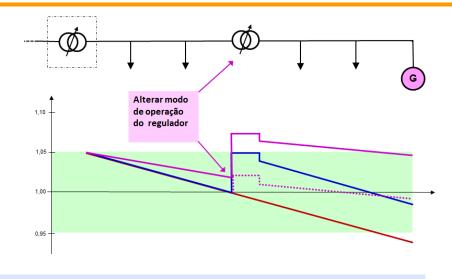
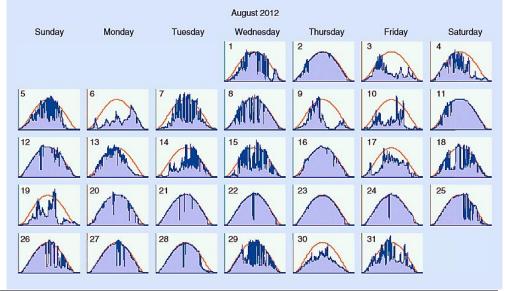


Chronological Simulation of the Interaction between Intermittent Generation and Distribution Network

D.M. Falcão G.N. Taranto C.C.O. Hincapié

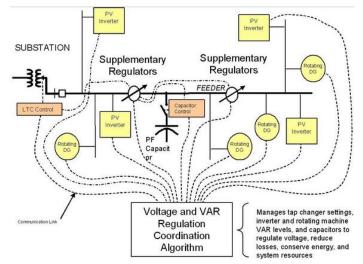

Scenario and Motivation


- Growing presence of intermittent energy sources (wind, solar, etc.)
- Considerable part of it is on the form of distributed generation connected to the distribution network (MV and LV)

Problems

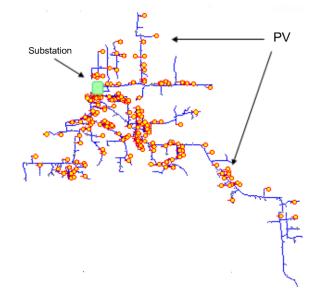
- Steady-state and transient voltage regulation
- Protection coordination
- Power quality
- Feeder loading
- Reverse power flow
- Etc.

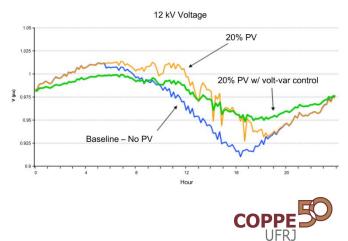
Fonte: C.Trueblood et alli., "PV Measures Up for Fleet Duty", IEEE Power and Energy, vol11, no. 2,pp. 33-44, Mar/Apr 2013.



D.M. Falcão - IEEE PES Innovative Smart Grid Technologies (ISGT-LA) - 15-17 April 2013 - São Paulo, SP - Brazil

Smart Grid


- Smart Grid technologies are essential to cope with intermittent sources
 - Advanced Metering Infrastructure (AMI)
 - Volt and Var Control and Optimisation
 - Microgrids
 - Virtual Power Plants
- New analysis and simulation tools are required to design control systems and strategies



Simulation Studies

- Presently
 - Most studies performed using only load flow software
 - Ad hoc treatment of the time variability
 - Limitation to represent the chronological action of controllers
- Requirements of new simulations tools
 - Quasi-dynamic simulation mode allowing modeling of the system time evolution with the adequate level of detail
 - Three phase modeling
 - Facilities to easily include new models of generators, control and protection devices, loads, etc.
 - Able to deal with time series of load and generation, including graphics display and analysis

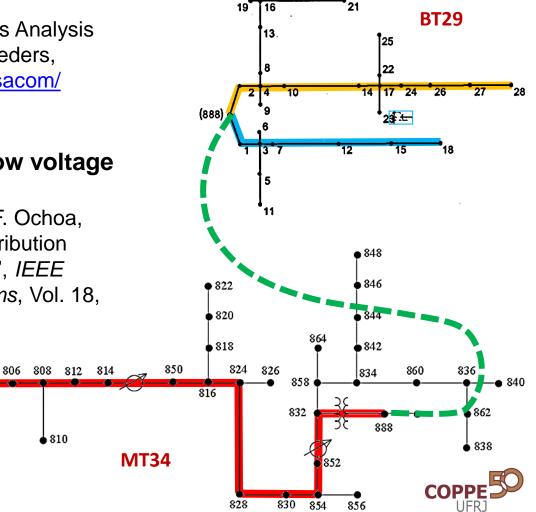
Proposed Simulation Methodology

Based on an integrated computer environment comprising static simulation (power flow) and dynamic simulation (electromechanical) using a Three-Phase Single-Phase formulation

Chronological Simulation

- Power Flow used for initialization
- Electromechanical Simulation used to process all the points of the load/generation curves, considering:
 - The point of connection to the transmission system or sub-transmission is represented as a generator with classic model and very high inertia, behind the system short-circuit impedance
 - No voltage regulators and governor considered in the equivalent generator
 - Loads modeled as constant active and reactive power at each interval
 - The elements of control and protection are modeled as usual in long term electromechanical simulation studies
 - Large integration steps regulated by the load generation time series
 - Intermittent generation time series determined by information about solar radiation, wind, etc.

http://www.coep.ufrj.br/~tarang/Simulight/

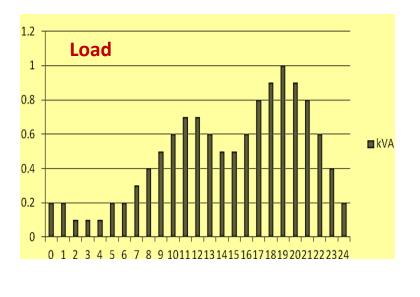

Test Systems

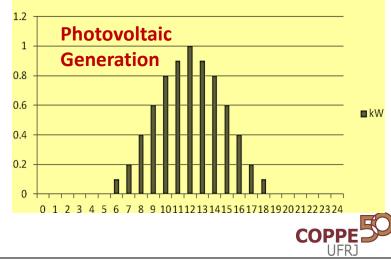
IEEE 34-bus feeder (MT34) medium voltage

IEEE PES Distribution Systems Analysis Subcommittee, Radial Test Feeders, <u>http://ewh.ieee.org/soc/ pes/dsacom/</u> <u>testfeeders/index. html</u>

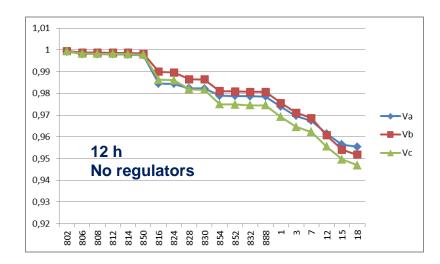
Actual Brazilian 29-bus low voltage network

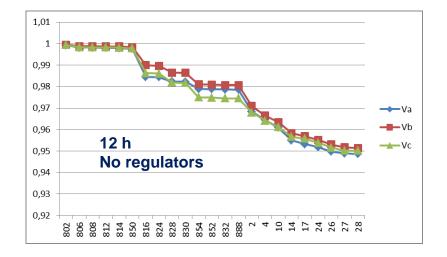
R.M. Ciric, A.P. Feltrin, and L.F. Ochoa, "Power Flow in Four-Wire Distribution Networks—General Approach", *IEEE Transactions on Power Systems*, Vol. 18, No. 4, November 2003.

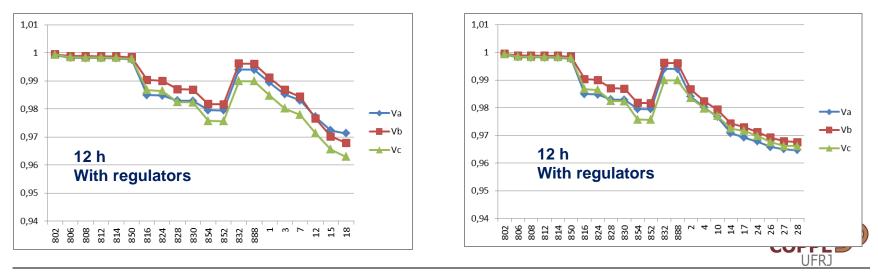

20


800

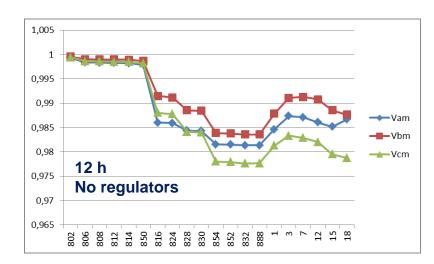
802

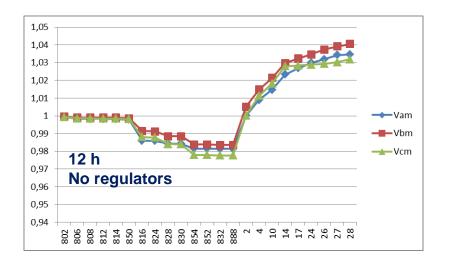

Load and Generation Variation

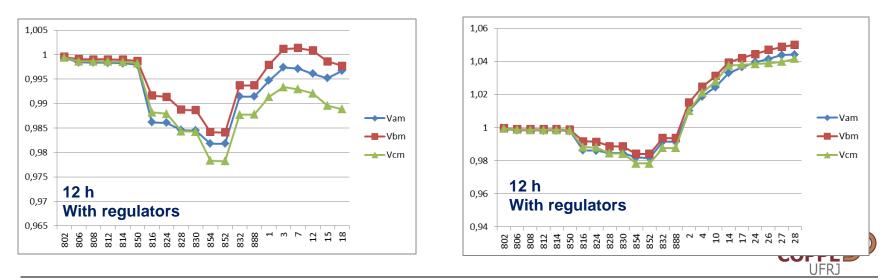

- The load in all load busses varies daily according to a normalized load curve modulated by the base case values
- Identical procedure for the one phase PV generation in the chosen busses
- Location (bus and phase) and capacity of the PV generator selected randomly



Results without PV Generation




Results with PV Generation


- Studies with PV in 10%, 50%, 80% and 100% if the LV buses
- Generation configuration for 10% penetration of PV generation in the LV network (BT29)
- Results shown the average values of the 10 configurations

Bus	Phase	kWp	Bus	Phase	kWp
Configuration 1			Configuration 6		
17	С	5	19	а	1
8	а	4	2	С	5
12	а	3	23	b	1
Configuration 2			Configuration 7		
22	b	1	3	С	4
7	С	1	11	b	2
6	а	1	14	С	3
Configuration 3			Configuration 8		
7	b	4	23	b	4
1	С	5	13	а	1
17	b	1	14	а	2
Configuration 4			Configuration 9		
23	b	3	7	b	4
25	а	2	25	а	4
28	а	4	6	а	4
Configuration 5			Configuration 10		
17	b	5	22	а	4
20	а	2	18	а	1
2	а	1	23	b	1

Results with 100% PV Generation

Conclusions

- The proposed methodology combines static and dynamic simulations in an integrated computer environment without requiring great changes in the software
- The described methodology presents the advantage of modeling precisely the chronological effect of control devices action to respond to the time evolution of load and generation
- The methodology was tested by studying the connection of monophasic photovoltaic generation in a low voltage distribution network
- The results show the effectiveness of the methodology for this type of anlysis

