Controle e Estabilidade de Tensão

Djalma M. Falcão

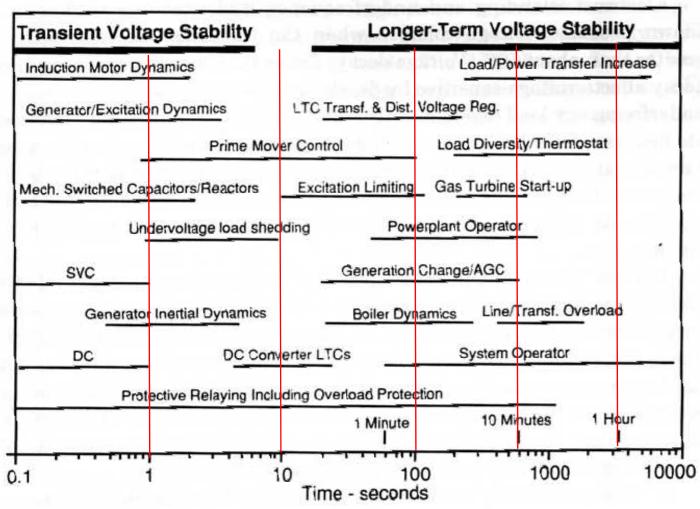
Resumo

- Controle de Tensão (introdução)
- Estabilidade de Tensão
- Exemplo Clássico
- Métodos de Análise
- Controle de Tensão

Controle de Tensão

- Conjunto de ações executados para manter o perfil de tensão do sistema dentro de limites especificados
- Fortemente associado ao suporte de reativos do sistema
- Geralmente executado de forma local através da ação de:
 - Geradores, compensadores síncronos e estáticos
 - Chaveamento de bancos de capacitores e indutores
 - Transformadores com variação de tape sob carga (LTC's)
 - Etc.
- Controles coordenados e/ou centralizados têm sido propostos e implementados em alguns países
- Vantagens: melhor utilização dos recursos de controle e geração de reativos

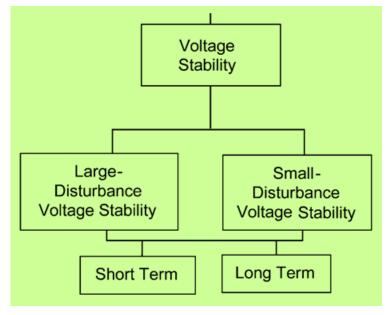
Estabilidade de Tensão


- É a propriedade do sistema de, após sofrer um distúrbio, as tensões próximas às cargas atingirem valores de equilíbrio, dentro de certos limites.
- Instabilidade de tensão ou Colapso de Tensão caracterizado pela queda descontrolada da tensão.
- "Estabilidade de tensão cobre uma grande gama de fenômenos. Devido a isso, tem diferentes significados para diferentes engenheiros." (C. Taylor)
 - Pode ser um fenômeno rápido se considerarmos motores de indução, links de HVDC, etc.
 - Pode ser um fenômeno lento se o interesse for na ação de LTC's mecânicos, limitadores de sobre-excitação de geradores, etc.
- É quase sempre do tipo decrescimento aperiódico da tensão

Estabilidade de Tensão (cont.)

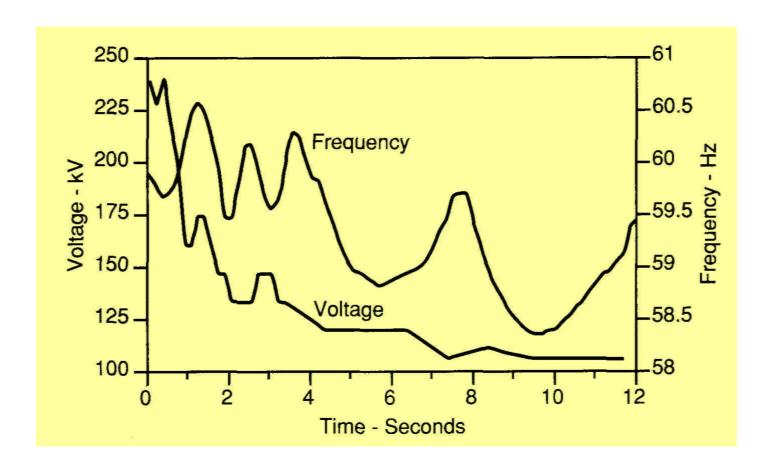
- Fortemente associada ao suporte de reativos e à capacidade do sistema de transmissão
- Estabilidade da carga
- Mecanismos/Cenários
 - Estabilidade de Tensão de Curto Prazo ou Transitória (0-10 segundos)
 - Diferença em relação à estabilidade angular normalmente não é clara
 - Causada pela ação de dispositivos de ação rápida com comportamento defavorável tais como motores de indução, elos HVDC, etc.
 - Estabilidade de Tensão de Longo Prazo (2-3 minutos)
 - Importação elevada e grandes distúrbios
 - Restauração da carga por LTCs, reguladores de tensão, carga termostática, limitações na capacidade de geradores, OEL, etc
 - Estabilidade de Muito Longa Prazo (vários minutos)
 - Crescimento rápido da carga ou transferência de potência (load pickup)
 - Limites de transferência nas linhas

Escalas de Tempo para Estabilidade de Tensão

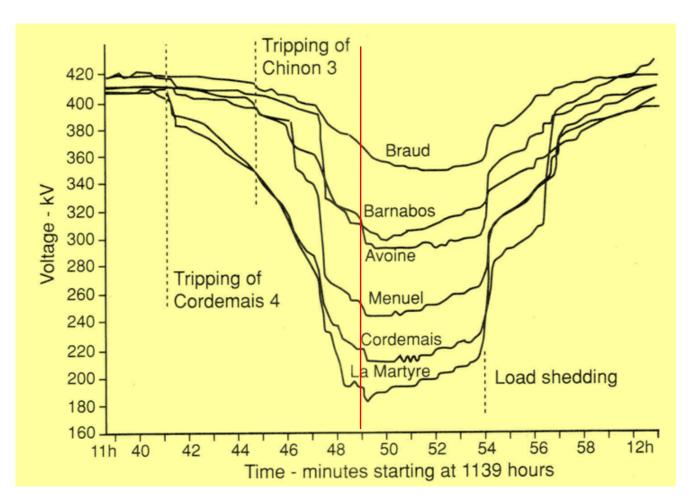


Definições de Estabilidade

- P. Kundur et al., "Definition and Classification of Power System Stability", *IEEE Transactions on Power Systems*, vol. 19, no. 2, May 2004.
- •Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition.
- •It depends on the ability to maintain/restore equilibrium between load demand and load supply from the power system.

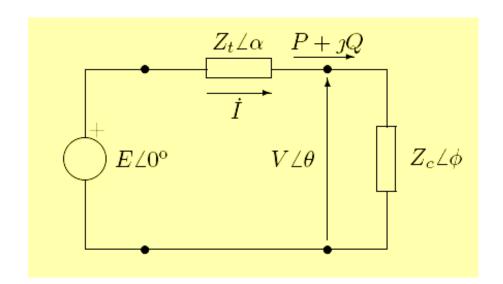

•Instability that may result occurs in the form of a progressive fall or rise of

voltages of some buses.



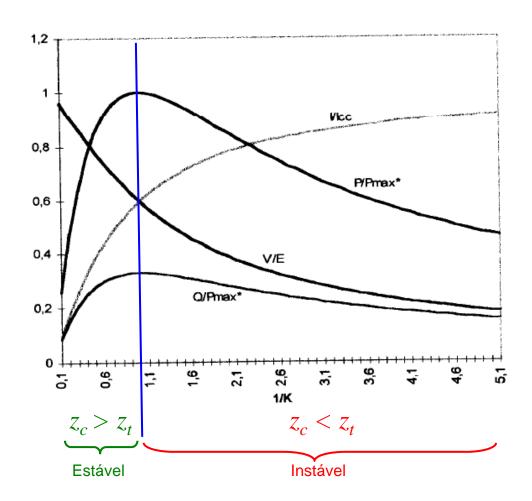
Exemplo 1

Sul da Flórida (17Mai85), exemplo de colapso de tensão de curto prazo(4 segundos) Fonte: C. Taylor, pp. 21.


Exemplo 2

Oeste da França (12Jan87), exemplo de colapso de tensão de longa-duração (6-7 minutos). Fonte: C. Taylor, pp. 262-264.

Exemplo Clássico


$$\kappa = \frac{Z_c}{Z_t}$$

$$\rho = 1 + \kappa^2 + 2\kappa \cos{(\alpha - \phi)}$$

$$\frac{I}{I_{cc}} = \frac{1}{\sqrt{\rho}} \quad ; \qquad \frac{V}{E} = \frac{\kappa}{\sqrt{\rho}}$$

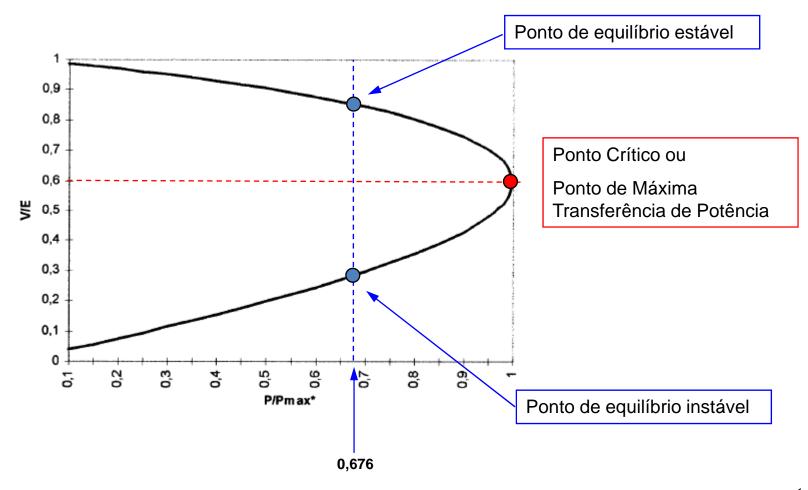
$$\frac{P}{P_{max}} = \frac{2\kappa \cos \phi}{\rho} \quad ; \qquad \frac{Q}{P_{max}} = \frac{2\kappa \sin \phi}{\rho}$$

Corrente, Tensão e Potência

$$\tan \alpha = 10$$

 $\cos \phi = 0.95 \text{ (atrasado)}$

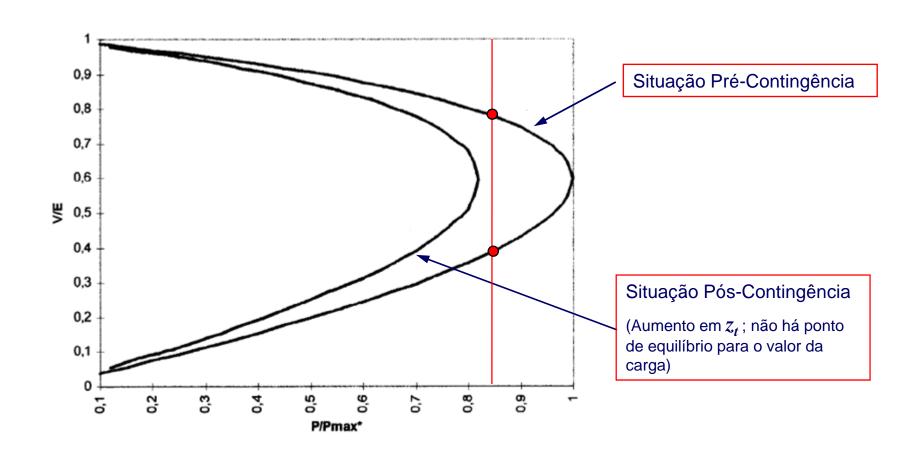
$$\frac{1}{\kappa} = \frac{z_t}{z_c}$$


$$\kappa < 1 \ (Z_c < Z_t)$$

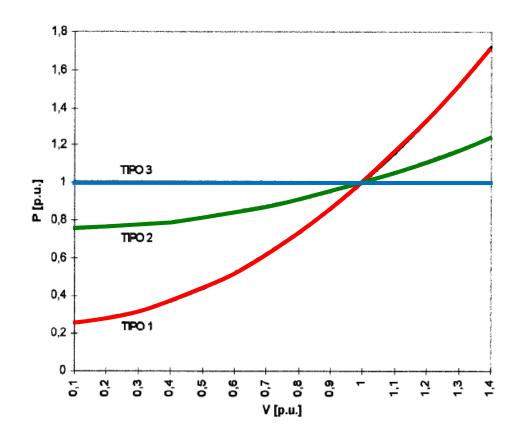
Aumento da carga ->

Redução da potência transferida

Característica P-V



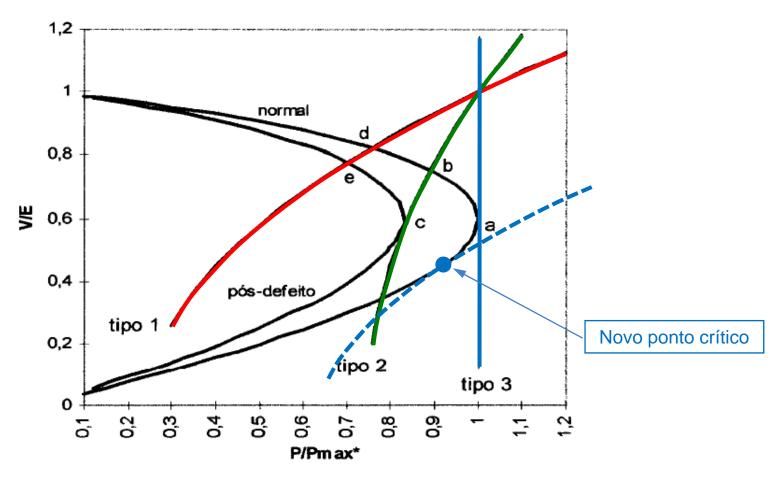
Característica Q-V



Característica P-V para situação Pós-Contingência

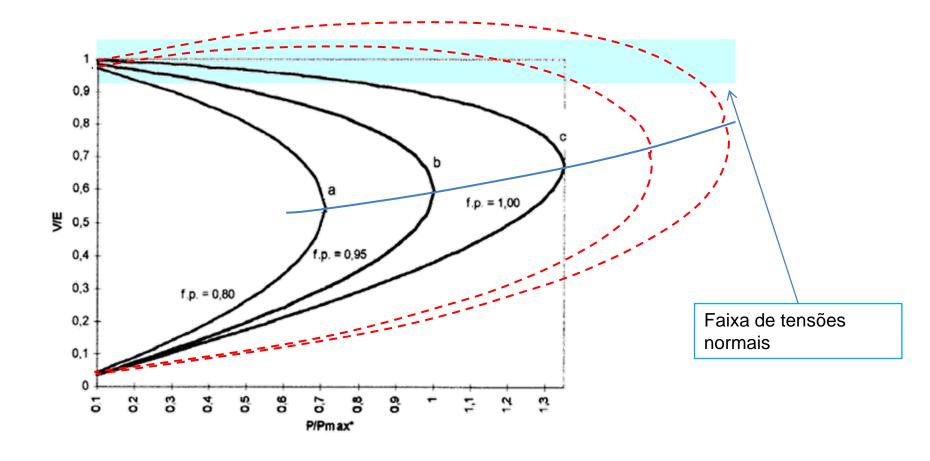
Características da Carga

$$P = P_0(a + b V^2)$$


Tipo 1:
$$a = 0.25 e b = 0.75$$
;

Tipo 2:
$$a = 0.75 e b = 0.25$$
;

Tipo 3:
$$a = 1.00 e b = 0$$
.



Característica Composta Carga-Transmissão

Característica P-V para diferente Fatores de Potência da Carga

Métodos de Análise

- Análise Estática (Modelo do Fluxo de Potência)
 - Sensibilidade P-V e Q-V
 - Análise de Autovalores/Autovetores (Análise Modal)
 - Fluxo de Potência Continuado
 - Índices
 - Fluxo de Potência Ótimo
- Análise Dinâmica
 - Simulação Quase-Estática
 - Simulação Dinâmica Completa
 - Métodos Baseados na Função Energia

Sensibilidade P-V e Q-V

Modelo linearizado no ponto de operação considerado

$$\begin{bmatrix} \Delta \mathbf{P} \\ \Delta \mathbf{Q} \end{bmatrix} = \begin{bmatrix} \mathbf{J}_{P\theta} & \mathbf{J}_{PV} \\ \mathbf{J}_{Q\theta} & \mathbf{J}_{QV} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta \mathbf{V} \end{bmatrix}$$

• Supondo $\Delta P = 0$, temos

$$0 = \mathbf{J}_{P\theta} \Delta \theta + \mathbf{J}_{PV} \Delta \mathbf{V}$$
$$\Delta \mathbf{Q} = \mathbf{J}_{Q\theta} \Delta \theta + \mathbf{J}_{QV} \Delta \mathbf{V}$$

de onde obtem-se

$$\Delta \mathbf{Q} = \mathbf{J}_{RQ} \Delta \mathbf{V}$$

$$\mathbf{J}_{RQ} = \mathbf{J}_{QV} - \mathbf{J}_{Q\theta} \mathbf{J}_{P\theta}^{-1} \mathbf{J}_{PV}$$

onde \mathbf{J}_{RO} é a Matriz de Sensibilidade Q-V

Sensibilidade P-V e Q-V

Analogamente, pode-se definir a Matriz de Sensibilidade P-V

$$\mathbf{J}_{RP} = \mathbf{J}_{PV} - \mathbf{J}_{P\theta} \mathbf{J}_{Q\theta}^{-1} \mathbf{J}_{QV}$$

- As matrizes $\mathbf{J}_{RQ} \in \mathbf{J}_{RP}$ podem ser vistas como equivalentes multidimensionais das inclinações das curvas Q-V e P-V
- Elementos de \mathbf{J}_{RQ} indicam a sensibilidade do módulo da tensão com a injeção de potência reativa na própria barra e em outras barras
- Valores negativos da sensibilidade indicam operação na região instável
- Quanto menores forem os valores positivos, mais estável é o sistema; aproximando-se do ponto crítico, os valores crescem até atingir infinito nesse ponto
- Essas matrizes, assim como o Jacobiano, são singulares no ponto crítico

Análise de Autovalores/Autovetores

A matriz de sensibilidade Q-V pode ser decomposta na forma

$$\mathbf{J}_{RQ} = \mathbf{U}\Lambda\mathbf{W}$$

 $\mathbf{M} = [\lambda_1, \lambda_2, \cdots, \lambda_n]$ matriz diagonal de autovalores $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_n]^T$ matriz de autovetores à esquerda $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n]$ matriz de autovetores à direita

 A relação entre variações de tensão e injeção de reativos é dada por

$$\Delta \mathbf{V} = \mathbf{U} \Lambda^{-1} \mathbf{W} \Delta \mathbf{Q}$$

• Normalizando os autovetores, temos $\mathbf{U}^{-1} = \mathbf{W}$ e

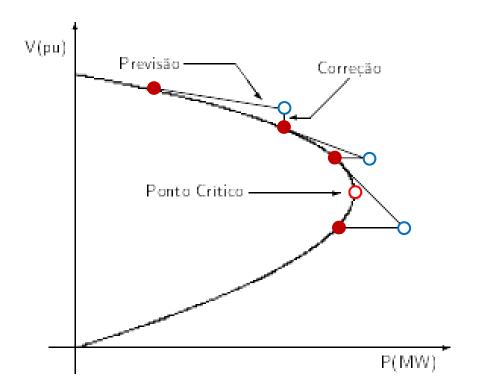
$$\mathbf{W}\Delta\mathbf{V} = \Lambda^{-1}\mathbf{W}\Delta\mathbf{Q}$$

Análise de Autovalores/Autovetores

Redefinindo variáveis

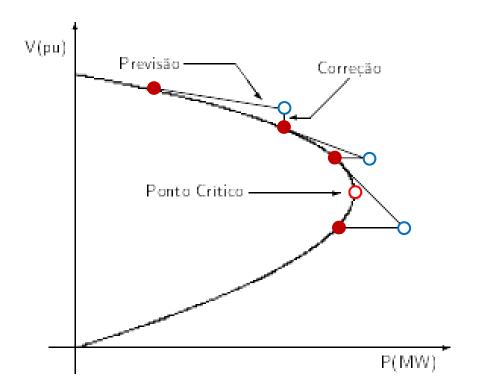
$$\mathbf{v} = \Lambda^{-1}\mathbf{q}$$
 $\mathbf{v} = \mathbf{W}\Delta\mathbf{V}$ $\mathbf{q} = \mathbf{W}\Delta\mathbf{Q}$

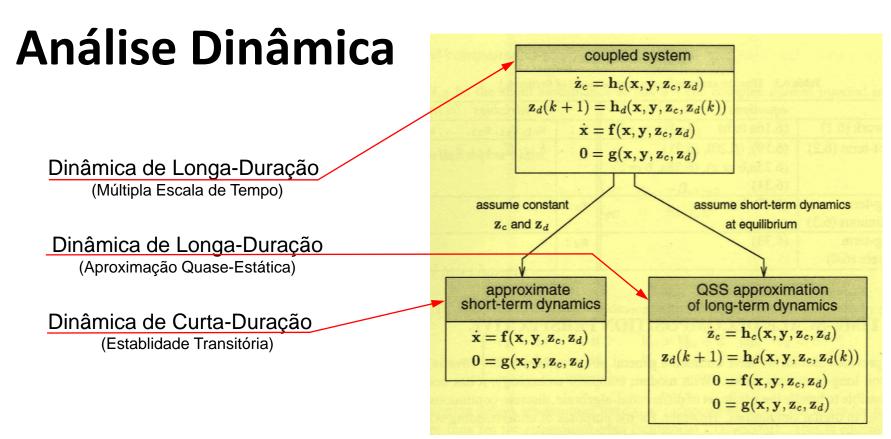
- Onde v e q são vetores de variação modal de tensão e injeção de reativos
- Para o i-ésimo modo (iésima componente de v ou q:


$$v_i = \frac{1}{\lambda_i} q_i$$

• Se algum λ_i < 0, o sistema é instável pois um acréscimo na injeção de reativos provoca uma redução da tensão

Fluxo de Potência Continuado


- O método de Newton-Raphson apresenta dificuldade de convergência na solução do fluxo de potência na proximidade do ponto crítico devido ao mal-condicionamento do Jacobiano
- FP Continuado é um esquema de solução que permite a obtenção da solução em qualquer ponto da curva P-V

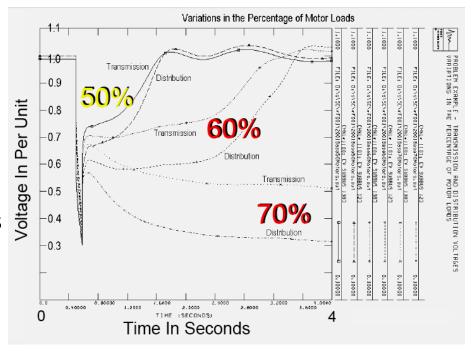


Fluxo de Potência Continuado

- O método de Newton-Raphson apresenta dificuldade de convergência na solução do fluxo de potência na proximidade do ponto crítico devido ao mal-condicionamento do Jacobiano
- FP Continuado é um esquema de solução que permite a obtenção da solução em qualquer ponto da curva P-V

Fonte: Van Cutsem e Vournas, pp 194.

 \boldsymbol{x} : variáveis de estado dinâmicas (ângulo e velocidade dos rotores, etc.)

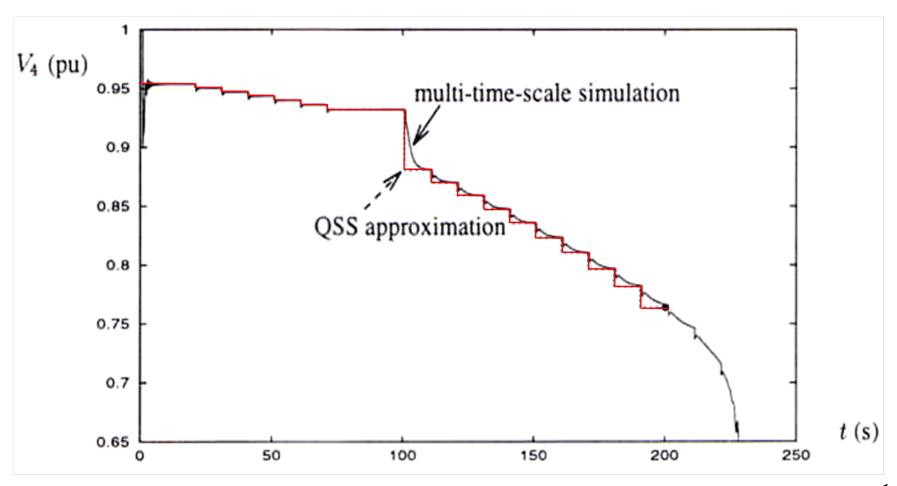

y : variáveis algébricas (tensões nodais, etc.)

 z_c : variáveis de longo prazo contínuas (cargas termostáticas, aprox contínua LTCs, etc.)

 z_d : variáveis de longo prazo discretas (bancos de capacitores, LTCs, OELs, etc.)

Dinâmica de Curta-Duração

- Usado para estudar o fenômeno de curta-duração
- É o mesmo tipo de simulação utilizado para estudar a Estabilidade Transitória Eletromecânica
- No horizonte estudado, os dispositivos de controle lentos não chegam a atuar
- Como analisar os resultados?



Dinâmica de Longa-Duração

- Simulação com Múltiplas Escalas de Tempo
 - Modelagem especial de dispositivos associados às dinâmicas das variáveis $z_c e z_d$
 - Métodos de integração com passo variável
 - Passo maior em períodos de pouca alteração nas variáveis
- Simulação Quase-Estática
 - São desprezadas as dinâmicas rápidas
 - Sistema evolui de um ponto de equilíbrio para outro
 - Cálculo dos pontos de equilíbrio obtido pela solução de um conjunto de equações algébricas não-lineares
 - Dinâmicas lentas variam de forma instantânea entre pontos de equilíbrio

Exemplo de Simulação de Longa Duração

Fonte: Van Cutsem e Vournas, pp 321.

Estudo de Estabilidade de Tensão

Objetivos

- Determinar a margem de estabilidade dos sistema
- Determinar ações para aumentar a margem de estabilidade

Margem de Estabilidade

- Medida de quanto próximo o ponto de operação se encontra do ponto de colapso de tensão
- Distância ao ponto crítico é limite superior da margem
- Determinada variando-se um parâmetro chave do sistema: carga total ou de uma área do sistema, intercâmbio entre áreas, etc.
- Estudo realizado para caso base e contingências

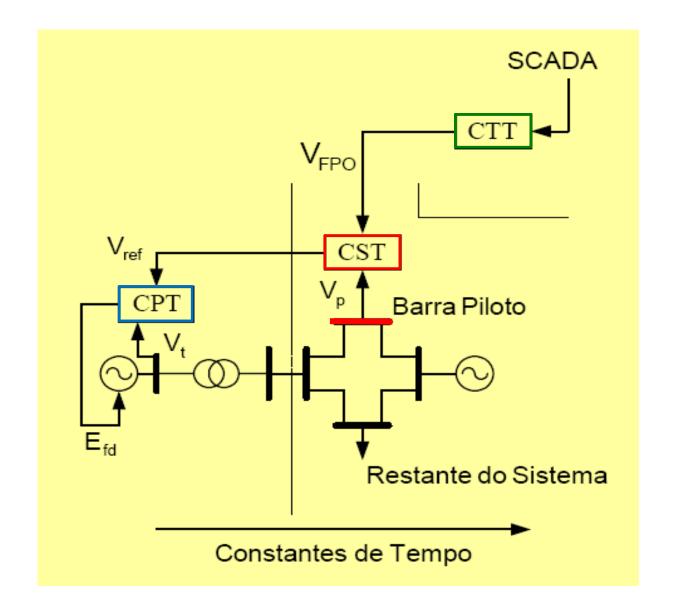
Medidas Corretivas/Preventivas

- Redespacho de geração ativa
- Compensação série e shunt
- Rejeição de carga por subtensão
- Bloqueio de LTCs
- Etc.

Controle Local de Tensão

- Produção e Absorção de Potência Reativa
 - Geradores: podem gerar ou absorver, dependendo de estarem superexcitado ou sub-excitados; limitado pela corrente de campo, corrente de armadura, etc. (curva de capacidade)
 - Linhas de Transmissão: absorvem (geram) potência reativa para cargas abaixo (acima) da SIL
 - Transformadores: sempre absorvem potência reativa
 - Cargas: normalmente absorvem potência reativa; variam com a tensão, hora do dia, etc.

Controle Local de Tensão (cont.)


- Dispositivos de Controle
 - Geradores: elemento básico do controle; RAT controla a excitação para manter tensão terminal programada; JVC otimiza da geração de reativos da usina
 - Absorvedores ou geradores de potência reativa: capacitores e reatores shunt, compensadores síncronos e estáticos
 - Compensação série de linhas de transmissão
 - LTCs, reguladores de tensão, etc.
- Características dos dispositivos de controle
 - Compensação Passiva: contribuição para o controle de tensão alterando a configuração e parâmetros da rede
 - Compensação Ativa: automaticamente mantém tensão nas barras onde estão conectadas; valores das tensões determinados por estudos de planejamento da operação

Controle Coordenado de Tensão

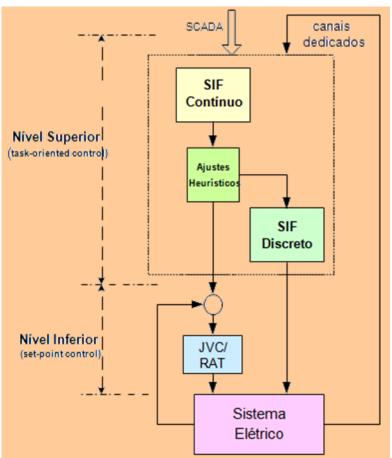
- Tem como objetivo a manutenção de um perfil adequado de tensões e manutenção de margem de reserva de reativos pela otimização integrada dos diversos dispositivos de controle de tensão
- Em geral, subdividido em três níveis hierárquicos
 - Controle Primário de Tensão (CPT)
 - Controle local (0-30 segundos)
 - Controle Secundário de Tensão (CST)
 - Controle de barras piloto (30-60 segundos)
 - Controle Terciário de Tensão (CTT)
 - Otimização das fontes de reativos (minutos)

Esquema Geral do CCT

Controle Secundário de Tensão

- Consiste na atuação de um grupo específico de reguladores de tensão dos geradores, compensadores estáticos ou síncronos, tapes de transformadores, etc., de forma a manter o perfil de tensão desejado em barras piloto
- As tensões dessas barras piloto devem ser representativas do perfil de tensão da região na qual estão inseridas
- O controle secundário de tensão atua numa escala de tempo de 30s a 60s, por exemplo, e se caracteriza por ser um controle de efeito regional

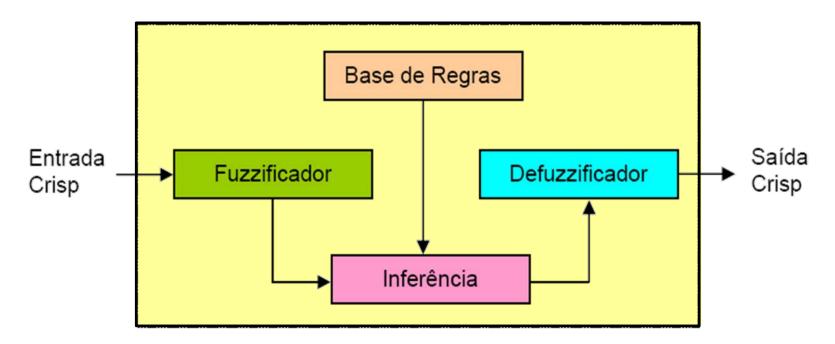
Controle Terciário de Tensão


- É o nível de coordenação mais lento, no qual a reserva disponível de geração de potência reativa é otimizada para manter um perfil de tensão adequado
- Neste nível se utiliza um programa de fluxo de potência ótimo cuja função objetivo é a maximização da reserva de potência reativa e cujas restrições são associadas aos limites da tensão nos principais barramentos do sistema
- Restrições associadas à margem de estabilidade de tensão também podem ser introduzidas na formulação do CTT

Controle Regional Baseado em Lógica Fuzzy

Controle Regional

- SIF Contínuo: ajustes dos set-points dos JVC/RAT
- FIS Discreto: chaveamento de capacitores/reatores
- Ajustes Heurísticos: verifica limites de tensão nos corredores de transmissão
- Controle Local
 - RATs
 - JVCs

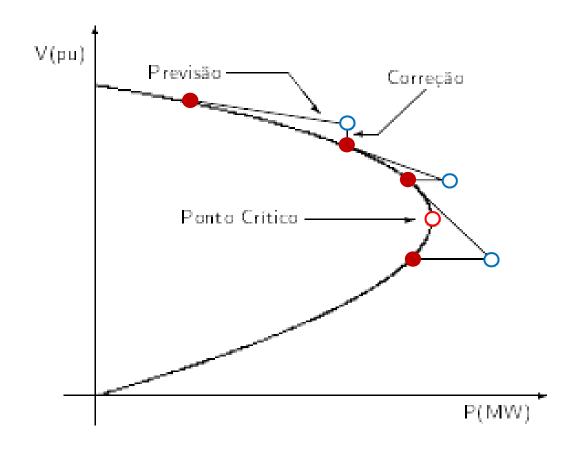


Sistema de Inferência Fuzzy (SIF)

REGRAS

Se <antecedente> Então <consequente>

Biliografia


- [1] P. Kundur, Power System Stability and Control, McGraw-Hill, 1994. (Cap.11 e 14)
- [2] C. Taylor, Power System Voltage Stability, McGraw-Hill, 1994.
- [3] T. Van Cutsem and C. Vournas, Voltage Stability of Electric Power Systems, Kluwer, 1998.
- [4] D.M. Falcão, Notas de aula de Análise de Redes Elétricas, COPPE/UFRJ, 2006. (Cap. 6).
- [5] P. Kundur et al., "Definition and Classification of Power System Stability", *IEEE Transactions on Power Systems*, vol. 19, no. 2, May 2004.
- [6] J.C.R. Ferraz et al., "Fluxo de Potência Continuado e Análise Modal na Avaliação e Melhoria da Estabilidade de Tensão do Sistema Sul–Sudeste", VII SEPOPE, 21 a 26 de Maio de 2000.
- [7] B. Gao, G.K. Morison, and P. Kundur, "Towards the Development of a Systematic Approach for Voltage Stability Assessment of Large-Scale Power Systems", *IEEE Transactions on Power Systems*, vol. 11, no. 3, August 1996.
- [8] C.B. Gomes et al., "Estudos Preliminares da Aplicação de Controle Coordenado de Tensão na Área Rio", VIII SEPOPE, 19 a 23 de Maio de 2002.
- [9] A.B. Marques, G.N. Taranto, and D.M. Falcão, "A Knowledge-Based System for Supervision and Control of Regional Voltage Profile and Security", *IEEE Transactions on Power Systems*, vol. 20, no. 4, February 2005.

Fluxo de Potência Continuado

Djalma M. Falcão

Ilustração

Reformulação das Equações

$$P_{Lk} = P_{Lk}^{0} + \lambda \left[\gamma_k S \cos \psi_k \right]$$

$$Q_{Lk} = Q_{Lk}^{0} + \lambda \left[\gamma_k S \sin \psi_k \right]$$

$$P_{Lk} = P_{Lk}^0(1+\lambda)$$

$$Q_{Lk} = Q_{Lk}^0(1+\lambda)$$

 P_{Lk}^0, Q_{Lk}^0 : carga ativa e reativa inicial na barra k;

 γ_k : fator de variação da carga na barra k;

 ψ_k : fator de variação do fator de potência na barra k;

S: valor arbitrário de potência aparente (MVAR) usado como referência para o escalamento do parâmetro λ.

$$P_{Gk} = P_{Gk}^0(1 + \lambda \beta_k)$$

 P_{Gk}^0 : geração ativa inicial na barra k;

 β_k : fator de variação da geração na barra k.

Sistema de Equações

Sistema I

$$\begin{split} &P^0_{Gk}(1+\lambda\beta_k) - P^0_{Lk} - \lambda \; [\gamma_k \; S \; cos\psi_k] - g_{p_k}(\boldsymbol{\Theta}, \mathbf{V}) = 0, \; k \in \{PV, PQ\} \\ &Q^0_{Gk} - Q^0_{Lk} - \lambda \; [\gamma_k \; S \; sen\psi_k] - g_{q_k}(\boldsymbol{\Theta}, \mathbf{V}) = 0, \; k \in \{PV, PQ\} \end{split}$$

$$\begin{split} g_{p_k}(\boldsymbol{\Theta}, \mathbf{V}) &= V_k \sum_{m \in \Omega_k} V_m (G_{km} cos\theta_{km} + B_{km} sen\theta_{km}) \\ g_{q_k}(\boldsymbol{\Theta}, \mathbf{V}) &= V_k \sum_{m \in \Omega_k} V_m (G_{km} sen\theta_{km} - B_{km} cos\theta_{km}) \end{split}$$

Forma Compacta

$$\mathbf{f}(\mathbf{x}) = 0$$

$$\mathbf{x} = [\mathbf{\Theta}^T \mathbf{V}^T \lambda]^T \in 0 \le \lambda \le \lambda_{critico}$$

Etapa de Previsão (1)

Variação Incremental

Jacobiano do NR

$$d\mathbf{f}(\mathbf{x}) = \frac{\partial \mathbf{f}(\mathbf{x})}{\partial(\mathbf{\Theta})} d\theta + \frac{\partial \mathbf{f}(\mathbf{x})}{\partial(\mathbf{V})} d\mathbf{V} + \frac{\partial \mathbf{f}(\mathbf{x})}{\partial(\lambda)} d\lambda$$

$$= \begin{bmatrix} F_{\mathbf{\Theta}} & F_{\mathbf{V}} \end{pmatrix} F_{\lambda} \end{bmatrix} \begin{bmatrix} \frac{d\mathbf{\Theta}}{d\mathbf{V}} \\ \frac{d\mathbf{V}}{d\lambda} \end{bmatrix}$$

$$F_{\theta} = \frac{\partial \mathbf{f}(\mathbf{x})}{\partial(\mathbf{\Theta})}; \qquad F_{\mathbf{v}} = \frac{\partial \mathbf{f}(\mathbf{x})}{\partial(\mathbf{V})}; \qquad F_{\lambda} = \frac{\partial \mathbf{f}(\mathbf{x})}{\partial(\lambda)}.$$

Para uma variação $d\lambda$ (parâmetro de continuação), as variações correspondentes em ${\bf V}$ e ${\bf \Theta}$, poderiam ser calculadas resolvendo-se a equação:

$$d\mathbf{f}\left(x\right) =0$$

Etapa de Previsão (2)

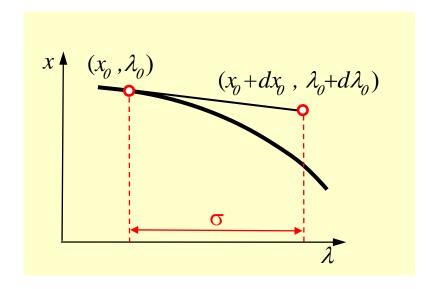
Para resolver a equação $d \mathbf{f}(x) = 0$, deve-se introduzir uma equação adicional no sistema, a qual é utilizada para definir o Parâmetro de Continuação (λ ou outro)

$$\left[\begin{array}{ccc} F_{\Theta} & F_{\mathbf{V}} & F_{\lambda} \\ & e_{k} \end{array}\right] \left[\begin{array}{ccc} d\Theta \\ d\mathbf{V} \\ d\lambda \end{array}\right] = \left[\begin{array}{ccc} \mathbf{0} \\ \pm 1 \end{array}\right]$$
 Parte superior da curva Passo unitário

$$\mathbf{e}_k = \begin{bmatrix} 0 & \cdots & 0 & k \\ 1 & 0 & \cdots & 0 \end{bmatrix}$$

k define o parâmetro de continuação escolhido

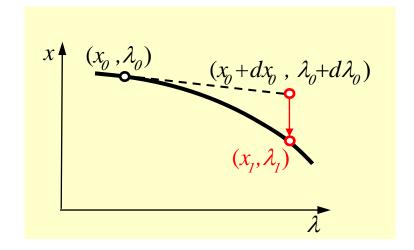
Escolha do Parâmetro de Continuação


O parâmetro de continuação deve ser escolhido de maneira tal que tenha a maior taxa de variação próximo à solução em questão. Duas situações devem ser observadas:

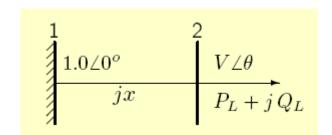
- Próximo ao caso base (carga normal): variações relativamente grandes na carga (λ) produzem pequenas variações nas componentes de Θ e \mathbf{V} . Neste caso, λ deve ser escolhido como parâmetro de continuação.
- Próximo ao ponto crítico (carga pesada): pequenas variações na carga (λ) produzem grandes variações em algumas componentes de Θ e V.
 Neste caso, a componente de θ ou v com maior taxa de variação deve ser escolhida como parâmetro de continuação.

Passo

$$\begin{bmatrix} \mathbf{\Theta}^{p+1} \\ \mathbf{V}^{p+1} \\ \lambda^{p+1} \end{bmatrix} = \begin{bmatrix} \mathbf{\Theta}^p \\ \mathbf{V}^p \\ \lambda^p \end{bmatrix} + \sigma \begin{bmatrix} d\mathbf{\Theta} \\ d\mathbf{V} \\ d\lambda \end{bmatrix}$$


onde σ define o passo a ser dado na direção do vetor tangente e p é o contador de passos do processo de continuação. A escolha de σ afeta bastante o desempenho do método. Se σ for pequeno, o número de passos necessários para se alcançar a solução desejada é muito grande e, consequentemente, o tempo de computação muito elevado. Se σ for demasiadamente grande, a etapa de correção pode não convergir.

Etapa de Correção


- O sistema de equações $\mathbf{f}(x) = 0$ é aumentado de uma equação que define o valor da variável escolhida como parâmetro de continuação
- O valor da variável de continuação é igual ao valor previsto anteriormente

$$\left[\begin{array}{c} \mathbf{f}(\boldsymbol{\Theta}, \mathbf{V}, \lambda) \\ x_k - \eta \end{array}\right] = \left[\begin{array}{c} \mathbf{0} \end{array}\right]$$

 O sistema de equações acima pode ser resolvido pelo método de Newton-Raphson com uma implementação muito semelhante ao fluxo de potência convencional

Exemplo (1)

1. Variação da carga:

$$P_L = P_L^0(1+\lambda)$$

$$Q_L = Q_L^0(1+\lambda)$$

2. Equações do fluxo de potência incluindo o parâmetro λ

$$\begin{array}{lcl} g_p(\theta,V,\lambda) & = & -P_L^0(1+\lambda) - V B_{21} sen\theta = 0 \\ g_q(\theta,V,\lambda) & = & -Q_L^0(1+\lambda) - V^2 B_{22} + V B_{21} cos\theta = 0 \end{array}$$

ou

$$f(x) = 0$$

onde
$$\mathbf{x} = [\theta \ V \ \lambda]^T$$
.

Exemplo (2)

3. Vetor tangente

$$\begin{bmatrix} \frac{\partial f_p}{\partial \theta} & \frac{\partial f_p}{\partial V} & \frac{\partial f_p}{\partial \lambda} \\ \frac{\partial f_q}{\partial \theta} & \frac{\partial f_q}{\partial V} & \frac{\partial f_q}{\partial \lambda} \end{bmatrix}_{\theta^p, V^p, \lambda^p} \begin{bmatrix} d\theta^p \\ dV^p \\ d\lambda^p \end{bmatrix} = 0$$

O sistema de equações acima tem 2 equações e 3 incógnitas. Uma terceira equação pode ser acrescentada ao sistema fazendo-se $d\lambda = \pm 1$. O sinal na expressão anterior depende do fato de λ estar crescendo (+) ou decrescendo (-). Assim, temos:

$$\begin{bmatrix} \frac{\partial f_p}{\partial \theta} & \frac{\partial f_p}{\partial V} & \frac{\partial f_p}{\partial \lambda} \\ \frac{\partial f_q}{\partial \theta} & \frac{\partial f_q}{\partial V} & \frac{\partial f_q}{\partial \lambda} \\ 0 & 0 & 1 \end{bmatrix}_{\theta^p, V^p, \lambda^p} \begin{bmatrix} d\theta^p \\ dV^p \\ d\lambda^p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \pm 1 \end{bmatrix}$$

Quando estivermos próximos ao ponto crítico, devemos escolher outro parâmetro de continuação. Por exemplo, $V=\pm 1$. Neste caso, teremos:

$$\begin{bmatrix} \frac{\partial f_p}{\partial \theta} & \frac{\partial f_p}{\partial V} & \frac{\partial f_p}{\partial \lambda} \\ \frac{\partial f_q}{\partial \theta} & \frac{\partial f_q}{\partial V} & \frac{\partial f_q}{\partial \lambda} \\ 0 & 1 & 0 \end{bmatrix}_{\rho_p \, V_p \, \lambda_p} \begin{bmatrix} d\theta^p \\ dV^p \\ d\lambda^p \end{bmatrix} = \begin{bmatrix} 0 \\ \pm 1 \\ 0 \end{bmatrix}$$

Exemplo (3)

Ambos os casos acima podem ser escritos, de forma compacta, como

$$\left[egin{array}{c} J'(\mathbf{x}^p) \ \mathbf{e}_k \end{array}
ight] [d\mathbf{x}^p] = \left[\pm \mathbf{e}_k^T
ight]$$

onde

$$\mathbf{e}_k = \left[egin{array}{cccc} 0 & 0 & 1 \end{array}
ight] \quad ou \quad \mathbf{e}_k = \left[egin{array}{cccc} 0 & 1 & 0 \end{array}
ight]$$

e

$$J'(\mathbf{x}^p) = \begin{bmatrix} J(\mathbf{x}^p) & J_{\lambda}(\lambda^p) \end{bmatrix}$$

onde

$$J(\mathbf{x}^p) = \begin{bmatrix} \frac{\partial f_p}{\partial \theta} & \frac{\partial f_p}{\partial V} \\ \frac{\partial f_q}{\partial \theta} & \frac{\partial f_q}{\partial V} \end{bmatrix}_{\theta^p, V^p}; \quad J_{\lambda}(\lambda^p) = \begin{bmatrix} \frac{\partial f_p}{\partial \lambda} \\ \frac{\partial f_q}{\partial \lambda} \end{bmatrix}_{\lambda^p}.$$

Neste exemplo, as matrizes $J(\mathbf{x}^p)$ e $J_{\lambda}(\lambda^p)$ são dadas por

$$J(\mathbf{x}^p) = \begin{bmatrix} -V^p B_{21} cos\theta^p & -B_{21} sen\theta^p \\ -V^p B_{21} sen\theta^p & -2V^p B_{22} + B_{21} cos\theta^p \end{bmatrix}$$

$$J_{\lambda}(\lambda^p) = \left[\begin{array}{c} -P_{L0} \\ -Q_{L0} \end{array} \right]$$

Exemplo (4)

4. Etapa de Previsão

A previsão da solução no passo p+1 é dada por

$$\left[egin{array}{c} heta^{p+1} \ V^{p+1} \ \lambda^{p+1} \end{array}
ight] = \left[egin{array}{c} heta^p \ V^p \ \lambda^p \end{array}
ight] + \sigma \left[egin{array}{c} d heta^p \ dV^p \ d\lambda^p \end{array}
ight]$$

onde σ é o escalar que determina o passo a ser dado na direção escolhida.

5. Etapa de Correção

A etapa de correção consiste em resolver, pelo método de Newton-Raphson, o sistema de equações (6.42). Em cada iteração do processo de solução, o sistema linear a ser resolvido é

$$\begin{bmatrix} J'(\mathbf{x}) \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \bar{\theta} \\ \bar{V} \\ \bar{\lambda} \end{bmatrix} = \begin{bmatrix} f_p(\theta, V, \lambda) \\ f_q(\theta, V, \lambda) \\ -(\bar{\lambda} - \lambda) \end{bmatrix}$$

no caso em que o parâmetro de continuação escolhido é λ , ou

$$\left[\begin{array}{cc} J'(\mathbf{x}) \\ 0 & 1 & 0 \end{array}\right] \left[\begin{array}{c} \bar{\theta} \\ \bar{V} \\ \bar{\lambda} \end{array}\right] = \left[\begin{array}{c} f_p(\theta, V, \lambda) \\ f_q(\theta, V, \lambda) \\ -(\bar{V} - V) \end{array}\right]$$

no caso em que o parâmetro de continuação escolhido é V.

Exemplo de Grande Porte

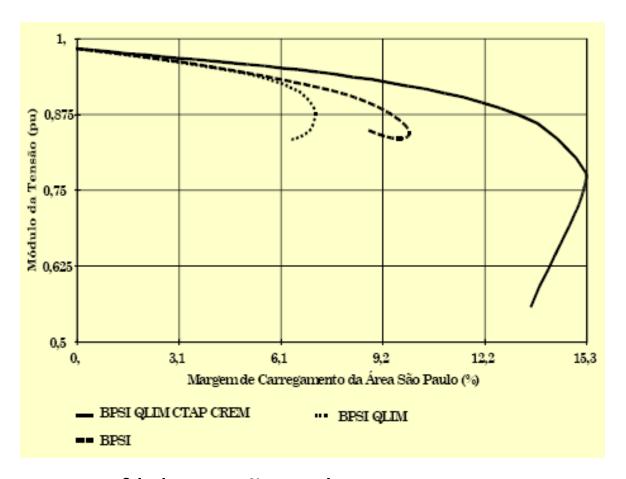
- J.C.R. Ferraz et al., "Fluxo de Potência Continuado e Análise Modal na Avaliação e Melhoria da Estabilidade de Tensão do Sistema Sul-Sudeste", VII SEPOPE, 21 a 26 de Maio de 2000.
- Sistema Sul-Sudeste: configuração de Abril 1997
- Resultados para três áreas:
 - Área São Paulo
 - Área Rio
 - Área CEEE (RS)
- Em todo os estudos foi utilizado modelo de carga do tipo Potência Constante
- Resultados apresentados apenas para área São Paulo

Dados do Sistema

Sistema	S – SE / Abril 1997	
Barras	1758	
Geradores	170	
Circuitos	2507	
Transformadores	694 (489 fixos e 205 LTCs)	
Barras com Controle Remoto de Tensão	10	
Carregamento Original	29585 MW / 13158 Mvar	

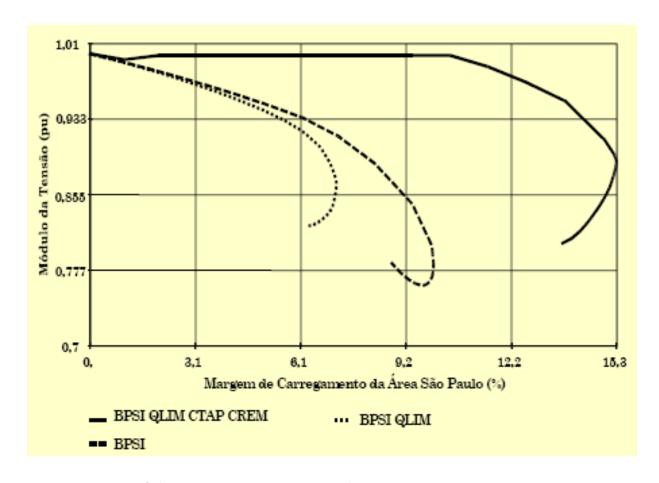
Área São Paulo em Relação ao Sistema S-SE / Abril 1997					
Empresa	Carga		Geração		
•	P	Q	P	Q	
ELETRO PAULO	32,04 %	18,98 %	0,35 %	6,70 %	
CPFL	9,12 %	6,68 %	0,12 %	0,02 %	
CESP	8,14 %	6,57 %	25,81 %	4,62 %	
Total	49,30 % (14585 MW)	32,23 % (4241 Mvar)	26,28 % (8274 MW)	11,34 % (546 Mvar)	

Opções de Controle

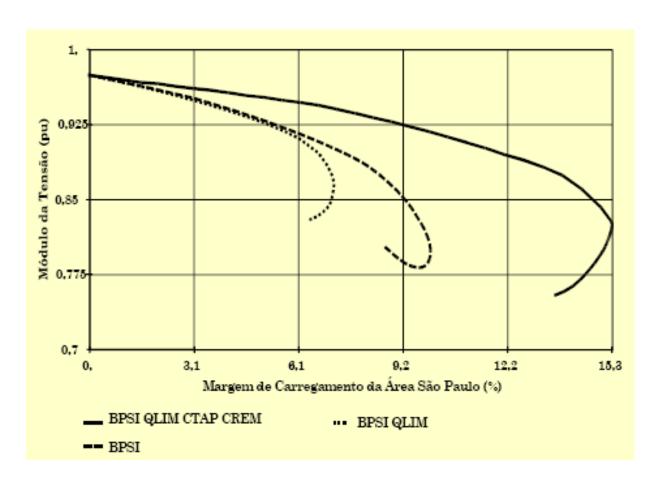

Opção	Descrição		
BPSI	Distribui a geração necessária para suprir o excedente de carga entre os geradores do sistema, de acordo com os fatores de participação determinados nos dados de entrada.		
QLIM	Ativa os limites de geração de potência reativa nos geradores. Quando um limite é atingido, a tensão na barra deixa de ser controlada. Durante o processo é verificada a possibilidade da tensão voltar a ser controlada (back-off automático).		
CTAP	Ativa o controle de tensão por variação automática de <i>tap</i> dos transformadores.		
CREM	Ativa o controle de tensão por injeção remota de potência reativa.		

Margem de Estabilidade

	997		
Opções de Controle	Margem de Carregamento da Área São Paulo	Margem de Carregamento do Sistema	Parâmetro de Continuação no Ponto Máximo
BPSI QLIM CTAP CREM	15,31 % (2233 MW)	7,55 %	Módulo da Tensão "ITAPETI2-138"
BPSI	9,98 % (1456 MW)	4,92 %	Módulo da Tensão "CACH11.4"
BPSI QLIM	7,16 % (1044 MW)	3,53 %	Módulo da Tensão "CENTRO20"


Perfil de Tensões (1)

Perfil de tensão na barra ITAPETI2-138


Perfil de Tensões (2)

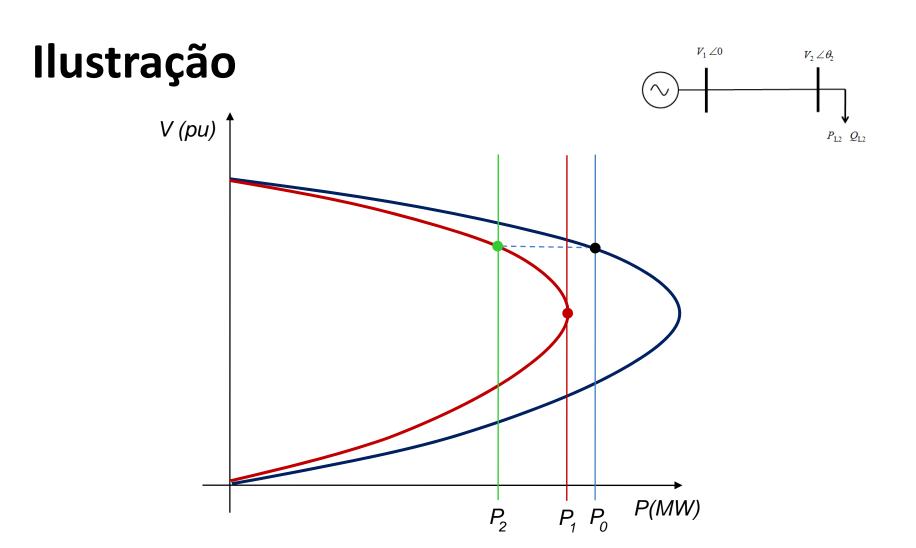
Perfil de tensão na barra CENTRO----20

Perfil de Tensões (3)

Perfil de tensão na barra PIRITUBA-230

Aplicação de Fluxo de Potência Ótimo em Estudos de Estabilidade de Tensão

Djalma M. Falcão



Retorno à Solvabilidade*

- Para um dado carregamento do sistema, o problema de fluxo de potência pode não ter solução
- Uma das razões é que esse carregamento corresponde a um estado operativo além da capacidade de máxima transferência de potência (ponto crítico)
- Neste caso, existe interesse prático em se determinar qual o mínimo corte de carga que permitirá atingir uma situação na qual o fluxo de potência tem solução ou o retorno à solvabilidade do fluxo de potência
- S. Granville, J.C.O. Mello, and A.C.G. Melo, "Application of Interior Point Methods to Power Flow Unsolvability", *IEEE Transactions on Power Systems*, vol. 11, no. 2, May 1996.

^{*} Solvabilidade ou Solvibilidade: Qualidade de solvível; que tem solução.

 $P_0 - P_1$: quantidade mínima de carga a ser rejeitada para garantir solvabilidade

 P_0 – P_2 : quantidade de carga a ser rejeitada para garantir solvabilidade satisfazendo restrições operativas

Formulação do Problema de FPO

$$\begin{aligned} & \min \, \mathbf{P}_{\mathsf{L}}^{\mathsf{T}} \boldsymbol{\beta} \\ & s. \, a \quad P_{Gk} - (1-\beta_i) P_{Lk} - p_k(\mathbf{V}, \boldsymbol{\theta}), \qquad k = 1, ..., N \\ & Q_{Gk} - (1-\beta_i) Q_{Lk} - q_k(\mathbf{V}, \boldsymbol{\theta}), \qquad k = 1, ..., N \\ & \mathbf{a} \leq \mathbf{z} \leq \mathbf{b} \end{aligned}$$

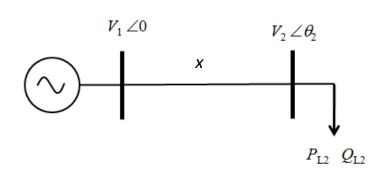
$$p_k(\mathbf{V}, \theta) = -V_k \sum_{m \in \Omega_k} V_m(G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km})$$

$$q_k(\mathbf{V}, \theta) = -V_k \sum_{m \in \Omega_k} V_m(G_{km} \operatorname{sen} \theta_{km} - B_{km} \cos \theta_{km})$$

Comentários

- β : fator de redução da carga para restaurar solvabilidade
- a,b: vetores de limites operacionais em variáveis da rede (tensões, geração ativa/reativa, fluxos de potência nas linhas, etc.)
- A solução do problema de otimização produz um valor de β que conduz a uma solução do fluxo de potência atendendo as restrições operacionais
- A solução pode ser obtida por qualquer método de otimização porém os melhores resultados têm sido alcançados com o método dos Pontos Interiores

Comentários (cont.)


- Os Multiplicadores de Lagrange associados às restrições têm as seguintes interpretações:
 - Equações do fluxo de potência: refletem a contribuição incremental de cada barrar na rejeição total de carga no sistema
 - Limites nas variáveis: refletem o impacto da relaxação desses limites na rejeição total de carga no sistema
- Essas informações podem ser utilizadas para determinar a localização e dimensão de reforços na rede para aumentar a margem de estabilidade de tensão

Exemplo

 $\min \beta P_{L2}$

s. a

$$-(1-\beta)P_{L2}-\frac{V_1V_2}{x}sen\,\theta_2=0$$

$$-(1-\beta)Q_{L2}-rac{V_{2}^{2}}{x}+rac{V_{1}V_{2}}{x}cos\theta_{2}=0$$

$$V_1^{min} \leq V_1 \leq V_1^{max}$$

$$V_2^{min} \leq V_2 \leq V_2^{max}$$

Variáveis: β , V_1 , V_2 , θ_2

