
Chapter 4

VOLTAGE STABILITY INDICES

Performance indices to predict proximity to voltage collapse problems are of great
interest for researchers and technical staff in power systems operation, as these indices
could be used on-line or off-line to help operators determine how close the system is to
collapse [1, 2]. The objective of these indices is to define a scalar magnitude that can
be monitored as system parameters change. These indices should have a “predictable”
shape and be “smooth,” so that acceptable predictions may be made; furthermore,
their computation should be fast, particularly for on-line system monitoring. This
chapter concentrates on describing and comparing some of the indices proposed and
used throughout the world. However, before presenting a detailed description of these
indices, it is important to briefly review some basic concepts introduced in Chapter
2, as well as the related mathematical terminology, to establish a general theoretical
framework for these indices.

4.1 REVIEW OF BASIC CONCEPTS

The typical quasi-steady-state description of a power system applicable to voltage
stability analysis is given by the differential-algebraic equations

ẋ = f(x, y, λ) (4.1)

0 = g(x, y, λ)

where x corresponds to the system state variables, and y represents the “algebraic”
variables. The variable λ stands for a parameter or a set of parameters that “slowly”
change in time, so that the system moves from one equilibrium point to another until
reaching the collapse point. Another way of representing this system is by defining
z = [x y]T , so that equations (4.1) can be rewritten as[

ẋ
0

]
= F (z, λ)

If one assumes that the Jacobian Dyg(·) in (4.1) is nonsingular along some system
trajectories of interest, these equations can be reduced, at least locally, to

ẋ = f(x, y−1(x, λ), λ) = s(x, λ)
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This reduction requires that Dyg(·) is locally nonsingular along these trajectories.
Cases where this does not apply are discussed in more detail in Section 2.11.

An equilibrium point (zo, λo) of (4.1), is defined by F (zo, λo) = 0. Hence, based
on the nonsingularity assumption of the algebraic equations, an equilibrium point
(z∗, λ∗) where DzF (z∗, λ∗) is singular, is mathematically known as a “singular” bifur-
cation point [3]. This equilibrium point in power systems has been directly associated
with voltage collapse problems, as thoroughly discussed in Chapter 2. Thus, in power
systems, one is usually interested in determining the singularity of the Jacobian asso-
ciated with the system dynamic equations. Different models of the system elements,
particularly generators and loads, affect the location of these collapse points [4, 5].
Furthermore, changing various parameters in the system can produce different types
of bifurcating phenomena [6].

For the purpose of this chapter, the popular load-flow or power flow model is used,
where the variations of constant active and reactive powers are assumed to be the main
parameter driving the system to a singularity. Although this simple system model
is certainly not adequate to thoroughly study the voltage collapse phenomenon, for
certain particular dynamic models, the power flow equations yield adequate results, as
singularities in the related power flow Jacobians can be associated with actual singular
bifurcations of the corresponding dynamical system [3]. Moreover, regardless of the
direct relations between singularities of the power flow Jacobians and the actual
bifurcations of the full dynamical system, it is always of interest to determine the
system conditions where the power flow problem is not solvable, as most operating
decisions nowadays are made on-line based on power flow solutions. Thus, various
utilities throughout the world currently using the indices discussed in this chapter,
base some of their operating decisions related to voltage collapse problems mostly on
a power flow system model. Nevertheless, without any loss of generality, most of the
methodologies described in this document can be directly and readily applied to any
system model; brief comments on whether the different techniques presented here are
applicable or not to system models other than the power flow based model are given
throughout this chapter.

The power flow model used here to obtain and compare different voltage stability
indices, is represented by the typical load-flow vector nonlinear equations defining the
active and reactive power mismatches at the system buses, i.e.,[

∆P (u, λ)
∆Q(u, λ)

]
= F(u, λ) = 0 (4.2)

where F(u, λ) is a subset of F (z, λ), with u typically representing V and δ, i.e., the
phasor bus voltages. However, given the processing power and numerical techniques
currently available, (4.2) can also be used to compute other system variables besides
voltages and angles, so that system controls and its limits may be readily handled by
swapping variables in u without the need for changing the structure and number of the
equations used in the computational process. For example, generation reactive power
injections Q can be part of u by including the reactive power mismatch equations at
PV buses in (4.2), so that when a Q-limit is reached, or released, the corresponding
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bus voltage magnitude V is swapped for Q in u, or vice versa; automatic transformer
taps or any other control variables can be handled in a similar fashion. Observe that
F(u, λ), and u for that matter, could be modified to include more detailed models
of certain system devices such as generators (inclunding AVRs and other controls)
and loads, or other devices such as HVDC links and FACTS, making the power flow
equations more adequate for computing the equilibrium points of the full system
model represented by the nonlinear function F (z, λ) [7].

The λ variable typically represents a scalar parameter or loading factor used to
simulate the system load changes that drive the system to collapse in the following
way:

PL = PLP
(1 + kPλ) + PLI

(
V

V0

)
(1 + kVP

λ) + PLZ

(
V

V0

)2

(1 + kZP
λ)

QL = QLQ
(1 + kQλ) +QLI

(
V

V0

)
(1 + kVQ

λ) +QLZ

(
V

V0

)2

(1 + kZQ
λ)

Here PL and QL represent the load at bus L, and PLP
, PLI

, PLZ
, kP , kVP

, kZP
,

QLQ
, QLI

, QLZ
, kQ, kVQ

, kZQ
, and V0 are all pre-defined constants that determine

the composition of the ZIP load (constant impedance-current-power load) [5]. The
results shown in this report were obtained for constant power changes only, i.e.,

PL = PLP
(1 + kPλ) (4.3)

QL = QLQ
(1 + kQλ)

Hence, λ represents in this case a net MVA change in the total system load.

4.2 SAMPLE SYSTEM

All voltage stability indices presented in this report are used to study the same sample
system, so that direct comparisons can be made and useful conclusions can be drawn.
The sample system used here is the 32 bus system utilized in CIGRE’s report [2],
due to the readily available data and results, and especially for its particular voltage
stability characteristics. This system, depicted in Figure 4.2-1, has 32 buses, 5 areas,
9 generators, 25 lines, 15 transformers (7 ULTCs), and was originally created to study
the voltage collapse of the northern part of Belgium in 1982. Any active load changes
are picked up “equally” by generators N15 and N16 (slack buses), representing the
“external” system; bus N15 is the angle reference bus and its voltage is controlled
by the corresponding generator; generators M1, M2, and N10 control their terminal
voltages (PV buses), with no Q-limits, whereas the rest of the generators deliver
constant power (PQ buses); there is no area flow control.

The following is the power flow data for the initial solution point in IEEE Com-
mon Format [8]:
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Figure 4.2-1. Sample system [2].
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C 1 2 3 4 5 6 7 8 9 0 1 2 3

C 34567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

TAPE

100.00 CIGRE TF 38-02-11 TEST SYSTEM

BUS DATA FOLLOWS 32 ITEMS

1 N201 70. 1 7 0 1.0425 -9.697 298.7000 164.8000 0.000000 0.00000 70.0000 1.0425 0.00000 0.00000 0.00000 .450000 0

2 N202 70. 1 7 0 1.0236 -11.37 300.9000 167.4000 0.000000 0.00000 70.0000 1.0236 0.00000 0.00000 0.00000 .450000 0

3 N203 70. 1 7 0 1.0247 -9.986 301.2000 167.7000 0.000000 0.00000 70.0000 1.0247 0.00000 0.00000 0.00000 .450000 0

4 N204 70. 1 7 0 1.0134 -11.31 301.0000 167.5000 0.000000 0.00000 70.0000 1.0134 0.00000 0.00000 0.00000 .450000 0

5 N205 70. 1 7 0 1.0332 -9.757 296.8000 162.5000 0.000000 0.00000 70.0000 1.0332 0.00000 0.00000 0.00000 .450000 0

6 N206 70. 1 7 0 1.0256 -10.13 301.3000 167.9000 0.000000 0.00000 70.0000 1.0256 0.00000 0.00000 0.00000 .450000 0

7 N207 70. 1 7 0 1.0254 -11.69 301.2000 167.7000 0.000000 0.00000 70.0000 1.0254 0.00000 0.00000 0.00000 .450000 0

8 N101 150. 1 15 0 1.0547 -5.761 0.000000 0.000000 176.7000 30.2000 150.000 1.0547 999999. -99999. 0.00000 .750000 0

9 N102 150. 1 15 0 1.0285 -7.190 0.000000 0.000000 0.000000 0.00000 150.000 1.0285 0.00000 0.00000 0.00000 .750000 0

10 N103 150. 1 15 0 1.0193 -7.052 0.000000 0.000000 150.8000 19.7000 150.000 1.0193 999999. -99999. 0.00000 0.00000 0

11 N104 150. 1 15 0 1.0296 -5.811 0.000000 0.000000 0.000000 0.00000 150.000 1.0296 0.00000 0.00000 0.00000 .750000 0

12 N105 150. 1 15 0 1.0552 -5.852 0.000000 0.000000 176.7000 28.3000 150.000 1.0552 999999. -99999. 0.00000 .750000 0

13 N106 150. 1 15 0 1.0305 -5.957 0.000000 0.000000 0.000000 0.00000 150.000 1.0305 0.00000 0.00000 0.00000 0.00000 0

14 N107 150. 1 15 0 1.0303 -7.521 0.000000 0.000000 0.000000 0.00000 150.000 1.0303 0.00000 0.00000 0.00000 .750000 0

15 M1 24. 1 40 2 1.0000 4.1614 47.90000 39.90000 849.9000 306.769 24.0000 1.0000 999999. -99999. 0.00000 0.00000 0

16 M2 24. 1 40 2 1.0000 1.5591 53.90000 44.90000 499.9000 236.230 24.0000 1.0000 999999. -99999. 0.00000 0.00000 0

17 N1 380. 1 40 0 1.0502 -.1696 0.000000 0.000000 0.000000 0.00000 380.000 1.0502 0.00000 0.00000 0.00000 0.00000 0

18 N10 380. 1 40 2 1.0840 2.5467 579.9000 99.90000 2800.000 483.564 380.000 1.0840 999999. -99999. 0.00000 0.00000 0

19 N11 380. 1 40 0 1.0881 .80207 97.90000 31.90000 0.000000 0.00000 380.000 1.0881 0.00000 0.00000 0.00000 0.00000 0

20 N13 380. 1 40 0 1.0593 -.3546 599.9000 199.9000 0.000000 0.00000 380.000 1.0593 0.00000 0.00000 0.00000 0.00000 0

21 N14 380. 1 40 0 1.0814 .80455 299.9000 74.90000 0.000000 0.00000 380.000 1.0814 0.00000 0.00000 0.00000 0.00000 0

22 N16 380. 1 40 2 1.0400 -1.680 0.000000 0.000000 -2.27072 -12.576 380.000 1.0400 999999. -99999. 0.00000 0.00000 0

23 N2 380. 1 40 0 1.0485 -.3844 0.000000 0.000000 0.000000 0.00000 380.000 1.0485 0.00000 0.00000 0.00000 0.00000 0

24 N3 380. 1 40 0 1.0398 -1.663 0.000000 0.000000 0.000000 0.00000 380.000 1.0398 0.00000 0.00000 0.00000 0.00000 0

25 N4 380. 1 40 0 1.0442 -.9636 0.000000 0.000000 0.000000 0.00000 380.000 1.0442 0.00000 0.00000 0.00000 0.00000 0

26 N5 380. 1 40 0 1.0400 -1.428 0.000000 0.000000 0.000000 0.00000 380.000 1.0400 0.00000 0.00000 0.00000 0.00000 0

27 N6 380. 1 40 0 1.0443 -1.550 0.000000 0.000000 0.000000 0.00000 380.000 1.0443 0.00000 0.00000 0.00000 0.00000 0

28 N7 380. 1 40 0 1.0303 -2.044 0.000000 0.000000 0.000000 0.00000 380.000 1.0303 0.00000 0.00000 0.00000 0.00000 0

29 N8 380. 1 40 0 1.0552 -.6752 236.9000 77.90000 0.000000 0.00000 380.000 1.0552 0.00000 0.00000 0.00000 0.00000 0

30 N9 380. 1 40 0 1.0554 -.6351 222.9000 72.90000 0.000000 0.00000 380.000 1.0554 0.00000 0.00000 0.00000 0.00000 0

31 N12 380. 1 90 0 1.0977 -1.306 318.9000 -99.9000 0.000000 0.00000 380.000 1.0977 0.00000 0.00000 0.00000 0.00000 0

32 N15 380. 2 94 3 1.0920 0.0000 0.000000 0.000000 -66.3707 39.6181 380.000 1.0920 999999. -99999. 0.00000 0.00000 0

-999

BRANCH DATA FOLLOWS 40 ITEMS

1 8 1 7 1 2 .00060000 .02500000 0.0000000 1 0 1.0200 0.00000 .90000 1.1000 0.0000 1.0425 1.0425

2 9 1 7 1 2 .00060000 .02500000 0.0000000 2 0 1.0300 0.00000 .90000 1.1000 0.0000 1.0236 1.0236

3 11 1 7 1 2 .00060000 .02500000 0.0000000 3 0 1.0300 0.00000 .90000 1.1000 0.0000 1.0247 1.0247

4 10 1 7 1 2 .00060000 .02500000 0.0000000 4 0 1.0300 0.00000 .90000 1.1000 0.0000 1.0134 1.0134

5 12 1 7 1 2 .00060000 .02500000 0.0000000 5 0 1.0100 0.00000 .90000 1.1000 0.0000 1.0332 1.0332

6 13 1 7 1 2 .00060000 .02500000 0.0000000 6 0 1.0300 0.00000 .90000 1.1000 0.0000 1.0256 1.0256

7 14 1 7 1 2 .00060000 .02500000 0.0000000 7 0 1.0300 0.00000 .90000 1.1000 0.0000 1.0254 1.0254

8 24 1 15 1 1 .00050000 .04350000 0.0000000 0 0 1.0420 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

9 25 1 15 1 1 .00080000 .04720000 0.0000000 0 0 1.0527 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

11 27 1 15 1 1 .00030000 .02200000 0.0000000 0 0 .99000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

12 28 1 15 1 1 .00050000 .04350000 0.0000000 0 0 1.1113 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

13 26 1 15 1 1 .00030000 .02230000 0.0000000 0 0 1.0207 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

14 23 1 15 1 1 .00060000 .04370000 0.0000000 0 0 1.0207 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

15 17 1 40 1 1 .00020000 .01070000 0.0000000 0 0 .93000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

16 17 1 40 1 1 .00010000 .00760000 0.0000000 0 0 .94000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000

8 9 1 15 1 0 .01700000 .06320000 .02300000 0 0

9 10 1 15 1 0 .00100000 .01140000 .00400000 0 0

10 11 1 15 1 0 .00620000 .03000000 .01000000 0 0

10 13 1 15 1 0 .00550000 .02500000 .00800000 0 0

11 12 1 15 1 0 .00620000 .03000000 .01000000 0 0

12 13 1 15 1 0 .00800000 .04300000 .01400000 0 0

17 23 1 40 1 0 .00010000 .00140000 .03240000 0 0

17 25 1 40 1 0 .00050000 .00460000 .11340000 0 0

17 25 1 40 2 0 .00050000 .00520000 .12820000 0 0

17 25 1 40 3 0 .00050000 .00520000 .12820000 0 0

18 19 1 40 1 0 .00080000 .00840000 .19720000 0 0

18 20 1 40 1 0 .00100000 .01000000 .23620000 0 0

18 21 1 40 1 0 .00090000 .00970000 .23140000 0 0

18 29 1 40 1 0 .00150000 .01600000 .40000000 0 0

18 30 1 40 1 0 .00150000 .01600000 .40000000 0 0

19 31 1 40 1 0 .00130000 .01330000 .27100000 0 0

21 32 2 40 1 0 .00220000 .02310000 .28860000 0 0

22 24 1 40 1 0 .00130000 .01330000 .27100000 0 0

24 25 1 40 1 0 .00070000 .00770000 .18960000 0 0

25 26 1 40 1 0 .00050000 .00490000 .10900000 0 0

25 26 1 40 2 0 .00050000 .00490000 .10900000 0 0

25 27 1 40 1 0 .00080000 .00710000 .17280000 0 0

27 28 1 40 1 0 .00080000 .00710000 .17280000 0 0

27 29 1 40 1 0 .00100000 .01000000 .24400000 0 0

27 30 1 40 1 0 .00090000 .00990000 .24420000 0 0

-999

LOSS ZONES FOLLOW 0 ITEMS

-99

INTERCHANGE DATA FOLLOWS 2 ITEMS

-9

TIE LINES FOLLOW 1 ITEMS

-999

END OF DATA
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The series of events that drive the system to collapse are as follows:

1. At 30 s, the P and Q powers in buses N201 through N207 (load buses with
ULTCs) start increasing steadily at a rate of 30 % in 2 hours (7200 s). P and
Q are assumed to change in the same proportion as their initial values, i.e.,
in (4.3), PLP

and QLQ
are equal to the corresponding initial values, whereas

kP = kQ = 1. All other load buses remain unchanged.

2. Line N3-N16 is tripped off at 5000 s. The system is assumed to transiently
recover from this “large” contingency.

3. At 7230 s, the load stops increasing.

4. Finally, machine M2 trips off at 7400 s, precipitating the system voltage collapse.

It is interesting to highlight the fact that in the CIGRE report where the test
system is originally described and studied [2], the ULTCs were actually blocked to
better represent the operation of the real system, where the taps are controlled by
operators. In the studies presented here, however, these taps were assumed to change
automatically to better illustrate the effect of control limits on the different indices.
In spite of the different treatment of the ULTCs, these taps and their corresponding
limits do not make a significant difference on the maximum loading margins of the
test system, as demonstrated by the close agreement between the results presented
here and those reported in [2].

4.3 INDICES

Several indices are described in detail in this section. All indices are defined based
on the original work that first proposed them, and the corresponding algorithm is
explained and applied to the sample system. Advantages and disadvantages of the
different indices are also discussed in view of practical applications.

A comprehensive comparison of all indices discussed in this section can be found
in Section 4.5.

4.3.1 Sensitivity Factors

Sensitivity factors are well known indices used in several utilities throughout the world
to detect voltage stability problems and to device corrective measures [1, 2]. These
indices were first used to predict voltage control problems in generator QV curves,
and they may be defined as

V SFi = maxi

{
dVi

dQi

}

where V SF stands for Voltage Sensitivity Factor. As generator “i” approaches the
“bottom” of its QV curve, the value of V SFi becomes large and eventually changes
sign, indicating an “unstable” voltage control condition.
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Based on this concept, more general, system wide indices have been proposed.
Thus, the following SF (Sensitivity Factor) index may be defined for a system rep-
resented by equations F (z, λ) in (4.1):

SF =

∥∥∥∥∥dzdλ
∥∥∥∥∥

When SF becomes large the system turns “insecure” and eventually collapses, due
to all entries dzi/dλ → ±∞ when the system approaches a maximum value of the
parameter λ (∆λ → 0). As λ typically represents load changes, the collapse point
associated with a maximum value of λ is usually referred to as the maximum load-
ability or loading point. If only system voltages V are monitored, an equivalent V SF
may be defined as

V SF =

∥∥∥∥∥dVdλ
∥∥∥∥∥

Although by definition all norms are “equivalent,” the L∞-norm || · ||∞ typically
yields the best results, since the maximum entry on the vector dz/dλ can be used to
pinpoint the system areas directly associated with the collapse problem, as explained
in Section 4.3.5.2 below.

The application of these indices to the sample system is depicted in Figures 4.3-1
and 4.3-2, which were obtained by solving a series of power flows at different load
levels. Three different cases are jointly shown in these figures; namely, the effect of
increasing the load in the original full system and in the system with generators N16
(line N16-N3) and M2 tripped off. Thus, the following observations can be made
regarding these plots and the data used to generate them:

• The full system collapses at a total load level of 6050 MVA (this value represents
the MVA sum of all system loads), whereas for the system without generator
N16, the collapse occurs at a loading level of 5876 MVA. When generator M2 is
removed as well, the loading level at which collapse occurs is reduced to 5520
MVA. As expected, the more generators removed from the system, the less the
loading margin to collapse.

• Both sensitivity factors behave in a similar manner, i.e., as the system ap-
proaches the collapse point, the indices increase significantly, appearing some-
what insensitive to loading changes except when very close to collapse. If the
inverse is used, however, these indices have a more “predictable” shape, espe-
cially for the V SF index, which appears to be “quadratic” after the first large
step change, i.e.,

λ = −a (1/V SF )2 + λ∗
⇒ ∆λ = a (1/V SF )2 (4.4)

where a and λ∗, the maximum parameter value at the bifurcation or collapse
point, can be estimated from a couple of points in the V SF curve, before the
system collapses. For example, for the full system, the points (5440 MVA, 2)
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and (5850 MVA, 1) in Figure 4.3-2(b) yield a ≈ 137 and λ∗ ≈ 5990 MVA.
Hence, based on (4.4), an index value can be transformed into a load margin
to collapse ∆λ in MVA at any given point; this is typical in many indices as
shown in this report, allowing for some predictions of proximity to collapse.

Observe that when the index exhibits large changes due to system control limits,
as is the case for tap limits in the sample system’s V SF , it is not feasible to make
adequate predictions of loading margins. These sharp changes are characterisitc
of several other indices as well, especially when applied to large systems where
Q-limits or any other device limits are considered. On the other hand, these
sharp index changes have certain advantages as discussed below, since they allow
to rate the relative importance of the different limits on system loadability, so
that operators may take certain corrective actions early in the loading process.

It is important to highlight the fact that the quadratic shape of these sensitivity
factors is not always observed, especially in large systems, where these indices
tend to be less sensitive to parameter changes than in the sample system studied
here.

• ULTC limits produce sharp changes on SF and V SF , which is also the case
for any other voltage support device reaching its limits. This is more evident in
the V SF index, where the desired quadratic shape is severely affected by the
ULTC limits of transformer N103-N204, which is the first to hit its maximum
limit. Hence, predictions of distance to collapse made using the V SF index are
somewhat suspect. On the other hand, this sharp change indicates early in the
loading process the need for voltage support at bus N204, which is part of the
system “critical area” as explained below.

• The L∞-norm used to compute these indices indicates that buses N204 (N103)
and N202 (N102), in the “northern” part of the system, form the critical area
for all three cases studied here, i.e., corrective measures in these buses, such as
load shedding or additional voltage support, would be the most effective way
to avert system loss by increasing the distance to collapse.

Figure 4.3-3 depicts the changes in the V SF index versus time, as it would
appear on an operator’s console, showing the effect of the different contingencies on
the system proximity to collapse. First, at about 4200 s, the ULTC of transformer
N103-N204 hits its maximum limit, creating a sharp change in the index. After that,
other ULTCs reach limits; however, no other single transformer has such a large effect
on V SF . Next, at 5000 s, generator N16 is removed from the network, producing an
approximate 200 MVA reduction in the maximum loading margin. The load stops
increasing at 7230 s, when the system has about 180 MVA additional capacity before
collapse. Finally, M2 is tripped off at 7400 s, producing the collapse of the system,
as the load at that point has already exceeded the maximum loading margin of the
network without N16 and M2.

Although this “post-mortem” analysis is useful to determine the causes of collapse
in this system, from the operator point of view, who is monitoring this index as the
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Figure 4.3-1. (a) Sensitivity factor and (b) its inverse.
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Figure 4.3-2. (a) Voltage sensitivity factor and (b) its inverse.
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system is changing and has limited capability to study contingencies ahead of time
to determine their effect on the network, the following information can be obtained
on-line from the index, which applies as well to most of the other indices discussed
in this report:

• Load margins to collapse can be readily estimated as the system load is changing
from every two index values by applying (4.4); these estimates have to be revised
after any sharp change on the index value. Based on these estimates, a threshold
value of the index could be defined, based on historical data and off-line stability
and contingency studies, so that this value may be used as a warning signal
for the operator to take major and immediate corrective actions, such as load
shedding, to prevent system collapse. For the sample system, based on the post-
mortem collapse analysis, it appears that a threshold value of 1/V SF ≈ 2 would
be appropriate, as the system is still “operable” even if M2 is removed; the later
assumes that the system would be transiently stable for such contingency.

• If an L∞-norm is used, the index also generates some information regarding
“critical” buses in the system for a given operating condition. However, this
information is only significant when “close” to the collapse point, as the critical
areas tend to change as the system approaches collapse; this is particularly true
in large systems (this is discussed in more detail in subsequent sections).

• Sharp reductions in the index value indicate a reduction on load margin to col-
lapse. Hence, corrective actions may be devised to increase distance to collapse
based on the system critical areas and the system changes directly associated
with the sharp index changes. For example, the first large change in V SF
indicates a need for additional voltage support or load shedding at bus N204.

The SF and V SF indices are rather inexpensive to compute and, in “small”
systems, they allow for some predictions of proximity to collapse. However, for large
systems, this is not always the case, as these indices, particularly the SF , are not
very sensitive to system parameter variations. Also, unless an infinity norm is used,
these indices do not generate much additional information to help pinpoint the system
areas that are more strongly associated with the collapse problem, so that corrective
measures can be devised. Finally, based on the definitions of these indices, it is clear
that they can be applied to any system model besides a power flow based model.

4.3.2 Singular Values and Eigenvalues

This section describes two well known proximity indices associated with singular
value and eigenvalue decomposition. As these two indices require somewhat similar
computations and produce rather similar results, they are jointly discussed in this
report.

Although the results presented here were obtained for a power flow based model,
these indices can be applied to other system models as well. However, the meaning of
the eigenvalues and singular values on which these indices are based changes signifi-
cantly with the system model used. For example, for most system dynamic models,
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the values obtained from a power flow model do not have any significant meaning
in terms of the underlying system dynamics at equilibrium points, other than at the
bifurcation or collapse point [3, 9].

4.3.2.1 Singular Values

Singular values have been employed in power systems because of the useful orthonor-
mal decomposition of the Jacobian matrices. For the real n × n square Jacobian
matrix J = DzF (z0, λ0) at the equilibrium point (z0, λ0) of (4.1), one has that

J = RΣST =
n∑

i=1

riσis
T
i

where the singular vectors ri and si are the ith columns of the unitary matrices R
and S, and Σ is a diagonal matrix of positive real singular values σi, such that
σ1 ≥ σ2 ≥ · · · ≥ σn. The diagonal entries of Σ

2 correspond to the eigenvalues of
matrix JJT .

This singular value decomposition is typically used to determine the rank of a
matrix, which is equal to the number of non zero singular values of J . Hence, its
application to voltage collapse analysis focuses on monitoring the smallest singular
value up to the point when it becomes zero at the collapse point [10].

In general, the Jacobian J contains the first derivatives of the reactive power
mismatch equations Q(z, λ) with respect to the voltage magnitude V ∈ z. Hence,
linearizing the steady state equations F (z, λ) = 0 at an equilibrium point (z0, λ0),

∆F (z, λ) = J ∆z (4.5)

⇒
[
∆F̂ (ẑ, V, λ)
∆Q(ẑ, V, λ)

]
=




∂F̂
∂ẑ
(z0, λ0)

∂F̂
∂V

(z0, λ0)

∂Q
∂ẑ (z0, λ0)

∂Q
∂V (z0, λ0)



[
∆ẑ
∆V

]

=

[
J1 J2

J3 J4

] [
∆ẑ
∆V

]

For the typical power flow model, F̂ (z, λ) represents the active power mismatches
P (z, λ), and ẑ represents the bus voltage angles δ. One can rewrite (4.6), at equilib-
rium points other than the collapse point, as[

∆ẑ
∆V

]
=

n∑
i=1

σ−1
i sir

T
i

[
∆F̂ (ẑ, V, λ)
∆Q(ẑ, V, λ)

]
(4.6)

Notice that the minimum singular value is a relative measure of how close the
system is to the voltage collapse or singular point. Furthermore, near this collapse
point, since σn is close to zero, equation (4.6) can be rewritten as[

∆ẑ
∆V

]
≈ σ−1

n snr
T
n

[
∆F̂ (ẑ, V, λ)
∆Q(ẑ, V, λ)

]
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Hence, the associated left and right singular vectors rn and sn, respectively, contain
important information. The maximum entries in sn indicate the most sensitive voltage
magnitudes (critical buses), and the maximum entries in rn correspond to the most
sensitive direction for changes of power injections.

Assuming that ∆F̂ (ẑ, V, λ) = 0, which in the standard power flow model corre-
sponds to only considering reactive power injections changes, equation (4.6) yields
the following:

∆Q(ẑ, V, λ) = (J4 − J3J
−1
1 J2)∆V (4.7)

= JQV∆V

In general, at the collapse point one has that J1 is nonsingular, even though J is
singular; there is no definite proof of the latter statement, but in practice that seems
to be the case in all examples discussed in the literature. Thus, JQV is assumed well
defined in (4.7), becoming singular at the collapse point since

det JQV =
det J

det J1

The singular values of this reduced matrix can then be used to determine proximity
to voltage collapse. Furthermore, these singular values show “better” profiles than
the ones of J , as observed in Figures 4.3-4 for the sample system, and demonstrated
in [10].

It is interesting to highlight the fact that sub-matrix J3 is quasi-symmetric, for
small values of transmission system resistances. Therefore, one expects a similar
attribute for JQV , making the singular values and eigenvalues for this matrix practi-
cally identical [11], as symmetric matrices have similar singular value and eigenvalue
decomposition.

4.3.2.2 Eigenvalue Decomposition

Eigenvalues, as singular values, are also often used to determine proximity to the
voltage collapse point [1, 2]. The eigenvalue decomposition for the Jacobian matrix
J , assuming that is diagonalizable (semi-simple), can be written as

J = WΛUT =
n∑

i=1

wiµiv
T
i

where W represents a complex matrix of left eigenvectors wi, U corresponds to the
complex matrix of right eigenvectors vi, and Λ is a diagonal matrix of complex eigen-
values µi.

For the JQV matrix defined in (4.7), this decomposition may be applied directly
[12], as this matrix is quasi-symmetric and, therefore, diagonalizable. Furthermore,
due to its quasi-symmetric structure, one expects to obtain a set of only real eigen-
values and eigenvectors, very similar in value to the corresponding singular values
and singular vectors. Thus, for JQV , the eigenvectors associated with the eigenvalue
closest to zero have the same interpretation as the singular vectors near the collapse
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point, i.e., the maximum entries in the right eigenvector correspond to the critical
buses (most sensitive voltages) in the system, and the maximum entries in the left
eigenvector pinpoints the most sensitive direction for changes of power injections
[12, 13, 14].

Both minimum singular value and eigenvalue profiles of the full Jacobian J for the
test system, which are basically identical, are shown in Figure 4.3-4(a). Observe the
highly nonlinear behavior of these indices in all cases, i.e., they are rather insensitive
to changes on the loading factor λ. It is interesting to highlight the fact that the
Jacobian J does not become singular until very close to the collapse point; for this
reason, standard power flows can be used to obtain solution points rather close to the
point of collapse, as it has been the experience in many utilities [1].

When applied to the reduced Jacobian JQV , these indices produce very similar
results to the ones obtained for the V SF , as shown in Figures 4.3-4(b) and 4.3-5.
These indices also present a quadratic profile when close to the bifurcation [15], but
seem more sensitive to ULTC limits. Hence, similar comments and observations apply
to these results as in the V SF case. It is important to highlight the fact that the
quadratic behavior shown here is not always observed in larger systems [11].

The maximum entries in the corresponding eigenvectors and singular vectors once
again point to buses N204 (N103) and N202 (N102) as critical buses of the system.
However, in general, this information can only be obtained when close to collapse
[11], as is the case here for the full Jacobian J .

Comparing the singular value and eigenvalue based indices to the sensitivity fac-
tors, somewhat similar information can be obtained, since all of these indices present
similar profiles with respect to parameter changes, and the vector derivatives (“tan-
gent” vectors) used in the sensitivity factors can also be used to pinpoint critical areas
in the system, in the same way as what is done with singular vectors and right eigen-
vectors at a singularity point (the tangent vectors converge to the right eigenvectors
at a singularity point [3]). However, singular values and eigenvalues present higher
computational costs than in the case of the sensitivity factors.

4.3.3 Second Order Performance Index

Indices based on first order information (linearizations), such as singular values and
eigenvalues and several other indices presented in this document, may be inadequate
to predict proximity to collapse as these exhibit large discontinuities in the presence of
system control limits like generator capability or transformer tap limits, as previously
discussed. However, it is possible to calculate a “second order” index that exploits
additional information embedded in these indices to overcome their weak points [15].

Simulations performed in several systems, including the test system used in this
report, show that the maximum singular value of the full Jacobian inverse J−1 (i.e.,
the inverse of the minimum singular value of J), defined here as σmax, can be approx-
imated with respect to the load variations, represented here by the parameter λ, by
the function

σmax(λ) = (b− d λ)1/c
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with suitable values of the scalar positive constants b, c and d, as illustrated in Figure
4.3-4. These types of functions have the characteristic that the ratio

σmax(λ)

dσmax/dλ
= c λ− bc

d
(4.8)

is linear with respect to the varying parameter λ. Thus, the following index is pro-
posed

ι =
1

ιo

σmax(λ)

dσmax/dλ
(4.9)

where ιo is the value of (4.8) at the starting loading point, to properly normalize the
index ι. At the collapse point, ι = 0, since the denominator tends to infinite as the
Jacobian becomes singular. Based on the linear trend of ι, appropriate predictions
can be made of the distance to the voltage collapse point.

Generator capability limits or other operating limits, and the consequent jump in
the value of σmax, could compromise the expected linearity of ι. However, a sudden
change in σmax due to device limits is somewhat compensated by the correspond-
ing high value of the derivative dσmax/dλ. Thus, experimental results show that ι
approaches zero following a quasi linear pattern even in the presence of large discon-
tinuities in σmax due to device limits [15].

For power flow models, the derivative of the denominator in (4.9) can be calcu-
lated following the procedure proposed in [16, 17]. Thus, the power flow Jacobian
matrix JPF , which may be defined at a solution point (uo, λo) of (4.2) as JPF = DuF|o,
can be decomposed as follows:

JPF = RΣST

where R and S are orthonormal matrices, and Σ is a diagonal matrix whose elements
σ are the singular values of JPF . The idea is then to determine the influence of
system parameters p, particularly real and reactive loads, on the minimum singular
value σmin of JPF (which yields the maximum singular value σmax = 1/σmin of J

−1
PF ).

This vector parameter p is usually a function of the scalar parameter λ, e.g., loading
changes can be related back to the desired parameter λ by observing from (4.3) that

p = k λ (4.10)

where k represents a loading “direction.” Hence, a new Jacobian at a new solution
point u1 = uo +∆u, where ∆u represents a “small” change in the solution uo due to
a change ∆p in the initial system loading po, can be approximated by

DuF|1 ≈ JPF +D2
uF|o︸ ︷︷ ︸
H

∆u

where H is a three-dimensional Hessian array of the power flow equations. If ∆p
represents a vector of real and reactive power injection changes in all system buses,
based on the power flow equations F(u, p) = 0,

DuF|odu+DpF|odp = 0
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where DpF results in the identity matrix; hence,

∆u = −J−1
PF∆p

The change in the ith singular value of JPF may then be approximated by [16]

∆σi ≈ RT
i H J−1

PF∆p Si

where Ri and Si are the i
th columns of matrices R and S, respectively. In particular,

for the minimum singular value

∆σmin ≈ cT∆p (4.11)

where [17]

cT = −RT
1

(
H J−1

PFS1

)
(4.12)

The change ∆σmax can be computed based on a binomial series expansion, i.e.,

σmax +∆σmax =
1

σmin +∆σmin

≈ 1

σmin

(
1− ∆σmin

σmin

)

assuming that ∆σmin/σmin is “small.” Thus, as σmax = 1/σmin, it follows that

∆σmax ≈
(
σ2

maxc
T
)
∆p (4.13)

= cT
max∆p

From (4.10), (4.11), and (4.13),

dσmax

dλ
≈ cT

maxk (4.14)

where the vector cmax = σ2
maxc is computed using (4.12). Using the loading and

generation pattern k suggested in [18], (4.14) takes the following form:

dσmax

dλ
≈ ∑

j∈NL

(
cPmaxj

+ cQmaxj
tanϕj

)
ηj −

∑
j∈NG

cPmaxj
ρj

where NG and NL are the set of generators and load buses, respectively; cPmaxj
and

cQmaxj
are the entries in cmax related to the real and reactive power injections; ηj is

the share of the total network load at bus j, and tanϕj is the corresponding power
factor; and ρj is the participation factor of generator j on the total generated power.

Computational efficiency of the technique presented here is discussed in [15, 17].
The following CPU times corresponding to different calculations on a Digital Alpha
233/255 workstation for the Italian system (approximately 650 buses) can be used
to illustrate the costs associated with the computation of the index ι: 1.17s to com-
pute 7 singular values σ and associated singular vectors of the power flow Jacobian
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JPF ; 0.43s to factorize the Jacobian JPF ; 0.63s to compute the Hessian H . Notice
that the computed singular values and vectors can also be used to evaluate certain
control actions, which is a useful feature of this index as well as other indices based
on eigenvalue and singular value calculations. Nevertheless, when compared to other
indices, this index is definitely more expensive to compute, as several matrix and
vector manipulations and products are required, besides the computation of the min-
imum singular value; tests on larger systems would allow for a better comparison
of the computational burden of this technique with respect to other methodologies
presented in this section. Another drawback of this index is that it is based on a
particular power flow model; however, it seems feasible to extend the technique to
encompass other system models by removing certain modeling assumptions on the
derivation process.

The results of applying this technique to the test system are depicted in Figure
4.3-6. The index results in all cases have been normalized with respect to the initial
value ιo for the full system. Notice the smooth and linear behavior of the index in
this case, allowing for good predictions of proximity to collapse.

4.3.4 Voltage Instability Proximity Index (VIPI)

Power flow equations typically present multiple solutions, with one of these solutions
corresponding to an “operable” point of a power system [19]. It is known that the
number of existing solutions decreases as an operating point approaches the collapse
point, and only a pair of solutions remain near the collapse point and then coalesces on
it. The VIPI index, as defined in [20], is used to predict proximity to voltage collapse
using this solution pair. This index is defined based on the rectangular coordinate
representation of the power flow equations as follows:

ys = y(x) = (Ax)x+Bx+ c (4.15)

where x is the voltage vector in rectangular coordinates; ys represents the node injec-
tion vector; and y(x) is a quadratic function of x (A is a three-dimensional constant
Hessian, B is a constant square matrix, and c is a constant vector). Denoting the
high voltage (operable) solution and low voltage solution as x1 and x2, respectively,
two vectors a and b can be defined as follows:

a = (x1 + x2)/2 (4.16)

b = (x1 − x2)/2

At the collapse point, x1 = x2, i.e., b = 0.
From the quadratic nature of (4.15), the following relationships are identical

[20, 21]:
ys = y(a) + ỹ(b) (4.17)

J(a)b = 0 (4.18)

where function ỹ(·) is defined as y(·) with the slack node voltage set to zero, and
J(a) = ∂y(x)/∂x|x=a is the power flow Jacobian evaluated at x = a. Equation (4.18)
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implies that det J(a) = 0, and, therefore, x = a is a point on the loadability boundary
(a set of voltage collapse points); thus, y(a) represents the node injection vector at
the collapse point a. The VIPI index is then defined as the angle between the vectors
ys and y(a), i.e.,

V IPI = cos−1

(
yT

s y(a)

‖ys‖‖y(a)‖
)

This definition is graphically explained in Figure 4.3-7.
Taps are dealt with as pre-specified parameters in the definition of the power

flow equations (4.15). This implies that the low voltage solution x2 has to be com-
puted with the taps fixed at the same values as those obtained for the corresponding
operating solution x1. Based on this treatment, the VIPI has the advantage of not
presenting large discontinuities during the loading process due to tap limits. A similar
procedure is followed to avoid discontinuous behavior due to Q-limits of generators
[22]; thus,

1. First, obtain the high voltage solution x1 and compute the reactive power output
of generators at all PV buses.

2. Second, redefine power flow equations (4.15) by fixing the reactive power gener-
ated at all PV buses at the value obtained for x1, and freeing the corresponding
bus voltages, i.e., transform all PV buses into PQ buses. Compute the low
voltage solution x2 using these new equations.

The application of the VIPI index to the sample system is depicted in Figures
4.3-8 and 4.3-9. This system has extra singular points on the low voltage side of
the solutions, as shown in Figure 4.3-10, which were obtained by fixing all taps at
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the values computed for the corresponding high voltage solutions. Observe the rapid
changes in the index near the low voltage singularities.

Since the VIPI index is defined as the angle difference of two node injection
vectors, a disadvantage of this index is that its units are expressed in “degrees,” and
this information cannot be directly associated with any actual variables in the power
system model. Another limitation of this index is that it is based on a particular
power flow based model, and it does not appear to be directly applicable to other
system models without modifications.

An issue requiring some care is the computation of suitable low voltage solutions.
Even though various methods to compute low voltage solutions have been proposed
recently, difficulties still exist in the identification of the target solution, particularly
for lightly loaded systems. A possible strategy is to identify the target low voltage
solution prior to on-line computations, where computational burden is not a major
issue. Thus, once an x2 is obtained off-line, this solution can be used as an initial
value in the subsequent on-line computations of other low voltage solutions by means
of continuation methods or power flows with optimal multipliers. After the target
low voltage solution is identified, this index may be computed efficiently, so that it
can be used in practical voltage control applications [23].
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4.3.5 Loading Margin

For a particular operating point, the amount of additional load in a specific pattern
of load increase that would cause a voltage collapse is called the loading margin to
voltage collapse. Loading margin is the most basic and widely accepted index of
voltage collapse. Every paper on voltage collapse indices uses loading margin as the
horizontal scale when the performance of the index is graphed.

If system load is chosen to be the parameter which varies, then a system PV
curve can be drawn; in this case, the loading margin to voltage collapse is the change
in loading between the operating point and the nose of the curve.

There are several choices in defining the loading margin. The change in loading
can be measured either by the sum of the absolute changes in load powers or by the
square root of the sum of squares of the changes in load powers. Often loads are
assumed to have constant power factor and in that case the change in loading can be
measured by the changes in real power only. Another useful choice for constant power
factor loads is to measure the change in loading by the sum of absolute changes in
load powers, which is the technique used in this report. A version of a loading
margin measures the amount of power transferred between two areas when studying
the transfer capability between areas. It is straightforward to generalize the idea of
loading margin to the margin of some other parameter that is varied until the system
reaches voltage collapse. For example, if the loads were temperature dependent, then
one could define a “temperature margin” to voltage collapse.

The advantages of the loading margin as a voltage collapse index are:

• The loading margin is straightforward, well accepted and easily understood.
• The loading margin is not based on a particular system model; it only requires
a static power system model. It can be used with dynamic system models, but
it does not depend on the details of the dynamics [24]. It is especially useful
that the load dynamics need not be known.

• The loading margin is an accurate index that takes full account of the power
system nonlinearity and limits such as reactive power control limits encountered
as the loading is increased. Limits are not directly reflected as sudden changes
on the loading margin.

• Once the loading margin is computed, it is easy and quick to compute its
sensitivity with respect to any power system parameters or controls [14, 25,
26, 27].

• The loading margin accounts for the pattern of load increase. This can be
viewed as a disadvantage as well; see below.

It is important to emphasize the fact that device limits are not directly reflected
as changes on the loading margin profile, since these limits are already accounted
for in the computations. Hence, as opposed to other indices, estimates of distance
to collapse based on this index are exact. On the other hand, operators cannot
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use changes on the index to directly evaluate the relative effect of device limits on
the loading margin and, thus, devise some early corrective measures. Nevertheless,
using the techniques described in [14, 25, 26, 27], the effect of different limits on the
loadability margin can be readily evaluated with some additional computations.

The disadvantages of the loading margin as a voltage collapse index are:

• The loading margin requires computation at points away from the current op-
erating point and, hence, are computationally more expensive than indices only
using information at the operating point. The computational costs are the most
serious disadvantage of the loading margin.

• The loading margin requires the assumption of a direction of load increase.
Sometimes this information is not readily available.

There are two ways to alleviate the dependence of the loading margin on an
assumed pattern of load increase. One way is to compute the sensitivity of the loading
margin to the assumed pattern of load increase or to recompute the loading margin
with different patterns of load increase. Another way is to make further computations
to find a worst case pattern of load increase giving a minimum value of loading margin
[28, 29]; a technique to estimate this minimum margin is discussed in Section 4.3.6.

The loading margin can in principle be calculated by starting at the current
operating point, making small increments in loading and recomputing load flows at
each increment until the nose of the PV curve is reached. The loading margin is
then the total increment in loading. In practice, elaborations of this idea, such as
continuation or direct methods, are used; these computational methods are explained
in the following sections.

4.3.5.1 Direct Methods

Direct methods, also known in power system applications as Point of Collapse meth-
ods [30], were originally developed to compute singular bifurcation points of nonlinear
systems [31]. The method consist in solving equations

F (z, λ) = 0 (4.19)

DzF (z, λ)
Tw = 0

||w||∞ = 1

for z, λ, and w, to directly obtain the collapse point (z∗, λ∗) [32, 33, 34]. Nonsingular
equations (4.19) correspond to the system steady state equations, the singularity
conditions at the collapse point, and the nonzero left eigenvector requirement, for
any system model, which is an advantage of this method as it is not based on a
particular model. Other equations with the right eigenvector and/or different nonzero
eigenvector requirement may be used; however, equation (4.19) presents the best
numerical characteristics for large systems [33].

This method allows to directly determine the loading margin to collapse ∆λ =
λ∗−λ at any operating point defined by λ. For the sample system, this loading mar-
gin has a completely linear and smooth behavior as depicted in Figure 4.3-11, which
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allows to make very accurate predictions of proximity to collapse. The linear profile
is independent of limits on control variables or system size, since for a given oper-
ating conditions and load direction, the value of λ∗ can be directly computed from
(4.19) with all control variables and related limits considered. Any major contingen-
cies, such as generator or line tripping, are depicted as a reduction in the available
system power, which has a clear meaning in an operating environment. Thus, this
index allows for a simple definition of the threshold value that would trigger cor-
rective measures. Observe, however, that the effect of devices hitting limits as the
system approaches collapse are not directly reflected as changes on the index profile;
to determine the importance of the different control limits on the loading margin,
additional computations must be carried out [14, 25].

An obvious disadvantage with this technique is the high computational cost, as
the number of equations increases two fold with respect to the system steady state
equations, requiring good initial conditions, particularly for w. The latter creates
convergence problems when the system is far from the collapse point, since the system
eigenvalues and eigenvectors change significantly as the system approaches collapse;
this is especially true when device limits are encountered along the solution path.

Another disadvantage of the direct method is that it can only determine a collapse
point associated with system singularities (bifurcations). Voltage collapses related
to control limits, particularly generators reaching reactive power limits [33, 35, 36],
cannot be detected using this technique, yielding wrong answers in this case [33].

Similar equations to (4.19) may be obtained by representing the problem as an
optimization problem, as initially proposed in [37]. Thus, the collapse problem may
be stated as

Min. λ (4.20)

s.t. F (z, λ) = 0

This problem may be solved using the Lagrangian

L(z, λ, w) = λ+ wT ∗ F (z, λ)

where w corresponds to the Lagrangian multipliers. Hence, necessary conditions to
obtain a solution of (4.20)) are

DwL = F (z, λ) = 0 (4.21)

DzL = DzF (z, λ)
Tw = 0

∂L
∂λ

= wT ∂F

∂λ
(z, λ) + 1 = 0

These equations are basically the same as (4.19), with the exception of the third one,
which is another way of guaranteeing a nonzero w (it also corresponds to one of the
transversality conditions of a saddle-node bifurcation [3]).

Stating the collapse problem as an optimization problem allows for the use of
several well known optimization techniques to compute the collapse point, as discussed
in [38]. One particular technique that is especially appealing due to its limit handling
capabilities is Interior Point Methods, which has been successfully applied to the
computation of the collapse point [39, 40].

4-28



Full system 

N16 out     

N16 & M2 out

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
0

100

200

300

400

500

600

700

800

900

1000

Loading Level [MVA]

Lo
ad

 M
ar

gi
n 

[M
V

A
]

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

1000

Time [s]

Lo
ad

 M
ar

gi
n 

[M
V

A
]

Full system

N16 out

M2 out

(b)

Figure 4.3-11. (a) Loading margin and its (b) time profile.
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4.3.5.2 Continuation Method (Voltage Profiles)

Voltages profiles, also known as QV, PV or nose curves, are currently in use at
some utilities for determining proximity to collapse, so that operators can take timely
preventive measures to avoid losing the system [41]. Figures 4.3-12 depicts voltage
profiles for one of the test system critical buses (N102) and another bus (N8); observe
that voltage changes are not a good way of detecting proximity to collapse or detecting
the effect of limits or contingencies on system loadability [1, 2], particularly in highly
compensated buses or buses that do not belong to the critical area. The latter is
clearly shown in Figure 4.3-13, where the time profile of the voltage magnitude in a
system bus belonging to the critical area is shown; notice that the voltages remain
very much unaffected by the system contingencies. The idea is then to use successive
power flow solutions or continuation methods to fully compute the voltage profiles
up to the collapse point (the maximum loading point in Figures 4.3-12) to determine
the loading margin. Thus, this technique is really used as an alternative to the direct
method, as well as for obtaining additional information regarding the voltage behavior
in the system buses. The problem with this method is that, although reliable and very
informative, its computationally expensive, especially in large systems with multiple
limits [33].

Continuation methods overcome certain difficulties of successive power flow so-
lutions methods, as they are not based on a particular system model, and allow the
user to trace the complete voltage profile by automatically changing the value of λ,
without having to worry about singularities of the system equations. The strategy
used in these methods is illustrated in Figure 4.3-14, where a known equilibrium point
(z1, λ1) is used to compute the direction vector ∆z1 and a change ∆λ1 of the system
parameter. This first step is known as the predictor, since it generates an initial guess
(z1+∆z1, λ1+∆λ1), which is then used in the corrector step to compute a new equi-
librium point (z2, λ2) on the system profile (bifurcation diagram or manifold). Since
the Jacobian DzF |∗ is singular at the collapse (bifurcation) point, a parameterization
is sometimes needed in the predictor and/or corrector steps, depending on the tech-
niques used, to guarantee a well behaved numerical solution of the related equations.
A detailed description of these techniques follows.

A. Predictor and Parameterization One way of calculating the direction vec-
tor ∆z1 at an equilibrium point (z1, λ1) on the system profile, is to compute the
tangent vector to this trajectory at that point. Hence, since F (z1, λ1) = 0, then

dF

dλ
(z1, λ1) = DzF (z1, λ1)

dz

dλ

∣∣∣∣∣
1

+
∂F

∂λ

∣∣∣∣∣
1

= 0

⇒ DzF |1 dz
dλ

∣∣∣∣∣
1

= − ∂F

∂λ

∣∣∣∣∣
1

(4.22)

Thus, the direction vector and the parameter step come from the normalization of
the tangent vector, i.e.,

∆λ1 =
k

‖ dz/dλ|1 ‖ (4.23)
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Figure 4.3-12. Voltage profiles for buses (a) N102 and (b) N8.
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Figure 4.3-15. Standard tangent predictor.

∆z1 = ∆λ1
dz

dλ

∣∣∣∣∣
1

where k is a scalar positive constant that controls the size of the predictor step.
The normalization in (4.23) results in the reduction of the step size as the system
approaches the collapse point, since the magnitude of the tangent vector increases as
the system gets closer to this point. If the step is too large, then the initial guess
(z1 + ∆z1, λ1 + ∆λ1) yields convergence problems in the corrector phase, whereas
if the step is too small, the method takes too many steps to trace the bifurcation
manifold. A technique to determine an “optimal” value of k was proposed in [42],
considering the reactive power limits of the generators. Good results were reported in
[33] for k = 1 in various system sizes, by using step cutting when limits or convergence
problems are encountered. A technique to determine an adequate step size based on
a tangent vector voltage stability index is proposed in [43, 44] and discussed in more
detail in Section 4.3.10.

This predictor technique has the particular advantage of generating an approxi-
mation to the “zero” right-eigenvector at the collapse point, since the tangent vector
smoothly converges to this eigenvector [3].

Computing the tangent vector in (4.22) does not represent a significant computa-
tional cost, since one can use the last factored Jacobian matrixDzF (z1, λ1). However,
this method has difficulties when the equilibrium point is close to the collapse point,
since the system Jacobian becomes ill-conditioned. To avoid this problem, param-
eterization techniques may be used [31]. A relatively simple technique successfully
applied in [33, 42, 45, 46] is local parameterization, which consists in interchanging
the parameter λ with the system variable zi ∈ z that has the largest normalized entry
in the tangent vector, so that λ becomes part of the equations variables, whereas zi
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becomes the new parameter p, i.e.,

p = maxi

{∣∣∣∣∆zi

zi

∣∣∣∣ ,
∣∣∣∣∣∆λ

λ

∣∣∣∣∣
}

(4.24)

Nevertheless, when step cutting and perpendicular intersection correctors are used,
this local parameterization is not needed in practice [33, 45]; due to the highly non-
linear behavior of the Jacobian eigenvalues, one must be rather close to the collapse
point in order to have an ill-conditioned Jacobian matrix.

Another type of predictor with parameterization used to take the system around
the singularity of the collapse point is the arclength method [31, 47]. This technique is
based on the idea that the system variables and parameter at the equilibrium points
can be represented as a function of the arclength s of the system profile, i.e., for
F (z1(s), λ1(s)) = 0,

DzF |1 dz
ds

∣∣∣∣∣
1

+
∂F

∂λ

∣∣∣∣∣
1

dλ

ds

∣∣∣∣∣
1

= 0 (4.25)

where the arclength s must satisfy the condition

dz

ds

∣∣∣∣∣
T

1

dz

ds

∣∣∣∣∣
1

+
dλ

ds

∣∣∣∣∣
2

1

= 1 (4.26)

Therefore, by approximating ∆z ≈ dz, ∆λ ≈ dλ, and k = ∆s ≈ ds, equations (4.25)
and (4.26) become

DzF |1∆z1 +
∂F

∂λ

∣∣∣∣∣
1

∆λ1 = 0 (4.27)

∆zT
1 ∆z1 +∆λ2

1 = k

where k is a scalar positive constant that defines the length of the arc, and conse-
quently the size of the predictor step. Equations (4.27) can be used to calculate the
predictor step instead of equations (4.22) and (4.23), with a guaranteed nonsingular
Jacobian at the collapse point.

Finally, a simpler predictor method that does not require parameterization is
the secant method, which was used in power systems collapse analysis in [47]. This
technique consists in approximating the tangent vector dz/dλ using two or more
previously determined points on the system profile. Thus, given two points (z1a , λ1a)
and (z1b

, λ1b
) on the profile, such that λ1b

> λ1a ,

dz

dλ

∣∣∣∣∣
1

≈ z1b
− z1a

Equations (4.23) can then be used to calculate the direction vector and the param-
eter step. Notice that the closer these two points are, within reasonable numerical
tolerances, the better the approximation of the tangent vector; however, more points
have to be computed, taking longer to trace the desired diagram. On the other hand,
points too far apart generate inadequate approximations of dz/dλ, yielding initial
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Figure 4.3-16. Secant predictor.

guesses that lead to convergence difficulties during the corrector step. Using more
points on the system profile to better predict its curvature, requires greater compu-
tational resources, but can be used as an alternative procedure to approximate the
tangent vector when the diagram changes direction rapidly, particularly when control
limits are encountered. Hence, depending on the curvature of the profile, the secant
method presents advantages and disadvantages with respect to the two predictors
previously described. A mixed approach is proposed in [31, 47], using the secant pre-
dictor when the tangent vector changes slowly on the “flat” part of the diagram, to
then switch to tangent vector or arclength predictors when the profile presents larger
curvatures. Figure 4.3-16 illustrates the secant predictor procedure, and Figure 4.3-17
depicts the problems with this technique when sharp changes in the system profile
are encountered.

B. Corrector Once an initial guess (z1 + ∆z1, λ1 + ∆λ1) is determined in the
predictor step, with or without parameterization, the actual point (z2, λ2) on the
system profile must be calculated by solving the following set of equations for z and
λ [31]:

F (z, λ) = 0 (4.28)

ρ(z, λ) = 0

The first vector equation in (4.28) corresponds to the steady-state system equations,
which have a singular JacobianDzF |∗ at the collapse point (z∗, λ∗). The second scalar
equation represents a phase condition that guarantees non singularity of the corrector
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Figure 4.3-17. Secant predictor convergence problems when “sharp corners” are encoun-
tered.

equations Jacobian 


DzF
∂F
∂λ

Dzρ
∂ρ
∂λ




(n+1)×(n+1)

at all points on the system profile.
Two different phase conditions ρ(·) have been successfully used in collapse studies

of power systems. The first condition consists in defining a perpendicular vector to
∆z1, which starts at (z1 +∆z1, λ1 +∆λ1) and intersects the bifurcation manifold at
(z, λ), as depicted in Figure 4.3-18. Thus,

ρ(z, λ) = ∆zT
1 (z − z1 −∆z1) + ∆λ1(λ− λ1 −∆λ1) (4.29)

This was introduced in [48] and successfully applied to various power systems in
[33, 45]. This condition does not require any kind of parameterization to guarantee
non singularity of equations (4.28) for all system equilibria [3, 49].

A simpler phase condition is used in [46, 47, 50], based on the local parameteri-
zation of the system around the collapse point. In this case, a local parameter p (λ
or zi ∈ z), is set to a constant value, i.e.,

ρ(z, λ) = p− p1 −∆p1

The parameter p is chosen based on parameterization (4.24), guaranteeing a non-
singular Jacobian of equations (4.28) [31]. This technique is illustrated in Figure
4.3-19.
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Figure 4.3-19. Fixed parameter corrector.
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Of these two corrector techniques, the perpendicular intersection has the advan-
tage of not requiring parameterization. However, it introduces an almost full row in
the Jacobian matrix, which must be taken into consideration during the factorization
process to avoid sparsity degradation.

It is interesting to highlight the fact that, by restating the collapse problem as an
optimization problem as in (4.20), continuation methods can be readily demonstrated
to be equivalent to generalized reduced-gradient (GRG) methods [51]. The GRG
method is a well-known nonlinear optimization technique [52, 53], that consists in
following a solution path using predictor-corrector steps in an “optimal” direction on
a given constraint manifold, based on tangent information at a known point on this
manifold.

4.3.6 Loading Margin by Multiple Power Flow Solutions

This method calculates an approximation to the closest loadability limit by using a
pair of multiple power flow solutions [21]. The closest loadability limit approximated
by this method is defined, for a given operating point, as the point on the loadability
boundary within the minimum Euclidean distance of the node injection changes.
Obtainable information includes load power margins of the total and individual nodes,
weak spots of the system, critical voltage profiles, etc. Such information is basically
the same as that obtained by direct methods, except that the target critical point is
different.

This method utilizes some features of voltage vectors a and b, which are obtained
from a pair of multiple power flow solutions, as defined in Section 4.3.4 in equation
(4.16). Hence, this technique is based on a particular power flow model of the system.
The node injection vector y(a) in (4.17) approximates the closest loadability limit if:
(i) the operating point ys is close to the loadability boundary and (ii) the load flow
Jacobian is regarded as symmetrical. Hence, this method utilizes y(a) = ys − ỹ(b)
as a first step estimate, where ỹ(b) is regarded as the loadability margin from ys to
the collapse point y(a). Based on these definitions, an approximation to the closest
loadability limit, as proposed in [21], is defined as follows:

yCLL = ys + α‖Mỹ(b)‖ Mw

‖Mw‖ (4.30)

where w is the left eigenvector of the power flow Jacobian at x = a, i.e., J(a)T w = 0,
and is perpendicular to the loadability boundary [28]; and the matrix M is defined
as

M = diag(γ1 . . . γn)

γi =

{
1 for P or Q injection for load or generator
0 for generator voltage or for junction node

The constant α can be associated with the “curvature” of the loadability boundary
at y(a); thus, for α = 1, the boundary is assumed to be a sphere, whereas for

α = cos θ =
−[M ỹ(b)]T Mw

‖ −Mỹ(b)‖‖Mw‖ (4.31)
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Figure 4.3-20. Approximated Closest Loadability Limit.

the boundary is assumed to be a plane. The limit values cos θ ≤ α < 1 provide the
upper and lower bounds of the load power margin yCLL in (4.30). These concepts are
depicted in Figure 4.3-20. Observe that for θ = 0, y(a) corresponds to the closest
point; therefore, θ may be used as an indicator to estimate the precision of y(a) and
yCLL.

The procedure to compute yCLL is as follows:

1. Calculate high voltage solution x1 and low voltage solution x2 using a power
flow program, and then compute a, b, y(a) and ỹ(b). The VIPI index may
be computed optionally at this stage. Notice that the computation of x2 is a
nontrivial problem, and requires some special techniques, as discussed in Section
4.3.4.

2. Solve J(a)T w = 0 for w, which is the normal vector to the loadability boundary
at x = a.

3. Compute cos θ from (4.31), and then choose a value of α so that cos θ ≤ α < 1.
In [21], a value of α = 0.95 cos θ is suggested, based on some empirical results.

Figures 4.3-21 and 4.3-22 depict the application of this index to the sample sys-
tem. The upper and lower bounds in Figure 4.3-21 are the plots for α = 1 and
α = 0.95 cos θ, respectively, indicating that the actual closest voltage collapse point
is expected to exist in the region between the bounds. Various numerical tests have
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Figure 4.3-21. Worst case loading margin by multiple power flow solutions.

shown that the exact collapse point normally exists quite near to the lower bound;
hence, Figure 4.3-22 depicts the lower bound only.

The problems with this technique are:

• As in the case of VIPI index, some care is required in the identification of the
target solution x2.

• In the presence of the singularities of the low voltage solutions, rapid changes in
the index appear near these singularities (see Section 4.3.4). Notice that these
sudden changes are not large, as shown in Figures 4.3-21 and 4.3-22.

• The method estimates the closest voltage collapse point under the condition that
the node specification type, PQ or PV, is unchanged until the system reaches
the loadability limit. Therefore, it does not take into account system control
limits. However, this problem can be minimized by treating all PV buses as PQ
buses during the computation of the low voltage solutions (see Section 4.3.4).
In this case, conservative results will be obtained as compared to the actual
margin.

Advantages of the index are:
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Figure 4.3-22. Worst case loading margin by multiple power flow solutions versus time.
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• This method overcomes a weakness of the VIPI index as the original information
measured in degrees has been transformed into load power margins measured
in MVA/MW/MVAr.

• The closest loadability limit is a unique point, independent of the assumption
of a direction of load increase. For example, a comparison of the loading margin
results shown in Figures 4.3-21 and 4.3-22 with those depicted in Figure 4.3-11
indicates that, for the worst load pattern given by the vector Mw, only one
third of the total load power increase is required to make the system collapse.

• Although the closest loadability limit is in general an effective index for monitor-
ing and controlling voltage stability, its exact computation is time consuming
when using the existing methods proposed in [28]. On the other hand, the
computation time of (4.30) is quite fast, approximately equivalent to that of
one iteration of the power flow (excluding the computation of the power flow
solution pair).

• The approximation errors are quite small, normally no more than a few per-
centage points from light load to heavy load conditions.

4.3.7 Local Load Margins

Indices based on physical quantities are desirable and practical. The index proposed
for a power flow system model in [54] satisfies this requirement, and is based on the
distance from the initial load (Poi

in MW) to the nose of the PV curve (Pmaxi
in MW)

when the load at node i is increased at a fixed power factor, i.e.,

PLmgi
=

Pmaxi
− Poi

Pmaxi

(4.32)

The load margin PLmgi
, which has a value between 1 and 0 (at the collapse point),

assumes that the loads at other nodes remain constant, which is somewhat different
to the approach previously used in this report to compute load margins. However,
(4.32) allows for the computation of a voltage stability margin for each load point. As
the voltage may be on a lower solution domain depending on the system conditions,
it is convenient to present the value PLmgi

as a negative number when the system
voltage is in this particular state.

As PLmgi
is defined with respect to a specific node, its computation is relatively

easy. However, a voltage stability margin should be evaluated for the entire power
system; thus, the index PLmgi

should be computed for all load nodes, i.e., one needs to
calculate as many Pmax’s as number of load nodes in the system, which is impractical.
Therefore, the following method is used that efficiently estimate the Pmax’s: When a
power system model is given, such as that shown in Figure 4.3-23(a), an equivalent
system for each node i is formulated, as depicted in Figure 4.3-23(b). Here, “equiv-
alent system” means that the load flow values for both systems are equal. This is
the same as determining the phasor values Ṽo, S̃o, and Ỹo of the equivalent network,
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Figure 4.3-23. System reduction: (a) original system; (b) reduced system.

so that the power flow injection S̃i and the voltage sensitivity ∂S̃i/∂Ṽi are equal for
both systems.

The voltage sensitivities can be derived from the Jacobian matrix elements of the
original network. Thus, the linearized power flow equations in rectangular coordinates
(Ṽi = ei + j fi) can be written as



∆e1

∆f1
...
∆ei

∆fi
...



=




. . .
. . .

. . .

K11 K12

K21 K22

. . .




︸ ︷︷ ︸
K




∆P1

∆Q1
...

∆Pi

∆Qi
...




(4.33)

where the coefficient matrix K corresponds to the inverse of the Jacobian matrix.
Since by definition ∆Pk and ∆Qk are zero except for k = i in (4.33), the sensitivity
∂S̃i/∂Ṽi can be determine from[

∆Pi

∆Qi

]
=

[
K11 K12

K21 K22

]−1 [
∆ei

∆fi

]
(4.34)

The phasor values Ṽo, S̃o, and Ỹo of the equivalent network can be determined with
the help of the K elements in (4.34).

In order to obtain the block diagonal elements of matrix K on equation (4.33),
which is a completely dense matrix, at the least computational costs, the method
proposed in [55] can be used. Using this technique, the diagonal elements can be
readily computed at approximately the price of one LU factorization of the original
Jacobian matrix.

The value of Pmaxi
can then be estimated as follows: Suppose that the load at

node i increases by a factor h (typically h = 1+λ) of the base load S̃io ; this produces
a phasor voltage change so that Ṽi = x̃ Ṽ0. This can be represented by equation

h S̃io = Ṽi

[
(Ṽ0 − Ṽi) Ỹ0

]∗
+ S̃0

= x̃ Ṽ0

[
(1− x̃)Ṽ0Ỹ0

]∗
+ S̃0 (4.35)
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Here, there are only two solutions for x̃, as the equivalent network consists of only
one P-Q node; these solutions become one at the nose of the PV curve. Therefore,
the problem of obtaining Pmaxi

can be treated as a problem of calculating h for a
unique root of x̃ in equation (4.35). Thus, the PLmgi

index defined in (4.32) can be
expressed in terms of h as follows:

PLmgi
=

h Poi
− Poi

h Poi

=
h− 1
h

(4.36)

Equations (4.34) through (4.36) are used for all load nodes. Observe that in the
computation of h limits are not considered, which leads to dicontinuous index profiles.

Figures 4.3-24 through 4.3-27 were obtained for the sample system using a simu-
lation program from CRIEPI, Japan. This program allows to recreate a given voltage
collapse scenario in the time domain by solving a load flow problem every time step,
as defined by the user. The program allows to model different load change patterns,
generation dispatch, AVRs, taps, compensators, etc., monitoring different system
variables and computing PLmgi

at the same time for each time step. For the test
system, a time step of 15 s was chosen for a total simulation time of 150 min (9000
s). All loads were treated as constant impedances with internal taps (no limits) to
avoid load flow convergence problems; the internal taps change every time step to
keep the load at a given nominal power level, so that the loads can be viewed as
constant power loads on the long time range. Loads are assumed to trip off when the
corresponding bus voltage magnitudes reach 0.1 p.u.

Figure 4.3-24 depicts the voltage magnitude at one of the main load buses (N207)
versus the net load power change at that bus, for the full system and for the system
without generators N16 and M2, showing a reduction on the maximum local loading
Pmaxi

of about 50 MW. Figure 4.3-25 shows the time profiles of the voltage magnitudes
at three main load buses (N201, N204 and N207), as well as the power demand
at one of those loads (N201), for the given voltage collapse scenario; observe that
the load demand steadily increases by 30 % in two hours (120 min or 7200 s), and
that, after tripping generator M2 off at 7400 s (123.3 min), all bus voltages and
corresponding power demands collapse with a fall rate defined by the rate of change
of the internal ULTCs in the loads. Figure 4.3-26 shows the time profiles of the local
load margins PLmgi

for the same three load buses (N201, N204 and N207), with the
margin becoming negative (entering unstable region) after the tripping of generator
M2; notice the smooth, quasi-linear profile of the margin for these buses, which is not
always the case, allowing for somewhat adequate predictions of proximity to collapse
in this case. Finally, Figure 4.3-27 illustrates the use of load shedding as a possible
solution to the collapse problem depicted in the previous figures; in this case, the
load at bus N207 (bus with smallest value of PLmgi

) is tripped off at the same time as
generator M2, avoiding the collapse of the system, as illustrated by the voltage and
local index time profiles.

In [54], the local loading margin index PLmgi
is applied to a detailed system

model with a particular load representation that simulates constant power behavior
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Figure 4.3-24. Local PV curves at load bus N207 for (a) full system and (b) system with
both N16 and M2 tripped off.
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Figure 4.3-25. Voltage time profiles for load buses N201, N204 and N207, and active power
demand time profile at load bus N201 for given collapse scenario. Loads are tripped off at
a 0.1 p.u. voltage value, after voltage collapses due to M2 tripping off at 123.3 min. (7400
s) .
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Figure 4.3-26. PLmgi time profiles for load buses N201, N204 and N207 for given collapse
scenario assuming load tripping at 0.1 p.u. voltage. The index becomes negative after M2
trips off, indicating a system transition into the unstable region.

in the long term, similar to the load model used for the test system in this document.
However, this index is strongly based on a power flow model and, hence, more studies
are required to determine whether it is suitable for systems with other types of load
models. Computational costs could also become a significant issue in large systems,
as these local margins have to be computed for all load buses to adequately predict
proximity to collapse.

4.3.8 Test Functions

Another voltage stability index independent of the system model has been proposed
in [56], based on a family of scalar test functions tlk defined as follows [31]:

tlk = |eT
l J J−1

lk el| (4.37)

where J corresponds to the system Jacobian, el is the lth unit vector, i.e., a vector
with all zero entries except for an entry of 1 in row l, and

Jlk = (I − ele
T
l )J + ele

T
k (4.38)

Here I represents the identity matrix. Equation (4.38) can be simply interpreted as
an operation on the Jacobian matrix J where the lth row is removed and replaced by
the row eT

k . Notice that for the load-flow equations at the voltage collapse point J is
singular, but matrix Jlk is guaranteed nonsingular if the l

th and kth are chosen so that
they correspond to non zero entries in the “zero” eigenvectors v and w associated
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Figure 4.3-27. Voltage and PLmgi index time profiles for load buses N201, N204 and N207
assuming that M2 and the load at bus N207 trip off at the same time (123.3 min. or 7400
s) .
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with the zero eigenvalue of J . Furthermore, if l = k = c, where c corresponds to the
maximum or critical entry in v, the test function becomes the “critical” test function

tcc = |eT
c J J−1

cc ec| (4.39)

The computational procedure required to determine tlk consists of the following
steps:

1. Order and factor Jlk.

2. Apply a forward and backward substitution (repeat solution) to obtain r =
J−1

lk el.

3. Obtain s = JT el, i.e., extract row l of J , and compute tlk = sT r by a vector
product.

These steps yield computational costs comparable to an initial iteration of a power
flow solution process.

The Jacobian matrices and test function family are functions of the system vari-
ables and parameters, i.e., J = J(z, λ), Jlk = Jlk(z, λ), and tlk = tlk(z, λ). As the
parameter λ changes, approaching collapse, the system variables change, with the
critical test function tcc displaying a “quadratic” shape as a function of the load
margin ∆λ [56, 11]. Thus,

∆λ ≈ a t2cc (4.40)

where a is a scalar constant. This allows for the use of tcc to determine system
proximity to collapse; in general, test functions tll for buses that do not belong to
the critical area do not display this quadratic shape. On the other hand, device
limits alter the shape of tcc, directly affecting the load margin estimates; however,
this sharp changes also allow to evaluate the realtive effect of the different limits on
the maximum loadability of the system, so that corrective actions can be devised
early in the loading process. Although the general profile of tcc is somewhat similar
to the profiles previously depicted for the sensitivity factors in Section 4.3.1, the test
function index is independent of system size, which is not the case for the sensitivity
factors.

The test function profiles for two buses of the test system are depicted in Figure
4.3-28. This index shows a quadratic shape for the bus belonging to the critical area
at the collapse point, whereas for the other bus the test function appears rather insen-
sitive to parameter variations. Also, the effect of ULTC limits on system loadability
can be observed in the critical bus test function profile, although the changes appear
less significant than in the V SF index, which is somewhat to be expected due to the
limited voltage control characteristics of ULTC transformers. Figure 4.3-29 depicts
the time profile of tcc, as an operator would observe it on console, so that decisions
can be made on time, based on the previous observations, to avoid system collapse.

A problem with using tcc is the difficulty of determining the critical buses c. A
possible solution is to monitor several buses at the same time, based on the maximum
entries in the tangent vector dz/dλ as defined in (4.22), as critical buses can be
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detected this way [43, 44]. However, the computational costs in this case could be
significant, depending on the number of buses that have to be monitored in order to
be able to make adequate predictions.

4.3.9 Reduced Determinant

This index, as defined in [11], assumes a typical transient stability system model that
allows for the related linearized equations to be rewritten at a given load bus l as

 0
∆Pl

∆Ql


 =

[
A B
C D

]  ∆z̃
∆δl

∆Vl


 (4.41)

where matrices A, B, C, and D represent the corresponding blocks of the Jacobian
matrix J ; observe that D is a 2× 2 matrix. These equations consider that active and
reactive power variations only occur at a load bus l, re-ordering the system equations
in such a way that the P and Q mismatches for this bus are the last ones. Hence,
equation (4.41) can be reduced to[

∆Pl

∆Ql

]
= D′

ll

[
∆δl

∆Vl

]
(4.42)

where
D′

ll = D − CA−1B (4.43)

Observe that the matrix D′
ll is well defined at all operating points, since A is guar-

anteed nonsingular even at the collapse point, as long as bus l has non zero entries
in the “zero” right eigenvector v of J at that point; this is particularly true for l = c
(the critical buses). Thus, the determinant of D′

ll,

detD′
ll =

det J

detA
(4.44)

becomes zero only at the collapse point.
Although the definition ofD′

ll assumes certain loading pattern, results for multiple
test systems indicate that monitoring detD′

ll at different operating points for changes
in the loading factor λ provides very similar information and behavior than the test
function tll, regardless of the loading pattern [11]. This is especially true for l = c, as
illustrated for the test system in Figures 4.3-30 and Figure 4.3-31. Hence, the loading
margin can also be approximated using detD′

cc instead of tcc in equation (4.40).
Matrix D′

ll in (4.43) can be obtained by a partial factorization of the corre-
sponding load-flow Jacobian J , which suggests slightly less computational costs than
determining the test function tlk in (4.37), since it does not require repeat solutions
and vector products. Based on this procedure, the computational cost of calculating
tlk can be estimated as approximately 10% more than what is required for determin-
ing D′

ll, if efficient ordering and factorization processes are used [57]. Although the
improvement is not significant, if several values of the test function or matrix are
required, which is typically the case, the difference could amount to significant CPU
time savings, particularly for large systems.
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Figure 4.3-28. Test function for (a) critical bus N102 and (b) bus N8.
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Figure 4.3-29. Critical test function versus time.
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Figure 4.3-30. Reduced determinant for (a) critical bus N102 and (b) bus N8.

4-53



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

Time [s]

R
ed

uc
ed

 d
et

. B
us

 N
10

2 
[p

.u
.]

Full system

N16 out

M2 out

Figure 4.3-31. Critical reduced determinant versus time.
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4.3.10 Tangent Vector Index (TVI)

The tangent vector to the system profile represented by F (z, λ) = 0, i.e., dz/dλ as
defined in (4.22), may be used to define the TVI. This index is also independent of
the system model and shows behavior similar to tcc and detDcc at significantly less
computational costs [43, 44].

From (4.22), it is clear that the tangent vector is computationally inexpensive, as
it can be computed at a maximum cost of one additional Newton-Raphson iteration.
This vector also contains important information regarding how the system variables z
are affected by changes on the parameter λ. Furthermore, based on equation (4.22),
it can be readily demonstrated that the tangent vector converges to the “zero” right
eigenvector v at the collapse point, which pinpoints the critical buses of the system.
Hence, this vector has been successfully used for “early” detection of the system
critical bus, as demonstrated in [46, 43, 44].

The TVI is defined as

TV Ii =

∣∣∣∣∣dVi

dλ

∣∣∣∣∣
−1

(4.45)

where dVi/dλ is the entry in the tangent vector dz/dλ corresponding to the bus
voltage magnitude Vi for a bus i. Observe that this definition is somewhat similar to
the V SF index described above. As the collapse point is approached, dVi/dλ → ∞
and, hence, TV Ii → 0. This index has a profile rather similar to the test function
and reduced determinant indices for the system’s critical buses at the collapse point
(i = c), as depicted in Figures 4.3-32 and 4.3-33.

The quadratic behavior of TV Ic, or tcc and detDcc for that matter, may be used
to modify the predictor step of the continuation method to reduce the number of steps
needed to calculate the collapse point [44]. Thus, when two power flow solutions are
available, a quadratic equation can be used to approximate the loading margin ∆λ
as a function of TV Ii, where i corresponds to the buses with the largest entries in
the tangent vector, as follows:

∆λ ≈ mini{a TV I2
i } (4.46)

The value of ∆λ is then used to compute ∆z1 in the predictor step of equation (4.23).

∆z1 = ∆λ
dz

dλ

∣∣∣∣∣
1

The TVI continuation algorithm may then be summarized as follows:

1. Using a continuation method based on a tangent predictor, and a corrector
with fixed λ and step cutting techniques, compute two operating points on the
system profile.

2. Based on the maximum entries in the tangent vector computed at each predictor
step, identify the critical clusters in the system at every continuation step and
determine the corresponding TVIs.
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Figure 4.3-32. TVI for (a) critical bus N102 and (b) bus N8.
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Figure 4.3-33. Critical TVI versus time.
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3. After two continuation steps use equation (4.46) in the predictor step, and
continue until the collapse point is identified when TV Ii ≤ ε.

4.4 OTHER INDICES

Several other indices are discussed in this section to give the reader a broad view of
what is available in the current literature. Only a brief description is provided here,
as the results of applying these indices to the test system were not available.

4.4.1 System Determinant

This is one of the first indices used to detect proximity to collapse. The idea is
to detect the collapse point for any system model by monitoring the value of the
determinant of the associated Jacobian, which becomes zero at this point (singular
point).

The problem with this index is that it yields rather large values, especially in
large systems, which makes it numerically impractical. Furthermore, its behavior is
highly nonlinear, i.e., it is rather insensitive to system parameter variations, similar to
the response observed for the minimum eigenvalues and singular values of the system
Jacobian as discussed in Section 4.3.2.

4.4.2 Voltage Controllability Index (VCI)

This index was proposed in [58], and is based on monitoring the largest eigenvalue of
a “voltage controllability matrix.” This index includes the effect of voltage regulators;
however, as the previous determinant index, it is highly nonlinear.

4.4.3 Center Manifold Based Index

In [59], the authors propose the use of the “center manifold” at the collapse (bifur-
cation) point to define a voltage stability index. For F (z, λ) in (4.1), this manifold is
locally defined at a saddle bifurcation point (z∗, λ∗) as

1

2
wT [D2

zF |∗v]v z2
c + wT ∂F

∂λ

∣∣∣∣∣∗ λ
where v and w are the right and left eigenvectors corresponding to the zero eigenvalue
of DzF |∗, and zc is a scalar variable resulting from a linear transformation of z [60].

An index is then proposed based on the locally quadratic shape of this manifold.
For certain test systems, this index shows similar quadratic and discontinuous profiles
as several of the indices previously discussed in this report. The problem with this
index, however, is that the eigenvectors v and w on which it is based tend to change
significantly with λ, as mentioned in Section 4.3.2. Also, as compared to other indices
with similar characteristics, it is computationally more expensive.
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4.4.4 P and Q Angles

As proposed in [61], the angle between the tangent and the gradient vectors of the
equilibrium equations F (z, λ) = 0 may be used as an index of proximity to collapse.
This angle may be defined, for a given bus i, as

αi = cos

( ∇Fi|o dz/dλ|o
||∇Fi|o||||dz/dλ|o||

)

where dz/dλ|o is the tangent vector of F (z, λ) at the equilibrium point (zo, λo), as
defined in (4.22), and ∇Fi|o is a gradient vector corresponding to the ith row of the
system Jacobian DzF |o.

As the TVI, test function and reduced determinant indices discussed in previous
sections, this index is associated with an specific bus i, and presents a quadratic shape
for buses belonging to the critical area and discontinuities due to control limits. In
terms of computational costs, it is slightly more expensive than the TVI index.

4.4.5 Energy Functions

The Transient Energy Function or TEF, a technique based on Lyapunov stability
theory and originally developed for direct stability analysis of power systems [62],
has been successfully used as a voltage stability index for collapse studies [63, 64].
The reason for this is that this scalar function can be shown, under certain modeling
assumptions, to be directly associated with the area enclosed by the nose curve [65].

A relatively simple way of defining this function was proposed in [66] for the
following representation of equations (4.1):

F (z, λ) = A φ(z, λ)

where (A + AT ) is a positive semi-definite matrix, and the vector function φ(z, λ)
corresponds to

φ(z, λ) = ∇Tϑ(z, λ)

with ϑ(z, λ) representing a Lyapunov function, better known in power systems as the
TEF. Hence, the TEF is a scalar function of the state z for a given parameter value
λ defined with respect to an equilibrium point z0 as

ϑ(z, λ) =
∫ z

z0

φT (u, λ) du (4.47)

For simplified system models, equation (4.47) leads to the following definition of the
TEF index, as proposed in [63]:

TEF =
1

2

n∑
k=1

n∑
j=1

BkjV
0
k V

0
j cos(δ

0
k − δ0

j ) (4.48)

− 1

2

n∑
k=1

n∑
j=1

BkjV
1
k V

1
j cos(δ

1
k − δ1

j )
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−
n∑

k=1

Pk(λ0)(δ
1
k − δ0

k)−
n∑

k=1

∫ V 1
k

V 0
k

Qk(ν, λ0)

ν
dν

+
n∑

k=1

n∑
j=1

GkjV
0
k V

0
j cos(δ

0
k − δ0

j )(δ
1
k − δ0

k)

+
n∑

k=1

n∑
j=1

GkjV
0
j sin(δ

0
k − δ0

j )(V
1
k − V 0

k )

where Ykj = Gkj + jBkj is the kj entry in the Y-bus matrix; Pk(λ) and Qk(Vk, λ) are
the active and reactive power injections into bus k, respectively; and V 0

k
� δ0

k and V 0
j
� δ0

j

correspond to the phasor bus voltages at the equilibrium point (z0, λ0) for buses k
and j. The phasor voltages V 1

k
� δ1

k and V 1
j
� δ1

j represent another equilibrium point
z1 for the same parameter value λ0, which is associated with the “closest” unstable
equilibrium point.

The TEF definition in (4.48) provides a measure of the “energy distance” between
two equilibrium points. As the system approaches collapse, the two solutions z0 and
z1 merge into one, i.e., z0 = z1 at λ∗. Thus, the TEF index has been shown to
smoothly and quasi-linearly change as λ changes, even in the presence of device limits,
becoming zero at the collapse point; this behavior allows for adequate predictions of
system proximity to collapse.

A difficulty with this index is that it cannot be readily modified to include more
complex system models. Furthermore, the computation of the second equilibrium
point z1 is not always an easy task, particularly for lightly loaded systems (similarly
to what happens with the VIPI discussed in Section 4.3.4).

4.4.6 Reactive Power Margins

On-line monitoring of reactive power and reactive power reserves in the system, in-
cluding generators or any other reactive power sources such as SVCs, have been
proposed as indices for voltage security assessment [67, 68]. The idea is that volt-
age collapse usually does not occur until current (reactive power) limits are reached,
especially in large reactive power sources which may lead to cascading limiting ef-
fects at other units. Hence, by monitoring delivered reactive power and its associated
reserves throughout the system, operators may be able to determine proximity to
voltage collapse and take corrective actions such as load shedding based on areas
requiring additional reactive power support. An implementation of these types of
indices at the BPA control center is described in [69].

Reactive power margins are used in [70, 71] to evaluate voltage instability prob-
lems for coherent bus groups. These margins are based on the reactive reserves on
generators, SVCs, and synchronous condensers that exhaust reserves in the process
of computing a QV curve at any bus in a coherent group or voltage control area. A
detailed description of this technique can be found in Section 3.6.
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4.4.7 V/Vo Index

The V/Vo index is rather simple to define and compute. Thus, assuming the bus
voltage values (V) to be known from load flow or state estimation studies, new bus
voltages (Vo) are obtained by solving a load flow for the system at an identical
state but with all loads set to zero. The ratio V/Vo at each node yields a voltage
stability map of the system, allowing for immediate detection of weak and effective
countermeasure spots.

A problem with this index is that it presents a highly nonlinear profile with
respect to changes on the system parameter λ, not allowing for accurate predictions of
proximity to collapse [2]. Nevertheless, when used together with operating experience,
it has demonstrated in practice to be an effective tool against voltage collapse. Thus,
the V/Vo index has been successfully used since 1982 in Belgium for off-line studies,
particularly in seasonal operation planning; it was then added in 1995 to the on-line
security assessment unit of the new Belgium dispatch center.

4.4.8 Real-time Index for Secondary and Tertiary Voltage
Regulation

A real-time dynamic indicator of the proximity to voltage instability at a given oper-
ating point is proposed in [72]. Under certain conditions, this index can be computed
in a few seconds using a deterministic algorithm, based on actual measurements and
control signals. Such indicator has shown to be reliable and to complement other
conventional off-line planning and short-term operation stability indices.

A condition for using this real-time index is the presence of automatic secondary
and tertiary voltage regulation controls in the system. Secondary voltage regulation
yields real-time measurements of pilot node voltages and area reactive power levels
that allow for on-line computation of area voltage stability indices. These indices
effectively represent instantaneously the proximity of the areas to their voltage sta-
bility limits, provided that tertiary voltage regulation is in place, giving the operator
real-time information on the current network voltage stability state. These can also
be used for timely automatic control actions when facing unexpected network con-
tingencies, as they allow for an effective coordination of the reactive power resources
(mainly generators) through a composite control structure that maintains suitable
network voltage profiles in spite of continuously changing reactive power demands
and grid perturbations.

These indices are currently being tested as part of ENEL’s project for secondary
and tertiary voltage regulation [73, 74]. The project is based on a hierarchical control
structure that provides a network subdivision into areas around certain pilot nodes;
these areas are controlled by reactive power level signals qi(t) (one for each area),
supplied by Regional Secondary Voltage Regulators (RVRs), to keep the pilot node
voltages at desired values. A National Tertiary Voltage Regulator (NVR) coordinates
the action of all the RVRs in a closed loop at the national/utility level, determining
the pilot node voltage pattern Vi(t) based on the actual state of the network and
the forecasted optimal voltages and reactive powers, and forcing slow corrections in
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order to have a better balance of reactive power generation levels and control margins
among the areas.

The proposed indicator of proximity to the voltage stability limit for a given area
i, V SIi(t), is defined as follows

V SIi(t) = qi(t) + ρ q̇i(t)

where qi(t) represents the instantaneous value of the area’s total generator reactive
power QG level in p.u. with respect to its limits, i.e.

qi(t) =



∑

j∈i QGj(t)/
∑

j∈i QGjmax for QGj(t) ≥ 0∀j
∑

j∈i QGj(t)/
∑

j∈i |QGjmin
| for QGj(t) < 0∀j

and ρ is a weight coefficient to effectively account for reactive power level dynamics
and, hence, its expected short-term trend. Observe that, −1 ≤ qi(t) ≤ 1 + ε qi(t),
where ε qi(t) is a contribution (usually kept at 0) that may take positive growing
values according to the pilot node voltage regulation effort, in case some of the units
of area i can be transiently overloaded with respect of their overexcitation limits.

The V SIi(t) index presents useful real-time information used by the operator
to determine critical states of the voltages in area i when predefined thresholds are
exceeded. Based on the area alarms, the RVR operates to avoid units operating at
their overexcitation limits, since this condition usually anticipates the triggering of a
voltage collapse problem. This is achieved by controlling in advance all the available
reactive power resources installed in the area (capacitors, reactors, synchronous or
static compensators), so that the value of qi(t) is reduced, reducing the control “effort”
of the units.

If all the area reactive power resources have been consumed and reactive power
control margins still remain small, the index could reach more critical values, leading
the RVR to automatically either modify the voltage set-points of the area ULTCs
or completely shut them down to reduce the load seen by the transmission network.
At the same time, the RVR sends signals to the regional operator asking for switch-
ing of manually operated reactive power sources. If all the area control actions are
accomplished with area control units that do not allow excitation overloading, the
steady-state difference 1− V SIi(t) fully represents the distance of area i to its volt-
age stability limit. When the system recovers from critical operating conditions, the
V SIi(t) value decreases and, hence, the RVR is able to release the area ULTCs and
reduce the use of reactive power resources.

Reactive power control margins are strongly reduced during critical network sit-
uations, leading to severe network voltage degradation. In this case, tertiary volt-
age regulation is used to improve the transmission network voltage by progressively
renouncing to the optimally planned short-term voltage profiles (defined based on
economic reasons). Secondary voltage regulation reaches its limits only when the
transmission network voltages are very low, in spite of all the network reactive power
resources in operation; in these conditions, the system reaches its real-time voltage
stability limit, as operating limits are reached despite the reduced pilot node voltages
and reactive power control efforts.
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4.5 SUMMARY

Table 4.5-1 summarizes all relevant information regarding the indices discussed in
Section 4.3 to allow for a comprehensive comparison of these indices. Observe that
all indices have their advantages and disadvantages; hence, it is not practical to
recommend a particular index as the only one to use. Some indices seem especially
suited for on-line studies, based on their low computational costs as well as base
models and additional information provided; however, these indices tend to be poor
predictors of proximity to voltage collapse. On the other hand, some indices yield
accurate measures of distance to collapse but at higher computational costs, making
them more suited for off-line studies. Hence, it appears that the best compromise is
to jointly use these indices so that inexpensive but less accurate indices can be used
as predictors in the computation of the exact loading margin, as discussed in Section
4.3.10, so that accurate measures of distance to collapse may be obtained together
with useful, additional information, such as limit ranking, at reduced computational
costs.
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