed and
reactivity”.

2.2 Sensors
The mobile robots need information about the world so they can relate themselves to the
environment, just like animals. For this purpose, they rely on sensor devices which

Conceptual Bases of Robot Navigation Modeling, Control and Applications

7

transform the world stimuli into electrical signal. These signals are electrical data which
represents state of about the world and must be interpreted by the robot to achieve its goals.
There is wide range of sensors used to this end.
Sensors can be classified by some features as the application, type of information and signal.
As for their usage, sensors can be treated as proprioceptive or exteroceptive. Proprioceptive
sensors are related to the internal elements of the robot, so they monitor the state of its inner
mechanisms and devices, including joints positions. In a different manner, exteroceptive
sensors gather information from the environment where the robot is placed and generally
are related to the robot navigation and application. From the viewpoint of the measuring
method, sensors are classified into active and passive sensors. Active sensors apply an
known interfering signal into the environment and verify the effect of this signal into the
world. Contrastingly, passive sensors does not provoke any interfering signal to measure
the world, as they are able to acquire “signals” naturally emitted by the world. Sensors can
also be classified according to the electrical output signal, thus are divided into digital and
analog sensors. In general, sensorial data is usually inaccurate, which raises the difficulty of
using the information provided by them.
The sensor choice is determined by different aspects that may overlap themselves or are
conflicting. The main aspects are: the robot goals, the accuracy of the robot and environment
models, the uncertainty of sensor data, the overall device cost, the quantity of gathered
information, the time available for data processing, the processing capabilities of the
embedded computer (on-board), the cost of data transmission for external data processing
(off-board), the sensors physical dimension in contrast to the required robot dimension, and
the energy consumption.
In respect to the combined use of sensor data, there is not a clear division of data integration
and fusion processes. Searching for this answer, Luo (Luo & Kay, 1989) presented the
following definition: “The fusion process refers to the combination of different sensors
readings into an uniform data structure, while the integration process refers to the usage of
information from several sensor sources to obtain a specific application”.
The arrangement of different sensors defines a sensor network. This network of multiple
sensors when combined (through data fusion or integration) functions as a single, simple
sensor, which provides information about the environment. An interesting taxonomy for
multiple sensor networks is presented by Barshan and Durrant-White (1995) and
complemented by Brooks and Iyengar (1997): Complementary: There is no dependency
between the sensors, however they can be combined to provide information about a
phenomena, Competitive: The sensors provides independent measures of the same
phenomena, which reduces the inconsistency and uncertainties about of the information,
Cooperative: different sensors which works together to measure a phenomena that a single
sensor is not capable of measuring, Independent: independent sensors are those of which
measures does not affect or complement other sensor data.

2.2.1 Robot Navigation sensors
When dealing with Robot Navigation, sensors are usually used for positioning and obstacle
avoidance. In the sense of positioning, sensors can be classified as relative or absolute
(Borenstein et al., 1995). Relative positioning sensors includes odometry and inertial
navigation, which are methods that measures the robot position in relation to the robot initial
point and its movements. Distinctively, absolute positioning sensors recognize structures on
the environment which position is known, allowing the robot to estimate its own position.

Advances in Robot Navigation

8

Odometry uses encoders to measure the rotation of the wheels, which allows the robot to
estimate its position and heading according to its model. It’s the most available navigation
system due to its simplicity, the natural availability of encoders, and low cost.
Notwithstanding, this is often a poor method for localization. The rotation measuring may
be jeopardized by the inaccuracy of the mechanical structure or by the dynamics of the
interaction between the tire and the floor, such as wheel slippage. On the other hand, the
position estimation takes into account all past estimations - it integrates the positioning. This
means that the errors are also integrated and will grow over time, resulting in a high
inaccurate system. Just like odometry, inertial navigation, which uses gyroscopes and
accelerometers to measure rotation and acceleration rates, is highly inaccurate due to its
integrative nature. Other drawback is the usual high costs of gyroscopes and accelerometers.
The heading measure provided by compasses represents one of the most meaningful
parameters for navigation. Magnetic compasses provides an absolute measure of heading
and can function on virtually all of Earth surface, as the natural magnetic field of Earth is
available on all of its surface. Nevertheless, magnetic compasses are influenced by metallic
structures and power lines, becoming highly inaccurate near them.
Other group of sensors for navigation are the active beacons. These sensors provide absolute
positioning for mobile robots through the information sent by three or more beacons. A
beacon is a source of known signal, as structured light, sound or radio frequencies. The
position is estimated by triangulation or trilateration. It is a common positioning system
used by ships and airplanes due to its accuracy and high speed measuring. The Global
Positioning System (GPS) is an example of active beacon navigation system.
The map based positioning consists in a method where robots use its sensors to create a
local map of the environment. This local map is compared to a known global map stored on
the robot memory. If the local map matches a part of the global map, then the robot will be
able to estimate its position. The sensors used in this kind of system are called Time-of-
Flight Range Sensors, which are active sensors that measures the distance of nearby objects.
Some widely used sensors are sonars and LIDAR scanners (Kelly, 1995).
As sensor industry advances in high speed, this chapter does not cover all sensors available in
the market. There are other sensors which may be used for navigation, as odor sensors (Russel,
1995, Deveza et al., 1994) for active beacon navigation, whereas the beacon emits an odor.

2.3 Control architectures for navigation
A mobile robot with a high degree of autonomy is a device which can move smoothly while
avoiding static and mobile obstacles through the environment in the pursuit of its goal
without the need for human intervention. Autonomy is desirable in tasks where human
intervention is difficult (Anderson, 1990), and can be accessed through the robot efficiency
and robustness to perform tasks in different and unknown environments (Alami et al.,
1998), or the ability to survive in any environment (Bisset, 1997), responding to expected and
unexpected events both in time and space, with the presence of independent agents or not
(Ferguson, 1994).
To achieve autonomy, a mobile robot must use a control architecture. The architecture is
closely linked to how the sensor data are handled to extract information from the world and
how this information is used for planning and navigating in pursuit of the objectives,
besides involving technological issues (Rich & Knight, 1994). It is defined by the principle of
operation of control modules, which defines the functional performance of the architecture,
the information and control structures (Rembold & Levi, 1987).

Conceptual Bases of Robot Navigation Modeling, Control and Applications

9

For mobile robots, the architectures are defined by the control system operating principle.
They are constrained at one end by fully reactive systems (Kaelbling, 1986) and, in the other
end, by fully deliberative systems (Fikes & Nilsson, 1971). Within the fully reactive and
deliberative systems, lies the hybrid systems, which combines both architectures, with
greater or lesser portion of one or another, in order to generate an architecture that can
perform a task. It is important to note that both the purely reactive and deliberative systems
are not found in practical applications of real mobile robots, since a purely deliberative
systems may not respond fast enough to cope with the environment changes and a purely
reactive system may not be able to reach a complex goal, as will be discussed hereafter.

2.3.1 Deliberative architectures
The deliberative architectures use a reasoning structure based on the description of the
world. The information flow occurs in a serial format throughout its modules. The handling
of a large amount of information, together with the information flow format, results in a
slow architecture that may not respond fast enough for dynamic environments. However, as
the performance of computer rises, this limitation decreases, leading to architectures with
sophisticated planners responding in real time to environmental changes.
The CODGER (Communication Database with Geometric Reasoning) was developed by
Steve Shafer et al. (1986) and implemented by the project NavLab (Thorpe et al., 1988). The
Codger is a distributed control architecture involving modules that revolves a database. It
distinguishes itself by integrating information about the world obtained from a vision
system and from a laser scanning system to detect obstacles and to keep the vehicle on the
track. Each module consists on a concurrent program. The Blackboard implements an AI
(Artificial Intelligence) system that consists on the central Database and knows all other
modules capabilities, and is responsible for the task planning and controlling the other
modules. Conflicts can occur due to competition for accessing the database during the
performance of tasks by the various sub-modules. Figure 2 shows the CODGER architecture.

Robot Car
Camera Laser range Wheels

Color vision Obstacle avoidance Helm
Blackboard interface Blackboard interface Blackboard interface

Monitor & Display Pilot
Blackboard interface Blackboard interface

Blackboard

Fig. 2. CODGER Architecture on NavLab project (Thorpe et al., 1988)

The NASREM (NASA/NBS Standard Reference Model for Telerobot Control System
Architecture) (Albus et al., 1987; Lumia, 1990) developed by the NASA/NBS consortium,
presents systematic, hierarchical levels of processing creating multiple, overlaid control

Advances in Robot Navigation

10

loops with different response time (time abstraction). The lower layers respond more
quickly to stimuli of input sensors, while the higher layers answer more slowly. Each level
consists of modules for task planning and execution, world modeling and sensory
processing (functional abstraction). The data flow is horizontal in each layer, while the
control flow through the layers is vertical. Figure 3. represents the NASREM architecture.

Sensorial Processing World Modeling Planning and Execution

Sensorial Processing World Modeling Planning and Execution

Sensorial Processing World Modeling Planning and Execution

Environment

Functional Abstraction

T
im

e
 A

b
s

tr
a

c
ti

o
n

Layer 1

Layer 2

Layer 3

Fig. 3. NASREM architecture

2.3.2 Behavioral architectures
The behavioral architectures have as their reference the architecture developed by Brooks
and thus follow that line of architecture (Gat, 1992; Kaelbling, 1986). The Subsumption
Architecture (Brooks, 1986) was based on the constructive simplicity to achieve high speed
of response to environmental changes. This architecture had totally different characteristics
from those previously used for robot control. Unlike the AI planning techniques exploited
by the scientific community of that time, which searched for task planners or problem
solvers, Brooks (Brooks, 1986) introduced a layered control architecture which allowed the
robot to operate with incremental levels of competence. These layers are basically
asynchronous modules that exchange information by communication channels. Each
module is an example of a finite state machine. The result is a flexible and robust robot
control architecture, which is shown in Figure 4.

Architecture
Robot Control System

World

Sensor

Actuator

Behavior 3

Behavior 2

Behavior 1

Fig. 4. Functional diagram of an behavioral architecture

Conceptual Bases of Robot Navigation Modeling, Control and Applications

11

Although the architecture is interesting from the point of view of several behaviors
concurrently acting in pursuit of a goal (Brooks, 1991), it is unclear how the robot could
perform a task with conflicting behaviors. For example, in a objects stacking task, the
Avoiding Obstacles layer would repel the robot from the stack and therefore hinder the task
execution, but on the other hand, if this layer is removed from the control architecture, then
the robot would be vulnerable to moving or unexpected objects. This approach successfully
deals with uncertainty and unpredictable environmental changes. Nonetheless, it is not clear
how it works when the number of tasks increases, or when the diversity of the environment
is increased, or even how it addresses the difficulty of determining the behavior arbitration
(Tuijman et al., 1987; Simmons, 1994).
A robot driven only by environmental stimuli may never find its goal due to possible
conflicts between behaviors or systemic responses that may not be compatible with the goal.
Thus, the reaction should be programmable and controllable (Noreils & Chatila, 1995).
Nonetheless, this architecture is interesting for applications that have restrictions on the
dimensions and power consumption of the robot, or the impossibility of remote processing.

2.3.3 Hybrid architectures
As discussed previously, hybrid architectures combine features of both deliberative and
reactive architectures. There are several ways to organize the reactive and deliberative
subsystems in hybrid architectures, as saw in various architectures presented in recent years
(Ferguson, 1994; Gat, 1992; Kaelbling, 1992). Still, there is a small community that research
on the approach of control architectures in three hierarchical layers, as shown on Figure 5.

Behavioral or Reactive Layer

Middle Layer

Deliberative Layer

Fig. 5. Hybrid architecture in three layers

The lowest layer operates according to the behavioral approach of Brooks (Brooks, 1986) or
are even purely reactive. The higher layer uses the planning systems and the world
modeling of the deliberative approach. The intermediate layer is not well defined since it is
a bridge between the two other layers (Zelek, 1996).
The RAPs (Reactive Action Packages) architecture (Firby, 1987) is designed in three layers
combining modules for planning and reacting. The lowest layer corresponds to the skills or
behaviors chosen to accomplish certain tasks. The middle layer performs the coordination of
behaviors that are chosen according to the plan being executed. The highest layer
accommodates the planning level based on the library of plans (RAP). The basic concept is
centered on the RAP library, which determines the behaviors and sensorial routines needed
to execute the plan. A reactive planner employ information from a scenario descriptor and
the RAP library to activate the required behaviors. This planner also monitors these
behaviors and changes them according to the plan. Figure 6 illustrates this architecture.

Advances in Robot Navigation

12

Environment

Reactive Planner

RAPs Situation

Description

Active sensorial

routines
Behavioral control

routines

Result Result
Requisition

Task

Fig. 6. RAPs architecture

The TCA (Task Control Architecture) architecture (Simmons, 1994) was implemented in the
AMBLER robot, a robot with legs for uneven terrain (Krotkov, 1994). Simmons introduces
deliberative components performing with layered reactive behavior for complex robots. In
this control architecture, the deliberative components respond to normal situations while
the reactive components respond to exceptional situations. Figure 7 shows the architecture.
Summarizing, according to Simmons (1994): “The TCA architecture provides a
comprehensive set of features to coordinate tasks of a robot while ensuring quality and ease
of development”.

AMBLER

Walking Planner

Stepping planner

Step re-planner

Error recovery module

Laser scanner

Laser scanner interface

Image queue manager

Local terrain mapper

User interface

Real Time Controller

Controller

Fig. 7. TCA architecture

2.3.4 The choice of achitecture
The discussion on choosing an appropriate architecture is within the context of deliberative
and behavioral approaches, since the same task can be accomplished by different control
architectures. A comparative analysis of results obtained by two different architectures
performing the same task must consider the restrictions imposed by the application
(Ferasoli Filho, 1999). If the environment is known or when the process will be repeated
from time to time, the architecture may include the use of maps, or get it on the first mission
to use on the following missions. As such, the architecture can rely on deliberative
approaches. On the other hand, if the environment is unknown on every mission, the use or
creation of maps is not interesting – unless the map building is the mission goal. In this
context, approaches based on behaviors may perform better than the deliberative approaches.

Conceptual Bases of Robot Navigation Modeling, Control and Applications

13

3. Dynamics and control
3.1 Kinematics model
The kinematics study is used for the design, simulation and control of robotic systems. This
modeling is defined as the movement of bodies in a mechanism or robot system, without
regard to the forces and torques that cause the movement (Waldron & Schmiedeler, 2008).
The kinematics provides a mathematical analysis of robot motion without considering the
forces that affect it. This analysis uses the relationship between the geometry of the robot,
the control parameters and the system behavior in an environment. There are different
representations of position and orientation to solve kinematics problems. One of the main
objectives of the kinematics study is to find the robot velocity as a function of wheel speed,
rotation angle, steering angles, steering speeds and geometric parameters of the robot
configuration (Siegwart & Nourbakhsh, 2004). The study of kinematics is performed with
the analysis of robot physical structure to generate a mathematical model which represents
its behavior in the environment. The mobile robot can be distinguished by different
platforms and an essential characteristic is the configuration and geometry of the structure
body and wheels. The mobile robots can be divided according to their mobility. The
maneuverability of a mobile robot is the combination of the mobility available, which is
based on the sliding constraints and the features by the steering (Siegwart & Nourbakhsh,
2004). The robot stability can be expressed by the center of gravity, the number of contact
points and the environment features. The kinematic analysis for navigation represents the
robot location in the plane, with local reference frame {XL, YL} and global reference frame
{XG, YG}. The position of the robot is given by XL and YL and orientation by the angle θ. The
complete location of the robot in the global frame is defined by

 []Tξ x y θ= (1)

The kinematics for mobile robot requires a mathematical representation to describe the
translation and rotation effects in order to map the robot’s motion in tracking trajectories
from the robot's local reference in relation to the global reference. The translation of the
robot is defined as a PG vector that is composed of two vectors which are represented by
coordinates of local (PL) and global (Q0G) reference system expressed as

 G G L
0P Q P= + ,

0

0 0
G

x
Q y

θ

 =

l

L
l

x

P y

0

=

l

G
l

x x0
P y y0

θ 0

+

= +

 +

 (2)

The rotational motion of the robot can be expressed from global coordinates to local
coordinates using the orthogonal rotation matrix (Eq.3)

cos() sin() 0

() sin() cos() 0

0 0 1

L
GR

θ θ

θ θ θ

 = −

 (3)

The mapping between the two frames is represented by:

Advances in Robot Navigation

14

cos() sin()

() (). sin() cos()L L
L G G G

x x y
R R y x y

θ θ
ξ θ ξ θ θ θ

θ θ

 +
 = = = − +

 (4)

The kinematics is analyzed through two types of study: the forward kinematics and the
inverse kinematics. The forward kinematics describes the position and orientation of the robot,
this method uses the geometric parameters βi, the speed of each wheel i, and the steering,
expressed by

x

ξ= y =f(... ,β ...β ,β ...β)1 n 1 m 1 m
θ

α α

, (5)

The inverse kinematics predicts the robot caracteristics as wheels velocities, angles and other
geometrical parameters through the calculation of the final speed and its orientation angle:

 ... , ... , ... f(x,y,)1 n 1 m 1 m
 α α β β β β = θ

 (6)

In the kinematic analysis, the robot characteristics such as the type of wheels, the points of
contact, the surface and effects of sliding or friction should be considered.

3.1.1 Kinematics for two-wheel differential robot
In the case of a two-wheeled differential robot, as presented in Figure 8, each wheel is
controlled by an independent motor XG and YG represents the global frame, while XL and YL
represents the local frame. The robot velocity is determined by the linear velocity Vrobot(t)
and angular velocity ωrobot(t), which are functions of the linear and angular velocity of each
wheel ωi(t) and the distance L between the two wheels, Vr(t), ωr(t) are the linear and angular
velocity of right wheel, Vl(t), ωl(t) are the linear and angular velocity of left wheel, θ is the
orientation of the robot and the (rl ,rr) are left and right wheels radius.

Fig. 8. Two-wheeled differential robot

Conceptual Bases of Robot Navigation Modeling, Control and Applications

15

The linear speed of each wheel is determined by the relationship between angular speed
and radius of the wheel as

 V (t) (t)rr r r= ω , V (t) (t)rl l l= ω (7)

The robot velocities are composed of the center of mass’s linear velocity and angular
velocity generated by the difference between the two wheels.

 LV (t) V (t) (t)l robot robot2
 = − ω

, LV (t) V (t) (t)R robot robot2
 = + ω

 (8)

The robot velocities equations are expressed by

V Vr lVrobot 2

+
= ,

V Vr l
robot L

−
=ω (9)

The kinematics equations of the robot are expressed on the initial frame (Eq. 10a) and in
local coordinates (Eq, 10b) by

() cos() 0
() sin() 0

0 1()

x t vroboty t
robott

 =

θ
θ

ω
θ

 ,

r rx (t)L 2 2 ω (t)ly (t) 0 0L ω (t)rr rθ (t) L LL

 =
 −

a) b)

(10)

Therefore, with the matrix of the differential model shown in Eq. 10, it is possible to find the
displacement of the robot. The speed in Y axis is always zero, demonstrating the holonomic
constraint μ on the geometry of differential configuration. The holonomic constraint is
explained by Eq.11, with N(θ) being the unit orthogonal vector to the plane of the wheels
and p the robot velocity vector, it demonstrates the impossibility of movement on the Y axis,
so the robot has to perform various displacements in X in order to achieve a lateral position.

 []0 (). sin() cos() sin() cos() 0
x

N p x y
y

= → = − = − =

μ θ θ θ θ θ (11)

Finally, with the direct kinematics it is possible to obtain the equations that allow any device
to be programmed to recognize at every moment its own speed, position and orientation
based on information from wheel speed and steering angle.

3.1.2 Kinematics for three-wheeled omnidirectional robot
The omnidirectional robot is a platform made up of three wheels in triangular configuration
where the distance between these wheels is symmetric. Each wheel has an independent
motor and can rotate around its own axis with respect to the point of contact with the
surface. The Figure 9 shows the three-wheeled omnidirectional robot configuration.
As seen of Figure 9, XG and YG are the fixed inertial axes and represent the global frame. XL
and YL are the fixed axis on the local frame in the robot coordinates; d0 describes the current
position of the local axis in relation to the global axis, di describes the location of the center

Advances in Robot Navigation

16

of a wheel from the local axis. Hi are positive unit velocity vector of each wheel, θ describes
the rotation axis of the robot XLR and YLR compared to the global axis, i describes the
rotation of the wheel in the local frame, β describes the angle between di and Hi. In order to
obtain the kinematic model of the robot, the analysis of the speed of each wheel must be
determined in terms of the local speed and its make the transformation to the global frame.
The speed of each wheel has components in X and Y directions.

Fig. 9. Three-wheeled omnidirectional robot

The speed of each wheel is represented by the translation and rotation vectors in the robot
frame. The position from the global frame P0G is added to the position transformation and
orientation of the wheel. The rotation RLG (θ) is calculated from local frame to global frame.
The transformation matrix is obtained and provides the angular velocity of each wheel in
relation to the global frame speeds represented in Eq.12, (Batlle & Barjau, 2009).

 0 ()G G G L
i L iP P R P= + θ ,

1 1

2 2

3 3

v1
r xω sin() cos() G1 v 12ω sin() cos() y2 Gr

sin() cos()ω v θ3 3
r

R
R

r
R

 − + + = = − + + − + +

θ α θ α
θ α θ α
θ α θ α

 (12)

3.2 Dynamic model
The study of the movement dynamics analyzes the relationships between the forces of
contact and the forces acting on the robot mechanisms, in addition to the study of the
acceleration and resulting motion trajectories. This study is essential for the design, control
and simulation of robots (Siciliano & Khatib, 2008). The kinematic model relates to the
displacement, velocity, acceleration and time regardless of the cause of their movement,
whereas the dynamic analysis relates to the generalized forces from the actuators, with the
energy applied in the system (Dudek, 2000). There are different proposals for the dynamic

Conceptual Bases of Robot Navigation Modeling, Control and Applications

17

model of robot navigation, but the general shape of the dynamic study is the analysis of the
forces and torques produced inside and outside of the system. General equations of system
motion, and the analysis of the system torques and energy allows developing the dynamic
model of the robotic system. For this analysis, it is important to consider the physical and
geometrical characteristics of the system such as masses, sizes, diameters, among others
which are represented in the moments of inertia and static and dynamic torques of the
system.

3.2.1 Dynamic model for robot joint
Each joint of a robot consists of a an actuator (DC motor, AC motor, step motor) associated
with a speed reducer and transducers to measure position and velocity. These transducers
can be absolute or incremental encoders at each joint. The motion control of robots is a
complex issue, since the movement of the mechanical structure is accomplished through
rotation and translation of their joints that are controlled simultaneously, which hinders the
dynamic coupling. Moreover, the behavior of the structure is strongly nonlinear and
dependent on operating conditions. These conditions must be taken into account in the
chosen control strategy. The desired trajectory is defined by position, speed, acceleration
and orientation of, therefore it is necessary to make coordinate transformations with set
times and with great complexity of calculations. Normally the robot control on only
considers the kinematic model, so joints are not coupled, and the control of each joint is
independent. Each robotic joint commonly includes a DC motor, the gear, reducer,
transmission, bearing and encoder. The dynamic model of DC motor is expressed by the
electrical coupling and mechanical equation as

V(t) Li(t) Ri(t) e(t)= + +
T(t) K i(t)m=

T(t) Jθ(t) Bθ(t) T (t)r= + +

(13)

Where i(t) is the current, R is the resistance, L is the inductance, V(t) is the voltage applied to
the armature circuit, e(t)=ke*θ is the electromotive force, J and B are the moment of inertia
and viscous friction coefficient, ke and km are the electromotive torque coefficient and
constant torque, Tr and T are the resistant torque due to system losses and mechanical
torque. The joint model is shown in Figure 10.

Fig. 10. Joint Model

Advances in Robot Navigation

18

The reduction model, with η as the rate of transmission, p as the teeth number of gear and r
as the gear ratio, where the tangential velocity is the same between the gears. The system
without slip can be expressed by

p2η
p1

= and
r1θ θ2 1r2

= , then v θ r θ r1 1 2 2= = for
θ r1 2 η

rθ 12
= =

 (14)

The model presented above will be increased by the dynamic effect of reducing the loads of
coupled system through the motor model and load-reducer as

(T(s) T (s))G (s) Ω (s)r motor2− = , (T (s) T (s))G (s) Ω (s)per 3load load− =

1
Ω (s) Ω (s)motorload η

= T (s) ηT (s)motorload =
(15)

3.2.2 Two-Wheeled differential dynamic model
The dynamic analysis is performed for the Two-Wheeled differential robot (Fierro & Lewis,
1997). The movement and orientation is due to each of the actuators, where the robot
position in a inertial Cartesian frame (O, X, Y) is the vector q = {xc, yc, θ}, Xc and Yc are the
coordinates of center of mass of the robot. The robot dynamics can be analyzed from the
Lagrange equation, expressed in terms as

 ()Td T T
dt q q

 ∂ ∂− = + ∂ ∂
τ λJ q , 1

2
() ()T T M q= Tq,q q q (16)

The kinematic constraints are independent of time, and the matrix D represents the full
range for a group of linearly independent vectors and the H(q) is the matrix associated with
constraints of the system. The equation of motion is expressed with V1 and V2 as the linear
velocities of the system in Eq.17.

cos() -Lsin()

1

2
sin() cos()

0 1

v
L

v

θ θ
θ θ

θ

 = = =

c

c

x
q D(q)v(t) y ,

cos(-L sin())
sin() cos()

0 1
L

θ θ
θ θ

⋅
 = ⋅

D(q) , 1

2

v
vω

 = =

vv(t) , (17)

The relationship between the parameters of inertia, information of the centripetal force
and Coriolis effect, friction on surfaces, disturbances and unmodeled dynamics is expressed
as

 ()+ + + + = λT
m dM(q)q V q,q q F(q) G(q) τ B(q)τ - H (q) (18)

where M (q) is the inertia matrix, Vm (q, q) is the matrix of Coriolis effects, F (q) represents
the friction of the surface, G (q) is the gravitational vector, Td represents the unknown
disturbance including unmodelled dynamics. The dynamic analysis of the differential robot
is a practical and basic model to develop the dynamic model of the omnidirectional robot.
For the analysis of the dynamic model it is necessary to know the physical constraints of the
system to get the array of restrictions, the matrix of inertia is expressed by the masses and

Conceptual Bases of Robot Navigation Modeling, Control and Applications

19

dimensions of the robot with the geometrical characteristics of three-wheeled
omnidirectional system.

3.3 Control structure
Control for robots navigation has been developed primarily with the trajectory tracking,
with the aim to follow follow certain paths by adjusting the speed and acceleration
parameters of the system, which are generally described by position and velocity profiles.
Control systems are developed in open loop or closed loop. Some problems of control
systems in open loop are the limitations to regulate the speed and acceleration in different
paths, this control does not correct the system to disturbances or dynamic changes, resulting
in paths that are not smooth (Siegwart & Nourbakhsh, 2004). Systems in closed loop control
can regulate and compare its parameters with references to minimize errors. The feedback
control is used to solve the navigation system when the robot has to follow a path described
by velocity and position profiles as a function of time from an initial to a final position.

3.3.1 Control structure for robot joint
The controller is an important element of a complete control system. The goal of a controller
in the control loop is to compare the output value with a desired value, determining a
deviation and producing a control signal to reduce the error to regulate dynamic
parameters. This error is generated by the comparison of the reference trajectory and the
robot's current path, which is represented in terms of position and orientation (Figure 11).

Fig. 11. Control Structure for Robot Joint

The control most used in robotic system is the PID Control that combines the Proportional
(Kp), Integral (Ki) and Derivative (Kd) actions shown in the Eq. 19. This type of controller
has good performance if the dynamic system is known and the controller parameter has
been adjusted. The main limitation of a PID controller is the need to refine procedures of
parameters adjustment, in addition it is very sensitive to the dynamic changes of the
system.

2

() d p ii
c p d

K s K s KK
G s K K s

s s

+ +
= + + = (19)

Advances in Robot Navigation

20

For setting parameters, different strategies in continuous time or discrete time can be
applied as: Ziegler Nichols, Chien Hrones Reswick, and using control and stability
analysis as Routh Hurwitz, Root Locus, Nyquist Criteria, Frequency response Analysis,
and others.

4. Applications
Industry usually have a structured environment, which allows the integration of different
mobile robots platforms. This chapter analyses the implementation of environments with
robots in order to integrate multiple areas of knowledge. These environments applies the
dynamic and kinematic model, control algorithms, trajectory planning, mechanisms for
mapping and localization, and automation structures with the purpose of organizing the
production chain, optimizing processes and reducing execution times.

4.1 Navigation robots platforms
The robots navigation platform uses one ASURO robot with hybrid control architecture
AuRA (Mainardi, 2010), where the reactive layer uses motor-schemas based on topological
maps for navigation. The environment perception is obtained through of signals from
sensors. The ASURO robot has three types of sensors: contact, odometry and photosensors.
Another robot of the platform is Robotino developed by FESTO. This robot has odometry,
collision sensors and nine infrared distance sensors. Robotino is equipped with a Vision
System, which consists of a camera to view images in real time. The modular structure
allows the addition of new sensors and actuators. Both robots are shown in Figure 12. The
odometry is performed with optical encoders. The phototransistors are used to detect the
floor color while moving in a certain way. The robot navigates through line following and
odometry.

 a) b)

Fig. 12. Platform Robots (Mainardi, 2010): a)ASURO, b) Robotino

4.2 Mapping and location
The localization task uses an internal representation of the world as an map of environment
to find the position through the environment perception around them. The topological maps
divide the search space in nodes and paths (Figure 13). Mapping and location can guide the

Conceptual Bases of Robot Navigation Modeling, Control and Applications

21

robot in different environments, these methods give information about of objects in the
space.

 a) b)

Fig. 13. a) Topological Map, b) Map with frame path (Mainardi,2010)

4.3 Path and trajectory planning
The path planning provides the points where the robot must pass. For this, the planning
uses a search algorithm to analyze internal model of the world and find the best path,
resulting in a sequence of coordinates to follow without colliding with known objects. For
the purpose of determining the best path, the Dijkstra's algorithm is used to find the shortest
path between all the nodes on the map. The discovered paths are then archived into a
reminiscent table. Therefore, with the topological map of the environment shown in Figure
14, knowing the position and the goal, the path planning module access the reminiscent
table to get the best path to the goal or, if necessary, it runs the Djikstra’s algorithm to
determine the best path. Finally, the path planning module applies two different techniques
to generate the robot trajectories that compose the frame path. These techniques are the:
Dubins path (geometric and algebraic calculations) and β-splines (polynomials
parameterized).

 a) b)

Fig. 14. a)Topological Map , b) Topological map with the weights

4.4 Trajectory execution
During the trajectory execution, the actuators are controlled based on the frame path and the
environment perception. In this application, the execution of the trajectory will be
conducted in a hybrid structure. The parameters are calculated in the path planning as the

Advances in Robot Navigation

22

basis to adjust the robot parameter through perception of the environment. The stage of
path execution is performed by motor-schemas, which are divided into three distinct
components: perceptual schemas, motor-schemas and vector sum. The perceptual schemas
are mechanisms of sensorial data processing. The motor-schemas are used to process
behaviors, where each schema (behavior) is based on the perception of the environment
provided by the perceptual schemas. These schemas apply a result vector indicating the
direction that the robot should follow. The sum vector adds the vectors of all schemas,
considering the weight of each schema to find the final resultant vector. In this case, the
weights of each schema change according to the aim of the schema´s controller. The control
signal changes due to the different objectives or due to the environment perception. The
wheels speeds VR and VL are determined by Eq. 20, where vri and vli are speeds in each
behavior, and pi is weight behavior of the current state.

1

n

R i i
i

V vr p
=

= ∗ ,
1

n

L i i
i

V vl p
=

= ∗ (20)

The robot behavior to follow a black line on the floor will be informed of the distance
between the robot and the line, and calculates the required speeds for each wheel to correct
the deviation , applying the Eq.21, where lW is line width, VM is maximum desired speed, KR
is reactive gain. The speed on both wheels must be less than or equal to the VM.

 2
R M R M

W

V V K S V
l

= + ∗ Δ ∗ ∗ , 2
L M R M

W

V V K S V
l

= − ∗ Δ ∗ ∗ (21)

The odometric perception is responsible of the calculatation of the robot displacement. The
execution of the paths made by motor schemas is represented by Figure 15.

Fig. 15. Motor-schemas Structure (Mainardi,2010)

4.5 Trajectory and control simulator
The library DD&GP (Differential Drive and Global Positioning Blockset) of MATLAB®-
Simulink is a simulation environment for dynamic modeling and control of mobile robotic

Conceptual Bases of Robot Navigation Modeling, Control and Applications

23

systems, this library is developed from the GUI (Graphical User Interface) in MATLAB®, that
allows the construction and simulation of mobile robot positioning within an environment.
This Blockset consists of seven functional blocks. The integration of these blocks allows the
simulation of mobile differential robot based on their technological and functional
specifications. The kinematic, dynamic and control system can be simulated with the toolbox,
where the simulator input is the trajectory generation. The velocities of deliberative behavior
are easily found via the path planning, but the reactive velocities behavior is necessary to
include two blocks in the simulator, one to determine the distance between robot and desired
trajectory (CDRT) and another to determine the velocities (reactive speeds), this simulator is
presented in Figure 16. Blocks DD & GP can be used for the simulation of two-wheeled
diferential robot. However, to simulate the Robotino robot of three-wheeled omnidirectional, it
is necessary to modify some of the blocks considering the differences in the dynamics and
kinematics of robots for two and three wheels. In this case, a PID control block was added to
control the motor speed of each wheel, and blocks were added according to the equations of
kinematics model of three-wheeled omnidirectional robot (Figure 17).

Fig. 16. Simulator with toolbox configuration in MATLAB® (Mainardi, 2010)

Fig. 17. Simulator for Three-Wheeled Omnidirectional

Advances in Robot Navigation

24

4.6 Results
First analysis simulated the path represented in Figure 13, with different number of control
points to verify which control points respond better at proposed path. The simulations were
realized with 17 points (Fig. 18a), 41 control points and 124 control points(Fig. 18b). To
compare the results and set the values of desired weight pd , reference weight pr and reactive
gain KR, will use the square error in the simulation of paths, where the equation is the
quadratic error shown in Eq. 22, where pi is the current position and pd is the desired
position.

2

1
()

(1)

n

i i
i

p pd
x

n n
=

−
Δ

∗ −

 (22)

 a) b)

Fig. 18. a)First Path trajectory with 17 points, b) with 124 points (Maniardi, 2010)

Initially, the KR values for each simulation were defined by simulation of trajectories using
the quadratic error for different values of KR. The optimal weights pr and pd were performed
simulations varying the weights from 0 to 1 so that the sum of the weights should be equals
1, indicating that the overall speed should not exceed the desired speeds. The results of
simulations of paths considering failures can be observed as : with the straight path, the best
result was obtained with a purely reactive pair (0, 1), while on the curve path, the par purely
deliberative (1, 0) had a better result. The pair (pd , pr)=(0.8, 0.2) had an excellent result on the
straight and a good result in the curve, being the second best result in all simulations. For
the analysis and selection of the best reactive gain KR, the average was calculated with
different simulations which resulted in the error graphs. The graph obtained is shown in
Figure 19. The color lines represent different averages of the error in each gain KR, where
the lines is the result of the sum of simulations. The value KR =10 was selected because the
average error in this value is lower, with a better response in the control system.

Conceptual Bases of Robot Navigation Modeling, Control and Applications

25

 a) b)

Fig. 19. Errors obtained in the simulations of the KR's: a)Quadratic error, b) Maximum error

5. Conclusion
This chapter has presented the overall process of robot design, covering the
conceptualization of the mobile robot, the modeling of its locomotion system, the navigation
system and its sensors, and the control architectures. As well, this chapter provides an
example of application. As discussed on this chapter, the development of an autonomous
mobile robot is a transdisciplinary process, where people from different fields must interact
to combine and insert their knowledge into the robot system, ultimately resulting on a
robust, well modeled and controlled robot device.

6. Acknowledgment
The authors would like thanks the support of FAPESP (Fundação de Amparo à Pesquisa do
Estado de São Paulo), under process 2010/02000-0.

7. References
Alami, R. ; Chatila, R.; Fleury, S.; Ghallab, M. & Ingrand, F. (1998). An Architecture for

Autonomy. International Journal of Robotics Research, 1998.
Albus, J; McCain, H. & Lumia R. (1987). NASA/NBS Standart Reference Model for

Telerobot Control System Architecture (NASREM). NBS Technical Note 1235,
Robot Systems Division, National Bureau of Standart, 1987.

AirRobot UK. (2010). AirRobotUK, In: AirRobot UK- links, March 2011, Available from: <
http://www.airrobot-uk.com/index.htm>

Anderson, T. & Donath, M. Animal Behavior as a Paradigm for Developing Robot
Autonomy, Elsevier Science Publishers B.V. North-Holland, pp. 145-168, 1990.

Arkin, R. (1990). Integrating Behavioural, Perceptual and World Knowledge in Reactive
Navigation. Robotics and Autonomous Systems, n6, pp.105-122, 1990.

Advances in Robot Navigation

26

Arkin, R.; Riseman, E. & Hanson, A. (1987). AuRA: An Architecture for Vision-based Robot
Navigation, Proceedings of the 1987 DARPA Image Understanding Workshop, Los
Angeles, CA, pp. 417-431.

Barshan, B. & Durrant-White, H. (1995) Inertial Systems for Mobile Robots. IEEE
Transactions on Robotics and Automation, Vol. 11, No 3, pp. 328-351, June 1995.

Batlle, J.A & Barjau, A. (2009). Holonomy in mobile Robots. Robotics and Autonomous Systems
Vol. 57, pp. 433-440, 2009.

Bisset, D. (1997). Real Autonomy. Technical Report UMCS-97-9-1, University of Kent,
Manchester, UK, 1997.

Blaasvaer, H.; Pirjanian, P & Christensen, H. (1994) AMOR - An Autonomous Mobile Robot
Navigation System. IEEE International Conference on Systems, Man and Cybernetics,
San Antonio, Texas, pp. 2266-2277, october 1994.

Borenstein, J.; Everett, H. & Feng, L. (1995). Where am I? Sensors and Techniques for Mobile
Robot Positioning. AK Peters, Ltd., Wellesley, MA), 1st ed., Ch. 2, pp. 28-35 and pp.
71-72, 1995.

Brooks, R. & Iyengar, S. (1997). Multi-sensor Fusion - Fundamentals and Applications with
Software. Printice-Hall, New Jersey 1997.

Brooks, R. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of
Robotics and Automation, Vol. RA-2, No 1, pp. 14-23, March 1986.

Brooks, R.A. (1991). Intelligence Without Representation. Intelligence Artificial Elsevier
Publishers B.V, No 47, pages 139-159, 1991.

Deveza, R.; Russel, A. & Mackay-Sim, A. (1994). Odor Sensing for Robot Guidance. The
International Journal of Robotics Research, Vol. 13, No 3, pp. 232-239, June 1994.

Dudek, G. & Jenkin, M. (2000). Mobile robot Hardware, In: Computational Principles of
mobile robotics, (Ed.), 15-48, Cambridge University Press, ISBN 978-0-521-56021-4,
New York,USA.

Elfes, A. (1987). Sonar-Based Real-World Mapping and Navigation. IEEE Journal of Robotics
and Automation, Vol. RA-3, No 3, pages 249-265, June 1987.

Everett, H. (1995). Sensor for Mobile Robot - Theory and Application. A.K. Peters, Ltd,
Wellesley, MA, 1995.

Feng, D. & Krogh, B. (1990). Satisficing Feedback Strategies for Local Navigation of
Autonomous Mobile Robots. IEEE Transactions on Systems, Man. and Cybernetics,
Vol. 20, No 6, pp. 476-488, November/December 1990.

Ferasoli Filho, H. (1999). Um Robô Móvel com Alto Grau de Autonomia Para Inspeção de
Tubulação. Thesis, Escola Politécnica da Universidade de São Paulo, Brasil.

Ferguson, I. (1994). Models and Behaviours: a Way Forward for Robotics. AISB Workshop
Series, Leeds, UK, April, 1994.

Fierro, R; Lewis, F.(1997). Control of a Nonholonomic Mobile Robot: Bac Backstepping
Kinematics. Journal of Robotic System, Vol. 14, No. 3, pp. 149-163, 1997.

Fikes, R & Nilsson, N. (1971). STRIPS: A New Approach to the application of Theorem
Proving to Problem Solving. Artificial Intelligence, 2, pp 189-208, 1971.

Firby, R. (1987). An investigation into reactive planning in complex domains. In Sixth
National Conference on Artificial Intelligence, Seattle, WA, July 1987. AAAI.

Franz, M. & Mallot, H. (2000). Biomimetic robot navigation. Robotics and autonomous Systems,
v. 30, n. 1-2, p. 133–154, 2000.

Conceptual Bases of Robot Navigation Modeling, Control and Applications

27

Gat, E. (1992) Integrating Planning and Reacting in a Heterogeneous Asynchronous
Architecture for Controlling Real-World Mobile Robots. Proceedings of the
AAAI92.

Graefe, V. & Wershofen, K. (1991). Robot Navigation and Environmental Modelling.
Environmental Modelling and Sensor Fusion, Oxford, September 1991.

Harmon, S.Y. (1987). The Ground Surveillance Robot (GSR): An Autonomous Vehicle
Designed to Transit Unknown Terrain. IEEE Journal of Robotics and Automation, Vol.
RA-3, No.3, pp. 266-279, June 1987.

Kaelbling, L. (1992). An Adaptable Mobile Robot. Proceedings of the 1st European Conference
on Artificial Life. 1992

Kaelbling, L. (1986). An Architecture for Intelligente Reactive Systems. Technical Note
400, Artficial Intelligence Center SRI International, Stanford University, October
1986.

Kelly, A. (1995) Concept Design of a Scanning Laser Rangerfinder for Autonomous Vehicles.
Technical Report CMU-RI-TR-94-21, The Robotics Institute Carnegie Mellon
University, Pittsburgh, January 1995.

Krotkov, E. (1994). Terrain Mapping for a Walking Planetary Rover. IEEE Transaction on
Robotics and Automation, Vol. 10, No 6, pp. 728-739, December 1994.

Latombe, J. (1991). Robot Motion Planning, Kluwer,Boston 1991.
Leonard, J. & Durrant-White, H. (1991) Mobile Robot Localization by Tracking Geometric

Beacons. IEEE Transactions on Robotics and Automation, Vol. 7, No 3, pp. 376-382,
July 1991.

Lumia, R.; Fiala, J. & Wavering, A. (1990). The NASREM Robot Control System and Testbed.
International Journal of Robotics and Automation, no.5, pp. 20-26, 1990.

Luo, R. & Kay, M. (1989). Multisensor Integration and Fusion in Intelligent Systems. IEEE
Transactions on Systems, Man. And Cybernetics, Vol. 19, No 5, pages 900-931,
September/October 1989.

Mainardi, A; Uribe, A. & Rosario, J. (2010). Trajectory Planning using a topological map for
differential mobile robots, Proceedings of Workshop in Robots Application, ISSN 1981-
8602, Bauru-Brazil, 2010.

Mckerrow, P.J. (1991). Introduction to Robotics. Addison-Wesley, New York, 1991.
Medeiros, A. A. (1998). A survey of control architectures for autonomous mobile robots.

Journal of the Brazilian Computer Society, v. 4, 1998.
Murphy, R. (1998). Dempster-Shafer Theory for Sensor Fusion In Autonomous Mobile

Robot. IEEE Transaction on Robotics and Automation, Vol. 14, No 2, pp. 197-206, April
1998.

Noreils, F. & Chatila, R.G. (1995). Plan Execution Monitoring and Control Arquiteture for
Mobile Robots. IEEE Transactions on Robotics and Automation, Vol. 11, No 2, pp. 255-
266, April 1995.

Ojeda, L. & Borenstein, J. (2000). Experimental results with the KVH C-100 fluxgate compass
in mobile robots. Ann Arbor, v. 1001, p. 48109–2110.

Protector. (2010). Protector USV, In: The Protector USV: Delivering anti-terror and force
protection capabilities, April 2010, Available from: < http://www.ws-
wr.com/epk/BAE_Protector/>

Advances in Robot Navigation

28

Raibert, M., Blankespoor, K., Playter, R. (2011). BigDog, the Rough-Terrain Quadruped
Robot, In: Boston Dynamics, March 2011, Available from:
 <http://www.bostondynamics.com/>

Rembold, U. & Levi, P. (1987) Sensors and Control for Autonomous Robots. Encyclopedia of
Intelligence Artificial. pp. 79-95, John Wiley and Sons, 1987.

Rich, E. & Knight, K. (1994). Inteligência Artificial, Makron Books do Brasil, 1994, São Paulo.
Russell, R. (1995). Laying and Sensing Odor Markings as a Strategy for Assistent Mobile

Robot Navigation Tasks. IEEE Robotics & Automation Magazine, pp. 3-9, September
1995.

Shafer, S.; Stentz, A. & Thorpe, C. (1986). An Architecture for Sensor Fusion in a Mobile
Robot. Proc. IEEE International Conference on Robotics and Automation, San Francisco,
CA, pp. 2002-2011, April 1986.

Siciliano, B.; Khatib, O. (ORGS.). Springer Handbook of Robotics. Heidelberg: Springer,
2008.

Siegwart, R. & Nourbakhsh, I. (2004). Mobile Robot Kinematics, In: Introduction to
Autonomous Mobile Robots, MIT Press, 47-82., Massachussetts Institute of
Technology, ISBN 0-262-19502, London, England.

Simmons, R. (1994). Structured Control for Autonomous Robots. IEEE Transactions on
Robotics and Automation, Vol. 10, No 1, pp. 34-43, February 1994.

Thorpe, C; Hebert, M.; Kanade, T. & Shafer, S. (1988). Vision and Navigation for the
Carnegie-Mellon Navlab. IEEE Transaction on Pattern Analysis and Machine
Intelligence, Vol. 10, No. 3, pp. 401-412, May 1988.

Tuijnman, F.; Beemster, M.; Duinker, W.; Hertzberger, L.; Kuijpers, E. & Muller, H. (1987).
A Model for Control Software and Sensor Algorithms for an Autonomous Mobile
Robot. Encyclopedia of Intelligence Artificial, pp. 610-615, John Wiley and Sons,
1987.

Waldron & Schmiedeler. (ORGS.). Springer Handbook of Robotics. Heidelberg: Springer,
2008.

Zelek, J. (1996). SPOTT: A Real-Time, Distributed and Scalable Architecture for Autonomous
Mobile Robot Control. Thesis, Centre for Intelligent Machines Departament of
Eletrical Engineering McGill University, 1996.

2

Vision-only Motion Controller for
Omni-directional Mobile Robot Navigation

Fairul Azni Jafar1, Yuki Tateno1, Toshitaka Tabata1,
Kazutaka Yokota1 and Yasunori Suzuki2

1Graduate School of Engineering, Utsunomiya University,
2Toyota Motor Corporation

Japan

1. Introduction
A major challenge to the widespread deployment of mobile robots is the ability to function
autonomously, learning useful models of environmental features, recognizing
environmental changes, and adapting the learned models in response to such changes.
Many research studies have been conducted on autonomous mobile robots that move by its
own judgment. Generally, in many research studies of autonomous mobile robotics, it is
necessary for a mobile robot to know environmental information from sensor(s) in order to
navigate effectively. Those kinds of robots are expected for automation in order to give
helps and reduce humans work load.
In previous research studies of autonomous mobile robots navigation, accurately control on
the robot posture with a possibility of less error, was always required. For that, it is
necessary to provide accurate and precise map information to the robot which makes the
data become enormous and the application become tedious. However, it is believed that for
a robot which does not require any special accuracy, it can still move to the destination like
human, even without providing any details map information or precise posture control.
Therefore, in this research study, a robot navigation method based on a generated map and
vision information without performing any precise position or orientation control has been
proposed where the map is being simplified without any distance information being
mentioned.
In this work we present a novel motion controller system for autonomous mobile robot
navigation which makes use the environmental visual features capture through a single
CCD camera mounted on the robot.
The main objective of this research work is to introduce a new learning visual perception
navigation system for mobile robot where the robot is able to navigate successfully towards
the target destination without obtaining accurate position or orientation estimation. The
robot accomplishes navigation tasks based on information from images captured by the
robot.
In the proposed approach, the robot identifies its own position and orientation based on the
visual features in the images while moving to the desired position. The study focused on
developing a navigation system where the robot will be able to recognize its orientation to

Advances in Robot Navigation

30

the target destination through the localization process without any additional techniques or
sensors required. It is believed that by having this kind of navigation system, it will
minimize the cost on developing the robot and reduce burdens on the end-user.
For any robot which is developed for elementary missions such as giving a guide in an
indoor environment or delivering objects, a simple navigation system will be good enough.
The robot for these tasks does not require any precise position or orientation identification.
Instead, qualitative information regarding the robot posture during the navigation task that
is sufficient to trigger further actions is needed. As it is not necessary for the robot to know
the exact and absolute position, a topological navigation will be the most appropriate
solution.
This research work developed a visual perception navigation algorithm where the robot is
able to recognize its own position and orientation through robust distinguishing operation
using a single vision sensor. When talking about robot, precise and accurate techniques
always caught our mind first. However, our research group proved that robots are able to
work without precise and accurate techniques provided. Instead, robust and simple learning
and recognizing methods will be good enough.
The remainder of this chapter is organized as follows. The next section will explain the
topological navigation method employed in the research work. Section 3 gives an overview
of the related work. In section 4, the omni-directional robot is introduced. Section 5 explains
the environmental visual features used in the approach, section 6 describe the evaluation
system of neural network, and section 7 details the motion control system. We conclude
with an overview of experimental results (section 8) and a conclusion (section 9).

2. Topological navigation
The proposed navigation method presented here uses a topological representation of the
environment, where the robot is to travel long distances, without demanding accurate
control of the robot position along the path. Information related to the desired position or
any positions that the robot has to get through is acquired from the map.
The proposed topological navigation approach does not require a 3D model of the
environment. It presents the advantage of working directly in the sensor space. In this case,
the environment is described by a topological graph. Each node corresponds to a description
of a place in the environment obtained using sensor data, and a link between two nodes
defines the possibility for the robot to move autonomously between two associated
positions.
The works presented here require a recording run before the robot navigate in an
environment, in order to capture representative images which are associated with the
corresponding nodes (places).
An advantage of the proposed approach is that the robot does not have to ‘remember’ every
position (image) along the path between two nodes. During the recording run, the robot will
only capture images around the corresponding node. This exercise will help to reduce the
data storage capacity.
At the end of the recording run, a topological map of the environment will be build by the
robot. Data of visual features obtained from the images of each node are used as instructor
data and a neural network (NN) data is produced for each node after trained by NN, before
the actual navigation is conducted in the environment.

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

31

The topological navigation approach here allows the distance between nodes to be far from
each other. The topological map in this approach may have only a few nodes as distance
between each node can be quite far. Each node corresponds to a description of a place in the
environment obtained using sensor data.
When the robot is moving to the target destination during autonomous run, it will first
identify its own position. By knowing its own starting node, the robot will be able to plan
the path to move to the target position and obtain the information about the next node from
the map. Based on the information, the robot will start moving until it is able to localize that
it has arrived at the next node. When the robot find that it is already at the next node, it will
then obtain information for the next moving node from the map and start moving toward it.
This action will be repeatedly carried out until the robot arrives at the desired destination.
An overview of the navigation method is presented in Fig. 1.

Fig. 1. Overview of the navigation process

In the localization process performed during navigating towards the target destination, the
robot compares the extracted visual features from the image captured during the robot
movement, with the stored visual features data of the target destination using NN. The NN
output result will lead to the knowledge of whether the robot is already arriving near the
respective node or not.
In this research study, a robust navigation method where the robot will take advantage of
the localization process not only to identify its own position but also the orientation is
proposed. By applying this method on the robot, it is believed that the robot is able to
correct its own pose and navigate towards the target destination without loosing the
direction while moving to the target destination.

2.1 Map information
The representations of large-scale spaces that are used by humans seem to have a
topological flavour rather than a geometric one (Park & Kender, 1995). For example, when

Advances in Robot Navigation

32

providing directions to someone in a building, directions are usually of the form "go straight
to the hall, turn left at the first corner, use the staircase on your right," rather than in
geometric form.
When using a topological map, the robot's environment is represented as an adjacency
graph in which nodes represent places (that the robot needs to identify in the environment)
and arcs stand for the connections between places. A link (show by the arc) on the
topological map means that the robot can successfully travel between the two places
(landmarks). A link can only be added to the map if the robot has made the corresponding
journey. In some instances the links are established at the same time as the places are
identified. Evidence has been provided that localization based on topological map, which
recognizes certain spots in the environment, is sufficient to navigate a mobile robot through
an environment.
The use of topological maps (graphs) has been exploited by many robotic systems to
represent the environment. A compact topological map with fewer locations requires less
memory and allow for faster localization and path planning. Topological representations
avoid the potentially massive storage costs associated with metric representations. In order
to reach the final goal, the navigation problem is decomposed into a succession of sub goals
that can be identified by recognizable landmarks. An example of topological map is shown
in Fig. 2.

Fig. 2. A topological map of landmarks in the city of Utsunomiya, Japan

3. Related work
An intelligent robot navigation system requires not only a good localization system but also
a dexterous technique to navigate in environment. The mobile robot has to be able to
determine its own position and orientation while moving in an environment in order for the
robot to follow the correct path towards the goal. Most current techniques are based on
complex mathematical equations and models of the working environment, however
following a predetermined path may not require a complicated solution.
Applications of additional sensors to control robot posture have been widely introduced
(Morales et al., 2009). Conversely, in the approach introduced in this research work, there is
no application of additional sensor to control the orientation of the robot. The only sensor
that is used in the robot system is vision sensor. Many researchers presented methods of

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

33

controlling robot pose by combining the problem with navigation towards the goal using
only vision sensor, where visual servoing is most popular.
In a research work introduced by Vasallo et al. (Vasallo et al., 1998), the robot is able to
correct its own orientation and position through a vanishing point calculated from the
corridor guidelines where the robot is navigating. The method allows the robot to navigate
along the centre of the corridor, where the progress along the path (links) is monitored using
a set of reference images. These images are captured at selected positions along the path.
The robot will be able to determine its own position through a comparison between the
acquired image and the reference image set. They used SSD (sum of squared differences
metric) method to perform the comparison. In these research works, they separated the task
on detecting position and orientation. In addition, the methods require tedious techniques
for both localization and navigation tasks in order to control the robot precisely from losing
the actual direction.
Mariottini et al. (Mariottini et al., 2004) employed a visual servoing strategy for holonomic
mobile robot based on epipolar geometry retrieved from current and desired image grabbed
with the on-board omnidirectional camera to control the pose of the robot during
navigation. Their servoing law is divided in two independent steps, dealing with the
compensation, respectively, of rotation and translation occurring between the actual and the
desired views. In the first step a set of bi-osculating conics, or bi-conics for short, is
controlled in order to gain the same orientation between the two views. In the second step
epipoles and corresponding feature points are employed to execute the translational step
necessary to reach the target position.
There is a method introduced by Goedeme et al. (Geodome et al., 2005) which is comparable
to the proposed approach. They developed an algorithm for sparse visual path following
where visual homing operations are used. In this research work, they focus on letting the
robot to re-execute a path that is defined as a sequence of connected images. An epipolar
geometry estimation method is used to extract the position and orientation of the target
during navigating towards the target point. The epipolar geometry calculation is done based
on visual features found by wide baseline matching. Information obtained from the epipolar
geometry calculation enables the robot to construct a local map containing the feature world
positions, and to compute the initial homing vector. However, the method of using epipolar
geometry requires difficult computation tasks.
In contrast to the approach introduced by Geodome the autonomous run operation in the
proposed navigation method in this research work is straightforward and does not comprise
any complicated tasks. In the work done by Geodome, the robot needs to perform an
initialization phase in order to calculate the epipolar geometry between starting position
and the target position. The robot will have to extract a trackable feature to be use as a
reference during driving in the direction of the homing vector. In the tracking phase
performed after the initialization phase, the feature positions of a new image are tracked,
and thus the robot position in the general coordinate system is identified through the
epipolar geometry measurements. The tasks perform by the robot in this approach are
rather complicated. Dissimilar to this method, the robot in the proposed approach identifies
its own starting position and immediately moves towards the target destination. All the
identification works are done directly based on the environmental visual features explained
in section 5. Moreover, the robot in the proposed approach does not have to measure the
distance to move to the following place.

Advances in Robot Navigation

34

In spite of that, all the studies introduced in the literature have been a very successful
achievement. However, they require complicated techniques to let the robot identify its own
position and to control the robot from losing the actual direction during navigating towards
the target destination. In the proposed approach here, a simple yet robust technique for both
robot localization and navigation is developed with the main objective is to let the robot
arrive safely at the proximity of the target destination. An emphasis is put on situations
where robot does not require accurate localization or precise path planning but is expected
to navigate successfully towards the destination. The approach also does not aim for
accurate route tracing.
With this consideration, a robust navigation method for autonomous mobile robot where
the robot will take advantage of the localization process not only to identify its own position
but also the orientation is proposed. It is believed that both robot position and orientation
can be identified through a single technique, and it is not necessary to have separate
technique to control the robot orientation. A method with less technique required for
identifying both position and orientation, will reduce the robot navigation time.
The proposed method is based on environmental visual features evaluated by neural
network. By applying this method on the robot, it is believed that the robot is able to correct
its own pose and navigate towards the target destination without losing the direction while
moving to the target destination.
In a simple navigation method which does not require for any precise or accurate techniques
as introduced in this research study, the robot programming will become less tedious. The
method that is introduced in this research work will able to help minimizing cost in robot
development.
An earlier contribution in the area of mobile robot navigation using image features and
NN is the work of Pomerleau (Pomerleau, 1989)}. It was then followed by many other
research works where they have successively let the robot navigate in the human working
environments (Burrascano et al., 2002; Meng & Kak, 1993; Na & Oh, 2004; Rizzi et al.,
2002).
One very similar research work with the proposed method is the one introduced by Rizzi
et al. (Rizzi et al., 2002)}. The robot in this approach uses an omnidirectional image sensor
to grab visual information from the environment and applies an artificial NN to learn the
information along the path. The visual information, which composed of RGB color values,
is preprocessed and compacted in monodimensional sequences called Horizon Vectors
(HV), and the path is coded and learned as a sequence of HVs. The system in this
approach guides the robot back along the path using the NN position estimation and
orientation correction. The orientation identification is performed by a circular correlation
on the HVs.

4. The omni-directional mobile robot
The autonomous mobile robot system in this research study is based on the Zen360 omni-
directional mobile robot which was developed by RIKEN Research Centre (Asama et al.,
1996). The driven mechanism part of the robot was developed by the previous members of
the Robotics and Measurement Engineering Laboratory of Utsunomiya University. The
robot consists of a computer and a CCD colour camera. Each image acquired by the system
has a resolution of 320 x 240. The entire system is shown in Fig. 3.

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

35

Fig. 3. The Omni-directional mobile robot

Model Sony XC999
Heel Angle 106.30°
Tilt Angle 79.18°
Resolution 320 X 240 [pixel]

Table 1. Camera specification

The robot has 4 wheels where the wheel diameter is 360mm on the circumference of circle
with the rotating shaft is pointing towards the centre. The robot mechanism possesses 2
translatory DOF and 1 rotating DOF, which in total of 3 DOF (Degree of Freedom).
During the actual locomotion, the opposing 2 wheels are rotating on the same translation
direction derived through the activation of the 2 wheels bearing, therefore a stabilize
translation motion towards x axis or y axis is feasible. Furthermore, a turning motion is also
feasible due to the same direction driven of the 4 wheels.

Fig. 4. Robot wheel with free rollers

Under ordinary circumstances, the arranged wheels become resistance to the travelling
direction and the vertical direction. However, there are free rollers fixed on the wheel
periphery of all the wheels as shown in Fig. 4, where it reduced the resistance on the wheel
rotating direction and allowed for a smooth movement. Each wheel is built up from 6 big
free rollers and 6 small free rollers. The two type of free rollers are arranged 30[deg] in angle
alternately, and the free roller outer envelope form the outer shape of the wheel. With this

Free roller - Small

Free roller - Big

Wheel outer view Wheel actual view Movement mechanism
top view

Advances in Robot Navigation

36

condition, the robot is able to perform feasible omni-directional locomotion where it can
move in all directions without affecting its posture.

5. Features extraction
Feature extraction is a process that begins with feature selection. The selected features will
be the major factor that determines the complexity and success of the analysis and pattern
classification process. Initially, the features are selected based on the application
requirements and the developer's experience. After the features have been analyzed, with
attention to the application, the developer may gain insight into the application's needs
which will lead to another iteration of feature selection, extraction, and analysis. When
selecting features, an important factor is the robustness of the features. A feature is robust if
it will provide consistent results across the entire application domain.

5.1 Colour features
The concept of using colour histograms as a method of matching two images was pioneered
by Swain and Ballard (Swain & Ballard, 1991). A number of research works also use colour
histogram in their method for robot localization (Kawabe et al., 2006; Rizzi & Cassinis, 2001;
Ulrich & Nourbakhsh, 2000). These research works previously verified that colour can be
use as the features in mobile robot localization. However, unlike those studies, we examine
all the colours in an image, and use their dispositions, rather than histograms, as features.
In examining the colour, CIE XYZ colour scheme is use as it can be indicated in x and y
numerical value model. CIE XYZ considered the tristimulus values for red, green, and blue
to be undesirable for creating a standardized colour model. They used a mathematical
formula to convert the RGB data to a system that uses only positive integers as values.
In the proposed method, the CIE chromaticity diagram is separate into 8 colours with a non-
colouring space at the centre. It is regarded that those colours which are located in the same
partition as the identical colour. The separation of chromaticity diagram is shown in Fig. 5.

0.8

0.80 x

y

0.8

0.80 x

y

y=22.667x-6.715
y=2.867x-0.578

y=1.290x-0.168

y=9.000x+3.098

y=2.455x+1.070

y=0.409x+0.180

(x-0.31)+(y-0.31)=(0.066)
2 22

y=0.633x+0.504

y=0.450x+0.168

0.8

0.80 x

y

0.8

0.80 x

y

y=22.667x-6.715
y=2.867x-0.578

y=1.290x-0.168

y=9.000x+3.098

y=2.455x+1.070

y=0.409x+0.180

(x-0.31)+(y-0.31)=(0.066)
2 22

(x-0.31)+(y-0.31)=(0.066)
2 22

y=0.633x+0.504

y=0.450x+0.168

Fig. 5. Separating the chromaticity diagram into 8 colour partitions

Colours in an image are considered black when the lightness of the colour is low. It is
necessary to take these circumstances into consideration when applying colour features.
Therefore, luminosity L is applied to classify between black and the primary colour of each
partition in the separated chromaticity diagram. L is presented as follow;

 L = 0.299R + 0.597G + 0.114B (1)

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

37

We also use the luminosity to classify the non-coloring space into white, grey and black
color as we learned that the degree in lightness in the non-coloring space is changing
gradually from white to black through grey color.
L≥50 is classify as white and black for L<35 at the non-coloring space of x=0.31 and y=0.31.
Grey color is considered when 50>L>35. For other partitions, black color is considered when
L≤10. The value for L in this approach is determined empirically.
Formulating a simple way using the details of colour information, by roughly separating the
colours into 11 classifications as explained above is considered.
Pixels whose colours fall into one colour domain are considered to have the same colour.
Through this, the colour disposition in a captured image is evaluated based on area ratio in
the entire image and coordinates of the centre of area (x and y coordinates) of each 10
colours in the entire image, which means total of 30 data of visual features can be acquire
from colour features.

5.2 Shape features
A shape is made when the two ends of a line meet. Some shapes have curved lines while
other shapes may have straight lines. For example, a wheel has a shape made from a curved
line. One kind of shape is called geometric. Geometric shapes are simple shapes that can be
drawn with straight lines and curves, for example a desk. The work in this research study is
dealing with lines and points which are connected through the lines, in term of shape
feature.
Edge detection methods are used as a first step in the line detection process. Edge detection
is also used to find complex object boundaries by marking potential edge points
corresponding to places in an image where rapid changes in brightness occur. After these
edge points have been marked, they can be merged to form lines and object outlines.
In the proposed approach, the edge extraction is carried out based on a simple gradient
operation using Robert operator. The original colour image is converted to gray level and
then normalized so that the range of gray value is within [0,255]. From this, lines in an
image can be extracted through the edge extraction process.

Fig. 6. Extracting lines and connecting points

Advances in Robot Navigation

38

When further image processing done on the extracted edges, points which are connected
through the lines can be extracted and together with the extracted lines, they can be use as
information to recognize a place. The processes on extracting the points include noise
elimination, expansion and finish up with a thinning process. These processes can be seen in
Fig. 6. From the extracted connecting points and lines, it is able to acquire 2 data of visual
features, which consist;
• Ratio of the lines in the entire image
• Ratio of the connecting points in the entire image

5.3 Visual features data
An example of colour separation work and shape (lines and connecting points) extraction
work which is done on an image is shown in Fig. 7.

 Original image Color separation Shape extraction

Fig. 7. Example of colour separation work and shape extraction work carried out on an
image

Based on the extraction process which explained earlier, each captured image (either for
the database data or for the position identification process) will produce a set of visual
features data after going through the features extraction processes. The visual features data
possess a total of 35 data where 33 data are from the colour features and another 2 data are
from the shape features data. The data set can be seen in Table 2. C in Table 2 is colour area
ratio, x and y are the coordinates of the colour area ratio, while S is representing the shape
features.

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9]
y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7] y[8] y[9]

S[1] S[2] S[3] S[4] S[5] S[6] S[7] S[8] S[9] S[10]
S[11]

Table 2. Architecture of the visual features data

6. Evaluation system
Neural networks (NN) are about associative memory or content-addressable memory. If content
is given to the network, then an address or identification will be return back. Images of
object could be storage in the network. When image of an object is shown to the network, it
will return the name of the object, or some other identification, e.g. the shape of the object.

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

39

A NN is a massive system of parallel-distributed processing elements (neurons) connected
in a graph topology. They consist of a network of processors that operate in parallel. This
means they will operate very fast. To date, the most complex NN that operate in parallel
consist of a few hundred neurons. But the technology is evolving fast. To recognize images,
one needs about one processor per pixel. The processors, also called neurons, are very
simple, so they can be kept small.
NN will learn to associate a given output with a given input by adapting its weight. The
weight adaptation algorithm considered here is the steepest descent algorithm to minimize a
nonlinear function. For NN, this is called backpropagation and was made popular in
(Mcclelland et al., 1986; Rumelhart et al., 1986). One of the advantages of the
backpropagation algorithm, when implemented in parallel, is that it only uses the
communication channels already used for the operation of the network itself. The algorithm
presented incorporates a minimal amount of tuning parameters so that it can be used in
most practical problems. Backpropagation is really a simple algorithm, and it has been used
in several forms well before it was invented.
NN is recommended for intelligent control as a part of well known structures with adaptive
critic. Recently, much research has been done on applications of NNs for control of
nonlinear dynamic processes. These works are supported by two of the most important
capabilities of NNs; their ability to learn and their good performance for the approximation
of nonlinear functions. At present, most of the works on system control using NNs are based
on multilayer feedforward neural networks with backpropogation learning or more efficient
variations of this algorithm.

Fig. 8. Multilayer perceptron neural network

Essentially, NN deals with cognitive tasks such as learning, adaptation, generalization and
optimization. NN improve the learning and adaptation capabilities related to variations in

Advances in Robot Navigation

40

the environment where information is qualitative, inaccurate, uncertain or incomplete. The
processing of imprecise or noisy data by the NN is more efficient than classical techniques
because NN are highly tolerant to noises.
Furthermore, evaluation using NN will make recognition process robust and decreases
the computational cost and time. NN offer a number of advantages, including requiring
less formal statistical training and the availability of multiple training algorithms. With
this consideration, NN has been choose in the proposed approach as the computational
tool to evaluate the similarity between images captured during learning and localization
phase.
In this work, a stratum type of multilayer perceptron NN as shown in Fig. 8 is used as the
computation tool. The 4 layers NN is used where the number of input layer depends on the
number of combination data between colour features and shape features, and the unit
number of each middle layer is depends on the number of input data.

6.1 Instructor data
In order to let the robot in the proposed approach achieve a sufficiently cursory and stable
recognition during the navigation, if the robot arrives in the proximity around the centre
of the memorized node, the robot must be able to identify that it has reached the node. It
is important to provide each node with a domain of area which can be identified by the
robot.
For that, a set of the instructor data is need to be provided with consideration that the robot
will be able to localize itself within a certain area around each place, rather than the exact
centre of the place. The robot is assign to capture few images around the centre of the node
during the recording run. From the captured images, visual features data are extracted.
Data taken at all nodes along the expected path is used as the instructor data for the NN.
The back-propagation learning rules are then used to find the set of weight values that will
cause the output from the NN to match the actual target values as closely as possible.
Standard back-propagation uses steepest gradient descent technique to minimize the sum-of
squared error over instructor data.

7. Motion control system design
To navigate along the topological map, we still have to define a suitable algorithm for the
position and orientation recognition in order to let the robot move on the true expected
path. This is mainly due to the inconsistency of the floor surface flatness level of where the
robot is navigating, that might cause to large error in robot displacement and orientation
after travelling for a certain distance.
In this work paper, we introduce a new method for mobile robot navigation, where the
robot recognizes its own orientation on every step of movement through NN, using the
same method for position recognition. In the proposed method, NN data for orientation
recognition is prepared separately with NN data for the position recognition. By separating
the NN into 2 functions, the width of the domain area for position recognition can be
organized without giving influence to the orientation recognition. Furthermore, it is
believed that through this, extensively efficient orientation recognition is achievable.
As mentioned earlier in is paper, in the proposed approach the robot need to conduct a
recording run first to capture images for instructor data collection. The robot will be brought

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

41

to the environment where it will have to navigate. At each selected node, the robot will
allow to capture images to prepare instructor data and NN data for both position and
orientation recognition. Topological map of the environment is prepared as soon as the
recording run is completed.
Next, when the robot performs autonomous run in the environment, visual features
extracted from the captured image is fed through the NN for position recognition first. This
recognition operation will be based on the NN data prepared for the position recognition. If
the result shows that the robot is not arriving near the target node yet, the orientation
recognition process will be executed. The robot will apply the same visual features to each
NN data of 5 different directions of the target node. This process is illustrated in Fig. 9. The
robot will need to capture only 1 image at each movement which will help to improve the
robot navigation time.

Fig. 9. NN evaluation against NN data of the 5 different directions

From the results produced by the 5 NN data, the robot will be able to determine its current
progress direction by computing the median point of the results. An example of this
evaluation method is demonstrated by Fig. 10. After the current progress direction is
understood, the robot will calculate the difference in angle between target node and current
progress direction, and correct its direction towards the target node. The same procedure is
repeated until the robot able to recognize that it is within the domain of the target node and
stop. This exercise will help keeping the robot on the true expected path. Through this, the
robot will able to move on the path to the target destination. Fig. 11 presents an algorithm of
the robot movement from TNm (target node of m order) to TNn including the orientation
recognition process.

7.1 Positioning control
At every step of the robot movement, the robot will perform a self-localization task first in
order to determine whether it has reached the target node or not. In order to perform the
self-localization task, the robot can simply capture one image and feed the extracted visual
features into the NN. Based on our empirical studies, we found out that the NN output is
gradually increasing when the robot is approaching towards the target node.
The work in this research study does not put aim on letting the robot to perform a precise
localization task. Therefore, when preparing the instructor data for NN of each node, a fact
that the robot will be able to localize itself within a certain area around each node, rather
than the exact centre of the node, need to be considered. This is necessary to ensure that the
robot will not stop rather far from the centre of the node. Thus it will help the robot to avoid
such problems like turning earlier than expected at a corner place which might cause a crash
to the wall.

Advances in Robot Navigation

42

Fig. 10. Evaluation method for current progress direction

Fig. 11. Navigation algorithm consists of robot movement from a TNm to TNn

To be able to get a sufficiently robust localization output, the robot is arranged to capture 3
images around the centre of each corresponding nodes. 1 image is captured at the centre of
the node and the other 2 images are about 5mm to the left and right from the centre, as
shown in Fig. 12 (a). We believe that the domain area of the node which help the robot to
robustly identify the node, will be constructed in this way.
It is important to evaluate the ability of the robot on recognizing its own position
(localization) at around the specified nodes, before the robot is put to navigate in the real
environment. Tests were conducted at 3 places (nodes) in a corridor environment to see how
a domain of area for localization exists. The robot is moved manually every 5 cm between -
80 and 80 cm on the X, Y, Zr and Zl axis of the place midpoint as shown in Fig. 12 (b). The
robot is also rotated by 5 degree in an angle range between -60 and 60 degree as depicted in
Fig. 12 (c). The result is presented in Fig. 13.

Orientation Recognition

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

43

Fig. 12. (a) Positions where the image of instructor data is captured. (b)(c) Robot moves
along each X, Y Zr, Zl and R axis of the place midpoint to evaluate the domain around the
place

Fig. 13. Domain area acquired at the 3 places; (a) Place 1, (b) Place 2, (c) Place 3

7.2 Localization assessment
A manual localization experiment was performed in order to see the ability of the robot to
recognize its own position and thus localize the selected nodes. The experiment took place
at the 3rd floor corridor environment of the Mechanical Engineering Department building in
our university (Fig. 14). In this experiment, the localization is carried out against all the 3
nodes.

Fig. 14. Experiment layout of the corridor environment with the selected 3 nodes

Advances in Robot Navigation

44

After the instructor data is fed into NN for NN data preparation, the robot was brought
back to the corridor and manually moved to capture image at every 15mm from a starting
position which is about 150cm away from the Node 1 (see Fig. 14) until the last position
which is about 150cm ahead of Node 3. All the captured images are tested against NN data
of each 3 nodes.
The result of the localization experiment is shown in Fig. 15 (the graph with blue color). A
localization is considered achieved when NN output is higher than 0.7 (red line in the result
graph).

Fig. 15. Result of the test images localization test against NN data of each node; (a) Output
from Node 1 NN, (b) Output from Node 2 NN, (c) Output from Node 3 NN

There are some errors occurred in the result against NN data of Node 2, where images
around distance of 1200～1800cm mistakenly responded to the NN of Node 2 (Fig. 15 (b)).
The same phenomenon can be seen at the distance of about 3000～3600cm from the starting
point.
The set of instructor data described in previous section does not result in any particular
width, depth, and shape of the domain area for position recognition. Even though we do not

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

45

aim at the exact center of the node, it is desirable to have a way to somewhat control the size
and shape of the domain area so that it is more compact and the robot will be able to
converge and stop as much nearer as possible to the center of the node. In fact, the
unnecessary mis-recognitions as occurred in the localization result against NN data of Node
2 (Fig. 15 (b)), should be prevented. The idea is to add few instructor data to the current
method of preparation, which is believed will reduce the NN output just outside the desired
area.
After some preliminary tests, result of the tests indicated that if 2 instructor data of images
taken at distanced points of front and back from the center of the node, is added, and
trained the NN to output 0.1 for them, the localization domain of the node will be less
smaller (Fig. 16). However, distance of the additional data is different for each node to
obtain the best domain area for localization. It should be at 90cm for Node 1, 100cm for
Node 2 and 30 cm for Node 3. Localization results against NN data of the new method of
instructor data is shown in purple graph of Fig. 15.

Fig. 16. New method of acquiring instructor data; additional data whose output is set to 0.1
assigned at distanced points of front and back from the centre of the node

As a conclusion to this result, the width, depth and shape of the domain area might be
suffering by influences from the environment condition. A different method for preparing
the instructor data (with unfixed distance of additional data which trained to output 0.1)
might be necessary for different nodes even in the same environment. The shape and the
width of the domain area are not identical on every places. They vary and depend much on
the environment condition. For example when setting a place at a corner in the corridor, it is
necessary to put a consideration on the width of the domain area in order to avoid a
problem where the robot turns earlier and crashes into the wall. Furthermore, to let a robot
navigate in a narrow environment, it may be necessary to provide a smaller domain area of
each place.

Advances in Robot Navigation

46

7.3 Orientation control
When the robot is navigating through the environment, it is important for the robot to know
its own moving direction in order to move on the true expected path. By knowing its own
moving direction, the robot will be able to correct the direction towards the target
destination.
In the approach which is proposed in this research study, visual features from the image
captured at each step of the robot movement will be fed into the 5 NN data of different
directions of the target destination (node). The visual features are the same features used for
the position recognition. From the output results of the 5 NNs, the robot will be able to
determine its current moving direction.
To prepare the instructor data and NN data for the orientation recognition, the robot is
arranged to capture 5 images as shown in Fig. 17; 1 image at the centre and 1 image each to
forward and backward from the centre along the x and y axis. For each node, the instructor
data images are captured on 5 different directions during the recording run phase, as
depicted in Fig. 18. A set of instructor data, which consist of visual features extracted from
the images is prepared for each direction. The instructor data comprises 5 sets of features
data of the direction whose output is set to 1, and 1 set of features data from each other
directions whose output is set to 0. The instructor data are then going through a learning
process in the NN to obtain NN data. 5 sets of NN data in total are prepared for each node
in an environment.

 Target Node Other
 (Direction 0o) Direction

Fig. 17. Positions where images for instructor data are captured for orientation recognition

Fig. 18. Preparing the instructor data for orientation recognition of 5 different directions

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

47

Fig. 19. Results of recognition capability against NN for orientation recognition in which
distance for images captured at x axis is fixed

Advances in Robot Navigation

48

In order to recognize the finest distance for the 4 images on the x and y axis, a series of tests
have been conducted at the Node 3 of the corridor environment (see Fig. 14). The test has
been divided into two stages where in the first stage, 2 images of x axis are fixed to the
distance of 30mm from the centre. As for the y axis, the 2 images are captured on every
10mm between distances of 30mm to 100mm, which means 8 sets of instructor data are
prepared. After the instructor data is fed into NN for NN data preparation, a set of test
images have been captured at every 15mm from a starting position which is about 4650cm
far from the node. The output results of the test images which are tested against each NN
data are shown in Fig. 19.
The results show that NN data which consists of instructor data images captured at 80mm
from the centre of the node on the y axis produced the best recognition result. The test
images output is mostly constant above 0.7 from a distance of about 4000cm, with few
failure recognitions happened. With this condition, it is believed that mobile robot will be
able to determine the current progress direction from as far as 40m from the centre of the
node.
Next, in the second stage of the test, the 2 images on the y axis have been fixed to the
distance of 80mm from the centre of the node. This is appropriate to the result of the first
stage test. Images have been captured at 4 distances of 5mm, 10mm, 15mm and 30mm on x
axis. 4 sets of instructor data and NN data are prepared. Using the same set of test images
from the first stage test, a series of tests have been conducted against the 3 sets of NN data.
The results which presented in Fig. 20 show that NN data with instructor data images
captured at the distance of 30mm produced the finest result.

Fig. 20. Results of recognition capability against NN for orientation recognition in which
distance for images captured at y axis is fixed

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

49

8. Navigation experiments
Navigation experiments have been scheduled in two different environments; the 3rd floor
corridor environment and the 1st floor hall environment of the Mechanical Engineering
Department building. The layout of the corridor environment can be seen in Fig. 14 and for
the hall environment, the layout and representative images is presented in Fig. 21.
The corridor has been prepared with a total of 3 nodes separated from each other about
22.5m. The total length of the corridor is about 52.2m with 1.74m in width. Meanwhile, in
the hall environment, 5 nodes have been arranged. Distance between each node is vary,
where the longest distance is between node 2 and node 3 which is about 4 meter as shown in
Fig. 21.

Fig. 21. Experiment layout of the hall environment with representative images of each node

8.1 Experimental setup
For the real-world experiments outlined in this research study, the ZEN360 autonomous
mobile robot was used. It is equipped with a CCD colour video camera. The robot system is
explained in section 4. Each image acquired by the system has a resolution of 320 x 240.
The robot is scheduled to navigate from Node 1 to Node 3, passing through Node 2 at the
middle of the navigation in the corridor environment. Meanwhile, in the hall environment,
the robot will have to navigate from Node 1 to Node 5 following the sequences of the node,
and is expected to perform a turning task at most of the nodes.
The robot was first brought to the environments and a recording run has been executed. The
robot is organized to capture images in order to supply environmental visual features for
both position and orientation identification. The images were captured following the
method explained in section 7.1 and 7.3, at around each specified nodes. Then, the robot
generated a topological map and the visual features were used for training NNs.
After the recording run, the robot was brought once again to the environments to perform
the autonomous run. Before start moving, the robot will identify its current position and
based on the input of target destination, it will then plan the path to move on. Path planning

Advances in Robot Navigation

50

involves determining how to get from one place (node) to another, usually in the shortest
manner possible. The work in this research study does not deal with this problem explicitly,
though the topological map produced can be used as input to any standard graph planning
algorithm.
A number of autonomous runs were conducted to see the performance of the proposed
navigation method. In the experiments conducted at the corridor, the robot navigates from
Node 1 and while moving towards Node 2, the robot corrects its own orientation at each
step of movement based on the result of a comparison between visual features of the
captured image against the 5 directions NN data of Node 2. The same procedure is used for
a movement towards Node 3 from Node 2. The robot is set to localize itself at each node
along the path during the navigation. An identical process is employed by the robot when
navigating in the hall environment, where it starts navigating from Node 1 to Node 2, and
followed by Node 3 and 4 before finished at the Node 5.

8.2 Experiment results
The result of the navigation experiments are displayed in Fig. 22 and Fig. 23. The robot
successfully moved on the expected path towards Node 3 in each run of the result in Fig. 22.
Even though at some points, especially during the first run test, the robot moved slightly
away from the expected path on the centre of the corridor (to the right and left), it still came
back to the path. The results demonstrated the proposed method to be asymptotically
dexterous as the robot displacement in x axis along the expected path during the navigation
is small.
Simultaneously, the experiments conducted at the hall environment are producing
successful results as well (Fig. 23). The robot was able to navigate along the expected path,
identified Node 2, 3 and 4 and turned safely towards the next node. Incidentally, after
navigating half of the journey between Node 2 and Node 3 in the second run, the robot
movement fell out from the path (to the left). Nevertheless, it still accomplished to move
back to the path just before recognizing Node 3. This proved that the robot is able to
determine its own moving direction and correct it towards the target.
The localized positions were very much near to the centre of the nodes except for Node 4
where the robot identified the node a bit earlier. The environmental factor surrounding
might give influence to the localization performance that caused the robot to localize the
node slightly far before reaching near the node. As the node is assigned quite near to the
door at the north side of the hall environment, and furthermore the door width is quite
large, there are possibilities that sunlight from the outside might entering the door and
affected the robot localization performance. In fact, the robot is facing directly towards the
door when navigating from Node 3 to Node 4. Although the discussed factors may give
influences to the robot localization performance, the robot is still able to turn to the right
successfully and move towards the correct path and arrived at Node 5, safely and
successfully.
As an overall conclusion, the navigation results proved that the proposed navigation
components have successfully operating properly under experimental conditions, allowing
the robot to navigate in the environments while successfully recognize its own position and
the direction towards the target destination. The robot is able to control its own posture
while navigating and moved along the expected path without losing the direction to the
target destination.

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

51

Fig. 22. Results of the navigation experiment conducted at the corridor environment

Advances in Robot Navigation

52

a) Experimental result; blue path – first run, red path – second run

D E F G H

A N M L K

B

C

J

I

A
B

C

D E F

G
H

I

J

K
L

MN

b) Navigation sceneries at selected places

Fig. 23. Result of the navigation experiment conducted at the hall environment

Node 2

Node 1

Node 3

Node 4 Node 5

Vision-only Motion Controller for Omni-directional Mobile Robot Navigation

53

9. Conclusion
This chapter was concerned with the problem of vision-based mobile robot navigation. It
built upon the topological environmental representation described in section 2.1. From the
outset of this work, the goal was to build a system which could solve the navigation
problem by applying a holistic combination of vision-based localization, a topological
environmental representation and a navigation method. This approach was shown to be
successful.
In the proposed control system, NN data is prepared separately for place and orientation
recognition. By separating the NN data of place and orientation recognition, the navigation
task was superbly achieved without any effect caused by the recognition domain area. This
is mainly due to the fact that the width of the domain area for orientation recognition is
practically wide under the method of preparing the instructor data as explained in section
7.3. At the same time, the width of domain area for position recognition is small in order to
control the width and to prevent from robot stop slightly early before reaching certainly
near around the target destination (node).
Furthermore, results from several navigation experiments lead the research work to identify
a new way of preparing the instructor data for position recognition and hence improve the
efficiency of localization process during navigation. With the new preparation method, it is
believed that the domain area for localization of selected node can be control and the width
could be smaller. This condition will help to prevent for early position recognition and help
the robot to stop in somehow much more nearer to the centre of the node. Moreover,
recognizing node at nearer point, it will help the robot to avoid other problems such as
turning to early and crash to wall etc. at a node which is selected at a junction. In fact, the
new instructor data acquiring method will help to reduce burdens on the end user during
the recording run.

10. References
Asama, H.; Sato, M.; Kaetsu, H.; Ozaki, K.; Matsumoto, A. & Endo, I. (1996). Development of

an Omni-directional Mobile Robot with 3 DoF Decoupling Drive Mechanism,
Journal of the Robotics Society of Japan (in Japanese), Vol.14, No.2, pp. 249-254, 1996.

Burrascano, P.; Fiori, S.; Frattale-Mascioli, F.M.; Martinelli, G.; Panella, M.; & Rizzi, A.
(2002). Visual Path Following and Obstacle Avoidance by Artificial Neural
Networks, In "Enabling Technologies for the PRASSI Autonomous Robot" (S. Taraglio
and V. Nanni, Ed.s), ENEA Research Institute, pp. 30-39, 2002.

Geodome, T.; Tuytelaars, T.; Van Gool, L.; Vanacker, G.; & Nuttin, M. (2005).
Omnidirectional Sparse Visual Path Following with Occlusion-robust Feature
Tracking, Proceedings of the 6th Workshop on Omnidirectional Vision, camera Networks
and Nonclassical Cameras in conjunction with ICCV, 2005.

Kawabe, T.; Arai, T.; Maeda, Y.; & Moriya, T. (2006). Map of Colour Histograms for Robot
Navigation, Intelligent Autonomous Systems 9, pp. 165-172, 2006.

Mariottini, G.; Alunno, E.; Piazzi, J.; & Prattichizo, D. (2004). Epipole-based Visual Servoing
with Central Catadioptric Camera, Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 497-503, 2005.

Advances in Robot Navigation

54

McClelland, J.L.; Rumelhart, D.E.; & the PDP Research Group (1986). Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 2,
Psychological and Biological Models, MIT Press, Cambridge, Massachusetts, 1986.

Meng, M. & Kak, A.C. (1993). Mobile Robot Navigation Using Neural Networks and
Nonmetrical Environment Models, IEEE Control Systems Magazine, Vol.13, No.5, pp.
30-39, 1993.

Morales, Y.; Carballo, A.; Takeuchi, E.; Aburadani , A.; & Tsubouchi, T. (2009). Autonomous
Robot Navigation in Outdoor Pedestrian Walkways, Journal of Field Robotics, Vol.26,
No.2, pp. 609-635, 2009.

Na, Y.K. & Oh, S.Y. (2004). Hybrid Control for Autonomous Mobile Robot Navigation Using
Neural Network based Behavior Modules and Environment Classification, Journal
of Autonomous Robots, Vol.15, No.2, pp. 193-206, 2004.

Park, I. & Kender, J.R. (1995). Topological Direction-giving and Visual Navigation in Large
Environments, Journal of Artificial Intelligence, Vol.78, No.1-2, pp. 355-395, 1995.

Pomerleau, D.A. (1989). ALVINN: An Autonomous Land Vehicle in a Neural Network,
Technical Report CMU-CS-89-107, 1989.

Rizzi, A. & Cassinis, R. (2001). A Robot Self-localization System Based on Omnidirectional
Colour Images, Journal of Robotics and Autonomous Systems, Vol.34, No.1. pp. 23-38,
2001.

Rizzi, A.; Cassinis, R.; & Serana, N. (2002). Neural Networks for Autonomous Path-
following with an Omnidirectional Image Sensor, Journal of Neural Computing &
Applications, Vol.11, No.1. pp. 45-52, 2002.

Rumelhart, D.E.; McClelland, J.L.; & the PDP Research Group (1986). Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1,
Foundations, MIT Press, Cambridge, Massachusetts, 1986.

Swain, M. & Ballard, D. (1991). Colour Indexing, International Journal of Computer Vision,
Vol.7, No.1, pp. 11-32, 1991.

Ulrich, I. & Nourbakhsh, I. (2000). Appearance-based Place Recognition for Topological
Localization, Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 1023-1029, 2000.

Vassallo, R.F.; Schneebeli, H.J.; & Santos-Victor, J. (1998). Visual Navigation: Combining
Visual Servoing and Appearance Based Methods, Proceedings of the 6th International
Symposium on Intelligent Robotic Systems, pp. 137-146, 1998.

0

Application of Streaming Algorithms and DFA
Learning for Approximating Solutions to

Problems in Robot Navigation

Carlos Rodríguez Lucatero
Universidad Autónoma Metropolitana Unidad Cuajimalpa

México

1. Introduction

The main subject of this chapter is the robot navigation what implies motion planning
problems. With the purpose of giving context to this chapter, I will start making a general
overview of what is robot motion planning. For this reason, I will start giving some abstract
of the general definitions and notions that can be frequently found in many robot motion
planning books as for example (Latombe (1990)). After that I will talk about some robot
motion problems that can be found in many research articles published in the last fifteen
years and that have been the subject of some of my own research in the robot navigation field.

1.1 Robot motion planning and configuration space of a rigid body
The purpose of this section is to define the notion of configuration space when a robot is a
rigid object without cinematic and dynamic limitations. One of the main goals of robotics
is to create autonomous robots that receive as input high level descriptions of the tasks to
be performed without further human intervention. For high level description we mean to
specify the what task moreover than the how to do a task. A robot can be defined as a flexible
mechanical device equiped with sensors and controled by a computer. Among some domains
of application of these devices it can be mentioned the following:

• Manufacturing

• Garbage recolection

• Help to inabilited people

• Space exploration

• Submarine exploration

• Surgery

The robotics field started up big challenges in Computer Science and tends to be a source of
inspiration of many new concepts in this field.

1.2 Robot motion planning
The development of technologies for autonomous robots is in strong relationship with the
achievements in computational learning, automatic reasoning systems, perception and control

3

2 Will-be-set-by-IN-TECH

research. Robotics give place to very interesting and important issues such as the motion
planning. One of the concerns of motion planning is for example, what is the sequence of
movements that have to be performed by a robot to achieve some given objects configuration.
The less that can be hoped from an autonomous robot is that it has the hability to plan his
own motions. At first sight it seems an easy job for a human because we normally do it all the
time, but it is not so easy for the robots given that it has strong space and time computational
constrains for performing it in an computational efficient way. The amount of mathematical
as well as algorithmic that are needed for the implementation of a somehow general planner
is overhelming. The first computer controlled robots appear in the 60’s. However the
biggest efforts have been lead during the 80’s. Robotics and robot motion planning has been
benefitted by the thoretical and practical knowledge produced by the research on Artificial
Intelligence, Mathematics, Computer Science and Mechanical Engineering. As a consequence
the computational complexity implications of the problems that arise in motion planning can
be better grasped. This allow us to understand that robot motion planning is much more than
to plan the movements of a robot avoiding to collide with obstacles.
The motion planning have to take into account geometrical as well as physical and temporal
constrains of the robots. The motion planning under uncertainty need to interact with the
environment and use the sensors information to take the best decision when the information
about the world is partial. The concept of configuration space was coined by (Lozano-Perez
(1986)) and is a mathematical tool for representing a robot as a point in an appropiate space.
So, the geometry as well as the friction involved on a task can be mapped such configuration
space. Many geometrical tool such as the geometrical topology and algebra are well adapted
to such a representation. An alternative tool used frequently for motion planning is the
potential fields approach. The figures 1 and 2 are an example of a motion planning simulation
of a robot represented by a rectangular rod that moves in a 2D work space and with 3D
configuration space ((xi, yi) position in the plane,(θi) orientation). This simulation uses a
combination of configuration space planner and potential method planner.

Fig. 1. Robot motion planning simulation

1.3 Path planning
A robot is a flexible mechanical device that can be a manupulator, an articulated hand, a
wheled vehicule, a legged mechanical device, a flying platform or some combination of all
the mentioned possibilities. It has a work space and then it is subject to the nature laws. It is
autonomous in the sense that it has capability to plan automatically their movements. It is
almost impossible to preview all the possible movements for performing a task. The more
complex is the robot more critcal becomes the motion planning process. The motion planning

56 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 3

Fig. 2. Potential fields over a Voronoi diagram

is just one of the many aspects involved in the robot autonomy, the other could be for instance
the real time control of the movement or the sensing aspects. It is clear that the motion
planning is not a well defined problem. In fact it is a set of problems. These problems are
variations of the robot motion planning problem whose computational complexity depend
on the size of the dimension of the configration space where the robot is going to work, the
presence of sensorial and/or control uncertainties and if the obstacles are fix or mobile. The
robot motion navigation problems that I have treated in my own research are the following

• Robot motion planning under uncertainty

• Robot motion tracking

• Robot localization and map building

The methods and results obtained in my research are going to be explained in the following
sections of this chapter.

2. Robot motion planning under uncertainty

As mentioned in the introduction section the robot motion planning become computionally
more complex if the dimension of the configuration space grows. In the 80’s many
computationally efficient robot motion planning methods have been implemented for
euclidean two dimensional workspace case, with plannar polygonal shaped obstacles and
a robot having three degrees of freedom (Latombe et al. (1991)). The same methods worked
quite well for the case of a 3D workspace with polyhedral obstacles and a manipulator robot
with 6 articulations or degrees of freedom. In fact in this work (Latombe et al. (1991)) they
proposed heuristically to reduce the manipulators degrees of freedom to 3 what gives a
configuration space of dimension 3. By the same times it was proved in (Canny & Reif (1987);
Schwartz & Sharir (1983)) that in the case of dealing with configuration spaces of dimension
n or when obstacles in 2-dimensional work spaces move, the robot motion planning problem
become computationally untractable (NP − hard, NEXPTIME, etc.). All those results were
obtained under the hipothesis that the robot dont have to deal with sensorial uncertainties
and that the robot actions were performed without deviations. The reality is not so nice and
when those algorithms and methods were executed on real robots, many problems arised due
to the uncertainties. The two most important sources of uncertainties were the sensors and

57
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

4 Will-be-set-by-IN-TECH

the actuators of the robot. The mobile robots are equiped with proximity sensors and cameras
for trying to perform their actions without colliding on the walls or furniture that are placed
on the offices or laboratories where the plans were to be executed. The proximity sensors
are ultrasonic sensors that present sonar reflection problems and give unaccurate information
about the presence or absence of obstacles. In figure 3 it is shown a simulation example,
running over a simulator that we have implemented some years ago, of a mobile robot using
a model of the sonar sensors. The planner used a quadtree for the division of the free space. It
can be noticed in figure 3 that the information given by the sonar sensors is somehow noisy.

Fig. 3. Planner with sonar sensor simulation

The visual sensors present calibration problems and the treatment of 3D visual information
some times can become very hard to deal with. If we take into account these uncertainties
the motion planning problem become computationally complex even for the case of
2D robotic workspaces and configurations of low dimension (2D or 3D)(Papadimitriou
(1985);Papadimitriou & Tsitsiklis (1987)). The motion planning problems that appear due to
the sensorial uncertainies attracted many researches that proposed to make some abstractions
of the sensors and use bayesian models to deal with it (Kirman et al. (1991); Dean &
Wellman (1991); Marion et al. (1994)). In (Rodríguez-Lucatero (1997)) we study the three
classic problems, evaluation, existence and optimization for the reactive motion strategies in the
frame of a robot moving with uncertainty using various sensors, based on traversing colored
graphs with a probabilistic transition model. We first show how to construct such graphs for
geometrical scenes and various sensors. We then mention some complexity results obtained
on evaluation, optimization and approximation to the optimal in the general case strategies,
and at the end we give some hints about the approximability to the optimum for the case of
reactive strategies. A planning problem can classically be seen as an optimum-path problem
in a graph representing a geometrical environment, and can be solved in polynomial time
as a function of the size of the graph. If we try to execute a plan π, given a starting point s
and a terminating point t on a physical device such as a mobile robot, then the probability of
success is extremely low simply because the mechanical device moves with uncertainty. If the
environment is only partially known, then the probability of success is even lower. The robot
needs to apply certain strategies to readjust itself using its sensors: in this paper, we define
such strategies and a notion of robustness in order to compare various strategies. Concerning
the research that we have done in (Rodríguez-Lucatero (1997)), the motion planning under
uncertainty problem that interested us was the one that appears when there are deviations
in execution of the commands given to the robot. These deviations produced robot postion
uncertainties and the need to retrieve his real position by the use of landmarks in the robotic
scene. For the sake of clarity in the exposition of the main ideas about motion planning under

58 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 5

uncertainty, we will define formally some of the problems mentioned. Following the seminal
work of Schwartz and Sharir (Schwartz & Sharir (1991)), we look at the problem of planning
with uncertainty, and study its computational complexity for graph-theoretical models, using
the complexity classes BPP and IP. Given a graph with uncertainty, one looks at the
complexity of a path problem in terms of the existence of a strategy of expectation greater than
S (a threshold value). Such problems have been considered in (Valiant (1979);Papadimitriou
(1985)) with slightly different probabilistic models, and the problem is #P-complete in Valiant’s
model, and PSPACE-complete in Papadimitriou’s model.

2.1 Valiant’s and Papadimitriou’s model
Let G =< V, E > be an oriented graph of domain V with E ⊆ V2 the set of edges, and let
s, t ∈ V be given. Let p(e) be the probability that the edge e exists: p : E → [0, 1], and let S be
a numerical value, used as a threshold. The problem is to decide if the expectation to reach s
from t is greater than S.
In (Valiant (1979)) it is shown that this problem is #P-complete, i.e. can’t be solved in
polynomial time, unless some unlikely complexity conjectures were true.
This problem with uncertainty is PSPACE, although not PSPACE−complete. In
(Papadimitriou (1985)) a different probabilistic model is considered where the probability of
edge-existence is more complex. Let p : E.V → [0, 1]. p(e, v) is the probability that e exists,
when we are on v.
The problem DGR or Dynamic Graph Reliability is the decision problem where given G, s, t, S, p,
we look for the existence of a strategy whose probability of success is greater than S.
DGR is PSPACE-complete, and is the prototype of problems that can be approached as games
against nature.
In (Rodríguez-Lucatero (1997)), I considered a global model of uncertainty, and defined the
notion of a robust strategy. We then give simple examples of robust and non-robust strategies,
by evaluating the probability of success. This task can be quite complex on a large scene with
unknown obstacles, and hence we wanted to study strategies that are easy to be evaluated
and try to keep its level of performance by using sensors.
Under this colored graph model I defined the existence of one coloration and one Markovian
strategy denoted as EPU and obtained some complexity results.

2.2 The colored graph model
In our model, the free space is represented with a labeled hypergraph in which the vertices
are associated with both the robot’s state and the expected sensor’s measures in this state, and
the label edges indicates the recommended action for reaching a vertex from one another.

2.2.1 The coloration method
In (Kirman et al. (1991)) a model of sensors is used to relate the theoretical model with the
physical model. It is used for the description of specific strategies, which would reduce the
uncertainty in a planning system. Our approach is interested in the comparison of different
strategies, that include the ones described in (Kirman et al. (1991)).
Rather than using strictly quantitative measures from the sensors, we model with colors some
qualitative features in the environement. It can be the detection of a more or less close wall
from US sensors, the localisation of a landmark with vision .
So we defined for a graph G = (V, E):

• COLOR, a finite set of colors,

59
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

6 Will-be-set-by-IN-TECH

• clr : V → COLOR, the coloration of the vertices.

In the case clr is bijective, we talk about public uncertainty : after each move, though it
is uncertain, we know the exact position of the robot. Otherwise, we talk about private
uncertainty. This distinction is essential, because the complexity of the studied problems
depends on it.
When we want to represent a real scene using our model, we first proceed in a simple cell
decomposition of the free space. For simplicity, we are choosing right now to use a grid as
accessibility graph (generally 4 or 8- connected). Then we mark those cells with the measure
(i.e. the color) expected by the sensors, eventually using sensor data fusion as described later.

2.2.1.1 Ultrasonic sensors

As the few ultrasonic sensors of our robot are not very reliable, we first choose an extremly
simple model (1 in figure 4) with three different colors; the only thing we expect to detect is
a local information : we can observe either NOTHING, a WALL or a CORNER. Being more
confident, we then introduce an orientation criterion which bring us to a model (2 in figure 4)
with nine colors;

Model 1 : 3 colors Model 2 : 9 colors

Fig. 4. Some simple models of US sensors

Many variations can be obtained by integrating some quantitative measures in qualitative
concepts, like the colors previously described with a notion of close or far. For special types of
graphs and related problems, many models have been introduced, one of them was presented
in (Dean & Wellman (1991)),
Using the second model of coloration, we can obtain a scene such as figure 5. We first drew a
grid on which we have suppressed the vertices occupied by obstacles. We then drew the color
of the expected US measure on each vertex.

Fig. 5. A scene with two rooms and a door, using model 2 of US sensors

2.2.2 Moving with uncertainty
When executing an action, the new robot state can be different from the expected one. For this
reason we use a hypergraph: each edge determines in fact a set of possible arriving vertices,
with certain probabilities. The uncertainty is then coded by a distribution probability over the labeled
edges.

60 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 7

In (Diaz-Frias (1991)) we can find a more formal definition of this model, in which two kinds of
plans are considered: fixed plans and dynamical plans or strategies. In the rest of the section,
we review the notion of robust strategy and we discuss the probability of robustness.
On a graph G = (V, E), we define :

• LABEL, a finite set of basic command on G;
on a 4-connected graph, for instance, we can have :
LABEL = {STOP, EAST, NORTH, WEST,
SOUTH},

• lbl : V × LABEL → V ∨ {FAIL};

we then define the uncertainty on the moves by :

• δ : V × LABEL× V → [0, 1]; δ(vi, l, vj) is the probability beeing in vi ∈ V, executing the
command l ∈ LABEL, to arrive in vj ∈ V. We assume δ is really a probability function, i.e.
:

∀vi ∈ V, ∀l ∈ LABEL, ∑
vj∈V

δ(vi, l, vj) = 1

2/3

1/6

1/6

0 1

234

5

6 7 8

Fig. 6. An instance of the δ function : δ(0, EAST, 1) = 2
3 , δ(0, EAST, 2) = δ(0, EAST, 8) = 1

6
on an 8-connected grid.

2.2.3 Strategies
2.2.3.1 General case :

In the general case the strategies use his whole history for taking a decision. For more
information see (Marion et al. (1994)) . We define the history, which is a record of all the
actions and measures : h ∈ H ⊂ (COLOR× LABEL)∗. The history is first initialized with
clr(s); and then, during a realization, at the step t, the color of the current vertex is the last
element of the history.

Definition 1. A strategy with history, or H-strategy, is a function σH : H → LABEL.

2.2.3.2 Strategies without memory :

We then define two basic cases of strategies which are of interest because of their properties
in the case of public uncertainty, and also because they are easy to evaluate.

Definition 2. A Markov-strategy, or M-strategy, is a function σM :

σM : COLOR → LABEL

A Markov-strategy is a time-independent strategy. It depends only on the color of the current
vertex. In the case of public uncertainty, it is a function of the current vertex.

61
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

8 Will-be-set-by-IN-TECH

Definition 3. A T-strategy is a function σT :

σT : COLOR×N → LABEL

A T-strategy is a time-dependent strategy; It depends only of the color of the current vertex, and
the number of steps. remark : A notion of plan is often defined. It is a particular kind of

T-strategy which depend only of the time : σP : N → LABEL

For more details about other types of strategies more embeded that use a bounded memory
see (Marion et al. (1994)).

2.2.3.3 Strategies using history :

If the two different strategies described above are efficient in some cases (as we will see in a
further section, see section 4.2), other strategies using history can be more efficient. That is
why we define a new kind of strategy named D-strategy.
For a graph G = (V, E), a model of uncertainty δ, and a strategy σ, let’s define at step k :

• sk ∈ V the position and hk the history ; sk+1 is a function of G, δ, σ, hk , sk, and hk+1 =
hk ∪ (col(sk+1), σ(hk)).

• ∀v ∈ V, fhk
(v) = Pr(sk = v | hk), the probability of being in v at the step t, knowing the

history.

At the step k + 1, fhk+1
(v) is defined by :

[ξhk+1
(v) =

{
∑u∈V fhk

(u)δ(u, σ(hk), v) if col(v) = col(sk+1)
0 otherwise] [fhk+1

(v) =
ξhk+1

(v)

∑u∈V ξhk+1
(u)]

Let be Φ : H → [0, 1]|V|, the function which associate for all h, Φ(h) = fh the distribution over
the vertices. We note F = Φ(H).

Definition 4. A D-strategy is a function : σ : F ×N → LABEL

A D-strategy only depends on the time and the distribution over the vertices.

2.2.4 Criteria of evaluation of a strategy
2.2.4.1 Reliability :

We are first interested in reaching t from s with the maximal possible probability, but in a
limited time k :

R(σ, k) = Prob(s σ→ t | |h |≤ k)

We note, at the limit:
R(σ) = R(σ, ∞) = lim

k→∞
R(σ, k)

This criterion is essentially uses for M-strategy, for which we have means to compute this
value (see section 3.1).

Definition 5. A strategy σopt is R-k-optimal iff :

∀σ : R(σ, k) ≤ R(σopt, k)

Definition 6. A strategy σopt is R-optimal iff :

∀σ : R(σ) ≤ R(σopt)

62 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 9

2.3 Definition of the problems
Given G = (V, E), an uncertainty function δ, a coloration function clr, a command function
lbl, two points s, t ∈ G (resp. source and target), and a criterion C, let us consider the following
problem :

• PU, the decision problem
Output : 1, if there exists a strategy which satisfies the criterion, else 0.

• PUopt, the optimization problem
Output : the optimal strategy for the criterion.

And for a given strategy σ :

• PUσ, the evaluation problem
Output : the value C(σ).

3. M-strategies vs.T-strategies

3.1 The public uncertainty case
In that case T-strategy and M-strategy are interesting :

Theorem 1. A T-strategy R-optimal for a given k does exist and can be constructed in time polynomial
in k and the size of the input graph with uncertain moves.

Theorem 2. For every graph with uncertain moves and a source/target pair of vertices there exists an
R-optimal M-strategy.

Note that the first theorem consider finite time criterion, and the second one infinite time
criterion. (The demonstration of these theorems and the methods to construct those optimal
strategies can be found in (Burago et al. (1993)).
Using these criteria we can compare different types of strategies under an unified frame. In
(Marion et al. (1994)) we can find un exemple of graph where for a given number of steps
a T-strategy works better than an M-strategy. In this same paper we showed that we can
construct more involved strategies that can be more performants but harder to evaluate, so we
proposed the simulation as a tool for estimating the performances of this kind of strategies.

3.2 Example: Peg-in-hole
We assume that we have a robot manipulator with a tactil sensor in the end effector. This
sensor allows us to move compliantly over a planar surface. We suppose too that we have a
workspace limited by a rectangular frame, so we can detect with the fingers of the end effector
if we are touching the frame or an obstacle, by interpretation of the efforts in the fingers of the
end effector. The robotic scene is as follows:

Fig. 7. A scene for the Peg-in-hole

If we use a sensorial model of the tactil sensor in a similar way as we used for the ultrasonic
sensors we can obtain a colored graph representation like the next figure:

63
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

10 Will-be-set-by-IN-TECH

t s

1 2 3 4 5 6 7

5

 4

3

 2

1

Fig. 8. Associated colored graph the arrows represents the M-strategy actions

If we evaluate this M-stretegy for a number of steps k = 7 we obtain: R(σM, 20) = 0.16627 as
we can see this strategy is not performant even allowing a big number of steps. We can remark
too that the coloration is not bijective so we can’t distinguish between the limiting right frame
and the right face of the rectangular obstacle. So we can propose a T-strategy (a little variation
of the M-strategy) that for this color if k ≥ 5 we execute the action E instead of making N The
reliability for this new strategy is R(σT , 20) = 0.8173582 that makes a very big difference. In
the case of finite polynomial time, there may not be an optimal M-strategy as shown on figure
9. In this example, the uncertainty is public. The command are RIGHT, LEFT and STRAIGHT,
on the directed edges. The goal is to reach t from s in less than 6 steps. The moves are certain
except for some edges :

• δ(s, RIGHT, 4) = δ(s, RIGHT, 1) = δ(s, LEFT, 4) = δ(s, LEFT, 1) = 1
2 ,

• δ(8, LEFT, t) = δ(8, LEFT, trap) = 1
2 ,

An optimal strategy first choose RIGHT to arrive at 4 in one step; but in case it fails, it will
arrive there in four steps. An optimal M-strategy σM will always choose on vertex 4 :

• either LEFT, taking the risk not to arrive before the time is gone (6 steps maximum),

• either RIGHT, taking the risk to fall in the trap.

The optimal T-strategy σT will choose on vertex 4 :

• LEFT a (the safe way) if it arrive there in only one step,

• otherwise RIGHT (a more risky path).

Thus the probability of success of those two strategies are : [R(σM, 6) = 1
2 ≤ R(σT , 6) = 3

4]

s t

trap

1 2 3

4

5 6 7

8

Certain move uncertain move

Fig. 9. σT is optimal though σM is not.

64 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 11

3.3 The private uncertainty case
In the case of total uncertainty (i.e. all the vertices have the same color),

Theorem 3. It is NP− hard to decide if there exists a strategy which succeeds with probability 1.

Another result that we consider interesting concerns the approximability of this problem in
the case of total uncertainty, that we can state as:

Theorem 4. It is NP− hard to decide if there exists an approximate solution.

4. Complexity of the evalution problem

4.1 Evaluation in the general case
The computation of R(σ, k) for some strategy σ may be very hard. This can be shown by a
reduction of 3SAT to the evaluation problem. We represent F as a table. Let be:

F =
∧

1≤i≤m
∨

1≤j≤3 zi,j

a formula where zi,j are literals of the set

{x1, . . . , xn, x1, . . . , xn})
. His tabular representation is

z1,1 z2,1 . . . zm,1
z1,2 z2,2 . . . zm,2
z1,3 z2,3 . . . zm,3

where the height is 3 and the length is m (the i-th column corresponds to the i-th clause in the
formula). We say that two literals z1 et z2 are opposed iff z1 ⇔ z2. We assume that there is
not contradictory literals in a column. One path in F is an horizontal path P in the table build
taking one literal by column (clause), we mean that P is a list of literals as (z1,j1 , z2,j2 , . . . , zm,jm),
1 ≤ ji ≤ 3, 1 ≤ i ≤ m. We interpret this paths as truth value assignments. In the case that
a path have no pair of contradictory literals we say that is a model of the logic formula. The
paths without contradictions are named as opened otherwise closed.
In this way we can construct a graph as:

t
s

z11

z12

z13

z21

z22

z23

zm1

zm2

zm3

. . .

. . .

. . .

Fig. 10. Example multilayer graph for the reduction of 3SAT to PU

The triplets of vertex in the vertical sense represents the columns of the table. The dashed
lines are probabilistic transitions of the strategy σ, that is, when the strategy takes a dashed
line he arrives to one of the vertex in the next layer with a probability of 1/3 it doesn’t matter
what edge has been taken.
In the case of continue lines, they are safe lines, that is if the strategy takes it, she follows it
certainly. The strategy selects the edge seeing the walked path (i.e. a prefix of a path in F). If
at this moment the path is an opened one the strategy takes a dashed line (i.e. makes a random
mouvement), otherwise it takes a safe line going through the trap. If the strategy arrives to the

65
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

12 Will-be-set-by-IN-TECH

last layer by an opened path, then it transits to the goal by a safe line. We conclude that if F
satisfaied then R(σ, k) > 0 .
Before this result, the evaluation problem is a hard one in the general case. Even that we can
try to work with strategies that are easy to evaluate as the M-strategies and T-strategies.

4.2 Evaluation of M-strategy & T-strategy
Theorem 5. Computing R(σ, k) if σ is a M-strategy, or a T-strategy which stops in polynomial time
k , can be done in polynomial time (idem E(σ, k)).

proof : It follows from Markov chain theory : Let us note μk the distribution over the vertices at step k.
μ0(s) = 1.
A M-strategy σM can be seen as a transition matrix M = [mij]. If the decision of the M-strategy in i is l(i):
from i, move to j.

mik =

{
1 if k = j,
0 otherwise

We compute P = [pij] with : pij = δ(i, l(i), j) Then, ∀i ∈ N : μi+1 = Pμi and R(σM, k) = μk.

We can do the same thing with a T-strategy σT, except that in this case, the decision depends also of the
time : l(i, t). Then we define P(t) in the same way, and :
∀i ∈ N : μi+1 = P(i)μi and R(σT, k) = μk. �

Theorem 6. The problems of evaluating a M-strategy for a infinite time criterion can be solved in
polynomial time.

proof : An other result from Markov chain theory : we just compute the stationary distribution over the
vertices π (ie. solve Pπ = π). �

4.3 Definition of EPU and complexity
One other approach for trying to deal with this problem is to explore the posibility of working
with strategies that are easy to evaluate (M-strategies) and use some fixed amount of colours
for keeping his performance. In this section we deal with this problem and give some
complexity results about that.

Definition 7. Problem KNAPSACK: to find a subset of a set where each element is affected by two
values, one given by a size function s and the other given by a weight function v. The addition of all
the sizes in this sub-set must be lesser than a given value and the addition of the weights bigger than
another given value.
INPUT: U = {u1, . . . , un} a function s : u ∈ U → Z+ a function v : u ∈ U → Z+ two integers B
et K
OUTPUT: 1 if ∃U′ ⊂ U, such that ∑

u′∈U ′
s(u′) ≤ B and ∑

u′∈U ′
v(u′) ≥ K, and 0 otherwise.

Definition 8. EPU: problem of the existence of one coloration and one M-strategy given a fixed number
of colors and a threshold.
INPUT: G(V, E), s, t ∈ V, k, q ∈ Q, T, μ
OUTPUT: 1 if ∃clr : v ∈ V → {1, . . . , k} : ∃σM such that R(σM, T) ≥ q , and 0 otherwise.

Theorem 7. EPU is NP-complet

66 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 13

proof : We show it by a reduction of KNAPSACK to EPU. It belongs to NP because if we want to
obtain a M-strategy with T steps, given k colours and a threshold, we colour the graph randomly an
associate an action to each color. Based on this, we calculate a Markov matrix an we evaluate the strategy
in polynomial time. In this way we prouve that EPU ∈ NP.
The goal is to find a polynomial transformation of KNAPSACK to EPU. For this end we build 2 graphs
having n + 2 vertices as we show in the figure 11.

t
s

d

e

f

a

b

c

Fig. 11. Example of the graph for knapsack to EPU

We associate each graph to each restriction of KNAPSACK.
As it can be verified in the figure 11 we defined a graph that has one layer that contains n vertices that we
name selection points.
This layer associates each selection vertex to an element of the KNAPSACK set U. We have two additional
vertices s for the starting point and t for the goal. We draw n edges between s and each element of the
selection layer, and we assign a uniform probability 1/n to each one.
Similarly we define an edge going from each element of the selection layer to the goal vertex t. Then we
fix the number of steps T = 2, one for going from s to the selection layer an the other one for going from
the selection layer to the goal vertex t
We fix the nomber of available colors k to 2 because we want to interpret the selection of elements in U as
an assignement of colors and associate to each color one action. Next we define a probabilistic deviation
model in function of the associated weights of elements for the second restriction of KNAPSACK as
follows:

∀1 ≤ i ≤ B (u(i), t) ∈ Eμ1(u, σM(clr(u(i))), t) =
{

p1 = u(i)
V

1− p1 trap

As we can see we introduced a parameter V that represents the total weight of the set U. This give us
probability values between 0 and 1.
In the same way we define for the first restriction of KNAPSACK a probabilistic deviation model in
function of the sizes associated to each element of the U as follows:

∀1 ≤ i ≤ B (u(i), t) ∈ Eμ2(u, σM(clr(u(i))), t) =
{

p2 = s(i)
S trap

1− p2

As we can see we introduced a parameter S that represents the total size of the set U. This give us
probability values between 0 and 1.
We have 2 label actions : one for move to t and the other for stop. Next we relate the color selected and
the action move to t and the color not selected with the action stop.
For finishing the transformation we relate the thresholds q1 et q2 for each graph with the parameters of
the KNAPSACK as follows:

q1 =
K

n×V
and

67
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

14 Will-be-set-by-IN-TECH

q2 = 1− B
n× S

Remark : In the definition of the distribution μ1 we talked about a probability to get traped equal to
1− p, and a probability p to have succes in the mouvement. So we cant arrive to the goal since a vertex
coloured with non selected. The same is valid for μ2 too.
Before that we have for the first graph:
R1(σM, T) = ∑

π∈PATHS
Prob(π réalisation de σM) =

T

∑
i=0

n

∑
j=1

μ1(i, σM, j)

and for the second one:

R2(σM, T) = ∑
π∈PATHS

Prob(π réalisation de σM) =
T

∑
i=0

n

∑
j=1

μ2(i, σM, j)

So we can proclaim that it exists a subset for the KNAPSACK iff it exists a colouring clr and an associated
strategy σM that fullfils the performance q1 for the first graph an simultaneously q2 for the second one.
That is that we have shown that KNAPSACK⇒ EPU.
For showing the reduction in the oposite sense we say that if we have one colouring and an M−strategy
associated that fullfils the performace q1 and q2 en each graph then it exist a subset U‘ ⊂ U for
KNAPSACK. For this we only need to label vertex of the selection layer with one element of the U and
take the vertices that have a selected color. This gives a subset that works for KNAPSACK. In this way
we prouved that KNAPSACK⇐ EPU and we can proclaim that:

KNAPSACK⇔ EPU

�

This result show that EPU is a hard one but what is intresting is that KNAPSACK is one of
the rare problems that are NP-complet and at the same time arbitrarly approximable. That is
that KNAPSACK has a fully polynomial approximation schema (FPTAS). So if we can make
a special kind of transformation from EPU to KNAPSACK called L − reduction (for details
see (Papadimitriou & Yannakakis (1991)) and (Papadimitriou & Steiglitz (1982))), we can find
good approximations to the optimal for the EPU optimazing problem.

5. Robot motion tracking, DFA learning, sketching and streaming

Another robot navigation problem that has attracted my attention in the last six years has
been the robot tracking problem. In this problem we are going to deal with another kind
of uncertainty. The uncertainty on the setting of two robots that, one that plays de rôle of
observer and the other that of target. This problem has to do with other kind of uncertainty
that appears in robot navigation problems. The uncertainty on the knowledge of the other
reactions in a given situation. This situation arise when there are two or more robots or
agents in general that have to perform their tasks in the same time and to share the working
space. Many everyday life situations can be seen as an interaction among agents, as can
be to play football , to drive a car in Mexico city streets, or to play chess with your wife.
The robot tracking is not the exception. In the examples given above as well as in the robot
tracking case, the agents observe the actions taken by the other agents, and try to predict the
behaviour of them and react in the best possible way. The fundamental difference between
the examples that we have given and the robot tracking problem is that the agents in the
last case are robots and as consequence they are limited in computational power. Because of

68 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 15

that we proposed in (Lucatero et al. (2004)) to pose the robot tracking problem as a repeated
game. The main motivation of this proposal was that in many recent articles on the robot
tracking problem (La Valle & Latombe (1997) La Valle & Motwani (1997)) and (Murrieta-Cid
& Tovar (2002)) they make the assumption that the strategy of the target robot is to evade
the observer robot and based on that they propose geometrical and probabilistic solutions of
the tracking problem which consists on trying to maximize, by the observer, the minimal
distance of escape of the target. We feel that this solution is limited at least in two aspects.
First the target don’t interact with the observer so there is no evidence that the strategy of
the target will be to try to escape if it doesn’t knows what are the actions taken by the
observer. The second aspect is that even if it take place some sort of interaction between the
target and the observer, the target is not necessarily following an evasion strategy so this may
produce a failure on the tracking task. Because of that we proposed a DFA learning algorithm
followed by each robot and obtained some performance improvements with respect to the
results obtained by the methods used in (Murrieta-Cid & Tovar (2002)). In the last few years
many research efforts have been done in the design and construction of efficient algorithms
for reconstructing unknown robotic environments (Angluin & Zhu (1996);Rivest & Schapire
(1993);Blum & Schieber (1991);Lumelsky & Stepanov (1987)) and apply learning algorithms
for this end (Angluin & Zhu (1996);Rivest & Schapire (1993)). One computational complexity
obstacle for obtaining efficient learning algorithms is related with the fact of being a passive or
an active learner. In the first case it has been shown that it is impossible to obtain an efficient
algorithm in the worst case (Kearns & Valiant (1989);Pitt & Warmuth (1993)). In the second
case if we permit the learner to make some questions (i.e. to be an active learner) we can
obtain efficient learning algorithms (Angluin (1981)) . This work done on the DFA learning
area has given place to many excellent articles on learning models of intelligent agents as those
elaborated by David Carmel and Shaul Markovitch (Carmel & Markovitch (1996);Carmel &
Markovitch (1998)) and in the field of Multi-agent Systems those written about Markov games
as a framework for multi-agent reinforcement learning by M.L. Littman (Littman (1994)). In
(Lucatero et al. (2004)) we proposed to model the robot motion tracking problem as a repeated
game. So, given that the agents involved have limited rationality, it can be assumed that they
are following a behaviour controled by an automata. Because of that we can adapt the learning
automata algorithm proposed in (Carmel & Markovitch (1996)) to the case of the robot motion
tracking problem. In (Lucatero et al. (2004)) we assume that each robot is aware of the other
robot actions, and that the strategies or preferences of decision of each agent are private. It is
assumed too that each robot keeps a model of the behavior of the other robot. The strategy of
each robot is adaptive in the sense that a robot modifies his model about the other robot such
that the first should look for the best response strategy w.r.t. its utility function. Given that
the search of optimal strategies in the strategy space is very complex when the agents have
bounded rationality it has been proven in (Rubinstein (1986)) that this task can be simplified
if we assume that each agent follow a Deterministic Finite Automate (DFA) behaviour. In
(Papadimitriou & Tsitsiklis (1987)) it has been proven that given a DFA opponent model,
there exist a best response DFA that can be calculated in polynomial time. In the field of
computational learning theory it has been proven by E.M. Gold (Gold (1978)) that the problem
of learning minimum state DFA equivalent to an unknown target is NP-hard. Nevertheless
D. Angluin has proposed in (Angluin (1981)) a supervised learning algorithm called ID which
learns a target DFA given a live-complete sample and a knowledgeable teacher to answer
membership queries posed by the learner. Later Rajesh Parekh, Codrin Nichitiu and Vasant
Honavar proposed in (Parekh & Honavar (1998)) a polynomial time incremental algorithm for

69
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

16 Will-be-set-by-IN-TECH

learning DFA. That algorithm seems to us well adapted for the tracking problem because the
robots have to learn incrementally the other robot strategy by taking as source of examples the
visibility information and the history of the actions performed by each agent. So, in (Lucatero
et al. (2004)) we implemented a DFA learning that learned an aproximate DFA followed by
the othe agent. For testing the performance of that algorithm it was necesary the creation of
an automata for playing the role of target robot strategy, with a predefined behavior, and to
watch the learning performance on the observer robot of the target robot mouvements. The
proposed target robot behavior was a wall-follower. The purpose of this automata is to give
an example that will help us to test the algorithm, because in fact the algorithm can learn other
target automatas fixing the adequate constraints. The target automata strategy was simply to
move freely to the North while the way was free, and at the detection of a wall to follow it
in a clockwise sense. Besides the simplicity of the automata we need a discretization on the
possible actions for being able to build the automata. For that reason we have to define some
constraints. The first was the discretization of the directions to 8 possibilities (N, NW, W, SW,
S, SE, E, NE). The second constraint is on the discretization of the possible situations that will
become inputs to the automata of both robots. It must be clearly defined for each behavior
what will be the input alphabet to which will react both robots. This can be done without
modifying the algorithm The size of the input alphabet afect directly the learning algorithm
performance, because it evaluates for each case all possible course of action. So, the table
used for learning grows proportionaly to the number of elements of the input alphabet. It is
worth mentioning that in the simulation we used, to compare with our method, an algorithm
inspired on the geomety based methods proposed in (La Valle & Latombe (1997); La Valle &
Motwani (1997)) and (Murrieta-Cid & Tovar (2002)). In this investigation, we have shown
that the one-observer-robot/one-target-robot tracking problem can be solved satisfactorily
using DFA learning algorithms inspired in the formulation of the robot motion tracking as
a two-player repeated game and enable us to analyse it in a more general setting than the
evader/pursuer case. The prediction of the target movements can be done for more general
target behaviours than the evasion one, endowing the agents with learning DFA’s abilities.
So, roughly speaking we have shown that learning an approximate or non minimal DFA in
this setting was factible in polynomial time. The question that arises is, how near is the obtained
DFA to the minimal one ?. This problem can reduces to the problem of automata equivalece.
For giving an answer to this question we have used the sketching and streaming algorihms.
This will be developped in the following subsection.

5.1 DFA equivalence testing via sketch and stream algorithms
Many advances have been recently taking place in the approximation of several classical
combinatorial problems on strings in the context of Property Testing (Magniez & de Rougemont
(2004)) inspired on the notion of Self-Testing (Blum & Kannan S. (1995); Blum et al. (1993);
Rubinfeld & Sudan (1993)). What has been shown in (Magniez & de Rougemont (2004)) is
that, based on a statistical embedding of words, and constructing a tolerant tester for the
equality of two words, it is possible to obtain an approximate normalized distance algorithm
whose complexity don’t depend on the size of the string. In the same paper (Magniez
& de Rougemont (2004)) the embedding is extended to languages and get a geometrical
approximate description of regular languages consisting in a finite union of polytopes. As
an application of that its is obtained a new tester for regular languages whose complexity
does not depend on the automaton. Based on the geometrical description just mentioned it
is obtained an deterministic polynomial equivalent-tester for regular languages for a fixed

70 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 17

threshold distance. Computing edit distance between two words is an important subproblem
of many applications like text-processing, genomics and web searching. Another field in
Computer Science that where important advances recently have been taking place is that
of embeddings of sequences (Graham (2003)). The sequences are fundamental objects in
computer science because they can represent vectors, strings, sets and permutations. For
beeing able to measure their similarity a distance among sequences is needed. Sometimes
the sequences to be compared are very large so it is convenient to map or embed them in a
different space where the distance in that space is an approximation of the distance in the
original space. Many embeddings are computable under the streaming model where the data
is too large to store in memory, and has to be processed as and when it arrives piece by piece.
One fundamental notion introduced in the approximation of combinatorial objects context is
the edit-distance. This concept can be defined as follows:

Definition 9. The edit distance between two words is the minimal number of character substitutions
to transform one word into the other. Then two words of size n are ε-far if they are at distance greater
than εn.

Another very important concept is the property testing. The property testing notion introduced
in the context of program testing is one of the foundations of our research. If K is a class of
finite structures and P is a property over K, we wish to find a Tester, in other words, given a
structure U of K:

• It can be that U satisfy P.

• It can be that U is ε-far from P, that means, that the minimal distance between U and U’
that satisfy P is greater than .

• The randomized algorithm runs in O(ε) time independently of n, where n represent, the
size of the structure U.

Formally an ε-tester can be defined as follows.

Definition 10. An ε-tester for a class K0 ⊆ K is randomized algorithm which takes a structure Un of
size n as input and decides if Un ∈ K0 or if the probability that Un is ε-far from K0 is large. A class
K0 is testable if for every sufficiently small ε there exists an ε-tester for K0 whose time complexity is in
O(f (ε)), i.e. independent of n

For instance, if K is the class of graphs and P is a property of being colorable, it is wanted
to decide if a graph U of size n is 3-colorable or ε-far of being 3-colorable, i.e. the Hamming
distance between U and U’ is greater than ε · n2. If K is the class of binary strings and P is
a regular property (defined by an automata), it is wished to decide if a word U of size n is
accepted by the automata or it is ε-far from being accepted, i.e., the Edition distance between U
and U’ is greater than ε · n. In both cases, it exists a tester, that is, an algorithm in that case take
constant time, that depends only on and that decide the proximity of these properties. In the
same way it can be obtained a corrector that in the case that U does not satisfy P and that U
is not ε-far, finds a structure U’ that satisfy P. The existence of testers allow us to approximate
efficiently a big number of combinatorial problems for some privileged distances. As an
example, we can estimate the distance of two words of size n by means of the Edition distance
with shift, we mean, when it is authorized the shift of a sub-word of arbitrary size in one step.
To obtain the distance it is enough to randomly sample the sub-words between two words, to
observe the statistics of the random sub-words and to compare with the L1 norm. In a general
setting, it is possible to define distances between automata and to quickly test if two automata

71
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

18 Will-be-set-by-IN-TECH

are near knowing that the exact problem is NEXPTIME hard. By other side, an important
concept that is very important in the context of sequence embeddings is the notion of sketch.
A sketch algorithm for edit distance consit of two compression procedures, that produce a finger
print or sketch from each input string, and a reconstrucction procedure that uses the sketches
for approximating the edit distance between the to strings. A sketch model of computation can
be described informally as a model where given an object x a shorter sketch x can be made
so that compairing to sketches allow a function of the original objects to be approximated.
Normally the function to be approximated is the distance. This allow efficient solutions of the
next problems:

• Fast computation of short sketches in a variety of computing models, wich allow sequences
to be comapred in constant time and spaces non depending on the size of the original
sequences.

• Approximate nearest neighbor and clustering problems faster than the exact solutions.

• Algorithms to find approximate occurrences of pattern sequences in long text sequences in
linear time.

• Efficient communication schemes to approximate the distance between, and exchange,
sequences in close to the optimal amount of communication.

Definition 11. A distance sketch function sk(a, r) with parameters ε, δ has the property that for a
distance d(·, ·), a specified deterministic function f outputs a random variable f (sk(a, r), sk(b, r)) so
that

(1− ε)d(f (sk(a, r), sk(b, r)))

≤ f (sk(a, r), sk(b, r))

≤ (1 + ε)d(f (sk(a, r), sk(b, r)))

for any pairs of points a and b with probability 1− δ taken over small choices of a small seed r chosen
uniformly at random

The sketching model assumes complete access to a part of the input. An alternate model is
the streaming model, in which the computation has limited access to the whole data. In that
model the data arrive as a stream but the space for storage for keeping the information is
limited.

6. Applications to robot navigation problems
As I mentioned in section 5 one automata model based aproach for solving the robot motion
tracking has been proposed in (Lucatero & Espinosa (2005)). The problem consited in building
a model in each robot of the navigation behaviour of the other robot under the assumption
that both robots, target and observer, were following an automata behaviour. Once the
approximate behaviour automata has been obtained the question that arises is, how can be
measured the compliance of this automata with automata followed by the target robot ?. Stated
otherwise How can be tested that the automata of the target robot is equivalent to the one obtained by
the observer robot ? Is exactly in that context that the property testing algorithms can be applied
for testing the equivalence automata in a computationally efficient way. It is well known
that the problem of determining equivalence between automatas is hard computationally as
was mentioned in section 5. The map learning can be as well formulated as an automata
with stochastic output inferring problem (Dean et al. (1985)). It can be usefull to compare

72 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 19

the real automata describing the map of the environment and the information inferred by
the sensorial information. This can be reduced to the equivalence automata problem, and
for this reason, an approximate property testing algorithm can be applied. In (Goldreich
et al. (1996)) can be found non obvious relations between property testing and learnability.
As can be noted testing mimimics the standar frameworks of learning theory. In both cases
one given access to an unknown target function. However there are important differences
between testing and learning. In the case of a learning algorithm the goal is to find an
approximation of a function f ∈ K0, whereas in the case of testing the goal is to test that
f ∈ K0. Apparently it is harder to learn a property than to test it. (Goldreich et al. (1996))
it shown that there are some functions class which are harder to test than to learn provided
that NP �⊂ BPP. In (Goldreich et al. (1996)) when they speak about the complexity of random
testing algorithms they are talking about query complexity (number test over the input) as
well as time complexity (number of steps) and hey show there that both types of complexities
depend polynomially only on ε not on n for some properties on graphs as colorability, clique,
cut and bisection. Their definition of property testing is inspired on the PAC-learning model
(Valiant (1984)), so there it is considered de case of testers that take randomly chosen instances
with arbitrarly distribution instead of querying. Taking into account the progress on property
testing mentioned , the results that will be defined further can be applied to the problem
of testing how well the automata inferred by the observer robot in the robot motion tracking
problem solved in (Lucatero & Espinosa (2005)), fits the behaviour automata followed by the
target robot. The same results can be applied to measure how much the automata obtained
by explorations fits the automata that describes the space explored by the robot. Roughly
speaking, the equivalence ε-tester for regular languages obtained in (Fisher et al. (2004)),
makes a statistical embedding of regular languages to a vectorial statistical space which is
an approximate geometrical description of regular languages as a finite union of polytopes.
That embedding enables to approximate the edit distance of the original space by the ε-tester
under a sketch calculation model. The automata is only required in a preprocessing step, so the
ε-tester does not depend on the number of states of the automata. Before stating the results
some specific notions must be defined

Definition 12. Block statistics. Let w and w′ two word in Σ each one of length n such that k dived
n. Let ε = 1

k . The statitistics of block letters of w denoted as b − stat(w) is a vector of dimension

|Σ|k such that its u coordinate for u ∈ Σk (Σk is called the block alphabet and its elements are the

block letters) satisfies b− stat(w)[u]
de f
= Prj=1,...,n/k [w [j]b = u] Then b− sta(w) is called the block

statistics of w

A convenient way to define block statistics is to use the underlying distribution of word
over Σ of size k that is on block letter on Σk. Then a uniform distribution on block letters
w[1]b, w[2]b, . . . , w[n

k]b of is the block distribution of w. Let X be a random vector of size |Σ|k
where all the coordinates are 0 except its u-coordinate which is 1, where u is the index of the
random word of size k that was chosen according to the block distribution of w. Then the
expectation of X satisfies E(X) = b− stat(w). The edit distance with moves between two word
w, w′ ∈ Σ denoted as dist(w, w′) is the mininimal number of elementary operations on w to
obtain w′. A class K0 ∈ K is testable if for every ε > 0, there exists an ε-tester whose time
complexity depends only on ε.

Definition 13. Let ε ≥ 0. Let K1, K2 ⊆ K two classes. K1 is ε-contained in K2 if every but finitely
many structures of K1 are ε-close to K2. K1 is ε-equivalent to K2 if K1 is ε-contained in K2 and K2 is
ε-contained in K1

73
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

20 Will-be-set-by-IN-TECH

The following results that we are going to apply in the robotics field, are stated without
demonstration but they can be consulted in (Fisher et al. (2004)).

Lemma 1. .-

dist(w, w′) ≤
(

1
2

∣∣b− stat(w)− bstat(w′)
∣∣+ ε

)
× n

So we can embed a word w into its block statistics b− stat(w) ∈ �|Σ|1/ε

Theorem 8. For every real ε > 0 and regular language L over a finite alphabet Σ there exists an

ε-tester for L whose query complexity is O(
lg |Σ|

ε4) and time complexity 2|Σ|O(1/ε)

Theorem 9. There exists a deterministic algorithm T such that given two autimata A and B over a
finite alphabet Σ with at most m states and a real ε > 0, T(A, B, ε)

1. accepts if A and B recognize the same language

2. rejects if A and B recognize languages that are not ε-equivalent. Moreover the time complexity of
T is in m|Σ|O(1/ε)

Now based on 9 our main result can be stated as a theorem.

Theorem 10. The level of approximability of the inferred behaviour automata of a target robot by an
observer robot with respect to the real automata followed by the target robot in the motion tracking
problem can be tested efficiently.

Theorem 11. The level of approximability of the sensorialy inferred automata of the environment by
an explorator robot with respect to the real environment automata can be tested efficiently.

7. Application of streaming algorithms on robot navigation problems

The starting premise of the sketching model is that we have complete access to one part of
the input data. That is not the case when a robot is trying to build a map of the environemet
based on the information gathered by their sensors. An alternative calculation model is the
streaming model. Under this model the data arrives as a stream or predetermined sequence
and the information can be stored in a limited amount of memory. Additionally we cannot
backtrack over the information stream, but instead, each item must be processed in turn. Thus
a stream is a sequence of n data items z = (s1, s2, . . . , sn) that arrive sequentially and in that
order. Sometimes, the nomber n of items is known in advance and some other times the last
item sn+1 is used as an ending mark of the data stream. Data streams are fundamental to
many other data processing applications as can be the atmospheric forecasting measurement,
telecommunication network elements operation recording, stock market information updates,
or emerging sensor networks as highway traffic conditions. Frequently the data streams are
generated by geografically distributed information sources. Despite the increasing capacity of
storage devices, it is not a good idea to store the data streams because even a simple processing
operation, as can be to sort the incoming data, becomes very expensive in time terms. Then,
the data streams are normally processed on the fly as they are produced. The stream model
can be subdivided in various categories depending on the arrival order of the attributes and
if they are aggregated or not. We assume that each element in the stream will be a pair 〈i, j〉
that indicates for a sequence a we have a[i] = j.

Definition 14. A streaming algorithm accepts a data stream z and outpus a random variable str(z, r)
to approximate a function g so that

74 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 21

(1− ε)g(z) ≤ str(z, r) ≤ (1− ε)g(z)

with probability 1− δ over all choices of the random seed r, for parameters ε and δ

The streaming models can be adapted for some distances functions. Let suppose tha z consists
of two interleaved sequences, a and b, and that g(z) = d(a, b). Then the streaming algorithm to
solve this proble approximates the distance between a and b. It is possible that the algorithm
can can work in the sketching model as well as in the streaming model. Very frequently a
streaming algorithm can be initially conceived as a sketching one, if it is supposed that the
sketch is the contents of the storage memory for the streaming algorithm. However, a sketch
algorithm is not necesarilly a streaming algorithm, and a streaming algorithm is not always
a sketching algorithm. So, the goal of the use of this kind of algorithms, is to test equality
between two object, approximately and in an efficient way.
Another advantage of using fingerprints is that they are integers that can be represented in
O(log n) bits. In the commonly used RAM calculation model it is assumed that this kind of
quantities can be worked with in O(1) time. This quantities can be used for building has tables
allowing fast access to them without the use of special complex data structures or sorting
preprocessing. Approximation of Lp distances can be considered that fit well with sketching
model as well as with the streaming model. Initially it can be suppossed that the vectors
are formed of positive integers bounded by a constant, but it can be extended the results to
the case of rational entries. An important property possesed by the sketches of vectors is the
composability, that can be defined as follows:

Definition 15. A sketch function is said to be composable if for any pair of sketches sk(a, r) and
sk(b, r) we have that sk(a + b, r) = sk(a, r) + sk(b, r)

One theoretical justification that enables us to embed an Euclidean vector space in a much
smaller space with a small loss in accuracy is the Johnson-Lindenstrauss lema that can be
stated as follows:

Lemma 2. .- Let a, b be vectors of length n. Let v be a set of k different random vectors of length n.
Each component vi,j is picked independently from de Gaussian distribution N(0, 1), then each vector
vi is normalised under the L2 norm so that the magnitude of vi is 1. Define the sketch of a to be a vector
sk(a, r) of length k so that sk(a, r)i = ∑n

j=1 vi,jaj = vi · a. Given parameters δ and ε, we have with
probability 1− δ

(1− ε)‖a− b‖2
2

n
≤ ‖sk(a, r)− sk(b, r)‖2

2
k

≤ (1 + ε)‖a− b‖2
2

n
where k is O(1/ε2 log 1/δ)

This lemma means that we can make a sketch of dimension smaller that O(1/ε2 log 1/δ), from
the convolution of each vector with a set of randomly created vectors drawn from the Normal
distribution. So, this lemma enable us to map m vectors into a reduced dimension space. The
sketching procedure cannot be assimilated directly to a streaming procedure, but it has been
shown recently how to extend the sketching approach to the streaming environement for L1
and L2 distances. Concerning streaming algorithms, some of the first have been published
in (?) for calculating the frequency moments. In this case, we have an unordered and
unaggregated stream of n integers in the range of 1, . . . , M, such that z = (s1, s2, . . . , sn) for

75
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

22 Will-be-set-by-IN-TECH

integers sj. So, in (?) the authors focus on calculating the frequency moments Fk of the stream.
Let it be, from the stream, mi = |{j|sj = i}|, the number of the occurrences of the integer i
in the stream. So the frequency moments on the stream can be calculated as Fk = ∑M

i+1(mi)
k.

Then F0 is the number of different elements in the sequence, F1 is the length of the sequence
n, and F2 is the repeat rate of the sequence. So, F2 can be related with the distance L2. Let us
suppose that we build a vector v of length M with entries chosen at random, we process the
stream s1, s2, . . . , sn entry by entry, and initialise a variable Z = 0. So, after whole stream has
been processed we have Z = ∑M

i=1 vimi. Then F2 can be estimated as

Z2 = ∑M
i=1 v2

i m2
i

+∑M
i=1 ∑j �=i vimivjmj

= ∑M
i=1 m2

i
+∑M

i=1 ∑j �=i mimjvivj

So, if the entries of the vector v are pairwise independent, then the expectation of the
cross-terms vivj is zero and ∑M

i=1 m2
i = F2. If this calculation is repeated O(1/ε2) times,

with a different random v each time, and the average is taken, then the calculation can be
guaranteed to be an (1± ε) approximation with a constant probability, and if additionallly, by
finding the median of O(1/δ) averages, this constant probability can be amplified to 1− δ. It
has been observed in (Feigenbaum et al. (1999)) that the calculation for F2 can be adapted to
find the L2 distance between two interleaved, unaggregated streams a and b. Let us suppose
that the stream arrives as triples sj = (ai, i,+1) if the element is from a and sj = (bi, i,−1) if
the item is from stream b. The goal is to find the square of the L2 distance between a and b,
∑i(ai − bi)

2. We initialise Z = 0. When a triple (ai, i,+1) arrives we add aivi to Z and when
a triple (bi, i,−1) arrives we subtract aivi from Z. After the whole stream has been processed
Z = ∑(aivi − bivi) = ∑i(ai − bi)vi. Again the expectation of the cross-terms is zero and, then
the expectation of Z2 is L2 difference of a and b. THe procedure for L2 has the nice property
of being able to cope with case of unaggregated streams containing multiple triples of the
form (ai, i,+1) with the same i due to the linearity of the addition. This streaming algorithm
translates to the sketch model: given a vector a the values of Z can be computed. The sketch of
a is then these values of Z formed into a vector z(a). Then z(a)i = ∑j(aj − bj)vi,j. This sketch
vector has O(1/ε2 log 1/δ) entries, requiring O(log Mn) bits each one. Two such sketches can
be combined, due to the composability property of the sketches, for obtaining the sketch of the
difference of the vectors z(a− b) = (z(a)− z(b)). The space of the streamin algorithm, and
then the size of the sketch is a vector of length O(1/ε2 log 1/δ) with entries of size O(log Mn).
A natural question can be if it is possible to translate sketching algorithms to streaming ones
for distances different from L2 or L1 and objects other than vectors of integers. In (Graham
(2003)) it shown that it is possible the this translation for the Hamming distance. This can be
found in the next theorem of (Graham (2003)).

Theorem 12. The sketch for the Symmetric Difference (Hamming distance) between sets can be
computed in the unordered, aggregated streaming model. Pairs of sketches can be used to make 1± ε
approximmations of the Hamming distance between their sequences, which succeed with probability
1− δ. The sketch is a vector of dimension O(1/ε2 log 1/δ) and each entry is an integer in the range
[−n . . . n].

Given that, under some circumstances, streaming algorithms can be translated to sketch
algorithms, then the theorem 10 can be applied for the robot motion tracking problem, under
the streaming model as well.

76 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 23

In general, the mobile robotics framework is more complex because we should process data
flows provided by the captors under a dynamic situation, where the robot is moving, taking
into account two kind of uncertainty:

• The sensors have low precision

• The robot movements are subject to deviations as any mechanical object.

The data flow provided by the captors produce similar problems to those that can be found on
the databases. The robot should make the fusion of the information sources to determine his
motion strategy. Some sources, called bags, allow the robot to self locate geometrically or in
his state graph. While the robot executes his strategy, it is subject to movement uncertainties
and then should find robust strategies for such uncertainty source. The goal is to achieve the
robustness integrating the data flow of the captors to the strategies. We consider the classical
form of simple Markovian strategies. In the simplest version, a Markov chain, MDP, is a graph
where all the states are distinguishable and the edges are labeled by actions L1, L2, . . . , Lp. If
the states are known only by his coloration in k colors C1, C2, . . . , Ck. Two states having the
same coloration are undistinguishable and in this case we are talking about POMDP (Partially
Observed Markov Decision Process). A simple strategy σ is a function that associates an action
simplex to a color among the possible actions. It is a probabilistic algorithm that allows to
move inside the state graph with some probabilities. With the help of the strategies we look
for reaching a given node of the graph from the starting node (the initial state) or to satisfy
temporal properties, expressed in LTL formalism. For instance, the property C1 Until C2
that express the fact that we can reach a node with label C2 preceded only by the node
C1. Given a property θ and a strategy σ, let Probσ(θ) be the probability that θ is true over
the probability space associated to σ. Given a POMDP M two strategies σ and π can be
compared by means of ther probabilities, that is, Probσ(θ) > Probπ(θ). If Probσ(θ) > b, it is
frequent to test such a property while b is not very small with the aid of the path sampling
according to the distribution of the POMDP. In the case that b < Probσ(θ) < b − ε it can
be searched a corrector for σ, it means, a procedure that lightly modify σ in such a way
that Probσ(θ) > b. It can be modified too the graph associated and in that case, we look
for comparing two POMDPs. Let be M1 and M2 two POMDPs, we want to compare this
POMDPs provided with strategies σ and π in the same way as are compared two automata
in the sense that they are approximately equivalent (refer to the section concerning distance
between DTDs). How can we decide if they are approximately equivalent for a property class?
Such a procedure is the base of the strategy learning. It starts with a low performance strategy
that is modified in each step for improvement. The tester, corrector and learning algorithms
notions find a natural application in this context. One of the specificities of mobile robotics
is to conceive robust strategies for the movements of a robot. As every mechanical object,
the robot deviates of any previewed trajectory and then it must recalculate his location. At
the execution of an action Li commanded by the robot, the realization will follow Li with
probability p, an action Li−1 with probability (1− p)/2 and an action Li+1 with probability
(1− p)/2. This new probabilistic space induce robustness qualities for each strategy, in other
words, the Probσ(θ) depends on the structure of the POMDP and on the error model. Then the
same questions posed before can be formulated: how to evaluate the quality of the strategies,
how to test properties of strategies, how to fix the strategies such that we can learn robust
strategies. We can consider that the robots are playing a game against nature that is similar
to a Bayesian game. The criteria of robust strategy are similar to those of the direct approach.
Another problem that arise in robot motion is the relocalization of a robot in a map. As we
mentioned in the initial part of the section 6, one method that has been used frequently in robot

77
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

24 Will-be-set-by-IN-TECH

exploration for reducing the uncertainty in the position of robot was the use of landmarks
and triangulation. The search of a landmark in an unknown environment can be similar to
searching a pattern in a sequence of characters or a string. In the present work we applied
sketching and streaming algorithms for obtaining distance approximations between objects
as vectors in a dimensional reduced, and in some sense, deformated space. If we want to
apply sketching or streaming for serching patterns as landmarks in a scene we have to deal
with distance between permutations.

8. Conclusion and future work
The property testing algorithms under the sketch and streaming calculation model for
measuring the level of approximation of inferred automata with respect to the true automata
in the case of robot motion tracking problem as well as the map construction problem in
robot navigation context. The use of sketch algorithms allow us to approximate the distance
between objects by the manipulation of sketches that are significantly smaller than the original
objects. Another problem that arise in robot motion is the relocalization of a robot in a
map. As we mentioned in the section 2, one method that has been frequently used in robot
exploration for reducing the uncertainty in the position of robot was the use of landmarks
and triangulation. The search of a landmark in an unknown environment can be similar to
searching a pattern in a large sequence of characters or a big string. For doing this task in an
approximated and efficient way, sketch and streaming algorithms can be usefull.

9. References

A. Blum, P. R. & Schieber, B. (1991). Navigating in unfamiliar geometric terrain, ACM STOC
91, pp. 494–504.

Angluin, D. (1981). A note on the number of queries needed to identify regular languages.
Blum, M., Luby M. & Rubinfeld R. (1993). Self-testing/correcting with application to

numerical problems.
Blum, M. & Kannan S. (1995). Designing programs that check their work.
Burago, D., de Rougemont, M. & Slissenko, A. (1993). Planning of uncertain motion, Technical

report, Université de Poitiers.
Canny, J. & Reif, J. (1987). New lower-bound techniques for robot motion planning problems,

Proc. 28st. FOCS, pp. 49–60.
Carmel, D. & Markovitch, S. (1996). Learning models of intelligent agents, Technical Report

CIS9606, Department of Computer Science, Technion University.
Carmel, D. & Markovitch, S. (1998). How to explore your oponentŠs strategy (almost)

optimally, Proceedings ICMAS98 Paris France.
C.Rodríguez Lucatero, A. Albornoz. & R.Lozano (2004). A game theory approach to the robot

tracking problem.
Dana Angluin, Westbrook J. & Zhu, W. (1996). Robot navigation with range queries, ACM

STOC 96, pp. 469–478.
Dean T., Angluin D., Basye K., Engelson S., Kaelbling L., Kokkevis E. & Maron O. (1985).

Inferring finite automata with stochastic output functions and an application to map
learning.

Dean, T. & Wellman, M. (1991). Planning and Control, Morgan Kaufmann Publishers.
Diaz-Frias, J. (1991). About planning with uncertainty, 8e. Congres Reconnaisance des Formes et

Intelligence Artificielle, pp. 455–464.

78 Advances in Robot Navigation

Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation 25

Magniez F. & de Rougemont, M. (2004). Property testing of regular tree languages, ICALP
2004.

Feigenbaum J., Kannan S., Strauss M.& Viswanathan M. (1999). An approximmate l1
difference algorithm for massive data streams., Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, pp. 501–511.

Fisher E., Magniez F. & de Rougemont, M. (2004). Property and equivalence testing on strings,
ECCC 2004.

Gold, E. (1978). Complexity of automaton identification from given data.
Goldreich, O., S.Goldwasser & D.Ron.Property (1996). Testing and its connection to learning

and approximation, IEEE Symposium on Foundations of Computer Science.
Graham, C. (2003). Sequence distance embeddings, Phd thesis in cs university of warmick,

University of Warmick.
Kirman, J., Bayse, K. & Dean, T. (1991). Sensor abstractions for control of navigation, Proc.

IEEE Robotics & Automation, pp. 2812–2817.
Latombe, J. (1990). Robot motion planning, Kluwer.
Latombe, J., Lazanas, A. & Shekhar, S. (1991). Robot motion planning with uncertainty in

control and sensing, Artificial Intelligence 52: 1–47.
Valiant, L.G. (1984). A theory of the learnable, CACM, pp. 1134–1142.
Littman, M. (1994). Markov games as a framework for multiagent reinforcement learning,

Proceedings of the eleventh International Conference on Machine Learning, pp. 157–163.
Lozano-Perez, T. (1986). A simple motion planning algorithm for general robot manipulators.
Lucatero, C. R. & Espinosa, R. L. (2005). Application of automata learning algorithms to robot

motion tracking.
Lumelsky, V. & Stepanov, A. (1987). Path planning strategies for a point mobile automaton

moving amidst unknown obstacles of arbitrary shape.
Marion, J., Rodriguez, C. & de Rougemont, M. (1994). The evaluation of strategies in motion

planning with uncertainty, Proc. IEEE Robotics & Automation.
M.Kearns & Valiant, L. (1989). Cryptographic limitation on learning boolean formulae and

finite automata, Proc. 21th ACM Symposium on Theory of Computing, pp. 433–444.
Papadimitriou, C. (1985). Games against nature, Journal of Computer and System Sciences

(31): 288–301.
Papadimitriou, C. & Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall Inc.
Papadimitriou, C. & Tsitsiklis, J. (1987). The complexity of markov decision processes,

Mathematics of operations research (3): 441–450.
Papadimitriou, C. & Yannakakis, M. (1991). Optimization, approximation and complexity

classes, Journal of Computer and System Sciences (43): 425–440.
Pitt, L. & Warmuth, M. (1993). The minimal consistent dfa problem cannot be approximated

within any polynomial.
R. Murrieta-Cid, H. G.-B. & Tovar, B. (2002). A reactive motion planner to maintain visibility

of unpredictable targets, Proceedings of the IEEE International Conference on Robotics and
Automation.

Rajesh Parekh, C. N. & Honavar, V. (1998). A polynomial time incremental algorithm for
learning dfa, Proceedings of the Fourth International Colloquium on Grammatical Inference
(ICGI’98), Ames, IA. Lecture Notes in Computer Science vol. 1433, pp. 37–49.

Rivest, R. L. & Schapire, R. E. (1993). Inference of finite automata using homing sequences.

79
Application of Streaming Algorithms and
DFA Learning for Approximating Solutions to Problems in Robot Navigation

26 Will-be-set-by-IN-TECH

Rodríguez-Lucatero, C. (1997). Evaluation, existence and optimization of reactive strategies
in motion with uncertainty.

Rubinfeld, R. & Sudan, M. (1993). Robust characterizations of polynomials with applications
to program testing.

Rubinstein, A. (1986). Finite automata play the repeated prisionerŠs dilemma.
Schwartz, J. & Sharir, M. (1983). On the piano movers problem ii general techniques for

computing topological properties of real algebraic manifolds, Advances in Applied
Mathematics Academic Press .

Schwartz, J. & Sharir, M. (1991). Algorithmic motion planning in robotics., Handbook of
theoretical Computer Science A: 391–425.

La Valle S.M., David Lin, L. J. G. J. L. & Motwani, R. (1997). Finding an unpredictable target in
a workspace with obstacles, Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 731–736.

S.M. La Valle, H.H. González Baños, C. B. & Latombe, J. (1997). Motion strategies
for maintaining visibility of a moving target, Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 731–736.

Valiant, L. (1979). The complexity of enumeration and reliability problems, SIAM 8(3).

80 Advances in Robot Navigation

0

SLAM and Exploration using Differential
Evolution and Fast Marching

Santiago Garrido, Luis Moreno and Dolores Blanco
Robotics Lab, Carlos III University of Madrid

Spain

1. Introduction

The exploration and construction of maps in unknown environments is a challenge for
robotics. The proposed method is facing this problem by combining effective techniques
for planning, SLAM, and a new exploration approach based on the Voronoi Fast Marching
method.
The final goal of the exploration task is to build a map of the environment that previously the
robot did not know. The exploration is not only to determine where the robot should move,
but also to plan the movement, and the process of simultaneous localization and mapping.
This work proposes the Voronoi Fast Marching method that uses a Fast Marching technique
on the Logarithm of the Extended Voronoi Transform of the environment’s image provided
by sensors, to determine a motion plan. The Logarithm of the Extended Voronoi Transform
imitates the repulsive electric potential from walls and obstacles, and the Fast Marching
Method propagates a wave over that potential map. The trajectory is calculated by the
gradient method.
The robot is directed towards the most unexplored and free zones of the environment so as to
be able to explore all the workspace.
Finally, to build the environment map while the robot is carrying out the exploration task, a
SLAM (Simultaneous Localization and Modeling) algorithm is implemented, the Evolutive
Localization Filter (ELF) based on a differential evolution technique.
The combination of these methods provide a new autonomous exploration strategy to
construct consistent maps of 2D indoor environments.

2. Autonomous exploration

Autonomous exploration and mapping are fundamental problems to solve as an autonomous
robot carries out tasks in real unknown environments. Sensor based exploration, motion
planning, localization and simultaneous mapping are processes that must be coordinated to
achieve autonomous execution of tasks in unknown environments.
Sensor based planning makes use of the sensor acquired information of the environment
in its latest configuration and generates an adequate path towards the desired following
position. Sensor-based discovery path planning is the guidance of an agent - a robot - without
a complete a priori map, by discovering and negotiating the environment so as to reach a
goal location while avoiding all encountered obstacles. Sensor-based discovery (i.e., dynamic)
path planning is problematic because the path needs to be continually recomputed as new
information is discovered.

4

2 Will-be-set-by-IN-TECH

In order to build a map of an unknown environment autonomously, this work presents first
a exploration and path planning method based on the Logarithm of the Extended Voronoi
Transform and the Fast Marching Method. This Path Planner is called Voronoi Fast Marching
(8). The Extended Voronoi Transform of an image gives a grey scale that is darker near
the obstacles and walls and lighter when far from them. The Logarithm of the Extended
Voronoi Transform imitates the repulsive electric potential in 2D from walls and obstacles.
This potential impels the robot far from obstacles. The Fast Marching Method has been
applied to Path Planning (34), and their trajectories are of minimal distance, but they are not
very safe because the path is too close to obstacles and what is more important, the path is
not smooth enough. In order to improve the safety of the trajectories calculated by the Fast
Marching Method, avoiding unrealistic trajectories produced when the areas are narrower
than the robot, objects and walls are enlarged in a security distance that assures that the robot
does not collide and does not accept passages narrower than the robot’s size.
The last step is calculating the trajectory in the image generated by the Logarithm of the
Extended Voronoi Transform using the Fast Marching Method. Then, the path obtained
verifies the smoothness and safety considerations required for mobile robot path planning.
The advantages of this method are the ease of implementation, the speed of the method and
the quality of the trajectories. This method is used at a local scale operating with sensor
information (sensor based planning).
To build the environment map while the robot is carrying out the exploration task, a SLAM
(Simultaneous Localization and Modelling) is implemented. The algorithm is based on
the stochastic search for solutions in the state space to the global localization problem by
means of a differential evolution algorithm. This non linear evolutive filter, called Evolutive
Localization Filter (ELF) (23), searches stochastically along the state space for the best robot
pose estimate. The set of pose solutions (the population) focuses on the most likely areas
according to the perception and up to date motion information. The population evolves
using the log-likelihood of each candidate pose according to the observation and the motion
errors derived from the comparison between observed and predicted data obtained from the
probabilistic perception and motion model.
In the remainder of the chapter, the section 3 presents the state of the art referred to exploration
and motion planning problems. Section 4 presents our Voronoi Fast Marching (VFM) Motion
Planner. The SLAM algorithm is described briefly in Section 5. Then, section 6 describes the
specific Exploration method proposed. Next, section 7 demonstrates the performance of the
exploration strategy as it explores different environments, according to the two possible ways
of working for the exploration task. And, finally the conclusions are summarized in section 8.

3. Previous and related works

3.1 Representations of the world
Roughly speaking there are two main forms for representing the spatial relations in an
environment: metric maps and topological maps. Metric maps are characterized by a
representation where the position of the obstacles are indicated by coordinates in a global
frame of reference. Some of them represent the environment with grids of points, defining
regions that can be occupied or not by obstacles or goals (22) (1). Topological maps represent
the environment with graphs that connect landmarks or places with special features (19)
(12). In our approach we choose the grid-based map to represent the environment. The
clear advantage is that with grids we already have a discrete environment representation
and ready to be used in conjunction with the Extended Voronoi Transform function and Fast
Marching Method for path planning. The pioneer method for environment representation in

82 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 3

a grid-based model was the certainty grid method developed at Carnegie Mellon University
by Moravec (22). He represents the environment as a 3D or 2D array of cells. Each cell stores
the probability of the related region being occupied. The uncertainty related to the position
of objects is described in the grid as a spatial distribution of these probabilities within the
occupancy grid. The larger the spatial uncertainty, the greater the number of cells occupied by
the observed object. The update of these cells is performed during the navigation of the robot
or through the exploration process by using an update rule function. Many researchers have
proposed their own grid-based methods. The main difference among them is the function
used to update the cell. Some of them are, for example: Fuzzy (24), Bayesian (9), Heuristic
Probability (2), Gaussian (3), etc. In the Histogramic In-Motion Mapping (HIMM), each cell,
has a certainty value, which is updated whenever it is being observed by the robots sensors.
The update is performed by increasing the certainty value by 3 (in the case of detection of an
object) or by decreasing it by 1 (when no object is detected), where the certainty value is an
integer between 0 and 15.

3.2 Approaches to exploration
This section relates some interesting techniques used for exploratory mapping. They mix
different localization methods, data structures, search strategies and map representations.
Kuipers and Byun (13) proposed an approach to explore an environment and to represent
it in a structure based on layers called Spatial Semantic Hierarchy (SSH) (12). The algorithm
defines distinctive places and paths, which are linked to form an environmental topological
description. After this, a geometrical description is extracted. The traditional approaches
focus on geometric description before the topological one. The distinctive places are defined
by their properties and the distinctive paths are defined by the twofold robot control strategy:
follow-the-mid-line or follow-the-left-wall. The algorithm uses a lookup table to keep
information about the place visited and the direction taken. This allows a search in the
environment for unvisited places. Lee (16) developed an approach based on Kuipers work
(13) on a real robot. This approach is successfully tested in indoor office-like spaces. This
environment is relatively static during the mapping process. Lee’s approach assumes that
walls are parallel or perpendicular to each other. Furthermore, the system operates in a very
simple environment comprised of cardboard barriers. Mataric (19) proposed a map learning
method based on a subsumption architecture. Her approach models the world as a graph,
where the nodes correspond to landmarks and the edges indicate topological adjacencies.
The landmarks are detected from the robot movement. The basic exploration process is
wall-following combined with obstacle avoidance. Oriolo et al. (25) developed a grid-based
environment mapping process that uses fuzzy logic to update the grid cells. The mapping
process runs on-line (24), and the local maps are built from the data obtained by the sensors
and integrated into the environment map as the robot travels along the path defined by the
A∗ algorithm to the goal. The algorithm has two phases. The first one is the perception
phase. The robot acquires data from the sensors and updates its environment map. The
second phase is the planning phase. The planning module re-plans a new safe path to the
goal from the new explored area. Thrun and Bucken (37) (38) developed an exploration
system which integrates both evidence grids and topological maps. The integration of the two
approaches has the advantage of disambiguating different positions through the grid-based
representation and performing fast planning through the topological representation. The
exploration process is performed through the identification and generation of the shortest
paths between unoccupied regions and the robot. This approach works well in dynamic
environments, although, the walls have to be flat and cannot form angles that differ more

83SLAM and Exploration using Differential Evolution and Fast Marching

4 Will-be-set-by-IN-TECH

than 15◦ from the perpendicular. Feder et al. (4) proposed a probabilistic approach to treat
the concurrent mapping and localization using a sonar. This approach is an example of a
feature-based approach. It uses the extended Kalman filter to estimate the localization of the
robot. The essence of this approach is to take actions that maximize the total knowledge about
the system in the presence of measurement and navigational uncertainties. This approach
was tested successfully in wheeled land robot and autonomous underwater vehicles (AUVs).
Yamauchi (39) (40) developed the Frontier-Based Exploration to build maps based on grids.
This method uses a concept of frontier, which consists of boundaries that separate the explored
free space from the unexplored space. When a frontier is explored, the algorithm detects the
nearest unexplored frontier and attempts to navigate towards it by planning an obstacle free
path. The planner uses a depth-first search on the grid to reach that frontier. This process
continues until all the frontiers are explored. Zelek (42) proposed a hybrid method that
combines a local planner based on a harmonic function calculation in a restricted window with
a global planning module that performs a search in a graph representation of the environment
created from a CAD map. The harmonic function module is employed to generate the best
path given the local conditions of the environment. The goal is projected by the global planner
in the local windows to direct the robot. Recently, Prestes el al. (28) have investigated the
performance of an algorithm for exploration based on partial updates of a harmonic potential
in an occupancy grid. They consider that while the robot moves, it carries along an activation
window whose size is of the order of the sensors range.
Prestes and coworkers (29) propose an architecture for an autonomous mobile agent that
explores while mapping a two-dimensional environment. The map is a discretized model
for the localization of obstacles, on top of which a harmonic potential field is computed. The
potential field serves as a fundamental link between the modelled (discrete) space and the real
(continuous) space where the agent operates.

3.3 Approaches to motion planning
The motion planning method proposed in this chapter can be included in the sensor-based
global planner paradigm. It is a potential method but it does not have the typical problems
of these methods enumerated by Koren- Borenstein (11): 1) Trap situations due to local
minima (cyclic behavior). 2) No passage between closely spaced obstacles. 3) Oscillations
in the presence of obstacles. 4) Oscillations in narrow passages. The proposed method
is conceptually close to the navigation functions of Rimon-Koditscheck (33), because the
potential field has only one local minimum located at the single goal point. This potential
and the paths are smooth (the same as the repulsive potential function) and there are no
degenerate critical points in the field. These properties are similar to the characteristics of the
electromagnetic waves propagation in Geometrical Optics (for monochromatic waves with
the approximation that length wave is much smaller than obstacles and without considering
reflections nor diffractions).
The Fast Marching Method has been used previously in Path Planning by Sethian (36) (35),
but using only an attractive potential. This method has some problems. The most important
one that typically arises in mobile robotics is that optimal motion plans may bring robots
too close to obstacles (including people), which is not safe. This problem has been dealt
with by Latombe (14), and the resulting navigation function is called NF2. The Voronoi
Method also tries to follow a maximum clearance map (7). Melchior, Poty and Oustaloup
(21; 27), present a fractional potential to diminish the obstacle danger level and improve
the smoothness of the trajectories, Philippsen (26) introduces an interpolated Navigation
Function, but with trajectories too close to obstacles and without smooth properties and Petres

84 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 5

(30), introduces efficient path-planning algorithms for Underwater Vehicles taking advantage
of the underwaters currents.
LaValle (15), treats on the feedback motion planning concept. To move in the physical world
the actions must be planned depending on the information gathered during execution.
Lindemann and Lavalle (17) (18) present a method in which the vector field globally solves
the navigation problem and provides robustness to disturbances in sensing and control. In
addition to being globally convergent, the vector field’s integral curves (system trajectories)
are guaranteed to avoid obstacles and are C∞ smooth, except in the changes of cells. They
construct a vector field with these properties by using existing geometric algorithms to
partition the space into simple cells; they then define local vector fields for each cell, and
smoothly interpolate between them to obtain a global vector field that can be used as a
feedback control for the robot.
Yang and Lavalle (41) presented a randomized framework motion strategies, by defining
a global navigation function over a collection of spherical balls in the configuration space.
Their key idea is to fill the collision free subset of the configuration space with overlapping
spherical balls, and define collision free potential functions on each ball. A similar idea has
been developed for collision detection in (31) and (32).
The proposed method constructs a vectorial field as in the work by Lindemann, but the field
is done in the global map instead of having local cells maps with the problem of having
trajectories that are not C∞ in the union between cells. The method has also similitudes with
the Yang and Lavalle method. They proposed a series of balls with a Lyapunov potential
associated to each of them. These potentials are connected in such a way that it is possible to
find the trajectory using in each ball the gradient method. The method that we propose, has
a unique global Lyapunov potential associated with the vectorial field that permits build the
C∞ trajectory in a single pass with the gradient method.
To achieve a smooth and safe path,it is necessary to have smooth attractive and repulsive
potentials, connected in such a way that the resulting potential and the trajectories have
no local minima and curvature continuity to facilitate path tracking design. The main
improvement of the proposed method are these good properties of smoothness and safety of
the trajectory. Moreover, the associated vector field allows the introduction of nonholonomic
constraints.
It is important to note that in the proposed method the important ingredients are the attractive
and the repulsive potentials, the way of connecting them describing the attractive potential
using the wave equation (or in a simplified way, the eikonal equation). This equation can
be solved in other ways: Mauch (20) uses a Marching with Correctness Criterion with a
computational complexity that can reduced to O(N). Covello (5) presents a method that can
be used on nodes that are located on highly distorted grids or on nodes that are randomly
located.

4. The VFM Motion Planner

Which properties and characteristics are desirable for a Motion Planner of a mobile robot?
The first one is that the planner always drives the robot in a smooth and safe way to the
goal point. In Nature there are phenomena with the same way of working: electromagnetic
waves. If in the goal point, there is an antenna that emits an electromagnetic wave, then the
robot could drive itself to the destination following the waves to the source. The concept
of the electromagnetic wave is especially interesting because the potential and its associated
vector field have all the good properties desired for the trajectory, such as smoothness (it is
C∞) and the absence of local minima. This attractive potential still has some problems. The

85SLAM and Exploration using Differential Evolution and Fast Marching

6 Will-be-set-by-IN-TECH

most important one that typically arises in mobile robotics is that optimal motion plans may
bring robots too close to obstacles, which is not safe. This problem has been dealt with by
Latombe (14), and the resulting navigation function is called NF2. The Voronoi Method also
tries to follow a maximum clearance map (6). To generate a safe path, it is necessary to add
a component that repels the robot away from obstacles. In addition, this repulsive potential
and its associated vector field should have good properties such as those of the electrical field.
If we consider that the robot has an electrical charge of the same sign as the obstacles, then
the robot would be pushed away from obstacles. The properties of this electric field are very
good because it is smooth and there are no singular points in the interest space (Cf ree).
The third part of the problem consists in how to mix the two fields together. This union
between an attractive and a repulsive field has been the biggest problem for the potential fields
in path planning since the works of Khatib (10). In the VFM Method, this problem has been
solved in the same way that Nature does so: the electromagnetic waves, such as light, have
a propagation velocity that depends on the media. For example, flint glass has a refraction
index of 1.6, while in the air it is approximately one. This refraction index of a medium is the
quotient between the velocity of light in the vacuum and the velocity in the medium under
consideration. That is the slowness index of the front wave propagation in a medium. A
light ray follows a straight line if the medium has a constant refraction index (the medium is
homogeneous) but refracts when there is a transition of medium (sudden change of refraction
index value). In the case of a gradient change in refraction index in a given medium, the light
ray follows a curved line. This phenomenon can be seen in nature in hot road mirages. In this
phenomenon, the air closer to the road surface is warmer than the higher level layers. The
warmer air has lower density and lower refraction index. For this reason, light rays coming
from the sun are curved near the road surface and cause what is called the hot road mirage,
as illustrated in fig. 1. This is the idea that inspires the way in which the attractive and the
repulsive fields are merged in our work.
For this reason, in the VFM method, the repulsive potential is used as refraction index of the
wave emitted from the goal point. In this way, a unique field is obtained and its associated
vector field is attractive to the goal point and repulsive from the obstacles. This method
inherits the properties of the electromagnetic field. Intuitively, the VFM Method gives the
propagation of a front wave in an inhomogeneous media.
In Geometrical Optics, Fermat’s least time principle for light propagation in a medium with
space varying refractive index η(x) is equivalent to the eikonal equation and can be written
as ||∇Φ(x)|| = η(x) where the eikonal Φ(x) is a scalar function whose isolevel contours are
normal to the light rays. This equation is also known as the Fundamental Equation of the
Geometrical Optics.
The eikonal (from the Greek "eikon", which means "image") is the phase function in a situation
for which the phase and amplitude are slowly varying functions of position. Constant values
of the eikonal represent surfaces of constant phase, or wavefronts. The normals to these
surfaces are rays (the paths of energy flux). Thus the eikonal equation provides a method
for "ray tracing" in a medium of slowly varying refractive index (or the equivalent for other
kinds of waves).
The theory and the numerical techniques known as Fast Marching Methods are derived from
an exposition to describe the movement of interfaces, based on a resolution of the equations
on partial differential equations as a boundary condition problem. The Fast Marching Method
has been used previously in Path Planning by Sethian(35; 36), but using only an attractive
potential.

86 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 7

Fig. 1. Light rays bending due to changing refraction index in air with higher temperature
near road surface.

The use of the Fast Marching method over a slowness (refraction or inverse of velocity)
potential improves the quality of the calculated trajectory considerably. On one hand, the
trajectories tend to go close to the Voronoi skeleton because of the optimal conditions of this
area for robot motion (6).
An attractive potential used to plan a trajectory bring robots too close to obstacles as shown
in fig. 2. For this reason, in the proposed method, the repulsive potential (fig. 3) is used as
refraction index of the wave emitted from the goal point. This way a unique field is obtained
and its associated vector field is attracted to the goal point and repulsed from the obstacles, as
shown in fig. 4. This method inherits the properties of the electromagnetic field, i.e. it is C∞, if
the refraction index is C∞. Intuitively, the VFM Method gives the propagation of a front wave
in an inhomogeneous media.
The solution of the eikonal equation used in the VFM method is given by the solution of the
wave equation:

φ = φ0eik0(ηx−c0t)

As this solution is an exponential, if the potential η(x) is C∞ then the potential φ is also C∞

and therefore the trajectories calculated by the gradient method over this potential would be
of the same class.
This smoothness property can be observed in fig. 5, where the trajectory is clearly good, safe
and smooth. One advantage of the method is that it not only generates the optimum path, but
also the velocity of the robot at each point of the path. The velocity reaches its highest values
in the light areas and minimum values in the greyer zones. The VFM Method simultaneously
provides the path and maximum allowable velocity for a mobile robot between the current
location and the goal.

4.1 Properties
The proposed VFM algorithm has the following key properties:

• Fast response. The planner needs to be fast enough to be used reactively and plan new
trajectories. To obtain this fast response, a fast planning algorithm and fast and simple
treatment of the sensor information is necessary. This requires a low complexity order
algorithm for a real time response to unexpected situations. The proposed algorithm has
a fast response time to allow its implementation in real time, even in environments with
moving obstacles using a normal PC computer.
The proposed method is highly efficient from a computational point of view because the
method operates directly over a 2D image map (without extracting adjacency maps), and
due to the fact that Fast Marching complexity is O(m × n) and the Extended Voronoi
Transform is also of complexity O(m × n), where m × n is the number of cells in the
environment map. In table 1, orientative results of the cost average in time appear

87SLAM and Exploration using Differential Evolution and Fast Marching

8 Will-be-set-by-IN-TECH

Fig. 2. Attractive potential, its associated vector field and a typical trajectory.

Fig. 3. The Fast Marching Method applied to a L-shaped environment gives: the slowness
(velocity inverse) or repulsive potential and its associated vector field.

a) b)

Fig. 4. a) Union of the two potentials: the second one having the first one as refractive index.
b) Associated vector field and typical trajectories obtained with this method.

88 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 9

Fig. 5. Trajectories calculated applying the proposed algorithm with Fast Marching over the
Logarithm Extended Voronoi Transform.

(measured in seconds), and each step of the algorithm for different trajectory lengths to
calculate (the computational cost depends on the number of points of the image).

Alg. Step/Trajectory length Long Medium Short

Obst. Enlarging 0.008 0.008 0.008

Ext. Voronoi Transf. 0.039 0.039 0.039

FM Exploration 0.172 0.078 0.031

Path Extraction 0.125 0.065 0.035

Total time 0.344 0.190 0.113

Table 1. Computational cost (seconds) for the room environment (966x120 pixels)

• Smooth trajectories. The planner must be able to provide a smooth motion plan which
can be executed by the robot motion controller. In other words, the plan does not need
to be refined, avoiding the need for a local refinement of the trajectory. The solution of
the eikonal equation used in the proposed method is given by the solution of the wave
equation:

φ = φ0eik0(ηx−c0t)

As this solution is an exponential, if the potential η(x) is C∞ then the potential φ is also C∞

and therefore the trajectories calculated by the gradient method over this potential would
be of the same class.
This smoothness property can be observed in fig. 5, where the trajectory is clearly good,
safe and smooth. One advantage of the method is that it not only generates the optimum
path, but also the velocity of the robot at each point of the path. The velocity reaches
its highest values in the light areas and minimum values in the greyer zones. The VFM
Method simultaneously provides the path and maximum allowable velocity for a mobile
robot between the current location and the goal.

• Reliable trajectories. The proposed planner provides a safe (reasonably far from detected
obstacles) and reliable trajectory (free from local traps). This is due to the refraction index,
which causes higher velocities far from obstacles.

• Completeness. As the method consists of the propagation of a wave, if there is a path from
the the initial position to the objective, the method is capable of finding it.

89SLAM and Exploration using Differential Evolution and Fast Marching

10 Will-be-set-by-IN-TECH

5. Differential evolution approach to the SLAM

Localization and map building are key components in robot navigation and are required
to successfully execute the path generated by the VFM planner in the exploration method
proposed in this work. Both problems are closely linked, and learning maps are required
to solve both problems simultaneously; this is the SLAM problem. Uncertainty in sensor
measures and uncertainty in robot pose estimates make the use of a SLAM method necessary
to create a consistent map of the explored environment.
The SLAM algorithm used in this work is described in (23). It is based on the stochastic
search of solutions in the state space to the localization problem by means of a differential
evolution algorithm. A non linear evolutive filter, called Evolutive Localization Filter (ELF),
searches stochastically along the state space for the best robot pose estimate. The proposed
SLAM algorithm operates in two steps: in the first step the ELF filter is used at a local level
to re-localize the robot based on the robot odometry, the laser scan at a given position and
a local map where only a low number of the last scans have been integrated. In a second
step, the aligned laser measures, together with the corrected robot poses, are used to detect
when the robot is revisiting a previously crossed area. Once a cycle is detected, the Evolutive
Localization Filter is used again to reestimate the robot position and orientation in order to
integrate the sensor measures in the global map of the environment.
This approach uses a differential evolution method to perturb the possible pose estimates
contained in a given set until the optimum is obtained. By properly choosing the cost
function, a maximum a posteriori estimate is obtained. This method is applied at a local
level to re-localize the robot and at a global level to solve the data association problem. The
method proposed integrates sensor information in the map only when cycles are detected
and the residual errors are eliminated, avoiding a high number of modifications in the map
or the existence of multiple maps, thus decreasing the computational cost compared to other
solutions.

6. Implementation of the explorer

In order to solve the problem of the exploration of an unknown environment, our algorithm
can work in two different ways. First, the exploration process can be directed giving to the
algorithm one or several successive goal points in the environment which the robot must drive
to during the exploration process. Second, that is the second form to work of our algorithm,
the exploration can be carried out without having any previously fixed objective point. In
such case, the algorithm must automatically determine towards where the robot must drive
in order to complete the exploration process.

6.1 Case I
In the first one, the initial information is the localization of the final goal. In this way, the
robot has a general direction of movement towards the goal. In each movement of the robot,
information about the environment is used to build a binary image distinguishing occupied
space represented by value 0 (obstacles and walls) from free space, with value 1. The Extended
Voronoi Transform of the known map at that moment gives a grey scale that is darker near
the obstacles and walls and lighter far from them. The Voronoi Fast Marching Method gives
the trajectory from the pose of the robot to the goal point using the known information. In
this first way of working, the SLAM algorithm described in (23) is used to avoid localization
errors being translated into the map built during the exploration process.

90 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 11

Fig. 6. Flowchart of case 1.

In this first case, the robot has a final goal: the exploration process the robot performs in the
algorithm described in the flowchart of fig. 6.

6.2 Case II
In the second way of working of the algorithm, the goal location is unknown and robot
behavior is truly exploratory. We propose an approach based on the incremental calculation
of a map for path planning.
We define a neighborhood window, which travels with the robot, roughly the size of its laser
sensor range. This window indicates the new grid cells that are recruited for update, i.e., if a
cell was in the neighborhood window at a given time, it becomes part of the explored space
by participating in the EVT and Fast Marching Method calculation for all times. The set of
activated cells that compose the explored space is called the neighborhood region. Cells that
were never inside the neighborhood window indicate unexplored regions. Their potential
values are set to zero and define the knowledge frontier of the state space, the real space in
our case. The detection of the nearest unexplored frontier comes naturally from the Extended
Voronoi Transform calculation. It can also be understood from the physical analogy with
electrical potentials that obstacles repel while frontiers attract.
Consider that the robot starts from a given position in an initially unknown environment. In
this second method, there is no direction of the place where the robot must go.
A initial matrix with zeros in the obstacles and value 1 in the free zones is considered. This first
matrix is built using the information provided by sensors and represents a binary image of the
environment detected by sensors. The first step consists of calculating the EVT of the obstacles
in this image. A value that represent the distance to the nearest obstacle is associated to each
cell of the matrix. A matrix W of grays with values between 0 (obstacles) and 1 is obtained.
This W matrix gives us the EVT of the obstacles found up until that moment.
A second matrix is built darkening the zones that the robot has already visited. Then, the EVT
of this image is calculated and the result is the VT matrix.
Finally, matrix WV is the sum of the matrices VT and W, with weights 0.5 and 1 respectively.

WV = 0.5 ∗VT + W

91SLAM and Exploration using Differential Evolution and Fast Marching

12 Will-be-set-by-IN-TECH

Fig. 7. Flowchart of algorithm 2.

In this way, it is possible to darken the zones already visited by the robot and impel it to go
to the unexplored zones. The whitest point of matrix WV is calculated as max(WV), that
is, the most unexplored region that is in a free space. This is the point chosen as the new
goal point. Applying the Fast Marching method on WV, the trajectory towards that goal is
calculated. The robot moves following this trajectory. In the following steps, the trajectory
to follow is computed, calculating first W and VT at every moment, and therefore WV, but
without changing the objective point. Once the robot has been arrived at the objective, (that is
to say, that path calculated is very small), a new objective is selected as max(WV).
Therefore, the robot moves maximizing knowledge gain. In this case or in any other situation
where there is no gradient to guide the robot, it simply follows the forward direction. The
exploration process the robot performs in the second method described is summarized in the
flowchart of fig. 7.
The algorithms laid out in fig. 6 (flowchart of case 1) can be inefficient in very large
environments. To increase speed it is possible to pick a goal point, put a neighborhood
window the size of the sensor range, run into the goal point, then look at the maximal initial
boundary, and recast and terminate when one reaches the boundary of the computed region.
Similar improvements can be made to algorithm 2.

7. Results

The proposed method, has been tested using the manipulator robot Manfred, see website:
roboticslab.uc3m.es. It has a coordinated control of all degree of freedom in the system (the
mobile base has 2 DOF and the manipulator has 6 DOF) to achieve smooth movement. This
mobile manipulator use a sensorial system based on vision and 3-D laser telemetry to perceive
and model 3-D environments. The mobile manipulator will include all the capabilities needed
to navigate, localize and avoid obstacles safely through out the environment.

92 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 13

To illustrate the performance of the exploration method based on the VFM motion planner
proposed, a test in a typical office indoor environment as shown in fig. 8, has been carried
out. The dimensions of the environment are 116x14 meters (the cell resolution is 12 cm), that
is the image has 966x120 pixels.
The VFM motion planning method provides smooth trajectories that can be used at low
control levels without any additional smooth interpolation process. Some of the steps of the
planning process between two defined points are shown in fig. 9. In this figure, the trajectory
computed by the VFM planner is represented (the red line represents the crossed path, and
the blue one represents the calculated trajectory from the present position to the destination
point). This figure shows also the map built in each step using the SLAM algorithm.

Fig. 8. Environment map of the Robotics Lab.

The results of two different tests are presented to illustrate both cases of exploration that this
work contemplates in the same environment. In this case the size of image is 628x412 pixels.
Figs. 10 and 11 represent the first case for implementing the exploration method (directed
exploration) on the Environment map shown in fig. 5. A final goal is provided for the
robot, which is located with respect to a global reference system; the starting point of
the robot movement is also known with respect to that reference system. The algorithm
allows calculating the trajectory towards that final goal with the updated information of the
surroundings that the sensors obtain in each step of the movement. When the robot reaches
the defined goal, a new destination in an unexplored zone is defined, as can be seen in the
third image of the figure.
The results of one of the tests done for the second case of exploration described are shown in
figs. 12 and 13. Any final goal is defined. The algorithm leads the robot towards the zones
that are free of obstacles and unexplored simultaneously (undirected exploration).

Fig. 9. Consecutive steps of the process using the first case of the exploration algorithm. The
red line represents the crossed path and the blue one represents the calculated trajectory from
the present position to the destination point.

93SLAM and Exploration using Differential Evolution and Fast Marching

14 Will-be-set-by-IN-TECH

Fig. 10. Simulation results with method 1, with final objective. Trajectory calculated. The red
line represents the crossed path and the blue one represents the calculated trajectory from the
present position to the destination point.

Fig. 11. Simulation results with method 1. Map built. The red line represents the crossed path
and the blue one represents the calculated trajectory from the present position to the
destination point.

94 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 15

Fig. 12. Simulation results with method 2, without final objective. Trajectory calculated.

Fig. 13. Simulation results with method 2. Map built.

8. Conclusion

This work presents a new autonomous exploration strategy. The essential mechanisms
used included the VFM method (8) applied to plan the trajectory towards the goal, a new

95SLAM and Exploration using Differential Evolution and Fast Marching

16 Will-be-set-by-IN-TECH

exploratory strategy that drives the robot to the most unexplored region and the SLAM
algorithm (23) to build a consistent map of the environment. The proposed autonomous
exploration algorithm is a combination of the three tools which is able to completely construct
consistent maps of unknown indoor environments in an autonomous way.
The results obtained show that the Logarithm of Extended Voronoi Transform can be used
to improve the results obtained with the Fast Marching method to implement a sensor based
motion planner, providing smooth and safe trajectories.
The algorithm complexity is O(m× n), where m× n is the number of cells in the environment
map, which lets us use the algorithm on line. Furthermore, the algorithm can be used directly
with raw sensor data to implement a sensor based local path planning exploratory module.

9. References

[1] J. Borenstein and Y. Koren, “Histogramic in-motion mapping for mobile robot obstacle
avoidance.”, IEEE Journal of Robotics, vol. 7, no. 4, pp. 535–539, 1991.

[2] A. Elfes, “Sonar-based real world mapping and navigation.”, IEEE Journal of Robotics
and Automation, vol. 3, no. 3, pp. 249–265, 1987.

[3] A. Elfes, “Using occupancy grids for mobile robot perception and navigation.”,
Computer Magazine, pp. 46–57, 1989.

[4] H. Feder, J. Leonard and C. Smith, “Adaptive mobile robot navigation and mapping.”,
International Journal of Robotics Research, vol. 7, no. 18, pp. 650–668, 1999.

[5] P. Covello and G. Rodrigue, “A generalized front marching algorithm for the solution
of the eikonal equation.”, J. Comput. Appl. Math., vol. 156, no. 2, pp. 371–388, 2003.

[6] S. Garrido, L.Moreno, and D.Blanco, “Voronoi diagram and fast marching applied to
path planning.” in 2006 IEEE International conference on Robotics and Automation. ICRA
2006., pp. 3049–3054.

[7] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, “Path planning for mobile robot
navigation using voronoi diagram and fast marching.” in Proc of IROS’06. Beijing. China.,
2006, pp. 2376–2381.

[8] S. Garrido, L. Moreno, and D. Blanco, Sensor-based global planning for mobile robot
navigation., Robotica 25 (2007), 189–199.

[9] A. Howard and L. Kitchen, “Generating sonar maps in highly specular environments.”
in Proceedings of the Fourth International Conference on Control, Automation, Robotics and
Vision, 1996.

[10] M. Khatib and R. Chatila, “An extended potential field approach for mobile robot
sensor-based motions.” in Proceedings of the IEEE Int. Conf. on Intelligent Autonomus
Systems, 1995.

[11] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for
mobile robot navigation” in Proceedings of the IEEE Int. Conf. on Robotics and Automation,
pp. 1398–1404, 2004.

[12] B. Kuipers and T. Levitt, “Navigation and mapping in large-scale space.”, AI Magazine,
vol. 9, pp. 25–43, 1988.

[13] B. Kuipers and Y. Byun, “A robot exploration and mapping strategy based on a semantic
hierarchy of spatial representations.”, Robotics and Autonomous Systems, vol. 8, pp. 47–63,
1991.

[14] J.-C. Latombe, Robot motion planning. Dordrecht, Netherlands: Kluwer Academic
Publishers, 1991.

[15] S. M. LaValle, 2006. Planning Algorithms, Cambridge University Press, Cambridge, U.K.

96 Advances in Robot Navigation

SLAM and Exploration using Differential Evolution and Fast Marching 17

[16] W. Lee, “Spatial semantic hierarchy for a physical robot.”, Ph.D. dissertation,
Department of Computer Sciences, The University of Texas, 1996.

[17] S. R. Lindemann and S. M. LaValle,“ Simple and efficient algorithms for computing
smooth, collision-free feedback laws”, International Journal of Robotics Research, 2007.

[18] S. R. Lindemann and S. M. LaValle, “Smooth feedback for car-like vehicles in polygonal
environments.” in Proceedings IEEE International Conference on Robotics and Automation,
2007.

[19] M. Mataric, “Integration of representation into goal-driven behavior-based robots.”,
IEEE Transaction on Robotics and Automation, vol. 3, pp. 304–312, 1992.

[20] S. Mauch, “Efficient algorithms for solving static hamilton-jacobi equations.”, Ph.D.
dissertation, California Inst. of Technology, 2003.

[21] P. Melchior, B. Orsoni, O. Laviale, A. Poty, and A. Oustaloup, “Consideration of obstacle
danger level in path planning using A* and Fast Marching optimisation: comparative
study.”, Journal of Signal Processing, vol. 83, no. 11, pp. 2387–2396, 2003.

[22] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar.” in Proceedings
of the IEEE International Conference on Robotics and Automation, March, 1985, pp. 116–121.

[23] L.Moreno, S.Garrido and F.Martin. “E-SLAM solution to the grid-based Localization
and Mapping problem”, in 2007 IEEE International Symposium on Intelligent Signal
Processing (WISP’2007). Alcala Henares. Spain. pp.897-903, 2007.

[24] G. Oriolo, M. Vendittelli and G. Ulivi,“On-line map-building and navigation for
autonomous mobile robots.” in Proceedings of the IEEE International Conference on Robotics
and Automation, 1995, pp. 2900–2906.

[25] G. Oriolo, G. Ulivi and M. Vendittelli, “Fuzzy maps: A new tool for mobile robot
perception and planning.”, Journal of Robotic Systems, vol. 3, no. 14, pp. 179–197, 1997.

[26] R. Philippsen and R. Siegwart, “An interpolated dynamic navigation function.” in 2005
IEEE Int. Conf. on Robotics and Automation, 2005.

[27] A. Poty, P. Melchior and A. Oustaloup, “Dynamic path planning by fractional
potential.” in Second IEEE International Conference on Computational Cybernetics, 2004.

[28] E. P. Silva., P. Engel, M. Trevisan, and M. Idiart, “Exploration method using harmonic
functions.”, Journal of Robotics and Autonomous Systems, vol. 40, no. 1, pp. 25–42, 2002.

[29] E. P. Silva, P. Engel, M. Trevisan, and M. Idiart, “Autonomous learning architecture for
environmental mapping.”, Journal of Intelligent and Robotic Systems, vol. 39, pp. 243–263,
2004.

[30] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans and D. Lane, “Path planning for
autonomous underwater vehicles.”, IEEE Trans. on Robotics, vol. 23, no. 2, pp. 331–341,
2007.

[31] S. Quinlan and O. Khatib. “Elastic bands: Connecting path planning and control. ” in
IEEE Int. Conf Robot and Autom., pp 802-807, 1993.

[32] S. Quinlan and O. Khatib, “Efficient distance computation between nonconvex objects.”
in IEEE Int. Conf Robot and Autom., pp. 3324-3329, 1994.

[33] E. Rimon and D.E. Koditschek, “Exact robot navigation using artificial potential
functions.”, IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp.501–518, 1992.

[34] J. A. Sethian, “A fast marching level set method for monotonically advancing fronts.”,
Proc. Nat. Acad Sci. U.S.A., vol. 93, no. 4, pp. 1591–1595, 1996.

[35] J. A. Sethian, “Theory, algorithms, and aplications of level set methods for propagating
interfaces.”, Acta numerica, pp. 309–395, Cambridge Univ. Press, 1996.

[36] J. Sethian, Level set methods. Cambridge University Press, 1996.

97SLAM and Exploration using Differential Evolution and Fast Marching

18 Will-be-set-by-IN-TECH

[37] S. Thrun and A. Bücken, “Integrating grid-based and topological maps for mobile
robot.” in Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96),
1996, pp. 944–950.

[38] S. Thrun and A. Bücken, “Learning maps or indoor mobile robot navigation.”
CMU-CS-96-121, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep., 1996.

[39] B. Yamauchi, “A frontier-based exploration for autonomous exploration.” in IEEE
International Symposium on Computational Intelligence in Robotics and Automation,
Monterey, CA, 1997, pp. 146–151.

[40] B. Yamauchi, A. Schultz, W. Adams and K. Graves, “Integrating map learning,
localization and planning in a mobile robot.” in Proceedings of the IEEE International
Symposium on Computational Intelligence in Robotics and Automation, Gaithersburg, MD,
1998, pp. 331–336.

[41] L. Yang and S. M. LaValle, “A framework for planning feedback motion strategies based
on a random neighborhood graph” in Proceedings IEEE International Conference on
Robotics and Automation, pages 544–549, 2000.

[42] J. Zelek, “A framework for mobile robot concurrent path planning and execution in
incomplete and uncertain environments.” in Proceedings of the AIPS-98 Workshop on
Integrating Planning, Scheduling and Execution in Dynamic and Uncertain Environments,
Pittsburgh, PA, 1988.

98 Advances in Robot Navigation

Part 2

Adaptive Navigation

5

Adaptive Navigation Control for Swarms of
 Autonomous Mobile Robots

Yasuhiro Nishimura1, Geunho Lee1, Nak Young Chong1,
Sang Hoon Ji2 and Young-Jo Cho3

1Japan Advanced Institute of Science and Technology,
2Korea Institute of Industrial Technology,

3Electronics and Telecommunications Research Institute
1Japan

2,3Korea

1. Introduction

Deploying a large number of resource-constrained mobile robots performing a common
group task may offer many advantages in efficiency, costs per system, and fault-tolerance
(Sahin, 2005). Therefore, robot swarms are expected to perform missions in a wide variety of
applications such as environment and habitat monitoring, exploration, odor localization,
medical service, and search-and-rescue. In order to perform the above-mentioned tasks
successfully, one of the most important concerns is how to enable swarms of simple robots
to autonomously navigate toward a specified destination in the presence of obstacles and
dead-end passageways as seen in Fig. 1. From the standpoint of the decentralized
coordination, the motions of individual robots need to be controlled to support coordinated
collective behavior.
We address the coordinated navigation of a swarm of mobile robots through a cluttered
environment without hitting obstacles and being trapped in dead-end passageways. Our
study is motivated by the observation that schools of fish exhibit emergent group behavior.
For instance, when schools of fish are faced with obstacles, they can split themselves into a
plurality of smaller groups to avoid collision and then merge into a single group after
passing around the obstacles (Wilson, 1976). It is also worth noting that a group of fish
facing a dead end can get out of the area.
Based on the observation of schooling behavior in fish, this work aims to present a novel
adaptive group behavior, enabling large-scale robot swarms with limited sensing
capabilities to navigate toward a goal that is visible only to a limited number of robots. In
particular, the coordinated navigation is achieved without using any leader, identifiers,
common coordinate system, and explicit communication. Under such a minimal robot
model, the adaptive navigation scheme exploits the geometric local interaction which allows
three neighboring robots to form an equilateral triangle. Specifically, the proposed
algorithm allows robot swarms to 1) navigate while maintaining equilateral triangular
lattices, 2) split themselves into multiple groups while maintaining a uniform distance of
each other, 3) merge into a single group while maintaining a uniform distance of each other,

Advances in Robot Navigation 102

and 4) escape from any dead-end passageways. During the adaptive navigation process, all
robots execute the same algorithm and act independently and asynchronously of each other.
Given any arbitrary initial positions, a large-scale swarm of robots is required to navigate
toward a goal position in an environment while locally interacting with other robots. The
basic necessities for the proposed solution are argued as follows. First, the robots can self-
control their travel direction according to environmental conditions, leading to enhancing
autonomy of their behavior. Secondly, by being split into multiple groups or re-united into a
single swarm, the robots can self-adjust its size and shape depending on the conditions. By
the capabilities above, robots have the emergent capability to maximize adaptability to
operate in uncertain environments. Thirdly, the coordinated navigation of multiple robots in
an equilateral triangle formation reduces a potential traffic jam and stragglers.

(a) adaptive navigation problem

(b) escape function

Fig. 1. Concept of adaptive navigation by autonomous mobile robot swarms

Consequently, the proposed adaptive navigation provides a cost-effective way to allow for
an increase in efficiency and autonomy of group navigation in a highly cluttered
environment. What is important from a practical standpoint is that the swarm flocking is
considered as a good ad hoc networking model whose connectivity must be maintained
while moving. In particular, maintaining the uniform distance enables the model to
optimize efficient energy consumption in routing protocols (Fowler, 2001)(Lyengar et al.,
2005). This networking model can potentially be used in application examples such as
exploration and search-and-rescue. This navigation can be further applied to swarms of
unmanned vehicles and sensors performing autonomous operations such as capturing and
transporting toxic and hazardous substances. We describe our algorithm in detail, and
perform extensive simulations to demonstrate that a swarm of robots can navigate toward a
specified destination while adapting to unknown environmental conditions in a scalable
manner.
The rest of this paper is organized as follows. Section 2 introduces a brief description of
research related to swarming and flocking and sheds light on our motivation. Section 3
presents the robot model and the formal definitions of the adaptive navigation problem.
Section 4 describes the fundamental motion control of each robot locally interacting with

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 103

their neighboring robots, leading to forming an equilateral triangle lattice. Section 5 gives
the solution scheme of the adaptive navigation. Section 6 demonstrates the validity and
applicability of the proposed scheme through extensive simulations. Section 7 draws
conclusions.

2. Background
Wireless network-enabled mobile robotic sensors have been increasingly popular over the
recent years (Yicka et al., 2008). Such robotic sensors dispersing themselves into an area can
be used for search-and-rescue and exploration applications by filling the area of interest
and/or establishing an ad hoc network. To achieve a desired level of self-deployment of
robotic sensors, many prior studies have attempted to use decentralized approaches in self-
configuration (Lee & Chong, 2009)(Shucker et al., 2008)(Spears et al., 2004), pattern
generation (Lee & Chong, 2009-b)(Ikemoto et al., 2005), and navigation (Gu & Hu, 2010)(Lee
& Chong, 2008)(Olfati-Saber, 2006). In particular, we have witnessed a great interest in
distributed navigation control that enables a large number of robots to navigate from an
initial position toward a desired destination without human intervention.
Recently, many navigation control studies have been reported in the field of swarm robotics,
where the decentralized navigation controls are mainly based on interactions between
individual robots mostly inspired by evidence from biological systems (e.g., fish schools or
bird flocks) or natural phenomena (e.g., liquid diffusion). The navigation control can be
further divided into biological emergence (Folino & Spezzano, 2002)(Reynolds, 1987),
behavior-based (Lee & Chong, 2008)(Ogren & Leonard, 2005)(Balch & Hybinette, 2000), and
virtual physics-based (Esposito & Dunbar, 2006)(Zarzhitsky et al., 2005)(Spears et al., 2006)
approaches. Specifically, the behavior-based and virtual physics-based approaches are
related to the use of such physical phenomena as gravitational forces (Zarzhitsky et al.,
2005)(Spears et al., 2006) and potential fields (Esposito & Dunbar, 2006). Those works mostly
use some sort of force balance between inter-individual interactions exerting an attractive or
repulsive force on each other. This is mainly because the force-based interaction rules are
considered simple yet effective, and provide an intuitive understanding on individual
behavior. However, the computation of relative velocities or accelerations between robots is
needed to obtain the magnitude of the interacting force.
Regarding the aspect of calculating the movement position of each robot, accuracy and
computational efficiency issues have been attracted. In practice, many works on robot
swarms use sensor-rich information and explicit means of communication. Note that if
any means of communication would be employed, robots need to identify with each other
or use a global coordinate or positioning system (Correll et al., 2000)(Lam & Liu,
2006)(Nembrini et al., 2002). In this paper, we attempt to achieve adaptive navigation
without taking advantage of rich computational capabilities and communication. This will
allow us to develop robot systems in simple, robust, and non-costly ways. A subset of this
work was reported in (Lee & Chong, 2008) which provided mobile robot swarms with
basic navigation and adaptation capabilities. The main objective of this paper is to present
a completely new and general adaptive navigation coordination scheme assuming a more
complicated arena with dead-end passageways. Specifically, we highlight the simplicity
and intuition of the self-escape capability without incorporating a combination of
sophisticated algorithms.

Advances in Robot Navigation 104

3. Problem statement
3.1 Robot model and notations

 (a) ri’s local coordinate (b) observation set O୧ (c) triangular configuration T୧
Fig. 2. Illustration of definition and notation

In this work, we consider a swarm of mobile robots denoted by r1,⋯,rn. It is assumed that an
initial distribution of all robots is arbitrary and their positions are distinct. Each robot
autonomously moves on a two-dimensional plane. Robots have no leader and no identifiers.
They do not share any common coordinate system. Due to a limited observation range, each
robot can detect the positions of other robots only within its line-of-sight. In addition, robots
are not allowed to communicate explicitly with each other.
Next, as illustrated in Fig. 2-(a), let’s consider a robot	r୧	with local coordinate
system	rԦ୶,୧	and	rԦy,i. The robot’s heading direction	rԦy,i	is defined as the vertical axis of	ri’s
coordinate system. It is straightforward to determine the horizontal axis	rሬሬԦx,i	by rotating	rԦy,i	90
degrees clockwise. The position of	ri	is denoted by	pi. Note that	pi	is (0, 0) with respect to	ri’s
local coordinate system. The line segment	pipj	is defined as a straight line
between	pi	and	pj	occupied by another robot	rj. The distance between	pi	and	pj	is defined as dist൫pi,pj൯. In particular, the desired inter-robot distance between	ri	and	rj	is denoted by	du.
Moreover, angሺmሬሬሬԦi,nሬԦiሻ	denote the angle between two arbitrary vectors	mሬሬሬԦi	and	nሬԦi.
As shown in Fig. 2-(b), r୧	detects the positions	pj,	pk	and	pl	of other robots located within its
sensing boundary	SB, yielding a set of the positions	Oi൫=൛pj,pk,plൟ൯	with respect to its local
coordinate system. When	ri	selects two robots	rn1	and	rn2	within its	SB, we call	rn1	and	rn2 the
neighbors of	ri, and their position set	ሼpn1,pn2ሽ	is denoted by	Ni	as illustrated in Fig. 2-(c).
Given	pi	and	Ni, a set of three distinct positions	ሼpi,pn1,pn2ሽ	with respect to	ri	is called the
triangular configuration	 i, namely	ሼpi,pn1,pn2ሽ. We further define the equilateral triangular
configuration, denote by	 i, as the configuration that all distances between any two of	pi, pn1	and	pn2	of	 i are equal to	du.

3.2 Problem definition
It is known that the local geometric shape of schools of tuna represents a diamond shape
(Stocker, 1999), whereby tuna exhibit their adaptive behavior while maintaining the local
shape. Similarly, the local interaction in this work is to generate	 i from	 i. Formally, the
local interaction is to have	ri maintain	du	with	Ni	at each time toward forming	 i. Now, we can

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 105

address the coordination problem of adaptive navigation of robot swarms based on the local
interaction as follows:
Given r1,⋯,rn located at arbitrarily distinct positions, how to enable the robots to autonomously
travel through unknown territories using only local information in order to reach a destination?
It is assumed that the unknown environment to be navigated by a swarm of robots includes
obstacles and dead-end passageways. Next, we advocate that adaptive flocking can be
achieved by solving the following four constituent sub-problems.
• Problem-1(Maintenance): Given robots located at arbitrarily distinct positions, how to

enable them to navigate with	 i.
• Problem-2(Partition): Given that an obstacle is detected, how to enable a swarm to split

into multiple smaller swarms to avoid the obstacle.
• Problem-3(Unification): Given that multiple swarms exist in close proximity, how to

enable them to merge into a single swarm.
• Problem-4(Escape): Given some robots trapped in a dead-end passageway, how to

enable them to escape from the area.

4. Geometric local interaction scheme
This section explains the local interaction among three neighboring robots. As presented in
ALGORITHM-1, the algorithm consists of a function φinteraction whose arguments are	pi	and Ni	at each activation.

Algorithm 1. Local Interaction (code executed by the robot ri at point pi)

Fig. 3. Illustration of the local interaction algorithm

4.1 Local interaction algorithm
Let’s consider a robot	ri	and its two neighbors	rn1	and	rn2	located within	ri’s	SB. As shown in
Fig. 3, three robots are configured into	 i whose vertices are	pi,	pn1	and	pn2, respectively.

Advances in Robot Navigation 106

First, ri	finds the centroid of the triangle	△pipn1pn2, denoted by	pct, with respect to its local
coordinate system, and measures the angle ϕ between the line	pn1pn2	connecting the
neighbors and	rԦx,i	(r୧’s horizontal axis). Using	pct	and ϕ, ri	calculates the next movement
point	pti. Each robot computes	pti by its current observation of neighboring robots.
Intuitively, under ALGORITHM-1, ri	may maintain	du	with its two neighbors at each time.
In other words, each robot attempts to form an isosceles triangle for	Ni	at each time, and
by repeatedly running ALGORITHM-1, three robots configure themselves into	 i(Lee &
Chong, 2009).

4.2 Motion control
As illustrated in Fig. 4-(b), let’s consider the circumscribed circle of an equilateral triangle
whose center is	pct	of	△pipn1pn2	and radius	dr	is	du √3⁄ . Under the local interaction, the
positions of each robot are determined by controlling the distance	di	from	pct	and the
internal angle	αi(see Fig. 4-(a)). First, the distance is controlled by the following equation dሶ iሺtሻ=-aሺdiሺtሻ-drሻ, (1)

Where a is a positive constant. Indeed, the solution of (1) is diሺtሻ=|diሺ0ሻ|e-at+dr that
converges exponentially to	dr	as t approaches infinity. Secondly, the internal angle is
controlled by the following equation αሶ iሺtሻ=k൫βiሺtሻ-γiሺtሻ-2αiሺtሻ൯, (2)

(a) control parameters range d୧ and bearing α୧ (b) desired equilateral triangle ॱ୧
Fig. 4. Two control parameter of local interaction

where k is a positive number. Because the total internal angle of a triangle is 180˚	, (2) can be
rewritten as αሶ iሺtሻ=k'൫60˚-αiሺtሻ൯, (3)

where	k'	is	3k. Likewise, the solution of (3) is	α୧ሺtሻ = |α୧ሺ0ሻ|eି୩ᇲ୲ + 60˚	that converges
exponentially to 60˚ as t approaches infinity.
Note that (1) and (3) imply that the trajectory of	ri	converges to	dr	and	60˚, an equilibrium
state as termed ሾdr 60˚ሿT shown in Fig. 4-(b). This also implies that three robots eventually

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 107

form	 i. In order to prove the convergence of the local interaction, we apply Lyapunov’s
stability theory (Slotine & Li, 1991). Lyapunov’s stability theorem states that if there exists a
scalar function	vሺxሻ	of the state	x	with continuous first order derivatives such that vሺxሻ is
positive definite, v'ሺxሻ	is negative definite, and	vሺxሻ→∞	as	‖x‖→∞, then the equilibrium at
the origin is asymptotically stable. Now, the desired configuration can be regarded as one
that minimizes the energy level of a Lyapunov function.
Consider the following scalar function of the state	x	=	ሾdiሺtሻ αiሺtሻሿT	with continuous first
order derivatives:

f୪,୧ = 12 ሺd୧ − d୰ሻଶ + 12 ሺ60˚ − α୧ሻଶ. (4)

This scalar function is always positive definite except di≠dr and αi≠60. The derivative of the
scalar function is given by fሶ୪,୧ = −ሺd୧ − d୰ሻଶ − ሺ60˚ − α୧ሻଶ, (5)

which is obtained by differentiating	fl,i	to substitute for	dሶ i	and	αሶ ୧. It is evident that (5) is
negative definite and the scalar function	fl,i	is radially unbounded since it tends to infinity
as ‖x‖→∞. Therefore, the equilibrium state is asymptotically stable, implying
that	ri	reaches a vertex of i. Further details on the convergence proof are given in (Lee &
Chong, 2009).

Fig. 5. Adaptive navigation algorithm flowchart

5. Adaptive navigation algorithm
As illustrated in Fig. 5, the input to the adaptive navigation algorithm at each time is	Oi		and
the arena border detected with respect to	ri’s local coordinate system, and the output is	ri’s
next movement position. When	ri	observes the arena within its	SB, depending on whether or
not it can move forward, it either executes the partition function to avoid the obstacle or the
escape function to break a stalemate. When	ri	faces no arena border but observes other

Advances in Robot Navigation 108

swarms, it executes the unification function. Otherwise, it basically performs the
maintenance function to navigate toward a goal.

Algorithm 2. Neighbor Selection -1 (code executed by the robot ri at point pi)

The four functions above should determine two positions	pn1	and	pn2	occupied by two
neighbors	rn1and	rn2. These positions are the input arguments of ALGORITHM-1. Before
explaining the four functions as individual solutions of each sub-problem, we introduce the
neighbor selection algorithm commonly used in the four functions, enabling	ri	to select its
neighbor robots. To form	 i, the first neighbor	rn1	is selected as the one located the shortest
distance away from	ri	as shown in Fig. 6-(a). When there exist two or more candidates	rn1m
and	rn1n	for	rn1,	ri	arranges their positions	pn1m=൫xn1m,yn1m൯	and	pn1n=൫xn1n,yn1n൯	with respect
to ri’s local coordinate system. Then,	ri	uniquely determines its	rs1	by sorting their positions
in the following increasing order with respect to its local coordinate system: if	൫pn1m<pn1n൯	⇔	ൣ൫yn1m<yn1n൯∨൛൫yn1m=yn1n൯∧൫xn1m<xn1n൯ൟ൧ where the logic symbols	∨	and	∧
indicate the logical conjunction and the logical disjunction, respectively. As presented in Fig.
6-(b), the second neighbor	rn2	is selected such that the length of	 i’s perimeter is minimized
as follows: minሾdistሺpn1,pn2ሻ+distሺpn2,piሻሿ. In particular, when both	ri	and the neighbors are
all aligned, if there are three or more robots in	Oi	,	rn2	is re-selected such that	ri	is not
located on the same line. Under ALGORITHM-2,	ri	is able to select its neighbors and then
form	 i. Notice that the currently selected neighbors do not coincide with ones at the next
time due to the assumption of anonymity. Using the current	Oi		by	ri,	 i is newly formed at
each time.

(a) rn1 selection (b) rn2 selection

Fig. 6. Illustration of the neighbour selection algorithm

5.1 Maintenance function
The first problem is how to maintain	 i	with neighboring robots while navigating. As shown
in Fig. 7-(a),	ri	adjusts its traveling direction	TሬሬԦi	with respect to its local coordinate system and

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 109

computes Oi at the time t. By rotating TሬሬԦi 90 degrees clockwise and counterclockwise,
respectively, two vectors	TሬሬԦi,c	and	TሬሬԦi,a	are defined. Within	ri’s	SB, an area of traveling direction A൫TሬሬԦi൯ is defined as the area between	TሬሬԦi,cand	TሬሬԦi,aas illustrated in Fig. 7-(b). Under
ALGORITHM-2, ri	checks whether there exists a neighbor in	A൫TሬሬԦi൯. If any robots exist
within	A൫TሬሬԦi൯, ri	selects the first neighbor	rn1	and defines its position	pn1. Otherwise,	ri	spots a
virtual point	pv	located some distance	dv	away from	pi	along	A൫TሬሬԦi൯, which gives	pn1. After
determining	pn1,	rn2	is selected and its position	pn2	is defined.

 (a) traveling direction TሬሬԦi (b) maintenance area A൫TሬሬԦi൯
Fig. 7. Illustration of the maintenance function

5.2 Partition function

 (a) favorite vector fԦj (b) partition area A൫fԦjmax൯
Fig. 8. Illustration of the partition function

When	ri	detects an obstacle that blocks its way to the destination, it is required to modify the
direction toward the destination avoiding the obstacle. In this work,	ri	determines its
direction by using the relative degree of attraction of individual passageways	sj, termed the
favorite vector	fԦj, whose magnitude is given:

Advances in Robot Navigation 110

หfԦ୨ห = ቤw୨d୨ଶቤ (6)

where	wj	and	dj	denote the width of	sj	and the distance between the center of	wj	and	pi,
respectively. Note that if	ri	can not exactly measure	wj	beyond its	SB, wj	may be shortened.
Now, sj	can be represented by a set of favorite vectors	൛fԦjห1≤j≤mൟ, and then	ri	selects the
maximum magnitude of	fԦj, denoted as	หfԦjหmax. Similar to defining	A൫TሬሬԦi൯	above,	ri	defines a

maximum favorite area	A൫fԦjmax൯	based on the direction of	หfԦjหmax	within its	SB. If neighbors

are found in	A൫fԦjmax൯, ri	selects	rn1	to define	pn1. Otherwise,	ri	spots a virtual point	pv	located
at	dv	in the direction of	หfԦjหmax	to define	pn1. Finally,	rn2	and its	rn2	are determined under
ALGORITHM-2.

5.3 Unification function
In order to enable multiple swarms in close proximity to merge into a single swarm,	ri
adjusts	TሬሬԦi	with respect to its local coordinate system and defines the position set of robots	Du	
located within the range of	du.	r୧	computes	ang൫TሬሬԦi,pipuሬሬሬሬሬሬሬሬԦ൯, where	pipuሬሬሬሬሬሬሬሬԦ	is the vector starting
from	pi	to a neighboring point	puin	Du, and defines a neighbor point	pref	that gives the
minimum	ang൫TሬሬԦi,pipuሬሬሬሬሬሬሬሬԦ൯	between TሬሬԦi and pipuሬሬሬሬሬሬሬሬԦ. If there exists	pul,	ri finds another neighbor
point	pum	using the same method starting from	pipulሬሬሬሬሬሬሬሬሬԦ. Unless	pul	exists,	ri	defines pref	as	prn.
Similarly,	ri	can decide a specific neighbor point	pln	while rotating 60 degrees
counterclockwise from	piprefሬሬሬሬሬሬሬሬሬሬԦ. The two points, denoted as prn and pln, are located at the
farthest point in the right-hand or left-hand direction of	pipuሬሬሬሬሬሬሬሬԦ, respectively. Next, a
unification area	AሺUiሻ	is defined as the common area between	A൫TሬሬԦi൯	in	SB and the rest of the
area in	SB, where no element of	Du	exists. Then,	ri	defines a set of robots in	AሺUiሻ	and selects
the first neighbor	rn1. In particular, the second neighbor position	pn2	is defined such that the
total distance from	pn1	to	pi	can be minimized only through either	prn	or	pln.

 (a) traveling direction TሬሬԦi (b) unification area AሺUiሻ
Fig. 9. Illustration of the unification function

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 111

5.4 Escape control
When ri detects an arena border within its SB as shown in Fig. 10-(a), it checks whether i is
equal to i. Neighboring robots should always be kept du distance from ri. Moreover, ri’s
current position pi and its next movement position pti remain unchanged for several time
steps, ri will find itself trapped in a dead-end passageway. ri then attempts to find new
neighbors within the area AሺEiሻ to break the stalemate. Similar to the unification function, ri
adjusts TሬሬԦi with respect to its local coordinate system and defines the position set of robots De
located within SB. As shown in Fig. 10-(b), ri computes ang൫TሬሬԦi,pipeሬሬሬሬሬሬሬሬԦ൯, where pipuሬሬሬሬሬሬሬሬԦ is the vector
starting from pi to a neighboring point pe in De, and defines a neighbor point rref that gives
the minimum ang൫TሬሬԦi,pipeሬሬሬሬሬሬሬሬԦ൯ between TሬሬԦi and pipuሬሬሬሬሬሬሬሬԦ. While rotating 60 degrees clockwise and
counterclockwise from piprefሬሬሬሬሬሬሬሬሬሬԦ, respectively, ri can decide the specific neighbor points pln and prn. Employing pln and prn, the escape area AሺEiሻ is defined. Then, ri adjusts a set of robots in AሺEiሻ and selects the first neighbor rn1. In particular, the second neighbor position pn2 is
determined under ALGORITHM-2.

(a) encountered dead-end passageway (b) merging with another adjacent swarm

Fig. 10. Illustration of the escape function

6. Simulation results and discussion
This section describes simulation results that tested the validity of our proposed adaptive
navigation scheme. We consider that a swarm of robots attempts to navigate toward a
stationary goal while exploring and adapting to unknown environmental conditions. In
such an application scenario, the goal is assumed to be either a light or odor source that can
only be detected by a limited number of robots. As mentioned in Section 3, the coordinated
navigation is achieved without using any leader, identifiers, global coordinate system, and
explicit communication. We set the range of SB to 2.5 times longer than du.
The first simulation demonstrates how a swarm of robots adaptively navigates in an
environment populated with obstacles and dead-end passageway. In Fig. 11, the swarm
navigates toward the goal located on the right hand side. On the way to the goal, some of
the robots detect a triangular obstacle that forces the swarm split into two groups from 7 sec
(Fig. 11-(c)). The rest of the robots that could not identify the obstacle just follow their
neighbors moving ahead. After being split into two groups at 14 sec (Fig. 11-(d)), each group
maintains their local geometric configuration while navigating. At 18 sec (Fig. 11-(e)), some

Advances in Robot Navigation 112

robots happen to enter a dead-end passageway. After they find themselves trapped, they
attempt to escape from the passageway by just merging themselves into a neighboring
group from 22 sec to 32 sec (from Figs. 11-(f)) to (k)). After 32 sec (Fig. 11-(k)), simulation
result shows that two groups merge again completely. At 38 sec (Fig. 11-(l)), the robots
successfully pass through the obstacles.

Fig. 11. Simulation results of adaptive flocking toward a stationary goal ((a)0 sec,(b)4 sec,
(c)7 sec,(d)14 sec,(e)18 sec,(f)22 sec,(g)23 sec,(h)24 sec,(i)28 sec,(j)29 sec,(k)32 sec,(l)38sec)

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 113

Fig. 12 shows the trajectories of individual robots in Fig. 11. We could confirm that the
swarm was split into two groups due to the triangular obstacle located at coordinates (0,0).
If we take a close look at Figs. 11-(f) through (j) (from 22 sec to 29 sec), the trapped ones
escaped from the dead-end passageway located at coordinates (x, 200). More important,
after passing through the obstacles, all robots position themselves from each other at the
desired interval du.

Fig. 12. Robot trajectory results for the simulation in Fig.11

Next, the proposed adaptive navigation is evaluated in a more complicated environmental
condition as presented in Fig. 13. On the way to the goal, some of the robots detect a
rectangular obstacle that forces the swarm split into two groups in Fig. 13-(b). After passing
through the obstacle in Fig. 13-(d), the lower group encounters another obstacle in Fig. 13-
(e), and split again into two smaller groups in Fig. 13-(g). Although several robots are
trapped in a dead-end passageway, their local motions can enable them to escape from the
dead-end passageway in Fig. 13-(i). This self-escape capability is expected to be usefully
exploited for autonomous search and exploration tasks in disaster areas where robots have
to remain connected to their ad hoc network. Finally, for a comparison of the adaptive
navigation characteristics, three kinds of simulations are performed as shown in Figs. 14
through 16. All the simulation conditions are kept the same such as du, the number of
robots, and initial distribution. Fig. 14 shows the behavior of mobile robot swarms without
the partition and escape functions. Here, a considerable number of robots are trapped in the
dead-end passageway and other robots pass through an opening between the obstacle and
the passageway by chance. As compared with Fig. 14, Fig. 15 shows more robots pass
through the obstacles using the partition function. However, a certain number of robots
remain trapped in the dead-end passageway because they have no self-escape function. Fig.

Advances in Robot Navigation 114

16 shows that all robots successfully pass through the obstacles using the proposed adaptive
navigation scheme. It is evident that the partition and escape functions will provide swarms
of robots with a simple yet efficient navigation method. In particular, self-escape is one of
the most essential capabilities to complete tasks in obstacle-cluttered environments that
require a sufficient number of simple robots.

Fig. 13. Simulation results of adaptive flocking toward a stationary goal ((a)0 sec,(b)8 sec,
(c)10 sec,(d)14 sec,(e)18 sec,(f)22 sec,(g)25 sec,(h)27 sec,(i)31 sec,(j)36)

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 115

Fig. 14. Simulation results for flocking without partition and escape functions

Fig. 15. Simulation results for flocking with only partition function

Advances in Robot Navigation 116

Fig. 16. Simulation results for flocking with the partition and escape functions

7. Conclusions
This paper was devoted to developing a new and general coordinated adaptive
navigation scheme for large-scale mobile robot swarms adapting to geographically
constrained environments. Our distributed solution approach was built on the following
assumptions: anonymity, disagreement on common coordinate systems, no pre-selected
leader, and no direct communication. The proposed adaptive navigation was largely
composed of four functions, commonly relying on dynamic neighbor selection and local
interaction. When each robot found itself what situation it was in, individual appropriate
ranges for neighbor selection were defined within its limited sensing boundary and the
robots properly selected their neighbors in the limited range. Through local interactions
with the neighbors, each robot could maintain a uniform distance to its neighbors, and
adapt their direction of heading and geometric shape. More specifically, under the
proposed adaptive navigation, a group of robots could be trapped in a dead-end passage,
but they merge with an adjacent group to emergently escape from the dead-end passage.
Furthermore, we verified the effectiveness of the proposed strategy using our in-house
simulator. The simulation results clearly demonstrated that the proposed algorithm is a
simple yet robust approach to autonomous navigation of robot swarms in highly-
cluttered environments. Since our algorithm is local and completely scalable to any size, it
is easily implementable on a wide variety of resource-constrained mobile robots and
platforms. Our adaptive navigation control for mobile robot swarms is expected to be
used in many applications ranging from examination and assessment of hazardous
environments to domestic applications.

Adaptive Navigation Control for Swarms of Autonomous Mobile Robots 117

8. References
Balch, T. & Hybinette, M. (2000). Social potentials for scalable multi-robot formations, Proc.

IEEE Int. Conf. Robotics and Automation, pp. 73-80, IEEE
Correll, N., Bachrach, J., Vickery, D., & Rus, D. (2009). Ad-hoc wireless network coverage

with networked robots that cannot localize, Proc. IEEE Int. Conf. Robotics and
Automation, pp. 3878 - 3885, IEEE

Esposito, J. M. & Dunbar, T. W. (2006). Maintaining wireless connectivity constraints for
swarms in the presence of obstacles, Proc. IEEE Int. Conf. Robotics and Automation,
pp. 946-951, IEEE

Folino, G. & Spezzano, G. (2002). An adaptive flocking algorithm for spatial clustering, In:
Parallel Problem Solving from Nature (LNCS), Yao, X., Burke, E., Lozano, J. A., Smith,
J., Merelo-Guervos, J. J., Bullinaria, J. A., Rowe, J., Tino, P., Kaban, A., & Schwefel,
H.-P. (Ed.), Vol. 2439, 924-933, Springer Berlin, ISBN: 978-3-540-23092-2

Fowler, T. (2001). Mesh networks for broadband access, IEE Review, Vol. 47, No. 1, 17-22
Gu, D. & Hu, H. (2010). Distributed minmax filter for tracking and flocking, Proc. IEEE/RSJ

Int. Conf. Intelligent Robots and Systems, pp. 3562-3567, IEEE
Ikemoto, Y., Hasegawa, Y., Fukuda, T., & Matsuda, K. (2005). Graduated spatial pattern

formation of robot group, Information Science, Vol. 171, No. 4, 431-445
Lam, M. & Liu, Y. (2006). ISOGIRD: an efficient algorithm for coverage enhancement in

mobile sensor networks, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp.
1458-1463, IEEE

Lee, G. & Chong, N. Y. (2009). A geometric approach to deploying robot swarms, Annals of
Mathematics and Artificial Intelligence, Vol. 52, No. 2 − 4, 257-280

Lee, G. & Chong, N. Y. (2009-b). Decentralized formation control for small-scale robot teams
with anonymity, Mechatronics, Vol. 19, No. 1, 85-105

Lee, G. & Chong, N. Y. (2008). Adaptive flocking of robot swarms: algorithms and
properties, IEICE Trans. Communications, Vol. E91 − B, No. 9, 2848-2855

Lyengar, R., Kar, K., & Banerjee, S. (2005). Low-coordination topologies for redundancy in
sensor networks, Proc. 3rd Acm Int. Sym. Mobile Ad Hoc Networking and Computing,
pp. 332-342, ACM

Nembrini, J., Winfield, A., & Melhuish, C. (2002). Minimalist coherent swarming of wireless
networked autonomous mobile robots, Proc. 7th Int. Conf. Simulation of Adaptive
Behavior, pp. 373-382, IEEE

Olfati-Saber, R. (2006). Flocking for mult-agnet dynamic systems: algorithms and theory,
IEEE Trans. Automatic Control, Vol. 51, No. 3, 401-420

Ogren, P. & Leonard, N. E. (2005). A convergent dynamic window approach to obstacle
avoidance, IEEE Trans. Robotics and Automation, Vol. 21, No. 2, 188-195

Stocker, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model, Computer
Graphics, Vol. 21, No. 4, 25-34

Sahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application, In:
Swarm Robotics (LNCS), Sahin, E & Spears, W. M., (Ed.), Vol. 3342, 10-20, Springer
Berlin, ISBN: 978-3-540-24296-3

Shucker, B., Murphey, T. D., & Bennett, J. K. (2008). Convergence-preserving switching for
topology-dependent decentralized systems, IEEE Trans. Robotics, Vol. 24, No. 6,
1405-1415

Advances in Robot Navigation 118

Slotine, J. E. & Li,W. (1991). Applied nonlinear control, Prentice-Hall, ISBN: 0-13-040890-5
Spears, D., Kerr, W., & Spears, W. M. (2006). Physics-based robot swarms for coverage

problems, Int. Jour.Intelligent Control and Systems, Vol. 11, No. 3, 124-140
Spears, W. M., Spears, D., Hamann, J., & Heil, R. (2004). Distributed, physics-based control

of swarms of vehicles, Autonomous Robots, Vol. 17, No. 2 − 3, 137-162
Stocker, S. (1999). Models for tuna school formation, Mathematical Biosciences, Vol. 156, No.

1−2, 167-190
Wilson, E. O. (1976). Sociobiology: the new synthesis, Harvard University Press, ISBN: 0-

674-00089-7
Yicka, J., Mukherjeea, B., & Ghosal, D. (2008). Wireless sensor network survey, Computer

Networks, Vol. 52, No. 12, 2292-2330
Zarzhitsky, D., Spears, D., & Spears, W. M. (2005). Distributed robotics approach to chemical

plume tracing, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 4034-4039,
IEEE

6

Hybrid Approach for Global Path Selection &
Dynamic Obstacle Avoidance for Mobile Robot

Navigation
D. Tamilselvi, S. Mercy Shalinie, M. Hariharasudan and G. Kiruba

Department of Computer Science and Engineering,
Thiagarajar College of Engineering, Madurai, TamilNadu, South India,

India

1. Introduction
In Robotics, path planning has been an area gaining a major thrust and is being intensively
researched nowadays. This planning depends on the environmental conditions they have to
operate on. Unlike industrial robots, service robots have to operate in unpredictable and
unstructured environments. Such robots are constantly faced with new situations for which
there are no pre programmed motions. Thus, these robots have to plan their own motions.
Path planning for service robots are much more difficult due to several reasons. First, the
planning has to be sensor-based, implying incomplete and inaccurate world models. Second,
the real time constraints, provides only limited resources for planning. Third, due to incomplete
models of the environment, planning could involve secondary objectives, with the goal to
reduce the uncertainty about the environment. Navigation for mobile robots is closely related
to sensor-based path planning in 2D, and can be considered as a mature area of research.
Mobile robots navigation in dynamic environments represents still a challenge for real
world applications. The robot should be able to reach its goal position, navigating safely
amongst, people or vehicles in motion, facing the implicit uncertainty of the surrounding
world. Because of the need for highly responsive algorithms, prior research on dynamic
planning has focused on re-using information from previous queries across a series of
planning iterations. The dynamic path-planning problem consists in finding a suitable plan
for each new configuration of the environment by re computing a collision free path using
the new information available at each time step.
The problem of collision detection or contact determination between two or more objects is
fundamental to computer animation, physical based modeling, molecular modeling,
computer simulated environments (e.g. virtual environments) and robot motion planning.
In robotics, an essential component of robot motion planning and collision avoidance is a
geometric reasoning system which can detect potential contacts and determine the exact
collision points between the robot and the obstacles in the workspace.

2. Mobile robot indoor environment
Indoor Environment Navigation is the kind of navigation restricted to indoor arenas. Here
the environment is generally well structured and map of the part from the robot to the

Advances in Robot Navigation

120

target is known. Mapping plays a vital role for Mobile Robot Navigation. Mapping the
Mobile Robot environment representation is the active research in AI Field for the last two
decades for machine intelligence device real time applications in various fields. Creating the
spatial model with fine grid cells for physical indoor environment considering the geometric
properties is the additional feature compared with the topological mapping. Grid mapping
supports the conceptual motion planning for mobile robot navigation and extend the
simulation into real time environments.
The robot and obstacle geometry is described in a 2D or 3D workspace, while the motion is
represented as a path in (possibly higher-dimensional) configuration space. A configuration
describes the pose of the robot, and the configuration space C is the set of all possible
configurations. If the robot is a single point (zero-sized) translating in a 2-dimensional plane
(the workspace), C is a plane, and a configuration can be represented using two parameters
(x, y). The indoor physical environment is represented as two dimensional arrays of cells.
Each cell of the map contains two kinds of configuration space depending upon the status of
obstacles known as free space and obstacle space.
The term ‘path planning’ usually refers to the creation of an overall motion plan from a start
to a goal location. Most path planners create a path plan in C-space and then use obstacle
avoidance to modify this plan as needed. The idea of using C-space for motion planning was
first introduced by Lozano-Perez and Wesley [1979]. The idea for motion planning in C-
space is to ‘grow’ C-space obstacles from physical obstacles while shrinking the mobile
robot down to a single point. In the cell decomposition approach to motion planning, the
free C-space in the robot environment is decomposed into disjoint cells which have interiors
where planning is simple. The planning process then consists of locating the cells in which
the start and goal configurations are and then finding a path between these cells using
adjacency relationships between the cells.
There are two types of cell decomposition, exact and approximate. In exact cell
decomposition, the union of all the cells corresponds exactly to the free C-space. Therefore,
if a path exists this approach will find it. However, all cells must be computed analytically,
which quickly becomes difficult and time consuming for robots with many DOF. Schwartz
and Sharir [1983] use exact cell decomposition to study the ‘piano mover’s’ problem.
Approximate cell decomposition avoids the difficulty of analytically computing cells by
decomposing the free C-space into many simple cells (often squares or cubes). In addition to
easing the decomposition process, computing the adjacency relationships is simplified due
to the sameness of all cells. Lozano-Perez used approximate cell decomposition in
developing a resolution complete planner for arbitrary, n-DOF manipulators [1987].

3. DT Algorithm for global path planning
The DT algorithm was devised by Rosenfield and Pfaltz as a tool to study the shape of objects
in 2D images by propagating distance in tessellated space from the boundaries of shapes into
their centers. Various properties of shape can be extracted from the resultant transform and it
can be shown that the skeletons of local maxima can be used to grow back the original shapes
without information loss. Jarvis discovered that, by turning the algorithm ‘inside out’ to
propagate distance from goals in the free space that includes the shapes interpreted as
obstacles and by repeating a raster order and inverse raster order scan used in the algorithm
until no further change takes place, a space filling transform with direct path planning
application is resulted. Multiple starting points, multiple goals and multidimensional space

Hybrid Approach for Global Path Selection
& Dynamic Obstacle Avoidance for Mobile Robot Navigation

121

versions are easily devised. When the DT completes filling the free space with distance
markers, the goal is achieved from any starting point through a steepest descent trajectory.
Using distance transforms for planning paths for mobile robot applications was first
reported by R.A. Jarvis and J.C. Byrne. This approach considered the task of path planning
to find paths from the goal location back to the start location. The path planner propagates a
distance wave front through all free space grid cells in the environment from the goal cell.
The distance wave front flows around obstacles and eventually through all free space in the
environment. For any starting point within the environment representing the initial position
of the mobile robot, the shortest path to the goal is traced by walking down hill via the
steepest descent path. If there is no downhill path, and the start cell is on a plateau then it
can be concluded that no path exists from the start cell to the goal cell i.e. the goal is
unreachable. Global path planner finds the optimized path in the occupancy grid based
environment.
DT (Distance Transform) method proved to be one of the best global path selection and
effective way of path planning in the static known environment. DT methodology is
versatile and can be used for path planning alone or integration of path planning with
obstacle avoidance. To predict the dynamic obstacles in the environment, avoid collision
with the mobile robot, GJK (Gilbert–Johnson–Keerthi) distance algorithm supports for
collision avoidance of obstacles in the dynamic environment combined with DT Algorithm.

4. Collision Detection and Avoidance in mobile robots – an algorithmic
approach
Collision Detection and Avoidance plays a vital role in mobile robot applications.
Algorithms are used to achieve this. This Collision Detection and Avoidance is also
employed in various other applications like simulated computer games, unmanned vehicle
guidance in military based applications, etc. In these applications the Collision detection
strategy is achieved by checking whether the objects overlap in space or if their boundaries
intersect each other during their movement.
The obstacle avoidance problem for robotics can be divided into three major areas. These are
mapping the world, determining distances between manipulators and other objects in the
world, and deciding how to move a given manipulator such that it best avoids contact with
other objects in the world. Unless distances are determined directly from the physical world
using range-finding hardware, they are calculated from the world model that is stored
during the world mapping process. These calculations are largely based on the types of
objects that are used to model the world. One of the most popular ways of modelling the
world is to use polyhedral [Canny, 1988] [Gilbert, Johnson, and Keerthi, 1988] [Lin and
Canny, 1991] [Mirtich, 1997]. Models built using polyhedral are capable of providing nearly
exact models of the world. Unlike many other distance algorithms, it does not require the
geometry data to be stored in any specific format, but instead relies solely on a support
mapping function and using the result in its next iteration. Algorithm stability, speed and
small storage makes GJK suitable for real time collision detection.(eg., Physics Engine for
Video Games – sony play stations).
GJK supports mappings for reading the geometry of an object. A support mapping fully
describes the geometry of a convex object and can be viewed as an implicit representation of
the object. The class of objects recursively constructed are
• Convex primitives

Advances in Robot Navigation

122

• Polytopes (line segments, triangles, boxes and other convex polyhedra)
• Quadrics (spheres, cones and cylinders)

• Images of convex objects under affine transformation
• Minkowski sums of two convex objects
• Convex hulls of a collection of convex objects
• Convex Polyhedra and Collision Detection
Convex polyhedra have been studied extensively in the context of the minimum distance
problem. The reason is that the minimum distance problem in this case can be cast as a
linear programming problem, allowing us to use well-known results from convex
optimization. The algorithms for convex polyhedra fall into two main categories: simplex-
based and feature-based. The simplex-based algorithms treat the polyhedron as the convex
hull of a point set and perform operations on simplexes defined by subsets of these points.
Feature-based algorithms, on the other hand, treat the polyhedron as a set of features, where
the different features are the vertices, edges and faces of the polyhedron.

4.1 GJK (gilebert-Johnson-Keerthi) algorithm – simplex based
One of the most well-known simplex-based algorithms is the Gilbert- Johnson-Keerthi (GJK)
algorithm. Conceptually, the GJK algorithm works with the Minkowski difference of the
two convex polyhedra. The Minkowski difference is also a convex polyhedron and the
minimum distance problem is reduced to find the point in that polyhedron that is closest to
the origin; if the polyhedron includes the origin, then the two polyhedra intersect. However,
forming the Minkowski difference explicitly would be a costly approach. Instead GJK work
iteratively with small subsets, simplexes, of the Minkowski difference that quickly converge
to a subset that contains the point closest to the origin. For problems involving continuous
motion, the temporal coherence between two time instants can be exploited by initializing
the algorithm with the final simplex from the previous distance computation.
Unlike many other distance algorithms, it does not require the geometry data to be stored in
any specific format, but instead relies solely on a support mapping function and using the
result in its next iteration. Relying on the support mapping function to read the geometry of
the objects gives this algorithm great advantage, because every enhancement on the support
mapping function leads to enhancement of the GJK algorithm.

5. Proposed methodology
Fig.1. shows the hybrid method proposed for the Global Path Selection and Dynamic
Obstacle Avoidance. Path planning was based on the distance criteria for the simulation,
and sensor values mapping for the FIRE BIRD V mobile robot, that was used for the real
time study.
Distance Transform (DT) was generated through free space from the goal location using a
cost function [17]. Path transform for the point c is calculated with the formula.1

 () ()
i

i
p P c P

Cost function=min length p obstacle c
∈ ∈

+ α

 (1)

Where P is the set of all possible paths from the point c to the goal, and p∈P i.e. a single path
to the goal. The function length(p) returns the Euclidean distance between the source and the

Hybrid Approach for Global Path Selection
& Dynamic Obstacle Avoidance for Mobile Robot Navigation

123

goal through the path p. The function obstacle(c) is a cost function generated using the values
of the obstacle transform. It represents the degree of discomfort the nearest obstacle exerts
on a point c. The weight α is a constant ≥ 0 which determines how strongly the path
transform will avoid obstacles. Local cost functions return the instantaneous cost for
traversing a particular patch. Global Cost functions provide the estimated cost to reach a
goal from a particular location.

Mobile
Robot
Source

Cost
Function

DT Algorithm
(Global Path

Planning)

Minkowski
Difference

GJK Algorithm
(Collision

Avoidance)

Mobile
Robot
Target

Fig. 1. Hybrid Method for Global Path Selection & Dynamic Obstacle Avoidance

GJK algorithm, involves the computationally intensive step of computing the supporting
function of the set of vertices, is a set-theoretic approach in essence. Since in applications the
distance between two objects needs to be updated from time to time, every possible
enhancement of distance computation procedure can speed up the repetitive process as the
time goes on[18].GJK key concept is instead of computing the minimum distance between
A and B, the minimum distance between A-B and the origin is computed. This algorithm
uses the fact that the shortest distance between two convex polygons is the shortest distance
between their Minkowski Difference and the origin. If the Minkowski Difference
encompasses the origin then the two objects intersect. Computing the collision translation of
two convex bodies can be reduced to computing collision translations of pairs of planar
sections and minimizing a bivariate convex function.
So this approach employs the concept of DT algorithm which returns the least Euclidean
distant path p to the goal, then triggers the GJK algorithm to anticipate the possibility of a
local collision through that path, for all the possible moves of the obstacle in the next instant.
Accordingly the model employs the path which provides a least distant point which returns
a 0 possibility of collision with the obstacle.

Advances in Robot Navigation

124

5.1 Flow chart representation for the proposed methodology

The Euclidean distance between all the adjacent 8
points of the source pt, to the goal is calculated

The least Euclidean distant point is
marked as temp

If collision of the
source shape at temp,
and the obstacle shape
in its anticipated new
position, is possible

The source is updated by moving all
the points associated with the

original source shape in the direction
of temp

Check whether
any of the points

forming the
source has the

goal

Stop

The steps are repeated again

Start

No

Yes

Yes
No

If there is
obstacle in the
least Euclidean

distant point

The next least
Euclidean distant
point is considered

For each of the possible moves of the obstacle,
in its adjacent directions, in the next iteration

Amongst the set of points that form the shape of the source,
the point to near to the goal is considered as source pt

Yes

No

Fig. 2. Flowchart for the Proposed Method

Hybrid Approach for Global Path Selection
& Dynamic Obstacle Avoidance for Mobile Robot Navigation

125

The assumptions made in the simulation and real time environment are, the source and
obstacle moves with the same speed of, one grid point per iteration. One dynamic obstacle
is taken into consideration. Mobile Robot shape is assumed as triangle and square. The
goal is fixed with green. Robot scans the 8 adjacent directions in the grid environment, to
find the next adjacent position that promises the minimum Euclidean distance to the goal.
From the calculated new position, it checks for all possible next iteration-movements of
the obstacle in all its 8 adjacent directions and checks if collision would occur using GJK
algorithm.
If not, the mobile robot moves to the calculated new position. If the mobile robot predicts
the collision possibility, it repeats the above steps. GJK supports for the dynamic obstacle
avoidance by calculating the Minkowski difference between the mobile robot and obstacle
for every step movement in the grid environment. The simplex formula calculates the next
step co ordinate values, and the zero value predicts the collision occurrences. Repeating the
calculation of each Minkowski difference supports for prediction of collision and avoidance
in the dynamic environment. The following example briefs about the calculation of distance
values for dynamic obstacle prediction and avoidance.
Eg. Calulation for Minkowski difference for the Triangle Obstacle to predict and avoid the
collision was given below.
Lets consider the source to be of a triangle shape at the coordinates (1,2), (0,3), (2,3) and
the obstacle which is here taken as a quadrilateral, initially occupying the coordinates (3,2),
(4,1), (3,4), (5,3). The goal is set at the point (8,3). Now the DT algorithm returns the
coordinates (2,2), (3,3) and (1,3) as the new set of points for the source, returning a
minimum Euclidean distance to the goal. Now the GJK algorithm detects that if the
obstacle moves to the position (2,2), (3,1), (4,3), (2,4) then the new set of minkowski points
would be

(0,0), (-1,1), (-2.-1), (0,-2), (1,1), (0,-2), (-1,0), (1,-1), (-1,1), (-2,-2), (-3,0), (-1,-1)

The shape that encloses these points would also enclose the origin. So a collision is possible
with the obstacle if the source moves to that point. So it takes the next least Euclidean
distant point and proceeds on till it finds a new position for the source which is devoid of
any collision. If there is a possibility of collision in all the possible positions, then the source
remains fixed to its current position for the next iteration also.

6. Simulation results
Grid environment (size 10x10) was created with the triangle shaped mobile robot and
convex shaped obstacle. The dynamic obstacle movements were shown in Fig.3. Top
rightmost green colour indicates the goal position. Mobile robot predicts movement using
GJK and reaches the goal with DT.
The time taken for the mobile robot to reach the target was 0.32 seconds for Fig.3, which
shows GJK predicts the obstacle by considering only the neighboring coordinates values and
moves in the proposed environment. DT calculates the goal position in prior and checks for
the optimal distance value to reach the goal.
Fig.4 shows the square shaped mobile robot with the same convex obstacle. Due to the
dynamic nature of obstacle, mobile robot moving near the obstacle is not possible often. In
this case, the time taken for the mobile robot to reach the goal is 0.29 seconds.

Advances in Robot Navigation

126

Fig. 3. Dynamic Obstacle Avoidance – Simulation Results

Fig. 4. Dynamic Obstacle Avoidance – Simulation Results

Hybrid Approach for Global Path Selection
& Dynamic Obstacle Avoidance for Mobile Robot Navigation

127

7. Real time results
The GJK was implemented in real time with Fire Bird V mobile robot. FIRE BIRD V robot
has two DC geared motors for the locomotion. The robot has a top speed of 24cm/second.
These motors are arranged in differential drive configuration. I.E. motors can move
independently of each other. Front castor wheel provides support at the front side of the
robot. Using this configuration, the robot can turn with zero turning radius by rotating one
wheel in clockwise direction and other in counterclockwise direction. Position encoder discs
are mounted on both the motor’s axle to give a position feedback to the
microcontroller.Fig.5 shows the Fire Bird V mobile robot with the IR Sensors to detect
obstacles in all sides.

Fig. 5. Eight IR Sensors in Fire Bird V Mobile Robot

Instead of coordinates, mapping was created in real time with sensors. As GJK finds the
distance between the objects using Minkowski Difference, we use the IR Range and IR
Proximity Sensors in conjunction to detect the distance from the approaching object. The
threshold values of each sensor are calculated already such that a collision does not occur.
So if the threshold value is reached, it is an indication that a collision is about to happen in
the near future. Sensor values are used for real time obstacle avoidance.
The distance mapping was created with sensor mapping values. Sharp IR range sensors
consists of 2 parts - narrow IR beam for illumination and CCD array, which uses
triangulation to measure the distance from any obstacle. A small linear CCD array is used
for angle measurement. The IR beam generates light. The light hits the obstacle and reflects
back to the linear CCD array. Depending on the distance from the obstacle, angle of the
reflected light varies. This angle is measured using the CCD array to estimate distance from
the obstacle. When away from obstacles, the sensor values are smaller. An obstacle can be a
wall, any moving object. Near an obstacle or vice-versa, the sensor values increases. Table 1
shows the mapping of IR sensor values observed from the Fire Bird V Mobile Robot for
obstacle prediction and avoidance.

Advances in Robot Navigation

128

Obstacle Position IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8
No obstacle along any side 233 235 242 242 245 252 252 253
Obstacle at front 233 233 229 241 244 251 252 253
Obstacle at front and left 228 232 229 240 244 249 250 252
Obstacle at front and right 231 232 229 241 242 249 250 251
Obstacle at left only 229 235 240 241 245 251 252 253
Obstacle at right only 232 232 236 240 239 249 251 250
Obstacle at front, left and right 225 233 231 240 239 249 251 250
Obstacle at back 232 232 236 242 245 250 246 252

Table 1. Sensor Mapping Values for the Indoor Real Time Environment (80 cm x 75 cm)

The difference is distance values are mapped with IR sensor values and it predicts the
behavior of mobile robot to avoid collision with obstacle. Rectangle and convex shapes
obstacles were included in the dynamic environment. GJK predicts obstacle movement in
the environment and plans the mobile robot for path selection. DT supports for the mobile
robot to reach the target position. The sensor prediction for various obstacle position in real
time and avoidance was described below.
• Obstacle at Front

Initially when the robot is kept in open space with no obstacles in range, all the IR
sensor values are high. It is then instructed to move forward, whereby it might sense
obstacles at the front using sensor IR3. The threshold value for IR3 is 229 i.e. by GJK
algorithm, the shortest possible distance that the robot can traverse forward is until IR3
value reaches 229. After this value has been reached, the robot has to take a turn to left
or right to avoid the obstacle.

• Obstacle at two sides
Consider the robot meets a corner i.e. obstacles at front and left (or) at front and right.
Let’s take the first case: obstacle at front and left. In this case, sensor values of IR3 and
IR1 reduces on approaching the obstacle. These values are checked whether they meet
the combinational threshold. If so, the robot is made to turn towards the free side, here
it is the right side. The same is followed for the latter case where sensors IR3 and IR5
are taken into account. Here the robot makes a turn towards the left on meeting the
threshold.
The threshold values are as below:
IR1: 228 IR3: 229
IR5: 242 IR3: 229

• Obstacle at back
This special case is taken into consideration only in a dynamic environment because in
a static environment, any objects at the back do not account as obstacles. Here IR6, IR7,
and IR8 help in detecting the obstacles. For activating these sensors, master-slave
(microcontrollers) communication needs to be established. When an obstacle is sensed
at the back, the robot needs to move forward with a greater velocity to avoid collision.
The threshold value for IR7: 246.

White line sensors with the Fire Bird V mobile robot finds the target, localize itself and stop
the navigation. White line sensors are used for detecting white line on the ground surface.

Hybrid Approach for Global Path Selection
& Dynamic Obstacle Avoidance for Mobile Robot Navigation

129

White line sensor consists of a highly directional phototransistor for line sensing and red
LED for illumination.
Fig. 6 & Fig.7 shows Fire Bird V mobile robot path selection results with convex shape
obstacles in the proposed real time environment.

Fig. 6. Fire Bird V Mobile Robot Real Time Navigation Results

Fig. 7. Fire Bird V Mobile Robot Real Time Navigation Results

Advances in Robot Navigation

130

8. Conclusion
Proposed method builds the test bed with Fire Bird V Mobile Robot for future development
of an intelligent wheelchair for elderly people assistance in the indoor environment. Real
time results proves, DT computes the shortest path selection for the elderly people and
movement of people/any object was predicted in prior by DT and collision avoidance with
objects was effectively handled by GJK Algorithm. The proposed framework in real time
with Fire Bird V Mobile Robot control program is easily scalable and portable for any indoor
environment with various shapes of obstacles it encounters during navigation. Proposed
method was tested successfully with various shapes of dynamic obstacles.
GJK Algorithm for computing the distance between objects shows the improved
performance in simulation and real time results. The algorithm fits well especially for the
collision detection of objects modelled with various types of geometric primitives such as
convex obstacles. Unlike many other distance algorithms, it does not require the geometry
data to be stored in any specific format, but instead relies solely on a support mapping
function and using the result in its next iteration. Relying on the support mapping function
to read the geometry of the objects gives this algorithm great advantage. The algorithm's
stability, speed, and small storage footprint make it popular for real time collision detection.

9. Acknowledgement
This work is part of Research grant sponsored by Computer Society of India , Project titled”
Intelligent Algorithmic Approach for Mobile Robot Navigation in an Indoor Environment” ,
File No. 1-14/2010-03 dated 29.03.2010.

10. References
[1] F. Belkhouche, B. Belkhouche, Kinematics-Based Characterization of the Collision

Course. International Journal of Robotics and Automation, Vol. 23, No. 2, pp 1-10,
2008

[2] J.P. Laumond S. Sekhavat F. Lamiraux, Guidelines in Nonholonomic Motion Planning
for Mobile Robots, Lectures Notes in Control and Information Sciences Springer, pp 343-
347, ISBN 3-540-76219-1, 1998.

[3] Marcelo Becker, Carolina Meirelles Dantas, Weber Perdigão Macedo, Obstalce
Avoidance Procedure for Mobile Robots, ABCM Symposium on Mechatronics,
Vol.2,pp.250-257, 2006

[4] Andrew Price, Artificially Intelligent Autonomous Aircraft Navigation System Using a
DT on an FPGA. NIOS II, Embedded Processor Design Contest, Star Award Paper, pp
1-14, 2006

[5] Christor Ericson, The GJK Algorithm,”The GJK Algorithm” 31st International Conference on
Computer Graphics and Interactive Techniques, pp1-12, 2004

[6] Davor Jovanoski. The Gilbert Johnson Keerthi Algorithm, Department of Computer
Science, Bachelor Seminar, University of Salzburg, Feburary 2008

[7] K. J. Kyriakopoulos ,G. N. Saridis, Distance estimation and collision prediction for on-
line robotic motion planning, NASA Center of Intelligent Robotic Systems for Space
Exploration (CIRSSE), Electrical, Computer and Systems Engineering, Dept.,
February 2003

Hybrid Approach for Global Path Selection
& Dynamic Obstacle Avoidance for Mobile Robot Navigation

131

[8] A.Zelinsky, Using Path Transforms to Guide the Search for Find path in 2D, International
Journal of Robotics Research,Vol.13, No.4, pp 315-325, 1994

[9] Sardjono Trihatmo, R.A. Jarvis, Short-Safe Compromise Path for Mobile Robot
Navigation in a dynamic environment, International Journal of Intelligent Systems,
Vol.20, pp 523-539, 2005

[10] O.Hachour, Path planning of Autonomous Mobile robot, International Journal of Systems
Applications, Engineering & Development , Issue 4, Volume 2, pp178 – 190, 2008

[11] Morten Strandberg, Robot Path Planning: An Object-Oriented Approach, Automatic
Control, Department of Signals, Sensors and Systems, Royal Institute of
Technology (KTH),Ph.D thesis, 2004

[12] Enrique J. Bernabeu, Josep Tornero, Masayoshi Tomizuka, Collision Prediction and
Avoidance Amidst Moving Objects for Trajectory Planning Applications,
Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul,
Korea, pp 3801-3806, 2001.

[13] Davor Jovanoski, The Gilbert – Johnson – Keerthi (GJK) Algorithm, Department of
Computer Science, University of Salzburg, 2008

[14] Kaushik J, Vision Based Mobile Robot Navigation, Undergraduate Seminar Report,
Department of Mechanical Engineering Indian Institute of Technology, Mumbai,
2007

[15] Troy Anthony Harden, Minimum Distance Influence Coefficients for Obstacle
Avoidance in Manipulator Motion Planning, University of Texas, Ph.D Thesis,
2002

[16] Gino van den bergen, A Fast and Robust GJK Implementation for Collision Detection of
Convex Objects, Department of Mathematics and Computing Science, Eindhoven
University of Technology, Netherlands, 1999

[17] A. Zelinsky, R.A. Jarvis2, Byrne and S. Yuta, Planning Paths of Complete Coverage of
an Unstructured Environment by a Mobile Robot, Science Direct, Robotics and
Autonomous Systems, Vol,46, Issue 4, pp 195 – 204, 2004

[18] Jing-Sin Liu, Yuh-ren Chien, Shen-Po Shiang and Wan-Chi Lee ,Geometric
Interpretation and Comparisons of Enhancements of GJK Algorithm for
Computing Euclidean Distance Between Convex Polyhedra, Institute of
Information Science, Academia Sinica, Taiwan, 2001

[19] Ray Jarvis, Distance Transform Based Visibility Measures for Covert Path Planning in
known but Dynamic Environments, International Conference on Autonomous Robots
and Agents, pp 396 – 400, 2004

[20] Sardjono Trihatmo, R.A. Jarvis, Short-Safe Compromise Path for Mobile Robot
Navigation in a dynamic environment, International Journal of Intelligent Systems,
Vol.20, pp 523-539, 2005

[21] Claudio Mirolo, Stefano Carpin, Enrico Pagello, Incremental Convex Minimization for
Computing Collision Translations of Convex Polyhedra, IEEE Transactions on
Robotics, Volume 23, Issue 3, pp 403 – 415, 2007

[22] Madhur Ambastha, Dídac Busquets, Ramon López de Màntaras,Carles Sierra, Evolving
a Multiagent System for Landmark-Based Robot Navigation, International Journal of
Intelligent Systems, Vol. 20, pp 523–539, 2005

Advances in Robot Navigation

132

[23] Stoytchev, A., Arkin, R., Incorporating Motivation in a Hybrid Robot Architecture,
Journal of Advanced Computational Intelligence and intelligent informatics Vol.8,No.3,
pp 100-105, 2004

[24] Jonas Buchli, Mobile Robots Moving Intelligence, Advanced Robotic Systems International
and pro Literature Verlag, Germany, ISBN 3-86611-284-X, 2006

0

Navigation Among Humans

Mikael Svenstrup
Aalborg University

Denmark

1. Introduction

As robot are starting to emerge in human everyday environments, it becomes necessary to
find ways, in which they can interact and engage seamlessly in the human environments.
Open-ended human environments, such as pedestrian streets, shopping centres, hospital
corridors, airports etc., are places where robots will start to emerge. Hence, being able to
plan motion in these dynamic environments is an important skill for future generations of
robots. To be accepted in our everyday human environments, the robots must be able to
move naturally, and such that it is both safe, natural and comfortable for the humans in the
environment.
Imagine a service robot driving around in an airport. The objective of the service robot is:
to drive around among the people in the environment; identify people who need assistance;
approach them in an appropriate way; interact with the person to help with the needs of the
person. This could be showing the way to a gate, providing departure information, checking
reservations, giving information about local transportation, etc. This chapter describes
algorithms that handle the motion and navigation related problems of this scenario.
To enable robots with capabilities for safe and natural motion in human environments like in
the above described scenario, there are a number of abilities that the robot must possess. First
the robot must be able to sense and find the position of the people in the environment. Also,
it is necessary to obtain information about orientation and velocity of each person. Then the
robot must be able to find out if a person needs assistance, i.e. the robot needs to establish the
intentions of the people. Knowing the motion state and the intention state of the person, this
can be used to generate motion, which is adapted according to the person and the situation.
But in a crowded human environment, it is not only necessary for the robot to be able to move
safe and naturally around one person, but also able to navigate through the environment from
one place to another. So in brief, the robot must be able to:

• estimate the pose and velocity of the people in the environment;

• estimate the intentions of the people;

• navigate and approach people appropriately according to the motion and intention state
of the people;

• plan a safe and natural path through a densely populated human environment.

The overall system architecture is briefly presented in Section 3. Finding the position and
orientation of people is done using a laser range finder based method, which is described in
Section 4. For on-line estimation of human intentions a Case-Based Reasoning (CBR) approach

7

2 Will-be-set-by-IN-TECH

is used to learn the intentions of people from previous experiences. The navigation around
a person is done using an adaptive potential field, that adjusts according to the person’s
intentions. The CBR method for estimating human intentions and human-aware motion
is described in Sections 5 and 6 respectively. In Section 7 the potential field is extended
to include many people to enable motion in a crowded environment. Finally an adapted
Rapidly-exploring Random Tree (RRT) algorithm is, in Section 8, used to plan a safe and
comfortable trajectory. But first, relevant related work is described in the following section.

2. Related work

Detection and tracking of people, that is, estimation of the position and orientation (which
combined is denoted pose) has been discussed in much research, for example in Jenkins
et al. (2007); Sisbot et al. (2006). Several sensors have been used, including 2D and 3D
vision (Dornaika & Raducanu, 2008; Munoz-Salinas et al., 2005), thermal tracking (Cielniak
et al., 2005) or range scans (Fod et al., 2002; Kirby et al., 2007; Rodgers et al., 2006; Xavier
et al., 2005). Laser scans are typically used for person detection, whereas the combination
with cameras also produces pose estimates Feil-Seifer & Mataric (2005); Michalowski et al.
(2006). Using face detection requires the person to always face the robot, and that person
to be close enough to be able to obtain a sufficiently high resolution image of the face
Kleinehagenbrock et al. (2002), limiting the use in environments where people are moving
and turning frequently. The possibility of using 2D laser range scanners provides extra long
range and lower computational complexity. The extra range enables the robot to detect the
motion of people further away and thus have enough time to react to people moving at a
higher speed.
Interpreting another person’s interest in engaging in interaction is an important component of
the human cognitive system and social intelligence, but it is such a complex sensory task that
even humans sometimes have difficulties with it. CBR allows recalling and interpreting past
experiences, as well as generating new cases to represent knowledge from new experiences.
CBR has previously proven successful in solving spatio-temporal problems in robotics in
Jurisica & Glasgow (1995); Likhachev & Arkin (2001); Ram et al. (1997), but not to estimate
intentions of humans. Other methods, like Hidden Markov Models, have been used to learn
to identify the behaviour of humans Kelley et al. (2008). Bayesian inference algorithms and
Hidden Markov Models have also successfully been applied to modelling and for predicting
spatial user information Govea (2007).
To approach a person in a way, that is perceived as natural and comfortable requires
human-aware navigation. Human-aware navigation respects the person’s social spaces as
discussed in Althaus et al. (2004); Dautenhahn et al. (2006); Kirby et al. (2009); Sisbot et al.
(2005); Takayama & Pantofaru (2009); Walters, Dautenhahn, te Boekhorst, Koay, Kaouri,
Woods, Nehaniv, Lee & Werry (2005). Several authors have investigated the interest of
people to interact with robots that exhibit different expressions or follow different spatial
behaviour schemes Bruce et al. (2001); Christensen & Pacchierotti (2005); Dautenhahn et al.
(2006); Hanajima et al. (2005). In Michalowski et al. (2006) models are reviewed that describe
social engagement based on the spatial relationships between a robot and a person, with
emphasis on the movement of the person. Although the robot is not perceived as a human
when encountering people, the hypothesis is that robot behavioural reactions with respect to
motion should resemble human-human scenarios. This is supported by Dautenhahn et al.
(2006); Walters, Dautenhahn, Koay, Kaouri, te Boekhorst, Nehaniv, Werry & Lee (2005). Hall
has investigated the spatial relationship between humans (proxemics) as outlined in Hall

134 Advances in Robot Navigation

Navigation Among Humans 3

(1966; 1963), which can be used for Human-Robot encounters. This was also studied by
Walters, et al.Walters, Dautenhahn, Koay, Kaouri, te Boekhorst, Nehaniv, Werry & Lee (2005),
whose research supports the use of Hall’s proxemics in relation to robotics.
One way to view the problem of planning a trajectory through a crowded human
environment, is to see humans as dynamic obstacles. The navigation problem can thus
be addressed as a trajectory planning problem for dynamic environments. Given the fast
dynamic nature of the problem, robotic kinodynamic and nonholonomic constraints must
also be considered.
In the recent decade sampling based planning methods have proved successful for trajectory
planning LaValle (2006). They do not guarantee an optimal solution, but are often good at
finding solutions in complex and high dimensional problems. Specifically for kinodynamic
systems Rapidly-exploring Random Trees (RRT’s), where a tree with nodes correspond to
connected configurations (vertices) of the robot trajectory, has received attention LaValle &
Kuffner Jr (2001).
Various approaches improving the basic RRT algorithm have been investigated. In Brooks
et al. (2009), a dynamic model of the robot and a cost function is used to expand and prune
the nodes of the tree. Methods for incorporating dynamic environments, have also been
investigated. Solutions include extending the configuration space with a time dimension
(C − T space), in which the obstacles are static van den Berg (2007), as well as pruning and
rebuilding the tree when changes occur Ferguson et al. (2006); Zucker et al. (2007). To be able
to run the algorithm on-line, the anytime concept Ferguson & Stentz (2006) can be used to
quickly generate a possible trajectory. The RRT keeps being improved until a new trajectory
is required by the robot, which can happen at any time.
These result only focus on avoiding collisions with obstacles. However, there have been
no attempts to navigate through a human crowd taking into account the dynamics of the
environment and at the same time generate comfortable and natural trajectories around the
humans.

3. System architecture

The structure of the proposed system set-up is outlined in Fig. 1. The three main developed
components are encaged by the dashed squares. First, the position of the people in the
area are measured. The positions are then sent to the pose estimation algorithm, which
estimates the person state using a Kalman filter and successively filters the state to obtain
a pose estimate. This information about the peoples interest in interaction is sent to a
person evaluation algorithm, which provides information to the navigation subsystem. The
navigation subsystem first derives a potential field corresponding to the people’s pose and
interest in interaction. Then a robot motion subsystem finds out, how to move. This can either
be by adapting the motion to interact with one specific person, or generating a trajectory
through the environment. The loop is closed by the robot, which executes the path in the real
world and thus has an effect on how humans move in the environment. The reactions of the
people in the environment are then fed back to the person evaluation algorithm, to be able to
learn from experience.

4. Person pose estimation

In this work we use a standard method to infer the position of the people in the environment
from laser range finder measurements. This method however, only provides the position of

135Navigation Among Humans

4 Will-be-set-by-IN-TECH

Position Measurement

Human Motion Real-World Execution

Orientation
Estimation

Person Pose Estimation

Person State
Estimation

Learning and
Evaluation of Interest

in Interaction

Case Based
Reasoning

Robot
Motion

Human-Aware Navigation

Potential
Field

Interaction?

Fig. 1. An overview of how the different components are connected in the developed system.
The three main parts encaged by the dashed squares.

a person. Thus, we develop a new Kalman filter based algorithm that takes into account the
robot motion, to obtain velocity estimates for the people in the environment. This data is
then post-filtered, using an autoregressive filter, which is able to obtain the orientation of the
person as well. The method is briefly presented here, but is more thoroughly described in
Svenstrup et al. (2009). The method is derived for only one person, but the same method can
be utilised when several people are present.
We define the pose of a person as the position of the person given in the robot’s coordinate
system, and the angle towards the robot, as seen from the person (ppers and θ in Fig. 2).
The orientation θ is shown as approximately the angle between φ (the angle of the distance
vector from the robot to the person) and vpers (the angle of the person’s velocity vector). The
direction of vpers is, however, only an approximation of θ, since the orientation of a person is
not necessarily equal to the direction of the motion.

.

x

y

vpers

ppers

Fig. 2. The state variables ppers and vpers hold the position and velocity of the person in the
robot’s coordinate frame. θ is the orientation of the person and ψ̇ is the rotational velocity of
the robot.

The estimation of the person pose can be broken down into three steps:

1. Measure the position of the person using a laser range finder;

2. Use the continuous position measurements to find the state (position and velocity) of the
person;

136 Advances in Robot Navigation

Navigation Among Humans 5

3. Use the velocity estimate to find the orientation (θ) of the person.

The position of the persons is estimated using a standard laser range finder based method,
which is described in e.g. Feil-Seifer & Mataric (2005); Xavier et al. (2005). Our implementation
is robust for tracking people at speeds of up to 2 m

s in a real-world public space, which is
described in Svenstrup et al. (2008).
The next step is to estimate velocity vector of the person in the robot’s coordinate frame. This
is done by fusing the person position measurements and the robot odometry in a Kalman
filter, where a standard discrete state space model formulation for the system is used:

x(k + 1) = Φx(k) + Γu(k) (1)

y(k) = Hx(k) , (2)

where x is the state, y is the measurements, u is the input and Φ, Γ, H are the system matrices,
which are explained below.
The state is comprised of the person’s position, person’s velocity and the robot’s velocity.
The measurements are the estimate of the person’s position and the robot odometry
measurements.

x =

⎡
⎢⎣
ppers

vpers

vrob

⎤
⎥⎦ , y =

[
p̂pers

vodom,rob

]
. (3)

p denotes a position vector and v denotes velocities, all given in the robot’s coordinate frame.
The p̂ is the estimate of the person’s position from the person detection algorithm and vodom,rob
the robot’s odometry measurement vector. The rotation of the robot causes the measurement
equation to be non-linear. To maintain a linear Kalman filter, the rotational odometry from the
robot, can be added to the input, such that:

Γ(k)u(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

py,pers(k)
-px,pers(k)
vy,pers(k)
-vx,pers(k)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ˆ̇ψ(k) , (4)

where px and py are the x and y coordinates of the vector p, T is the sampling time and ˆ̇ψ is
the measured rotational velocity of the robot. The derived system matrices are then inserted
into a standard Kalman filter to obtain a state estimate of the person.
The direction of the velocity vector in the state estimate of the person is not necessarily equal
to the orientation of the person. To obtain a correct orientation estimate the velocity estimate
is filtered through a first order autoregressive filter, with adaptive coefficients relative to the
velocity. When the person is moving quickly, the direction of the velocity vector has a large
weight, but if the person is moving slowly, the old orientation estimate is given a larger
weight. The autoregressive filter is implemented as:

θ(k + 1) = βθ(k) + (1− β) arctan
(

vy,pers

vx,pers

)
, (5)

137Navigation Among Humans

6 Will-be-set-by-IN-TECH

where β has been chosen experimentally relative to the absolute velocity v as:

β =

⎧⎨
⎩

0.9 if v < 0.1m/s
1.04− 1.4v if 0.1m/s ≤ v ≤ 0.6m/s

0.2 else
. (6)

This equation means, that if the person is moving fast, the estimate relies mostly on the
direction of the velocity, and if the person is moving slow, the estimate relies mostly on the
previous estimate.

5. Estimate human intentions

To represent the person’s interest in interaction, a continuous fuzzy variable, Person Indication
(PI), is introduced, which serves as an indication of whether or not the person is interested in
interaction. PI belongs to the interval [0, 1], where PI = 1 represents the case where the
robot believes that the person wishes to interact, and PI = 0 the case where the person is not
interested in interaction.
Human intentions are difficult to decode, and thus difficult to hard code into an algorithm.
So the robot needs to learn to find out if a person is interested in interaction. For this
purpose, a Case-Based Reasoning (CBR) system, which enables the robot to learn to estimate
the interest in interaction, has been developed in Hansen et al. (2009). The basic operation of
the CBR system can be compared to how humans think. When we observe a situation, we use
information from what we have previously experienced, to reason about the current situation.
Using the CBR system, this is done in the following way. When a person is encountered,
the specific motion patterns of the person is estimated as described above in Section 4. The
estimates are compared to what is stored in a Case Library, which stores information about
what happened in previous human encounters. The outcome, i.e. the associated PI values, of
the previous similar encounters are used to update the PI in the current situation. When the
interaction session with the person is over, the Case Library is revised with the new knowledge,
which has just been obtained. This approach makes the robot able to learn from experience to
become better at interpreting the person’s interest in interaction.

5.1 Learning and evaluation of interest in interaction
The implementation of the CBR system is basically a database system which holds a number
of cases describing each interaction session. There are two distinct stages of the CBR system
operation. The first is the evaluation of the PI, where the robot estimates the PI during a
session using the experience stored in the database. The second stage is the learning stage,
where the information from a new experience is used to update the database. The two stages
can be seen in Fig. 3, which shows a state diagram of the operation of the CBR system. Two
different databases are used. The Case Library is the main database, which represents all the
knowledge the robot has learned so far, and is used to evaluate PI during a session. All
information obtained during a session is saved in the Temporary Cases database. After a session
is over, the information from the Temporary Cases is used to update the knowledge in the Case
Library.
Specifying a case is a question of determining a distinct and representative set of features
connected to the event of a human-robot interaction session. The set of features could
be anything identifying the specific situation, such as, the person’s velocity and direction,
position, relative position and velocity to other people, gestures, time of day, day of the week,
location, height of the person, colour of their clothes, their facial expression, their apparent age

138 Advances in Robot Navigation

Navigation Among Humans 7

Evaluating Person

Case
Library

Temporary
Cases

Start
Interaction

?

Person
Gone?

No

No

InteractingYes

Update
Database

Yes

Look for
People

New
Person?

Yes

No

Start

Fig. 3. Operation of the CBR system. First the robot starts to look for people. When a person
is found, it evaluates whether the person wants to interact. After a potential interaction, the
robot updates the knowledge library with information about the interaction session, and
starts to look for other people.

and gender etc. The selected features depend on available sensors. For the system considered
in this chapter, we consider only the human motion.
Initially, when the robot locates a new person in the area, nothing is known about this person,
so PI is assigned to a default value PI= 0.5. After this, the PI of a person is continuously
evaluated using the Case Library. First a new case is generated by collecting the relevant set
of features above. The case is then compared to existing cases in the Case Library to find
matching cases. If a match is found in the Case Library, the PI is updated towards the value
found in the library according to the formula

PInew = 0.2PIlibrary + 0.8PIold , (7)

where PInew is the new updated value of PI. This update is done to continuously adapt PI
according to the observations, but still not trusting one single observation completely. If the
robot continuously observes similar PIlibrary values, the belief of the value of PI, will converge
towards that value, e.g., if the robot is experiencing a behaviour, which earlier has resulted in
interaction, lookups in the Case Library will result in PIlibrary values close to 1. This means
that the current PI will quickly approach 1 as well. After this, the case is copied to Temporary
Cases, which holds information about the current session. If no match is found in the Case
Library, the PI value is updated with PIlibrary = 0.5, which indicates that the robot is unsure
about the intentions of the person. The case is still inserted into the Temporary Cases. When
the session is over, the robot will know if it resulted in close interaction with the person, and
thus if the person was interested in interaction. All the information in the Temporary Cases
can thus be used to update the knowledge of the world, which is stored in the Case Library.

6. Adaptive human-aware navigation

The robot has two different tasks related to moving around in the environment, which it
can perform. Either it can move around relative to one specific person that might want to
interact, as described in the previous section. Otherwise it can have the objective to move from

139Navigation Among Humans

8 Will-be-set-by-IN-TECH

one point to another in the environment. This section describes the adaptive human-aware
navigation around a specific person. The robot must move safe and naturally around the
person, who might be interested in interaction. Furthermore, the motion of the robot must
adaptively be adjusted according to the estimated PI value. One way to view this problem
is to see humans as dynamic obstacles, that have social zones, which must be respected. The
zones used here are developed by the anthropologist Hall (1963). Hall divides the area around
a person into four zones according to the distance to the person:

• the public zone, where d > 3.6m

• the social zone, where 1.2m < d ≤ 3.6m

• the personal zone, where 0.45m < d ≤ 1.2m

• the intimate zone, where d ≤ 0.45m

If it is most likely that the person does not wish to interact (i.e. PI ≈ 0), the robot should
not violate the person’s personal space, but move towards the social or public zone. On the
other hand, if it is most likely that the person is willing to interact or is interested in close
interaction with the robot (i.e. PI ≈ 1), the robot should try to enter the personal zone in front
of the person. Another navigation issue is that the robot should be visible to the person, since
it is uncomfortable for a person if the robot moves around, where it cannot be seen. Such
social zones together with the desired interaction and visibility motion, can be represented by
potential fields that govern the motion of the robot, see e.g. Sisbot et al. (2006); Svenstrup et al.
(2009).
All navigation is done relative to the person, and hence no global positioning is needed in
the proposed model. The potential field landscape is derived as a sum of several different
potential functions with different purpose. The different functions are:

• Attractor. This is a negative potential used to attract the robot towards the person;

• Rear. This function ensures that the robot does not approach a person from behind;

• Parallel. This is an adaptive function, which is used to control the direction to the person
and to keep a certain distance;

• Perpendicular. This function is also adaptive and works in cooperation with the parallel
potential function.

All four potential functions are implemented as normalised bi-variate Gaussian distributions.
A Gaussian distribution is chosen for several purposes. It is smooth and easy to differentiate
to find the gradient, which becomes smaller and smaller (i.e. has less effect) further away from
the person. Furthermore, it does not grow towards ∞ around 0 as, for example, a hyperbola
(e.g. 1

x), which makes both computational feasible and intuitively perceivable. The combined
potential field around a person can be calculated as:

f (x) =
4

∑
k=1

ck exp
(
−1

2
[x− 0]TΣ−1

k [x− 0]

)
, (8)

where ck are a normalizing constants, x is the position, 0 is the position of the person, in this
case the origin, and Σk are the covariances of each of the Gaussian distributions.
The attractor and rear distribution are both kept constant for all instances of PI. The parallel
and perpendicular distributions are continuously adapted, by adjusting Σk according to the
PI value and Hall’s proximity distances during an interaction session. Furthermore, the

140 Advances in Robot Navigation

Navigation Among Humans 9

preferred robot-to-person encounter direction, reported in Dautenhahn et al. (2006); Woods
et al. (2006), is taken into account by changing the width and the rotation of the distributions.
The adaptation of the potential field distributions enables the robot to continuously adapt its
behaviour to the current interest in interaction of the person in question.

(a) PI=0 (b) PI=0.5 (c) PI=1

Fig. 4. Shape of the potential field around a person facing right for (a), a person not interested
in interaction, (b) a person maybe interested in interaction, and (c) a person interested in
interaction. The robot should try to get towards the lower points, i.e. the dark blue areas.

The resulting potential field contour around a person facing right can be seen in Fig. 4 for three
specific values of PI. With PI = 0 the potential field will look like Fig. 4(a) where the robot will
move to the dark blue area, i.e. the lowest potential approximately 3.6m in front of the person.
The other end of the scale for PI = 1 is illustrated in Fig. 4(c), where the person is interested in
interaction and, as a result, the potential function is adapted so the robot is allowed to enter
the space right in front of the person. In between, Fig. 4(b), is the default configuration of
PI = 0.5, in which the robot is forced to approach the person at approximately 45◦, while
keeping just outside the personal zone.
Instead of just moving towards the lowest point at a fixed speed, the gradient of the potential
field∇ f (x), is used to set a reference velocity for the robot. This way of controlling the robot’s
velocity allows the robot to move quickly when the potential field is steep. On the other hand,
the robot has slow comfortable movements when it is close to where it is supposed to be, i.e.
near a minimum of the field.

7. Trajectory planning problem for crowded environments

The above described potential field governs the motion around one person. The navigation
problem for moving through an environment with many people, can then be formulated by
summing potential fields for all the people in the environment, plus a potential for the desired
robot motion in environment. An example of this potential field landscape, together with
three possible trajectories for a robot, is shown in Fig. 5. Notice, that even though a trajectory
seems to pass through a person, it might not be a bad trajectory, since the person may have
moved when the robot reaches the point of apparent collision. Conversely the robot may also
run into a person, who was not originally on the path. Therefore it is important to take into
account the dynamics of the obstacles (i.e. the humans), when planning trajectories. So the
objective is to minimise the cost of traversing the potential field landscape that changes over
time as the people move around.

141Navigation Among Humans

10 Will-be-set-by-IN-TECH

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 5. Person landscape, which the robot has to move through. The robot starting point is the
green dot at the point (2, 0). Three examples of potential robot trajectories are shown. Even
though it looks like the trajectories goes through the persons, this is not necessarily the case,
since the persons might have moved, when the robot comes to the point.

Given the dynamic nature of the problem, robotic kinodynamic and nonholonomic constraints
must also be considered. Also the person motion, i.e. the change of the potential field over
time must be taken into account.

7.1 Robot dynamics
The robot is modelled as a unicycle type robot, i.e. like a Pioneer, an iRobot Create or a Segway.
A good motion model for the robot is necessary because it operates in dynamic environments,
where even small deviations from the expected trajectory may result in collisions. So instead
of using a purely kinematic robot model of the robot, it is modelled as a dynamical system,
with accelerations as input. This describes the physics better, since acceleration and applied
force are proportional. This dynamical model can be described by the five states:

x(t) =

⎡
⎢⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x(t)
y(t)
v(t)
θ(t)
θ̇(t)

⎤
⎥⎥⎥⎥⎦

→ x position
→ y position
→ linear velocity
→ rotation angle
→ rotational velocity

(9)

The differential equation governing the robot behaviour is:

ẋ(t) = f (x(t),u(t)) =

⎡
⎢⎢⎢⎢⎣

ẋ(t)
ẏ(t)
v̇(t)
θ̇(t)
θ̈(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v(t) cos(θ(t))
v(t) sin(θ(t))

uv(t)
θ̇(t)

uθ(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x3(t) cos(x4(t))
x3(t) sin(x4(t))

u1(t)
x5(t)
u2(t)

⎤
⎥⎥⎥⎥⎦ , (10)

where u1 = uv is the linear acceleration input and u2 = uθ is the rotational acceleration input.

7.2 Dynamic potential field
The value of the potential field, denoted G, at a point in the environment is calculated as a
sum of the cost associated with three different aspects:

1. A cost related to the robot’s desired position in the environment without obstacles. For
example high costs might be assigned close to the edges of the environment.

142 Advances in Robot Navigation

Navigation Among Humans 11

2. A cost associated with the robot position relative to humans in the area.

3. A cost rewarding moving towards a goal.

The combined cost can be written as:

G(t) = g1(x(t))) + g2(x(t),P(t)) + g3(x(t)) . (11)

P(t) is a matrix containing the position and orientation of persons in the environment at the
given time. g1(x), g2(x) and g3(x) are the three cost functions. They are further described
below.

7.2.1 Cost related to environment
This cost function is currently designed for motion in open spaces, such as a pedestrian street.
It has the shape of a valley, such that it is more expensive to go towards the sides, but cheap
to stay in the centre of the environment:

g1(x(t)) = cyy2(t) (12)

where cy is a constant determining how much the robot is drawn towards the centre, and y is
the distance to the center line of the street.

7.2.2 Cost of proximity to humans
The cost of being near to humans is calculated by summing the potential fields for each person
as described in Section 6. As described, the potential field for each person is a summation of
four normalized bi-variate Gaussian distributions, which means that g2(x) for each individual
person can be written as:

g2,person(x1:2,μ) =
4

∑
k=1

ck exp(−1
2
[x1:2 −μ]TΣ−1

k [x1:2 −μ]) , (13)

where ck are normalizing constants, x1:2 are the first two states of the robot state, i.e. the
position where the cost function is evaluated. μ is the position of the person and Σk are the
covariances of each of the Gaussian distributions, which are related to the orientation and
interest state of the person, as described in Section 6.

7.2.3 Cost of end point in trajectory
The cost at the end point penalizes if the robot does not move forwards, and if the robot
orientation is not in a forward direction. An exponential function is used to penalize the
position. It is set up, such that short distances are penalized much, while it is close to the
same value for larger distances, i.e. it does not change much if the robot goes 19 or 20 meters
from its starting position.

g3(x(t)) = ce1 exp(ce2(x(t)− x̃(0))) + cθθ4(t) , (14)

where c(·) are scaling constants and x̃(0) is the desired initial position. Note that ce2 must be
negative to make the potential decrease as the robot gets further. The reason that θ is raised
to the fourth, is to keep the term closer to zero in a larger neighbourhood of the origin. This
means that the robot will almost not be penalized for small turns. On the other hand larger
turns, like going the wrong way, will be penalized more.

143Navigation Among Humans

12 Will-be-set-by-IN-TECH

7.3 Minimisation problem
Given the above cost functions the potential landscape may be formed as previously
illustrated in Fig. 5 for a pedestrian street landscape with five persons. If the current time
is t = 0, the planning problem can be posed as follows. Given an initial robot state x0, and
trajectory information for all persons until the given time P̃start:0. Determine the control input
ũ0:T , which minimises the cost of traversing the potential field, subject to the dynamical robot
model constraints and predicted human motions:

minimise I(ũ0:T) = (15)∫ T

0
[g1(x(t)) + g2(x(t),P(t))] dt + g3(x(T))

s.t. ẋ(t) = f (x(t), ũt)

where g1(x(t)) = cyx2(t)2

g2(x(t),P(t)) =
p

∑
j=1

4

∑
k=1

ck exp(−1
2
[x1:2 −μj]

TΣ−1
j,k [x1:2 −μj])

g3(x(T)) = ce1 exp(ce2(x1(T)− x1(0))) + cθ x4
4(T) ,

were x1:2 = [x1(t), x2(t)] is the position of the robot at time t, ũ0:T is the discrete input
sequence to the robot. T is the ending time horizon of the trajectory, gx(·) are cost functions
and p is the number of persons in the area. The position and orientation of all persons at time
t is predicted from the knowledge of the trajectories until the current moment (P̃start:0), and
given by P(t). μj is the center of the j-th person at a given time.
To be able to calculate the cost of a trajectory according to Eq. (15), only the prediction of
the person trajectories, P(t), remains to be defined. A simple model is that the person will
continue with the same speed and direction (Bruce & Gordon, 2004). More advanced human
motion models could be used without changing the planning algorithm, but it is outside the
scope of this chapter to derive a complex human motion model.

8. RRT Based trajectory planning

It has been chosen to solve the above described minimisation problem by using a
Rapidly-exploring Random Tree algorithm (LaValle, 2006; LaValle & Kuffner Jr, 2001). The
RRT algorithm is in Svenstrup et al. (2010) modified in several ways to obtain an algorithm
that works for planning a trajectory for the given problem. The overall mission of the robot
is, to move forward through the environment with a desired average speed and direction,
which can be set by a top level planner. This chapter contributes by enhancing the basic RRT
planning algorithm to accommodate for navigation in a potential field and take into account
the kinodynamic constraints of the robot. The RRT is expanded using a control strategy,
which ensures feasibility of the trajectory and a better coverage of the configuration space.
The planning is done in C − T space using an Model Predictive Control (MPC) scheme to
incorporate the dynamics of the environment.
The structure of the proposed planning algorithm for planning a trajectory through a dynamic
environment, as shown in Fig. 5, can be seen in Fig. 6. Comparing to Fig. 1, this figure
corresponds to the robot motion block. The idea is that while a part of a calculated trajectory
is executed, a new is calculated on-line. Input to the trajectory planner is the previous best
trajectory, the person trajectory estimates, and the dynamic model of the robot.

144 Advances in Robot Navigation

Navigation Among Humans 13

Execute Trajectory
in Real World

Seed Tree Find
Nearest
Vertex

RRT Trajectory Planner

Pick Best
Trajectory

Estimate Person
Trajectories

Dynamic Robot Model

Sample
Random

Point

Extend
Tree

T < Tplanning

T Tplanning

Fig. 6. The overall structure of the trajectory generator. The blue real world part and the red
trajectory planning part are executed simultaneously.

The minimisation problem stated in Eq. (15) is addressed by a Rapidly-exploring Random
Tree (RRT) algorithm. A standard RRT algorithm is shown in Algorithm 1, where the lines
4, 5, 6 correspond to the three blocks in the larger RRT Trajectory Planner box in Fig. 6.

Algorithm 1 Standard RRT (see Ferguson & Stentz (2006))
RRTmain()

1: Tree = q.start
2: q.new = q.start
3: while Dist(q.new , q.goal) < ErrTolerance do
4: q.target = SampleTarget()
5: q.nearest = NearestVertex(Tree , q.target)
6: q.new = ExtendTowards(q.nearest,q.target)
7: Tree.add(q.new)
8: end while
9: return Trajectory(Tree,q.new)

SampleTarget()
1: if Rand() < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

The method presented here differs from the standard RRT in lines 1, 3, 6, 9, which are marked
red. Furthermore, between line 6 and 7, node pruning is introduced. Since an MPC scheme is
used, only a small portion of the planned trajectory is executed, while the planner is restarted
to plan a new trajectory on-line. When the small portion has been executed, the planner has
an updated trajectory ready. To facilitate this, the stopping condition in line 3 is changed.
When a the robot needs a new trajectory, or when certain maximum number of vertices have
been extended, the RRT is stopped. Even though the robot only executes a small part of the

145Navigation Among Humans

14 Will-be-set-by-IN-TECH

trajectory, the rest of the trajectory should still be valid. Therefore, in line 1, the tree is seeded
with the remaining trajectory.
In line 9 the trajectory with the least cost according to Eq. (15) is returned, instead of returning
the trajectory to the newest vertex. The tree extension function and the pruning method are
described below.

8.1 RRT Control input sampling
When working with nonholonomic kinodynamic constrained systems, it is not
straightforward to expand the tree towards a newly sampled point in the configuration
space (line 6 in Algorithm 1). It is a whole motion planning problem in itself to find inputs,
that drive the robot towards a given point Siciliano & Khatib (2008). The algorithm proposed
here uses a controller to turn the robot towards the sampled point and to keep a desired
speed. A velocity controller is set to control the speed towards an average speed around
a reference velocity. The probabilistic completeness of RRT’s in general, is ensured by the
randomness of the input. So to maintain this randomness in the input signals, a random
value sampled from a Gaussian distribution, is added to the controller input. The velocity
controller is implemented as a standard proportional controller. The rotation angle is a second
order system with θ and θ̇ as states, and therefore a state space controller is used for control
of the orientation. The control input can be written as:

u =

[
u1
u2

]
=

[
kv(μv − v(t))

kθ1(φpoint − θ(t))− kθ2 θ̇

]
+

[N (0, σv)
N (0, σθ)

]
. (16)

μv is the desired average speed of the robot and φpoint is the angle towards the sampled point.
k(·) are controller constants and σv, σθ are the standard deviations of the added Gaussian
distributed input.
The new vertex to be added to the tree is now found by using the dynamic robot motion model
and the controller to simulate the trajectory one time step. This ensures that the added vertex
will be reachable.

8.2 Tree Pruning and trajectory selection
A simple pruning scheme, based on several different properties of a node, is used. If the
vertex corresponding to the node ends up in a place where the potential field has a value
above a specific threshold, then the node is not added to the tree. Furthermore a node is
pruned if |θ(t)| > π

2 , which means that the robot is on the way back again, or if the simulated
trajectory goes out of bounds of the environment. It is not desirable to let the tree grow too
far in time, since the processing power is much better spend on the near future, because of the
uncertainty of person positions further into the future. Therefore the node is also pruned if
the time taken to reach the node is above a given threshold. Finally, instead of returning the
trajectory to the vertex of the last added node, the trajectory with the lowest cost (calculated
from Eq. (15)), is returned. But to avoid the risk of selecting a node, which is not very far in
time, all nodes with a small time are thrown away before selecting the best node.
The final algorithm is shown in Algorithm 2.

9. Experiments and simulations

The pose and intention estimation algorithm together with the adaptive human-aware
navigation is demonstrated to work in experiments with random test persons. Additionally

146 Advances in Robot Navigation

Navigation Among Humans 15

Algorithm 2 Modified RRT for human environments
RRTmain()

1: Tree = q.oldBestTrajectory
2: while (Nnodes < maxNodes) and (t < tMax) do
3: q.target = SampleTarget()
4: q.nearest = NearestVertex(Tree , q.target)
5: q.new = CalculateControlInput(q.nearest,q.target)
6: if PruneNode(q.new) == false then
7: Tree.add(q.new)
8: end if
9: end while

10: return BestTrajectory(Tree)
SampleTarget()

1: if Rand < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

the trajectory planning through densely populated environments is demonstrated in a
simulated pedestrian street environment.

9.1 Experimental set-up
The person state estimation and human-aware navigation subsystems are tested decoupled
from the rest of the system in a laboratory setting in Svenstrup et al. (2009). Therefore, the
experiments here focus on testing the function of the combined system including the intention
estimation. The experiments are designed to illustrate the operation and the proof of concept
of the combined methods. It took place in an open hall, with only one person at a time in
the shared environment. This allowed for easily repeated tests with no interference from
other objects than the test persons. The test persons were selected randomly from students on
campus. None had prior knowledge about the implementation of the system.

9.1.1 Test equipment and implementation
The robot used during the experiments was a FESTO Robotino platform, which provides
omnidirectional motion. A head, which is capable of showing simple facial expressions, is
mounted on the robot (see Fig. 7). The robot is equipped with an URG-04LX line scan laser
range finder for detection and tracking of people, and a button to press for emulating the
transition to close interaction (see Fig. 7). If the test persons passed an object to the robot,
they would activate the button, which was perceived as an interest in close interaction. If the
test person did not pass an object (i.e. the button was not activated) within 15 seconds or
disappeared from the robot’s field of view, this was recognised as if no close interaction had
occurred, and thus that the person was not interested in interaction.

9.2 Test specification
For evaluation of the proposed methods, two experiments were performed. During both
experiments the full system, as seen in Fig 1, is used, i.e. the pose estimation and the
human-aware navigation are running, as well as the interest learning and evaluation. All

147Navigation Among Humans

16 Will-be-set-by-IN-TECH

Fig. 7. The FESTO Robotino robot used for the experiments.

Fig. 8. Illustration of possible pathways around the robot during the experiment. A test
person starts from points P1, P2 or P3 and passes through either P4, P5 or P6. If the trajectory
goes through P5, a close interaction occurs by handing an object to the robot.

148 Advances in Robot Navigation

Navigation Among Humans 17

output values (PI), and input values (pose and velocity) were logged for later analysis during
both experiments.
In Experiment 1, the objective was to see if the system was capable of learning to estimate
PI based on interaction experience from several different people. As the number of cases
increase, the system should be better able to estimate PI of a person and do it more quickly.
Furthermore, the information in the CBR database should be generic, such that information
obtained with some people can be used when other people occur. Starting from a CBR system
with no knowledge, i.e. an empty database, a total of five test persons were asked to approach
or pass the robot 12 times using different motion paths, which are illustrated in Fig. 8. The
starting and end points of each session were selected randomly, while the specific route was
chosen by the test person. The random selection was designed so the test persons would end
up with close interaction in 50% of the sessions. In the other sessions, the test persons would
pass the robot either to the left of the right without interacting.
In Experiment 2, the objective was to test the adaptiveness of the CBR system. The system
should be able to change its estimation of PI over time if behaviour patterns change. A total
of 36 test approaches were performed with one test person. The test person would start
randomly at P1, P2 or P3 (see Fig. 8) and end the trajectory at P4, P5 or P6. In the first 18
sessions the test person would indicate interest in close interaction by handing an object to
the robot from P5, while in the last 18 sessions the person did not indicate interest and the
trajectory ended at P4 or P6.

9.3 Simulations in crowded environments
The algorithm for trajectory planning in crowded environments, described in Section 7, is
implemented and demonstrated to work on a simulated pedestrian street, as shown in Fig.
5. The experiments consist of two parts. First, the algorithm is applied on the environment
shown in Fig. 5. This will demonstrate that the algorithm is capable of planning a trajectory,
which does not collide with any persons. It will also demonstrate how the tree expands. Next,
a simulated navigation through several randomly generated worlds is performed. This will
demonstrate the robustness of the algorithm over time. Specific parameters for the algorithm
can be seen in Svenstrup et al. (2010).

9.3.1 Robustness test
The robustness test is performed in 50 different randomly generated environments, where
the robot has to navigate forwards in during a one minute period. With an average speed of
1.5 m

s , this corresponds to the robot moving approximately 90m ahead along the street. In each
simulation the robot’s initial state is at position (0, 0) and with zero velocity.
Initially a random number of persons (between 10 and 20) are placed randomly in the world.
Their velocity is sampled randomly from a Gaussian distribution. The motion of each person
is simulated as moving towards a goal 10m ahead of them. The goal position of the y− axis of
the street is sampled randomly, and will also change every few seconds. Additional Brownian
motion is added to each person to include randomness of the motion. Over time new persons
will enter at the end of the street according to a Poisson process. This means that at any given
time, persons will appear and disappear at the ends of the street. Because of this randomness,
the number of persons can differ from the initial number of persons, and ranges from 10 to
around 40, which is different for each simulation.

149Navigation Among Humans

18 Will-be-set-by-IN-TECH

At each time instant, the robot will only know the current position and velocity of each of the
persons within a range of 45m in front of the robot, and it has no knowledge about where the
persons will go in the future.
As it is a simulation, there are no real time performance issues, and nothing has been done
to optimise the code for faster performance. So the tree is set to grow a fixed number of 2000
vertices at each iteration. The planning horizon is set to 20 seconds and at each iteration the
robot executes 2 seconds of the trajectory, while a new trajectory is planned.

10. Results

10.1 Experiment 1

(a) After 1st test person (b) After 3rd test person (c) After 5th test person (d) PI

Fig. 9. The figures show the values stored in the CBR system after completion of the 1st, 3rd
and 5th test person. Note that the robot is located at the origin (0, 0), since the measurements
are in the robot’s coordinate frame, which follows the robot’s motion. Each dot represents a
position of the test person in the robot’s coordinate frame. The direction of the movement of
the test person is represented by a vector, while the level (PI) is indicated by the colour range.

As interaction sessions are registered by the robot, the database is gradually filled with cases.
All entries in the database after different stages of training are illustrated by four-dimensional
plots in Fig. 9. The (x, y) coordinates are the position coordinates (px, py) of the person in the
robot’s coordinate frame, as estimated by the pose estimation algorithm. The coordinates are
the dots in the 40 x 40cm grid. At each position, the orientation of the person (θ) is illustrated
by a vector. The colour of the vector denotes the value of PI. Blue indicates that the person
does not wish close interaction, while red indicates that the person wishes to engage in close
interaction, i.e. PI= 0 and PI= 1 respectively. A green vector indicates PI= 0.5.
Figs. 9((a)-(c)) show how information in the database evolves during the experiment. Fig. 9(a)
shows the state of the database after the first person has completed the 12 sessions. Here,
the database is seen to be rather sparsely populated with PI values mostly around 0.5, which
means that the CBR system is not well trained yet. Fig. 9(b) shows the state after 3 test persons
have completed the 12 sessions and, finally, Fig. 9(c) shows all cases (around 500) after all
5 test persons have completed the sessions. Here the database is more densely populated,
and PI values are in the whole range from 0 to 1. As can be seen in Figs. 9((a)-(c)), the
number of plotted database entries increases as more interaction sessions occur. This shows
the development of the CBR system, and clearly illustrates how the CBR system gradually
learns from each person interaction session.

150 Advances in Robot Navigation

Navigation Among Humans 19

In all three figures (Figs. 9((a)-(c))), the vectors in the red colour range (high PI) are dominant
when the orientation of the person is towards the robot, while there is an excess of vectors
not pointing directly towards the robot in the blue colour range (low PI). This complies with
intuition and reflects that a person, who wishes to interact, has a trajectory moving towards
the robot, which is as expected for a normal human-human interaction process.
In Fig. 10, the PI development for six individual sessions, are plotted as a function of time.
This is done for test persons 1, 3 and 5. PI is plotted twice for each test person: once for a
randomly selected session where the test person wishes interaction with the robot; and once
for a randomly selected session where the test person passes the robot with no interest in
interaction. For the first test person, PI increases to a maximum around 0.65 for a session
ending with a close interaction. For the same test person, PI drops to a minimum of 0.48 for a
session where no close interaction occurs. For the 3rd test person, PI ends with a value around
0.9 for a session where close interaction has occurred, while PI = 0.35 for a session where no
close interaction has occurred. For the last test person, PI rapidly increases to a value around
1 for a session where close interaction occurs, and has PI around 0.18 when the person is
not interested in interaction. Generally this illustrates that PI is estimated more quickly and
with more certainty the more the system is trained. It also can be seen how maximum and

Fig. 10. PI as a function of the session time for three different test persons. For each test
person, PI is plotted for a session where close interaction occurs and for a session where no
close interaction occurs. The x-axis shows the session time. The axis is scaled such that the
plots have equal length.

minimum values for PI increase as more test persons have been evaluated. After evaluating
one test person, the robot has gathered very little interaction experience, and has difficulties
in determining the correspondence between motion pattern and end result - hence PI stays
close to 0.5. After the third test person, the robot has gathered more cases and, therefore,
improves in estimating the outcome of the behaviour. For the last test person, the robot is
clearly capable of estimating the intention state of the person, and thereby able to predict
what will be the outcome of the interaction session.

10.2 Experiment 2
Experiment 2 tests the adaptiveness of the CBR system. In order to see the change in the
system over time, the average PI value in the database after each session is calculated. The
averages have been calculated as an average for three different areas (see Fig. 11(a)), to be able
to compare how the database changes in different areas relative to the robot. The areas are:

• Area 1: The frontal area just in front of the the robot.

151Navigation Among Humans

20 Will-be-set-by-IN-TECH

• Area 2: A small area around the robot, which includes some of the frontal area, and some
to the sides as well.

• Area 3: All cases stored in the database.

Fig. 11(b) shows the development of the average values of PI for the 36 interaction sessions
for one person.

(a) A snapshot of the database after the second
experiment was done. It shows how the mean
value for PI is calculated for three areas: 1) the
frontal area; 2) the small area and; 3) for all
cases. The development of the mean values
over time for all three areas are illustrated in
Fig. 11(b)

(b) Graph of how the average of PI evolves for
the three areas indicated in Fig. 11(a). 36 person
interaction sessions for one test person is performed.
The red vertical line illustrates where the behaviour
of the person changes from seeking interaction to not
seeking interaction.

Fig. 11. Plots of the database and how PI evolves from experiment 2

As can be seen from Fig. 11(b), the average value of PI increases for the first 18 sessions, where
the person is interested in close interaction. This is especially the case for areas 1 and 2, which
have a maximum value at 0.9 and 0.85 respectively, but less for area 3 (around 0.65). After 18
sessions, where the behaviour is changed, PI starts to drop for all areas. Most notably, area
1 drops to a minimum of 0.39 after 36 sessions. This is because in most sessions the person’s
trajectory goes through the frontal area, thereby having the highest number of updates of PI.
To sum up, these experiments show that:

• Determination of PI improves as the number of CBR case entries increases, which means
that the system is able to learn from experience.

• The CBR system is independent of the specific person, such that experience based on
motion patterns of some people, can be used to determine the PI of other people.

• The algorithm is adaptive, when the general behaviour of the people changes.

Generally, the conducted experiments show that CBR can be applied advantageously to a
robot, which needs to evaluate the behaviour of a person. The method for assessment of the
person’s interest in interaction with the robot is based on very limited sensor input. This is
encouraging as the method may easily be extended with support from other sensors, such as
computer vision, acoustics etc.

152 Advances in Robot Navigation

Navigation Among Humans 21

10.3 Trajectory generation results
An example of a grown RRT, with 2000 vertices, from the initial state can be seen in Fig. 12.
The simulated trajectories of the robot are the red lines, and the red dots are vertices of the
tree. It is seen how the RRT is spread out to explore the configuration space, although only
every 10th vertex is plotted to avoid clutter on the graph. Note that the persons are static at
their initial position on the figure, and some trajectories seem to pass through persons. But in
reality, the persons have moved when the robot passes the point of the trajectory. The best of
the all trajectories, which is calculated using Eq. (15), is the green trajectory.

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 12. An RRT for a robot starting at (2, 0) and the task of moving forward through the
human populated environment. Only every 10th vertex is shown to avoid clutter of the
graph. The vertices are the red dots, and the lines are the simulated trajectories. The green
trajectory is the least cost trajectory.

In Fig. 13 a typical scene from one of the 50 simulations can be seen. The blue dots are persons,
and the arrows are velocity vectors, with a length proportional to the speed. The black star
with the red arrow, is the robot position and velocity.

15 20 25 30 35 40 45 50 55
−10

 −5

 0

 5

 10
Time: 13.5s Number of persons: 39

Distance [m]

D
is

ta
nc

e
[m

]

Fig. 13. A scene from one of the 50 simulations. The blue dots are persons, with their
corresponding current velocity vectors. The black star is the robot.

The distance to the closest person over time, for a randomly selected simulation is shown on
Fig. 14. Though it is only one sample, it is representative for all the simulations. It can be
seen that very rarely the robot is closer to any person than 1.2m, which is the distance of the
personal zone of the humans.

153Navigation Among Humans

22 Will-be-set-by-IN-TECH

Fig. 14. The figure shows the closest distance of any person for one randomly chosen
simulation. The horizontal black line, is at 1.2m distance, which corresponds to the transition
between the social zone and the personal zone, which the robot should try to stay out of.

In none of the 50 one minute period simulations the robot ran into a person. This demonstrates
that the algorithm is robust enough plan safe trajectories through an environment, where
human motion is governed by changing goals and additional random motion, even though
using a simple human motion model for prediction, when planning. A few close passes in
the combined 50 minute run, down the pedestrian street, are seen. The time in each zone,
in which the robot is located, for the person that is closest to the robot at any given time, is
shown in Fig. 15. It is seen that the robot stays out of the personal zone of any of the persons
in more than 97.5% of the time, and out of the intimate zone (a distance closer than 0.45m)
99.7% of the time. This only occurs on 9 separate instances of the 50 minutes of driving.

≤ ≤

≤

Fig. 15. The bar plot shows how large a part of the time the closest person to the robot has
been in each zone. The robot should try to stay out of the personal and intimate zones. The
distance interval for each zone, can also be seen in the plot.

Except in very densely populated environments, the model runs approximately one third of
real time on a 2.0 GHz CPU running MATLAB. This is considered to be reasonable, since no
optimisation for speed has been done. In very dense environments, the planning takes longer,
since many new added vertices, are pruned again, and hence more points has to be sampled
before 2000 vertices are expanded. Additionally the more persons in the area, the longer it
takes to evaluate the cost of traversing the potential field. Generally, it is demonstrated, that
the algorithm is able to plan and execute a trajectory through a human environment without
colliding with the people walking in the environment.

154 Advances in Robot Navigation

Navigation Among Humans 23

11. Conclusions

In this work, we have described an adaptive system for safe and natural motion interaction
between mobile robots and humans. The system forms a basis for human-aware navigation
respecting a person’s social spaces. The system consists of four independent components:

• A method for pose estimation of a human using laser rangefinder measurements.

• Learning to interpret human behaviour using motion patterns and Case-Based Reasoning
(CBR).

• An adaptive human-aware navigation algorithm based on a potential field.

• A trajectory planning algorithm for planning a safe trajectory through a crowded human
environment.

A Kalman filter based algorithm is used to derive pose estimates for the people in the
environment. The pose estimates are used in a CBR system to estimate the person’s interest
in interaction. The spatial behaviour strategies of the robot are adapted according to the
estimated interest by using adaptive potential field functions to govern the motion.
Furthermore a new algorithm for trajectory planning for a kinodynamic constrained robot
in a human environment, has been described. The robot is navigating in a highly dynamic
environment, which in this case is populated with humans. The algorithm, which is based on
RRT’s, enables the costs of traversing a potential field to be minimised, thereby supporting
planning of comfortable and natural trajectories. A new control input sampling strategy,
that together an MPC scheme is used to enable the planner to continuously plan a reachable
trajectory on an on-line robotic system, has been presented.
The evaluation of the system has been conducted through two experiments in an open
environment and simulation of robot navigation in a crowded environment. The first of the
two experiments of the combined system shows that the CBR system is able to gradually learn
from interaction experience. The experiment also shows how motion patterns from different
people can be stored and generalised in order to predict the outcome of an interaction session
with a new person. The second experiment shows how the estimated interest in interaction
adapts to changes in behaviour of a test person. The trajectory generation algorithm proved
in simulation that it is able to avoid collision with people in the environment. The algorithm
is challenged, although still avoiding collisions, when the environments become very densely
populated, but so are humans. Humans react by mutual adaptation and allowing violation
of the social zones. This is not done here, where the robot takes on all the responsibility for
finding a collision free trajectory.
The presented system is a step forward in creating socially intelligent robots, capable of
navigating in everyday environments and interacting with human beings by understanding
their interest and intention. In the long-term perspective, the results could be applied to
service or assistive robot technology.

12. References

Althaus, P., Ishiguro, H., Kanda, T., Miyashita, T. & Christensen, H. (2004). Navigation for
human-robot interaction tasks, Proceedings of IEEE International Conference on Robotics
and Automation, 2004. ICRA ’04., Vol. 2, pp. 1894–1900.

Brooks, A., Kaupp, T. & Makarenko, A. (2009). Randomised mpc-based motion-planning
for mobile robot obstacle avoidance, Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pp. 3962–3967.

155Navigation Among Humans

24 Will-be-set-by-IN-TECH

Bruce, A. & Gordon, G. (2004). Better motion prediction for people-tracking, Robotics and
Automation, 2004. ICRA ’04. IEEE International Conference on.

Bruce, A., Nourbakhsh, I. & Simmons, R. (2001). The role of expressiveness and attention in
human-robot interaction, In Proceedings, AAAI Fall Symposium.
URL: citeseer.ist.psu.edu/article/bruce02role.html

Christensen, H. I. & Pacchierotti, E. (2005). Embodied social interaction for robots, in
K. Dautenhahn (ed.), AISB-05, Hertfordshire, pp. 40–45.

Cielniak, G., Treptow, A. & Duckett, T. (2005). Quantitative performance evaluation of a
people tracking system on a mobile robot, Proc. 2nd European Conference on Mobile
Robots.

Dautenhahn, K., Walters, M., Woods, S., Koay, K. L., Sisbot, E. A., Alami, R. & Simï£¡on, T.
(2006). How may i serve you? a robot companion approaching a seated person in a
helping context, HRI Human Robot Interaction ’06 (HRI06), Salt Lake City, Utah, USA.

Dornaika, F. & Raducanu, B. (2008). Detecting and tracking of 3d face pose for human-robot
interaction, Proceedings IEEE International Conference on Robotics and Automation,
pp. 1716–1721.

Feil-Seifer, D. & Mataric, M. (2005). A multi-modal approach to selective interaction in
assistive domains, Robot and Human Interactive Communication, 2005. ROMAN 2005.
IEEE International Workshop on, pp. 416–421.

Ferguson, D., Kalra, N. & Stentz, A. (2006). Replanning with rrts, Proc. IEEE International
Conference on Robotics and Automation ICRA 2006, pp. 1243–1248.

Ferguson, D. & Stentz, A. (2006). Anytime rrts, Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5369–5375.

Fod, A., Howard, A. & Mataric, M. J. (2002). Laser-based people tracking, In Proc. of the IEEE
International Conference on Robotics & Automation (ICRA, pp. 3024–3029.

Govea, D. A. V. (2007). Incremental Learning for Motion Prediction of Pedestrians and Vehicles, PhD
thesis, Institut National Polytechnique de Grenoble.

Hall, E. (1966). The Hidden Dimension, Doubleday.
Hall, E. T. (1963). A system for the notation of proxemic behavior, American anthropologist

65(5): 1003–1026.
Hanajima, N., Ohta, Y., Hikita, H. & Yamashita, M. (2005). Investigation of impressions

for approach motion of a mobile robot based on psychophysiological analysis, IEEE
International Workshop on Robots and Human Interactive Communication ROMAN 2005,
pp. 79–84.

Hansen, S. T., Svenstrup, M., Andersen, H. J. & Bak, T. (2009). Adaptive human
aware navigation based on motion pattern analysis, Robot and Human Interactive
Communication, 2009. RO-MAN 2009. The 18th IEEE International Symposium on,
Toyama, Japan, pp. –.

Jenkins, O. C., Serrano, G. G. & Loper, M. M. (2007). Recognizing Human Pose and Actions for
Interactive Robots, I-Tech Education and Publishing, chapter 6, pp. 119–138.

Jurisica, I. & Glasgow, J. (1995). Applying case-based reasoning to control in robotics, 3rd
Robotics and Knowledge-Based Systems Workshop, St. Hubert Quebec.

Kelley, R., Tavakkoli, A., King, C., Nicolescu, M., Nicolescu, M. & Bebis, G. (2008).
Understanding human intentions via hidden markov models in autonomous mobile
robots, HRI ’08: Proceedings of the 3rd ACM/IEEE international conference on Human
robot interaction, ACM, New York, NY, USA, pp. 367–374.

156 Advances in Robot Navigation

Navigation Among Humans 25

Kirby, R., Forlizzi, J. & Simmons, R. (2007). Natural person-following behavior for social
robots, Proceedings of Human-Robot Interaction, pp. 17–24.

Kirby, R., Simmons, R. & Forlizzi, J. (2009). Companion: A constraint-optimizing method
for person-acceptable navigation, Robot and Human Interactive Communication, 2009.
RO-MAN 2009. The 18th IEEE International Symposium on, pp. 607 –612.

Kleinehagenbrock, M., Lang, S., Fritsch, J., Lomker, F., Fink, G. & Sagerer, G. (2002). Person
tracking with a mobile robot based on multi-modal anchoring, Proceedings. 11th IEEE
International Workshop on Robot and Human Interactive Communication (ROMAN), 2002.
1: 423–429.

LaValle, S. (2006). Planning algorithms, Cambridge Univ Pr.
LaValle, S. & Kuffner Jr, J. (2001). Randomized kinodynamic planning, The International Journal

of Robotics Research 20(5): 378.
Likhachev, M. & Arkin, R. (2001). Spatio-temporal case-based reasoning for behavioral

selection, Proc. IEEE International Conference on Robotics and Automation, ICRA, Vol. 2,
pp. 1627–1634.

Michalowski, M., Sabanovic, S. & Simmons, R. (2006). A spatial model of engagement for
a social robot, The 9th International Workshop on Advanced Motion Control, AMC06,
Istanbul.

Munoz-Salinas, R., Aguirre, E., Garcia-Silvente, M. & Gonzalez, A. (2005). People detection
and tracking through stereo vision for human-robot interaction, MICAI 2005:
Advances in Artificial Intelligence 3789/2005: 337–346.

Ram, A., Arkin, R. C., Moorman, K. & Clark, R. J. (1997). Case-based reactive navigation:
A case-based method for on-line selection and adaptation of reactive control
parameters in autonomous robotic systems, IEEE Transactions on Systems, Man, and
Cybernetics 27: 376–394.

Rodgers, J., Anguelov, D., Pang, H.-C. & Koller, D. (2006). Object pose detection in range scan
data, Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference
on 2: 2445–2452.

Siciliano, B. & Khatib, O. (2008). Handbook of Robotics, Springer-Verlag, Heidelberg.
Sisbot, E. A., Alami, R., Simï£¡on, T., Dautenhahn, K., Walters, M., Woods, S., Koay, K. L. &

Nehaniv, C. (2005). Navigation in the presence of humans, IEEE-RAS International
Conference on Humanoid Robots (Humanoids 05), Tsukuba, Japan.

Sisbot, E. A., Clodic, A., Urias, L., Fontmarty, M., Brï£¡thes, L. & Alami, R. (2006).
Implementing a human-aware robot system, IEEE International Symposium on Robot
and Human Interactive Communication 2006 (RO-MAN 06), Hatfield, United Kingdom,
pp. 727–732.

Svenstrup, M., Bak, T. & Andersen, H. J. (2010). Trajectory planning for robots in dynamic
human environments, IROS 2010: The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Taipei, Taiwan.

Svenstrup, M., Bak, T., Maler, O., Andersen, H. J. & Jensen, O. B. (2008). Pilot study of
person robot interaction in a public transit space, Proceedings of the International
Conference on Research and Education in Robotics - EUROBOT 2008, Springer-Verlag
GmbH, Heidelberg, Germany, pp. 120–131.

Svenstrup, M., Hansen, S. T., Andersen, H. J. & Bak, T. (2009). Pose estimation and adaptive
robot behaviour for human-robot interaction, Proceedings of the 2009 IEEE International
Conference on Robotics and Automation. ICRA 2009., Kobe, Japan, pp. 3571–3576.

157Navigation Among Humans

26 Will-be-set-by-IN-TECH

Takayama, L. & Pantofaru, C. (2009). Influences on proxemic behaviors in human-robot
interaction, IROS’09: Proceedings of the 2009 IEEE/RSJ international conference on
intelligent robots and systems, IEEE Press, Piscataway, NJ, USA, pp. 5495–5502.

van den Berg, J. (2007). Path planning in dynamic environments, PhD thesis, Ph. D. dissertation,
Universiteit Utrecht.

Walters, M. L., Dautenhahn, K., Koay, K. L., Kaouri, C., te Boekhorst, R., Nehaniv, C., Werry, I.
& Lee, D. (2005). Close encounters: Spatial distances between people and a robot of
mechanistic appearance, Proceedings of 2005 5th IEEE-RAS International Conference on
Humanoid Robots, Tsukuba, Japan, pp. 450–455.

Walters, M. L., Dautenhahn, K., te Boekhorst, R., Koay, K. L., Kaouri, C., Woods, S., Nehaniv,
C., Lee, D. & Werry, I. (2005). The influence of subjectsï£¡ personality traits on
personal spatial zones in a human-robot interaction experiment, Proc. IEEE Ro-man,
Hashville, pp. 347–352.

Woods, S., Walters, M. L., Koay, K. & Dautenhahn, K. (2006). Methodological issues in
hri: A comparison of live and video-basedmethods in robot to human approach
direction trials, The 15th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN06), Hatfield, UK, pp. 51–58.

Xavier, J., Pacheco, M., Castro, D., Ruano, A. & Nunes, U. (2005). Fast line, arc/circle and leg
detection from laser scan data in a player driver, Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, pp. 3930–3935.

Zucker, M., Kuffner, J. & Branicky, M. (2007). Multipartite rrts for rapid replanning in
dynamic environments, Proc. IEEE International Conference on Robotics and Automation,
pp. 1603–1609.

158 Advances in Robot Navigation

Part 3

Robot Navigation Inspired by Nature

8

Brain-actuated Control of Robot Navigation
Francisco Sepulveda

BCI Group - School of Computer Science and Electronic Engineering, University of Essex
United Kingdom

1. Introduction
Brain-driven robot navigation control is a new field stemming from recent successes in brain
interfaces. Broadly speaking, brain interfaces comprise any system that aims to enable user
control of a device based on brain activity-related signals, be them conscious or
unconscious, voluntary or evoked, invasive or non-invasive. Strictly speaking, the term
should also include technology that directly affects brains states (e.g., transcranial magnetic
stimulation), but these are not usually included in the terminology. Two main families of
brain interfaces exist according to the usual terminology, although the terms are often used
interchangeably as well: i) Brain-computer interfaces (or BCIs) usually refers to brain-to-
computer interfaces that use non-invasive technology; ii) Brain-machine interfaces (or BMIs)
often refers to implanted brain-interfaces. This chapter shall use these terms (BCI and BMI)
as defined in this paragraph. Other sub-categories of BCIs are discussed below.
The idea of BCIs is credited to Jaques Vidal (1973) who first proposed the idea in concrete
scientific and technological terms. Until the late 1990’s the area progressed slowly as a result
of work in but a handful of laboratories in Europe and North America, most notably the
groups at the Wadsworth Centre (Albany, NY) and the Graz (Austria) group led by G.
Pfurtscheller. Aside from the few researchers working on BCIs in the ‘70s and ’80s, slow
progress then was largely due to limitations in: i) our understanding of brain
electrophysiology, ii) quality and cost of recording equipment, iii) computer memory and
processing speed, and iv) the performance of pattern recognition algorithms. The state-of-
the-art in these areas and the number of BCI researchers have dramatically increased in the
last ten years or so. Yet, there is still an enormous amount of work do be done before BCIs
can be used reliably outside controlled laboratory conditions.
In this chapter, an overview of BCIs will be given, followed by a discussion of specific
approaches for BCI-based robot navigation control. The chapter then concludes with a
summary of challenges for the future of this new and exciting technology.

1.1 Overview of BCIs
A typical – and simplified – BCI system is illustrated in Fig. 1. In principle, the easiest way
for most users to control a device with their thoughts would be to have a computer read the
words a user is thinking. E.g., if a user wants to steer a robot to the left, he/she would only
need to think of the word ‘left’. However, while attempts at doing this have been made,
such approach currently leads to true positive recognition rates that are only slightly above
chance – at best. At present BCIs work in two ways (see item A in Fig. 1): either i) brain
signals are monitored while the user performs a specified cognitive task (e.g., imagination of

Advances in Robot Navigation

162

hand movements), or ii) the computer makes decisions based on the user’s brain’s
involuntary response to a particular stimulus (e.g., flashing of an object on a computer
screen), although both approaches have been combined recently as well (Salvaris &
Sepulveda, 2010).

Fig. 1. Schematic of a brain-computer interface system

Once signals are recorded (which usually includes amplification, common mode rejection
and antialising filtering) and digitized, they need to be further processed to increase the
signal to noise ratio by applying frequency band filters, spatial filters, and various
referencing methods (see step B in Fig. 1 and the Signal Processing section below). At this
stage, we often have several hundred to several thousand data points per second,
depending on the domain on which the data are analyzed. To reduce both the
dimensionality of the pattern recognition task and the amount of irrelevant data (e.g., data
that do not carry information related to the mental states of interest) feature selection
algorithms (step C) are applied at least during offline testing, although they can also be
applied on-line. Once features are extracted/selected, they are fed into a classifier (step D)
that will attempt to infer the user’s mental state. Finally, some BCI systems also provide
specific feedback to the user (step E), such as a sample of the classifier’s output or a
parameter related to the user’s level of concentration, amongst others. Some of the steps
described here make use of methods that are common to other areas. Machine learning and
feature selection algorithms (e.g., support vector machines, linear discriminant analysis,
nerofuzzy inference, genetic algorithms, cluster overlap indices, etc.) used in BCIs are often
the same as those applied in other fields such as computer vision, etc., or variations of them.
These, as such, will not be discussed in this chapter (but see Lotte et al., 2007, for further
information). On the other hand, a number of techniques are specific to the kind of data
used in BCIs, i.e., usually suitable for encephalographic (EEG) data. These are discussed in
some detail below.

Brain-actuated Control of Robot Navigation

163

1.2 Types of BCIs
Throughout the years, BCIs have been categorized in several different ways. Most accepted
terminology falls under one of the following (Wolpaw et al., 2002):
• Invasive vs. non-invasive.
• Dependent vs. independent.
• Spontaneous vs. evoked vs. event-related.
• Synchronous vs. asynchronous.
So far, these have been studied mostly in a mutually exclusive manner (e.g., either
synchronous or asynchronous). They are described in more detail below.

1.2.1 Invasive vs. non-invasive
In a narrow sense, there is an obvious difference between invasive interfaces (i.e.,
implanted) and those (non invasive) that go on the skin surface or farther from the body. In
a strict sense, however, any technology that deposits external elements on the body, be it
matter or even photons and magnetic fields, is invasive in that it directly affects the internal
physical state of the body. As discussed under Recording Equipment, below, technologies
such as near-infrared spectroscopy (NIRS, which deposits near-infrared light on tissue),
magnetic resonance imaging (which applies magnetic fields) and positron emission
tomography (which requires the administration of a radioactive substance) are all invasive
as the very mechanisms by which they work requires that the observed tissue (and
surrounding ones) be internally disturbed. For most of these technologies, the effects on the
body are well known. For NIRS, however, the effects of the absorbed energy on the brain
tissue have not been studied concerning long term and even short term but prolonged use
(e.g., rare occasions, but with hours of use every time), and thus caution is recommended at
this point in time.
Of the technologies described later in the chapter, only electroencephalography and
magnetoencephalography can be considered non-invasive.

1.2.2 Dependent vs. Independent BCIs
BCIs have been classified as either dependent or independent (Wolpaw et al., 2000). A
dependent BCI does not require the usual ways of brain output to express the internal
mental state (e.g., speech, facial expression, limb movement, etc.), but it does require that
some functionality (e.g., gaze control) remain beyond the brain. In practice what this means
is that a dependent BCI is not entirely reliant on the brain signals alone. For example (see
SSVEP BCIs below), in some cases the user must be able to fixate his/her gaze on a desired
flashing object on a computer screen in order for the BCI to determine which object (or
choice) the user wants amongst a finite set. This is a problem in principle as a ‘pure’ BCI
should not require any body-based functionality beyond being conscious and being able to
make decisions at the thought level. However, in practice very few users have no overt (i.e.,
observable via visual or auditory means) action abilities left. These, so called totally locked-
individuals, would not be able to benefit from a dependent BCI, so independent BCIs are
needed in this case. On the other hand, most disabled and otherwise functionally restricted
people (including some locked in individuals), as well as able-bodied people, have at least
some voluntary eye movement control, which motivates further research in dependent BCIs.
Independent BCIs, in contrast, do not require any physical ability on the part of the user
other than the ability to mentally focus and make decisions. In other words, even if the user
has no voluntary control of any organ beyond the brain, an independent BCI would be able

Advances in Robot Navigation

164

to infer the user’s mental choices by looking at the brain signals. In this case, the signals are
independent of whether or not the user has any control of any body parts. Examples of this
are mental navigation, mental arithmetic, imagination of limb movements, etc.

1.2.3 Spontaneous vs. evoked vs. event-related
Evoked potentials (EPs) are observable brain responses to a given stimulus, e.g., a flashing
letter, a sound, etc., whether the user is aware of or interested in the stimulus or not. EPs are
time locked to the stimulus in that the observed brain signal will contain features that are
consistently timed with respect to the stimulus. For example, if a user focuses his/her gaze
on a flashing character on a computer screen, this flashing frequency (if it is between about
6Hz and 35Hz) will be observable in the visual cortex signals. Other brain signals can be
spontaneous, i.e., they do not require a given stimulus to appear. Thoughts in general can be
assumed to be spontaneous (although strictly speaking this is still debatable). An example
of spontaneous potentials are those related to movement intentions in the sensory motor
cortex and are thus not a result of specific input. Finally, a third class of signals is termed
‘event-related potentials’ (ERP). They are related to evoked potentials but also include brain
responses that are not directly elicited by the stimulus. I.e., they can include spontaneous or
deliberate thoughts such as mental counting, etc. (Rugg and Coles, 1995), but they have a
well controlled time window within which brain signals are monitored, whether
spontaneous or as a result of a specific stimulus. The term event-related potential is currently
seen as more accurate for all but the most restricted stimulation protocols and it is preferred
over the term evoked potentials.

1.2.4 Synchronous (cue based) vs. asynchronous (self-paced)
The three subcategories described in the previous paragraph are also referred to using two
other terms, synchronous and asynchronous interfaces. BCIs based on EPs and ERPs are
synchronous in that they restrict the interaction as the user is only allowed to convey an
intention or command to the machine when the machine allows it. I.e., either the monitored
signal is a response to a computer-timed stimulus, or it is a mental task executed only when
the monitoring computer gives the ‘go ahead’ to the user, typically by means of a tone or an
object on the screen. The user, thus, has control over what to convey to the machine, but not
when. This is by far the most common approach in BCIs. For example, a common approach
is to have the computer give a visual or auditory cue to let the user know that he/she is to
perform a mental task (e.g., movement imagination) immediately afterwards. In this case,
as in most BCIs, the user is told to stop the task after a few seconds. The computer then uses
these few seconds of data to infer the mental state of the user. In another common
synchronous approach, users choose from a set of flashing letters (see the P300 and SSVEP
approaches later in the chapter). Obviously, in this case computer interpretation of the
signals can only be done on data obtained while the object of interest in flashing, the timing
for which is very precisely controlled in order to map specific data features to the correct
flashing object. Synchronous BCIs are often called ‘cue-based’ as well.
Asynchronous BCIs (e.g., Townsend et al., 2004), on the other hand, use brain signals that are
produced any time by the user, with or without a specific computer-controlled stimulus.
This makes classification of the user’s intention difficult as the machine first needs to
identify whether a deliberate intention-related signal has been produced (the so called ‘onset
detection’ problem, e.g., see Tsui et al., 2006) to then be able to identify what intention took
place. An alternative is to use continuous classification of the signals with ‘idle’ or ‘no

Brain-actuated Control of Robot Navigation

165

specific state’ as one of the classes, but this may reduce classification performance overall as
it adds a class to the number of possible outputs from the translation algorithm. An
example of an asynchronous BCI is the use of movement imagination (e.g., left hand
movement vs. right hand movement) to steer a robot left or right when the user decides this
must be done and not when the robot/computer demands a command. Asynchronous BCIs
are often called ‘self-paced’ as well.
The main problem with asynchronous BCIs is the difficulty in determining training and
validation labels for the classifier. In essence, if the computer is not able to determine when
an onset took place with a precision in the order of a few hundred milliseconds, it is unlikely
that the data will be correctly labelled for (re)training purposes. To circumvent this problem,
often the user is asked to perform the spontaneous mental task for relatively long periods,
e.g., near 10s, so that onset timing errors become irrelevant (see e.g., Sepulveda et al., 2007).
However, this approach puts serious limitations on the rate of information transfer between
the user and the machine.
Due to the timing and labelling problems with asynchronous (self-paced) BCIs, most work
to date has used synchronous (cue-based) interfaces. However, self-paced BCIs are much
more natural to the user as they do not require that the subject be paying full attention to a
given stimulus or cue. Thus, not only does the user have timing freedom with self-paced
BCIs, but he/she is also free to multi-task and interact with the environment beyond the
BCI. This is the ultimate aim of BCIs.

1.3 Recording equipment
A number of devices have potential for use in BCIs. Some candidates are briefly discussed
below. As we will see, only one class of equipment is currently suitable for widespread use,
but, depending on the circumstances, the other devices may be useful as well.
• Functional magnetic resonance imaging (fMRI) (Belliveau et al., 1991): This is a powerful

technology used for functional brain mapping based on hemodynamics (i.e. , blood
flow and oxygenation changes).
• Pros: It provides excellent spatial resolution.
• Cons: The equipment is very large, heavy and expensive. Thus, portability is not a

possibility for at least a few decades, if ever. The temporal response is slow
compared to, e.g., electroencephalography (EEG, discussed on the next page). As
fMRI monitors hemodynamics, a few seconds of changed and sustained neural
activity go by before significant changes are seen (Raichle et al., 2006). This poses a
major problem for real-time BCIs, in which case a particular mental state of interest
may have come and gone without being detected. This is because much of BCI-
relevant brain activity is of a transient nature (but see SSVEP later in the chapter for
an exception to this). On the other hand, if a mental task is maintained for several
seconds, in semi or actual steady-state, fMRI will allow detection of this process.
An additional problem is the use of strong magnetic fields, which poses safety
issues, especially if metals (e.g., electrodes) are in the proximity.

• Positron emission tomography (PET) (Ter-Pogossian et al., 1975): In principle this
technology can be used for brain mapping, usually through radioactive oxygen or
glucose given to the user.
• Pros: spatial resolution is better than with EEG.
• Cons: First and foremost, then use of radioactive substances precludes use of this

technology in BCIs, although in extreme cases (e.g., in totally locked in individuals)

Advances in Robot Navigation

166

it can be useful for validating other methods as it is a well established technology,
having been available for several decades. Like fMRI, the approach also suffers
from poor time resolution, aside from the fact that long delays (up to hours) are
required between radioisotope ingestion and the brain imaging procedure. The
recording equipment is very large and expensive as well.

• Near infrared sprectroscopy (NIRS) (Wolf et al., 2007): This method too is based on
hemodynamics. In this case blood oxygenation changes are linked to the amount of
reflected near-infrared light applied on the brain through transmitters on the scalp, the
receiver being placed nearby on the scalp as well. The approach is similar to that used
in existing sensors using mid-range infrared, but near infra-red has much deeper
penetration in tissue (up to a few centimetres), lending itself to brain monitoring.
• Pros: This is currently the cheapest hemodynamics-based technology available,

although the equipment is still more expensive than for EEG. Compared to other
hemodynamics devices, NIRS equipment is also fairly portable, and wireless
systems have been recently developed as well (Muehlemann et al., 2008).

• Cons: As in other hemodynamics-based systems, time resolution is poor. On the
other hand, different from PET and fMRI, spatial resolution is poor due to
significant scattering of the near-infrared light in tissue. NIRS systems are also
very sensitive to transmitter and sensor motion and environmental NIR sources.

• Magnetoencephalography (MEG) (Cohen, 1972): MEG records the magnetic fields
orthogonal to the electric fields generated by ensemble neural activity, although there is
evidence suggesting that the source of detectable magnetic fields in the brain is
physiologically different from those generating EEG (Hamalainen et al., 1993).
• Pros: It has much better time resolution than hemodynamics-based systems.

Electrical and magnetic field changes reflect the underlying neural activity within a
few milliseconds. Also, in contrast with fMRI, PET and NIRS, MEG only monitors
brain signals and does not deposit any matter or energy on the brain. It is thus a
truly non-invasive technology in that it does not disturb the object of study.

• Cons: MEG equipment is still very large, comparable in size with fMRI equipment.
It is also very costly.

• Electroencephalography (EEG) (Niedermeyer et al., 2004): This is by far the oldest of all
the devices discussed here, having been available at least since the 1920’s (Swartz and
Goldensohn, 1998). In EEG, the electrodes are usually placed on the scalp and record
the electrical activity taking place in the brain tissue underneath, which reaches the
electrode region by volume conductor processes. In order for neural activity to be
detectable using EEG, it must be both fairly near the cortical surface and include many
millions of cells in synchrony so that the total sum of the activity is large enough to be
detected from the scalp. Still, the largest EEG potentials seen under most conditions
have amplitudes in the order of a few tens of microvolts.
• Pros: EEG is the least expensive technology for brain monitoring. EEG systems are

also very portable and provide excellent time resolution. Due to their passive
nature (from the brain’s point of view), they are very safe as well.

• Cons: There are two main limitations in EEG systems. One (poor spatial
resolution) is inherent while the other (poor usability) can still be tackled. Poor
spatial resolution is inherent due to the volume conductor effects through which
signals from nearby (even up to a few cm apart) areas are irreversibly mixed
together. While various approaches exist to minimize this problem, sub-centimeter

Brain-actuated Control of Robot Navigation

167

EEG features have little meaning. Poor usability stems from the need to use
electrode gel to reduce the impedance between the electrodes and the scalp, but
there are commercial systems currently available that employ user-friendly wet
electrodes or dry (usually capacitive) electrodes, at the expense of signal quality.

• Implanted Brain Interfaces, or Brain-Machine Interfaces (BMIs) (Lebedev & Nicolelis, 2006):
Various approaches have been developed that require the implantation of electrodes
and arrays thereof to record brain electrical signals much closer to their source than
with MEG and EEG. These record local potentials and in some cases signals from as
few as tens of cells can be recorded. These brain interfaces have been implanted at
various depth levels under the skull, from the surface of the protective tissue
surrounding the brain to near a centimetre into the cortex.
• Pros: The main advantage of implanted devices is that they have the potential to

simultaneously provide the best spatial and time resolution.
• Cons: Very high cost, risky surgery and post-surgery damage risks (including

possible irreversible loss of neural tissue) are the main issues. These are currently of
such high level, however, that (implanted) BMIs are still experimental, although there
is currently at least one user with a working BMI in place (Hochberg et al., 2006).

Of all the devices described above, EEG is so far the best candidate for routine BCI use as it
is portable, safe, relatively inexpensive, and has good temporal resolution. For these
reasons it is the device of choice in the vast majority of BCI research and development.
Hence, hereafter in this chapter all methods under discussion refer to EEG unless otherwise
specified.
A typical EEG set up is illustrated in Fig. 2. In the picture electrodes have been placed on the
scalp on locations anterior and posterior to the areas of the brain that control limb
movements (see Motor Imagery below). In this case differential (bipolar) recordings are
obtained for each anterior/posterior electrode pair, providing relevant information on
movement-related intentions.

Fig. 2. Typical EEG cap for use in BCIs. In the picture, only electrode locations used for
monitoring hand and foot movement imagination are included in the set-up

Advances in Robot Navigation

168

1.4 Signal processing
The signal-to-noise ratio in EEG signals is significantly <1. This is largely due to the small
amplitude of the recorded signals (in the order of microvolts), but also due to a number of
other factors, such as: irreversible summation of sources due to volume conduction in
tissue, brain multitasking, less than suitable skin-electrode impedances, evoked potentials
resulting from unwanted or unaccounted for stimuli, motion artifacts (electrode and cable
movement, etc.), environmental noise, strong interference from muscle signals, eye motion
artifacts, etc. On the whole this produces a very noisy signal, which, at first glance, has little
if any information about the underlying brain function. For the simplest cases, basic features
can be extracted (e.g., closing of one’s eyes or relaxing produces a visible amplitude increase
in the alpha band – 8Hz to 10Hz), but in most cases sophisticated feature extraction and
machine learning algorithms need to be employed to obtain even partially reliable
information. A typical EEG signal set is shown on the left panel in Fig. 3. The figure
illustrates the recorded signals at various locations on the scalp after they have been
submitted to digital filtering and ear-referencing (discussed in the next subsections).
Three characteristics can be easily identified in the EEG plot in Fig. 3: i) the strong
correlation between signals from nearby electrodes, thus illustrating the poor spatial
resolution mentioned above; ii) the lack of obvious events during movement imagination,
starting at the green arrows and lasting 3s; and iii) the strong artifact caused by rolling of the
eyes, shown in the red box. Notice that while the eye-movement artifact is more prominent
in the more frontal areas, it does spread as far as the back of the head.

time (s)

S
ca
lp
 L
oc
at
io
n

2 40 2 40

trial 1 trial 2

: V

eye
movement

artifact
front

back

Fig. 3. EEG time-domain signal sample and standard electrode locations. Left panel:
multichannel recordings during two trials (i.e., attempts) of hand movement imagination.
Right panel: standard scalp location of electrodes for a 32-channel setup using the 10-20
system (Cooper et al., 1969). Fp: frontal pole, AF: antero-frontal, F: frontal, FC: fronto-
central, C: central, T: temporal, CP: centro-parietal, P: parietal, PO: parieto-occipital, O:
occipital, z: mid-sagittal line. The (red) box on the left panel shows the effect of eye
movement on the signals. The green arrows show when a visual cue was given to the user
to begin mental imagination of right hand movement, which lasted 3s

Brain-actuated Control of Robot Navigation

169

The figure above illustrates how challenging information extraction is even after digital
filtering and ear-referencing EEG signals. Without these pre-processing steps, however, the
signals are even less usable. We thus proceed to discuss the minimum pre-processing stages.

1.4.1 Frequency band filtering
EEG signal energy is optimal in the 0Hz-80Hz range, although historically most studies
have ignored frequencies above about 45Hz (as most processes of interest to the medical
community take place below 45Hz). In this range, there are three main sources of noise
which must be removed or minimized: i) motion artifacts caused by electrode and cable
movements (including slow electrode drift), which are mostly below 0.5Hz; ii) mains
interference (50Hz in the UK, 60Hz in the USA); and iii) muscle signals, i.e.,
electromyography (EMG, e.g., from jaws, facial muscle twitches, swallowing, etc.), some of
which actually overlaps with EEG as EMG produces relevant information between near 0Hz
and about 500Hz (up to 1kHz if implanted EMG is recorded). EMG cannot be fully removed
due to the EEG/EMG overlap, but it can be minimized by avoiding muscle contractions in
areas near the brain and by applying a lowpass digital filter to the EEG signal (if EMG is
simultaneously recorded, it can be used with methods such as independent component
analysis to reduce the EMG interference on the EEG signal). Most motion artifacts can be
removed with a highpass filter at ~0.5Hz (some researchers will apply a cutoff as high as
5Hz if they wish to ignore the EEG delta band). Mains interference can be eliminated by
referencing (see next subsection). But, if no referencing will be applied, a notch or stopband
filter must be used to remove mains interference. Overall, both analogue and digital filters
are needed as a first step in EEG processing. Typical filters suitable for BCIs are illustrated in
Fig. 4, which are shown only as basic guidelines as researchers might use different filter
types, orders and cutoff frequencies.

EEG Antialiasing
Analogue filter

Highpass filter
Analogue filter

Analogue
Notch filter

Digital
Highpass

Digital
Lowpass

Digital Notch
Filter

Lowpass
Butterworth
order 1 or 2
cutoff at <80Hz

Butterworth
order 1 or 2
cutoff at ~1Hz

Butterworth
order = 4
cutoff at ~1Hz
forward and
reverse

Butterworth
order = 6
cutoff at <80Hz
forward and
reverse

IIR
order = 2
at 50Hz (60Hz in some countries)

only one notch
filter is needed

at 50Hz (60Hz in some countries)

Fig. 4. Typical frequency band filtering of EEG signals

1.4.2 Referencing
EEG signal referencing is the subtraction of the potential recorded at a scalp location
(usually already subtracted from a scalp-based common mode rejection point at the

Advances in Robot Navigation

170

hardware stages) from a nearby overall reference location. This is done to remove common
environmental noise from the recorded EEG. To this end, the reference point must be near
enough to a scalp electrode so that it has a similar noise content, but it should not have any
signal sources itself. There are two typical referencing methods:
• Outside the scalp (ear or mastoid referencing): one of the ear lobes or mastoid locations

(or the average between the left and right ones) is used as the reference. This is the
standard approach for overall removal of environmental noise for most experimental
scenarios.

• Scalp average: this is used when the goal is to investigate the difference between one
channel and the rest of the scalp. It is useful also for rough localization of function (e.g.,
movement imagination vs. other tasks) or to study waves that are over several, but not
all, channels (e.g., the P300 wave discussed later in the chapter).

Although referencing is very effective in removing common environmental noise, it does
nothing to improve spatial resolution, i.e., the difference between signals from adjacent
electrodes. To this end, spatial filtering is often used, the most common approaches being
bipolar and Laplacean processing, as follows:
• Bipolar: This is a simple subtraction between signals from two adjacent electrodes. It

will give a good estimate of activity in the area between the two electrodes. For
example, subtraction of channel CP1 from channel FC1 (see Fig. 3 above) gives good
information about activity related to right arm movement, whose control is the area
between these two electrodes.

• Laplacean: the subtraction of one channel from the ones surrounding it. This is very
useful for maximizing spatial resolution, e.g., to distinguish between imagination of
movement for different limbs as their control areas are near each other in the cortex. For
example, to monitor signals related to foot movement, the Cz signal (Fig. 3) can be
subtracted from the average of the signal from the {FC1, FC2, CP1, CP2} electrode set.
In this way, the Cz signal would yield less information about irrelevant areas nearby
and more about what is directly underneath the Cz electrode.

The bipolar and Laplacean methods are also called referenceless as any previous signal
referencing done will drop out during the subtraction process.
Referencing and referenceless methods can also reduce eye-movement artifacts, but often
these persist and must be reduced by more sophisticated methods such as independent
component analysis (Vigario, 1997), at the expense of processing speed and risking losing
relevant information. However, many BCIs ignore eye-movement artifact removal
altogether as the pattern recognition algorithms can learn to ignore the artifact and the
increase in computer memory use and processing time is often not worth the effort.

2. Approaches for BCI control of robot navigation
As mentioned above, there are many approaches currently under development in BCIs.
Some will more easily lend themselves to applications in robot navigation, but almost every
approach can be used for this purpose with minor modifications. Due to space and topic
relevance restrictions, it is not possible to cover all approaches within this chapter. Instead,
in the next subsections the three main candidates for brain-actuated robot navigation using
(non-invasive) BCIs are discussed. The subsection will conclude with a discussion of how to
employ a particular approach towards BCI control of robot navigation.

Brain-actuated Control of Robot Navigation

171

2.1 Motor Imagery (MI)
Imagination or mental rehearsal of limb movements is a relatively easy cognitive task for
BCI users, especially able-bodied ones. Some individuals will not find this task as straight
forward, but most become better at motor imagery (MI) with practice. Another advantage
of this approach is that it allows the user to multitask, e.g., he/she does not need to focus on
the BCI computer and can thus interact with the environment more freely than with
methods such as P300 and SSVEP discussed below.
In addition, MI benefits from the fact that movement-related brain activity is well localized.
Several areas of the brain handle movement-related intentions before these are executed, but,
at the execution stage, the primary motor cortex (PMC) is the main control center (right panel
in Fig. 5). The area immediately posterior to the PMC, the somatosensory cortex, receives
sensory information from the equivalent body parts controlled by the PMC. Within the PMC,
subregions of the body are distributed in a well localized functional map as well. For example,
a cross section of the left primary motor cortex area is illustrated on the right panel in Fig. 5,
where the labels indicate which part of the (right side of) the body is controlled. We can
clearly see how one might use signals from different channels to be able to distinguish
between movements of different body parts, e.g., hand vs. foot. However, the functional map
shown below can only be fully explored by means of implanted devices, intra-cortical ones in
particular. Due to the volume conductor effects mentioned above, EEG electrodes will also
pick up signals from areas near the region underneath the electrode. For example, an EEG
electrode on the scalp right above the hand area will likely contain signals related to other
areas as well, from arm to neck, at least. This problem, however, can be lessened by applying
multichannel recordings and bipolar or Laplacean processing, as discussed above.

front back

central

temporal

Fig. 5. Brain localization of primary movement control

2.1.1 Motor Imagery (MI) towards robot navigation
As mentioned above, motor imagery is an intuitive cognitive task for most, although it may
require practice. Control of robot navigation with this method can thus be easily mapped to

Advances in Robot Navigation

172

limb movements. For example (Fig. 6), to steer a robot to the right, the user can imagine or
mentally feel (also known as kinaesthetic motor imagery) a movement of the right hand (e.g.,
hand closing, wrist extension, etc.). The example below shows only three movements. Other
motor imagery tasks can be added to increase the number of robot movement classes (i.e.,
choices). For example, imagination of tongue movement is often used as an additional class.

right hand

left hand

foot

movement
imagination

turn right

turn left

forward

Fig. 6. Possible use of motor imagery for robot navigation control

Notice from Fig. 5 above that using separate movements of the right and left feet should not
be expected to yield two separate classes with EEG as the brain areas that control both feet
are next to each other and deep in the brain, which means the same electrode (i.e., Cz in Fig.
3) will pick up signals from both feet.
Motor imagery will produce features that can be used for classification. A common feature
used with MI is band power, in which case the power of the (previously pre-processed)
signal in specific frequency bands (notably alpha: 8-12Hz and beta: 13-30Hz) yields good
classification of right vs. left movements. A similar feature commonly used with MI is event-
related desynchronization and synchronization (ERD/ERS) which compares the energy of
the signal in specific bands with respect to an idle state (i.e., a mentally relaxed period). In
either case the most appropriate electrodes are usually the ones over or near the relevant
primary motor cortex areas.
Motor imagery can be used with any timing protocol. It can be used by itself in a cue based
approach, in a self-paced system, or used in combination with the P300 approach discussed
below (as in Salvaris & Sepulveda, 2010), although the latter has not been applied to robot
navigation.
One of the limitations of MI-based BCIs for robot control is that usually a few seconds of EEG
data are needed for each control decision and for the motor cortex to fully return to a neutral
state. Typically this will give an information transfer rate (from user to robot) of <10 bits/min.
MI approaches similar to the one discussed above have been applied to robot navigation
(e.g., Millan et al., 2004).

2.2 P300
This approach falls under the event-related potential category. In this method, the user is
presented with a visual array of choices (left panel, Fig. 7, based on Farwell & Donchin,

Brain-actuated Control of Robot Navigation

173

1988), although sound and touch can be used as the stimulus as well. Typically each row
and column will flash for a short period (about 100ms) in a random sequence on a computer
screen. When the row or column containing the desired choice flashes, the user adds 1 to a
mental counter to signal that a target has flashed. For example, if the user wants to type the
letter P using a BCI, she/he will count every time a row/column containing it flashes. On
average, when a target row/column flashes, a strong signal is seen (especially in the centro-
parietal electrodes, Fig. 3) which will peak at about 300ms after the desired object flashed,
hence the P300 name. Until recently it was assumed that eye gaze did not significantly
affect P300 responses, but there is now evidence suggesting that this is not the case (Brunner
et al., 2010).
The right panel in Fig. 7 illustrates signal differences between target, non-target and near-
target events). In most cases, the target P300 peak is only easily distinguishable from non-
target events if an average of several trials is performed, and often up to ten target trial
responses are needed to have a true positive rate of about 90%.

Fig. 7. Typical P300-based stimulus array and EEG responses (modified from Citi et al., 2004)

2.2.1 P300 towards robot navigation
The array in Fig. 7 is used for communication BCIs (e.g., as a speller) and does not directly
lend itself to use in robot navigation control. However, if each object on the array represents a
command to a robot, the user can employ the BCI to give the robot a sequence of commands
which may include variables such as direction, timing schedule, proportional control
parameters (e.g. , for angular displacement, speed), etc. But, one of the problems with this
interface is that the user must wait for all rows and columns to flash before a new flashing
cycle begins. With current standard timing parameters, this would take several seconds per
trial, per chosen letter. If, as mentioned above, several trials are used to increase true positive
recognition rates, choosing one letter can take more than 10s, which is not suitable in many
robot navigation cases. To minimize this problem, an array with less elements can be used,
although this will reduce the difference between target and non-target events as this difference
increases when target events are much less probable than non-target ones.
An alternative to the P300 standard array and one that is suitable for robot navigation (at
least in a 4-direction 2D scenario) is shown in Fig. 8. The figure is based on a system

Advances in Robot Navigation

174

designed for mouse control (Citi et al., 2004), but it can be easily employed for robot
navigation. For example, the four flashing objects can represent left/right/back/forward.
One limitation that would still exist, however, is that the user must have full attention on the
screen showing the 4-object array. In this case, the user would count every time the desired
direction flashes, as a result of which the robot would turn in the desired direction.

Fig. 8. P300-based interface for basic robot steering

P300 approaches similar to the one shown in Fig. 8 have been applied to robot navigation
recently. Also, Rebsamen et al. (2007) produced a P300 system in which the objects on the
monitor are pictures of the landmarks to which the robot (a wheelchair in this case) must go.
In that system, the user chooses the end point and the robot uses autonomous navigation to
get to it.
The information transfer rate of a P300-based BCI with four classes will yield a higher
information transfer rate than with motor imagery, possibly >20bits/minute, but, as
mentioned above, it has the disadvantage that it demands the user’s full attention on the
visual interface.

2.3 Steady-State Visual Evoked Potentials (SSVEP)
The P300 method above is similar to the SSVEP approach in that the user is presented with
an array containing flashing objects from which the user chooses one. However, in the
SSVEP method each object flashes at a different frequency, usually between 6Hz and about
35Hz (Gao et al., 2003). When the user fixates his/her gaze on a flashing object, that object’s
flashing frequency will be seen as a strong frequency-domain element in the EEG recorded
from areas above the visual cortex (occipital areas, Fig. 3). For example (Fig. 9), if the user is
interested in number 7 on a number array, fixating his/her gaze on that object (which is this
example is flashing at 8Hz) will produce the power spectrum shown on the right panel in
Fig. 9, which is an average of five trials (i.e., target flashing cycles).
Notice that the user must have eye gaze control for this approach to work, but, as mentioned
above, this ability is retained by the vast majority of potential BCI users, both disabled and
able-bodied.

2.3.1 SSVEP towards robot navigation
Using an SSVEP-based BCI for robot navigation control is similar to the case with the P300
method, i.e., a suitable array of flashing objects can be designed specifically for robot
navigation.

Brain-actuated Control of Robot Navigation

175

SSVEP-based BCIs have been used for robot navigation control (e.g., Ortner et al., 2010). The
information transfer rate will yield a higher information transfer rate than with motor
imagery, >40bits/minute, but, as is the case with the P300 approach described above, it has
the disadvantage that it demands the user’s full attention on the visual interface.

Fig. 9. SSVEP BCI. Left: example of a multi-object array in which the object of interest
(number 7) flashes at 8Hz. Right: power spectrum of the recorded EEG when the user
fixates his/her gaze on number 7 in the interface (notice the strong harmonic components)

2.4 Choosing the most suitable BCI type
The best BCI type will depend on the scenario to be tackled. For example, for robot
navigation in an environment for which landmarks are stored in its memory, either the P300
or the SSVEP approaches can be used only when necessary by allowing the user to choose
the desired landmark and letting the robot use its autonomous system to get to the
landmark. If, on the other hand, the environment is novel or the robot encounters
unexpected obstacles, motor imagery can be used for direct control of robot steering. All
approaches can be used in combination as well, e.g., using motor imagery for initial
navigation while the robot saves information about the environment and then later using
P300 or SSVEP to perform landmark-based navigation (as in Bell et al. 2010). Recently,
wheelchair navigation control was done using a BCI that relied on the so called error
potentials (an involuntary brain response to undesired events; not discussed here) to allow
the robot to determine which of the routes it found was suitable to the user (Perrin et al.,
2010).

3. Future challenges
In order for BCIs to be routinely used in robot navigation control, a number of factors will
need to be improved. Amongst other, the following will need to receive high priority:
• Recording equipment: while systems based on dry electrodes exist, they do not yet give as

reliable a signal as standard wet EEG electrodes. The latter require the use of electrode
gel or water. Systems that require the use of electrode gel are the most reliable ones,
but they require about 1min per electrode to set up, and the gel needs to be changed
after a few hours. Water-based systems are quicker to set up, but at present they

Advances in Robot Navigation

176

provide less reliable signals. As dry sensor technology improves, it is likely that such
devices will be preferred, especially by users outside the research community.

• Degrees of freedom: The number of classes available in a BCI depends on which type of
BCI is used. P300 BCIs can provide a large number of classes (>40 in principle,
although clutter will decrease true positive recognition performance), but this will come
at the expense of longer processing times for each individual choice. The same applies
to SSVEP-based interfaces. MI-based BCIs can provide only a small number of classes
at the moment, usually 4 or less if more than 90% true positive rate is desired (although
up to 20 classes have been successfully classified in a small but well controlled study,
Lakany & Conway, 2005).

• Proportional control: BCI control of proportional variables such as robot angular
displacement and speed has received little attention so far. This is an important area of
research for future use of BCI-based robot navigation.

• Intuitiveness and user freedom: The most intuitive approach is motor imagery, but more
classes would be needed to make this approach more useful in robot navigation control.
P300 and SSVEP approaches require full attention on the visual interface and thus give
no freedom to the user. Other cognitive tasks have been used in off-line BCI studies
(e.g., Sepulveda et al., 2007), but these should be investigated further before they are
used for robot navigation.

• Speed issues: If information transfer rate alone is the main concern, SSVEP would be the
best choice, followed by P300, but the required focus on the interface will remain a
major problem for the future. It will thus be crucial to find fast approaches that rely on
motor imagery or other cognitive tasks that are intuitive and give the user freedom
from the interface.

4. Conclusions
BCIs have come of age in many ways and are now being used outside controlled laboratory
settings. However, a number of limitations in the current state-of-the-art will need to be
addressed in order to make this technology more reliable, low cost, user friendly and robust
enough to be used for routine robot navigation control. Until then, BCIs will remain largely
an experimental tool in robot navigation, or as an additional tool within a multi-modality
approach. Nonetheless, brain-actuated or brain-assisted robot navigation control will bring
benefits to the field, especially in difficult scenarios in which the robot cannot successfully
perform all functions without human assistance, such as in dangerous areas where sensors
or algorithms may fail. In such cases BCI intervention will be crucial until a time when
robots are intelligent and robust enough to navigate in any environment. But, even then,
human control of the robot will probably still be desirable for overriding robot decisions, or
merely for the benefit of the human operator. In another case, when the robot is a
wheelchair, frequent user interaction will take place, in which case BCIs are essential for at
least some form of brain-actuated navigation control.

5. References
Bell, C.; Sdhenoy, P.; Chalodhorn, R. & Rao, R.P.N. (2008). Control of a humanoid robot by

a noninvasive brain–computer interface in humans. J. Neural Eng., Vol. 5, 2008, pp.
214-220. doi:10.1088/1741-2560/5/2/012

Brain-actuated Control of Robot Navigation

177

Belliveau, J.W. ; Kennedy, D.N.; McKinstry, R.C.; Buchbinder, B.R.; Weisskoff, R.M.; Cohen,
M.S. ; Vevea, J.M.; Brady, T.J. & Rosen, B.R. (1991). Functional mapping of the
human visual cortex by magnetic resonance imaging. Science, Vol. 254, pp. 716–719.

Brunner, P.; Joshi, S.; Briskin, S.; Wolpaw, J.R.; Bischol, H. & Schalk, G. (2010). Does the
'P300' speller depend on eye gaze? J. Neural Eng., 7 056013 doi: 10.1088/1741-
2560/7/5/056013.

Citi, L.; Poli, R.; Cinel, C. & Sepulveda, F. (2008). P300-based BCI Mouse with Genetically-
Optimised Analogue Control. IEEE Trans. Neur. Systems and Rehab. Eng., Vol. 16,
No. 1, pp. 51 - 61.

Citi, L.; Poli, R.; Cinel, C. & Sepulveda, F. (2004). Feature Selection and Classification in
Brain Computer Interfaces by a Genetic Algorithm. Proceedings of the Genetic and
Evolutionary Computation Conference - GECCO 2004, Seatle, 10pp.

Cohen, D. (1972). Magnetoencephalography: detection of the brain's electrical activity with a
superconducting magnetometer. Science, Vol. 175, pp. 664-66.

Cooper, R.; Osselton, J.W. & Shaw, J.C. (1969). EEG Technology, 2nd ed. Butterworths,
London.

Farwell, L. & Donchin, E. (1988). Talking off the top of your head: toward a mental prothesis
utilizing event-related brain potentials. Electroenceph Clin Neurophysiol, Vol. 70, pp.
510–523.

Gao, X.; Xu, D.; Cheng, M. & and Gao, S. (2003). A BCI-based environmental controller for
the motion-disabled. IEEE Trans.Neural Syst. Rehabil. Eng., Vol. 11, pp. 137–40.

Hamalainen, M.; Hari, R. ; Ilmoniemi, R.J.; Knuutila, J. & Lounasmaa, O.V. (1993).
Magnetoencphalography- Theory, instrumentation, and applications to
noninvasive studies of the working human brain. Reviews of Modern Physics, Vol. 65,
pp. 413–497.

Hochberg, L.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner,
A.; Chen, D.; Penn, R.D. & Donoghue, J.P. (2006). Neuronal ensemble control of
prosthetic devices by a human with tetraplegia. Nature, Vol. 442, pp. 164–171.

Lakany, H. & Conway, B. (2005). Classification of Wrist Movements using EEG-based
Wavelets Features. 27th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Shanghai, 17-18 Jan. 2006, pp. 5404 – 5407.

Lebedev, M.A. & Nicolelis, M.A. (2006). Brain-machine interfaces: past, present and future.
Trends in neurosciences, Vol. 29, No. 9, pp. 536–46.

Lotte, F.; Congedo, M.; L’ecuyer, A.; Lamarche, F. & Arnaldi, B. (2007). A review of
classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng.,
Vol. 4 (2007) doi:10.1088/1741-2560/4/2/R01.

Millan, J. del R.; Renkens, F.; Mouriño, J. & Gerstner, W. (2004). Non-Invasive Brain-
Actuated Control of a Mobile Robot by Human EEG. IEEE Trans. on Biomedical
Engineering, Vol. 51, pp. 1026–1033.

Muehlemann, T.; Haensse, D. & Wolf, M. (2008). Wireless miniaturized in-vivo near infrared
imaging. Optics Express, Vol. 16, No. 14, pp. 10323–30.

Niedermeyer, E. & da Silva, F.L. (Eds.) (2004). Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields (5th Ed.). Lippincot Williams & Wilkins, ISBN
9780781751261.

Advances in Robot Navigation

178

Ortner, R.; Guger, C.; Prueckl, R.; Grunbacher, E. & Edlinger, G. (2010). SSVEP Based Brain-
Computer Interface for Robot Control. Lecture Notes in Computer Science, Volume
6180/2010, 85-90, DOI: 10.1007/978-3-642-14100-3_14.

Perrin, X.; Chavarriaga, R.; Colas, F.; Siegwart, R. & Millan, J. del R. (2010). Brain-coupled
interaction for semi-autonomous navigation of an assistive robot.

Raichle, M.E. & Mintun, M.A. (2006). Brain Work and Brain Imaging. Annual Review of
Neuroscience, Vol. 29, pp. 449–76.

Rebsamen, B.; Burdet, E.; Cuntai Guan; Chee Leong Teo; Qiang Zeng; Ang, M. &
Laugier, C. (2007). Controlling a wheelchair using a BCI with low information
transfer rate. IEEE 10th International Conference on Rehabilitation Robotics,
ICORR 2007, Noordwijk, Netherlands, 13-15 June 2007, pp. 1003 – 1008.

Rugg, M.D, & Coles, M.H. (1995). Electrophysiology of mind: event-related brain potentials and
cognition. Oxford University Press – Oxford.

Salvaris, M. & Sepulveda, F. (2010). Classification effects of real and imaginary movement
selective attention tasks on a P300-based brain--computer interface. Journal of
Neural Engineering, 7 056004, doi: 10.1088/1741-2560/7/5/056004.

Sepulveda, F.; Dyson, M.; Gan, J.Q. &; Tsui, C.S.L. (2007). A Comparison of Mental Task
Combinations for Asynchronous EEG-Based BCIs. Proceedings of the 29th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
EMBC07, Lyon, August 22-26, pp. 5055 – 5058.

Swartz, B.E. & Goldensohn, E.S. (1998). Timeline of the history of EEG and associated fields.
Electroencephalography and clinical Neurophysiology, Vol. 106, No. 2, pp. 173-176.

Ter-Pogossian, M.M.; Phelps, M.E.; Hoffman, E.J. & Mullani, N.A. (1975). A positron-
emission transaxial tomograph for nuclear imaging (PET). Radiology, Vol. 114, No.
1, pp. 89–98.

Townsend, G.; Graimann, B. & Pfurtscheller, G. (2004). Continuous EEG classification
during motor imagery—simulation of an asynchronous BCI. IEEE Trans. Neural
Syst. Rehabil. Eng., Vol. 12, No. 2, pp. 258– 265.

Tsui, C.S.L.; Vuckovic, A.; Palaniappan, R.; Sepulveda, F. & Gan, J.Q. (2006). Narrow band
spectral analysis for movement onset detection in asynchronous BCI. 3rd
International Workshop on Brain-Computer Interfaces, Graz, Austria, 2006, pp. 30-31.

Vidal, J.J. (1973). Toward direct brain-computer communication. Annual Review of Biophysics
and Bioengineering, Vol. 2, pp. 157–80.

Vigario, R.N. (1997). Extraction of ocular artefacts from EEG using independent component
analysis. Electroencephalography and Clinical Neurophysiology, Vol. 103, No. 3, pp.
395-404.

Wolf, M.; Ferrari, M. & Quaresima, V. (2007). Progress of near-infrared spectroscopy and
topography for brain and muscle clinical applications. Journal of Biomedical Optics,
Vol. 12, No. 6, 062104 doi:10.1117/1.2804899.

Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G. & Vaughan, T.M. (2002).
Brain-computer interfaces for communication and control. Clin Neurophysiol, Vol.
113, No. 6, pp 767–791.

9

A Distributed Mobile Robot Navigation by
 Snake Coordinated Vision Sensors

Yongqiang Cheng, Ping Jiang and Yim Fun Hu
University of Bradford

UK

1. Introduction
To date research in intelligent mobile agent have mainly focused on the development of a
large and smart “brain” to enable robot autonomy (Arkin 2000; Murphy 2000). They are,
however, facing a bottleneck of complexity due to the dynamics of the unstructured
environments. Steering away from this smart brain approach, this chapter investigates the
use of low level intelligence, such as insect eyes, and combines them to produce highly
intelligent functions for autonomous robotic control by exploiting the creativity and
diversity of insect eyes with small nervous systems (Land & Nilsson 2002) that mimics a
mosaic eye.
A mosaic eye transmits information through the retina to the insect's brain where they are
integrated to form a usable picture of the insect's environment in order to co-ordinate their
activities in response to any changes in the environment. Applying this concept to robotic
control, the mosaic eye is used to assist a robot to find the shortest and safest path to reach
its final destination. This is achieved through path planning in a dynamic environment and
trajectory generation and control under robot non-holonomic constraints with control input
saturations, subject to pre-defined criteria or constraints such as time and energy. By
utilising pervasive intelligence (Snoonian 2003) distributed in the environment, robots can
still maintain a high degree of mobility while utilising little computational functions and
power. However, navigation techniques assisted by an environment with distributed
information intelligence are different from conventional ones that rely on centralised
intelligence implemented in the robot itself. These distributed navigation techniques need to
be reconsidered and developed.
The contour snake model (Kass et al. 1988) is broadly used and plays an important role in
computer vision for image segmentation and contour tracking. Similar concepts have been
applied to path planning with centralised robot navigation control using onboard sensors,
such as elastic bands and bubbles (Quinlan & Khatib 1993; Quinlan 1994), connected splines
(Mclean 1996) and redundant manipulators (Mclean & Cameron 1993; Cameron 1998). They
all require a global planner to gather and process information. On the other hand, most of
the existing work for robot navigation in an environment with small scale sensor networks
considers only the high level path or discrete event planning(Sinopoli et al. 2003; Li & Rus
2005), ignoring issues related to low level trajectory planning and motion control due to
sensor communication delay, timing skew, and discrete decision making. Low level

Advances in Robot Navigation

180

functions are usually given to robots to conduct local control relying on on-board sensors.
Due to the limited information provided by local sensors, tracking speed and accuracy have
to be compromised.

Mosaic eyes

Eye cover area

Snake control points

Robot

Fig. 1. Mosaic eye inspired intelligent environment

Building upon the WIreless Mosaic Eyes towards autonomous ambient assistant living for
the ageing society (WiME) system(Website 2006; Cheng et al. 2008), this chapter aims at
creating an intelligent environment with distributed visions for the navigation of
unintelligence mobile robots in an indoor environment. The mosaic eye intelligent
environment is illustrated in Fig. 1. It resembles that of insect eyes connected by neurons.
The structure is formed using a set of distributed wireless vision sensors (mini-cameras,
mosaic eye) mounted on a physical structure. Each vision sensor represents an eye in the
mosaic eye structure. Neighbouring eyes are connected by wireless eye communications.
Each eye covers a certain area of the workspace and holds a segment of the whole path.
Thus, by considering a distributed sensor network, robots can be guided by a larger set of
information concerning its surrounding environment to enable better predictive capability
to be achieved. Predefined projection relations are calibrated in advance after mounting the
mosaic eye in the structural environment. Once the start positions and target positions of a
path are specified by an operator and written into the system profile files of all eyes, each
eye will search its profile file and exchanges information with its neighbours for its role in
the routing table, and generates a segment of the global distributed reference snake path as
required. A mobile robot controlled by the mosaic eye only equips with wireless receiver
and actuator without intelligent processing capability on-board. If an eye detects an
abnormal situation within its coverage area, it will send a signal to inform its neighbouring
eyes of this situation for their considerations in the path planning process. If an area is only
covered by one eye, a robot is controlled only by this node. When a robot enters into an
overlapping area covered by two neighbouring eyes, one of them will be elected to be the
dominant eye to control the robot through negotiation between the two eyes based on some
pre-defined criteria, for example, whether the robot is observed in the central or edge area of
the eye coverage.
The rest of the chapter is organised as follows. Section two states the problem and gives a
general idea of mosaic eye controlled snake based robot navigation; Section three
summarises the generation of the Reference snake (R-snake) with curvature constraints; The

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

181

Accompany snake (A-snake) spatial position planning algorithm and time series trajectory
based on R-snake are discussed in Section four and five respectively; Section six focuses on
the control dedicated protocol that connects all distributed vision sensors; Experiment
results and conclusions are given in section seven and section eight respectively.

2. Problem statement and overview of a snake based robot navigation by
mosaic eye
In general, a snake is defined as a series of control points connected one by one to represent
a collision free path. At initialisation, the start and target (or the end) control points of the
snake will be input by an operator manually. Other control points between the start and
target points are generated by a global search algorithm, such as Dijkstra’s search algorithm
(Cormen et al. 2001). The snake shape is dynamically deformed by two kinds of forces
exerted on all the control points (Kass, Witkin et al. 1988). Internal forces are forces exerted
by other control points within the snake body, such as the attraction force used to reduce the
distance between two control points or the bending force used to reduce the sharpness of
the snake body. External forces are actions generated from the environment rather than the
control points. For example, the repulsive force from obstacles is an external force. The
operation for deforming a snake body only requires interactions between adjacent joints
(hereafter referred to as control points in this chapter) and reactions to surrounding
obstacles in a certain range, e.g. one segment will move according to the locally observed
obstacles approaching to it and this movement will affect its neighbouring segments, as a
result, the whole snake will deform into a new optimised shape to avoid the obstacles.
Therefore, it is suitable to apply the snake algorithm in distributed environment, such as
distributed wireless sensor network, to plan a navigation path using only local information
exchange between adjacent control points to alert a navigation robot in advance of any
obstacles ahead of its navigation path with global effect.
The snake algorithm proposed in this chapter is designed for path planning as well as
trajectory generating and robot motion control in an architectural environment installed
with distributed vision sensors compliant to the non-holonomic constraints and control
saturations. Each distributed vision sensor will maintain one part of the global path
dynamically. Local environment information will be exchanged by communications
between adjacent vision sensors. By negotiation, one of the vision sensors will plan the local
trajectory and control the robot. This is rather different from previous applications where
the generation of the snake path relies on centralised processing and global information. The
snake will evolve and adapt dynamically to the local environment in an elastic manner,
forming a collision free and constraint compliant reference global path, i.e. the R-snake path,
for a navigation robot.
While the R-snake provides a reference path for a robot to travel, controlling the robot to
follow the path is another difficult task. It involves trajectory generation and motion control
subject to non-holonomic constraints and saturated torques, slippage speed etc. A proposed
approach to take into account such constraints in this chapter is to develop a distributed
control scheme, providing the environment with the ability to perceive information from a
large area using distributed sensors to maintain the robot navigation performance up to its
maximum driving speed limit. Therefore, an A-snake based on the R-snake is introduced to
cope with all these constraints as well as to plan the shortest travel time trajectory. The A-
snake is further divided into two phases: 1) A-snake spatial position planning; and 2) A-

Advances in Robot Navigation

182

snake time series trajectory generation and motion control. Phase one only deals with path
geometry features without considering the time factor. The primary goal is to generate an
associated path that converges to the R-snake path and at the same time complies with the
dynamic and non-holonomic constraints, and control saturation. Phase two selects
predictive control (Maciejowski 2001) to optimise the forthcoming tracking. The model
based prediction also alleviates effects due to the slow feedback from vision sensors. A
rolling window optimisation (Xi & Zhang 2002) is carried out to generate the optimum
velocity profile of the mobile robot up to a certain distance from its current position.

3. Planning a R-snake under curvature constraints

Let ip be a Euclidian coordinate representing the Cartesian configuration (,)cp cp
i ix y in

space 2R , where i Z∈ and Z is the set of integers. For a positive integer n, { }0 1, ,..., np p p
denotes a sequence of configurations in space 2R . A snake is created by connecting adjacent
coordinates sequentially. Each coordinate, ip , represents a control point, which can be
moved by exerted internal and external forces from obstacles and adjacent control points.
An obstacle iq is defined as a circle with a radius od , centred at (,)o o

i ix y . The total number
of obstacles in a physical space covered by a vision sensor node is m. Then the objective of
the snake algorithm is to adjust the n control points { }0 1, ,..., np p p dynamically for keeping
the robot within a safe distance away from m obstacles 1 ,..., mq q , satisfying the given
curvature constraint and maintaining the shortest path length from its start point to the goal
point via intermediate control points.
As discussed above, the safe path for a robot is the R-snake path maintained by the
distributed mosaic eye. Define the internal and external energy functions in space 2R as the
energy caused by attractive actions from adjacent control points and repulsive actions from
obstacles respectively, then the total energy, snakeE , of the snake can be expressed as(Quinlan
& Khatib 1993),

 intsnake ernal externalE E E= + (1)

where the internal energy, int ernalE , is only concerned with the intrinsic actions of the snake,
such as its shape and length while the external energy, externalE , is concerned with the effect
from the environment, such as obstacles.
To minimize the energy exerted on a snake, ip should move along the negative energy
gradient direction so that the total energy of the snake decreases. The total force, snakeF ,
exerted on the snake, in terms of int ernalE and externalE can be expressed as:

int

int
int() ()

snake ernal external

ernal external
ext

F F F

E E

= +

= −∇ + −∇η η
 (2)

where, intη and extη are positive coefficients representing the force strength, ∇ is the
gradient operator.
In Eq. (1), different forces serve different purposes. The aim of path planning is to find an
obstacle free and the shortest length path that satisfies the curvature constraints. Thus, the
elastic contraction energy and the curvature bending energy are considered as internal

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

183

energy and the obstacles repulsive energy is considered as external energy. Let of be the
obstacle force, ef be the elastic force and curvaturef be the curvature constraints force. By
adding all internal and external forces, one gets the resultant force r

if on a control point i
where , ,

r r r
i i x i yf f f= + and

 , , , ,

, , , ,

r o e curvature
i x i x i x i x

r o e curvature
i y i y i y i y

f f f f

f f f f

= + +

= + +
 (3)

Readers can refer to (Cheng, Hu et al. 2008) for more detailed descriptions on obstacle,
elastic and curvature forces. A three-state R-snake for guaranteed curvature constraints can
also be found in (Cheng, Hu et al. 2008).

4. A-snake spatial position planning
Feedback control of distributed vision sensors is adopted for the dynamic generation of an
A-snake spatial position. The A-snake extends from the robot’s current position and
orientation to approach the R-snake path by taking into account the limited steering torque
under the non-holonomic constraints. This will correct the deviation of the robot’s position
from the reference path. A key issue in this phase is whether the A-snake can converge to
the R-snake path without violating the steering torque and driving force limitations.
Fig. 2 denotes a coordinate system with the doted circles representing the R-snake control
points and the square box indicating the robot. dθ is the desired direction which the robot
should follow at each iterative step; θ is the robot’s current direction; i

and j

 are the unit

tangential vector and normal vector of the robot’s local coordinates along its direction of
movement respectively; 0i

is the tangential vector on the nearest reference control point; r

is the robot’s location vector, 0r
 is the vector of the nearest reference control point of the

snake; eθ is the direction error between the desired direction and the robot’s current
direction; ξ is a positive coefficient. The A-snake will always start from the robot current
position.

x

y

o

dθ

r�

0r
�

j
� i

�
θ

er
�

0i
�

eri ��
⋅+ξ0

eθ
R-snake

Fig. 2. Coordinates definitions

Advances in Robot Navigation

184

From (Cheng et al. 2010), a proper desired direction dθ which can lead the A-snake to
converge to the R-snake is,

 0 arctan j
d

i

r

r

Δ
= + Δ

θ θ (4)

where,

1

1i

ej

r
r r
Δ =

Δ = ⋅

 ξ (5)

1ξ is the positive gain along the vector er
 and,

0() ,

1
()

1

e e

e

r sign r r r

, robot is on the left side of the R - snake
sign r

, robot is on the right side of the R - snake

= ⋅ −

−
=

 (6)

Eq. (4) gives the desired direction for the A-snake to follow so as to converge to the R-
snake. In practice, the robot’s moving direction cannot always reach the desired value due
to the non-holonomic constraints (maximum steering torque) and dynamic constraints
(maximum driving force and frictions). The maximum robot velocity maxv should be
obtained as,

 ()max max maxmin , fv v v= τ (7)

where,

2 max
max

2 maxmax
max

/

()
| | | |f

v
J k s

gN
v

M k k

=
∂ ∂

= =

τ
τ

μμ
 (8)

M and J are the mass and the inertia of the robot respectively; g is the Gravity factor; μ
is the friction coefficient; N is the normal force with the ground; k is the trajectory
curvature; s is the arc length along the snake and the saturated torque of a robot maxτ .
Thus, the control points of A-snake can grow iteratively according to Eq. (9) ,

' cos() sin()
' sin() cos()

x
s
y
s

x x
ds

y y

∂
∂
∂
∂

 −
= ⋅ +

θ θ
θ θ

 (9)

where,
x
y

 and
x
y

′
 ′

are the current and newly calculated control point positions

respectively, and ,

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

185

cos()

sin()

x
ss

y
s s

ds

ds

∂∂
∂∂

∂ ∂
∂ ∂

 =

θ

θ
 (10)

5. A-snake time series trajectory generation and motion control
Although the A-snake spatial position provides a reference path for a robot to travel, due to
the limited field of view of the onboard sensors, the tracking speed has to compromise with
safety. In fact, the far sight provided by a large scale distributed sensor network is
developing the foundation and potential for the optimal control of vehicles. A vehicle is
envisaged to be able to respond to changes on its way ahead and be driven with optimal
time or energy in a dynamic environment. Distributed control to achieve high performance
tracking up to the driving limit becomes a promising technique.
In (Cheng, Jiang et al. 2010), a predictive control scheme combining trajectory planning and
dynamic control is developed to achieve optimal time tracking, taking into account the
future path that needs to be tracked, subject to non-holonomic constraints, robot kinematic
and dynamic constraints, the maximum velocity without slippage, driving force and
steering torque saturation.

x

y

o

r�

Rolling window
A-snake

j
�

i
�

Fig. 3. Robot, A-snake and rolling window

Define a rolling window with length l along a snake as shown in Fig. 3, which could be
distributed in several wireless sensors and evolved by individual vision sensors
asynchronously. The optimal control for a robot can be achieved by optimizing,

0, ,

min() min(1 / ())
d d

l

s A
F F

Γ v s ds ∈= τ τ
 (11)

with boundary conditions: 0(0) , () 0rv v v l= = ; subject to

max

max

max

() ,

,

,

friction

d d

f N for non slippage

F F for limited driving force

for limitedsteeringtorque

 < −
 <

<

μ

τ τ

 (12)

Advances in Robot Navigation

186

where A is the A-snake; ()v s is the velocity profile of the robot; 0rv is the sampled velocity
of the robot at any instant; f is the friction of tires with coefficient μ and the normal force
N ; dF and τ are the driving force and steering torque of the robot with upper bounds of

max
dF and maxτ respectively. The objective equation Eq.(11) for predictive control is to

minimise the robot’s travelling time Γ which is also called a servo period along the snake
from its current location until the end of the l -window. However the robot should be able
to stop at the end such that () 0v l = in order to respond to the worst possible circumstances
which are not covered by the current rolling window.
In order to optimise Eq.(11), the area under the velocity profile ()v s will be maximised so
that the area of its reciprocal can be minimised according to the maximum uniform velocity
obtained in Eq.(7), which is the maximum allowable velocity for the robot to travel along the
A-snake without any effort for acceleration or deceleration, this section will obtain the
optimal force and torque approaching this maximum allowable velocity as much as
possible, considering the dynamic constraints and satisfying the boundary conditions.
In order to satisfy the two boundary conditions in Eq. (11), one needs to design optimal
control inputs such that the robot can safely travel a path and is able to stop at the end of the
rolling window, considering the dynamic constraints. A sharp bend on the way requires the
robot to decelerate in advance due to the limited driving force and steering torque. The
optimisation of Eq. (11) can be solved by maximising the area of ()v s , which can be
achieved by squeezing the velocity profile from the two ends towards the middle using the
maximum force and torque.
The maximum allowable positive acceleration can be obtained as

max max

2
max

max

max max max

/

| |

min(,)

d
F

F

a F M

v k
a

J k k s

a a a

+

+

+ + +

=

∂= −
∂

=

τ

τ

τ (13)

If maxv v≤ , then max 0a + ≥ , this implies that a positive acceleration exists. Therefore, the
acceleration process has to be bounded by maxv .
Similarly, the maximum allowed negative acceleration can be obtained as

max max

2
max

max

max max max

/

| |

max(,)

d
F

F

a F M

v k
a

J k k s

a a a

−

−

− − −

= −

∂= − −
∂

=

τ

τ

τ (14)

A negative acceleration exists if the velocity is bounded by maxv .
The squeezing process is approximated by segments of uniform acceleration/deceleration
movements from two boundary velocities with an incremental step δ :
For acceleration at s+ , forward planning is carried out

 2 2
max() () 2v s v s+ + + + += − +δ α δ (15)

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

187

For deceleration at s− , backward planning is carried out

 2 2
max() () 2v s v s− − − − −= + +δ α δ (16)

During the squeezing process, it is needed to ensure that the values of 2()v s+ + and 2()v s− − in
Eq. (15) and Eq. (16) do not exceed maxv for the segment in between s+ and s− . If this
happens at any point #s , the velocity profile can be squeezed for the segment from ()v s+ +
to # max #() ()v s v s− = . The process continues until the acceleration segment and the
deceleration segment encounter each other. The velocity profile will be obtained by
repeating this squeezing process for the remaining segments. Working in this way, the area
of ()v s is maximised and therefore the travelling time is minimised. The generated velocity
profile informs the robot when to accelerate or decelerate in advance in order to safely track
the dynamic snake in a predictive l -window. The algorithm is summarised as below and is
shown in Fig. 4:

 v

s
0

++ vs , −− vs ,

l

+a
+a

−a
−a 0=a

maxv

Fig. 4. Rolling window optimisation for trajectory generation (assume 0 0rv =)

1. According to the snake, obtain the maximum allowable velocities maxv from Eq.(7) in
rolling window l ;

2. Initialise the squeezing process with the following boundary conditions: initial state
00, (0) rs v v+ += = and terminate state , () 0s l v l− −= = ;

3. Plan/increase v+ and v− in parallel: if v v+ −≤ , increase v+ by Eq. (15) and s s+ += + δ ;
If v v+ −> , increase v− by Eq. (16) and s s− −= − δ ;

4. If s s+ −= and there is any unplanned segment, set s+ and s− to be the unplanned
segment and go to 3); if the maximum allowable velocity is found at #s between

~s s+ − , create two new segments, #~ s s+ and # ~s s− then go to 3), otherwise go to 5);
5. Calculate the driving force and steering torque for 0s = as control signals for time t :

max

2
max 0

() (0)

() (0) (0) (0)

d

s

F t Ma
k

t Ja k Jv
s =

=
∂= +
∂

τ
 (17)

where max maxa a += or maxa − obtained in step 3);

Advances in Robot Navigation

188

6. Send ()dF t and ()tτ to the robot for control and shift the rolling window one step
forward;

7. For every servo period Γ , ()F t nΓ+ and ()t nΓ+τ will be continuously generated from
the obtained velocity profile to control the vehicle until a new profile is received from a
vision sensor;

8. For every image sampling period, the mosaic eye updates the A-snake and then repeats
(1).

6. Communication empowered distributed mobile robot navigation
The purpose of this section is to design a control dedicated communication protocol
connecting all vision sensors and mobile robot thus enabling the mobile robot navigation
functionality in the intelligent environment. Meanwhile the protocol will establish a reliable
and precise data exchange among the intelligent environment in order to support the path
planning and motion control.

6.1 Overview

Vision sensor Vision sensor

Mobile robot

Remote console

Other
sensors

Other
sensors

O
n

re
qu

es
t

4 4

1

2

3

Fig. 5. Communication protocols overview

Fig. 5 is an outline of all the communication parties and the links between them. As the key
intelligent component, vision sensors are involved in all communications, either as a sender
or as a receiver. Except the ‘on request’ commands originated by an operator in the remote
console and the subsequent responses to these requests, commands are invoked periodically
in the following sequence:
1. Exchanging of control points and/or obstacles: Control points coordinates are used to

calculate internal forces to deform a snake. Snake segments in two neighbouring vision
sensors can interact with each other by adjusting their positions according to the forces
generated by the received control points coordinates from other vision sensors.
Obstacles observed by one vision sensor will be sent to its neighbouring sensors if
localisation fusion is required. After snake deformation, the vision sensor will send the
planned control points to its neighbouring sensors;

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

189

2. Control token negotiation: At a specific time, one robot should be controlled by only
one vision sensor. All vision sensors which have the robot in view will compete for the
token. The vision sensor with a control token will become the dominant vision sensor
and broadcast its ownership of the token periodically or initiate a token handover
procedure if required;

3. Mobile robot control: The dominant vision sensor sends control to the robot; the one
without a control token will skip this step;

4. Monitoring purpose reporting: If a vision sensor is marked by an operator to send
monitoring related information, such as control points, it will send out the
corresponding information to the remote console.

6.2 Protocol stack structure
The proposed control protocol is built on top of the IEEE 802.15.4 protocol which has the
following data structure (Zhang 2008),

typedef struct __TOS_Msg
{
 __u8 length; // data length of payload
 __u8 fcfhi; // Frame control field higher byte
 __u8 fcflo; // Frame control field lower byte
 __u8 dsn; // sequence number
 __u16 destpan; // destination PAN
 __u16 addr; // destination Address
 __u8 type; // type id for Active Message Model handler
 __u8 group; // group id
 __s8 data[TOSH_DATA_LENGTH]; // payload
 __u8 strength;//signal strength
 __u8 lqi;
 __u8 crc;
 __u8 ack;
 __u16 time;
 } TOS_Msg;

As seen in the TOS_Msg structure, 16 bytes are used as headers, the maximum payload
length, TOSH_DATA_LENGTH, should be 112 bytes. The control protocol packets are
encapsulated and carried in the payload. The protocol stacks at different interfaces are
discussed in the following subsections.

6.2.1 Protocol stack between vision sensors
As shown in Fig. 6, the control protocol layer is built on top of the physical lay and MAC
layer of the 802.15.4 protocol stack to enable vision sensors to communicate with each other.
The information processing and robot navigation control algorithms are resided within the
control protocol layer.

Advances in Robot Navigation

190

PHY layer

MAC layer

PHY layer

MAC layer

2.4GHz wireless

Vision sensor Vision sensor

Information processing and
navigation algorithm

Control protocol layer
Information processing and

navigation algorithm

Control protocol layer

Fig. 6. Protocol stack between vision sensors

6.2.2 Protocol stack between vision sensor and mobile robot
Similar to the protocol stack between visions, the control protocol stack between vision
sensor and mobile robot is shown in Fig. 7.

PHY layer

MAC layer

PHY layer

MAC layer

2.4GHz wireless

Vision sensor Mobile robot

Information processing and
navigation algorithm

Control protocol layer
Information processing and

navigation algorithm

Control protocol layer

Fig. 7. Protocol stack between vision sensor and mobile robot

6.2.3 Protocol stack between vision sensor and remote console
To enable the communication between a normal PC and the vision sensor, a wireless
adaptor is used to make conversion between 2.4GHz wireless signal and USB wire
connection. The GUI application in the remote console PC will act as a TCP server which
listens to the connection request from the wireless adaptor. The protocol stack is shown in
Fig. 8.

PHY layer

MAC layer

Control protocol layer

PHY layer

MAC layer

Control protocol layer

2.4GHz wireless

2.4GHz wireless adaptor Vision sensor

PHY layer

MAC layer

TCP/IP layer

USB

PHY layer

MAC layer

TCP/IP layer

Remote console

Control protocol layer Proposed protocol

Fig. 8. Protocol stack between vision sensor and remote console

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

191

6.3 Generic packet structure
As mentioned above, the control protocol will be based on the TOS_Msg data structure. All
packets are carried within the data area of the TOS_Msg structure. The generic packet format
is defined as below Table 1.

Byte 0
0 1 2 3 4 5 6 7

Byte 1
0 1 2 3 4 5 6 7

Byte 2
0 1 2 3 4 5 6 7

Byte 3
0 1 2 3 4 5 6 7

CHK CMD SrcAddr

SN TotalNum

User payload……

Table 1. Generic packet structure

The fields are,
• CHK: check sum which is the remainder of the addition of all fields except the CHK

itself being divided by 256;
• CMD: type of commands which identifies different control protocol payloads;
• SrcAddr: Sender short address from 1 to 65535 (0 is broadcast address);
• SN: Packet sequence number;
• TotalNum: Total number of packets to be transmitted;
• User payload: the length varies from 0 to 104 bytes depending on the CMD value; the

structures of different payloads will be discussed in the next subsection.

6.4 Detailed design of the proposed control protocol
There are basically 5 commands designed to meet the data exchange and control
requirements. Their descriptions are listed in Table 2.

CMD Description Message direction

1 Control points Vision sensor vision sensor
2 Obstacles Vision sensor vision sensor
3 Token negotiation Vision sensor vision sensor
4 Mobile robot control commands Vision sensor mobile robot
5 Monitoring purpose Vision sensor remote console

Table 2. Command lists

The following subsections will discuss the detailed usage and packet structure of each
command. It is organized according to the command sequence.

6.4.1 Control points
This is a vision sensor to vision sensor command. The purpose of this command is to
transmit the planned control points from one vision sensor to another. To reduce the
communication burden and save frequency resource, only the preceding vision sensors send
border control points to the succeeding ones, as shown in Fig. 9.

Advances in Robot Navigation

192

preceding

succeeding

preceding
succeeding

Vision Sensor

Vision Sensor

Vision Sensor

ssuucc

Fig. 9. Sending border control points from preceding vision sensor to succeeding ones

The signal flow is shown in Fig. 10. Border control point coordinates are transmitted
periodically by all the vision sensors to their succeeding vision sensors if they exist.
Destination address is specified in the TOS_Msg header.

 Vision Sensor Vision Sensor

controlpoints messages

suceeding sensor
exists

Fig. 10. Exchange border control points signal flow

The corresponding packet format is shown in Table 3,

Byte 0
0 1 2 3 4 5 6 7

Byte 1
0 1 2 3 4 5 6 7

Byte 2
0 1 2 3 4 5 6 7

Byte 3
0 1 2 3 4 5 6 7

CHK CMD SrcAddr

SN TotalNum

NCP

Series of control point coordinates ……

Table 3. Control point packet format

where,
• CHK, SrcAddr, SN and TotalNum are referred to section 6.3
• CMD = 1
• NCP: Total number of control points to be sent, maximum 25 (103/4) control points can

be sent within one packet
• Control point coordinates (,)x y are followed by format below,

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

193

Byte 0
0 1 2 3 4 5 6 7

Byte 1
0 1 2 3 4 5 6 7

Byte 2
0 1 2 3 4 5 6 7

Byte 3
0 1 2 3 4 5 6 7

x y

6.4.2 Obstacles
This is a vision sensor to vision sensor command. It is created to provide information for
multiple geometry obstacle localisation. If obstacles are observed by one vision sensor, and
this vision sensor has overlapping areas with the dominant one, it will transmit the
observed obstacles to the dominant sensor. This function can be disabled to reduce the
communication burden in the program.
The data format is shown in Table 4.

Byte 0
0 1 2 3 4 5 6 7

Byte 1
0 1 2 3 4 5 6 7

Byte 2
0 1 2 3 4 5 6 7

Byte 3
0 1 2 3 4 5 6 7

CHK CMD SrcAddr

SN TotalNum

NOB

Series of obstacle coordinates ……

Table 4. Obstacle packet format

where,
• CHK, SrcAddr, SN and TotalNum are referred to section 6.3
• CMD = 2
• NOB: Total number of obstacles to be sent
• The obstacles coordinates are as the same format as control points in section 6.4.1

zone0

zone2

zone1

zone3
zone4

Fig. 11. Division of the observation area into zones in one vision sensor

6.4.3 Token negotiation
At a specific time, only the dominant vision sensor can send control command to the mobile
robot. In the proposed distributed environment, there is no control centre to assign the
control token among vision sensors. Therefore all vision sensors have to compete for the

Advances in Robot Navigation

194

control token. By default, vision sensors with the mobile robot in view will check whether
other visions broadcast the token ownership messages. If there is no broadcast messages
received within a certain period of time, it will try to compete for the control token based on
two criteria: 1) the quality of the mobile robot being observed by the vision sensors and 2) a
random number generated by taking into account the vision sensor short address as the
seed. The quality of the mobile robot being observed is identified by different zones shown
in Fig. 11. Zone0 is in the inner area which denotes the best view and zone4 is in the outer
area which represents the worst view. Different zones are not overlapped and divided
evenly based on the length and width of the view area.
The control token negotiation procedures are interpreted as following four cases.
Case 1: One vision sensor sends request to compete for the token and there is no other
request found at the same time. A timer is set up once the command is broadcasted. If there
is no other token request messages received after timeout, the vision sensor takes the token
and broadcast its ownership of the token immediately. Fig. 12 shows the signal flow.

 Vision Sensor Vision Sensor

Occupy token request <broadcast>

Has token
Occupy token msg <broadcast>

Timer 3
Token request

message process

Token occupy
message process

Fig. 12. Control token init signal flow, case 1

Case 2: If a control token request message is received before timeout, the vision sensors will
compare its observation quality with the one carried in the broadcast message. The one with
the less zone number will have the token. It might be a possibility that the zone numbers are
the same, then the values of their short addresses are used to determine the token
ownership, i.e. smaller value of the address will be the winner. Fig. 13 depicts the signal
flow.

 Vision Sensor Vision Sensor

Occupy token request <broadcast>

Occupy token request <broadcast>

Has token

Confliction resolving

Occupy token msg <broadcast>

Timer 3

Timer 3

Token request
message process

Token request
message process

Token occupy
message process

Fig. 13. Control token init signal flow, case 2

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

195

Case 3: Once a vision sensor has the control token, it will broadcast its ownership
periodically. Upon receipt of this message, other vision sensors will set up a timer which
should be greater than the time for a complete processing loop (image processing, path
planning and trajectory generation). During the lifetime of this timer, it assumes that the
ownership is still occupied by others and will not send request message during this time. If
the dominant vision sensor receives a token request message, it will reply with an token
already being occupied message immediately to stop other vision sensor from competing for
the token. Fig. 14 shows the signal flow.

 Vision Sensor Vision Sensor

Occupy token request <broadcast>

token already been occupied reply
Already has token

Has token

Timer 3

Token reply
message process

Token request
message process

Fig. 14. Control token init signal flow, case 3

Case 4: When the mobile robot moves from an inner area to an outer area in the vision, the
dominant vision sensor will try to initiate a procedure to handover the token to other vision
sensors. First it broadcasts a token handover request with its view zone value and setup a
timer (Timer 1). Upon receipt of the handover message, other vision sensors will check
whether they have a better view on the robot. Vision sensors with better views will send
token handover reply messages back to the dominant vision sensor and setup a timer (Timer
2). If the dominant vision sensor receives the response messages before the Timer 1 expires,
it will choose the vision sensor as the target and send token handover confirmation message
to that target vision sensor to hand over its ownership. If there is more than one vision
sensors reply the handover request message, the dominant one will compare their view
zone values and preferably send the handover confirmation message to the vision sensor
with less zone value. If they have the same view quality, vision sensor short address will be
used to decide the right one. If token handover confirmation message is received, the target
vision sensor will have the token, as shown in Fig. 15. However if no handover confirmation
messages received before the Timer 2 expires, i.e. the handover confirmation message does
not reach the recipient, a token init procedure will be invoked as no other sensors apart from
the dominant vision sensor has the token to broadcast the occupy token message which is
shown in Fig. 16.
The packet format is listed in Table 5.

Byte 0
0 1 2 3 4 5 6 7

Byte 1
0 1 2 3 4 5 6 7

Byte 2
0 1 2 3 4 5 6 7

Byte 3
0 1 2 3 4 5 6 7

CHK CMD SrcAddr
SN TotalNum

type zone

Table 5. Token packet format

Advances in Robot Navigation

196

where,
• CMD = 3
• CHK, SrcAddr, SN and TotalNum are referred to section 6.3
• type: Token message types.

Fig. 15. Control token handover signal flow - successful

Fig. 16. Control token handover signal flow - failure

The descriptions and possible values for type is listed in Table 6,

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

197

type value Description

0 Init token request

1 Occupy token msg

2 token already occupied reply

3 Token handover request

4 Token handover reply

5 Token handover confirmation

Table 6. Token messages

• zone: view zones. It is used to indicate the quality of mobile robot being observed in
one vision sensor. The zone0, zone1, zone2, zone3 and zone4 are represented by 0, 1, 2,
3 and 4 respectively.

6.4.4 Mobile robot control
This is a vision sensor to mobile robot command. After planning, the dominant vision
sensor will send a series of commands to the robot with time tags. The signal flow is shown
in Fig. 17.

 Vision Sensor Mobile Robot

Robot control commands
Has token

Fig. 17. Robot control signal flow

The packet format is shown in Table 7,

Byte 0
0 1 2 3 4 5 6 7

Byte 1
0 1 2 3 4 5 6 7

Byte 2
0 1 2 3 4 5 6 7

Byte 3
0 1 2 3 4 5 6 7

CHK CMD SrcAddr

SN TotalNum

Num of steps Control parameters ……

Table 7. Robot control commands packet format

where,
• CMD = 4

Advances in Robot Navigation

198

• CHK, SrcAddr, SN and TotalNum are referred to section 6.3
• Num of steps: Number of control commands in one packet. It could be one set of

command or multiple set of commands for the mobile robot to execute
• Control parameters: one set of control parameter includes five values as below,

Byte 0
0 1 2 3 4 5 6 7

Byte 1
0 1 2 3 4 5 6 7

Byte 2
0 1 2 3 4 5 6 7

Byte 3
0 1 2 3 4 5 6 7

timet Vvalue Vsign Dvalue

Dsign

Timet is an offset value from the previous one with the unit millisecond. The velocity Vvalue
is the absolute value of the speed with the unit ms-1. The Dvalue is the angle from the current
direction. The Timet and Vvalue are multiplied by 100 before they are put in the packet to
convert float numbers into integers. The value ranges are listed in Table 8,

Field Value

Dsign 0: left or centre, 2: right

Dvalue 0~45 degree

Vsign 0: forward or stop, 2: backward

Vvalue 0~255 cm/s

Table 8. Robot control parameter values

6.4.5 Remote console
This is a vision sensor to remote console PC command. The remote console is responsible for
system parameters setting, status monitoring, vision sensor node controlling and etc.. The
communication protocol between vision sensors and console is designed to provide the
foundations of these functions. After configuration of all the parameters, the system should
be able to run without the remote console.
As a transparent wireless adaptor for the remote console, the wireless peripheral will always
try to initiate and maintain a TCP connection with the remote console PC to establish a data
exchange tunnel when it starts.

6.4.5.1 Unreliable signal flow
On the one hand, the operator can initiate requests from the remote console PC to vision
sensors, e.g. restart the sensor application, set the flags in the vision sensor to send real time
image and/or control points information, instruct vision sensor to sample background
frame and etc.. The wireless module attached with the remote console will be responsible for
unpacking IP and sending them wirelessly to vision sensors; On the other hand, vision
sensors will periodically send control points, real time images, path information, robot
location etc. to the remote console according to the flags set by the operator. The loss of
messages is allowed. It is illustrated as Fig. 18.

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

199

 Vison sensor Wireless module
attached with RC

Remote Console
(RC)

Listening on
Port:4001

TCP connection Req
TCP connection Accept

IP packetsWireless packets

Fig. 18. Unreliable signal flow between remote console and vision sensor

6.4.5.2 Reliable signals
Reliable transmission is also provided in case packet loss is not tolerant, e.g. downloading
vision sensor system drivers, updating user programs, transferring setting profile files
and etc.. All data packets are required to be acknowledged by the recipient. Re-
transmission will be invoked if no confirmation messages received within a given time.
The signal flow is illustrated in Fig. 19. The wireless module will buffer the packets and
make sure all the packets sent to the vision sensor are acknowledged to ensure a reliable
transmission.

 Vison sensor Wireless module
attached with RC

Remote Console
(RC)

Packet (1)
Ack (1)

Packet (n)
Ack (n)

Send data Req (total packets number :n, file name)

Ack (0)

...

Packet (i)
Ack (i)

...

Listening on
Port:4001

TCP connection Req
TCP connection Accept

Send data Req

...

...Packet (i)
Ack (i)

Packet (1)

Packet (i)

Packet (n)

Fig. 19. Signal flow between remote console and vision sensor

7. Simulation and experiment results
Trajectory tracking of a car like robot using the mosaic eye is experimented. Four eyes are
mounted on a room ceiling forming a closed continuously running room such that each eye

Advances in Robot Navigation

200

will have a neighbouring eye at each side, one on the left and another on the right. An
independent remote monitor terminal is setup to capture the mosaic eye working status on
demand and to maintain mosaic eye when needed. The main processor of the car like robot
is a Motorola MC9S12DT128B CPU which is used to execute the received commands from
mosaic eye. The mosaic eye, the remote monitor terminal and the robot are all 802.15.4
communication enabled. The car like robot is marked by a rectangle with red and blue blobs
on top of it which is used to locate the robot’s position and to distinguish the robot from its
obstacles, as shown in Fig. 20.

Vison
sensors

Robot

Remote Console

Fig. 20. Car like robot marked by a rectangle with red and blue blobs on it

The predictive control has a rolling window with 20l = (control points). The maximum
travelling speed is 0.8 m/s, the maximum driving force is max 4.4()dF N= with a 0.56(kg) robot
mass and the friction factor max 0.6=μ and max 2.0()N m= ⋅τ .

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

201

Fig. 21. Robot moving from eye-30 to obstacles free eye-60

Fig. 22. Obstacles appear in eye-60

Advances in Robot Navigation

202

Fig. 23. Robot passing obstacle area in eye-60

Fig. 24. Robot passed obstacles area in eye-60 and move to eye-50

A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors

203

Fig. 21, Fig. 22, Fig. 23 and Fig. 24 show the real time experiments of robot control by the
mosaic eye. Each figure displays four views from each of the four eyes. Let eye-30, eye-40,
eye-50 and eye-60 be the names of the mosaic eye starting from top-right one and counting
anti-clockwise. In Fig. 21, the robot is controlled by eye-30 heading to the control area of eye-
60. The sparse white circles with numbers in the centre represent the desired path that the
robot should follow. The white rectangle blobs represent dynamic obstacles. As one can see
in Fig. 21, the dynamic obstacles are within the views of eye-30, eye-40 and eye-50 but out of
sight of eye-60. In Fig. 22, an obstacle appears within the sight of eye-60. At this point, the
robot is under the control of eye-30 and eye-30 does not know the existence of the new
obstacle. With the information sent from eye-60 notifying eye-30 of the obstacle, the
predictive path is updated to avoid the obstacle. In Fig. , the robot control is handed over
from eye-30 to eye-60. The figure shows that with the predictive path updated by eye-30 and
with the control of eye-60, the robot has successfully avoided the obstacle and continued to
move along the updated predictive path.

8. Conclusion
As an attempt to steer away from developing an autonomous robot with complex
centralised intelligence, this chapter proposes a scheme offering a complete solution for
integrating communication with path planning, trajectory generation and motion control of
mobile robots in an intelligent environment infrastructure where intelligence are distributed
in the environment through collaborative vision sensors mounted in a physical architecture,
forming a wireless vision sensor network, to enable the navigation of unintelligent robots
within that physical architecture through distributed intelligence. A bio-mimetic snake
algorithm is proposed to coordinate the distributed vision sensors for the generation of a
collision free R-snake path during the path planning process. Segments of a path distributed
in individual sensors from a start position to a goal position are described as an elastic band
emulating a snake. By following the R-snake path, an A-snake method that complies with
the robot's nonholonomic constraints for trajectory generation and motion control is
introduced to generate real time robot motion commands to navigate the robot from its
current position to the target position. A rolling window optimisation mechanism subject to
control input saturation constraints is carried out for time-optimal control along the A-
snake.
The scheme has been verified by the development of a complete test bed with vision sensors
mounted on a building ceiling. Results obtained from the experiments have demonstrated
the efficiency of the distributed intelligent environment infrastructure for robot navigation.

9. References
Arkin (2000). Behavior-based Robotics. Cambridge, MIT Press.
Cameron (1998). Dealing with Geometric Complexity in Motion Planning. New York, Wiley.
Cheng, Hu, et al. (2008). A distributed snake algorithm for mobile robots path planning with

curvature constraints. IEEE Int. Conf. on SMC, Singapore.
Cheng, Jiang, et al. (2010). A-Snake: Integration of Path Planning with Control for Mobile

Robots with Dynamic Constraints. ICCAE.
Cormen, Leiserson, et al. (2001). Introduction to Algorithms, MIT Press and McGraw-Hill.

Advances in Robot Navigation

204

Kass, Witkin, et al. (1988). Snake: Active contour models. International Journal of Computer
Vision 1(4): 321-331.

Land and Nilsson (2002). Animal Eyes, Oxford University Press.
Li and Rus (2005). Navigation protocols in sensor networks. ACM Trans. on Sensor Networks

1(1): 3-35.
Maciejowski (2001). Predictive control with constraints.
Mclean (1996). Dealing with geometric complexity in motion planning. Int. Conf., IEEE in

Robotics and Automation.
Mclean and Cameron (1993). Snake-based path planning for redundant manipulators.

Robotics and Automation, IEEE International Conference on, Atlanta, USA.
Murphy (2000). Introduction to AI robotics. Cambridge, MIT Press.
Quinlan (1994). Real-time modification of collision-free paths. Department of Computer

Science, Stanford. PhD.
Quinlan and Khatib (1993). Elastic bands: connecting path planning and control. IEEE Int.

Conf. Robotics and Automation, Atlanta, USA.
Sinopoli, Sharp, et al. (2003). Distributed control applications within sensor networks.

Proceedings of IEEE.
Snoonian (2003). Smart buildings. IEEE Spectrum 40(8).
Website (2006). http://www.inf.brad.ac.uk/~pjiang/wime/.
Xi and Zhang (2002). Rolling path planning of mobile robot in a kind of dynamic uncertain

environment. Acta Automatica Sinica 28(2): 161-175.
Zhang (2008). TOS_MAC Driver based on CC2420 radio chip.

Part 4

Social Robotics

10

Knowledge Modelling in Two-Level Decision
Making for Robot Navigation

Rafael Guirado, Ramón González, Fernando Bienvenido and
Francisco Rodríguez

Dept. of Languages and Computer Science, University of Almería
Spain

1. Introduction
In recent years, social robotics has become a popular research field. It aims to develop robots
capable of communicating and interacting with humans in a personal and natural way.
Social robots have the objective to provide assistance as a human would do it. Social robotics
is a multidisciplinary field that brings together different areas of science and engineering,
such as robotics, artificial intelligence, psychology and mechanics, among others (Breazeal,
2004). In this sense, an interdisciplinary group of the University of Almería is developing a
social robot based on the Peoplebot platform (ActivMedia Robotics, 2003). It has been
specifically designed and equipped for human-robot interaction. For that purpose, it
includes all the basic components of sensorization and navigation for real environments.
The ultimate goal is that this robot acts as a guide for visitors at our university (Chella et al.,
2007). Since the robot can move on indoor/outdoor environments, we have designed and
implemented a two-level decision making framework to decide the most appropriate
localization strategy.
Knowledge modelling is a process of creating a model of knowledge or standard
specifications about a kind of process or product. The resulting knowledge model must be
interpretable by the computer; therefore, it must be expressed in some knowledge
representation language or data structure that enables the knowledge to be interpreted by
software and to be stored in a database or data exchange file. CommonKADS is a
comprehensive methodology that covers the complete route from corporate knowledge
management to knowledge analysis and engineering, all the way to knowledge-intensive
systems design and implementation, in an integrated fashion (Schreiber et al., 1999).
There are several studies on the knowledge representation and modelling for robotic
systems. In some cases, semantic maps are used to add knowledge to the physical maps.
These semantic maps integrate hierarchical spatial information and semantic knowledge
that is used for robot task planning. Task planning is improved in two ways: extending the
capabilities of the planner by reasoning about semantic information, and improving the
planning efficiency in large domains (Galindo et al., 2008). Other studies use the
CommonKADS methodology, or any of its extensions, to model the knowledge; some of the
CommonKADS extensions that have been used in robotics are CommonKADS-RT, for real
time systems, and CoMoMAS (Conceptual Modelling of Multi-Agent Systems), for multi-

Advances in Robot Navigation

208

agent systems. The first one is based on CommonKADS with the addition of necessary
elements to model real time restrictions and it is applied to the control of autonomous
mobile robots (Henao et al., 2001). The second one extends CommonKADS towards Multi-
Agent Systems development. A Nomad200 mobile robot is used to analyse two agent
architectures, AIbot and CoNomad, by reverse engineering and to derive conceptual
descriptions in terms of agent models (Glaser, 2002). Nowadays the knowledge engineering
focuses mainly on domain knowledge, using reusable representations in the form of
ontologies (Schreiber, 2008).
One fundamental task to achieve our goal is robot navigation, which includes the subtasks
of path planning, motion control, and localization. Generally, in the process of developing
robots, robotics engineers select, at design time, a single method (algorithm) to solve each of
these tasks. However, in the particular case of social robots (usually designed with a generic
purpose, since its ultimate goal is to act as a human) it would be more interesting to provide
several alternatives to solve a specific task and the criteria for selecting the best solution
according to the current environment conditions. For instance, for the specific task of
localization, the robot could decide to use a GPS-like solution, if it is moving on an open
space, or dead-reckoning if it is in an indoor environment.
The main contribution of this work is the development of an operational knowledge model
for robot navigation. This model leads to a generic and flexible architecture, which can be
used for any robot and any application, with a two-level decision mechanism. In the first
level, the robotics engineer selects the methods to be implemented in the social robot. In the
second level, robot applies dynamic selection to decide the proper method according to the
environment conditions, taking into account a suitability criteria table. Dynamic selection of
methods (DSM) lets to choose the best alternative to perform a task. It uses several
suitability criteria, criterium weights, selection data and knowledge, and an aggregation
function to make the decision (Bienvenido et al., 2001).
The chapter is organized as follows. The second section presents the description of the robot
system used in this work. In the third section, the methodology for the knowledge
representation based on DSM is shown. Next, the fourth section shows the knowledge
modelling for the localization subsystem needed to develop the generic multi-agent system
for the social robot Peoplebot. The next section discusses the results of a physical experiment
carried out to analyze the proposed methodology. The last section is devoted to conclusions
and further works.

2. System description
In this work, the mobile robot called Peoplebot of ActivMedia Robotics Company has been used
to test through physical experiments the proposed decision making approach. It is a mobile
robot designed and equipped specifically for human-robot interaction research and
applications. It includes all the basic components of sensorization and navigation in real
environments, which are necessary for this interaction (see Fig. 1). It has two-wheel
differential with a balancing caster and it feeds on three batteries that give an operational
range of about ten hours. It also has installed a touch screen which displays a map of the
University of Almería. Furthermore, for speech communication, it has two microphones to
capture voice and two speakers. In this way, a user can interact with the robot either by
manually selecting a target in the touch screen showing the environment map or by
speaking directly to the robot.

Knowledge Modelling in Two-Level Decision Making for Robot Navigation

209

Fig. 1. Peoplebot robot: components (ActivMedia Robotics, 2003) and picture in action

Fig. 2. Navigation architecture

For navigation purposes, a typical four-layer navigation architecture has been implemented
(see Fig. 2). The top layer is devoted to path planning, that is, the generation of the reference
trajectory between the current robot position and the target commanded by the user (touch

Advances in Robot Navigation

210

screen or speech recognition modules). Then, a motion controller based on pure-pursuit
(Coulter, 1992) is used to generate the actual wheel velocities. In order to ensure that the
wheels move at the desired setpoints two low-level PID controllers were tuned. Finally, a layer
devoted to localization is implemented. This localization layer is detailed subsequently.

3. Methodology
The knowledge model, about the localization for social robots described in this work, is
based on some extensions of knowledge representation methodologies (like CommonKADS)
and the DSM. Here, we introduce those approaches and a short summary of the localization
algorithms implemented in the system.

3.1 Knowledge representation: the CommonKADS methodology
The CommonKADS methodology was consolidated as a knowledge engineering technique
to develop knowledge-based systems (KBS) in the early 90’s (Schreiber et al., 1994). This
method provides two types of support for the production of KBS in an industrial approach:
firstly, a lifecycle enabling a response to be made to technical and economic constraints
(control of the production process, quality assurance of the system, ...), and secondly a set of
models which structures the development of the system, especially the tasks of analysis and
the transformation of expert knowledge into a form exploitable by the machine (Schreiber et
al., 1999). Our proposal supposes to work in the expertise or knowledge model, one of the
six models in CommonKADS. The rest are organizational (it supports the analysis of an
organization, in order to discover problems and opportunities for knowledge systems), task
(it analyzes the global task layout, its inputs and outputs, preconditions and performance
criteria, as well as needed resources and competences), agent (it describes the characteristics
of agents, in particular their competences, authority to act, and constraints in this respect),
communication (it models the communicative transactions between the agents involved in the
same task, in a conceptual and implementation-independent way) and design models (it gives
the technical system specification in terms of architecture, implementation platform, software
modules, representational constructs, and computational mechanisms needed to implement
the functions laid down in the knowledge and communication models). Fig. 3 presents the
kernel set of models used in the CommonKADS methodology (Schreiber et al., 1994).

 Organizational
Model

Task
Model

Agent
Model

Communication
Model

Design
Model

Knowledge
Model

Fig. 3. CommonKADS kernel set of models

Knowledge Modelling in Two-Level Decision Making for Robot Navigation

211

The purpose of the knowledge model is to detail the types and structures of the knowledge
used in performing a task. It provides an implementation-independent description of the
role that different knowledge components play in problem solving, in a way that is
understandable for humans. This makes the knowledge model an important vehicle for
communication with experts and users about the problem solving aspects of a knowledge
system, during both development and system execution (Schreiber et al., 1999). So, its final
goal is to analyze the tasks (objectives), methods (possible solution mechanisms), inferences
(algorithms or agents) and domain knowledge elements (context and working data) for the
KBS to be developed. These four elements permit to represent the knowledge involved in our
mobile robot system. So, we have decided to use this knowledge engineering methodology.
The Task-Method Diagrams (TMD) (Schreiber et al., 1999) to model the solution mechanism
of the general problem represented by the highest-level task (main objective) are used. TMD
presents the relation between one task to be performed and the methods that are suitable to
perform that task, followed by the decomposition of these methods in subtasks, transfer
functions and inferences (final implemented algorithms). Fig. 4 shows an example of TMD
tree, where the root node represents the main task (Problem). It can be solved using two
alternative methods (Met 1 and Met 2). First of them is implemented by the inference Inf 1, a
routine executed by an agent. Second method requires the achievement of three tasks (really
are two transfer functions Tran. Fun. 1 and Tran. Fun. 2 –special type of task, so it is
represented by the same symbol- and one task Task 1). Transfer functions are tasks whose
resolution is responsible for an external agent (for instance, it could be used for manual
tasks). There are two methods to solve Task 1; they are Met 3 and Met 4. Second one is
implemented by the inference Inf 2, while Met 3 requires the performance of four tasks: Task
3, Task 4, Task 5 and Task 6; each one is solved by a correspondent method (Met 5, Met 6, Met
7 and Met 8, respectively). These four methods are implemented by the inferences Inf 3, Inf 4,
Inf 5 and Inf 6.
CommonKADS proposes that the different elements (tasks, methods and inferences) of the
TMD are modelled using schemas like CML or CML2 (Guirado et al., 2009). These schemas
formalize all the knowledge associated to each one of these elements.

Task 1

Problem

Inf 1 Tran. Fun. 1

Met 1 Met 2

Tran. Fun. 2

Met 3 Met 4

Task 3 Task 4 Task 5

Inf 3

Met 5

Inf 4

Met 6

Inf 5

Met 7

Inf 2 Task 6

Inf 6

Met 8

Fig. 4. Simple TMD

Advances in Robot Navigation

212

3.2 Dynamic selection of methods
A given task, at any level, can be performed by several alternative methods, and these can
be only applied at specific conditions. DSM is based on a general decision module that,
taking into account the suitability criteria defined for each alternative method and actual
data, would activate the most appropriate method. These suitability criteria have assigned
weights whose values are calculated through functions that depend on the current
knowledge of the problem and modify the suitability criteria values of the alternative
methods to solve a given task (Bienvenido et al., 2001). For example, Table 1 shows the
structure of the suitability criteria for a set of alternative methods. There are criteria that
must be completely fulfilled, and others are conveniently weighted to offer a condition
that increase or not the suitability of a given method. This technique was previously used
in greenhouses design (Bienvenido et al., 2001), and robot navigation (Guirado et al.,
2009).

Method Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

Method 1 4 3 f1() 1 g1()

Method 2 1 1 f2() 3 g2()

Method 3 2 2 f3() 2 g3()

Method 4 5 5 f4() 1 g4()

Method 5 2 2 f5() 2 g5()

Table 1. Example of structure of the suitability criteria table

In this example, criteria 3 and 5 are hard constraints or critical (C). Notice that
corresponding functions fM() and gM() can only take the values 0 or 1 (depending on
environment conditions), where a value of 0 means that the method is not applicable if this
criterion is not met, and a value of 1 means that it can be used. The other criteria (C1, C2 and
C4) can take values between 1 and 5 according to the suitability of the method. These criteria
are called soft constraints or non-critical (N).
In this case, the global suitability value S for the method M (M = {1, 2, 3, 4, 5}) is given by the
following equation:

 SM = fM() * gM() * (1 + W1 * C1M + W2 * C2M + W4 * C4M) (1)

Where CiM is the value of the criterion i for the method M, and Wi is the weight for the
criterion i. These weights depend on the environment conditions and their sum must be
equal to 1. For instance, assuming that W1 = 0.5, W2 = W4 = 0.25 and that the suitability
criteria table is as shown in the table above (with f1() = f5() = 0, f2() = f3() = f4() = 1, g1() = g2()
= g3() =1, and g4() = g5() = 0), then the selected method would be the number 3 (S1 = 0, S2 =
2.5, S3 = 3, S4 = 0, and S5 = 0). Notice that if there are two or more methods with the highest
suitability value, the current method remains as selected, and if not, the method is selected
randomly.

3.3 Localization algorithms
Robot localization is defined as the process in which a mobile robot determines its current
position and orientation relative to an inertial reference frame. Localization techniques have

Knowledge Modelling in Two-Level Decision Making for Robot Navigation

213

to deal with the particular features of environment conditions, such as a noisy environment
(vibrations when the robot moves, disturbance sources, etc.), changing lighting conditions,
high degrees of slip, and other inconveniences and disturbances.

Method Indoor/
Outdoor

Computing
Time

Light
Conditions Precision Cost Sensors Fault-

tolerant

Odometry

Both, not
advisable

for slip
conditions

Fast
There is no

inconve-
nience

Error grows
with

distance
Cheap Encoders

It only
depends

on
encoders
readings

Dead-
reckoning Both Fast

There is no
inconve-
nience

Error grows
with

distance,
although it
is reduced

taking IMU
data

More
expensive

than
odometry

Encoders
and IMU

It depends
on

encoders
and IMU

Beacons Mainly
indoor Middle

Beacons
must be

observable
from robot

Absolute
position (no

error
growth)

Expensive
(installation
of markers)

Beacons,
landmarks,

etc.

It uses
many

beacons

GPS-based Only
outdoor Middle

There is no
inconve-
nience

Absolute
position (no

error
growth)

High cost of
accurate

GPS

GPS,
DGPS,

RTK-GPS

It depends
on the

number of
available
satellites

Visual
odometry

Both,
advisable

for slip
conditions

Usually high
It depends

on light
conditions

Error grows
with

distance,
although it
is reduced

taking
visual data

Cheap Camera(s)
It depends

on
camera(s)

Kalman-
filter-
based

Both Usually high
There is no

inconve-
nience

Small error
(redundant

sources)

Expensive
(redundant

sensors)

It depends
on fused
sensors

Yes, since
it generally

uses
several

redundant
sources

Table 2. Main characteristics of the localization techniques

In this work, we have analyzed different localization methods, in order to evaluate the most
appropriate ones according to the activity of the robot. In order to achieve this objective, we
have firstly studied the typical localization methods for the mobile robotics community and
we discuss the advantages and disadvantages of these methods to our specific case.

Advances in Robot Navigation

214

The most popular solutions are wheel-based odometry and dead-reckoning (Borenstein &
Feng, 1996). These techniques can be considered as relative or local localization. They are
based on determining incrementally the position and orientation of a robot from an initial
point. In order to provide this information, it uses various on-board sensors, such as encoders,
gyroscopes, accelerometers, etc. The main advantage of wheel-based odometry is that it is a
really straightforward method. The main drawback is, above all, an unbounded growth of the
error along time and distance, particularly in off-road slip conditions (González, 2011).
We have also analyzed global or absolute localization techniques, which determine the
position of the robot with respect to a global reference frame (Durrant-Whyte & Leonard,
1991), for instance using beacons or landmarks. The most popular technique is GPS-like
solutions such as Differential GPS (DGPS) and Real-Time Kinematics GPS (RTK-GPS). In
this case, the error growth is mitigated and the robot position does not depend on time and
initial position. The main problems in relation to GPS are a small accuracy of data
(improved using DGPS and RTK-GPS) and the signal is lost in closed spaces (Lenain et al.,
2004). Other solutions such as artificial landmarks or beacons require a costly installation of
the markers on the area where the robot operates.
On the other hand, there are some localization techniques based on visual information
(images). One of the most extended approaches is visual odometry or Ego-motion
estimation, which is defined as the incremental on-line estimation of robot motion from an
image sequence (Nistér et al., 2006). It constitutes a straightforward-cheap method where a
single camera can replace a typical expensive sensor suite, and it is especially useful for off-
road applications, since visual information estimates the actual velocity of the robot,
minimizing slip phenomena (Angelova et al., 2007).
Finally, probabilistic techniques based on estimating the localization of the mobile robot
combining measurements from different data sources are becoming popular. The most
extended technique is the Kalman filter (Thrun et al., 2005). The main advantage of these
techniques is that each data source is weighted taken into account statistical information
about reliability of the measuring devices and prior knowledge about the system. In this
way, the deviation or error is statistically minimized.
Summing up, in Table 2 the considered localization methods for our social robot are
presented. We also detail some key parameters to decide the most appropriate solution,
depending on the task to be performed.

4. Modelling the localization system
In order to model the knowledge that the social robot needs to take decisions, we have
analyzed the characteristics of the localization methods to decide the necessary parameters
for the best selection in different environment conditions. Firstly, all available alternatives
have been evaluated. Since it would be inefficient to implement all the methods in the robot,
it is applied a first decision level in which the human experts select the methods that the
social robot may need taking into account the scenarios to be found at the University. In this
sense, we are considering a social mobile robot working at indoor and outdoor scenarios.
The main purpose of this mobile robot is to guide to the people at our University, that
means, the robot could guide a person inside a building (for instance, the library) or it could
work outdoors between buildings.
We propose a two-level multi-agent architecture for knowledge modelling of the
localization strategy. Fig. 5 shows a schema for this architecture. Firstly, the expert selected

Knowledge Modelling in Two-Level Decision Making for Robot Navigation

215

the most proper methods for the kind of activities that the robot has to make (move at the
campus of the University of Almería). These localization methods were: wheel-based
odometry since it is a straightforward method to estimate the robot position. This approach
is especially used for indoor environments (like inside the library). On the other hand, for
outdoor motions, the visual odometry approach and a DGPS-like solution are used. Finally,
it is also considered to use a Kalman filter fusing data from visual odometry and DGPS.

SCHEDULER

Odometry

Visual

odometry

Kalman-filter-

based

Call Return

Suitability

Criteria

Table

Decision
making

ROBOT SYSTEM

Context
Information

Behavior
Information

Dead-

reckoning

Odometry

Beacons

DGPS-based

Visual

odometry

Kalman-filter-

based
. . .

1ST DECISION LEVEL

(HUMAN EXPERT)

2ND DECISION LEVEL

(SOCIAL ROBOT)

ALL AVAILABLE METHODS TO SOLVE THE LOCALIZATION TASK

Call Return Call Return

DGPS-based

Call Return

Fig. 5. Schema for the proposed two-level multi-agent architecture

The first selection process (filter applied by the engineer) lets that the robot chooses only
between useful and independent methods, according to the kind of activities to be
accomplished by the mobile robot. In this way, redundant and useless localization methods
will be avoided.
The second decision level of this architecture considers a general scheduler module
implemented in the social robot. This planner is permanently running. When the robot has
to take a decision (selecting an alternative among several options to accomplish a particular
task) it calls to the scheduler agent. This agent uses the context information, the suitability
criteria table and a dynamic cost function (depending on the scenario) to select the most
appropriate localization method.
Some of the main advantages of this architecture are that the robot can choose the most
appropriate localization method according to the surrounding environment and new
decisions can be incorporated simply including its suitability criteria table.
Fig. 6 shows the lower-level TMD elements, simplified to four testing alternatives of
localization. This is a branch of the most general navigation subsystem TMD (Guirado et al.,
2009).
DSM is applied to choose the most efficient method using an aggregation function that
integrates the suitability criteria and the weights to generate a suitability value for each
method. In our particular case, the criteria for decision-making are Computing Time (CT),
GPS-Signal Necessity (GN), Luminosity (L), Fault-Tolerance (FT) and Precision (P). These

Advances in Robot Navigation

216

criteria are related to the method characterization done in the previous section. CT, L, FT
and P are directly considered in the Table 2, while GN is related to the Indoor/Outdoor and
Sensors method parameters. The economic Cost of implementation is used by the expert in
the first decision level in order to choose the methods to be implemented in the robot, but it
does not make sense to use it as a suitability criterion for selecting the best alternative
method among those that are implemented in the robot.

Localization

task

Wheel-based
odometry

Wheel-based
odom. impl.

Visual
odometry

DGPS-
based

Kalman-
filter-based

DGPS-based
implem.

Kalman-filter-
based implem.

Visual odom.
implem.

Fig. 6. Representation of a TMD for a pre-filtered localization system

CT is inversely proportional to the execution time of each method, favouring the faster
method to calculate the exact position of the robot. We have considered this criterion
because some instances need a fast response and it is necessary to use the fastest algorithm.
CT is considered a non-critical (N) and static (S) criterion that means it is not used to discard
any alternative method and its value is considered fixed for each method because the
variations in testing are minimal.
GN indicates if a method needs a good GPS signal to be considered in the selection process.
This criterion is critical (C) only for the DGPS-based method because the robot cannot apply
it if the received signal to get the position is low (less than 4 satellite signals). The other
methods do not use the GN criterion because they do not use the GPS data; so, it is convenient
or non-critical (N) for those methods. The criterion is dynamic (D) for all the methods, taking
values 0 or 1 for DGPS-based method, and values between 1 and 5 for the rest.
L represents the intensity of the light in the place where the robot is. If the luminosity is low,
algorithms that require the use of conventional cameras for vision cannot be used. This is a
dynamic (D) criterion since the robot must operate in places more or less illuminated with
natural or artificial light. So, the value of this criterion is changing and its value is
discretized between 1 and 5. As this criterion does not exclude any method in the selection
process, it is considered non-critical (N). Notice that, in our case, luminosity is obtained
analyzing the histogram of an image.
FT is a parameter that indicates if the robot system is able to continue operating, possibly at
a reduced level, rather than failing completely, when the applied method fails. This criterion
is static (S) for each method. Its values have been obtained from our experiences. As in the
previous criterion, this is also considered non-critical (N).
P is related to the accuracy of the sensor data that each method uses. It has a dynamic (D)
value because the environment conditions are changing. For instance, GPS signal quality is

Knowledge Modelling in Two-Level Decision Making for Robot Navigation

217

fine in an open area; therefore, the precision of DGPS-based method is high. This is another
non-critical (N) criterion because it does not discard any method by itself.
As previously explained, the human expert has chosen four localization methods in the first
decision level. These alternatives are wheel-based odometry (O), DGPS-based (G), Kalman-
filter-based (K) and visual odometry (V); each of them has assigned a set of suitability
criteria.
The cost function considers the criteria with their associated weights,

 SM = GNM() * (1 + WCT * CTM + WL * LM + WFT * FTM + WP * PM) (2)

The weights (Wi) are dynamic functions, so they can change depending on environment and
performance requirements.
The function for the critical criterion GN is defined as follow.

1 if the method does not work with GPS
1 if GPS signal is available GN() GPS signal() 0 if GPS signal is not available

= − =

 (3)

So, it can only be equal to 0 for the DGPS-based method, and the GPS signal must also be
insufficient.
The description of the elements (tasks, methods and inferences) has been represented using
the CML notation, as CommonKADS methodology proposes (Schreiber et al., 1999). Here is
an example for the localization task:

TASK Localization;
GOAL: “Obtain the exact position and orientation of the robot at any

given time”;
INPUT:

sensor-data:
“Readings from sensors (GPS, cameras, encoders, ...)”;

OUTPUT:
robot-position-and-orientation:

“x, y and θ coordinates of the robot position and rotation angle on
the reference system”;

SELECTION-CRITERIA:
NS Computing-time = “Speed factor for calculating the exact

position of the robot”;
CD GPS-necessity = “Necessity to use the GPS signal”;
ND Luminosity = “Light conditions near the robot”;
NS Fault-tolerance = “Resilience to failure”;
ND Precision = “Accuracy in calculating the robot position”;

CRITERION-WEIGHTS:
Computing-time-weight = “if a quick answer is needed, this criterion

is very important”;
Luminosity-weight = “methods using camera (eg. visual odometry)

need good lighting conditions”;
Fault-tolerance-weight = “if there is a high fault probability, this

criterion will have a high weight”;
Precision-weight = “it the robot is moving on a narrow space,

this criterion will have a high weight”;
AGREGATION-METHOD: Multi-criteria function SM;

END-TASK Localization;

Each selection criterion has two letters in front of his name. The first one is the severity of
the criterion, where N indicates non-critical and C indicates critical, and the second one is if
the criteria can change or not, using D for dynamic and S for static.

Advances in Robot Navigation

218

5. Results
The proposed methodology was tested through several physical experiments showing how
the robot applies the knowledge model-based architecture using the suitability criteria
values (depending on the environmental conditions) to select the appropriate method in
every moment.
In this section, we analyze the proposed methodology in a real scenario. Our real case has
been that the mobile robot has guided a person at our University (see Fig. 7) from the bus
stop (start) to the library (goal). Firstly, the visitor tells the robot to guide him to the library.
In this case, the user used the touch screen. Then, the mobile robot calculated the optimal
route according to several parameters (we are not detailing it here). The solution of this
stage was the line marked in Fig. 7 (left). The mobile robot is moving at 0.5 m/s with a
sampling time of 0.2 s. In order to avoid sudden transitions from one method to another,
due to sensor noises and disturbances, we have tuned a filter, where a decision will not be
taken until a method is not selected 10 consecutive times.
In this case, the robot moves through four areas along the trajectory. The path labelled with
“a” is a wide-open space. The path labelled with “b” is a narrow way with some trees.
Finally, the path labelled with “c” is open space but close to buildings. Notice that the robot
moved on a pavement terrain, which leads to slip phenomena, is not expected. The real
trajectory followed by the robot is shown in Fig. 7 (right); note that the x-axis has a different
scale from y-axis in the plot.

Fig. 7. Real scenario (University map) and followed trajectory. The mobile robot has guided
a person from bus stop (start) to the library (goal)

As previously explained, the GN criterion is critical for the DGPS-based method. This means
that method is not selectable if GPS signal is insufficient (less than 4 satellites available). So,
we represent in Fig. 8 the number of satellites detected by the GPS justifying the necessity to
use other alternatives localization methods in some trajectory paths.
CT and FT are static criteria and so they have the same values in all situations, since they are
related to independent characteristics of the environment (CTO=5, CTG=2, CTK=1, CTV=4,
FTO=2, FTG=4, FTK=5 and FTV=3). Other criteria (GN, L and P) are dynamic, that means they
can change depending on the environment conditions.

Knowledge Modelling in Two-Level Decision Making for Robot Navigation

219

Fig. 8. GPS signal during the robot travel

In the first area (“a”), the GN and L criteria was equal for all methods, since all of them
could be used without problems in current conditions. In addition, the robot initially
considered the same weights for all criteria (WCT = WL = WFT = WP = 0.25). Applying the cost
function, robot obtained the following suitability values for each method:

SO = 1 * (1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 2 + 0.25 * 2) = 4.5

SG = 1 * (1 + 0.25 * 2 + 0.25 * 5 + 0.25 * 4 + 0.25 * 5) = 5

SK = 1 * (1 + 0.25 * 1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 3) = 4.5

SV = 1 * (1 + 0.25 * 4 + 0.25 * 5 + 0.25 * 3 + 0.25 * 3) = 4.75

As expected, robot used the DGPS-based localization method, since it obtains the larger
suitability value. Notice in Fig. 8 that there are more than three satellites available during
this path.
In the second area (“b”), the GN and L criteria remained the same for all methods. Factors
for P criterion changed for some methods with respect to the previous area. The GPS signal
was frequently lost due to the trees and the error increased considerably (see Fig. 8). In
addition, the user increased the velocity of the robot, which led to give a higher weight to
TC criterion, keeping a constant value for the other (WCT = 0.4; WL = WFT = WP = 0.2). These
were the obtained suitability values for each method:

SO = 1 * (1 + 0.4 * 5 + 0.2 * 5 + 0.2 * 2 + 0.2 * 2) = 4.8

SG = 0 * (1 + 0.4 * 2 + 0.2 * 5 + 0.2 * 4 + 0.2 * 2) = 0

SK = 1 * (1 + 0.4 * 1 + 0.2 * 5 + 0.2 * 5 + 0.2 * 3) = 4

SV = 1 * (1 + 0.4 * 4 + 0.2 * 5 + 0.2 * 3 + 0.2 * 4) = 5

Advances in Robot Navigation

220

The selected method was visual odometry. DGPS method got a low suitability value due to
“b” was a cover area (trees) and the GPS signal was temporary lost (see Fig. 8).
In the third area (“c”), the GN and L criteria remained the same for all methods. Factors for
the P criterion slightly changed from the previous area (GPS signal was slightly better since
there were not trees, although still affected by the proximity to the buildings). The user
reduced the velocity of the robot, and it led to reduce the weight of the TC criterion, keeping
a constant value for the other (WCT = 0.1; WL = WFT = WP = 0.3). The obtained suitability
values were:

SO = 1 * (1 + 0.1 * 5 + 0.3 * 5 + 0.3 * 2 + 0.3 * 2) = 4.2

SG = 1 * (1 + 0.1 * 2 + 0.3 * 5 + 0.3 * 4 + 0.3 * 3) = 4.8

SK = 1 * (1 + 0.1 * 1 + 0.3 * 5 + 0.3 * 5 + 0.3 * 3) = 5

SV = 1 * (1 + 0.1 * 4 + 0.3 * 5 + 0.3 * 3 + 0.3 * 3) = 4.7

The Kalman-filter-based obtained the larger suitability value since “c” was an open area
where DGPS and visual odometry work fine.
In the last area (inside the library), the GN criterion was zero for the DGPS-based method,
since the signal was completely lost; moreover, the L criterion decreased slightly for visual
odometry method due to changing light conditions. When the robot goes inside the library,
it considers the same weights for all criteria again (WCT = WL = WFT = WP = 0.25). The
obtained suitability values were:

SO = 1 * (1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 2 + 0.25 * 3) = 4.75

SG = 0 * (1 + 0.25 * 2 + 0.25 * 5 + 0.25 * 4 + 0.25 * 1) = 0

SK = 1 * (1 + 0.25 * 1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 3) = 4.5

SV = 1 * (1 + 0.25 * 4 + 0.25 * 4 + 0.25 * 3 + 0.25 * 3) = 4.5

Finally, as expected, when the mobile robot guided to the person inside the library, wheel-
based odometry method obtained the larger suitability value.
Fig. 9 shows the average values during the experiment for the localization methods. This
information has been used in the test of the proposed methodology.

6. Conclusions and future works
The main objective of this work is to take a further step in developing a generic and flexible
decision mechanism to select the most proper localization algorithm for a social robot. We
present the preliminary results for a single decision between four alternatives (selected by
the human expert in the first decision level). More tests will be performed within the same
operating environment in the future.
The main advantages of the proposed architecture are to facilitate further addition of new
algorithms that could be developed in the future and the capacity of deciding in real-time
the most appropriate technique to be used in the current conditions.
From a practical point of view, and according to our physical experiments, the proposed
methodology permits to successfully guide users at our university by choosing the best
localization method taking into account the surrounding environment.

Knowledge Modelling in Two-Level Decision Making for Robot Navigation

221

Fig. 9. Average suitability values for the localization methods in every path (“a”, “b”, “c”, “d”)

Here we have applied a direct DSM that means the best method is the one with the highest
suitability value (or one of them if there is more than one), but we are considering to
incorporate fuzzy logic to the cost function and to apply other types of membership
functions to the DSM.
In order to follow evaluating the proposed mechanisms of DSM in robotics, we are
extending the use of these techniques to other social robot tasks. The final goal is to build an
ontology in the domain of social robotic.

7. References
ActivMedia Robotics. (August 2003). Performance PeopleBot Plus Operations Manual,

(version 4), In: Mobile Robots, 29.03.2011, Available from
http://www.ing.unibs.it/~arl/docs/documentation/Aria%20documentation/Old
%20and%20useless/Misc.%20Mob.%20Robots%20doc./PeopleBotMan4.pdf

Angelova, A.; Matthies, L.; Helmick, D. & Perona, P. (2007). Learning and Prediction of Slip
from Visual Information. Journal of Field Robotics, Vol.24, No.3 (Special Issue on
Space Robotics, Part I), (March 2007), pp. 205-231, ISSN 1556-4967

Bienvenido, J.F.; Flores-Parra, I.M.; Guirado, R. & Marín, R. (2001). Knowledge Based Modeling
of the Design Processes as a Base of Design Tools. Application to the Development of
Agricultural Structures, In: Lecture Notes in Computer Science 2178, R. Moreno-Diaz
et al. (Eds.), pp. 209-222, Springer-Verlag, ISBN 3-540-45654-6, Berlin Heidelberg

Borenstein, J. & Feng, L. (1996). Measurement and Correction of Systematic Odometry
Errors in Mobile Robots, IEEE Transactions on Robotics and Automation, Vol.12, No.6,
(December 1996), pp. 869-880, ISSN 1042-296X

Advances in Robot Navigation

222

Breazeal, C.L. (2004). Designing Sociable Robots (new edition), The MIT Press, ISBN 0-262-
52431-7, Cambridge, Massachusetts, London, England

Chella, A.; Liotta, M. & Macaluso, I. (2007). CiceRobot: A Cognitive Robot for Interactive
Museum Tours, Industrial Robot: An International Journal, Vol.34, No.6, (October
2007), pp. 503-511, ISSN 0143-991X

Coulter, R.C. (1992). Implementation of the Pure Pursuit Path Tracking Algorithm, Technical Report
CMU-RI-TR-92-01, The Robotics Institute, Carnegie Mellon University, Pittsburgh

Durrant-Whyte, H. & Leonard, J. (1991). Mobile Robot Localization by Tracking Geometric
Beacons, IEEE Transactions on Robotics and Automation, Vol.7, No.3, (June 1991), pp.
376-382, ISSN 1042-296X

Galindo, C.; Fernández-Madrigal, J.A.; González, J. & Saffiotti, A. (2008). Robot Task
Planning using Semantic Maps, Robotics and Autonomous Systems, Vol.56, No.11,
(November 2008), pp. 955-966, ISSN 0921-8890

Glaser, N. (2002). Conceptual Modelling of Multi-Agent Systems: The CoMoMAS Engineering
Environment, Kluwer Academic Publishers, ISBN 1-4020-7061-6, Boston/Dordrecht
/London

González, R. (2011). Contributions to Modelling and Control of Mobile Robots in Off-Road
Conditions, Doctoral Dissertation, University of Almería, Almería, Spain

Guirado, R.; Miranda, C.M. & Bienvenido, J.F. (2009). Path Planning Knowledge Modeling
for a Generic Autonomous Robot: A Case Study, In: Lecture Notes in Artificial
Intelligence 5712, J.D. Velásquez et al. (Eds.), pp. 74-81, Springer-Verlag, ISBN 978-3-
642-04592-9, Berlin Heidelberg

Henao, M.; Soler, J. & Botti, V. (2001). Developing a Mobile Robot Control Application with
CommonKADS-RT, Lecture Notes in Artificial Intelligence 2070, L. Monostori, J. Váncza
and M. Ali (Eds.), pp. 651-660, Springer-Verlag, ISBN 3-540-45517-5, Berlin Heidelberg

Lenain, R.; Thuilot, B.; Cariou, C. & Martiner, P. (2004). A New Nonlinear Control for
Vehicle in Sliding Conditions: Application to Automatic Guidance of Farm Vehicles
using RTK GPS, IEEE International Conference on Robotics and Automation, Vol.5,
(May 2004), pp. 4381-4386, ISSN 1050-4729

Nistér, D.; Naroditsky, O. & Bergen, J.R. (2006). Visual Odometry for Ground Vehicle
Applications, Journal of Field Robotics, Vol.23, No.1, (January 2006), pp. 3-20, ISSN
1556-4967

Schreiber, G.; Wielinga, B.; de Hoog, R.; Akkermans, H. & Van de Velde, W. (1994).
CommonKADS: A comprehensive methodology for KBS development, IEEE Expert,
Vol.9, No.6, (December 1994), pp. 28–37, ISSN 0885-9000

Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog, R.; Shadbolt, N.; Van de Velde, W.
& Wielinga, B. (1999). Knowledge Engineering and Management: The CommonKADS
Methodology, The MIT Press, ISBN 0-262-19300-0, Cambridge, Massachusetts,
London, England

Schreiber, G. (2008). Knowledge Engineering, In: Handbook of Knowledge Representation, van
Harmelen, F.; Lifschitz, V. & Porter, B. (Eds.), pp. 929-946, Elsevier Science, ISBN
978-0-444-52211-5, Oxford, UK

Thrun, S.; Burgard, W. & Fox, D. (2005). Probabilistic Robotics, The MIT Press, ISBN 0-262-
20162-3, Cambridge, Massachusetts, London, England

11

Gait Training using
Pneumatically Actuated Robot System

Natasa Koceska1, Saso Koceski1, Pierluigi Beomonte Zobel2
 and Francesco Durante2

1Faculty of Computer Science, University “Goce Delce” – Stip, Stip,
2Applied Mechanics Laboratory, DIMEG, University of L'Aquila, L’Aquila

1Macedonia
2Italy

1. Introduction
Locomotor disability is the most commonly reported type of disability. It is defined as a
person's inability to execute distinctive activities associated with moving both himself and
objects, from place to place and such inability resulting from affliction of musculoskeletal
and/or nervous system. In this category entered the people with paraplegia, quadriplegia,
multiple sclerosis, muscular dystrophy, spinal cord injury, persons affected by stroke, with
Parkinson disease etc.
The number of people with locomotor disabilities is growing permanently as a result of
several factors, such as: population growth, ageing and medical advances that preserve and
prolong life. Worldwide statistics about locomotor disability show that:
- in Australia: 6.8% of the Australian population had a disability related to diseases of the

musculoskeletal system, which is 34% of the persons with any kind of disability;
- in USA: there are more than 700.000 Americans who suffer a stroke each year, making it

the third most frequent cause of death and the leading cause of permanent disability in
the country. 10.000 suffer from traumatic spinal cord injury, and over 250.000 are
disabled by multiple sclerosis per year;

- in Italy: 1.200.000 people have declared the locomotor disabilities.
Rehabilitation is very important part of the therapy plan for patients with locomotor
dysfunctions in the lower extremities. The goal of rehabilitation is to help the patient return
to the highest level of function and independence possible, while improving the overall
quality of life - physically, emotionally, and socially.
Locomotor training in particular, following neurological injury has been shown to have many
therapeutic benefits. Intensive training and exercise may enhance motor recovery or even
restore motor function in people suffering from neurological injuries, such as spinal cord
injury (SCI) and stroke. Repetitive practice strengthens neural connections involved in a motor
task through reinforcement learning, and therefore enables the patients a faster and better re-
learning of the locomotion (walking). Practice is most effective when it is task-specific. Thus,
rehabilitation after neurological injury should emphasize repetitive, task-specific practice that
promotes active neuromuscular recruitment in order to maximize motor recovery.

Advances in Robot Navigation

224

Conventional manual therapy includes specific exercises for strengthening and practicing of
one single movement at time. The more sophisticated therapy which over the years has
established itself as an effective intervention for improving over-ground walking function,
involves practice of stepping on a motorized treadmill with manual assistance and partial
bodyweight support (BWS). This kind of therapy makes use of a suspension system to
provide proper upright posture as well as balance and safety during treadmill walking. This
is accomplished through a harness that removes a controllable portion of the weight from
the legs, redistributing it to the trunk and groin, and in the same time allowing free
movement of the patients’ arms and legs. The movement is provided by a slow moving
treadmill. The treadmill constant rate of movement provides rhythmic input which
reinforces a coordinated reciprocal pattern of movement. Proper coordination is further
assisted by the manual placement of the feet by the therapist. The BWS reduces the
demands on muscles, which may enable the patient to work on improving the coordination
of the movement while gradually increasing the strength of muscles (Miller et al., 2002). The
controlled environment may also increase patient confidence by providing a safe way to
practice walking (Miller et al., 2002). As patients progress, the BWS can be gradually
decreased, challenging the patient to assert more postural control and balance (Miller et al.,
2002).
This rehabilitation strategy was derived from research showing the effect of suspending
spinalized cats in harnesses over treadmills (Visintin & Barbeau, 1989) From this work with
spinalized cats, it was determined that not only a reciprocal locomotor program can be
generated at a spinal cord level by central pattern generators, but also, this pattern can be
controlled through sensory input. By pulling the stance leg back with the pelvis stabilized in
a harness, the treadmill causes extension to the hip of the weight bearing leg, which triggers
alternation in the reciprocal pattern controlled by the central pattern generator (Grillner,
1979). Since it was demonstrated by (Barbeau & Rossignol, 1987) that the quality of
locomotion in spinalized cats improved if they were provided a locomotor training
program, it seems reasonable to expect that humans with locomotor disabilities might
benefit from this type of training.
Clinical studies have confirmed that individuals who receive BWS treadmill training
following stroke (Hesse et al., 1994) and spinal cord injury (Wernig et al., 1999)
demonstrate improved electromyographic (EMG) activity during locomotion (Visintin et
al., 1998), walk more symmetrically (Hassid et al., 1997), are able to bear more weight on
their legs.
However, manual assistance, during the BWS treadmill training, relies on physiotherapy
procedures which are extremely labour intensive. It is carried out by 2 or 3 physiotherapists,
sitting next to the treadmill, and manually guiding patient’s legs in coordination with a
treadmill. For therapists this training is exhaustive, therefore, training sessions tend to be
short and may limit the full potential of the treatment. Manual assistance also lacks
repeatability and precision. During the manual therapy it is very difficult for even the most
proficient and skilled therapist to provide a proper gait pattern and in that way to maintain
high-quality therapy across a full training session of patients, who require this type of
attention. Also, manually assisted treadmill training lacks objective measures of patient
performance and progress.
A promising solution for assisting patients during rehabilitation process is to design robotic
devices. They may enhance traditional treatment techniques by enabling rehabilitation of all

Gait Training using Pneumatically Actuated Robot System

225

the joints together, which is more effective that training only one joint at time; they will
provide more precise and repetitive gait trajectory, which was the main problem with the
manual therapy; they could accurately measure and track the patient’s impairments over the
rehabilitation course; they could potentially augment recovery of ambulation in people
following neurological injury by increasing the total duration of training and reducing the
labor-intensive assistance provided by physical therapists. In the general setting of these
robotic systems, a therapist is still responsible for the nonphysical interaction and
observation of the patient by maintaining a supervisory role of the training, while the robot
carries out the actual physical interaction with the patient.

2. Robot devices for gait training - state of the art
Several research groups are working on development of robot devices for “gait training”.
One example of automated electromechanical gait training device is ’Lokomat’ (Colombo et
al., 2000). It is a motor driven exoskeleton device that employs a body weight support
suspension system and treadmill. Locomat has four rotary joints that drive hip and knee
flexion/extension for each leg. The joints are driven in a gait-like pattern by precision ball
screws connected to DC motors. The patient’s legs, strapped into an adjustable aluminum
frame, are moved with repeatable predefined hip- and knee-joint trajectories on the basis of
a position-control strategy. Lokomat systems enables longer and individually adapted
training sessions, offering better chances for rehabilitation, in less time and at lower cost
compared to existing manual methods.
Another commercially available gait training device is Gait Trainer. It is a single degree-of-
freedom powered machine that drives the feet trough a gait-driven trajectory. Gait Trainer
applies the principle of movable footplates, where each of the patients’ feet is positioned on
a separate footplate whose movements are controlled by a planetary gear system, simulating
foot motion walking. Gait Trainer use a servo-controlled motor that sense the patients’
effort, and keeps the rotation speed constant (Hesse et al., 2000). A potential limitation with
the Gait Trainer is that the system does not directly control the knee or hip joints, so a
manual assistance of one physiotherapist is needed to assist their proper movements. Gait
Trainer might not be suitable for non-ambulatory people with weak muscles but only for
those that have some degree of control of the knee/hip joints.
HapticWalker is programmable footplate machine, with permanent foot machine contact
(Schmidt et al., 2005). The system comprises two 3 DOF robot modules, moving each foot in
the sagittal plane. Foot movement along the two base axes in this plane (horizontal, vertical)
is performed by linear direct drive motors, which move independently on a common rail,
but are connected via a slider-crank system. A limitation of the HapticWalker is that the
interaction only takes place at the foot sole so that typical poor joint stability of stroke
patients cannot be controlled, for example to prevent hyperextension of the knee (similar to
the GaitTrainer). Furthermore the cutaneous input at the foot sole with such a system is
unnatural, which might disturb training effectivity.
LOPES (Lower Extremity Powered Exoskeleton) robot is a combination of an exoskeleton
robot for the legs and an externally supporting end-effector robot for the pelvis (Veneman
et al., 2005). The joints of the robot (hip, knee) are actuated with Bowden-cable driven series
elastic actuators. Impedance control is used as a basic interaction control outline for the
exoskeleton.

Advances in Robot Navigation

226

PAM is a device that can assist the pelvic motion during stepping using BWST, and it’s used
in combination with POGO- the pneumatically operated gait orthosis (Aoyagi et al., 2007).
Most of these devices are using electric motors as actuators. The use of electric motors,
together with the specifically designed mechanism for converting their motion, is increasing
the production costs of these devices.
This research is focused on design of pneumatically driven exoskeletal device for gait
rehabilitation (developed in the Laboratory of Applied Mechanics at University of L’Aquila,
Italy). The use of the pneumatic actuators is reasonable due to their large power output at a
relatively low cost. They are also clean, easy to work with, and lightweight. Moreover, the
choice of adopting the pneumatic actuators to actuate the prototype joints is biologically
inspired. Indeed, the pneumatic pistons are more similar to the biological muscles with
respect to the electric motors. They provide linear movements, and are actuated in both
directions, so the articulation structures do not require the typical antagonistic scheme
proper of the biological joints.
In summary, the pneumatic actuators represent the best tradeoff between biological
inspiration, ease of employment and safe functioning due to the compliance of air, on one
hand, and production costs, on the other.

3. Mechanical design of the rehabilitation system
Designing an exoskeleton device for functional training of lower limbs is a very challenging
task. From an engineering perspective, the designs must be flexible to allow both upper and
lower body motions, once a subject is in the exoskeleton, since walking involves synergy
between upper and lower body motions. It must be also a light weight, easy wearable and
must guarantee comfort and safety. From a neuro-motor perspective, an exoskeleton must
be adjustable to anatomical parameters of a subject.
Considering these characteristics an exoskeleton structure with 10 rotational DOF was
studied and realized. An optimal set of DOF was chosen after studying the literature on gait,
and in order to allow the subject to walk normally and safely in the device.
The degrees of freedom are all rotational, two of them are on the pelvis level, two for the
hips, two for the knees, and four for the ankles (Fig.1).

Fig. 1. DOF of the developed exoskeleton

Gait Training using Pneumatically Actuated Robot System

227

The robot moves in parallel to the skeleton of the patient, so that no additional DOF or
motion ranges are needed to follow patient motions.
The mechanical structure of the shapes and the dimensions of the parts composing the
exoskeleton are human inspired and have an ergonomic design.
The inferior limbs of the exoskeleton are made up of three links corresponding to the
thighbone, the shinbone and the foot. The thighbone link is 463 mm long and has a mass of
0.5 kg and the shinbone link is 449 mm long and has a mass of 0.44 kg. For better
wearability of the exoskeleton an adjustable connection between the corset of polyethylene
(worn by the patient) and the horizontal rod placed at the pelvis level is provided. Moving
the exoskeleton structure up for only 25 mm, the distance between the centre of the knee
joint and the vertical axes of the hip articulation, is reduced to 148 mm, while the corset
remains in the same position. This way the system is adaptable to different patient
dimensions.
In order to realize a prototype with anthropomorphic structure that will follow the natural
shape of the human’s lower limbs, the orientation and position of the human leg segments
were analyzed. In the case of maximum inclination, the angle formed by the vertical axis
and a leg rod is 2.6°, observed in frontal plane (Fig. 2).

Fig. 2. Positioning of the exoskeleton shinbone and thighbone link, realized following the
human leg position

The inclination of 1.1° was chosen for the stand position, while other 1.5° are given by a
lateral displacement of 30 mm, when the banking movement occurs. In this way the ankle
joint is a little bit moved towards the interior side with respect to the hip joint, following the
natural profile of the inferior limbs in which the femur is slightly oblique and form an angle
of 9° with the vertical while for the total leg this angle is reduced to 3° (Fig. 3).

Advances in Robot Navigation

228

Fig. 3. Orientation and position of the human leg segments

The structure of the exoskeleton is realized in aluminum which ensures a light weight and a
good resistance.
Rehabilitation system is actuated by 4 pneumatic actuators, two for each inferior limb of the
exoskeleton (Fig. 4). The motion of each cylinder’s piston (i.e. supply and discharge of both
cylinder chambers) is controlled by two pressure proportional valves (SMC-ITV 1051-
312CS3-Q), connected to both cylinder chambers.
Hip and knee angles, of our rehabilitation system, are acquired by rotational potentiometers.

Fig. 4. Mechanical ergonomic structure of the exoskeleton with pneumatic actuators

In order to guarantee the safety of the patient, mechanical safety limits (physical stops), are
placed on extreme ends of the allowed range of motion of each DOF.

Gait Training using Pneumatically Actuated Robot System

229

The overall exoskeleton structure is positioned on a treadmill and supported, at the pelvis
level, with a space guide mechanism that allows vertical and horizontal movements. The
space guide mechanism also prevents a backward movement caused by the moving
treadmill belt. Space guide mechanism is connected with the chassis equipped with a weight
balance system (Fig.5), which ensure balance during walking. The developed system is
capable to support person heavy less than 85kg.

Fig. 5. Realized prototype of the overall rehabilitation system

4. Kinematical behaviour and joint forces
In order to develop the control system, it is useful to analyze the actuator forces necessary
to move the mechanical system with reference to the shinbone and thighbone angular
positions. Since the system is a rehabilitation one, with slow velocities, dynamic loads will
be neglected in the following. The articulations have only one DOF or they are actuated
by only one pneumatic actuator, Fig.4. The kinematic scheme of the leg is shown on the
Fig.6a.

θ β

p1

p2

1

2θ

1γ
δ1

1α

2δ
α2

2γ

1

2β

H

K

A

B
C

D

a

b

d

c

α1
P = PHA

1δ = AHB
γ 1= BHK
β1= ABH

γ
β2

2

δ2

2α

= DKO
= CDK

= CKD
= HKC

O

B1β
C

D

tM

c

β2

O

θ2

K

H

θ1

a

g

gMs

acttF

actsF

actsF

HX

YH

sG

Gt

d

Fig. 6. a) Kinematic articulation scheme and b) free body diagram of the leg

Advances in Robot Navigation

230

The p1 segment represents the pneumatic actuator of the thighbone, the p2 segment
represents the pneumatic actuator of the shinbone whereas the hip angle position is
indicated by the θ1 angle with reference to the vertical direction and the knee angle position
is indicated by the θ2 angle with reference to the thighbone direction.
By means of simple geometric relations the process that calculates the length of the actuator
of the shinbone once known the rotation angle θ2 is described with (1). The equations (1)
show this process for the shinbone, considering the geometrical structure and the
connections between different components.

2 2 2 2

2 2
2 2p 2 cosc d cd

δ = π − θ − γ − α

 = + − δ

 (1)

After the calculation of the actuators length p2, the angle β2 can be easily deduced as in (2):

 1 2
2

2

sinsin ()
p

c− δβ = (2)

FSact represents the force supplied by the shinbone pneumatic actuator, whereas the arrow
indicated by MSg shows the opponent force caused by the gravity as for the shinbone. MS is
the approximate sum of the mass of the shinbone and the foot applied in the centre of mass
of the shinbone.
From a simple torque balance with respect to the point K, Fig. 6b, the relation between FSact
and the angular positions θ1 and θ2 is derived as in (3).

 1 2

2

sin()
sin()

S KGs
Sact

M gL
F

d
θ − θ

=
β

 (3)

From (1), (2) and (3) it can be seen that the force supplied by the shinbone pneumatic
actuator can be expressed as a function of the θ1 and θ2 angle, obtained by the rotational
potentiometers.
As the knee articulation also the hip articulation of the prototype has only one DOF and
thus is actuated by only one pneumatic actuator as it can be seen on Fig.4. The hip
articulation scheme is again shown on the Fig.6a as a part of the overall scheme of the leg.
By simple geometric relations, the process that calculates the actuator length knowing the
rotation angle θ1, is described with (4).

1 1 1 1

2 2
1 1p 2 cosa b ab

δ = π − θ − γ − α

 = + − δ

 (4)

For a certain actuator length p1, the angle β1 can be easily deduced as in (5).

 1 1
1

1

sinsin ()
p

b− δβ = (5)

FTact indicates the force supplied by the thighbone pneumatic actuator, whereas the arrow
indicated by MTg shows the opponent force caused by the gravity as for the thighbone. MT is

Gait Training using Pneumatically Actuated Robot System

231

the approximate sum of the weights of the thighbone applied in the centre of mass of the
thighbone.
From a simple torque balance with respect to the point H, Fig. 5b, the FTact value depending
on the angular positions of hip and knee is derived. Equation (6) shows the relation found
for the hip articulation.

 1 1 1 2
Tact

1

sin [sin sin()]
F

sin
T ST HG S HK KGM gL M g L L

a

θ + θ + θ − θ
=

β
 (6)

From equations (4), (5) and (6) it can be seen that the force supplied by the thighbone
pneumatic actuator also can be expressed as a function of the θ1 and θ2 angles obtained by
the rotational potentiometers.
So, analytic relations between the forces provided by the pneumatic actuators and the
torques needed to move the hip and knee articulations have been found. In particular, in our
case it is useful to analyze the forces necessary to counteract the gravitational load acting on
the thighbone and shinbone centre of mass, varying the joints angular position, because it
offers the possibility of inserting a further compensation step in the control architecture in
order to compensate the influence of errors, due to modelling and/or external disturbances,
during the movements.

5. Numerical solution of the inverse kinematic problem
Walking is a complicated repetitious sequence of movement. The human walking gait cycle
in its simplest form is comprised of stance and swing phases.
The stance phase which typically represents 60% of gait cycle is the period of support, while
the swing phase for the same limb, which is the remaining 40% of the gait cycle, is the non-
support phase [13]. Slight variations occur in the percentage of stance and swing related to
gait velocity.

Fig. 7. Position of the markers

Advances in Robot Navigation

232

To analyze the human walking, a camera based motion captured system was used in our
laboratory. Motion capturing of a one healthy subject walking on the treadmill, was done
with one video camera placed with optical axis perpendicular in respect of the sagittal plane
of the gait motion. The subject had a marker mounted on a hip, knee and ankle.
An object with known dimensions (grid) was placed inside the filming zone, and it was
used like reference to transform the measurement from pixel to distance measurement unit
(Fig. 7). The video was taken with the resolution of 25 frame/s.
The recorded video was post-processed and kinematics movement parameters of limbs’
characteristic points (hip, knee and ankle) were extracted. After that, the obtained trajectory
was used to resolve the problem of inverse kinematics of our lower limb rehabilitation
system. The inverse kinematic problem was resolved in numerical way, with the help of
Working Model 2D software (Fig. 8). By the means of this software the target trajectory that
should be performed by each of the actuators was determined.

Fig. 8. Working Model 2D was used to obtain the actuators length, velocity and forces applied

6. Control architecture
The overall control architecture is presented with the diagram on the Fig. 9. In particular, it
is based on fuzzy logic controllers which aim to regulate the lengths of thighbone and
shinbone pneumatic actuators. The force compensators are calculating the forces necessary
to counteract the gravitational load acting on the thighbone and shinbone center of mass,
varying the joints angular position.
The state variables of the pneumatic fuzzy control system are: the actuator length error E,
which is the input signal and two output control signals Urear and Ufront which are control
voltages of the valves connected to the rear chamber and front chamber respectively.
Actuator length error in the system is given by:

 () () ()E kT R kT L kT= − (7)

where, R(kT) is the target displacement, L(kT) is the actual measured displacement, and T is
the sampling time.
Based on this error the output voltage, that controls the pressure in both chambers of the
cylinders, is adjusted. Seven linguistic values non-uniformly distributed along their

Gait Training using Pneumatically Actuated Robot System

233

universe of discourse have been defined for input/output variables (negative large-NL,
negative medium-NM, negative small-NS, zero-Z, positive small-PS, positive medium-PM,
and positive large-PL). For this study trapezoidal and triangular-shaped fuzzy sets are
chosen for input variable and singleton fuzzy sets for output variables.

 Control algoritam

Target
actuators
lengths -

Vtact,Vsact

Vtact*,Vsact*

r e=r-x Fuzzy Controller for
thighbone and

shinbone

Force compensator

+

Joint-actuators inverse
kinematic module

Jo
in

t
an

gl
e

x

Fig. 9. Control architecture diagram

The membership functions were optimized starting from a first, perfectly symmetrical set.
Optimization was performed experimentally by trial and test with different membership
function sets. The membership functions that give optimum results are illustrated in Figs.
10, 11 and 12.

Fig. 10. Membership functions of input variable E

Fig. 11. Membership functions of output variable Ufront

Advances in Robot Navigation

234

Fig. 12. Membership functions of output variable Urear

The rules of the fuzzy algorithm are shown in Table 1 in a matrix format.
The max-min algorithm is applied and centre of gravity (CoG) method is used for deffuzzify
and to obtain an accurate control signal. Since the working area of cylinders is overlapping,
the same fuzzy controller is used for both of them. The force compensators are calculating
the forces necessary to counteract the gravitational load acting on the thighbone and
shinbone centre of mass, varying the joints angular position.

Rule n ° E ANT POS

1 PL PL NL

2 PM PM NM

3 PS PS NS

4 Z Z Z

5 NS NS PS

6 NM NM PM

7 NL NL PL

Table 1. Rule matrix of the fuzzy controller

Target pneumatic actuators lengths obtained by off-line procedure were placed in the input
data module. In this way there is no necessity of real-time calculation of the inverse
kinematics and the complexity of the overall control algorithm is very low. The feedback
information is represented by the hip and knee joint working angles and the cylinder
lengths.
The global control algorithm runs inside an embedded PC104, which represents the system
supervisor. The PC104 is based on Athena board from Diamond Systems, with real time
Windows CE.Net operating system, which uses the RAM based file system. The Athena
board combines the low-power Pentium-III class VIA Eden processor (running at 400 MHz)
with on-board 128 MB RAM memory, 4 USB ports, 4 serial ports, and a 16-bit low-noise data
acquisition circuit, into a new compact form factor measuring only 4.2" x 4.5". The data
acquisition circuit provides high-accuracy; stable 16-bit A/D performance with 100 KHz
sample rate, wide input voltage capability up to +/- 10V, and programmable input ranges.
It includes 4 12-bit D/A channels, 24 programmable digital I/O lines, and two

Gait Training using Pneumatically Actuated Robot System

235

programmable counter/timers. A/D operation is enhanced by on-board FIFO with
interrupt-based transfers, internal/external A/D triggering, and on-board A/D sample rate
clock.
The PC 104 is directly connected to each rotational potentiometer and valves placed
onboard the robot.
In order to decrease the computational load and to increase the real-time performances of
the control algorithm the whole fuzzy controller was substituted with a hash table with
interpolated values and loaded in the operating memory of the PC104.

7. Experimental results
To test the effectiveness of the proposed control architecture on our lower limbs
rehabilitation robot system, experimental tests without patients were performed, with a
sampling frequency of 100 Hz, and a pressure of 0.6 MPa.
The larger movements during the normal walking occur in the sagittal plane. Because of
this, the hip and the knee rotational angles in sagittal plane were analyzed. During normal
walking, the hip swings forward from its fully extended position, roughly −20 deg, to the
fully flexed position, roughly +10 deg. The knee starts out somewhat flexed at toe-off,
roughly 40 deg, continues to flex to about +70 deg and then straightens out close to 10 deg at
touch-down. Schematic representation of the anatomical joint angle convention is shown in
Figure 13.

Fig. 13. Schematic representation of the anatomical joint angle convention

Figure 14 and Figure 15 show the sagittal hip and knee angle as function of time, of both
human (position tracking measurement with leg-markers) and robot (joint angle
measurements).

Advances in Robot Navigation

236

Fig. 14. Comparison of target and experimentally obtained hip angle as function of time

The results from the experiments show that the curves have reached the desired ones
approximately. However, error (which is max. 5 degrees) exists, but doesn’t affect much on
final gait trajectory.

Fig. 15. Comparison of target and experimentally obtained knee angle as function of time

8. Conclusion
Powered exoskeleton device for gait rehabilitation has been designed and realized, together
with proper control architecture. Its DOFs allow free leg motion, while the patient walks on
a treadmill with its weight, completely or partially supported by the suspension system.
The use of pneumatic actuators for actuation of this rehabilitation system is reasonable,
because they offer high force output, good backdrivability, and good position and force
control, at a relatively low cost.

Gait Training using Pneumatically Actuated Robot System

237

The effectiveness of the developed rehabilitation system and proposed control architecture
was experimentally tested. During the experiments, the movement was natural and smooth
while the limb moves along the target trajectory.
In order to increase the performance of this rehabilitation system a force control loop should
be implemented as a future development. The future work also foresees two more steps of
evaluation of the system: experiments with voluntary healthy persons and experiments with
disable patients.

9. References
Aoyagi, D.A., Ichinose, W. E. I., Harkema, S. J. H, Reinkensmeyer, D J. R, & Bobrow, J. E. B.

(Sep. 2007) A Robot and Control Algorithm That Can Synchronously Assist in
Naturalistic Motion During Body-Weight-Supported Gait Training Following
Neurologic Injury, IEEE Transactions on neural systems and rehabilitation engineering,
vol.15, no. 3.

Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat.
Brain Res. 1987; 412(1):84–95.

Colombo G., Joerg M., Schreier R., Dietz V., Treadmill training of paraplegic patients using a
robotic orthosis, J. Rehabil. Res. Dev. 17 (2000) 35–42.

Grillner S. Interaction between central and peripheral mechanisms in the control of
locomotion. Prog Brain Res. 1979;50:227–235.

Hassid, E.H., Rose, D.R., Commisarow, J.C., Guttry, M.G. & Dobkin, B.D. (1997), Improved
gait symmetry in hemiparetic stroke patients induced during body weight
supported treadmill stepping, J. Neurol. Rehabil. 11, 21–26.

Hesse, S.H., Bertelt, C.B., Schaffrin, A.S., Malezic, M. M., & Mauritz, K.M. (October 1994),
Restoration of gait in non-ambulatory hemiparetic patients by treadmill training
with partial body weight support, Arch. Phys. Med. Rehabil. 75, 1087–1093.

Hesse, S.H. & Uhlenbrock, D.U. (2000), A mechanized gait trainer for restoration of gait, J.
Rehabil. Res. Development, vol. 37, no. 6, pp. 701–708.

Hornby, T.H., Zemon, D.Z. & Campbell, D.C. (Jan. 2005), Robotic-assisted, body-
weightsupported treadmill training in individuals following motor incomplete
spinal cord injuri, Physical Therapy, vol. 85, no. 1, 52-66.

Jezernik, S.J., Colombo, G.C., Keller, T.K., Frueh, H.F. & Morari, M. M. (Apr. 2003), Robotic
orthosis lokomat: A rehabilitation and research tool, Neuromodulation, vol. 6, no. 2,
pp. 108–115.

Miller EW, Quinn ME, Seddon PG. Body weight support treadmill and overground
ambulation training for two patients with chronic disability secondary to stroke.
Phys Ther. 2002;82:53–61.

Schmidt H., Hesse S., Bernhardt R., Kruger J., Hapticwalker—A novel haptic foot device,
ACM Trans. Appl. Perception (TAP), vol. 2, no. 2, pp. 166–180, Apr. 2005.

Veneman J, Kruidhof R, van der Helm FCT, van der Kooy H. Design of a Series Elastic- and
Bowdencable-based actuation system for use as torque-actuator in exoskeleton-type
training robots. Proceedings of the ICOOR 2005. 2005.

Visintin M, Barbeau H. The effects of body weight support on the locomotor pattern of
spastic paretic patients. Can J Neurol Sci. 1989;16:315–325.

Advances in Robot Navigation

238

Visintin, M.V., Barbeau, H.B, Bitensky, N.B, & Mayo, N.M. (1998), Using a new approach to
retrain gait in stroke patients through body weight support and treadmill training,
Stroke 29,1122–1128.

Wernig, A.W., Nanassy, A.N. & Muller, A.M. (1999), Laufband (treadmill) therapy in
incomplete paraplegia and tetraplegia, J. Neurotrauma 16, 719–726.

	preface Advances in Robot Navigation
	Part 1Robot Navigation Fundamentals
	1 Conceptual Bases of Robot Navigation Modeling, Control and Applications
	2 Vision-only Motion Controller for Omni-directional Mobile Robot Navigation
	3 Application of Streaming Algorithms and DFA Learning for Approximating Solutions to Problems in Robot Navigation
	4 SLAM and Exploration using Differential Evolution and Fast Marching
	Part 2 Adaptive Navigation
	5 Adaptive Navigation Control for Swarms of Autonomous Mobile Robots
	6 Hybrid Approach for Global Path Selection & Dynamic Obstacle Avoidance for Mobile Robot Navigation
	7 Navigation Among Humans
	Part 3 Robot Navigation Inspired by Nature
	8 Brain-actuated Control of Robot Navigation
	9 A Distributed Mobile Robot Navigation by Snake Coordinated Vision Sensors
	Part 4 Social Robotics
	10 Knowledge Modelling in Two-Level Decision Making for Robot Navigation
	11 Gait Training using Pneumatically Actuated Robot System

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

