

Licence LGPL
Toolbox home page http://www.petercorke.com/robot
Discussion group http://groups.google.com.au/group/robotics-tool-box

Copyright c©2011 Peter Corke
peter.i.corke@gmail.com
September 2011
http://www.petercorke.com

http://www.petercorke.com/robot
http://groups.google.com.au/group/robotics-tool-box
http://www.petercorke.com

3

Preface

Peter C0rke

The practice of robotics and computer vision
each involve the application of computational algo-

rithms to data. The research community has devel-
oped a very large body of algorithms but for a
newcomer to the field this can be quite daunting.

For more than 10 years the author has maintained two open-
source matlab® Toolboxes, one for robotics and one for vision.
They provide implementations of many important algorithms and
allow users to work with real problems, not just trivial examples.

This new book makes the fundamental algorithms of robotics,
vision and control accessible to all. It weaves together theory, algo-
rithms and examples in a narrative that covers robotics and com-
puter vision separately and together. Using the latest versions
of the Toolboxes the author shows how complex problems can be
decomposed and solved using just a few simple lines of code.
The topics covered are guided by real problems observed by the
author over many years as a practitioner of both robotics and
computer vision. It is written in a light but informative style, it is
easy to read and absorb, and includes over 1000 matlab® and
Simulink® examples and figures. The book is a real walk through
the fundamentals of mobile robots, navigation, localization, arm-
robot kinematics, dynamics and joint level control, then camera
models, image processing, feature extraction and multi-view
geometry, and finally bringing it all together with an extensive
discussion of visual servo systems.

Peter Corke

Robotics,
 Vision
 and
 Control

Robotics, Vision and Control

isbn 978-3-642-20143-1

1

› springer.com
123

Corke

FUNDAMENTAL
ALGORITHMS
IN MATL AB®

783642 2014319

Robotics,
 Vision
 and
 Control

This, the ninth release of the Toolbox, represents
over fifteen years of development and a substan-
tial level of maturity. This version captures a large
number of changes and extensions generated over
the last two years which support my new book
“Robotics, Vision & Control” shown to the left.

The Toolbox has always provided many functions
that are useful for the study and simulation of clas-
sical arm-type robotics, for example such things
as kinematics, dynamics, and trajectory generation.
The Toolbox is based on a very general method of
representing the kinematics and dynamics of serial-
link manipulators. These parameters are encapsu-
lated in MATLAB

R©
objects — robot objects can be

created by the user for any serial-link manipulator
and a number of examples are provided for well know robots such as the Puma 560
and the Stanford arm amongst others. The Toolbox also provides functions for manip-
ulating and converting between datatypes such as vectors, homogeneous transforma-
tions and unit-quaternions which are necessary to represent 3-dimensional position and
orientation.

This ninth release of the Toolbox has been significantly extended to support mobile
robots. For ground robots the Toolbox includes standard path planning algorithms
(bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF,
particle filter), map building (EKF) and simultaneous localization and mapping (EKF),
and a Simulink model a of non-holonomic vehicle. The Toolbox also including a de-
tailed Simulink model for a quadcopter flying robot.

The routines are generally written in a straightforward manner which allows for easy
understanding, perhaps at the expense of computational efficiency. If you feel strongly
about computational efficiency then you can always rewrite the function to be more
efficient, compile the M-file using the Matlab compiler, or create a MEX version.

The manual is now auto-generated from the comments in the MATLAB
R©

code itself
which reduces the effort in maintaining code and a separate manual as I used to — the
downside is that there are no worked examples and figures in the manual. However
the book “Robotics, Vision & Control” provides a detailed discussion (over 600 pages,
nearly 400 figures and 1000 code examples) of how to use the Toolbox functions to

Robotics Toolbox 9 for MATLAB
R©

4 Copyright c©Peter Corke 2011

solve many types of problems in robotics, and I commend it to you.

Robotics Toolbox 9 for MATLAB
R©

5 Copyright c©Peter Corke 2011

Contents

Introduction . 4

1 Introduction 9
1.1 What’s new . 9
1.2 Support . 11
1.3 How to obtain the Toolbox . 12
1.4 MATLAB version issues . 12
1.5 Use in teaching . 12
1.6 Use in research . 12
1.7 Support, bug fixes, etc. 13

1.7.1 Other toolboxes . 13
1.8 Acknowledgements . 14

2 Functions and classes 15
SerialLink . 15
Bug2 . 33
DHFactor . 34
DXform . 35
Dstar . 37
EKF . 40
Link . 44
Map . 50
Navigation . 52
PGraph . 55
PRM . 62
ParticleFilter . 64
Polygon . 67
Quaternion . 72
RRT . 78
RandomPath . 78
RangeBearingSensor . 81
Sensor . 85
Vehicle . 86
about . 92
angdiff . 92
angvec2r . 93
angvec2tr . 93
circle . 93

Robotics Toolbox 9 for MATLAB
R©

6 Copyright c©Peter Corke 2011

CONTENTS CONTENTS

colnorm . 94
ctraj . 94
delta2tr . 95
diff2 . 95
distancexform . 95
e2h . 96
edgelist . 96
eul2jac . 97
eul2r . 97
eul2tr . 98
ftrans . 98
gauss2d . 99
h2e . 99
homline . 99
homtrans . 99
imeshgrid . 100
ishomog . 101
isrot . 101
isvec . 101
jsingu . 102
jtraj . 102
lspb . 103
maxfilt . 103
mdl Fanuc10L . 104
mdl MotomanHP6 . 104
mdl S4ABB2p8 . 105
mdl p8 . 105
mdl puma560 . 106
mdl puma560akb . 106
mdl quadcopter . 107
mdl stanford . 108
mdl twolink . 109
mlabel . 109
mplot . 109
mstraj . 110
mtools . 111
mtraj . 111
norm2 . 112
numcols . 112
numrows . 112
oa2r . 113
oa2tr . 113
plot2 . 114
plot box . 114
plot circle . 114
plot ellipse . 115
plot ellipse inv . 116
plot frame . 116
plot homline . 116
plot point . 117

Robotics Toolbox 9 for MATLAB
R©

7 Copyright c©Peter Corke 2011

CONTENTS CONTENTS

plot poly . 117
plot sphere . 118
plotbotopt . 118
plotp . 119
qplot . 119
r2t . 119
ramp . 120
rotx . 120
roty . 121
rotz . 121
rpy2jac . 121
rpy2r . 122
rpy2tr . 122
rt2tr . 123
rtdemo . 123
se2 . 124
skew . 124
t2r . 125
tb optparse . 125
tpoly . 126
tr2angvec . 127
tr2delta . 127
tr2eul . 128
tr2jac . 128
tr2rpy . 129
tr2rt . 129
tranimate . 130
transl . 131
trinterp . 131
trnorm . 132
trotx . 132
troty . 133
trotz . 133
trplot . 133
trplot2 . 134
trprint . 135
unit . 135
usefig . 136
vex . 136
xaxis . 136
yaxis . 137

Robotics Toolbox 9 for MATLAB
R©

8 Copyright c©Peter Corke 2011

Chapter 1

Introduction

1.1 What’s new

Changes:

• The manual (robot.pdf) no longer contains a per function description. All docu-
mentation is now in the m-file, making maintenance and consistency easier.

• The Functions link from the Toolbox help browser lists all functions with hyper-
links to the indiviual help entries.

• The Robot class is now named SerialLink to be more specific.

• Almost all functions that operate on a SerialLink object are now methods rather
than functions, for example plot() or fkine(). In practice this makes little dif-
ference to the user but operations can now be expressed as robot.plot(q) or
plot(robot, q). Toolbox documentation now prefers the former convention which
is more aligned with object-oriented practice.

• The parametrers to the Link object constructor are now in the order: theta, d,
a, alpha. Why this order? It’s the order in which the link transform is created:
RZ(theta) TZ(d) TX(a) RX(alpha).

• All robot models now begin with the prefix mdl , so puma560 is now mdl puma560.

• The function drivebot is now the SerialLink method teach.

• The function ikine560 is now the SerialLink method ikine6s to indicate that it
works for any 6-axis robot with a spherical wrist.

• The link class is now named Link to adhere to the convention that all classes
begin with a capital letter.

• The quaternion class is now named Quaternion to adhere to the convention that
all classes begin with a capital letter.

• A number of utility functions have been moved into the a directory common
since they are not robot specific.

Robotics Toolbox 9 for MATLAB
R©

9 Copyright c©Peter Corke 2011

1.1. WHAT’S NEW CHAPTER 1. INTRODUCTION

• skew no longer accepts a skew symmetric matrix as an argument and returns a
3-vector, this functionality is provided by the new function vex.

• tr2diff and diff2tr are now called tr2delta and delta2tr

• ctraj with a scalar argument now spaces the points according to a trapezoidal
velocity profile (see lspb). To obtain even spacing provide a uniformly spaced
vector as the third argument, eg. linspace(0, 1, N).

New features:

• Model of a mobile robot, Vehicle, that has the ”bicycle” kinematic model (car-
like). For given inputs it updates the robot state and returns noise corrupted
odometry measurements. This can be used in conjunction with a ”driver” class
such as RandomPath which drives the vehicle between random waypoints within
a specified rectangular region.

• Model of a laser scanner RangeBearingSensor, subclass of Sensor, that works
in conjunction with a Map object to return range and bearing to invariant point
features in the environment.

• Extended Kalman filter EKF can be used to perform localization by dead reckon-
ing or map featuers, map buildings and simultaneous localization and mapping.

• Path planning classes: distance transform DXform, D* lattice planner Dstar,
probabilistic roadmap planner PRM, and rapidly exploring random tree RRT.

• The RPY functions tr2rpy and rpy2tr assume that the roll, pitch, yaw rotations
are about the X, Y, Z axes which is consistent with common conventions for
vehicles (planes, ships, ground vehicles). For some applications (eg. cameras)
it useful to consider the rotations about the Z, Y, Z axes, and this behaviour can
be obtained by using the option ’zyx’ with these functions (note this is the pre
release 8 behaviour).

• jsingu

• jsingu

• lspb

• tpoly

• qplot

• mtraj

• mstraj

• wtrans

• se2

• se3

• trprint compact display of a transform in various formats.

• trplot

• trplot2 as above but for SE(2)

• tranimate

Robotics Toolbox 9 for MATLAB
R©

10 Copyright c©Peter Corke 2011

1.2. SUPPORT CHAPTER 1. INTRODUCTION

• DHFactor a simple means to generate the Denavit-Hartenberg kinematic model
of a robot from a sequence of elementary transforms.

• Monte Carlo estimator ParticleFilter.

• vex performs the inverse function to skew, it converts a skew-symmetric matrix
to a 3-vector.

• Pgraph represents a non-directed embedded graph, supports plotting and mini-
mum cost path finding.

• Polygon a generic 2D polygon class that supports plotting, intersectio/union/difference
of polygons, line/polygon intersection, point/polygon containment.

• plot box plot a box given TL/BR corners or center+WH, with options for edge
color, fill color and transparency.

• plot circle plot one or more circles, with options for edge color, fill color and
transparency.

• plot sphere plot a sphere, with options for edge color, fill color and transparency.

• plot ellipse plot an ellipse, with options for edge color, fill color and trans-
parency.

• plot ellipsoid plot an ellipsoid, with options for edge color, fill color and trans-
parency.

• plot poly plot a polygon, with options for edge color, fill color and transparency.

• about one line summary of a matrix or class, compact version of whos

• tb optparse general argument handler and options parser, used internally in many
functions.

Bugfixes:

• Improved error messages in many functions

• Removed trailing commas from if and for statements

1.2 Support

There is no support! This software is made freely available in the hope that you find
it useful in solving whatever problems you have to hand. I am happy to correspond
with people who have found genuine bugs or deficiencies but my response time can
be long and I can’t guarantee that I respond to your email. I am very happy to accept
contributions for inclusion in future versions of the toolbox, and you will be suitably
acknowledged.

I can guarantee that I will not respond to any requests for help with assignments
or homework, no matter how urgent or important they might be to you. That’s
what you your teachers, tutors, lecturers and professors are paid to do.

You might instead like to communicate with other users via the Google Group called
“Robotics Toolbox”

Robotics Toolbox 9 for MATLAB
R©

11 Copyright c©Peter Corke 2011

1.3. HOW TO OBTAIN THE TOOLBOX CHAPTER 1. INTRODUCTION

http://groups.google.com.au/group/robotics-tool-box

which is a forum for discussion. You need to signup in order to post, and the signup
process is moderated by me so allow a few days for this to happen. I need you to write a
few words about why you want to join the list so I can distinguish you from a spammer
or a web-bot.

1.3 How to obtain the Toolbox

The Robotics Toolbox is freely available from the Toolbox home page at

http://www.petercorke.com

The files are available in either gzipped tar format (.gz) or zip format (.zip). The web
page requests some information from you such as your country, type of organization
and application. This is just a means for me to gauge interest and to help convince my
bosses (and myself) that this is a worthwhile activity.

The file robot.pdf is a manual that describes all functions in the Toolbox. It is
auto-generated from the comments in the MATLAB

R©
code and is fully hyperlinked:

to external web sites, the table of content to functions, and the “See also” functions to
each other.

A menu-driven demonstration can be invoked by the function rtdemo.

1.4 MATLAB version issues

The Toolbox has been tested under R2011a.

1.5 Use in teaching

This is definitely encouraged! You are free to put the PDF manual (robot.pdf or
the web-based documentation html/*.html on a server for class use. If you plan to
distribute paper copies of the PDF manual then every copy must include the first two
pages (cover and licence).

1.6 Use in research

If the Toolbox helps you in your endeavours then I’d appreciate you citing the Toolbox
when you publish. The details are

@ARTICLE{Corke96b,
AUTHOR = {P.I. Corke},
JOURNAL = {IEEE Robotics and Automation Magazine},
MONTH = mar,
NUMBER = {1},

Robotics Toolbox 9 for MATLAB
R©

12 Copyright c©Peter Corke 2011

http://groups.google.com.au/group/robotics-tool-box
http://www.petercorke.com

1.7. SUPPORT, BUG FIXES, ETC. CHAPTER 1. INTRODUCTION

PAGES = {24-32},
TITLE = {A Robotics Toolbox for {MATLAB}},
VOLUME = {3},
YEAR = {1996}

}

or

“A robotics toolbox for MATLAB”,
P.Corke,
IEEE Robotics and Automation Magazine,
vol.3, pp.2432, Sept. 1996.

which is also given in electronic form in the README file.

1.7 Support, bug fixes, etc.

There is no support! This software is made freely available in the hope that you find
it useful in solving whatever problems you have to hand.I am happy to correspond
with people who have found genuine bugs or deficiencies but my response time can
be long and I can’t guarantee that I respond to your email. I am very happy to accept
contributions for inclusion in future versions of the toolbox, and you will be suitably
acknowledged.

I can guarantee that I will not respond to any requests for help with assignments
or homework, no matter how urgent or important they might be to you. That’s
what you have lecturers and professors for.

You might instead like to communicate with other users via the Google Group called
“Robotics Toolbox”

http://groups.google.com.au/group/robotics-tool-box

which is a forum for discussion. You need to signup in order to post, and the signup
process is moderated by me so allow a few days for this to happen. I need you to write a
few words about why you want to join the list so I can distinguish you from a spammer
or a web-bot.

1.7.1 Other toolboxes

Also of interest might be:

• A python implementation of the Toolbox at http://code.google.com/
p/robotics-toolbox-python. All core functionality of the release 8
Toolbox is present including kinematics, dynamics, Jacobians, quaternions etc.
It is based on the python numpy class. The main current limitation is the lack
of good 3D graphics support but people are working on this. Nevertheless this
version of the toolbox is very usable and of course you don’t need a MATLAB

R©

licence to use it. Watch this space.

Robotics Toolbox 9 for MATLAB
R©

13 Copyright c©Peter Corke 2011

http://groups.google.com.au/group/robotics-tool-box
http://code.google.com/p/robotics-toolbox-python
http://code.google.com/p/robotics-toolbox-python

1.8. ACKNOWLEDGEMENTS CHAPTER 1. INTRODUCTION

• Machine Vision toolbox (MVTB) for MATLAB
R©

. This was described in an
article

@article{Corke05d,
Author = {P.I. Corke},
Journal = {IEEE Robotics and Automation Magazine},
Month = nov,
Number = {4},
Pages = {16-25},
Title = {Machine Vision Toolbox},
Volume = {12},
Year = {2005}}

and provides a very wide range of useful computer vision functions beyond the
Mathwork’s Image Processing Toolbox. You can obtain this from http://
www.petercorke.com/vision.

1.8 Acknowledgements

Last, but not least, I have corresponded with a great many people via email since the
first release of this Toolbox. Some have identified bugs and shortcomings in the doc-
umentation, and even better, some have provided bug fixes and even new modules,
thankyou. See the file CONTRIB for details. I’d like to especially mention Wynand
Smart for some arm robot models, Paul Pounds for the quadcopter model, and Paul
Newman (Oxford) for inspiring the mobile robot code.

Robotics Toolbox 9 for MATLAB
R©

14 Copyright c©Peter Corke 2011

http://www.petercorke.com/vision
http://www.petercorke.com/vision

Chapter 2

Functions and classes

SerialLink
Serial-link robot class

r = SerialLink(links, options) is a serial-link robot object from a vector of Link ob-
jects.

r = SerialLink(dh, options) is a serial-link robot object from a table (matrix) of
Denavit-Hartenberg parameters. The columns of the matrix are theta, d, alpha, a. An
optional fifth column sigma indicate revolute (sigma=0, default) or prismatic (sigma=1).

Options

‘name’, name set robot name property
‘comment’, comment set robot comment property
‘manufacturer’, manuf set robot manufacturer property
‘base’, base set base transformation matrix property
‘tool’, tool set tool transformation matrix property
‘gravity’, g set gravity vector property
‘plotopt’, po set plotting options property

Robotics Toolbox 9 for MATLAB
R©

15 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plot display graphical representation of robot
teach drive the graphical robot
fkine return forward kinematics
ikine6s return inverse kinematics for 6-axis spherical wrist robot
ikine return inverse kinematics using iterative method
jacob0 return Jacobian matrix in world frame
jacobn return Jacobian matrix in tool frame
jtraj return a joint space trajectory
dyn show dynamic properties of links
isspherical true if robot has spherical wrist
islimit true if robot has spherical wrist
payload add a payload in end-effector frame
coriolis return Coriolis joint force
gravload return gravity joint force
inertia return joint inertia matrix
accel return joint acceleration
fdyn return joint motion
rne return joint force
perturb return SerialLink object with perturbed parameters
showlink return SerialLink object with perturbed parameters
friction return SerialLink object with perturbed parameters
maniplty return SerialLink object with perturbed parameters

Properties (read/write)

links vector of Link objects
gravity direction of gravity [gx gy gz]
base pose of robot’s base 4× 4 homog xform
tool robot’s tool transform, T6 to tool tip: 4× 4 homog xform
qlim joint limits, [qlower qupper] nx2
offset kinematic joint coordinate offsets nx1
name name of robot, used for graphical display
manuf annotation, manufacturer’s name
comment annotation, general comment
plotopt options for plot(robot), cell array

Object properties (read only)

n number of joints
config joint configuration string, eg. ‘RRRRRR’
mdh kinematic convention boolean (0=DH, 1=MDH)
islimit joint limit boolean vector
q joint angles from last plot operation
handle graphics handles in object

Robotics Toolbox 9 for MATLAB
R©

16 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• SerialLink is a reference object.

• SerialLink objects can be used in vectors and arrays

See also

Link, DHFactor

SerialLink.SerialLink
Create a SerialLink robot object

R = SerialLink(options) is a null robot object with no links.

R = SerialLink(R1, options) is a deep copy of the robot object R1, with all the same
properties.

R = SerialLink(dh, options) is a robot object with kinematics defined by the matrix
dh which has one row per joint and each row is [theta d a alpha] and joints are assumed
revolute.

R = SerialLink(links, options) is a robot object defined by a vector of Link objects.

Options

‘name’, name set robot name property
‘comment’, comment set robot comment property
‘manufacturer’, manuf set robot manufacturer property
‘base’, base set base transformation matrix property
‘tool’, tool set tool transformation matrix property
‘gravity’, g set gravity vector property
‘plotopt’, po set plotting options property

Robot objects can be concatenated by:

R = R1 * R2;
R = SerialLink([R1 R2]);

which is equivalent to R2 mounted on the end of R1. Note that tool transform of R1
and the base transform of R2 are lost, constant transforms cannot be represented in
Denavit-Hartenberg notation.

Note

• SerialLink is a reference object, a subclass of Handle object.

• SerialLink objects can be used in vectors and arrays

Robotics Toolbox 9 for MATLAB
R©

17 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Link, SerialLink.plot

SerialLink.accel
Manipulator forward dynamics

qdd = R.accel(q, qd, torque) is a vector of joint accelerations that result from applying
the actuator force/torque to the manipulator robot in state q and qd. If q, qd, torque are
matrices with M rows, then qdd is a matrix with M rows of acceleration corresponding
to the equivalent rows of q, qd, torque.

qdd = R.ACCEL(x) as above but x=[q,qd,torque].

Note

• Uses the method 1 of Walker and Orin to compute the forward dynamics.

• This form is useful for simulation of manipulator dynamics, in conjunction with
a numerical integration function.

See also

SerialLink.rne, SerialLink, ode45

SerialLink.char
String representation of parametesrs

s = R.char() is a string representation of the robot parameters.

SerialLink.cinertia
Cartesian inertia matrix

m = R.cinertia(q) is the N × N Cartesian (operational space) inertia matrix which
relates Cartesian force/torque to Cartesian acceleration at the joint configuration q, and
N is the number of robot joints.

Robotics Toolbox 9 for MATLAB
R©

18 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.inertia, SerialLink.rne

SerialLink.copy
Clone a robot object

r2 = R.copy() is a deepcopy of the object R.

SerialLink.coriolis
Coriolis matrix

C = R.CORIOLIS(q, qd) is the N × N Coriolis/centripetal matrix for the robot in
configuration q and velocity qd, where N is the number of joints. The product C*qd
is the vector of joint force/torque due to velocity coupling. The diagonal elements are
due to centripetal effects and the off-diagonal elements are due to Coriolis effects. This
matrix is also known as the velocity coupling matrix, since gives the disturbance forces
on all joints due to velocity of any joint.

If q and qd are row vectors, the result is a row-vector of joint torques. If q and qd are
matrices, each row is interpretted as a joint state vector, and the result is a matrix each
row being the corresponding joint torques.

Notes

• joint friction is also a joint force proportional to velocity but it is eliminated in
the computation of this value.

See also

SerialLink.rne

SerialLink.display
Display parameters

R.display() displays the robot parameters in human-readable form.

Robotics Toolbox 9 for MATLAB
R©

19 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a SerialLink object and the command has no trailing semicolon.

See also

SerialLink.char, SerialLink.dyn

SerialLink.dyn
display inertial properties

R.dyn() displays the inertial properties of the SerialLink object in a multi-line format.
The properties shown are mass, centre of mass, inertia, gear ratio, motor inertia and
motor friction.

See also

Link.dyn

SerialLink.fdyn
Integrate forward dynamics

[T,q,qd] = R.fdyn(T1, torqfun) integrates the dynamics of the robot over the time
interval 0 to T and returns vectors of time TI, joint position q and joint velocity qd.
The initial joint position and velocity are zero. The torque applied to the joints is
computed by the user function torqfun:

[ti,q,qd] = R.fdyn(T, torqfun, q0, qd0) as above but allows the initial joint position
and velocity to be specified.

The control torque is computed by a user defined function

TAU = torqfun(T, q, qd, ARG1, ARG2, ...)

where q and qd are the manipulator joint coordinate and velocity state respectively],
and T is the current time.

[T,q,qd] = R.fdyn(T1, torqfun, q0, qd0, ARG1, ARG2, ...) allows optional arguments
to be passed through to the user function.

Robotics Toolbox 9 for MATLAB
R©

20 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• This function performs poorly with non-linear joint friction, such as Coulomb
friction. The R.nofriction() method can be used to set this friction to zero.

• If torqfun is not specified, or is given as 0 or [], then zero torque is applied to
the manipulator joints.

• The builtin integration function ode45() is used.

See also

SerialLink.accel, SerialLink.nofriction, SerialLink.RNE, ode45

SerialLink.fkine
Forward kinematics

T = R.fkine(q) is the pose of the robot end-effector as a homogeneous transformation
for the joint configuration q. For an N-axis manipulator q is an N-vector.

If q is a matrix, the M rows are interpretted as the generalized joint coordinates for
a sequence of points along a trajectory. q(i,j) is the j’th joint parameter for the i’th
trajectory point. In this case it returns a 4x4xM matrix where the last subscript is the
index along the path.

Note

• The robot’s base or tool transform, if present, are incorporated into the result.

See also

SerialLink.ikine, SerialLink.ikine6s

SerialLink.friction
Friction force

tau = R.friction(qd) is the vector of joint friction forces/torques for the robot moving
with joint velocities qd.

The friction model includes viscous friction (linear with velocity) and Coulomb fric-
tion (proportional to sign(qd)).

Robotics Toolbox 9 for MATLAB
R©

21 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Link.friction

SerialLink.gravload
Gravity loading

taug = R.gravload(q) is the joint gravity loading for the robot in the joint configuration
q. Gravitational acceleration is a property of the robot object.

If q is a row vector, the result is a row vector of joint torques. If q is a matrix, each row
is interpreted as a joint configuration vector, and the result is a matrix each row being
the corresponding joint torques.

taug = R.gravload(q, grav) is as above but the gravitational acceleration vector grav
is given explicitly.

See also

SerialLink.rne, SerialLink.itorque, SerialLink.coriolis

SerialLink.ikine
Inverse manipulator kinematics

q = R.ikine(T) is the joint coordinates corresponding to the robot end-effector pose T
which is a homogenenous transform.

q = R.ikine(T, q0) specifies the initial estimate of the joint coordinates.

q = R.ikine(T, q0, m) specifies the initial estimate of the joint coordinates and a mask
matrix. For the case where the manipulator has fewer than 6 DOF the solution space
has more dimensions than can be spanned by the manipulator joint coordinates. In this
case the mask matrix m specifies the Cartesian DOF (in the wrist coordinate frame)
that will be ignored in reaching a solution. The mask matrix has six elements that
correspond to translation in X, Y and Z, and rotation about X, Y and Z respectively.
The value should be 0 (for ignore) or 1. The number of non-zero elements should equal
the number of manipulator DOF.

For example when using a 5 DOF manipulator rotation about the wrist z-axis might be
unimportant in which case m = [1 1 1 1 1 0].

In all cases if T is 4x4xM it is taken as a homogeneous transform sequence and
R.ikine() returns the joint coordinates corresponding to each of the transforms in the
sequence. q is m ×N where N is the number of robot joints. The initial estimate of q
for each time step is taken as the solution from the previous time step.

Robotics Toolbox 9 for MATLAB
R©

22 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Solution is computed iteratively using the pseudo-inverse of the manipulator Ja-
cobian.

• The inverse kinematic solution is generally not unique, and depends on the initial
guess q0 (defaults to 0).

• Such a solution is completely general, though much less efficient than specific
inverse kinematic solutions derived symbolically.

• This approach allows a solution to obtained at a singularity, but the joint angles
within the null space are arbitrarily assigned.

See also

SerialLink.fkine, tr2delta, SerialLink.jacob0, SerialLink.ikine6s

SerialLink.ikine6s
Inverse kinematics for 6-axis robot with spherical wrist

q = R.ikine6s(T) is the joint coordinates corresponding to the robot end-effector pose
T represented by the homogenenous transform. This is a analytic solution for a 6-axis
robot with a spherical wrist (such as the Puma 560).

q = R.IKINE6S(T, config) as above but specifies the configuration of the arm in the
form of a string containing one or more of the configuration codes:

‘l’ arm to the left (default)
‘r’ arm to the right
‘u’ elbow up (default)
‘d’ elbow down
‘n’ wrist not flipped (default)
‘f’ wrist flipped (rotated by 180 deg)

Notes

• The inverse kinematic solution is generally not unique, and depends on the con-
figuration string.

Reference

Inverse kinematics for a PUMA 560 based on the equations by Paul and Zhang From
The International Journal of Robotics Research Vol. 5, No. 2, Summer 1986, p. 32-44

Robotics Toolbox 9 for MATLAB
R©

23 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Robert Biro with Gary Von McMurray, GTRI/ATRP/IIMB, Georgia Institute of Tech-
nology 2/13/95

See also

SerialLink.FKINE, SerialLink.IKINE

SerialLink.inertia
Manipulator inertia matrix

i = R.inertia(q) is the N ×N symmetric joint inertia matrix which relates joint torque
to joint acceleration for the robot at joint configuration q. The diagonal elements i(j,j)
are the inertia seen by joint actuator j. The off-diagonal elements are coupling inertias
that relate acceleration on joint i to force/torque on joint j.

See also

SerialLink.RNE, SerialLink.CINERTIA, SerialLink.ITORQUE

SerialLink.islimit
Joint limit test

v = R.ISLIMIT(q) is a vector of boolean values, one per joint, false (0) if q(i) is within
the joint limits, else true (1).

SerialLink.isspherical
Test for spherical wrist

R.isspherical() is true if the robot has a spherical wrist, that is, the last 3 axes intersect
at a point.

See also

SerialLink.ikine6s

Robotics Toolbox 9 for MATLAB
R©

24 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.itorque
Inertia torque

taui = R.itorque(q, qdd) is the inertia force/torque N-vector at the specified joint con-
figuration q and acceleration qdd, that is, taui = INERTIA(q)*qdd.

If q and qdd are row vectors, the result is a row vector of joint torques. If q and qdd
are matrices, each row is interpretted as a joint state vector, and the result is a matrix
each row being the corresponding joint torques.

Note

• If the robot model contains non-zero motor inertia then this will included in the
result.

See also

SerialLink.rne, SerialLink.inertia

SerialLink.jacob0
Jacobian in world coordinates

j0 = R.jacob0(q, options) is a 6 × N Jacobian matrix for the robot in pose q. The
manipulator Jacobian matrix maps joint velocity to end-effector spatial velocity V =
j0*QD expressed in the world-coordinate frame.

Options

‘rpy’ Compute analytical Jacobian with rotation rate in terms of roll-pitch-yaw angles
‘eul’ Compute analytical Jacobian with rotation rates in terms of Euler angles
‘trans’ Return translational submatrix of Jacobian
‘rot’ Return rotational submatrix of Jacobian

Note

• the Jacobian is computed in the world frame and transformed to the end-effector
frame.

• the default Jacobian returned is often referred to as the geometric Jacobian, as
opposed to the analytical Jacobian.

Robotics Toolbox 9 for MATLAB
R©

25 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.jacobn, deltatr, tr2delta

SerialLink.jacob dot
Hessian in end-effector frame

jdq = R.jacob dot(q, qd) is the product of the Hessian, derivative of the Jacobian, and
the joint rates.

Notes

• useful for operational space control

• not yet tested/debugged.

See also

: SerialLink.jacob0, diff2tr, tr2diff

SerialLink.jacobn
Jacobian in end-effector frame

jn = R.jacobn(q, options) is a 6 × N Jacobian matrix for the robot in pose q. The
manipulator Jacobian matrix maps joint velocity to end-effector spatial velocity V =
J0*QD in the end-effector frame.

Options

‘trans’ Return translational submatrix of Jacobian
‘rot’ Return rotational submatrix of Jacobian

Notes

• this Jacobian is often referred to as the geometric Jacobian

Robotics Toolbox 9 for MATLAB
R©

26 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

Paul, Shimano, Mayer, Differential Kinematic Control Equations for Simple Manipu-
lators, IEEE SMC 11(6) 1981, pp. 456-460

See also

SerialLink.jacob0, delta2tr, tr2delta

SerialLink.jtraj
Create joint space trajectory

q = R.jtraj(T0, tf, m) is a joint space trajectory where the joint coordinates reflect mo-
tion from end-effector pose T0 to tf in m steps with default zero boundary conditions
for velocity and acceleration. The trajectory q is an m × N matrix, with one row per
time step, and one column per joint, where N is the number of robot joints.

Note

• requires solution of inverse kinematics. R.ikine6s() is used if appropriate, else
R.ikine(). Additional trailing arguments to R.jtraj() are passed as trailing arug-
ments to the these functions.

See also

jtraj, SerialLink.ikine, SerialLink.ikine6s

SerialLink.maniplty
Manipulability measure

m = R.maniplty(q, options) is the manipulability index measure for the robot at the
joint configuration q. It indicates dexterity, how isotropic the robot’s motion is with
respect to the 6 degrees of Cartesian motion. The measure is low when the manipulator
is close to a singularity. If q is a matrix m is a column vector of manipulability indices
for each pose specified by a row of q.

Two measures can be selected:

• Yoshikawa’s manipulability measure is based on the shape of the velocity ellip-
soid and depends only on kinematic parameters.

Robotics Toolbox 9 for MATLAB
R©

27 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• Asada’s manipulability measure is based on the shape of the acceleration ellip-
soid which in turn is a function of the Cartesian inertia matrix and the dynamic
parameters. The scalar measure computed here is the ratio of the smallest/largest
ellipsoid axis. Ideally the ellipsoid would be spherical, giving a ratio of 1, but in
practice will be less than 1.

Options

‘T’ compute manipulability for just transational motion
‘R’ compute manipulability for just rotational motion
‘yoshikawa’ use Asada algorithm (default)
‘asada’ use Asada algorithm

Notes

• by default the measure includes rotational and translational dexterity, but this
involves adding different units. It can be more useful to look at the translational
and rotational manipulability separately.

See also

SerialLink.inertia, SerialLink.jacob0

SerialLink.mtimes
Join robots

R = R1 * R2 is a robot object that is equivalent to mounting robot R2 on the end of
robot R1.

SerialLink.nofriction
Remove friction

rnf = R.nofriction() is a robot object with the same parameters as R but with non-linear
(Couolmb) friction coefficients set to zero.

rnf = R.nofriction(’all’) as above but all friction coefficients set to zero.

Notes:

• Non-linear (Coulomb) friction can cause numerical problems when integrating
the equations of motion (R.fdyn).

Robotics Toolbox 9 for MATLAB
R©

28 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• The resulting robot object has its name string modified by prepending ‘NF/’.

See also

SerialLink.fdyn, Link.nofriction

SerialLink.payload
Add payload to end of manipulator

R.payload(m, p) adds a payload with point mass m at position p in the end-effector
coordinate frame.

See also

SerialLink.ikine6s

SerialLink.perturb
Perturb robot parameters

rp = R.perturb(p) is a new robot object in which the dynamic parameters (link mass
and inertia) have been perturbed. The perturbation is multiplicative so that values are
multiplied by random numbers in the interval (1-p) to (1+p). The name string of the
perturbed robot is prefixed by ‘p/’.

Useful for investigating the robustness of various model-based control schemes. For
example to vary parameters in the range +/- 10 percent is:

r2 = p560.perturb(0.1);

SerialLink.plot
Graphical display and animation

R.plot(q, options) displays a graphical animation of a robot based on the kinematic
model. A stick figure polyline joins the origins of the link coordinate frames. The
robot is displayed at the joint angle q, or if a matrix it is animated as the robot moves
along the trajectory.

The graphical robot object holds a copy of the robot object and the graphical element
is tagged with the robot’s name (.name property). This state also holds the last joint
configuration which can be retrieved, see PLOT(robot) below.

Robotics Toolbox 9 for MATLAB
R©

29 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Figure behaviour

If no robot of this name is currently displayed then a robot will be drawn in the current
figure. If hold is enabled (hold on) then the robot will be added to the current figure.

If the robot already exists then that graphical model will be found and moved.

Multiple views of the same robot

If one or more plots of this robot already exist then these will all be moved according
to the argument q. All robots in all windows with the same name will be moved.

Multiple robots in the same figure

Multiple robots can be displayed in the same plot, by using “hold on” before calls to
plot(robot).

Graphical robot state

The configuration of the robot as displayed is stored in the SerialLink object and can
be accessed by the read only object property R.q.

Graphical annotations and options

The robot is displayed as a basic stick figure robot with annotations such as:

• shadow on the floor

• XYZ wrist axes and labels

• joint cylinders and axes

which are controlled by options.

The size of the annotations is determined using a simple heuristic from the workspace
dimensions. This dimension can be changed by setting the multiplicative scale factor
using the ‘mag’ option.

Robotics Toolbox 9 for MATLAB
R©

30 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘workspace’, W size of robot 3D workspace, W = [xmn, xmx ymn ymx zmn zmx]
‘delay’, d delay betwen frames for animation (s)
‘cylinder’, C color for joint cylinders, C=[r g b]
‘mag’, scale annotation scale factor
‘perspective’—’ortho’ type of camera view
‘raise’—’noraise’ controls autoraise of current figure on plot
‘render’—’norender’ controls shaded rendering after drawing
‘loop’—’noloop’ controls endless loop mode
‘base’—’nobase’ controls display of base ‘pedestal’
‘wrist’—’nowrist’ controls display of wrist
‘shadow’—’noshadow’ controls display of shadow
‘name’—’noname’ display the robot’s name
‘xyz’—’noa’ wrist axis label
‘jaxes’—’nojaxes’ control display of joint axes
‘joints’—’nojoints’ controls display of joints

The options come from 3 sources and are processed in order:

• Cell array of options returned by the function PLOTBOTOPT.

• Cell array of options given by the ‘plotopt’ option when creating the SerialLink
object.

• List of arguments in the command line.

See also

plotbotopt, SerialLink.fkine

SerialLink.rne
Inverse dynamics

tau = R.rne(q, qd, qdd) is the joint torque required for the robot R to achieve the
specified joint position q, velocity qd and acceleration qdd.

tau = R.rne(q, qd, qdd, grav) as above but overriding the gravitational acceleration
vector in the robot object R.

tau = R.rne(q, qd, qdd, grav, fext) as above but specifying a wrench acting on the end
of the manipulator which is a 6-vector [Fx Fy Fz Mx My Mz].

tau = R.rne(x) as above where x=[q,qd,qdd].

tau = R.rne(x, grav) as above but overriding the gravitational acceleration vector in
the robot object R.

tau = R.rne(x, grav, fext) as above but specifying a wrench acting on the end of the
manipulator which is a 6-vector [Fx Fy Fz Mx My Mz].

Robotics Toolbox 9 for MATLAB
R©

31 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

If q,qd and qdd, or x are matrices with M rows representing a trajectory then tau is an
M ×N matrix with rows corresponding to each trajectory state.

Notes:

• The robot base transform is ignored

• The torque computed also contains a contribution due to armature inertia.

• rne can be either an M-file or a MEX-file. See the manual for details on how to
configure the MEX-file. The M-file is a wrapper which calls either rne DH or
rne MDH depending on the kinematic conventions used by the robot object.

See also

SerialLink.accel, SerialLink.gravload, SerialLink.inertia

SerialLink.showlink
Show parameters of all links

R.showlink() shows details of all link parameters for the robot object, including inertial
parameters.

See also

Link.showlink, Link

SerialLink.teach
Graphical teach pendant

R.teach() drive a graphical robot by means of a graphical slider panel. If no graphical
robot exists one is created in a new window. Otherwise all current instanes of the
graphical robots are driven.

R.teach(q) specifies the initial joint angle, otherwise it is taken from one of the existing
graphical robots.

See also

SerialLink.plot

Robotics Toolbox 9 for MATLAB
R©

32 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Bug2
Bug navigation class

A concrete subclass of Navigation that implements the bug2 navigation algorithm. This
is a simple automaton that performs local planning, that is, it can only sense the imme-
diate presence of an obstacle.

Methods

path Compute a path from start to goal
visualize Display the occupancy grid
display Display the state/parameters in human readable form
char Convert the state/parameters to human readable form

Example

load map1
bug = Bug2(map);
bug.goal = [50; 35];
bug.path([20; 10]);

See also

Navigation, DXform, Dstar, PRM

Bug2.Bug2
bug2 navigation object constructor

b = Bug2(map) is a bug2 navigation object, and map is an occupancy grid, a represen-
tation of a planar world as a matrix whose elements are 0 (free space) or 1 (occupied).

b = Bug2(map, goal) as above but specify the goal point.

See also

Navigation.Navigation

Robotics Toolbox 9 for MATLAB
R©

33 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

DHFactor
Simplify symbolic link transform expressions

f = dhfactor(s) is an object that encodes the kinematic model of a robot provided by
a string s that represents a chain of elementary transforms from the robot’s base to its
tool tip. The chain of elementary rotations and translations is symbolically factored
into a sequence of link transforms described by DH parameters.

For example:

s = ’Rz(q1).Rx(q2).Ty(L1).Rx(q3).Tz(L2)’;

indicates a rotation of q1 about the z-axis, then rotation of q2 about the x-axis, transla-
tion of L1 about the y-axis, rotation of q3 about the x-axis and translation of L2 along
the z-axis.

Methods

display shows the simplified version in terms of Denavit-Hartenberg parameters
base shows the base transform
tool shows the tool transform
command returns a string that could be passed to the SerialLink() object constructor to generate

a robot with these kinematics.

Example

>> s = ’Rz(q1).Rx(q2).Ty(L1).Rx(q3).Tz(L2)’;
>> dh = DHFactor(s);
>> dh
DH(q1+90, 0, 0, +90).DH(q2, L1, 0, 0).DH(q3-90, L2, 0, 0).Rz(+90).Rx(-90).Rz(-90)
>> r = eval(dh.command());

Notes

• Variables starting with q are assumed to be joint coordinates

• Variables starting with L are length constants.

• implemented in Java

See also

SerialLink

Robotics Toolbox 9 for MATLAB
R©

34 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

DXform
Distance transform navigation class

A concrete subclass of Navigation that implements the distance transform navigation
algorithm. This provides minimum distance paths.

Methods

plan Compute the cost map given a goal and map
path Compute a path to the goal
visualize Display the obstacle map
display Print the parameters in human readable form
char Convert the parameters to a human readable string

Properties

metric The distance metric, can be ‘euclidean’ (default) or ‘cityblock’
distance The distance transform of the occupancy grid

Example

load map1
dx = DXform(map);
dx.plan(goal)
dx.path(start)

See also

Navigation, Dstar, PRM, distancexform

DXform.DXform
Distance transform navigation constructor

dx = DXform(map) is a distance transform navigation object, and map is an occu-
pancy grid, a representation of a planar world as a matrix whose elements are 0 (free
space) or 1 (occupied).

ds = Dstar(map, goal) as above but specify the goal point.

Robotics Toolbox 9 for MATLAB
R©

35 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Navigation.Navigation

DXform.char
Convert navigation object to string

DX.char() is a string representing the state of the navigation object in human-readable
form.

See also

DXform.display

DXform.plan
Plan path to goal

DX.plan() updates DX with a costmap of distance to the goal from every non-obstacle
point in the map. The goal is as specified to the constructor.

DX.plan(goal) as above but uses the specified goal

DX.plan(goal, s) as above but displays the evolution of the costmap, with one iteration
displayed every s seconds.

DXform.setgoal
the imorph primitive we need to set the target pixel to 0,

obstacles to NaN and the rest to Inf. invoked by superclass constructor

DXform.visualize
Visualize navigation environment

DX.visualize() displays the occupancy grid and the goal distance in a new figure. The
goal distance is shown by intensity which increases with distance from the goal. Ob-
stacles are overlaid and shown in red.

Robotics Toolbox 9 for MATLAB
R©

36 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

DX.visualize(p) as above but also overlays the points p in the path points which is an
N × 2 matrix.

See also

Navigation.visualize

Dstar
D* navigation class

A concrete subclass of Navigation that implements the distance transform navigation
algorithm. This provides minimum distance paths and facilitates incremental replan-
ning.

Methods

plan Compute the cost map given a goal and map
path Compute a path to the goal
visualize Display the obstacle map
display Print the parameters in human readable form
char Convert the parameters to a human readable string
modify cost Modify the costmap
costmap get Return the current costmap

Example

load map1
ds = Dstar(map);
ds.plan(goal)
ds.path(start)

See also

Navigation, DXform, PRM

Robotics Toolbox 9 for MATLAB
R©

37 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Dstar.Dstar
D* navigation constructor

ds = Dstar(map) is a D* navigation object, and map is an occupancy grid, a represen-
tation of a planar world as a matrix whose elements are 0 (free space) or 1 (occupied)..
The occupancy grid is coverted to a costmap with a unit cost for traversing a cell.

ds = Dstar(map, goal) as above but specify the goal point.

See also

Navigation.Navigation

Dstar.char
Convert navigation object to string

DS.char() is a string representing the state of the navigation object in human-readable
form.

See also

Dstar.display

Dstar.costmap get
Get the current costmap

C = DS.costmap get() returns the current costmap.

Dstar.modify cost
Modify cost map

DS.modify cost(p, new) modifies the cost map at p=[X,Y] to have the value new.

After one or more point costs have been updated the path should be replanned by calling
DS.plan().

Robotics Toolbox 9 for MATLAB
R©

38 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Dstar.plan
Plan path to goal

DS.plan() updates DS with a costmap of distance to the goal from every non-obstacle
point in the map. The goal is as specified to the constructor.

DS.plan(goal) as above but uses the specified goal.

Note

• if a path has already been planned, but the costmap was modified, then reinvok-
ing this method will replan, incrementally updating the plan at lower cost than a
full replan.

Dstar.reset
Reset the planner

DS.reset() resets the D* planner. The next instantiation of DS.plan() will perform a
global replan.

Dstar.visualize
Visualize navigation environment

DS.visualize() displays the occupancy grid and the goal distance in a new figure. The
goal distance is shown by intensity which increases with distance from the goal. Ob-
stacles are overlaid and shown in red.

DS.visualize(p) as above but also overlays the points p in the path points which is an
N × 2 matrix.

See also

Navigation.visualize

Robotics Toolbox 9 for MATLAB
R©

39 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

EKF
Extended Kalman Filter for vehicle pose and map estimation

This class can be used for:

• dead reckoning localization

• map-based localization

• map making

• simultaneous localization and mapping

It is used in conjunction with:

• a kinematic vehicle model that provides odometry output, represented by a Ve-
hicle object.

• The vehicle must be driven within the area of the map and this is achieved by
connecting it to a Driver object.

• a map containing the position of a number of landmarks, a Map object

• a sensor that returns measurements about landmarks relative to the vehicle’s lo-
cation.

The EKF object updates its state at each time step, and invokes the state update meth-
ods of the Vehicle. The complete history of estimated state and covariance is stored
within the EKF object.

Methods

run run the filter
plot xy return/plot the actual path of the vehicle
plot P return/plot the estimate covariance
plot map plot feature points and confidence limits
plot ellipse plot path with covariance ellipses
display print the filter state in human readable form
char convert the filter state to human readable string

Properties

x est estimated state
P estimated covariance
V est estimated odometry covariance
W est estimated sensor covariance
features map book keeping, maps sensor feature id to filter state
robot reference to the robot object
sensor reference to the sensor object
history vector of structs that hold the detailed information from each time step

Robotics Toolbox 9 for MATLAB
R©

40 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle position estimation

Create a vehicle with odometry covariance V, add a driver to it, create a Kalman filter
with estimated covariance V est and initial state covariance P0, then run the filter for
N time steps.

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
ekf = EKF(veh, V_est, P0);
ekf.run(N);

Vehicle map based localization

Create a vehicle with odometry covariance V, add a driver to it, create a map with 20
point features, create a sensor that uses the map and vehicle state to estimate feature
range and bearing with covariance W, the Kalman filter with estimated covariances
V est and W est and initial vehicle state covariance P0, then run the filter for N time
steps.

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
map = Map(20);
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, V_est, P0, sensor, W_est, map);
ekf.run(N);

Vehicle-based map making

Create a vehicle with odometry covariance V, add a driver to it, create a sensor that
uses the map and vehicle state to estimate feature range and bearing with covariance
W, the Kalman filter with estimated sensor covariance W est and a “perfect” vehicle
(no covariance), then run the filter for N time steps.

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, [], [], sensor, W_est, []);
ekf.run(N);

Simultaneous localization and mapping (SLAM)

Create a vehicle with odometry covariance V, add a driver to it, create a map with 20
point features, create a sensor that uses the map and vehicle state to estimate feature
range and bearing with covariance W, the Kalman filter with estimated covariances
V est and W est and initial state covariance P0, then run the filter for N time steps to
estimate

the vehicle state at each time step and the map.% veh = Vehicle(V);

veh.add_driver(RandomPath(20, 2));
map = Map(20);
sensor = RangeBearingSensor(veh, map, W);

Robotics Toolbox 9 for MATLAB
R©

41 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ekf = EKF(veh, V_est, P0, sensor, W, []);
ekf.run(N);

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

Vehicle, RandomPath, RangeBearingSensor, Map, ParticleFilter

EKF.EKF
EKF object constructor

E = EKF(vehicle, vest, p0) is an EKF that estimates the state of the vehicle with
estimated odometry covariance vest (2× 2) and initial covariance (3× 3).

E = EKF(vehicle, vest, p0, sensor, west, map) as above but uses information from a
vehicle mounted sensor, estimated sensor covariance west and a map.

If map is [] then it will be estimated.

If vest and p0 are [] the vehicle is assumed error free and the filter will estimate the
landmark positions (map).

If vest and p0 are finite the filter will estimate the vehicle pose and the landmark posi-
tions (map).

Notes

• EKF subclasses Handle, so it is a reference object.

See also

Vehicle, Sensor, RangeBearingSensor, Map

EKF.char
Convert EKF object to string

E.char() is a string representing the state of the EKF object in human-readable form.

Robotics Toolbox 9 for MATLAB
R©

42 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.display
Display status of EKF object

E.display() display the state of the EKF object in human-readable form.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a EKF object and the command has no trailing semicolon.

See also

EKF.char

EKF.plot P
Plot covariance magnitude

E.plot P() plots the estimated covariance magnitude against time step.

E.plot P(ls) as above but the optional line style arguments ls are passed to plot.

m = E.plot P() returns the estimated covariance magnitude at all time steps as a vector.

EKF.plot ellipse
Plot vehicle covariance as an ellipse

E.plot ellipse(i) overlay the current plot with the estimated vehicle position covariance
ellipses for every i’th time step.

E.plot ellipse() as above but i=20.

E.plot ellipse(i, ls) as above but pass line style arguments ls to plot ellipse.

See also

plot ellipse

Robotics Toolbox 9 for MATLAB
R©

43 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.plot map
Plot landmarks

E.plot map(i) overlay the current plot with the estimated landmark position (a +-marker)
and a covariance ellipses for every i’th time step.

E.plot map() as above but i=20.

E.plot map(i, ls) as above but pass line style arguments ls to plot ellipse.

See also

plot ellipse

EKF.plot xy
Plot vehicle position

E.plot xy() plot the estimated vehicle path in the xy-plane.

E.plot xy(ls) as above but the optional line style arguments ls are passed to plot.

EKF.run
Run the EKF

E.run(n) run the filter for n time steps.

Notes

• all previously estimated states and estimation history is cleared.

Link
Robot manipulator Link class

A Link object holds all information related to a robot link such as kinematics parame-
teres, rigid-body inertial parameters, motor and transmission parameters.

Robotics Toolbox 9 for MATLAB
R©

44 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

L = Link([theta d a alpha]) is a link object with the specified kinematic parameters
theta, d, a and alpha.

Methods

A return link transform (A) matrix
RP return joint type: ‘R’ or ‘P’
friction return friction force
nofriction return Link object with friction parameters set to zero
dyn display link dynamic parameters
islimit true if joint exceeds soft limit
isrevolute true if joint is revolute
isprismatic true if joint is prismatic
nofriction remove joint friction
display print the link parameters in human readable form
char convert the link parameters to human readable string

Properties (read/write)

alpha kinematic: link twist
a kinematic: link twist
theta kinematic: link twist
d kinematic: link twist
sigma kinematic: 0 if revolute, 1 if prismatic
mdh kinematic: 0 if standard D&H, else 1

offset kinematic: joint variable offset

qlim kinematic: joint variable limits [min max]
m dynamic: link mass
r dynamic: link COG wrt link coordinate frame 3× 1
I dynamic: link inertia matrix, symmetric 3× 3, about link COG.
B dynamic: link viscous friction (motor referred)
Tc dynamic: link Coulomb friction
G actuator: gear ratio
Jm actuator: motor inertia (motor referred)

Notes

• this is reference class object

• Link objects can be used in vectors and arrays

See also

SerialLink, Link.Link

Robotics Toolbox 9 for MATLAB
R©

45 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Link.A
Link transform matrix

T = L.A(q) is the 4× 4 link homogeneous transformation matrix corresponding to the
link variable q which is either theta (revolute) or d (prismatic).

Notes

• For a revolute joint the theta parameter of the link is ignored, and q used instead.

• For a prismatic joint the d parameter of the link is ignored, and q used instead.

• The link offset parameter is added to q before computation of the transformation
matrix.

Link.Link
Create robot link object

This is class constructor function which has several call signatures.

L = Link() is a Link object with default parameters.

L = Link(l1) is a Link object that is a deep copy of the object l1.

L = Link(dh, options) is a link object formed from the kinematic parameter vector:

• dh = [theta d a alpha sigma offset] where offset is a constant added to the joint
angle variable before forward kinematics and is useful if you want the robot to
adopt a ‘sensible’ pose for zero joint angle configuration.

• dh = [theta d a alpha sigma] where sigma=0 for a revolute and 1 for a prismatic
joint, offset is zero.

• dh = [theta d a alpha], joint is assumed revolute and offset is zero.

Options

‘standard’ for standard D&H parameters (default).
‘modified’ for modified D&H parameters.

Notes:

• Link object is a reference object, a subclass of Handle object.

• Link objects can be used in vectors and arrays

• the parameter theta or d is unused in a revolute or prismatic joint respectively, it
is simply a placeholder for the joint variable passed to L.A()

Robotics Toolbox 9 for MATLAB
R©

46 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• the link dynamic (inertial and motor) parameters are all set to zero. These must
be set by explicitly assigning the object properties: m, r, I, Jm, B, Tc, G.

Link.RP
Joint type

c = L.RP() is a character ‘R’ or ‘P’ depending on whether joint is revolute or prismatic
respectively. If L is a vector of Link objects return a string of characters in joint order.

Link.char
String representation of parameters

s = L.char() is a string showing link parameters in compact single line format. If L is
a vector of Link objects return a string with one line per Link.

See also

Link.display

Link.display
Display parameters

L.display() display link parameters in compact single line format. If L is a vector of
Link objects display one line per element.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a Link object and the command has no trailing semicolon.

See also

Link.char, Link.dyn, SerialLink.showlink

Robotics Toolbox 9 for MATLAB
R©

47 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Link.dyn
display the inertial properties of link

L.dyn() displays the inertial properties of the link object in a multi-line format. The
properties shown are mass, centre of mass, inertia, friction, gear ratio and motor prop-
erties.

If L is a vector of Link objects show properties for each element.

Link.friction
Joint friction force

f = L.friction(qd) is the joint friction force/torque for link velocity qd

Link.islimit
Test joint limits

L.islimit(q) is true (1) if q is outside the soft limits set for this joint.

Link.isprismatic
Test if joint is prismatic

L.isprismatic() is true (1) if joint is prismatic.

See also

Link.isrevolute

Link.isrevolute
Test if joint is revolute

L.isrevolute() is true (1) if joint is revolute.

Robotics Toolbox 9 for MATLAB
R©

48 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Link.isprismatic

Link.nofriction
Remove friction

ln = L.nofriction() is a link object with the same parameters as L except nonlinear
(Coulomb) friction parameter is zero.

ln = L.nofriction(’all’) is a link object with the same parameters as L except all friction
parameters are zero.

Link.set.I
Set link inertia

L.I = [Ixx Iyy Izz] set Link inertia to a diagonal matrix.

L.I = [Ixx Iyy Izz Ixy Iyz Ixz] set Link inertia to a symmetric matrix with specified
intertia and product of intertia elements.

L.I = M set Link inertia matrix to 3× 3 matrix M (which must be symmetric).

Link.set.Tc
Set Coulomb friction

L.Tc = F set Coulomb friction parameters to [-F F], for a symmetric Coulomb friction
model.

L.Tc = [FP FM] set Coulomb friction to [FP FM], for an asymmetric Coulomb friction
model. FP>0 and FM<0.

See also

Link.friction

Robotics Toolbox 9 for MATLAB
R©

49 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Link.set.r
Set centre of gravity

L.r = r set the link centre of gravity (COG) to the 3-vector r.

Map
Map of planar point features

m = Map(n, dim) returns a Map object that represents n random point features in a
planar region bounded by +/-dim in the x- and y-directions.

Methods

plot Plot the feature map
feature Return a specified map feature
display Display map parameters in human readable form
char Convert map parameters to human readable string

Properties

map Matrix of map feature coordinates 2× n
dim The dimensions of the map region x,y in [-dim,dim]
nfeatures The number of map features n

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

RangeBearingSensor, EKF

Robotics Toolbox 9 for MATLAB
R©

50 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Map.Map
Map of point feature landmarks

m = Map(n, dim) is a Map object that represents n random point features in a planar
region bounded by +/-dim in the x- and y-directions.

Map.char
Convert vehicle parameters and state to a string

s = M.char() is a string showing map parameters in a compact human readable format.

Map.display
Display map parameters

M.display() display map parameters in a compact human readable form.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a Map object and the command has no trailing semicolon.

See also

map.char

Map.feature
Return the specified map feature

f = M.feature(k) is the 2× 1 coordinate vector of the k’th feature.

Robotics Toolbox 9 for MATLAB
R©

51 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Map.plot
Plot the feature map

M.plot() plots the feature map in the current figure, as a square region with dimensions
given by the M.dim property. Each feature is marked by a black diamond.

M.plot(ls) plots the feature map as above, but the arguments ls are passed to plot and
override the default marker style.

Notes

• The plot is left with HOLD ON.

Map.verbosity
Set verbosity

M.verbosity(v) set verbosity to v, where 0 is silent and greater values display more
information.

Navigation
Navigation superclass

An abstract superclass for implementing navigation classes.

nav = Navigation(occgrid, options) is an instance of the Navigation object.

Methods

visualize display the occupancy grid
plan plan a path to goal
path return/animate a path from start to goal
display print the parameters in human readable form
char convert the parameters to a human readable string

Robotics Toolbox 9 for MATLAB
R©

52 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read only)

occgrid occupancy grid representing the navigation environment
goal goal coordinate

Methods to be provided in subclass

goal set set the goal
world set set the occupancy grid

navigate init

plan generate a plan for motion to goal
next returns coordinate of next point on path

Notes

• subclasses the Matlab handle class which means that pass by reference semantics
apply.

See also

Dstar, dxform, PRM, RRT

Navigation.Navigation
Create a Navigation object

n = Navigation(occgrid, options) is a Navigation object that holds an occupancy grid
occgrid. A number of options can be be passed.

Options

‘navhook’, F Specify a function to be called at every step of path
‘seed’, s Specify an initial random number seed
‘goal’, g Specify the goal point
‘verbose’ Display debugging information

Robotics Toolbox 9 for MATLAB
R©

53 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Navigation.char
Convert navigation object to string

N.char() is a string representing the state of the navigation object in human-readable
form.

Navigation.display
Display status of navigation object

N.display() display the state of the navigation object in human-readable form.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a Navigation object and the command has no trailing semicolon.

See also

Navigation.char

Navigation.path
Follow path from start to goal

N.path(start) animates the robot moving from start to the goal (which is a property of
the object).

N.path() display the occupancy grid, prompt the user to click a start location, then
compute a path from this point to the goal (which is a property of the object).

x = N.path(start) returns the path from start to the goal (which is a property of the
object).

The method performs the following steps:

• get start position interactively if not given

• initialized navigation, invoke method N.navigate init()

• visualize the environment, invoke method N.visualize()

• iterate on the next() method of the subclass

Robotics Toolbox 9 for MATLAB
R©

54 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Navigation.visualize, Navigation.goal

Navigation.verbosity
Set verbosity

N.verbosity(v) set verbosity to v, where 0 is silent and greater values display more
information.

Navigation.visualize
Visualize navigation environment

N.visualize() displays the occupancy grid in a new figure.

N.visualize(p) displays the occupancy grid in a new figure, and shows the path points
p which is an N × 2 matrix.

Options

‘goal’ Superimpose the goal position if set
‘distance’, D Display a distance field D behind the obstacle map. D is a matrix of the same size as

the occupancy grid.

PGraph
Simple graph class

g = PGraph() create a 2D, planar, undirected graph
g = PGraph(n) create an n-d, undirected graph

Graphs

• are undirected

• are symmetric cost edges (A to B is same cost as B to A)

• are embedded in coordinate system

Robotics Toolbox 9 for MATLAB
R©

55 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• have no loops (edges from A to A)

• vertices are represented by integer ids, vid

• edges are represented by integer ids, eid

Graph connectivity is maintained by a labeling algorithm and this is updated every time
an edge is added.

Methods

Constructing the graph

g.add node(coord) add vertex, return vid
g.add node(coord, v) add vertex and edge to v, return vid
g.add edge(v1, v2) add edge from v1 to v2, return eid
g.clear() remove all nodes and edges from the graph

Information from graph

g.edges(e) return vid for edge
g.cost(e) return cost for edge list
g.coord(v) return coordinate of node v
g.neighbours(v) return vid for edge
g.component(v) return component id for vertex
g.connectivity() return number of edges for all nodes
g.plot() set goal vertex for path planning
g.pick() return vertex id closest to picked point
char(g) display summary info about the graph

Planning paths through the graph

g.goal(v) set goal vertex, and plan paths
g.next(v) return d of neighbour of v closest to goal
g.path(v) return list of nodes from v to goal

Graph and world points

g.distance(v1, v2) distance between v1 and v2 as the crow flies
g.closest(coord) return vertex closest to coord
g.distances(coord) return sorted distances from coord and vertices

To change the distance metric create a subclass of PGraph and override the method
distance metric().

Robotics Toolbox 9 for MATLAB
R©

56 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Object properties (read/write)

g.n number of nodes

PGraph.PGraph
Graph class constructor

g = PGraph(d, options) returns a graph object embedded in d dimensions.

Options

‘distance’, M Use the distance metric M for path planning
‘verbose’ Specify verbose operation

Note

• The distance metric is either ‘Euclidean’ or ‘SE2’ which is the sum of the squares
of the difference in position and angle modulo 2pi.

PGraph.add edge
Add an edge to the graph

E = G.add edge(v1, v2) add an edge between nodes with id v1 and v2, and returns the
edge id E.

E = G.add edge(v1, v2, C) add an edge between nodes with id v1 and v2 with cost C.

PGraph.add node
Add a node to the graph

v = G.add node(x) adds a node with coordinate x, where x is D × 1, and returns the
node id v.

v = G.add node(x, v) adds a node with coordinate x and connected to node v by an
edge.

v = G.add node(x, v, C) adds a node with coordinate x and connected to node v by an
edge with cost C.

Robotics Toolbox 9 for MATLAB
R©

57 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.char
Convert graph to string

s = G.char() returns a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

PGraph.clear
Clear the graph

G.CLEAR() removes all nodes and edges.

PGraph.closest
Find closest node

v = G.closest(x) return id of node geometrically closest to coordinate x.

[v,d] = G.CLOSEST(x) return id of node geometrically closest to coordinate x, and
the distance d.

PGraph.connectivity
Graph connectivity

C = G.connectivity() returns the total number of edges in the graph.

PGraph.coord
Coordinate of node

x = G.coord(v) return coordinate vector, D × 1, of node id v.

Robotics Toolbox 9 for MATLAB
R©

58 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.cost
Cost of edge

C = G.cost(E) return cost of edge id E.

PGraph.display
Display state of the graph

G.display() displays a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

See also

PGraph.char

PGraph.distance
Distance between nodes

d = G.distance(v1, v2) return the geometric distance between the nodes with id v1
and v2.

PGraph.distances
distance to all nodes

d = G.distances(v) returns vector of geometric distance from node id v to every other
node (including v) sorted into increasing order by d.

[d,w] = G.distances(v) returns vector of geometric distance from node id v to every
other node (including v) sorted into increasing order by d where elements of w are the
corresponding node id.

Robotics Toolbox 9 for MATLAB
R©

59 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.edges
Find edges given vertex

E = G.edges(v) return the id of all edges from node id v.

PGraph.goal
Set goal node

G.goal(vg) for least-cost path through graph set the goal node. The cost of reaching
every node in the graph connected to vg is computed.

See also

PGraph.path

cost is total distance from goal

PGraph.neighbours
Neighbours of a node

n = G.neighbours(v) return a vector of ids for all nodes which are directly connected
neighbours of node id v.

[n,C] = G.neighbours(v) return a vector n of ids for all nodes which are directly con-
nected neighbours of node id v. The elements of C are the edge costs of the paths to
the corresponding node ids in n.

PGraph.next
Find next node toward goal

v = G.next(vs) return the id of a node connected to node id vs that is closer to the goal.

See also

PGraph.goal, PGraph.path

Robotics Toolbox 9 for MATLAB
R©

60 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.path
Find path to goal node

p = G.path(vs) return a vector of node ids that form a path from the starting node vs
to the previously specified goal. The path includes the start and goal node id.

See also

PGraph.goal

PGraph.pick
Graphically select a node

v = G.pick() returns the id of the node closest to the point clicked by user on a plot of
the graph.

See also

PGraph.plot

PGraph.plot
Plot the graph

G.plot(opt) plot the graph in the current figure. Nodes are shown as colored circles.

Options

‘labels’ Display node id (default false)
‘edges’ Display edges (default true)
‘edgelabels’ Display edge id (default false)
‘MarkerSize’, S Size of node circle
‘MarkerFaceColor’, C Node circle color
‘MarkerEdgeColor’, C Node circle edge color
‘componentcolor’ Node color is a function of graph component

Robotics Toolbox 9 for MATLAB
R©

61 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.showComponent
t

G.showcomponent(C) plots the nodes that belong to graph component C.

PGraph.showVertex
Highlight a vertex

G.showVertex(v) highlights the vertex v with a yellow marker.

PGraph.vertices
Find vertices given edge

v = G.vertices(E) return the id of the nodes that define edge E.

PRM
Probabilistic roadmap navigation class

A concrete subclass of Navigation that implements the probabilistic roadmap naviga-
tion algorithm. This performs goal independent planning of roadmaps, and at the query
stage finds paths between specific start and goal points.

Methods

plan Compute the roadmap
path Compute a path to the goal
visualize Display the obstacle map
display Print the parameters in human readable form
char Convert the parameters to a human readable string

Robotics Toolbox 9 for MATLAB
R©

62 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Example

load map1
prm = PRM(map);
prm.plan()
prm.path(start, goal)

See also

Navigation, DXform, Dstar, PGraph

PRM.PRM
Create a PRM navigation object constructor

p = PRM(map, options) is a probabilistic roadmap navigation object, and map is an
occupancy grid, a representation of a planar world as a matrix whose elements are 0
(free space) or 1 (occupied).

Options

‘npoints’, n Number of sample points (default 100)
‘distthresh’, d Distance threshold, edges only connect vertices closer than d (default 0.3

max(size(occgrid)))

See also

Navigation.Navigation

PRM.char
Convert navigation object to string

P.char() is a string representing the state of the navigation object in human-readable
form.

See also

PRM.display

Robotics Toolbox 9 for MATLAB
R©

63 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PRM.path
Find a path between two points

P.path(start, goal) finds and displays a path from start to goal which is overlaid on
the occupancy grid.

x = P.PATH(start, goal) is the path from start to goal as a 2×N matrix with columns
representing points along the path.

PRM.plan
Create a probabilistic roadmap

P.plan() creates the probabilistic roadmap by randomly sampling the free space in the
map and building a graph with edges connecting close points. The resulting graph is
kept within the object.

PRM.visualize
e

P.visualize() displays the occupancy grid with an optional distance field

Options:

‘goal’ Superimpose the goal position if set
‘nooverlay’ Don’t overlay the PRM graph

ParticleFilter
Particle filter class

Monte-carlo based localisation for estimating vehicle position based on odometry and
observations of known landmarks.

Methods

run run the particle filter
plot xy display estimated vehicle path
plot pdf display particle distribution

Robotics Toolbox 9 for MATLAB
R©

64 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

robot reference to the robot object
sensor reference to the sensor object
history vector of structs that hold the detailed information from each time step
nparticles number of particles used
x particle states; nparticles x 3
weight particle weights; nparticles x 1
x est mean of the particle population
std standard deviation of the particle population
Q covariance of noise added to state at each step
L covariance of likelihood model
dim maximum xy dimension

Example

Create a landmark map

map = Map(20);

and a vehicle with odometry covariance and a driver

W = diag([0.1, 1*pi/180].ˆ2);
veh = Vehicle(W);
veh.add_driver(RandomPath(10));

and create a range bearing sensor

R = diag([0.005, 0.5*pi/180].ˆ2);
sensor = RangeBearingSensor(veh, map, R);

For the particle filter we need to define two covariance matrices. The first is is the
covariance of the random noise added to the particle states at each iteration to represent
uncertainty in configuration.

Q = diag([0.1, 0.1, 1*pi/180]).ˆ2;

and the covariance of the likelihood function applied to innovation

L = diag([0.1 0.1]);

Now construct the particle filter

pf = ParticleFilter(veh, sensor, Q, L, 1000);

which is configured with 1000 particles. The particles are initially uniformly dis-
tributed over the 3-dimensional configuration space.

We run the simulation for 1000 time steps

pf.run(1000);

then plot the map and the true vehicle path

map.plot();
veh.plot_xy(’b’);

and overlay the mean of the particle cloud

pf.plot_xy(’r’);

Robotics Toolbox 9 for MATLAB
R©

65 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

We can plot the standard deviation against time

plot(pf.std(1:100,:))

The particles are a sampled approximation to the PDF and we can display this as

pf.plot_pdf()

Acknowledgement

Based on code by Paul Newman, Oxford University, http://www.robots.ox.ac.uk/ pnew-
man

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

Vehicle, RandomPath, RangeBearingSensor, Map, EKF

ParticleFilter.ParticleFilter
Particle filter constructor

pf = ParticleFilter(vehicle, sensor, q, L, np) is a particle filter that estimates the state
of the vehicle with a sensor sensor. q is covariance of the noise added to the particles
at each step (diffusion), L is the covariance used in the sensor likelihood model, and
np is the number of particles.

Notes

• ParticleFilter subclasses Handle, so it is a reference object.

• the initial particle distribution is uniform over the map, essentially the kidnapped
robot problem which is unrealistic

See also

Vehicle, Sensor, RangeBearingSensor, Map

Robotics Toolbox 9 for MATLAB
R©

66 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ParticleFilter.plot pdf
Plot particles as a PDF

PF.plot pdf() plots a sparse PDF as a series of vertical line segments of height equal to
particle weight.

ParticleFilter.plot xy
Plot vehicle position

PF.plot xy() plot the estimated vehicle path in the xy-plane.

PF.plot xy(ls) as above but the optional line style arguments ls are passed to plot.

ParticleFilter.run
Run the particle filter

PF.run(n) run the filter for n time steps.

Notes

• all previously estimated states and estimation history is cleared.

Polygon
- General polygon class

p = Polygon(vertices);

Robotics Toolbox 9 for MATLAB
R©

67 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plot Plot polygon
area Area of polygon
moments Moments of polygon
centroid Centroid of polygon
perimeter Perimter of polygon
transform Transform polygon
inside Test if points are inside polygon
intersection Intersection of two polygons
difference Difference of two polygons
union Union of two polygons
xor Exclusive or of two polygons
display print the polygon in human readable form
char convert the polgyon to human readable string

Properties

vertices List of polygon vertices, one per column
extent Bounding box [minx maxx; miny maxy]
n Number of vertices

Notes

• this is reference class object

• Polygon objects can be used in vectors and arrays

Acknowledgement

The methods inside, intersection, difference, union, and xor are based on code written
by:

Kirill K. Pankratov, kirill@plume.mit.edu, http://puddle.mit.edu/ glenn/kirill/saga.html

and require a licence. However the author does not respond to email regarding the
licence, so use with care.

Polygon.Polygon
Polygon class constructor

p = Polygon(v) is a polygon with vertices given by v, one column per vertex.

p = Polygon(C, wh) is a rectangle centred at C with dimensions wh=[WIDTH, HEIGHT].

Robotics Toolbox 9 for MATLAB
R©

68 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.area
Area of polygon

a = P.area() is the area of the polygon.

Polygon.centroid
Centroid of polygon

x = P.centroid() is the centroid of the polygon.

Polygon.char
String representation

s = P.char() is a compact representation of the polgyon in human readable form.

Polygon.difference
Difference of polygons

d = P.difference(q) is polygon P minus polygon q.

Notes

• If polygons P and q are not intersecting, returns coordinates of P.

• If the result d is not simply connected or consists of several polygons, resulting
vertex list will contain NaNs.

Polygon.display
Display polygon

P.display() displays the polygon in a compact human readable form.

Robotics Toolbox 9 for MATLAB
R©

69 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Polygon.char

Polygon.inside
Test if points are inside polygon

in = p.inside(p) tests if points given by columns of p are inside the polygon. The
corresponding elements of in are either true or false.

Polygon.intersect
Intersection of polygon with list of polygons

i = P.intersect(plist) indicates whether or not the Polygon P intersects with

i(j) = 1 if p intersects polylist(j), else 0.

Polygon.intersect line
Intersection of polygon and line segment

i = P.intersect line(L) is the intersection points of a polygon P with the line segment
L=[x1 x2; y1 y2]. i is an N × 2 matrix with one column per intersection, each column
is [x y]’.

Polygon.intersection
Intersection of polygons

i = P.intersection(q) is a Polygon representing the intersection of polygons P and q.

Notes

• If these polygons are not intersecting, returns empty polygon.

• If intersection consist of several disjoint polygons (for non-convex P or q) then
vertices of i is the concatenation of the vertices of these polygons.

Robotics Toolbox 9 for MATLAB
R©

70 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.moments
Moments of polygon

a = P.moments(p, q) is the pq’th moment of the polygon.

See also

mpq poly

Polygon.perimeter
Perimeter of polygon

L = P.perimeter() is the perimeter of the polygon.

Polygon.plot
Plot polygon

P.plot() plot the polygon.

P.plot(ls) as above but pass the arguments ls to plot.

Polygon.transform
Transformation of polygon vertices

p2 = P.transform(T) is a new Polygon object whose vertices have been transfored by
the 3× 3 homgoeneous transformation T.

Polygon.union
Union of polygons

i = P.union(q) is a Polygon representing the union of polygons P and q.

Robotics Toolbox 9 for MATLAB
R©

71 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

Polygon.xor
Exclusive or of polygons

i = P.union(q) is a Polygon representing the union of polygons P and q.

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

Quaternion
Quaternion class

A quaternion is a compact method of representing a 3D rotation that has computational
advantages including speed and numerical robustness. A quaternion has 2 parts, a
scalar s, and a vector v and is typically written: q = s <vx, vy, vz>.

A unit quaternion is one for which s2+vx2+vy2+vz2 = 1. It can be considered as a
rotation about a vector in space where q = cos (theta/2) < v sin(theta/2)> where v is a
unit vector.

q = Quaternion(x) is a unit quaternion equivalent to x which can be any of:

• orthonormal rotation matrix.

• homogeneous transformation matrix (rotation part only).

• rotation angle and vector

Robotics Toolbox 9 for MATLAB
R©

72 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

inv return inverse of quaterion
norm return norm of quaternion
unit return unit quaternion
unitize unitize this quaternion
plot same options as trplot()
interp interpolation (slerp) between q and q2, 0<=s<=1
scale interpolation (slerp) between identity and q, 0<=s<=1
dot derivative of quaternion with angular velocity w

Arithmetic operators are overloaded

q+q2 return elementwise sum of quaternions
q-q2 return elementwise difference of quaternions
q*q2 return quaternion product
q*v rotate vector by quaternion, v is 3× 1
q/q2 return q*q2.inv
qn return q to power n (integer only)

Properties (read only)

s real part
v vector part
R 3× 3 rotation matrix
T 4× 4 homogeneous transform matrix

Notes

• Quaternion objects can be used in vectors and arrays

See also

trinterp, trplot

Quaternion.Quaternion
Constructor for quaternion objects

q = Quaternion() is the identitity quaternion 1<0,0,0> representing a null rotation.

q = Quaternion(q1) is a copy of the quaternion q1

q = Quaternion([S V1 V2 V3]) is a quaternion formed by specifying directly its 4
elements

Robotics Toolbox 9 for MATLAB
R©

73 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

q = Quaternion(s) is a quaternion formed from the scalar s and zero vector part:
s<0,0,0>

q = Quaternion(v) is a pure quaternion with the specified vector part: 0<v>

q = Quaternion(th, v) is a unit quaternion corresponding to rotation of th about the
vector v.

q = Quaternion(R) is a unit quaternion corresponding to the orthonormal rotation
matrix R.

q = Quaternion(T) is a unit quaternion equivalent to the rotational part of the homo-
geneous transform T.

Quaternion.char
Create string representation of quaternion object

s = Q.char() is a compact string representation of the quaternion’s value as a 4-tuple.

Quaternion.display
Display the value of a quaternion object

Q.display() displays a compact string representation of the quaternion’s value as a 4-
tuple.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a Quaternion object and the command has no trailing semicolon.

See also

Quaternion.char

Quaternion.double
Convert a quaternion object to a 4-element vector

v = Q.double() is a 4-vector comprising the quaternion elements [s vx vy vz].

Robotics Toolbox 9 for MATLAB
R©

74 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.get.R
Return equivalent orthonormal rotation matrix

R = Q.R is the equivalent 3× 3 orthonormal rotation matrix.

Quaternion.get.T
Return equivalent homogeneous transformationmatrix

T = Q.T is the equivalent 4× 4 homogeneous transformation matrix.

Quaternion.interp
Interpolate rotations expressed by quaternion objects

qi = Q1.interp(q2, R) is a unit-quaternion that interpolates between Q1 for R=0 to
q2 for R=1. This is a spherical linear interpolation (slerp) that can be interpretted as
interpolation along a great circle arc on a sphere.

If R is a vector qi is a vector of quaternions, each element corresponding to sequential
elements of R.

Notes:

• the value of r is clipped to the interval 0 to 1

See also

ctraj, Quaternion.scale

Quaternion.inv
Invert a unit-quaternion

qi = Q.inv() is a quaternion object representing the inverse of Q.

Robotics Toolbox 9 for MATLAB
R©

75 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.minus
Subtract two quaternion objects

Q1-Q2 is the element-wise difference of quaternion elements.

Quaternion.mpower
Raise quaternion to integer power

QN is quaternion Q raised to the integer power N, and computed by repeated multipli-
cation.

Quaternion.mrdivide
Compute quaternion quotient.

Q1/Q2 is a quaternion formed by Hamilton product of Q1 and inv(Q2)
Q/S is the element-wise division of quaternion elements by by the scalar S

Quaternion.mtimes
Multiply a quaternion object

Q1*Q2 is a quaternion formed by Hamilton product of two quaternions.
Q*V is the vector V rotated by the quaternion Q
Q*S is the element-wise multiplication of quaternion elements by by the scalar S

Quaternion.norm
Compute the norm of a quaternion

qn = q.norm(q) is the scalar norm or magnitude of the quaternion q.

Robotics Toolbox 9 for MATLAB
R©

76 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.plot
Plot a quaternion object

Q.plot(options) plots the quaternion as a rotated coordinate frame.

See also

trplot

Quaternion.plus
Add two quaternion objects

Q1+Q2 is the element-wise sum of quaternion elements.

Quaternion.scale
Interpolate rotations expressed by quaternion objects

qi = Q.scale(R) is a unit-quaternion that interpolates between identity for R=0 to Q
for R=1. This is a spherical linear interpolation (slerp) that can be interpretted as
interpolation along a great circle arc on a sphere.

If R is a vector qi is a cell array of quaternions, each element corresponding to sequen-
tial elements of R.

See also

ctraj, Quaternion.interp

Quaternion.unit
Unitize a quaternion

qu = Q.unit() is a quaternion which is a unitized version of Q

Robotics Toolbox 9 for MATLAB
R©

77 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

RRT
Class for rapidly-exploring random tree navigation

A concrete class that implements the RRT navigation algorithm. This class subclasses
the Navigation class.

Usage for subclass:

rrt = RRT(occgrid, options) create an instance object

rrt show summary statistics about the object
rrt.visualize() display the occupancy grid
rrt.plan(goal) plan a path to coordinate goal
rrt.path(start) display a path from start to goal
p = rrt.path(start) return a path from start to goal

Options

‘npoints’, N Number of nodes in the tree
‘time’, T Period to simulate dynamic model toward random point
‘xrange’, X Workspace span in x-direction [xmin xmax]
‘yrange’, Y Workspace span in y-direction [ymin ymax]
‘goal’, P Goal position (1× 2) or pose (1× 3) in workspace

Notes

• The bicycle model is hardwired into the class (should be a parameter)

• Default workspace is between -5 and +5 in the x- and y-directions

RRT.visualize
;

RandomPath
Vehicle driver class

d = RandomPath(dim, speed) returns a “driver” object capable of driving a Vehi-
cle object through random waypoints at constant specified speed. The waypoints are
positioned inside a region bounded by +/- dim in the x- and y-directions.

Robotics Toolbox 9 for MATLAB
R©

78 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

The driver object is attached to a Vehicle object by the latter’s add driver() method.

Methods

init reset the random number generator
demand return speed and steer angle to next waypoint
display display the state and parameters in human readable form
char convert the state and parameters to human readable form

Properties

goal current goal coordinate
veh the Vehicle object being controlled
dim dimensions of the work space
speed speed of travel
closeenough proximity to waypoint at which next is chosen
randstream random number stream used for coordinates

Example

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));

Notes

• it is possible in some cases for the vehicle to move outside the desired region, for
instance if moving to a waypoint near the edge, the limited turning circle may
cause it to move outside.

• the vehicle chooses a new waypoint when it is closer than property closeenough
to the current waypoint.

• uses its own random number stream so as to not influence the performance of
other randomized algorithms such as path planning.

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

Vehicle

Robotics Toolbox 9 for MATLAB
R©

79 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

RandomPath.RandomPath
Create a driver object

d = RandomPath(dim, speed) returns a “driver” object capable of driving a Vehicle
object through random waypoints at specified speed. The waypoints are positioned
inside a region bounded by +/- dim in the x- and y-directions.

See also

Vehicle

RandomPath.char
Convert driver parameters and state to a string

s = R.char() is a string showing driver parameters and state in in a compact human
readable format.

RandomPath.demand
Compute speed and heading to waypoint

[speed,steer] = R.demand() returns the speed and steer angle to drive the vehicle to-
ward the next waypoint. When the vehicle is within R.closeenough a new waypoint is
chosen.

See also

Vehicle

RandomPath.display
Display driver parameters and state

R.display() display driver parameters and state in compact human readable form.

Robotics Toolbox 9 for MATLAB
R©

80 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RandomPath.char

RandomPath.init
Reset random number generator

R.INIT() resets the random number generator used to create the waypoints. This en-
ables the sequence of random waypoints to be repeated.

See also

randstream

RangeBearingSensor
Range and bearing sensor class

A concrete subclass of Sensor that implements a range and bearing angle sensor that
provides robot-centric measurements of the world. To enable this it has references to a
map of the world (Map object) and a robot moving through the world (Vehicle object).

Methods

reading return a random range/bearing observation
h return the observation for vehicle state xv and feature xf
Hx return a Jacobian matrix dh/dxv
Hxf return a Jacobian matrix dh/dxf
Hw return a Jacobian matrix dh/dw
g return feature positin given vehicle pose and observation
Gx return a Jacobian matrix dg/dxv
Gz return a Jacobian matrix dg/dz

Properties (read/write)

R measurement covariance matrix
interval valid measurements returned every interval’th call to reading()

Robotics Toolbox 9 for MATLAB
R©

81 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

Sensor, Vehicle, Map, EKF

RangeBearingSensor.Gx
Jacobian dg/dx

J = S.Gx(xv, z) returns the Jacobian dg/dxv at the vehicle state xv, for measurement z.
J is 2× 3.

See also

RangeBearingSensor.g

RangeBearingSensor.Gz
Jacobian dg/dz

J = S.Gz(xv, z) returns the Jacobian dg/dz at the vehicle state xv, for measurement z.
J is 2× 2.

See also

RangeBearingSensor.g

RangeBearingSensor.Hw
Jacobian dh/dv

J = S.Hw(xv, J) returns the Jacobian dh/dv at the vehicle state xv, for map feature J. J
is 2× 2.

Robotics Toolbox 9 for MATLAB
R©

82 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RangeBearingSensor.h

RangeBearingSensor.Hx
Jacobian dh/dxv

J = S.Hx(xv, J) returns the Jacobian dh/dxv at the vehicle state xv, for map feature J.
J is 2× 3.

J = S.Hx(xv, xf) as above but for a feature at coordinate xf.

See also

RangeBearingSensor.h

RangeBearingSensor.Hxf
Jacobian dh/dxf

J = S.Hxf(xv, J) returns the Jacobian dh/dxv at the vehicle state xv, for map feature J.
J is 2× 2.

J = S.Hxf(xv, xf) as above but for a feature at coordinate xf.

See also

RangeBearingSensor.h

RangeBearingSensor.RangeBearingSensor
Range and bearing sensor constructor

s = RangeBearingSensor(vehicle, map, R, options) is a range and bearing angle sen-
sor mounted on the Vehicle object vehicle and observing the landmark map map. The
sensor covariance is R (2× 2) representing range and bearing covariance.

Robotics Toolbox 9 for MATLAB
R©

83 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘range’, xmax maximum range of sensor
‘range’, [xmin xmax] minimum and maximum range of sensor
‘angle’, TH detection for angles betwen -TH to +TH
‘angle’, [THMIN THMAX] detection for angles betwen THMIN and THMAX
‘skip’, I return a valid reading on every I’th call
‘fail’, [TMIN TMAX] sensor simulates failure between timesteps TMIN and TMAX

See also

Sensor, Vehicle, Map, EKF

RangeBearingSensor.g
Compute landmark location

p = S.g(xv, z) is the world coordinate of feature given observation z and vehicle state
xv.

See also

RangeBearingSensor.Gx, RangeBearingSensor.Gz

RangeBearingSensor.h
Landmark range and bearing

z = S.h(xv, J) is range and bearing from vehicle at xv to map feature J. z = [R,theta]

z = S.h(xv, xf) as above but compute range and bearing to a feature at coordinate xf.

See also

RangeBearingSensor.Hx, RangeBearingSensor.Hw, RangeBearingSensor.Hxf

Robotics Toolbox 9 for MATLAB
R©

84 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

RangeBearingSensor.reading
Landmark range and bearing

S.reading() is a range/bearing observation [Z,J] where Z=[R,THETA] is range and
bearing with additive Gaussian noise of covariance R. J is the index of the map feature
that was observed. If no valid measurement, ie. no features within range, interval
subsampling enabled or simulated failure the return is Z=[] and J=NaN.

See also

RangeBearingSensor.h

Sensor
Sensor superclass

An abstact superclass to represent robot navigation sensors.

s = Sensor(vehicle, map, R) is an instance of the Sensor object that references the
vehicle on which the sensor is mounted, the map of landmarks that it is observing, and
the sensor covariance matrix R.

Methods

display print the parameters in human readable form
char convert the parameters to a human readable string

Properties

robot The Vehicle object on which the sensor is mounted
map The Map object representing the landmarks around the robot

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

EKF, Vehicle, Map

Robotics Toolbox 9 for MATLAB
R©

85 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Sensor.Sensor
Sensor object constructor

s = Sensor(vehicle, map) is a sensor mounted on the Vehicle object vehicle and ob-
serving the landmark map map.

Sensor.char
Convert sensor parameters to a string

s = S.char() is a string showing sensor parameters in a compact human readable format.

Sensor.display
Display status of sensor object

S.display() display the state of the sensor object in human-readable form.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a Sensor object and the command has no trailing semicolon.

See also

Sensor.char

Vehicle
Car-like vehicle class

This class models the kinematics of a car-like vehicle (bicycle model). For given steer-
ing and velocity inputs it updates the true vehicle state and returns noise-corrupted
odometry readings.

veh = Vehicle(v) creates a Vehicle object with odometry covariance v, where v is a
2× 2 matrix corresponding to the odometry vector [dx dtheta].

Robotics Toolbox 9 for MATLAB
R©

86 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

init initialize vehicle state
f predict next state based on odometry
step move one time step and return noisy odometry
control generate the control inputs for the vehicle
update update the vehicle state
run run for multiple time steps
Fx Jacobian of f wrt x
Fv Jacobian of f wrt odometry noise
gstep like step() but displays vehicle
plot plot/animate vehicle on current figure
plot xy plot the true path of the vehicle
add driver attach a driver object to this vehicle
display display state/parameters in human readable form
char convert state/parameters to human readable string

Properties (read/write)

x true vehicle state 3× 1
v odometry covariance
odometry distance moved in the last interval
dim dimension of the robot’s world
robotdim dimension of the robot (for drawing)
L length of the vehicle (wheelbase)
alphalim steering wheel limit
maxspeed maximum vehicle speed
T sample interval
verbose verbosity
x hist history of true vehicle state N × 3
driver reference to the driver object
x0 initial state, init() sets x := x0

Examples

Create a vehicle with odometry covariance

v = Vehicle(diag([0.1 0.01].ˆ2);

and display its initial state

v

now apply a speed (0.2m/s) and steer angle (0.1rad) for 1 time step

odo = v.update([0.2, 0.1])

where odo is the noisy odometry estimate, and the new true vehicle state

v

We can add a driver object

Robotics Toolbox 9 for MATLAB
R©

87 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

v.add_driver(RandomPath(10))

which will move the vehicle within the region -10<x<10, -10<y<10 which we can
see by

v.run(1000)

which will show an animation of the vehicle moving between randomly selected way-
oints.

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

RandomPath, EKF

Vehicle.Fv
Jacobian df/dv

J = V.Fv(x, odo) returns the Jacobian df/dv at the state x, for odometry input odo. J is
3× 2.

See also

Vehicle.F, Vehicle.Fx

Vehicle.Fx
Jacobian df/dx

J = V.Fx(x, odo) returns the Jacobian df/dx at the state x, for odometry input odo. J is
3× 3.

See also

Vehicle.F, Vehicle.Fv

Robotics Toolbox 9 for MATLAB
R©

88 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle.Vehicle
Vehicle object constructor

v = Vehicle(vact) creates a Vehicle object with actual odometry covariance vact, where
vact is a 2× 2 matrix corresponding to the odometry vector [dx dtheta].

Default parameters are:

alphalim 0.5
maxspeed 5
L 1
robotdim 0.2
x0 (0,0,0)

and can be overridden by assigning properties after the object has been created.

Vehicle.add driver
Add a driver for the vehicle

V.add driver(d) adds a driver object d for the vehicle. The driver object has one public
method:

[speed, steer] = d.demand();

that returns a speed and steer angle.

See also

RandomPath

Vehicle.char
Convert vehicle parameters and state to a string

s = V.char() is a string showing vehicle parameters and state in in a compact human
readable format.

Robotics Toolbox 9 for MATLAB
R©

89 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle.control
Compute the control input to vehicle

u = V.control(speed, steer) returns a control input (speed,steer) based on provided
controls speed,steer to which speed and steering angle limits have been applied.

u = V.control() returns a control input (speed,steer) from a “driver” if one is attached,
the driver’s DEMAND() method is invoked. If no driver is attached then speed and
steer angle are assumed to be zero.

See also

RandomPath

Vehicle.display
Display vehicle parameters and state

V.display() display vehicle parameters and state in compact human readable form.

See also

Vehicle.char

Vehicle.f
Predict next state based on odometry

xn = V.f(x, odo) predict next state xn based on current state x and odometry odo. x is
3× 1, odo is [distance,change heading].

xn = V.f(x, odo, w) predict next state xn based on current state x, odometry odo, and
odometry noise w.

Vehicle.init
Reset state of vehicle object

V.init() sets the state V.x := V.x0

Robotics Toolbox 9 for MATLAB
R©

90 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle.plot
Plot vehicle

V.plot() plots the vehicle on the current axes at a pose given by the current state. If the
vehicle has been previously plotted its pose is updated. The vehicle is depicted as a
narrow triangle that travels “point first” and has a length V.robotdim.

V.plot(x) plots the vehicle on the current axes at the pose x.

Vehicle.plot xy
plot true path followed by vehicle

V.plot xy() plots the true xy-plane path followed by the vehicle.

V.plot xy(ls) as above but the line style arguments ls are passed to plot.

Vehicle.run
Run the vehicle simulation

V.run(n) run the vehicle simulation for n timesteps.

p = V.run(n) run the vehicle simulation for n timesteps and return the state history as
an n × 3 matrix.

See also

Vehicle.step

Vehicle.step
Move the vehicle model ahead one time step

odo = V.step(speed, steer) updates the vehicle state for one timestep of motion at
specified speed and steer angle, and returns noisy odometry.

odo = V.step() updates the vehicle state for one timestep of motion and returns noisy
odometry. If a “driver” is attached then its DEMAND() method is invoked to compute
speed and steer angle. If no driver is attached then speed and steer angle are assumed
to be zero.

Robotics Toolbox 9 for MATLAB
R©

91 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Vehicle.control, Vehicle.update, Vehicle.add driver

Vehicle.update
Update the vehicle state

odo = V.update(u) returns noisy odometry readings (covariance V.V) for motion with
u=[speed,steer].

about
Compact display of variable type

about(x) displays a compact line that describes the class and dimensions of x.

about x as above but this is the command rather than functional form

See also

whos

angdiff
Difference of two angles

d = angdiff(th1, th2) returns the difference between angles th1 and th2 on the circle.
The result is in the interval [-pi pi). If th1 is a column vector, and th2 a scalar then re-
turn a column vector where th2 is modulo subtracted from the corresponding elements
of th1.

d = angdiff(th) returns the equivalent angle to th in the interval [-pi pi).

Return the equivalent angle in the interval [-pi pi).

Robotics Toolbox 9 for MATLAB
R©

92 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

angvec2r
Convert angle and vector orientation to a rotation matrix

R = angvec2r(theta, v) returns an orthonormal rotation matrix, R, equivalent to a
rotation of theta about the vector v.

See also

eul2r, rpy2r

angvec2tr
Convert angle and vector orientation to a homogeneous trans-
form

T = angvec2tr(theta, v) is a homogeneous transform matrix equivalent to a rotation of
theta about the vector v.

Note

• the translational part is zero.

See also

eul2tr, rpy2tr, angvec2r

circle
Compute points on a circle

circle(C, R, opt) plot a circle centred at C with radius R.

x = circle(C, R, opt) return an N × 2 matrix whose rows define the coordinates [x,y]
of points around the circumferance of a circle centred at C and of radius R.

Robotics Toolbox 9 for MATLAB
R©

93 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

C is normally 2× 1 but if 3× 1 then the circle is embedded in 3D, and x is N × 3, but
the circle is always in the xy-plane with a z-coordinate of C(3).

Options

‘n’, N Specify the number of points (default 50)

colnorm
Column-wise norm of a matrix

cn = colnorm(a) returns an M × 1 vector of the normals of each column of the matrix
a which is N ×M .

ctraj
Cartesian trajectory between two points

tc = ctraj(T0, T1, n) is a Cartesian trajectory from pose T0 to T1 with n points that
follow a trapezoidal velocity profile along the path. The Cartesian trajectory is a 4x4xN
matrix, with the last subscript being the point index.

tc = ctraj(T0, T1, s) as above but the elements of s specify the fractional distance along
the path, and these values are in the range [0 1]. The Cartesian trajectory is a 4x4xN
matrix, with transform T(:,:,i) corresponding to s(i).

See also

mstraj, trinterp, Quaternion.interp, transl

Robotics Toolbox 9 for MATLAB
R©

94 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

delta2tr
Convert differential motion to a homogeneous transform

T = delta2tr(d) is a homogeneous transform representing differential translation and
rotation. The delta vector d=(dx, dy, dz, dRx, dRy, dRz) represents an infinitessimal
motion, and is an approximation to the spatial velocity multiplied by time.

See also

tr2delta

diff2

diff3(v)

compute 2-point difference for each point in the vector v.

distancexform
Distance transform of occupancy grid

d = distancexform(world, goal) is the distance transform of the occupancy grid world
with respect to the specified goal point goal = [X,Y]. The elements of the grid are 0
from free space and 1 for occupied.

d = distancexform(world, goal, metric) as above but specifies the distance metric as
either ‘cityblock’ or ‘Euclidean’

d = distancexform(world, goal, metric, show) as above but shows an animation of
the distance transform being formed, with a delay of show seconds between frames.

Notes

• The Machine Vision Toolbox function imorph is required.

Robotics Toolbox 9 for MATLAB
R©

95 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

imorph, DXform

e2h
Euclidean to homogeneous

edgelist
Return list of edge pixels for region

E = edgelist(im, seed) return the list of edge pixels of a region in the image im starting
at edge coordinate seed (i,j). The result E is a matrix, each row is one edge point
coordinate (x,y).

E = edgelist(im, seed, direction) returns the list of edge pixels as above, but the direc-
tion of edge following is specified. direction == 0 (default) means clockwise, non zero
is counter-clockwise. Note that direction is with respect to y-axis upward, in matrix
coordinate frame, not image frame.

Notes

• im is a binary image where 0 is assumed to be background, non-zero is an object.

• seed must be a point on the edge of the region.

• The seed point is always the first element of the returned edgelist.

• Edge points form a Freeman chain with 8 directions for edge segments.

See also

ilabel

Robotics Toolbox 9 for MATLAB
R©

96 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

eul2jac
Jacobian from Euler angle rates to angular velocity

J = eul2jac(eul) is a 3 × 3 Jacobian matrix that maps Euler angle rates to angular
velocity, and eul=[PHI, THETA, PSI]. Used in the creation of an analytical Jacobian.

J = eul2jac(phi, theta, psi) as above but the Euler angles are passed as separate argu-
ments.

See also

rpy2jac, SERIALlINK.JACOBN

eul2r
Convert Euler angles to homogeneous transformation

R = eul2r(phi, theta, psi) returns an orthonornal rotation matrix equivalent to the spec-
ified Euler angles. These correspond to rotations about the Z, Y, Z axes respectively.
If phi, theta, psi are column vectors then they are assumed to represent a trajectory
and R is a three dimensional matrix, where the last index corresponds to rows of phi,
theta, psi.

R = eul2r(eul) as above but the Euler angles are taken from consecutive columns of
the passed matrix eul = [phi theta psi].

Note

• the vectors phi, theta, psi must be of the same length

See also

eul2tr, rpy2tr, tr2eul

Robotics Toolbox 9 for MATLAB
R©

97 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

eul2tr
Convert Euler angles to homogeneous transform

T = eul2tr(phi, theta, psi) returns a homogeneous tranformation equivalent to the
specified Euler angles. These correspond to rotations about the Z, Y, Z axes respec-
tively. If phi, theta, psi are column vectors then they are assumed to represent a tra-
jectory and T is a three dimensional matrix, where the last index corresponds to rows
of phi, theta, psi.

T = eul2tr(eul) as above but the Euler angles are taken from consecutive columns of
the passed matrix eul = [phi theta psi].

Note

• the vectors phi, theta, psi must be of the same length

• the translational part is zero.

See also

eul2r, rpy2tr, tr2eul

ftrans
Transform a wrench between coordinate frames

wt = wtrans(T, w) is a wrench in the frame T corresponding to the world frame wrench
w.

The wrenches w and wt are 6-vectors of the form [Fx Fy Fz Mx My Mz].

See also

tr2delta

Robotics Toolbox 9 for MATLAB
R©

98 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

gauss2d
kernel

k = gauss2d(im, c, sigma)

Returns a unit volume Gaussian smoothing kernel. The Gaussian has a standard devi-
ation of sigma, and the convolution kernel has a half size of w, that is, k is (2W+1) x
(2W+1).

If w is not specified it defaults to 2*sigma.

h2e
Homogeneous to Euclidean

homline
Homogeneous line from two points

L = homline(x1, y1, x2, y2) returns a 3× 1 vectors which describes a line in homoge-
neous form that contains the two Euclidean points (x1,y1) and (x2,y2).

Homogeneous points X (3× 1) on the line must satisfy L’*X = 0.

See also

plot homline

homtrans
Apply a homogeneous transformation

p2 = homtrans(T, p) applies homogeneous transformation T to the points stored
columnwise in p.

Robotics Toolbox 9 for MATLAB
R©

99 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• If T is in SE(2) (3× 3) and

– p is 2×N (2D points) they are considered Euclidean (R2)

– p is 3×N (2D points) they are considered projective (p2)

• If T is in SE(3) (4× 4) and

– p is 3×N (3D points) they are considered Euclidean (R3)

– p is 4×N (3D points) they are considered projective (p3)

tp = homtrans(T, T1) applies homogeneous transformation T to the homogeneous
transformation T1, that is tp=T*T1. If T1 is a 3-dimensional transformation then T is
applied to each plane as defined by the first two

dimensions, ie. if T = N ×N and T=NxNxP then the result is NxNxP.

See also

e2h, h2e

imeshgrid
Domain matrices for image

[u,v] = imeshgrid(im) return matrices that describe the domain of image im and can
be used for the evaluation of functions over the image. The element u(v,u) = u and
v(v,u) = v.

[u,v] = imeshgrid(w, H) as above but the domain is w × H.

[u,v] = imeshgrid(size) as above but the domain is described size which is scalar size×
size or a 2-vector [w H].

See also

meshgrid

Robotics Toolbox 9 for MATLAB
R©

100 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ishomog
Test if argument is a homogeneous transformation

ishomog(T) is true (1) if the argument T is of dimension 4×4 or 4x4xN, else false (0).

ishomog(T, ‘valid’) as above, but also checks the validity of the rotation matrix.

See also

isrot, isvec

isrot
Test if argument is a rotation matrix

isrot(R) is true (1) if the argument is of dimension 3× 3, else false (0).

isrot(R, ‘valid’) as above, but also checks the validity of the rotation matrix.

See also

ishomog, isvec

isvec
Test if argument is a vector

isvec(v) is true (1) if the argument v is a 3-vector, else false (0).

isvec(v, L) is true (1) if the argument v is a vector of length L, either a row- or column-
vector. Otherwise false (0).

See also

ishomog, isrot

Robotics Toolbox 9 for MATLAB
R©

101 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

jsingu
Show the linearly dependent joints in a Jacobian matrix

jsingu(J) displays the linear dependency of joints in a Jacobian matrix, which occurs
at singularity.

See also

SerialLink.jacobn

jtraj
Compute a joint space trajectory between two points

[q,qd,qdd] = jtraj(q0, qf, n) is a joint space trajectory q where the joint coordinates
vary from q0 to qf. A quintic (5th order) polynomial is used with default zero boundary
conditions for velocity and acceleration. Time is assumed to vary from 0 to 1 in n steps.
Joint velocity and acceleration can be optionally returned as qd and qdd respectively.
The trajectory q, qd and qdd are M × n matrices, with one row per time step, and one
column per joint.

[q,qd,qdd] = jtraj(q0, qf, T) specifies the trajectory in terms of the time vector T and
the number of points in the trajectory is equal to the length of T.

[q,qd,qdd] = jtraj(q0, qf, n, qd0, qdf) as above but also specifies initial and final joint
velocity for the trajectory.

[q,qd,qdd] = jtraj(q0, qf, T, qd0, qdf) as above but specifies initial and final joint
velocity for the trajectory and a time vector.

See also

ctraj, SerialLink.jtraj

Robotics Toolbox 9 for MATLAB
R©

102 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

lspb
Linear segment with parabolic blend

[s,sd,sdd] = lspb(s0, sf, n) is a scalar trajectory that varies smoothly from s0 to sf in
n steps using a constant velocity segment and parabolic blends (a trapezoidal path).
Velocity and acceleration can be optionally returned as sd and sdd. The trajectory s,
sd and sdd are n-vectors.

[s,sd,sdd] = lspb(s0, sf, T) as above but specifies the trajectory in terms of the length
of the time vector T.

[s,sd,sdd] = lspb(s0, sf, n, v) as above but specifies the velocity of the linear segment
which is normally computed automatically.

[s,sd,sdd] = lspb(s0, sf, T, v) as above but specifies the velocity of the linear segment
which is normally computed automatically and a time vector.

Notes

• in all cases if no output arguments are specified s, sd, and sdd are plotted against
time.

• for some values of v no solution is possible and an error is flagged.

See also

tpoly, jtraj

maxfilt
maximum filter

MAXFILT(s [,w])

minimum filter a signal with window of width w (default is 5)

SEE ALSO: medfilt, minfilt

pic 6/93

Robotics Toolbox 9 for MATLAB
R©

103 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

mdl Fanuc10L
Create kinematic model of Fanuc AM120iB/10L robot

mdl fanuc10L

Script creates the workspace variable R which describes the kinematic characteristics
of a Fanuc AM120iB/10L robot using standard DH conventions.

Also define the workspace vector:

q0 mastering position.

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

Author:

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

mdl MotomanHP6
Create kinematic data of a Motoman HP6 manipulator

mdl motomanHP6

Script creates the workspace variable R which describes the kinematic characteristics
of a Motoman HP6 manipulator using standard DH conventions.

Also define the workspace vector:

q0 mastering position.

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

Author:

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa

wynand.swart@gmail.com

Robotics Toolbox 9 for MATLAB
R©

104 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

mdl S4ABB2p8
Create kinematic model of ABB S4 2.8robot

mdl s4abb2P8

Script creates the workspace variable R which describes the kinematic characteristics
of an ABB S4 2.8 robot using standard DH conventions.

Also define the workspace vector:

q0 mastering position.

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

Author:

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

mdl p8
Create model of Puma robot on an XY base

mdl p8

Script creates the workspace variable p8 which is an 8-axis robot comprising a Puma
560 robot on an XY base. Joints 1 and 2 are the base, joints 3-8 are the robot arm.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction
qn arm is at a nominal non-singular configuration

See also

SerialLink, mdl puma560

Robotics Toolbox 9 for MATLAB
R©

105 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

mdl puma560
Create model of Puma 560 manipulator

mdl puma560

Script creates the workspace variable p560 which describes the kinematic and dynamic
characteristics of a Unimation Puma 560 manipulator using standard DH conventions.
The model includes armature inertia and gear ratios.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction
qn arm is at a nominal non-singular configuration

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

mdl puma560akb
Create model of Puma 560 manipulator

mdl puma560akb

Script creates the workspace variable p560m which describes the kinematic and dy-
namic characterstics of a Unimation Puma 560 manipulator modified DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction

References

Armstrong, Khatib and Burdick “The Explicit Dynamic Model and Inertial Parameters
of the Puma 560 Arm” 1986

Robotics Toolbox 9 for MATLAB
R©

106 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink, mdl puma560, mdl stanford, mdl twolink

mdl quadcopter
Dynamic parameters for a quadcopter.

mdl_quadcopter

Script creates the workspace variable quad which describes the dynamic characterstics
of a quadcopter.

Properties

This is a structure with the following elements.

J Flyer rotational inertia matrix 3× 3
h Height of rotors above CoG 1× 1
d Length of flyer arms 1× 1
nb Number of blades per rotor 1× 1
r Rotor radius 1× 1
c Blade chord 1× 1
e Flapping hinge offset 1× 1
Mb Rotor blade mass 1× 1
Mc Estimated hub clamp mass 1× 1
ec Blade root clamp displacement 1× 1
Ib Rotor blade rotational inertia 1× 1
Ic Estimated root clamp inertia 1× 1
mb Static blade moment 1× 1
Ir Total rotor inertia 1× 1
Ct Non-dim. thrust coefficient 1× 1
Cq Non-dim. torque coefficient 1× 1
sigma Rotor solidity ratio 1× 1
thetat Blade tip angle 1× 1
theta0 Blade root angle 1× 1
theta1 Blade twist angle 1× 1
theta75 3/4 blade angle 1× 1
thetai Blade ideal root approximation 1× 1
a Lift slope gradient 1× 1
A Rotor disc area 1× 1
gamma Lock number 1× 1

Robotics Toolbox 9 for MATLAB
R©

107 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

References

• P.Pounds; Design, Construction and Control of a Large Quadrotor micro air vehi-
cle. PhD thesis, Australian National University, 2007. http://www.eng.yale.edu/pep5/P Pounds Thesis 2008.pdf

See also

sl quadcopter

mdl stanford
Create model of Stanford arm

mdl stanford

Script creates the workspace variable stanf which describes the kinematic and dynamic
characteristics of the Stanford (Scheinman) arm.

Also define the vectors:

qz zero joint angle configuration.

Note

• gear ratios not currently known, though reflected armature inertia is known, so
gear ratios are set to 1.

References

• Kinematic data from ”Modelling, Trajectory calculation and Servoing of a com-
puter controlled arm”. Stanford AIM-177. Figure 2.3

• Dynamic data from “Robot manipulators: mathematics, programming and con-
trol” Paul 1981, Tables 6.4, 6.6

See also

SerialLink, mdl puma560, mdl puma560akb, mdl twolink

Robotics Toolbox 9 for MATLAB
R©

108 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

mdl twolink
Create model of a simple 2-link mechanism

mdl twolink

Script creates the workspace variable tl which describes the kinematic and dynamic
characteristics of a simple planar 2-link mechanism.

Also define the vector:

qz corresponds to the zero joint angle configuration.

Notes

• It is a planar mechanism operating in the XY (horizontal) plane and is therefore
not affected by gravity.

• Assume unit length links with all mass (unity) concentrated at the joints.

References

• Based on Fig 3-6 (p73) of Spong and Vidyasagar (1st edition).

See also

SerialLink, mdl puma560, mdl stanford

mlabel
for mplot style graph

mlabel(lab1 lab2 lab3)

mplot
multiple data

Plot y versus t in multiple windows.

Robotics Toolbox 9 for MATLAB
R©

109 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

MPLOT(y)
MPLOT(y, n)
MPLOT(y, n, {labels})

Where y is multicolumn data and first column is time. n is a row vector specifying
which variables to plot (1 is first data column, or y(:,2)). labels is a cell array of labels
for the subplots.

MPLOT(t, y)
MPLOT(t, y, n)
MPLOT(t, y, {labels})

Where y is multicolumn data and t is time. n is a row vector specifying which variables
to plot (1 is first data column, or y(:,2)). labels is a cell array of labels for the subplots.

MPLOT(S)

Where S is a structure and one element ‘t’ is assumed to be time. Plot

all other vectors versus time in subplots. Subplots are labelled as per the data fields.

mstraj
Multi-segment multi-axis trajectory

traj = mstraj(segments, qdmax, q0, dt, tacc) is a multi-segment trajectory based on
via points segments and velocity limits qdmax. The path comprises linear segments
with polynomial blends. The output trajectory is an M ×N matrix, with one row per
time step, and one column per axis.

• segments is an N ×M matrix of via points, 1 row per via point, one column per
axis. The last via point is the destination.

• qdmax is a row N-vector of axis velocity limits, or a column M-vector of seg-
ment times

• q0 is an N-vector of initial axis coordinates

• dt is the time step

• tacc is the acceleration time. If scalar this acceleration time is applied to all
segment transitions, if an N-vector it specifies the acceleration time for each
segment. tacc(i) is the acceleration time for the transition from segment i to
segment i+1. tacc(1) is also the acceleration time at the start of segment 1.

traj = mstraj(segments, qdmax, q0, dt, tacc, qd0, qdf) as above but additionally
specifies the initial and final axis velocities as N-vectors.

Notes

• can be used to create joint space trajectories

Robotics Toolbox 9 for MATLAB
R©

110 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• can be used to create Cartesian trajectories with the “axes” assigned to translation
and orientation in RPY or Euler angle form.:w

See also

mstraj, lspb, ctraj

mtools
simple/useful tools to all windows in figure

mtraj
Multi-axis trajectory between two points

[q,qd,qdd] = mtraj(tfunc, q0, qf, n) is multi-axis trajectory q varying from state q0
to qf according to the scalar trajectory function tfunc in n steps. Joint velocity and
acceleration can be optionally returned as qd and qdd respectively. The trajectory q,
qd and qdd are M × n matrices, with one row per time step, and one column per axis.

The shape of the trajectory is given by the scalar trajectory function tfunc

[s,sd,sdd] = tfunc(s0, sf, n);

and possible values of tfunc include @lspb for a trapezoidal trajectory, or @tpoly for
a polynomial trajectory.

[q,qd,qdd] = mtraj(tfunc, q0, qf, T) as above but specifies the trajectory length in
terms of the length of the time vector T.

Notes

• when tfunc is @tpoly the result is similar to JTRAJ except that no initial veloc-
ities can be specified. JTRAJ is computationally a little more efficient.

Robotics Toolbox 9 for MATLAB
R©

111 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

jtraj, mstraj, lspb, tpoly

norm2
columnwise norm

n = norm2(m) n = norm2(a, b)

numcols
Return number of columns in matrix

nc = numcols(m) returns the number of columns in the matrix m.

See also

numrows

numrows
Return number of rows in matrix

nr = numrows(m) returns the number of rows in the matrix m.

See also

numcols

Robotics Toolbox 9 for MATLAB
R©

112 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

oa2r
Convert orientation and approach vectors to rotation matrix

R = oa2r(o, a) is a rotation matrix for the specified orientation and approach vectors
formed from 3 vectors such that R = [N o a] and N = o x a.

Notes

• The submatrix is guaranteed to be orthonormal so long as o and a are not parallel.

See also

rpy2r, eul2r, oa2tr

oa2tr
Convert orientation and approach vectors to homogeneous
transformation

T = oa2tr(o, a) is a homogeneous tranformation for the specified orientation and ap-
proach vectors. The rotation submatrix is formed from 3 vectors such that R = [N,o,a]
and N = o x a.

Notes

• The submatrix is guaranteed to be orthonormal so long as o and a are not parallel.

• the translational part is zero.

See also

rpy2tr, eul2tr, oa2r

Robotics Toolbox 9 for MATLAB
R©

113 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

plot2
Plot trajectories

plot2(p) plots a line with coordinates taken from successive rows of p. p can be N × 2
or N × 3.

If p has three dimensions, ie. Nx2xM or Nx3xM then the M trajectories are overlaid in
the one plot.

plot2(p, ls) as above but the line style arguments ls are passed to plot.

See also

plot

plot box
a box on the current plot

PLOT BOX(b, ls) draws a box defined by b=[XL XR; YL YR] with optional Matlab
linestyle options ls.

PLOT BOX(x1,y1, x2,y2, ls) draws a box with corners at (x1,y1) and (x2,y2), and
optional Matlab linestyle options ls.

PLOT BOX(’centre’, P, ‘size’, W, ls) draws a box with center at P=[X,Y] and with
dimensions W=[WIDTH HEIGHT].

PLOT BOX(’topleft’, P, ‘size’, W, ls) draws a box with top-left at P=[X,Y] and with
dimensions W=[WIDTH HEIGHT].

plot circle
Draw a circle on the current plot

PLOT CIRCLE(C, R, options) draws a circle on the current plot with centre C=[X Y]
and radius R. If C=[X Y Z] the circle is drawn in the XY-plane at height Z.

Robotics Toolbox 9 for MATLAB
R©

114 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

If C (2×N or 3×N) and R (1×N) then a set of N circles are drawn with centre and
radius taken from the columns of C and R.

Options

‘edgecolor’ the color of the circle’s edge, Matlab color spec
‘fillcolor’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid.

Notes

• the option can be either a simple linespec (eg. ‘r’, ‘g:’) for a non-filled circle, or
a set of name, value pairs that are passed to plot.

Examples

plot_circle(c, r, ’r’);
plot_circle(c, r, ’fillcolor’, ’b’);
plot_circle(c, r, ’edgecolor’, ’g’, ’LineWidth’, 5);

See also

plot

plot ellipse
Draw an ellipse on the current plot

PLOT ELLIPSE(a, ls) draws an ellipse defined by X’AX = 0 on the current plot, cen-
tred at the origin, with Matlab line style ls.

PLOT ELLIPSE(a, C, ls) as above but centred at C=[X,Y]. current plot. If C=[X,Y,Z]
the ellipse is parallel to the XY plane but at height Z.

Robotics Toolbox 9 for MATLAB
R©

115 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

plot ellipse inv
Plot an ellipse

plot ellipse(a, xc, ls)

ls is the standard line styles.

plot frame
Plot a coordinate frame represented by a homogeneous trans-
formation

trplot(T, options) draws a coordinate frame corresponding to the homogeneous trans-
formation T.

Options

‘color’, c Specify color of the axes, Matlab colorspec
‘axes’ ’axis’

‘name’, n Specify the name of the coordinate frame,
‘framename’, n ‘text opts’, to

‘view’, v Specify the view angle for the Matlab axes
‘width’, w ‘arrow’ ’length’, l Specify length of the axes (default 1)

Examples:

trplot(T, ’color’, ’r’);
trplot(T, ’color’, ’r’, ’name’, ’B’)

plot homline
Draw a line in homogeneous form

H = PLOT HOMLINE(L, ls) draws a line in the current figure L.X = 0. The current
axis limits are used to determine the endpoints of the line. Matlab line specification ls
can be set.

The return argument is a vector of graphics handles for the lines.

Robotics Toolbox 9 for MATLAB
R©

116 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

homline

plot point
point features

PLOT POINT(p, options) adds point markers to a plot, where p is 2 × N and each
column is the point coordinate.

Options

‘textcolor’, colspec Specify color of text
‘textsize’, size Specify size of text
‘bold’ Text in bold font.
‘printf’, fmt, data Label points according to printf format string and corresponding element of data
‘sequence’ Label points sequentially

Additional options are passed through to PLOT for creating the marker.

See also

plot, text

plot poly
Plot a polygon

plotpoly(p, options) plot a polygon defined by columns of p which can be 2 × N or
3×N .

options

‘fill’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid.

Robotics Toolbox 9 for MATLAB
R©

117 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

plot, patch, Polygon

plot sphere
Plot spheres

PLOT SPHERE(C, R, color) add spheres to the current figure. C is the centre of the
sphere and if its a 3 × N matrix then N spheres are drawn with centres as per the
columns. R is the radius and color is a Matlab color spec, either a letter or 3-vector.

H = PLOT SPHERE(C, R, color) as above but returns the handle(s) for the spheres.

H = PLOT SPHERE(C, R, color, alpha) as above but alpha specifies the opacity of
the sphere were 0 is transparant and 1 is opaque. The default is 1.

NOTES

• The sphere is always added, irrespective of figure hold state.

• The number of vertices to draw the sphere is hardwired.

plotbotopt
Define default options for robot plotting

Default options for robot/plot function.

See also

SerialLink.plot

Robotics Toolbox 9 for MATLAB
R©

118 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

plotp
Plot trajectories

plotp(p) plots a set of points p, which by Toolbox convention are stored one per col-
umn. p can be N × 2 or N × 3. By default a linestyle of ‘bx’ is used.

plotp(p, ls) as above but the line style arguments ls are passed to plot.

See also

plot, plot2

qplot
Plot joint angles

qplot(q) is a convenience function to plot joint angle trajectories for a 6-axis robot.
q is N × 6, and the first three joints are shown as solid lines, the last three joints are
shown as dashed lines. A legend is also displayed.

qplot(T, q) displays the joint angle trajectory versus time T.

See also

jtraj

r2t
Convert rotation matrix to a homogeneous transform

T = r2t(R) is a homogeneous transform equivalent to an orthonormal rotation matrix
R with a zero translational component.

Robotics Toolbox 9 for MATLAB
R©

119 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• functions for T in SE(2) or SE(3)

– if R is 2× 2 then T is 3× 3, or

– if R is 3× 3 then T is 4× 4.

• translational component is zero

See also

t2r

ramp
create a ramp vector

ramp(n) output a vector of length n that ramps linearly from 0 to 1

ramp(v) as above but vector is same length as v

ramp(v, d) as above but elements increment by d.

See also

linspace

rotx
Rotation about X axis

R = rotx(theta) is a rotation matrix representing a rotation of theta about the x-axis.

See also

roty, rotz, angvec2r

Robotics Toolbox 9 for MATLAB
R©

120 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

roty
Rotation about Y axis

R = roty(theta) is a rotation matrix representing a rotation of theta about the y-axis.

See also

rotx, rotz, angvec2r

rotz
Rotation about Z axis

R = rotz(theta) is a rotation matrix representing a rotation of theta about the z-axis.

See also

rotx, roty, angvec2r

rpy2jac
Jacobian from RPY angle rates to angular velocity

J = rpy2jac(rpy) is a 3 × 3 Jacobian matrix that maps roll-pitch-yaw angle rates to
angular velocity, and rpy=[R,P,Y]. Used in the creation of the analytical Jacobian.

J = rpy2jac(R, p, y) as above but the roll-pitch-yaw angles are passed as separate
arguments.

See also

eul2jac, SERIALLINK.JACOBN

Robotics Toolbox 9 for MATLAB
R©

121 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

rpy2r
Roll-pitch-yaw angles to rotation matrix

R = rpy2r(rpy) is an orthonormal rotation matrix equivalent to the specified roll, pitch,
yaw angles which correspond to rotations about the X, Y, Z axes respectively. If rpy has
multiple rows they are assumed to represent a trajectory and R is a three dimensional
matrix, where the last index corresponds to the rows of rpy.

R = rpy2r(roll, pitch, yaw) as above but the roll-pitch-yaw angles are passed as sepa-
rate arguments.

If roll, pitch and yaw are column vectors then they are assumed to represent a trajectory
and R is a three dimensional matrix, where the last index corresponds to the rows of
roll, pitch, yaw.

Note

• in previous releases (<8) the angles corresponded to rotations about ZYX.

• many texts (Paul, Spong) use the rotation order ZYX.

See also

tr2rpy, eul2tr

rpy2tr
Roll-pitch-yaw angles to homogeneous transform

T = rpy2tr(rpy) is an orthonormal rotation matrix equivalent to the specified roll,
pitch, yaw angles which correspond to rotations about the X, Y, Z axes respectively.
If rpy has multiple rows they are assumed to represent a trajectory and R is a three
dimensional matrix, where the last index corresponds to the rows of rpy.

T = rpy2tr(roll, pitch, yaw) as above but the roll-pitch-yaw angles are passed as sep-
arate arguments.

If roll, pitch and yaw are column vectors then they are assumed to represent a trajectory
and R is a three dimensional matrix, where the last index corresponds to the rows of
roll, pitch, yaw.

Robotics Toolbox 9 for MATLAB
R©

122 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• in previous releases (<8) the angles corresponded to rotations about ZYX.

• many texts (Paul, Spong) use the rotation order ZYX.

See also

tr2rpy, eul2tr

rt2tr
Convert rotation and translation to homogeneous transform

TR = rt2tr(R, t) is a homogeneous transformation matrix formed from an orthonormal
rotation matrix R and a translation vector t.

Notes

• functions for R in SO(2) or SO(3)

– If R is 2× 2 and t is 2× 1, then TR is 3× 3

– If R is 3× 3 and t is 3× 1, then TR is 4× 4

• the validity of R is not checked

See also

t2r, r2t, tr2rt

rtdemo
Robot toolbox demonstrations

Displays popup menu of toolbox demonstration scripts that illustrate:

• homogeneous transformations

• trajectories

Robotics Toolbox 9 for MATLAB
R©

123 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• forward kinematics

• inverse kinematics

• robot animation

• inverse dynamics

• forward dynamics

The scripts require the user to periodically hit <Enter> in order to move through the
explanation. Set PAUSE OFF if you want the scripts to run completely automatically.

se2
Create planar translation and rotation transformation

T = se2(x, y, theta) is a 3 × 3 homogeneous transformation SE(2) representing trans-
lation x and y, and rotation theta in the plane.

T = se2(xy) as above where xy=[x,y] and rotation is zero

T = se2(xy, theta) as above where xy=[x,y]

T = se2(xyt) as above where xyt=[x,y,theta]

See also

trplot2

skew
Create skew-symmetric matrix

s = skew(v) is a skew-symmetric matrix and v is a 3-vector.

See also

vex

Robotics Toolbox 9 for MATLAB
R©

124 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

t2r
Return rotational submatrix of a homogeneous transforma-
tion

R = t2r(T) is the orthonormal rotation matrix component of homogeneous transforma-
tion matrix T:

Notes

• functions for T in SE(2) or SE(3)

– If T is 4× 4, then R is 3× 3.

– If T is 3× 3, then R is 2× 2.

• the validity of rotational part is not checked

See also

r2t, tr2rt, rt2tr

tb optparse
Standard option parser for Toolbox functions

[optout,args] = TB OPTPARSE(opt, arglist) is a generalized option parser for Tool-
box functions. It supports options that have an assigned value, boolean or enumeration
types (string or int).

The software pattern is:

function(a, b, c, varargin)
opt.foo = true;
opt.bar = false;
opt.blah = [];
opt.choose = {’this’, ’that’, ’other’};
opt.select = {’#no’, ’#yes’};
opt = tb_optparse(opt, varargin);

Robotics Toolbox 9 for MATLAB
R©

125 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Optional arguments to the function behave as follows:

‘foo’ sets opt.foo <- true
‘nobar’ sets opt.foo <- false
‘blah’, 3 sets opt.blah <- 3
‘blah’, x,y sets opt.blah <- x,y
‘that’ sets opt.choose <- ‘that’
‘yes’ sets opt.select <- 2 (the second element)

and can be given in any combination.

If neither of ‘this’, ‘that’ or ‘other’ are specified then opt.choose <- ‘this’. If neither of
‘no’ or ‘yes’ are specified then opt.select <- 1.

Note:

• that the enumerator names must be distinct from the field names.

• that only one value can be assigned to a field, if multiple values

are required they must be converted to a cell array.

The allowable options are specified by the names of the fields in the structure opt. By
default if an option is given that is not a field of opt an error is declared.

Sometimes it is useful to collect the unassigned options and this can be achieved using
a second output argument

[opt,arglist] = tb_optparse(opt, varargin);

which is a cell array of all unassigned arguments in the order given in varargin.

The return structure is automatically populated with fields: verbose and debug. The
following options are automatically parsed:

‘verbose’ sets opt.verbose <- true
‘debug’, N sets opt.debug <- N
‘setopt’, S sets opt <- S
‘showopt’ displays opt and arglist

tpoly
Generate scalar polynomial trajectory

[s,sd,sdd] = tpoly(s0, sf, n) is a trajectory of a scalar that varies smoothly from s0 to
sf in n steps using a quintic (5th order) polynomial. Velocity and acceleration can be
optionally returned as sd and sdd. The trajectory s, sd and sdd are n-vectors.

[s,sd,sdd] = tpoly(s0, sf, T) as above but specifies the trajectory in terms of the length
of the time vector T.

Robotics Toolbox 9 for MATLAB
R©

126 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

tr2angvec
Convert rotation matrix to angle-vector form

[theta,v] = tr2angvec(R) is a rotation of theta about the vector v equivalent to the
orthonormal rotation matrix R.

[theta,v] = tr2angvec(T) is a rotation of theta about the vector v equivalent to the
rotational component of the homogeneous transform T.

Notes

• If no output arguments are specified the result is displayed.

See also

angvec2r, angvec2tr

tr2delta
Convert homogeneous transform to differential motion

d = tr2delta(T0, T1) is the differential motion corresponding to infinitessimal motion
from pose T0 to T1 which are homogeneous transformations. d=(dx, dy, dz, dRx, dRy,
dRz) and is an approximation to the average spatial velocity multiplied by time.

d = tr2delta(T) is the differential motion corresponding to the infinitessimal relative
pose T expressed as a homogeneous transformation.

Notes

• d is only an approximation to the described by T, and assumes that T0 T1 or T
eye(4,4).

See also

delta2tr, skew

Robotics Toolbox 9 for MATLAB
R©

127 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

tr2eul
Convert homogeneous transform to Euler angles

eul = tr2eul(T, options) are the ZYZ Euler angles expressed as a row vector corre-
sponding to the rotational part of a homogeneous transform T. The 3 angles eul=[PHI,THETA,PSI]
correspond to sequential rotations about the Z, Y and Z axes respectively.

eul = tr2eul(R, options) are the ZYZ Euler angles expressed as a row vector corre-
sponding to the orthonormal rotation matrix R.

Notes

• There is a singularity for the case where THETA=0 in which case PHI is arbi-
trarily set to zero and PSI is the sum (PHI+PSI).

• If R or T represents a trajectory (has 3 dimensions), then each row of eul corre-
sponds to a step of the trajectory.

Options:

‘deg’ Compute angles in degrees (radians default)

See also

eul2tr, tr2rpy

tr2jac
Jacobian for differential motion

J = tr2jac(T) is a 6×6 Jacobian matrix that maps spatial velocity or differential motion
from the world frame to the frame represented by the homogeneous transform T.

See also

wtrans, tr2delta, delta2tr

Robotics Toolbox 9 for MATLAB
R©

128 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

tr2rpy
Convert a homogeneous transform to roll-pitch-yaw angles

rpy = tr2rpy(T, options) are the roll-pitch-yaw angles expressed as a row vector corre-
sponding to the rotation part of a homogeneous transform T. The 3 angles rpy=[R,P,Y]
correspond to sequential rotations about the X, Y and Z axes respectively.

rpy = tr2rpy(R, options) are the roll-pitch-yaw angles expressed as a row vector cor-
responding to the orthonormal rotation matrix R.

If R or T represents a trajectory (has 3 dimensions), then each row of rpy corresponds
to a step of the trajectory.

Options

‘deg’ Compute angles in degrees (radians default)
‘zyx’ Return solution for sequential rotations about Z, Y, X axes (Paul book)

Notes

• There is a singularity for the case where THETA=0 in which case PHI is arbi-
trarily set to zero and PSI is the sum (PHI+PSI).

• Note that textbooks (Paul, Spong) use the rotation order ZYX.

See also

rpy2tr, tr2eul

tr2rt
Convert homogeneous transform to rotation and translation

[R,t] = tr2rt(TR) split a homogeneous transformation matrix into an orthonormal ro-
tation matrix R and a translation vector t.

Notes

• Functions for TR in SE(2) or SE(3)

– If TR is 4× 4, then R is 3× 3 and T is 3× 1.

Robotics Toolbox 9 for MATLAB
R©

129 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

– If TR is 3× 3, then R is 2× 2 and T is 2× 1.

• The validity of R is not checked.

See also

rt2tr, r2t, t2r

tranimate
Animate a coordinate frame

tranimate(p1, p2, options) animates a coordinate frame moving from pose p1 to pose
p2. Pose can be represented by:

• homogeneous transformation matrix 4× 4

• orthonormal rotation matrix 3× 3

• Quaternion

tranimate(p, options) animates a coordinate frame moving from the identity pose to
the pose p represented by any of the types listed above.

tranimate(ps, options) animates a trajectory, where ps is any of

• homogeneous transformation matrix sequence 4x4xn

• orthonormal rotation matrix sequence 3x3xn

• quaternion array n

Options

‘fps’, fps Number of frames per second to display (default 10)
‘nsteps’, n The number of steps along the path (default 50)

See also

trplot

Robotics Toolbox 9 for MATLAB
R©

130 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

transl
Create translational transform

T = transl(x, y, z) is a homogeneous transform representing a pure translation.

T = transl(p) is a homogeneous transform representing a translation or point p=[x,y,z].
If p is an M × 3 matrix transl returns a 4x4xM matrix representing a sequence of
homogenous transforms such that T(:,:,i) corresponds to the i’th row of p.

p = transl(T) is the translational part of a homogenous transform as a 3-element col-
umn vector. If T has three dimensions, ie. 4x4xN then T is considered a homgoeneous
transform sequence and returns an N × 3 matrix where each row is the translational
component of the corresponding transform in the sequence.

Notes

• somewhat unusually this function performs a function and its inverse. An histor-
ical anomaly.

See also

ctraj

trinterp
Interpolate homogeneous transformations

T = trinterp(T0, T1, s) is a homogeneous transform interpolation between T0 when
s=0 to T1 when s=1. Rotation is interpolated using quaternion spherical linear inter-
polation. If s is an N-vector then T is a 4x4xN matrix where the transform T(:,:,i)
corresponds to s(i).

T = trinterp(T, s) is a transform that varies from the identity matrix when s=0 to T
when R=1. If s is an N-vector then T is a 4x4xN matrix where the transform T(:,:,i)
corresponds to s(i).

See also

ctraj, quaternion

Robotics Toolbox 9 for MATLAB
R©

131 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

trnorm
Normalize a homogeneous transform

tn = trnorm(T) is a normalized homogeneous transformation matrix in which the ro-
tation submatrix is guaranteed to be a proper orthogonal matrix. The O and A vectors
are normalized and the normal vector is formed from O x A.

Notes

• Used to prevent finite word length arithmetic causing transforms to

become ‘unnormalized’.

See also

oa2tr

trotx
Rotation about X axis

T = trotx(theta) is a homogeneous transformation representing a rotation of theta
about the x-axis.

Notes

• translational component is zero

See also

rotx, troty, trotz

Robotics Toolbox 9 for MATLAB
R©

132 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

troty
Rotation about Y axis

T = troty(theta) is a homogeneous transformation representing a rotation of theta
about the y-axis.

Notes

• translational component is zero

See also

roty, trotx, trotz

trotz
Rotation about Z axis

T = trotz(theta) is a homogeneous transformation representing a rotation of theta
about the z-axis.

Notes

• translational component is zero

See also

rotz, trotx, troty

trplot
Draw a coordinate frame

trplot(T, options) draws a 3D coordinate frame represented by the homogeneous trans-
form T.

Robotics Toolbox 9 for MATLAB
R©

133 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

trplot(R, options) draws a 3D coordinate frame represented by the orthonormal rota-
tion matrix R.

Options

‘color’, c The color to draw the axes, Matlab colorspec.
‘axes’ Set dimensions of the Matlab axes
‘frame’, f The name which appears on the axis labels and the frame itself
‘text opts’, opt A cell array of Matlab text properties
‘arrow’ Use arrows rather than line segments for the axes
‘width’, w Width of arrow tips
‘handle’, h Draw in the Matlab axes specified by h

See also

trplot2, tranimate

trplot2
Plot a planar transformation

trplot2(T, options) draws a 2D coordinate frame represented by the homogeneous
transform T.

Options

‘color’, c The color to draw the axes, Matlab colorspec.
‘axes’ Set dimensions of the Matlab axes
‘frame’, f The name which appears on the axis labels and the frame itself
‘text opts’, opt A cell array of Matlab text properties
‘arrow’ Use arrows rather than line segments for the axes
‘width’, w Width of arrow tips
‘handle’, h Draw in the Matlab axes specified by h

See also

trplot

Robotics Toolbox 9 for MATLAB
R©

134 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

trprint
Compact display of homogeneous transformation

trprint(T, options) displays the homogoneous transform in a compact single-line for-
mat. If T is a homogeneous transform sequence then print each element is printed on a
separate line.

trprint T is the command line form of above, and displays in RPY format.

Options

‘rpy’ display with rotation in roll/pitch/yaw angles (default)
‘euler’ display with rotation in ZYX Euler angles
‘angvec’ display with rotation in angle/vector format
‘radian’ display angle in radians (default is degrees)
‘fmt’, f use format string f for all numbers, (default %g)
‘label’, l display the text before the transform

See also

tr2eul, tr2rpy, tr2angvec

unit
Unitize a vector

vn = unit(v) is a unit vector parallel to v.

Note

• fails for the case where norm(v) is zero.

Robotics Toolbox 9 for MATLAB
R©

135 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

usefig
a named figure or create a new figure

usefig(’Foo’)

make figure ‘Foo’ the current figure, if it doesn’t exist create it.

h = usefig(’Foo’) as above, but returns the figure handle

vex
Convert skew-symmetric matrix to vector

v = vex(s) is the vector which has the skew-symmetric matrix s.

Notes

• No checking is done to ensure that the matrix is skew-symmetric.

• The function takes the mean of the two elements that correspond to each unique
element of the matrix, ie. vx = 0.5*(s(3,2)-s(2,3))

See also

skew

xaxis
X-axis scaling

xaxis(max) xaxis([min max]) xaxis(min, max)

xaxis restore automatic scaling for this axis

Robotics Toolbox 9 for MATLAB
R©

136 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

yaxis
Y-axis scaling

yayis(max) yayis(min, max)

YAXIS restore automatic scaling for this axis

Robotics Toolbox 9 for MATLAB
R©

137 Copyright c©Peter Corke 2011

	Introduction
	Introduction
	What's new
	Support
	How to obtain the Toolbox
	MATLAB version issues
	Use in teaching
	Use in research
	Support, bug fixes, etc.
	Other toolboxes

	Acknowledgements

	Functions and classes
	SerialLink
	Bug2
	DHFactor
	DXform
	Dstar
	EKF
	Link
	Map
	Navigation
	PGraph
	PRM
	ParticleFilter
	Polygon
	Quaternion
	RRT
	RandomPath
	RangeBearingSensor
	Sensor
	Vehicle
	about
	angdiff
	angvec2r
	angvec2tr
	circle
	colnorm
	ctraj
	delta2tr
	diff2
	distancexform
	e2h
	edgelist
	eul2jac
	eul2r
	eul2tr
	ftrans
	gauss2d
	h2e
	homline
	homtrans
	imeshgrid
	ishomog
	isrot
	isvec
	jsingu
	jtraj
	lspb
	maxfilt
	mdl_Fanuc10L
	mdl_MotomanHP6
	mdl_S4ABB2p8
	mdl_p8
	mdl_puma560
	mdl_puma560akb
	mdl_quadcopter
	mdl_stanford
	mdl_twolink
	mlabel
	mplot
	mstraj
	mtools
	mtraj
	norm2
	numcols
	numrows
	oa2r
	oa2tr
	plot2
	plot_box
	plot_circle
	plot_ellipse
	plot_ellipse_inv
	plot_frame
	plot_homline
	plot_point
	plot_poly
	plot_sphere
	plotbotopt
	plotp
	qplot
	r2t
	ramp
	rotx
	roty
	rotz
	rpy2jac
	rpy2r
	rpy2tr
	rt2tr
	rtdemo
	se2
	skew
	t2r
	tb_optparse
	tpoly
	tr2angvec
	tr2delta
	tr2eul
	tr2jac
	tr2rpy
	tr2rt
	tranimate
	transl
	trinterp
	trnorm
	trotx
	troty
	trotz
	trplot
	trplot2
	trprint
	unit
	usefig
	vex
	xaxis
	yaxis

