Sistema Teste NORDIC

O arquivo Nordic_preliminar.fdx disponível no site do Simulight apresenta uma versão ainda preliminar do sistema benchmark proposto em [1], primariamente, para estudos de estabilidade de tensão de longo prazo.

Os dados originais do sistema NORDIC estão disponíveis gratuitamente na URL: https://cmte.ieee.org/pes-psdp/489-2/ para os softwares Anatem, PSS/E, DigSilent Power Factory and Ramses.

A Tabela I apresenta uma comparação de resultados de fluxo de potência entre Simulight¹, Anarede e descritos em [1].

Tabela I – Comparação do resultado de flow do sistema Nordic

Barras PV	Relatório	IEEE [1]	Ana	rede	Simulight		
	MVAR	graus	MVAR	graus	MVAR	graus	
G1	58,3	2,59 56,4		2,6	59,569	2,56	
G2	17,2	5,12	18,0	5,10	17,773	5,09	
G3	20,9	10,27	21,8	10,3	21,374	10,25	
G4	30,4	8,03	30,8	8,0	31,122	8,0	
G5	60,1	-12,36	60,0	-12,4	61,471	-12,4	
G6	138,6	-59,42	138,8	-59,5	141,424	-59,64	
G7	60,4	-68,95	61,2	-69,0	67,852	-69,19	
G8	232,6	-16,81	233,9	-16,8	234,879	-16,89	
G9	201,3	-1,63	202,5	-1,6	203,704	-1,65	
G10	255,7	0,99	257,3	1,0	257,309	0,96	
G11	60,7	-29,04	60,0	-29,0	63,392	-29,12	
G12	98,3		97,3	-31,9	101,725	-31,97	
G13 50,1		-54,30	51,7	-54,3	55,406	-54,45	
G14	295,9	-49,90	297,2	-49,9	305,326	-50,05	
Barra Swing	g Relató	Relatório IEEE		rede	Simulight		
	N	MW		W	MW		
G20	21	2137,5		37,9	2138,753		

Para efeito de comparação, as figuras a seguir mostram resultados de simulação feitas no Simulight, considerando que em 1s há a perda da LT 4032-4044, conforme indicado na Figura 1.

¹ Aqui cabe uma nota importante dizer que para obtenção dos resultados mostrados na Tabela I pelo Simulight, o fluxo de potência deve ser rodado uma primeira vez com os LTCs bloqueados e logo em seguida com os mesmos desbloqueados.

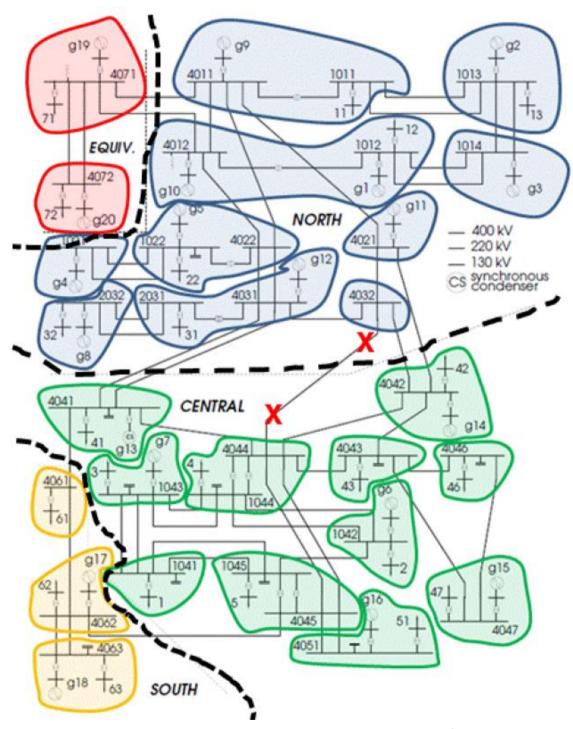


Figura 1. Diagrama unifilar do sistema NORDIC²

 $^{^2}$ Pelo fato do Simulight considerar a classe de subestações, as envoltórias coloridas representam barras e equipamentos de uma mesma subestação.

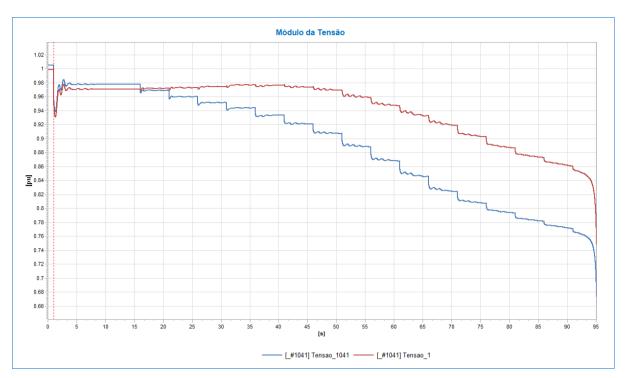


Figura 2. Tensões das Barras 1041 e 1 contidas na SE#1041 na região Central

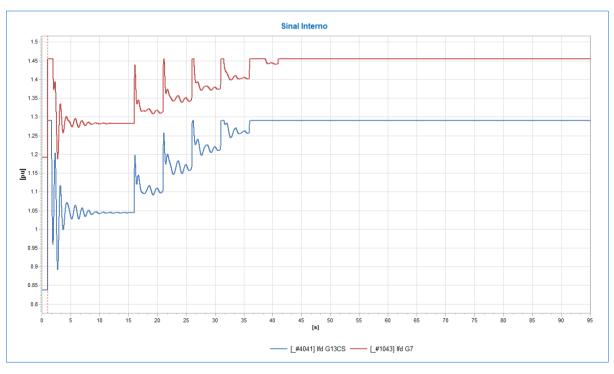


Figura 3. Correntes de campo do compensador síncrono G13 (SE#4041) e do gerador G7 (SE#1043)

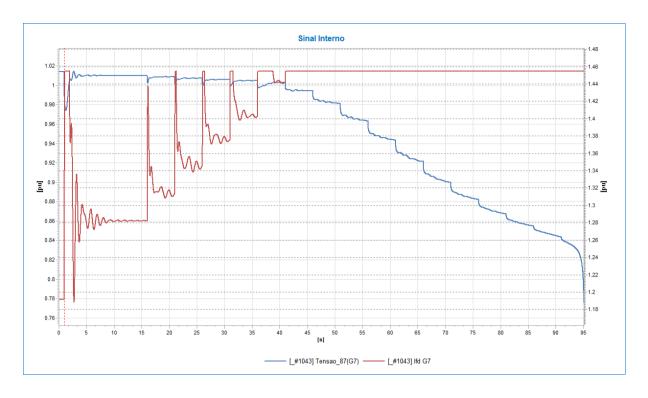


Figura 4. Tensão terminal do Gerador G7 (Barra 87 – SE#1043) e Corrente de campo de G7³

Na Figura 4 cabe observar que quando a corrente de campo atinge definitivamente o limite de corrente máxima (limite do OEL) entorno de 41 s, o gerador perde o controle de tensão e sua tensão terminal mergulha numa pendência mais acentuada, como esperado. A conjugação das máquinas atingindo o OEL e a atuação dos LTCs (claramente observado na Figura 4) tentando recuperar a tensão baixa em seus secundários, se transforma no principal mecanismo da perda de estabilidade de longo prazo.

³ A escala esquerda corresponde à tensão terminal de G7 e a escala direita à sua corrente de campo.

_

1 Implementações a serem feitas

Para que o arquivo Nordic_preliminar.fdx se torne definitivo ainda falta incluir:

- Os modelos de regulador de tensão e de velocidade. Os que estão no arquivo Nordic_preliminar.fdx são modelos simplificados disponibilizados na LIBMODELS do Simulight;
- O modelo exponencial das cargas na simulação dinâmica. Está se considerando o tradicional modelo ZIP;
- Adequação dos modelos dos OLTCs;
- Os modelos de PSSs. No arquivo Nordic_preliminar.fdx não há PSSs. Para eliminar as oscilações eletromecânicas que estavam mascarando a instabilidade de tensão de longo prazo, considerou-se provisoriamente o amortecimento das máquinas (termo D) iguais a 10. Os valores originais são nulos em todas as máquinas. Mas isso só deve ser feito quando todos os modelos originais forem implementados, principalmente incluindo os PSSs.

A Figura 5 e a Figura 6 mostram os modos eletromecânicos do sistema NORDIC considerando o termo D das máquinas iguais a 10 e 0, respectivamente. Note que na Figura 6 há modos praticamente sem nenhum amortecimento, com a utilização dos modelo simplificados de reguladores de tensão e velocidade. Salienta-se que o artifício aqui utilizado não deve ser feito na vida real, isto foi um "truque" para analisar o fenômeno de maior interesse enquanto os modelos originais não forem incluídos no arquivo do Simulight.

λ Calcular Todos ♠ Exportar para MATLAB		\B <u>≡</u> Sal	Salvar como Texto		☐ Fechar		? <u>Aj</u> uda			
Lista de	Autovalores	Mapa de Autova	loes							
	Modo N°	Real	Imag I	Frequência	Amort.	F. Part.	Estado	Modelo	Dispositivo	Subestação
+ •	51, 52	-2.4545	±10.7375	1.71 Hz	22.3 %	22.9 %	W	MaqSincr#Mdl:IV	UG81	
. 0	53, 54	-2.2033	±10.6960	1.70 Hz	20.2 %	30.2 %	W	MaqSincr#Mdl:IV	UG812	_#4031
• •	55, 56	-2.1743	±10.4944	1.67 Hz	20.3 %	29.3 %	w	MaqSincr#Mdl:IV	UG85	_#1022
	57, 58	-1.9824	±10.2276	1.63 Hz	19.0 %	27.4 %	W	MaqSincr#Mdl:IV	UG811	_#4021
+ •	59, 60	-2.3251	±10.2529	1.63 Hz	22.1 %	16.9 %	W	MaqSincr#Mdl:IV	UG89	_#4011
₩ 🔷	61, 62	-2.4795	±10.3091	1.64 Hz	23.4 %	35.1 %	W	MaqSincr#Mdl:IV	UG819	_#4071
. 0	63, 64	-2.4537	±10.2707	1.63 Hz	23.2 %	18.9 %	W	MaqSincr#Mdl:IV	UG82	_#1013
	67, 68	-4.7557	±9.9776	1.59 Hz	43.0 %	28.3 %	W	MaqSincr#Mdl:IV	UG813	_#4041
	69, 70	-1.8890	±9.5793	1.52 Hz	19.3 %	13.2 %	W	MaqSincr#Mdl:IV	UG83	_#1014
	81, 82	-0.9415	±7.9974	1.27 Hz	11.7 %	35.6 %	w	MaqSincr#Mdl:V	UG814	_#4042
	83, 84	-0.9081	±7.8505	1.25 Hz	11.5 %	33.0 %	W	MaqSincr#Mdl:V	UG817	_#4062
	85, 86	-0.9393	±7.7585	1.23 Hz	12.0 %	35.5 %	W	MaqSincr#Mdl:V	UG87	_#1043
	87, 88	-0.8093	±7.5704	1.20 Hz	10.6 %	22.8 %	W	MaqSincr#Mdl:IV	UG88	_#2032
	89, 90	-1.0027	±7.4607	1.19 Hz	13.3 %	11.3 %	w	MaqSincr#Mdl:IV	UG84	_#1021
₩ 🔷	91, 92	-0.7440	±7.0665	1.12 Hz	10.5 %	29.0 %	w	MaqSincr#Mdl:V	UG816	_#4051
+ •	93, 94	-0.7574	±6.6886	1.06 Hz	11.3 %	16.3 %	w	MaqSincr#Mdl:IV	UG84	_#1021
+ Q	95, 96	-0.4801	±6.0643	0.97 Hz	7.9 %	32.8 %	w	MaqSincr#Mdl:V	UG86	_#1042
	97, 98	-0.4391	±5.2659	0.84 Hz	8.3 %	16.3 %	w	MaqSincr#Mdl:V	UG818	_#4063
H •	100, 101	-0.8883	±4.1295	0.66 Hz	21.0 %	13.9 %	w	MaqSincr#Mdl:IV	UG820	_#4072

Figura 5. Modos eletromecânicos do sistema NORDIC considerando o termo D = 10.

λ Calcular Todos ◆ Exportar para MATLAB		B ■ Sal	Salvar como Texto		☐ Fechar		Ajuda				
ista de /	Autovalores	Mapa de Autoval	loes								
	Modo N°	Real	Imag F	requência	Amort.	F. Part.	Estado	Modelo	Dis	positivo	Subestaçã
<u>+</u> 🔷	91, 92	-0.0059	±6.6294	1.06 Hz	0.1%	16.9 %	w	MaqSincr#Md	li:IV UG	584	_#1021
<u>+</u> 🔷	66, 67	-1.5168	±10.3849	1.65 Hz	14.5 %	16.2 %	w	MaqSincr#Md	l:IV UG	82	_#1013
<u> </u>	68, 69	-1.0076	±9.6316	1.53 Hz	10.4 %	12.5 %	w	MaqSincr#Md	l:IV UG	683	_#1014
<u> </u>	93, 94	-0.0468	±6.0982	0.97 Hz	0.8 %	31.0 %	w	MaqSincr#Md	l:v uo	386	_#1042
i	79, 80	-0.0415	±7.6471	1.22 Hz	0.5 %	29.4 %	w	MaqSincr#Md	l:IV UG	388	_#2032
<u> </u>	83, 84	-0.4845	±7.8714	1.25 Hz	6.1 %	33.0 %	w	MaqSincr#Md	li:V UG	3817	_#4062
ii - 🔷	95, 96	-0.0513	±5.3375	0.85 Hz	1.0 %	14.5 %	w	MaqSincr#Md	li:V UG	818	_#4063
<u> </u>	99, 100	-0.2121	±4.0913	0.65 Hz	5.2 %	13.1 %	w	MaqSincr#Md	ll:IV UG	3820	_#4072
<u> </u>	64, 65	-1.5395	±10.4097	1.66 Hz	14.6 %	32.3 %	w	MaqSincr#Md	ll:IV UG	819	_#4071
<u> </u>	62, 63	-1.4100	±10.3354	1.64 Hz	13.5 %	15.7 %	W	MaqSincr#Md	ll:IV UG	389	_#4011
<u> </u>	60,61	-1.1026	±10.3152	1.64 Hz	10.6 %	28.3 %	W	MaqSincr#Md	ll:IV UG	811	_#4021
<u>+</u> 🔷	54, 55	-1.5251	±10.8343	1.72 Hz	13.9 %	22.5 %	w	MaqSincr#Md	ll:IV UG	381	
<u> </u>	87, 88	-0.1646	±7.4384	1.18 Hz	2.2 %	17.4 %	w	MaqSincr#Md	ll:IV UG	384	_#1021
<u> </u>	58, 59	-1.2650	±10.5815	1.68 Hz	11.9 %	29.3 %	w	MaqSincr#Md	ll:IV UG	385	_#1022
<u> </u>	56, 57	-1.2944	±10.7924	1.72 Hz	11.9 %	30.6 %	w	MaqSincr#Md	l:IV UG	3812	_#4031
•	89, 90	-0.3247	±7.0950	1.13 Hz	4.6 %	32.4 %	delt	MaqSincr#M	ldl:V	JG816	_#4051
•	85, 86	-0.5214	±7.7635	1.24 Hz	6.7 %	37.5 %	delt	MagSincr#M	ldl:V	JG87	_#1043
•	81, 82	-0.5023	±8.0019	1.27 Hz	6.3 %	35.3 %	delt	MaqSincr#M	ldl:V	JG814	_#4042
. 0	52, 53	-2.9033	±10.4735	1.67 Hz	26.7 %	35.1 %	delt	MagSincr#M	ldl:IV	JG813	#4041

Figura 6. Modos eletromecânicos do sistema NORDIC considerando o termo D = 0.

2 Referência Bibliográfica

[1] T. VAN CUTSEM ET AL., "TEST SYSTEMS FOR VOLTAGE STABILITY ANALYSIS AND SECURITY ASSESSMENT", IEEE PES TECHNICAL REPORT PES-TR19 – TASK FORCE OF THE POWER SYSTEM STABILITY SUBCOMMITTEE, USA, AUGUST 2015. DISPONÍVEL EM HTTPS://CMTE.IEEE.ORG/PES-PSDP/489-2/

